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Jiang, Mingda, MS, November 1991 Computer Science
A Machine Function Identification System Based on Genetic 
Algorithms (99 pp.)

The function identification problem is a fundamental 
problem of science, medicine and engineering. The function 
identification problem is to find a function model of a 
system, in symbolic form, that fits the experimental data 
points of the system. In this problem, the fundamental 
properties of a system are to be determined from observed 
behavior of that system. The function model is a 
mathematical idealization that is used as an approximation 
to represent the output of the system. It is "good fit" to 
the given experimental data according to a chosen evaluation 
criterion.

This thesis is concerned with the construction of a 
general intelligent machine system to solve function 
identification problems. The machine function identification 
system does not need any priori knowledge about the system 
or function model to find a function, in symbolic form, that 
fits a set of given sample data points. The author combines 
a symbolic computing method and a numeric computing method 
to identify function models. The new approach dynamically 
creates a highly fit function model to the given sample data 
points, using Darwinian principles of reproduction and 
survival of the fittest, and optimizes the coefficients of 
the function model using the nonlinear regression algorithm. 
To this end, a machine function identification system,
HGSFI, is implemented.

As a demonstration of the feasibility of the design an 
HGSFI implementation is tested in two categories of function 
identification problems: linear regression problems and 
nonlinear regression problems. Initialized in each test with 
randomly generated initial function models, the HGSFI 
implementation is shown to rapidly converge to high 
performance function models in both task domains.

Director: Alden H. Wright,
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1. INTRODUCTION TO THE PROBLEM

1.1. INTRODUCTION
One of the aims of sciences is to find, to describe, 

and to predict relationships among events in the world in 
which we live. One way that this is accomplished is by 
finding a formula or equation that relates quantities in the 
real world. We may be interested, for example, in the 
relationship between temperature and pressure in a chemical 
process; or in the relationship between the number of apples 
on trees in an orchard and the amount of fertilizer the 
trees receive; or we may be interested in the relationship 
of supply, demand, and price of certain commodities, or in 
how a certain vaccine affects a disease; or in the 
relationship of rainfall, temperature, and humidity; or in 
the yields of various varieties of wheat. In other words, we 
are concerned with the problem of determining the 
relationship between the internal structure of a system and 
the observed output. This is the function identification 
problem.

The function identification problem is to find a
function model of an experimental system, in symbolic form,
that fits the experimental data points of the system. In
this problem, fundamental properties of an experimental
system are to be determined from observed behavior of that
system. The function model is a mathematical idealization

1



that is used as an approximation to represent the output of 
the system. It is "good fit" to the given experimental data 
according to a chosen evaluation criterion.

Here we are concerned with the problem of constructing 
a computer program system to solve the function 
identification problems. Researchers in artificial 
intelligence (machine learning) have investigated the 
mechanisms of machine discovery and designed some machine 
learning systems to find empirical laws (function models) 
from the observations. Most of these methods vary widely by 
task domains. The purpose of this research is to investigate 
the feasibility of designing a general-purpose machine 
function identification system which can automatically build 
a function model to fit the given experimental data. The new 
method combines the hierarchical genetic algorithm and the 
Levenberg-Marquardt nonlinear regression algorithm to find a 
highly fit function model approximating the given data 
points. This approach is a domain independent method of 
learning. To this end, a machine function identification 
system, HGSFI, is implemented.

1.2. SOME RELATED EFFORTS
The goal of machine discovery on empirical laws is to 

find mathematical relations between numeric variables from 
observation.



During last decade, many AI discovery systems on 
empirical laws and discovery were developed. The most 
important class is BACON-like systems, including BACON 
(Langley, Bradshaw, & Simon, 1983; Langley, Simon, Bradshaw 
& Zytkow, 1987), ABACUS (Falkenhainer & Michalski, 1986), 
FAHRENHEIT (Zytkow, 1987), and IDS (Nordhausen & Langley, 
1990) . The BACON-like systems are successful in generating 
equations for some chemical and physical laws. The major 
components of BACON-like systems focus on discovering 
numeric laws from experimental data and use a similar 
approach —  heuristics. The major difference among the 
various systems lies in the discovery heuristics that each 
uses in its search for empirical laws. Here we only discuss 
the detail of the BACON system to introduce the problem.

BACON is a set of concept-learning programs. These 
programs solve a variety of single concept learning tasks, 
including "rediscovering" such classical scientific laws as 
Ohm's law, Newton's law of universal gravitation, Kepler's 
law, and Snell's law of refraction. The programs are also 
capable of using the learned concepts to predict future 
training instances.

BACON's discovery method consists of a number of 
interacting techniques. The system begins by gathering data 
in a systematic fashion, varying one independent term at a



time and examining the values of dependent variables. After 
gathering a set of values, BACON looks for monotonic 
relations between terms, uses these to define new terms, and 
recurses until it finds terms with constant values. After 
finding laws that hold in a given context, the system varies 
another independent term, using the constants found at the 
previous level as dependent terms at this higher level of 
description. This process continues until all terms have 
been incorporated into some law.

BACON'S method for finding constant terms is simple 
that it can be described here by three straightforward 
heuristics:

1. If term X has near-constant values, formulate a law 
involving X.

2. Else, if X increases as Y increases, consider the ratio 
X/Y and go to step 1.

3. Else, if X increases as Y decreases, consider the 
product X*Y and go to step 1.

Table 1 presents a simple example of BACON's application of 
this method in discovering Kepler's third law of planetary 
motion. This law can be stated as D3/P2 = k, where D is the 
distance of a body from its primary, P is the period of that 
body's revolution around the primary and k is some constant.
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Table 1: Discovering Kepler's Third Law of Planetary Motion

Moon Distance
(D)

Period
(P)

Term-1
(D/P)

Term-2
(D2/P)

Term-3
(D3/P2)

A 5.67 1.769 3.203 18.153 58.15
B 8.67 3.571 2.427 21.036 51.06
C 14.00 7.155 1.957 27.395 53.61
D 24.67 16.689 1.478 36.459 53.89

The table presents Borelli's original data for Jupiter's 
satellites, which contain a substantial amount of variation 
(Langley, Simon, Bradshaw, and Zytkow, 1987). BACON begins 
by noting that D and P increase together, leading it to 
consider the ratio D/P. This term is not constant, but its 
values decrease as those of D increase; this leads BACON to 
define the product D2/P. Again, the values of this term are 
not constant, but its values increase as those of D/P 
decrease. As a result, the program considers the term D3/P2. 
The values of this term are constant (within the acceptable 
range of 7.5%), so BACON formulates a law to this effect.
The same method can be used to discover a variety of numeric 
laws.

BACON's main contribution is in the area of 
quantitative discovery relating real-value variables, the 
use of rule-space operators to create new (product, 
quotient, slope, and intercept) terms as combinations of
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existing terms, and its ability to recast the training 
instances on the basis of developed hypotheses. There are 
some difficulties with the current BACON programs, however. 
BACON is unable to handle noisy training instances. The 
triggering of the constancy detectors, for instance, is 
based on the near equality of the values seen in as few as 
two training instances. Such calculations are highly 
sensitive to noise. The slope detectors are similarly 
sensitive.

BACON can handle only relatively simple concept 
formation tasks of function identification. The approach 
will result in a huge search space if BACON increases its 
rule spaces to solve general function identification tasks.

The other BACON-like systems have similar problem —  
combinatorial explosion.

1.3. DISCUSSION
Traditional artificial intelligence learning systems 

for function identification problems are typically based on 
heuristic rule sets which guide the search process. Most 
function' identification problems, however, are not readily 
approached by standard rule-based search techniques. For 
instance, it is difficult to apply heuristic rules to 
general function identification problems. Not only are the
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combinations of rules that govern the movement of learning 
systems very large, but the rules themselves need to change. 
Rules that might work in one realm need adjustment to work 
in another realm. The characteristically large search spaces 
pose formidable obstacles for traditional search techniques. 
The combinatorial complexity of such problems is a major 
deterrent to the application of most simple solution 
strategies.

One technique for solving these kinds of problems, 
called genetic algorithms, comes from analogy to nature. 
These algorithms are an outgrowth of a theory of adaptation 
developed by John Holland (1975) . They are motivated by 
standard models of heredity and evolution in the field of 
population genetics, embodying abstractions of the 
mechanisms of adaptation present in natural systems. Nature 
provides the best demonstration of the power of genetic 
search wherein the best suited "structures" of organisms 
evolve in response to environmental pressures. This genetic 
metaphor encompasses a wide range of (domain independent) 
search strategies. It is a very flexible way to get 
computers to learn how to solve problems for themselves. 
Smith used genetic algorithms to build his general model 
machine learning system to solve a simple maze walk problem 
and the problem of making bet decisions in draw poker (Smith 
1980) . Koza applied hierarchical genetic algorithms to breed
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populations of computer programs to solve a wide range of 
problems such as simple robotic planning, sequence 
induction, symbolic function identification, automatic 
programming, and so on (Koza 1989, 1990). The author 
combines Koza's hierarchical genetic algorithm and the 
Levenberg-Marquardt nonlinear regression algorithm to build 
the general-purpose machine function identification system 
which can find a "good fit" function model to a given sample 
data set.



2. HGSFI —  A MACHINE FUNCTION IDENTIFICATION SYSTEM

2.1. INTRODUCTION
A learning system is a system that improves its 

performance with respect to a given task domain over time 
through its interactions with the task environment (Smith 
1980) . The mechanisms by which such a system manipulates its 
knowledge about the task environment in response to these 
interactions constitute the system's methods of learning. In 
constructing an artificial learning system, the particular 
methods employed determine, to a large extent, the ultimate 
generality of the system. A learning system capable of 
functioning in a variety of task domains necessarily 
requires the presence of domain independent methods of 
learning. HGSFI (Hierarchical Genetic System for symbolic 
Function Identification) is a general machine learning 
system for function identification. It manipulates a 
population of individual function models to find a good fit 
function model for the given experimental data points. The 
learning component of the HGSFI takes advantage of two kinds 
of domain independent techniques —  genetic algorithms and 
nonlinear regression algorithms —  to attempt to identify a 
highly fit function model and to optimize its coefficients 
for the given data set. Section 2.2 introduces the 
background knowledge the HGSFI uses. Section 2.3 presents 
the knowledge representation of the HGSFI. Section 2.4

9



10
presents the fitness function of the HGSFI which plays 
important role in this function identification system. The 
learning paradigm of the HGSFI learning system is presented 
in section 2.5.

2.2. BACKGROUND
In the machine function identification system, HGSFI, 

we combine a symbolic computing method and a numeric 
computing method to identify function models. Section 2.2.1 
introduces the background of genetic algorithms. Section 
2.2.2 presents the optimization technique of coefficients of 
function models —  nonlinear regression.

2.2.1. GENETIC ALGORITHMS
Genetic algorithms are search algorithms based on the 

mechanics of natural selection and natural genetics 
(Goldberg 1989). John Holland is the primary founder of the 
field of genetic algorithms. In his pioneer book of genetic 
algorithms —  Adaptation in Natural and Artificial Systems 
(Holland 1975), Holland showed that an adaptive learning 
system, called a genetic algorithm, can successfully produce 
new generations. The new generations can improve their own 
performance based on their previous performance by 
evolution. The evolutionary process can be viewed (in a 
simplified form) as a world where simulated organisms 
compete to survive. Individuals (artificial organisms) in a
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genetic algorithm are potential solutions to the problem.
The individuals that do well in an environment survive and 
produce more offspring than the individuals that do poorly. 
These offspring will inherit some of the characteristics 
that allowed the parents to survive. Each offspring may also 
experience some changes through mutation or due to the 
combination of its parents' characteristics (crossover). If 
these changes help it to survive, the individual will be 
able to pass the new characteristics to its offspring. If 
the changes are detrimental to its survival, the individual 
dies out. In this way, organisms that are better suited to a 
particular environment are produced (Ayala and Valentine 
1979). This feature of natural selection —  the ability of a 
population of organisms to explore its search space in 
parallel and combine the best findings through crossover and 
mutation —  is exploited when genetic algorithms are used.
In a similar manner, genetic algorithms combine survival of 
the fittest among artificial organisms with a structured yet 
randomized information exchange to form a search algorithm 
with some of the innovative flair of human search. For 
example, in function identification problems, the artificial 
organisms are function models which can be represented as 
hierarchical tree structures. In every generation, a new set 
of artificial organisms is created using sub-structures and 
pieces of the more fit from the old generation; an 
occasional new part is tried for good measure. While
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randomized, genetic algorithms are no simple random walk. 
They efficiently exploit historical information to speculate 
on new search parts with expected improved performance 
(Goldberg 1989).

2.2.1.1. BASIC GENETIC ALGORITHM
A genetic algorithm to solve a problem basically has 5 

components (Davis 1987):

1. a chromosomal representation of solutions to the 
problem,

2. a way to create an initial population of solutions,
3. an evaluation function that plays the role of the 

environment, rating solutions in terms of their 
"fitness",

4. genetic operations such as crossover and mutation, that 
alter the composition of children during reproduction, 
and

5. values for the parameters that the genetic algorithm 
uses (population size, probabilities of applying 
genetic operators, etc.)

Using a genetic algorithm, one represents strategies as 
chromosomes. Each chromosome serves a dual purpose: it 
provides a representation of the problem solution, and it 
also provides the actual material which can be transformed
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to yield new genetic material for the next generation. In 
most applications of genetic algorithms, chromosomes (or 
population members) are represented as bit strings —  lists 
of 0's and l's. For example, the seven-bit string A =
0111000 may be represented symbolically as follows:

A ~ a1a2a3a4asa6a7 
Here each of the at represents a single binary feature or 
detector (in accordance with natural analogy, it is called 
the a/ s genes), where each feature may take on a value 1 or 
0. Meaningful genetic search requires a population of 
strings. Bit strings have been shown to be capable of 
usefully encoding a wide variety of information, and they 
have been shown to be effective representation mechanisms in 
unexpected domains (function optimization and classifier 
systems, for example). The properties of string-based 
representations for genetic algorithms have been extensively 
studied, and a good deal is known about the genetic 
operators and parameter values that work well with them 
(Grefenstette 1987; Schaffer 1989; Davis 1987; Wright 1991).

Examples of other representations include real-vectors 
(Wright 1991), variable-element lists (Grefenstette 1987), 
and hierarchical structure representation (see next 
section).

Genetic algorithms begin with an initial population.
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Initialization routines vary. For some purposes, a good deal 
can be learned by initializing a population randomly. Moving 
from a randomly-created population to a well adapted 
population is a good test for the algorithm, since the 
critical features of the final solution will have been 
produced by the search and recombination mechanisms of the 
algorithms, rather than the initialization procedures. For 
some applications, it may be expedient to initialize with 
more directed methods such as weighted random initialization 
and initialization by perturbing the results of a human 
solution to the problem.

There are a great many properties of evaluation 
functions that enhance or hinder a genetic algorithm's 
performance. The evaluation function plays the role of the 
environment, rating solutions in terms of their fitness. In 
natural populations fitness is determined by an organism's 
ability to survive predators, pestilence, and the other 
obstacles to adulthood and subsequent reproduction. In 
function optimization applications, the fitness function is 
a rescaling of the objective function f of the given problem 
of genetic algorithms. Intuitively, we can think of the 
fitness function as some measure of profit, utility, or 
goodness that we want to maximize. Copying individuals 
according to their fitness values means that individuals 
with a higher value have a higher probability of
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contributing one or more offspring in the next generation.

The genetic operators are defined with respect to the 
"genetic" representation of a structure. The genetic 
operators manipulate structures in a population 
independently of any interpretation (i.e. without regard to 
the specific task domain), producing new structures for 
testing (via interpretation). The three primary operations 
for modifying the structures undergoing adaptation are 
Darwinian fitness proportionate reproduction, crossover 
(recombination) and mutation.

Reproduction is a process in which population members 
are probabilistically copied in such a way that the more fit 
population members are more likely to be selected to 
contribute one or more offspring in the next generation.
This operation is an artificial version of natural 
selection. Once a population member has been selected for 
reproduction, an exact replica of the member is made. The 
population member is then entered into a mating pool, a 
tentative new population, for further genetic operation 
action.

In crossover, the attributes of two population members 
are combined to produce two offspring. After reproduction, 
the crossover operation may proceed in two steps. First,
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members of the newly reproduced population are randomly 
mated. Second, one point in each parent is selected 
independently and randomly according to a probability 
distribution. In the binary string representation, for 
instance, the crossover operator recombines two strings from 
the population by exchanging string segments. Two strings 
are selected from the population for "mating". A crossover 
point in the strings is chosen randomly. For fixed length 
string representations, there are L - 1 possible crossover 
points (each equally likely of being chosen) if the strings 
are of length L. The strings are then "broken" at the 
crossover point and recombined so that each new string 
consists of the initial segment of one of the original 
strings and the terminal segment of the other. The following 
example illustrates the one point crossover operation:

Parent A: 0 1 1 1 0 0 0 1 0  
Parent B: 1 0 0 1 1 0 0 1 1

Parent A 
Parent B 
Child 1 
Child 2

0 1 1 1 1 0 0  0 1 0  
I

1 0 0 1 1 1 0 0 1 1
I

0 1 1 1 1 1 0 0 1 1
I1 0 0 1|0 0 0 1 0

Figure 1: single point crossover

The crossover points are marked with separator symbol 
"I". The left part of child 1 from parent A, and the right
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comes from parent B. The left part of child 2 comes from 
parent B, and the right comes from parent A.

In mutation, some of the attributes of a single 
population member are changed to produce a single offspring. 
The mutation operator generates a new string by modifying 
the values of one or more positions in an existing string.
An individual member (string) is selected from the 
population as before. The position(s) in the string to be 
modified are determined by a random process where by each 
position has a small probability of being chosen, 
independently of what happens at other positions. For each 
string position chosen, a new value is selected randomly 
from the set of possible values for that position.

The fifth major component is values for the parameters 
used by genetic algorithms. These parameters, for example, 
include population size, crossover rate, mutation rate, 
number of generations to be run,- and so on. The selection of 
the population size is the most important choice. The 
population size must be chosen with the complexity of the 
problem in mind. Effective values of the parameters used in 
the running of genetic algorithms have been studied 
intensively for string-based representation, and less 
intensively for other types of representations. Each 
combination of genetic operators, representation, and the



problem has its own characteristics.
18

2.2.1.2. HIERARCHICAL GENETIC ALGORITHM
One powerful representation scheme for chromosomes (or

population members) is the hierarchical structure
representation developed by John R. Koza (Koza 1989 and
1990). In a hierarchical structure representation,
population members for a particular domain of interest are 
represented by hierarchical trees. For instance, the cubic
polynomial model

y - cx + c2x + c3x2 + c4x3

can be represented as the following hierarchical tree.
+

/ \
/ \

+ +
/ I  I \
/ I I N

Cl * * *
/ I  /  \  I N  

/ I  /  N I N  
c2 x c3 * c4 pow

/  N /  N 
/  N /  N 
x x x  3

Figure 2: One hierarchical tree for the cubic
polynomial model

Note that this representation is not unique for the function
model. Another hierarchical tree to represent the cubic
polynomial model is shown in Figure 3.

Suppose that in a function identification problem the
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available set of n functions is F={flf f2/ . .., fn} and the 
available set of m terminals is T={ax, a2, . .., am}. The 
"terminals" may be variable atomic arguments or constants. 
Each particular function f in F takes a specified number 
z (f) of arguments bx, b2, . .., bz(f). Depending on the 
particular problem of interest, the functions may be 
standard arithmetic operations (such as addition, 
subtraction, multiplication, and division), standard 
mathematical functions (such as exp, sin, etc.).

+
/ \

/ \
+ *

/ I  I \
/ I  I \

+ * c4 pow
/ I  I \  I \
/ I I \ I N

cx * c3 * x 3 
/I / \

/ I  /  \
C 2 X X X

Figure 3: Another hierarchical tree for the cubic
polynomial model

Generation of the initial random population begins by 
selecting one of the functions from the set F at random to 
be the root of the tree. Whenever a point is labeled with a 
function that takes k arguments, then k lines are created to 
radiate out from the point. Then, for each line so created, 
an element is selected at random from entire combined set S 
= F U T (which is the set of functions and terminals) to be 
the label for the endpoint of that line. If a terminal is
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chosen to be any point, the process is then complete for 
that portion of the tree. If a function is chosen to be the 
label for any such point, the process continues.

The probability distribution over the terminals and 
functions in the combined set S and the number of arguments 
taken by each function implicitly determines an average size 
for the trees generated by this initial random generation 
process. In genetic algorithms, this distribution is usually 
a uniform random probability distribution over the entire 
set S (with the exception that the root of the tree must be 
a function).

Crossover can be implemented as the following. First, 
two parents are chosen from the current population with a 
probability proportional to their fitness. Then one point in 
each parent is selected randomly and independently according 
to a probability distribution. The "crossover fragment" for 
a particular parent is the rooted sub-tree whose root is the 
crossover point for that parent and where the sub-tree 
consists of the entire sub-tree lying below the crossover 
point.

The first offspring is produced by deleting the 
crossover fragment of the first parent from the first parent 
and then impregnating the crossover fragment of the second
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parent at the crossover point of the first parent. The 
second offspring is produced in a symmetric manner.

Parent 1 Parent 2

/
/ \

/ \
+ +

/  \  I V  
/  \  I \C, * c3 +

/ I  /  \
/ I  /  \

C, x * *
/
/

c4 x C5
/ Y 

/ \ *
/ \

/ \ 
x x

+
/ \

/ \
Ci *

/ \
/ \
C2 exp

*
/ \

/ \ 
C3 x

Parent 1: q+c2x-
C3+C4x+C5x2

C.XParent 2: Cĵ +Cje 3

Figure 4: The two parental hierarchical trees

For example, consider the two parental hierarchical 
trees in Figure 4. Assume that the points of trees are 
numbered in a depth-first way starting at the left. Suppose 
that the seventh point (out of the 17 points of the first 
parent) was selected as the crossover point for the first 
parent and that the fifth point (out of the 8 points of the 
second parent) was selected as the crossover point of the 
second parent. The two crossover fragments (sub-trees) are 
shown in Figure 5.
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Figure 5: The two crossover fragments 
The two offspring resulting from crossover are shown in 

Figure 6. The result function models are
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/ \
X X

Offspring 1 Offspring 2
Figure 6: The two offspring resulting from crossover
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The mutation operation selects a point of a 
hierarchical tree at random. This operation removes whatever 
is currently at the selected point and inserts a randomly 
generated sub-tree at the selected point of a given tree.

Koza used the LISP programming language to implement 
his hierarchical genetic system. Individuals in his system 
are represented as LISP S-expressions. For instance, the 
function model

q+c2e^*

can be represented as the following LISP S-expression:
(+ Cx (* C2 (exp (* C3 x)))) 

which is graphically depicted in figure 4. He defined the 
"raw fitness" of any LISP S-expression as the sum of the 
distances (taken over all the environmental cases) between 
the points in the range space returned by the S-expression 
for a given set of arguments and the correct points in the 
range space. If the S-expression is integer-valued or real
valued, the sum of distances is the sum of absolute values 
of the differences between the numbers involved. In 
particular, the raw fitness r(i,t) of an individual LISP S- 
expression i in the population of size Ps at any 
generational time step t is
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x0
r(i,t) = ^  | S(i,j)-C(j) |

J=i

where S(i/j) is the value returned by S-expression i for 
environmental case j (of Ne environmental cases) and C(j) is 
the correct value for environmental case j. Then the 
adjusted fitness r(i,t) is defined as

a(i,t) = 1+r (i, t)

The adjusted fitness is larger for better individuals in the 
population. It lies between 0 and 1. Finally, he defined the 
evaluation function in his system as the following 
normalized fitness function:

j)a(k. t)
i»=l

The normalized fitness not only ranges between 0 and 1 and 
is larger for better individuals in the population, but the 
sum of the normalized fitness values is 1.

Using hierarchical structure representation of 
population members, we can easily represent the complex 
structures whose size and shape are dynamically determined 
(rather than predetermined in advance), and handle the 
operators of recursions, iteration, and compositions of 
functions. Koza applied hierarchical genetic algorithms to 
sequence induction, automatic programming, planning, and



function identification (Koza 1990).
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2.2.2. NONLINEAR REGRESSION
Regression analysis is a statistical technique for 

investigating and modeling the relationship between 
variables. One of the common situations in regression 
analysis is that of data which consist of observed, 
univariate responses yk known to be dependent on 
corresponding inputs xk. This situation may be represented 
by the regression equations

yk = f(xk, B) + e k (2.1)

where f(x, B) is the known response function, x is an 
independent variable, B = [bx, b2, ..., bM]T is an M- 
dimensional vector of parameters to be estimated, the ek 
represent a random error from a distribution with mean zero 
and unknown variance a2, and the subscript k = 1, 2, ..., N 
ranges over the N observations. The sequence of values of 
the independent variable {xk} is treated as a fixed known 
sequence of constants, not random variable (Gallant 1987).

A linear regression model is the model in which all the 
parameters appear linearly. That is, the response variable y 
has some linear relationship with the unknown parameters b2, 
b2, ..., bM. For instance, the following two regression 
models are linear in the parameters.
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y=b3 +jb2x+Jb3x2 + Jb4x3 where fl= [2\ Jb2 b3 bt] T

y=b1+b2x+b2e x where B= [bx bz b3] T

A nonlinear regression model is one in which at least 
one of its parameters appears nonlinearly. Frequently, 
nonlinear regression models arise in instances where a 
specific scientific discipline specifies the form that data 
ought to follow, and this form is nonlinear in the 
parameters. For instance, the logistic model is

which produces sigmoidal or "S-shaped" growth curves. This 
model is widely used in biology, agriculture engineering, 
and economics. In this case B = [a P y]T. Another example is 
a set of responses that is known to be periodic in time but 
with an unknown period function for such data is

f(x,B) = b1+b2cos/?Ix+jb3sin/?2x.

where B = [bx b2 b3 P2]T-

A univariate nonlinear regression model can be written 
in a convenient vector form

1.0 + ye  ̂x

Y = F (B) + E (2.2)
where

Y = [yx y2 ... yN]Tf
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F (B) = [f(x1# B) f(x2, B) ... f(xN, B) ]T,
E = [Cj e2 ... cn]t.

The error sum of squares for the nonlinear model and the 
given data is defined as

S(B) = lyk-f(xk'B)]2 (2.3)

Using vector form, equation (2.3) becomes

S{B) = [F-F(B) ] T[Y-F(B) ] =|tf(i3) |2 (2.4)

where
H (B) = Y - F (B)

= ({Yl-f (Xl,B) > {y2~f (x2, B) } ... {yN-f (xn,B) }]t 
= [hx (B) h2 (B) ... hN(B)]T

Note that since yk and xk are fixed observations, the sum of 
squared residuals is a function of B. We denote by Bmln, a 
least squares estimate of B, that is a value of B which 
minimizes S (B) . To find the least squares estimate Bmln we 
need to differentiate equation (2.3) with respect to B. This 
provides the M normal equations, which must be solved for 
Bmln. The normal equations take the form

J > t - W  = 0 (2.5)

for i = 1, 2, ..., M, where the quantity denoted by brackets 
is the derivative of f (xk, B) with respect to b± with all 
B's replaced by the corresponding Bmln's which have the same 
subscript.
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Consider a Taylor expansion of S(B) about the point B0. 

This takes the form

BPS
2 i,j dbjdbj

It can approximately be expressed as

S(B) = S(B0) + (fl-B0) r -G(B0) + -±(B-B0) T -£>(B0) • (B-B0)z (2 .6)

where G(B0) is the gradient vector of function S(B) at the 
point B0, i.e.

(2.7)

The matrix J is the N*M Jacobian matrix of the vector H(B)

J(B0) =

dh, (B) oh, (B)

dhjf(B) dh„(B)

B=Bo

D(B0) is the M*M Hessian matrix of function S (B) at the 
point B0 whose components are the second partial 
derivatives, i.e.

&h k{B) dhk(B) dhk(B) ]
Jc=l db±dbj db± dbj

Thus D(B) is readily seen to have the form
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N
D(B) = J t(B) J(B) + J2hk(B)Hk(B) (2.8)

*=i

where Hk(B) is the Hessian matrix of hk(B) .

In the approximation of (2.6), the gradient of S(B) 
around point B0 is easily calculated as

VS(B) = G(B0) + D{B0)'(B - B0) (2.9)

The minimum point Bmln satisfies

DiB^-iB^ - B0) + G(B0) - 0 (2.10)

If D is positive definite, this suggests the general 
iterative scheme

Bl+1 = B1 ~ D^GiBj = Bd - D-1J T(Bi)H(B1) (2.11)

where D is the Hessian matrix of function S(B) at the point
Bx.

Equation (2.11) is called as Newton's iterative method. 
This method requires use of both the gradient vector and the 
Hessian matrix in computations, hence it places more burden 
on the user to supply derivatives. Another problem with 
Newton's method is that the Hessian matrix may not be 
positive definite at each iteration. Thus the method 
requires modification to insure that the resultant method is 
acceptable but still retains the desirable characteristics
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of Newton's method.

Let us consider the Gauss-Newton method. This method 
consists of linear approximation of function H(B). If we 
expand H(B) using only the first two terms in the Taylor 
series about B0/ we have

H(B) = H(B0) + J(B0) (B-B0)

Then

G(B) = J t(B)H(B) * J t{B0)H{B0)+Jt(B0)J(B0){B-B0)

At B=Brain, G (Bmln) = 0. That is

J T(B0) J(B0) (Bmin-B0) = -Jt(B0)H(B0) (2.12)

So we can get generally iteration equation (2.13).

Bi+1 = Bi ~ U T(Bi)J(Bi)]-1J T(B1)H(Bi) (2.13)

Notice that this method is essentially Newton's method using 
an approximation to the Hessian matrix (2.8) which consists 
of only the first term JT(B)J(B) in that expression. Also 
note that each iteration in the Gauss-Newton method requires 
that the system of linear equations (2.12) be solved. These 
equations are in the form of normal equations, and in this 
case it is usually better to compute 

J (Bi) (Bi+1 - Bx) = -H (Bi) 
to preclude introducing excessive amounts of errors in the 
components of the solution (Bi+1 - Bi) (Kennedy and Gentle 
1980). If there was every assurance that the residuals hk(B)
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were all small near the minimum, we would fell confident 
that this method would operate like Newton's method due to 
the form of equation (2.8). Unfortunately, large residual 
problems occur all too frequently and the Gauss-Newton 
method often does not behave as Newton's method.

Another method is the steepest descent method. The 
steepest descent method involves concentration on the sum of 
squares function, S(B) as defined by equation (2.3) and use 
of an iterative process to find the minimum of this 
function. The basic idea is to move, from an initial point 
B0, along the vector with the negative vector of the 
gradient vector of function S(B). For this method, the 
iteration equation becomes

BU1 = B± - a ± G(B±) = B± - a iJ T(Bi)H(B1) (2.14)

where is a positive constant. The steepest descent method 
is seldom used today because it is often slow to converge.

A more frequently used method of computing nonlinear 
least squares estimators is the Levenberg-Marquardt 
algorithm (Draper & Smith 1981; Gallant 1987). When J(B) is 
rank-deficient, or nearly so, in the Gauss-Newton iteration, 
the problem of computing the (Bi+1 - Bi) in equation (2.13) 
is difficult and may admit multiple solutions (Kennedy & 
Gentle 1980). The Levenberg-Marquardt modification 
transforms J(B) to a better-conditioned full rank matrix.
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The usual statement of the modification is to find (Bi+1 - 
Bi) according to

[JrT(Si) J(B±) + X2I] » -JT(Bi)H(Bi) (2.15)

where X2 is a chosen scaler. When X is very large, the 
matrix

[JT{Bi)J(Bi) + X2I] 
is forced into being diagonally dominant, so equation (2.15) 
goes over to be identical to (2.14). On the other hand, as X 
approaches zero, equation (2.15) goes over to (2.12).

The Levenberg-Marquardt algorithm is as follows (Press, 
Flannery, Teukolsky, and Vetterling 1988) :

(1) Give an initial guess for the set of fitted 
parameters B0 = [b^01, b2<0), ..., bM(0)]T;

(2) Compute the sum of squared residuals S(B0) using the
equation (2.3);

(3) Pick a modest value for X, say X = 0.001, Set 
iterative count K and J to be 0;

(4) While (J < 2) Do
(a) Solve the linear equation (2.15) for dBK and

evaluate S (BK + dBK) where dBK = BK+1 - BK;
(b) If S(Bk + dBk) < S(Bk) and

|S(Bk + dBk) - S (Bk) | < 0.001
J <—  J + 1 

Else J <—  0;
(c) If S (Bk + dBK) > S (BK) , increase X by a factor of

10 (or any other substantial factor) and go back
to (4);

(d) If S (Bk + dBK) < S (BK), decrease X by a factor of 
10, update the trial solution BK+1 <—  BK + dBK, and 
go back to (4);

(5) End
Figure 7: The Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm appears to enlarge



considerably the number of practical problems that can be 
tackled by nonlinear estimation. Marquardt's method 
represents a compromise between the linearization (Gauss- 
Newton) method and the steepest descent method and appears 
to combine the best features of both while avoiding their 
most serious limitations. It is good in that it almost 
always converges and does not "slow down" as the steepest 
descent method often does (Draper & Smith 1981).

2.3. THE KNOWLEDGE REPRESENTATION OF HGSFI
Knowledge representation is a key issue in any learning 

system because the representation scheme can severely limit 
the window by which the system observes its world. In the 
machine function identification system, HGSFI, the knowledge 
structures are various function models in the search space. 
Suppose that the available set of n function operations is F 
= {fx, f2, ..., fn} and the available set of m terminals is T 
= {x, clf c2, Cn,.!). The search space for the HGSFI is
the valid function models that can be recursively created by 
compositions of the available function operations and the 
available terminals for the problem. This search space can, 
equivalently, be viewed as rooted node-labeled trees with 
ordered branches having internal nodes labeled with the 
available function operations and external nodes (leaves) 
labeled with the available terminals. Note that the set of 
functions and terminals being used in a particular problem
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should be selected so as to be capable of solving the 
problem.

For different problems, the function models to fit them 
are various. Even if the sample data sets are same, there 
can be many different function models which are "good fit" 
to the experimental data according to the chosen evaluation 
criterion. That is, the function models of different size, 
shape, and complexity need to be tested during the process 
of function identification. String-based representation 
schemes do not provide the hierarchical structure and any 
convenient way to process the dynamically varying and 
complex structures of function models and to calculate the 
values of function models. Using the hierarchical structure 
representation scheme, however, we can represent any complex 
function model, can easily implement the genetic operations 
(such as crossover and mutation) as described in section
2.2.1.2, and can efficiently evaluate the values of function 
models. So the knowledge (i.e. function models) in the HGSFI 
are represented as hierarchical structures.

2.4. THE FITNESS FUNCTION
In genetic algorithms, each individual in a population 

is assigned a fitness value as a result of its interaction 
with the environment. Fitness is the driving force of 
Darwinian natural selection and, likewise, of genetic



35
algorithms (Koza 1990). The fitness function in genetic 
algorithms plays the role of the environment. Based on the 
proportional to the fitness of individuals in a population, 
genetic algorithms probabilistically select individuals on 
which to apply the genetic operations of reproduction, 
crossover, and mutation. (In the most commonly used 
selection procedure, the probability of selection is 
proportional to the normalized fitness of the individual.) 
The fitness of individuals become very important because 
they can determine whether the individuals survive in the 
next generation. Proper selection of the fitness function is 
the key for success of the genetic algorithm process. Choice 
of the fitness function should base on the problem and 
coincide with the choice of representation.

Statistians usually use the following two methods to 
describe the difference between the predicted model f(x, B) 
and real value yk (equation 2.1). The first method is the 
sum of the squares between the given values of observations 
and computed values of the dependent variable. That is

SSResid = [yk - f{xk, B) ] 2 (2.16)
k=l

The another one is the sum of absolute residuals

SAResid = | yk - f(xk, B) | (2.17)
Jc=l
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If we choose the sum of squared residuals to be the 

performance measure, then we have a performance measure 
function which is consistent with that of nonlinear 
regression algorithms. However, if the residual yk - f (xk,
B) of some point is less than 0.1, then the squared residual
will be less than 0.01. And if the residual of some point is
greater than 100, then the squared residual of that point
will be much greater than 100. That is, the sum of squared
residuals is not directly proportional to the residual of 
each point.

The sum of absolute residuals has linear relationship 
with the residual of each point. Our experimental results 
indicate that using the sum of absolute residuals as the 
performance measure is better than using the sum of squared 
residuals. In our system, the performance measure Perf(i, t) 
of an individual function model i in the population at 
generation t is defined as follows:

Perfii, t) = Y, I Vk ~ fit) Bit]) I (2.18)
k=l

where fi(t) (xk, Bi(t>) is the function equation of individual i 
at generation t. B^10 is the estimated parameter vector of 
individual i at generation t. Note that this definition of 
Perf(i,t) is same as the raw fitness in Koza's system. The 
smaller the performance, the better an individual in the 
population. We might try to directly use this performance to
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calculate the fitness as follow:

f(i, t) = PerfU.t)

J2 Perf(k, t)
*=1

where Ps is the population size. However, the performance of 
the worst individual in a population might be much larger 
than the performances of other individuals in the 
population. Then

Ps
J) Perfik, t) = the performance of the worst guy
*= i

In this case, the fitness of the worst individual would be 
very close to 1, and the fitness of the others would be very 
close to 0. This fitness function would do a poor job of 
distinguishing the relative performances of the better 
individuals in the population. In other words, this 
performance measure does not stress good performance, the 
genetic algorithm may fail to converge on good results in a 
reasonable time and will be more likely to lose the best 
members of its population. For this reason, we need employ a 
normalization technique for performance measure. In a manner 
similar to Koza's system, we define the normalized 
performance of individual i at generation t as following

PerfNorm(i,t) = ■ -.--JL-- .-v (2.19)"° 1+Per.f U, fc)
Then, the fitness of individual i at generation t is
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calculated as

f(i,t) =  t]. (2.20)
E PerfNoim(k>*=1

The fitness lies between 0 and 1 and is larger for better 
individuals in the population. The sum of the fitness values 
in a population is 1. In our system, we use this fitness to 
be as the probability of individuals' performance in a 
population. When we say "proportional to fitness" or 
"proportional to the probabilities of individuals' 
performances in a population", we are referring to the 
fitness as defined above.

2.5. THE LEARNING PARADIGM OF HGSFI
Function identification is a complicated and iterative 

learning process. Faced with so many indeterminancies and 
uncertainties, our system should find the "best" model to 
fit the given sample data set through the iterative process 
of learning by experiment. Our problem is to so organize 
matters that we are likely in due learning process to be led
to the right conclusion even though our initial choice of

o
the function models may not all be good. Our strategy must 
be such as to allow any poor initial choices to be rectified 
as we proceed. To meet these requirements and general- 
purpose learning requirement, the learning component of the 
HGSFI takes advantage of two kinds of domain independent
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techniques —  the hierarchical genetic algorithm and the 
Levenberg-Marquardt algorithm —  to attempt to identify a 
highly fit function model and optimize the coefficients of 
the model for the given sample data set. The learning 
paradigm of the HGSFI machine function identification system 
is depicted in Figure 8.

Best"
model

User's
initial
models

Feedback
Modified
models

Optimizer

Environment

Critic
Component

New1--
models

Performance
Component

Initial
Model

Generator

Model Breeding 
Component

Figure 8: The Learning Paradigm of the HGSFI

This learning system manipulates a population of 
individual function models to cope with their environment. 
The environment includes the given sample data set, the 
possible solution (function model) space, control 
parameters, and the fitness of individuals in a population. 
At the beginning, the initial model generator randomly 
generates initial function models (i.e., the original 
population of function models). The initial individuals may 
not be good generally. Through the evolution of populations, 
generation after generation, the initial individual function
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models and their offspring are gradually modified to adapt 
to their environment. Note that the "environment" differs 
for different generational individuals, but is same for the 
individuals in the same generation.

The optimizer (Levenberg-Marquardt algorithm) optimizes 
the coefficients of input function models and tries to make 
the function models to best fit the given sample date set. 
Note that the nonlinear regression subroutines (i.e. 
optimizer) are embedded in the evaluate procedure when the 
HGSFI is implemented (see section 3.2).

During each cycle through the learning loop (i.e. the 
evolution process of population of individual function 
models), the performance component (including the evaluate 
'procedure) interacts with the environment. It applies the 
system's current knowledge (i.e. new generation function 
models) to the sample data set and evaluates performances 
and fitness of individuals in the new generation. The new 
generation function models and their fitness are analyzed by 
the critic component (including the measure procedure) with 
respect to the given performance criterion. The critic 
component compares the fitness of individuals in the 
population to determine the "best" individual. If some 
individual satisfies the given performance criterion then 
the system returns the most fit function model that the
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system has found, and halts. Otherwise, the system attempts 
to produce a better population of individual function models 
through the adaptive changes which consist of the 
adjustments made by individuals in response to the 
environmental conditions, and enable the population of 
individuals to cope with the environment and to continue its 
existence.

The population of individual function models and their 
associated fitness are sent as feedback to the model 
breeding component (including the reproduce, crossover, 
mutate, permute, and elitist procedures, see section 3.2). 
Based on the engine of Darwinian reproduction and survival 
of the fittest, the model breeding component selects 
individuals to produce new generation of individuals 
according to their fitness. Individuals that were not 
selected do not survive. A selected individual will 
generate a number of offspring in direct proportion to its 
relative fitness compared with the other individuals. In 
other words, if the fitness of an individual is twice that 
of another individual, the first individual will have on 
average twice the number of offspring in the succeeding 
generation.

Then some of the selected individuals are recombined 
with the others of the selected individuals to produce their
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offspring which inherit the parents' merits and adjust 
themselves to environmental fluctuations. Some of the 
selected individuals make some changes by themselves through 
mutating the "genes" (i.e. the members of set S = F U T) 
they carry. These inheritable adjustments made by 
individuals in response to specific environmental conditions 
are a facet of the individuals to cope with their 
environment and to continue survival. Here the genetic 
algorithm is no simple random walk. It efficiently exploits 
the wealth of information by genetic operations to speculate 
on new search points with improved performances.



3. THE IMPLEMENTATION OF HGSFI
The HGSFI is implemented using the C programming 

language. The main control structure of the system basicly 
is same as that of the GENESIS (Grefenstette 1984) . The 
HGSFI processes populations of hierarchical structures. It 
consists of four programs: setup, main, report, and 
plotmodl.

The program SETUP creates the input parameter file for 
the MAIN. The user can give values of control parameters or 
use the default values of control parameters. The control 
parameters include population size, crossover rate, mutation 
rate, permutation rate, maximum depth of initial 
hierarchical structures, maximum depth of hierarchical 
structures, converged condition, maximum generation the 
system runs and so on.

The MAIN program implements the learning process which 
attempts to find a highly fit function model for the given 
sample data set, using the hierarchical genetic algorithm 
and the Levenberg-Marquardt nonlinear regression algorithm.

The REPORT program generates the statistical report 
summarizing the mean and variance of a number of performance 
measures of several runs of the HGSFI, and outputs the 
"best" function model, its estimated coefficients, and the

43
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summary statistics of nonlinear regression for each run of 
the HGSFI.

The PLOTMODL program plots the observed curve and the 
predicted curve on the screen.

3.1. DATA STRUCTURES
The MAIN program consists of an implementation of the 

general-purpose machine function identification system using 
the hierarchical genetic algorithm and the Levenberg- 
Marquardt nonlinear regression algorithm. The hierarchy 
chart of data structures used in the MAIN program is shown 
in Figure 9.

NODE

INDIVIDUAL

POPULATIONBEST INDIV META FUNC TABLE

GENETIC SYSTEM

Figure 9: The hierarchy chart of data structures

3.1.1. INDIVIDUAL AND NODE
INDIVIDUAL is the basic class of data structures in the 

HGSFI. It defines the basic attributes of an individual. The
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definition of the INDIVIDUAL structure is shown in Figure 
10.
typedef struct {

struct NODE *model; /* hierarchical tree of the
function model */

int numOfNodes; /* number of nodes in the
hierarchical tree */

double performance; /* normalized performance */
double fitness; /* fitness of the individual */
double sumOfSqResid; /* sum of squared residuals */
double *constList; /* constList[numOfConst] */
int numOfConst;
unsigned char needEvaluation;

} INDIVIDUAL;
Figure 10: The definition of the INDIVIDUAL structure

The attribute model of the INDIVIDUAL structure is a 
hierarchical tree which consists of the base structure type 
NODE. The NODE structure describes the attributes of a node 
in the hierarchical tree of a function model. The definition 
of the NODE structure is depicted in Figure 11. Each node 
contains 5 attributes. The attribute type indicates the node 
is a constant, independent variable, or function operation 
node.

struct NODE {
char type; /* C —  constant node,

V —  independent variable node,
F —  function operation node */ 

int index; /* index in FuncTable or constList */
double value;
struct NODE *leftChild; 
struct NODE *rightChild;

};
Figure 11: The definition of the NODE structure 

The index attribute is the index in the function table (see 
section 3.1.3) for a function node or in the constant list
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of the model for a constant node. The attribute value keeps 
the value of a constant if the node is a constant node. The
other two attributes are leftChild and rightChild which
point to the children nodes of the node.

In the INDIVIDUAL structure, the attribute numOfNodes 
is the number of nodes to constitute the model. In order to 
easily change the values of constants in a model during 
computation of nonlinear regression, we set a constList 
attribute for each individual. The constant list is an array 
to save the values of the constants (i.e. estimated 
parameters) of a model. The attribute needEvaluation 
indicates whether the performance of the model need to be 
evaluated in the current generation. If the structure of a
model has no changes from preceding generation to the
current generation, the performance of the model does not 
need to be evaluated again.

3.1.2. POPULATION
The population structure maintains some basic 

information about individuals in the current generation.
The attributes of the POPULATION structure are shown in 
Figure 12. AveCurrentPerf and AveCurrFitness are calculated 
over the entire population whenever the population is 
evaluated. BestCurrFitness and NorstCurrFitness keep the 
best fitness and the worst fitness in the generation,
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respectively. In addition, the population structure 
maintains two variables BestGuy and RorstGuy, which point to 
the best member and the worst member in the current 
generation, respectively.

int PopSize; /* population size */
INDIVIDUAL *01d; /* INDIVIDUAL 01d[PopSize] */
INDIVIDUAL *New; /* INDIVIDUAL New[PopSize] */
double AveCurrentPerf ; /* average normalized perf. in

current generation */
double AveCurrFitness; /* average fitness in current

generation */
double BestCurrFitness; /* best fitness in current

generation */
double WorstCurrFitness; /* worst fitness in current

generation */
int BestGuy; /* point to best member in

current generation */
int WorstGuy; /* point to worst member in

current generation */
Figure 12: The definition of the POPULATION structure

Old generation New generation
1 1
2 2

reproduction 
crossover 33

------- --------- /

mutation
• permutation •

PopSize PopSize

Figure 13: Schematic of nonoverlapping population

In the HGSFI, we apply genetic operators to an entire 
population at each generation, as shown in Figure 13. To 
implement this operation cleanly, we utilize two
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nonoverlapping populations Old and New, thereby simplifying 
the birth of offspring and the replacement of parents. Note 
that the population size can be set by the user.

3.1.3. 6ENETIC_SYSTEM
GENETIC_SYSTEM is the top class of data structures in 

the HGSFI. It consists of the following global variables to 
control the process of the genetic algorithm and to save 
statistical information.

BEST_INDIV *BestSet; /* BEST_INDIV BestSet[MaxGen]; */
META_FUNC_TABLE FuncTable[MAX_FUNC_SIZE];
double BestPerf; /* best performance seen so far */
double BestFitness; /* best fitness seen so far */
int MaxGenerations; /* maximum number of generations */
int Generation; /* generation counter */
int InitMaxDepth; /* maximum depth of initial function

models */
int MaxDepth; /* maximum depth of function models */
double CrossoverRate; 
double MutationRate; 
double PermutationRate;
int NumOfPoints; /* number of sample points */
double *DataX; /* double DataX[NumOfPoints]; */
double *DataY; /* double DataY[NumOfPoints]; */
double CorrectSSTotal;/* total of corrected sum of squares*/ 
double UncorSSTotal; /* total of uncorrected sum of

squares */
double ConvergentValue;/* convergent condition of HGSFI */
int ConvergedFlag; /* converged flag of the system */

char EliteFlag; /* use elitist selection strategy */
char RegressionFlag;/* use nonlinear regression to

optimize the coefficients of 
function models */

char SimplifyFlag; /* simplify function model */

Figure 14: The attributes of GENETICJSYSTEM
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In order to keep track of "best" individuals in all 

generations, the system has a global array, BestSet, to save 
them. The member structure of BestSet is shown in Figure 15.

typedef struct {
struct NODE *model; /* hierarchical tree of the

function model */
int numOfNodes; /* number of nodes in the

hierarchical tree */
double performance; /* normalized performance */
double fitness; /* fitness of the individual */
double sumOfSqResid; /* sum of squared residuals */
double *constList; /* constList[numOfConst] */
int numOfConst;
int gen; /* generation number */
int trials; /* trial number */

} BEST_INDIV;
Figure 15: The definition of BEST_INDIV structure

In the HGSFI, there is a global variable, FuncTable, to 
save the set S which is the union of terminal set T and 
function operation set F. The member structure 
(META_FONC_TABLE) of FuncTable is shown in Figure 16. The 
schematic of the function table is depicted in Table 2.

typedef struct { 
char name[10]; 
int numOfVars;
int restriction;

double value;
} META FUNC TABLE;

/*/*

/*

function name 
-1 —  constant;

*/
0 —  variable;

*/1 or more —  functions
0 —  No restriction;
1 —  first variable != 0;
2 —  second variable != 0;
3 —  first variable > 0

/* only for constants
*/
*/

Figure 16: The definition of META FUNC TABLE structure
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Table 2: The Schematic of Function Table in the HGSFI

index name numOfVars restriction value
1 n 0 No 3.1415926
2 random

constant
0 No

3 independent
variable

0 No

4 + 2 No
5 - 2 No
6 * 2 No
7 / 2 second 

variable 
! = 0

8 exp 1 NO
9 log 1 variable 

> 0
. . . .. . . . . . . .

Note that
(1) The initial value of a random constant is randomly

generated in the range [-25.0, 25.0] uniformly. 
After optimization, the value of a random constant 
can be any floating point number in the range 
[-MAX_DOUBLE_VALUE, MAX_DOUBLE_VALUE]. Our 
MAX_DOUBLE_VALUE is defined as 1.7e+140.

(2) The restriction of function operation indicates 
what kind of restrictions of operands to do the 
function operation. For example, division 
operation requires the second operand to not be 
equal to zero. In this case, if the second operand 
is zero, then the division function will return
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MAX_DOUBLE_VALUE. And log is the restricted 
logarithm function which is defined as

log(x) =■
0, x < 0 , X = 0 

ln(x) , x > 0

where the infinite is MAX_DOUBLE_VALUE.

The minimum set of functions in HGSFI is

F = { + , - , * , /  };
the maximum set of functions in HGSFI is

F = { + , -, *, /, minus_sign, **, sq, sqrt, exp, log, 
sin, cos, tan, arcsin, arccos, arctan, sinh, 
cosh, tanh, int}.

The given sample data points {xk, yk) (k = 1, 2, ...,
NumOfPoints) are saved in arrays DataX and DataY,
respectively. The total of corrected sum of squared 
residuals (CorrectSSTotal) is defined as

where N is the number of the sample points, yavg is the 
average value of yk. The total of uncorrected sum of squared 
residuals (UncorSSTotal) is defined as

CorrectSSTotal= ^  [y*-yav!732 (3.1)

N
UncorSSTotal= ^  (yk)2 (3.2)
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The other attributes of GENETIC_SYSTEM are discussed in 

next two section.

3.2. THE FRAMEWORK OF THE MAIN PROGRAM
The kernel of the main program is the genetic 

algorithm. The main loop of the main program is an iterative 
procedure which maintains a constant-size population P(t) of 
candidate solutions. The main loop is shown in Figure 17. 
BEGIN

(1) Choose the initial population of size Ps/ call this 
population P(0). Set the generation counter t to be 
0;

(2) Evaluate the performance (if needEvaluation for the 
individual) and the fitness of each individual in 
P(t);

(3) Measure each individual in P(t) to check 
convergence;

(4) If ConvergedFlag is on or
generation counter t > maximum generation 

then terminate;
(5) Increase generation counter by 1;
(6) Reproduce P(t) from P(t-l), call population P(t) as 

new_pop, population P(t-l) as old_pop;
(7) Crossover P(t);
(8) Mutate P(t);
(9) Permute P(t);
(10) If EliteFlag is on then

Call Elitist;
(11) For each individual (call i) in P(t) do

(i) If new_pop[i].needEvaluation then
(a) If SimplifyFlag is on then

Simplify the new_j?op[i] .model of 
individual i at generation t;

(b) Count the number of nodes in 
new_j>op[i] .model;

(c) Count the number of constants in 
new_j?op[i] .model;

(d) Build constant list of individual i at 
generation t;

(ii) Endif;
(12) Go to (2) ;

END.

Figure 17: The main loop
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The user could provide some of initial function models 

which suit his/her problem. In our experiments, we always 
chose the initial population P(0) randomly. The method to 
generate initial population P(0) at random was described in 
section 2.2.1.2. Note that the initial function model trees 
are controlled by a system parameter, XnitMaxDepth, which 
specifies the maximum depth of the randomly generated 
initial function trees.

The evaluate procedure evaluates the performance of 
each individual in the current generation if the function 
model of the individual is changed during the process of 
previous generation (i.e., it needs be evaluated again), and 
computes the fitness of the individuals in the population. 
The nonlinear regression subroutines (Levenberg-Marquardt 
algorithm) are embedded in the evaluate procedure, which 
optimize the coefficients of the function model of an 
individual to reduce the sum of squared residuals and to fit 
the given sample data points. The main loop of the 
Levenberg-Marquardt algorithm was given in Figure 7 (see 
section 2.2.2). Note that there are two cutoff values used 
to stop iterative calculation in our implementation of the 
LM nonlinear regression algorithm. The first one is the 
convergence criterion for the sum of squares. When S(B) 
decreases by less than 0.001 on two consecutive iterations, 
the fit is considered complete. The second one is the



maximum number of iterations allowed. It is controlled by 
the iterative counter K (see Figure 7). In our experiments 
described in Chapter 4, it was always set to be 50. In 
addition, we set the initial value of X to be 0.001 in our 
implementation.

The measure procedure computes some statistical 
information such as the average performance and the average 
fitness of the current generation and calculates performance 
measures. It compares the fitness of individuals in the 
current generation to determine the "best" individual and 
saves the "best" individual into BestSet. It measures each 
individual function model to check if it has converged. This 
procedure calculates the convergence test value of 
individual i at generation t as the following

E l  y t -  -fi'1 <•**.« |
Convgii, t) = 1.0 - -is  ----------- (3.3)

Y,\y* I
*=l

where fjl(t) (x, B) is the function equation of individual i at 
generation t. { (xx, y2), (x2, y2), (xN, yN) } is the
sample data set of the given problem. If the convergence 
test value for some individual is greater than the system 
convergence condition (ConvergentValue), then the function 
model has converged and the global variable ConvergedFlag in 
the system is set as TRUE.



55
The genetic system uses two techniques for stopping an 

experiment. These are the maximum number of generations and 
the convergence condition of the system. The MaxGenerations 
variable is set by the user. It is controlled by an 
iterator. The system never lets an experiment continue past 
this ceiling on the number of generations. In each 
iteration, after evaluating performance of individuals, the 
system measures each individual function model to check if 
it has converged. If the system variable ConvergedFlag is 
TRUE, that means some individual function model has 
satisfied the criterion of the system convergence condition. 
The terminate procedure outputs the statistical information 
and then stops the process of an experiment.

The reproduce procedure implements the process of 
choosing individuals for the next generation from the 
individuals in the current generation. The individuals in 
reproduction pool (New population) are chosen from old 
population by a randomized reproduction procedure that 
ensures that the expected number of times an individual is 
chosen is approximately proportional to that individual's 
fitness.

In the crossover procedure, the individuals in 
reproduction pool are randomly chosen for crossover 
(employing a user-specified crossover probability,
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CrossoverRate). There are two strategies to select a 
crossover site in our system. One is to choose the crossover 
point randomly using uniform distribution over the internal 
and external nodes in the parents. Another one is to use a 
non-uniform probability distribution over the potential 
crossover points in the parents that allocates 90% of the 
crossover points equally amongst the internal (function) 
nodes of each tree. The remainder of the crossover points 
are allocated equally amongst the external (terminal) nodes 
of each tree. Note that if the depth of any offspring tree 
exceeds the maximum depth of function models (determined by 
the system parameter MaxDepth), then subtrees of nodes whose 
levels in the offspring tree exceed MaxDepth are removed.
For each such subtree, the tree is replaced by a randomly 
generated terminal (constant or independent variable) node. 
In our experiments described in chapter 4, we always used 
the non-uniform strategy to select a crossover site in an 
individual.

After crossover, some individuals are mutated according 
to a user-specified mutation probability (MutationRate). We 
have two different implementations of the mutation operation 
in our system.

The first method is similar to Koza's implementation 
(Koza 1990). In the first implementation, the individuals
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are randomly selected from reproduction pool for mutation. 
The mutation operation selects a node of the individual at 
random. The node can be an internal (function) or external 
(terminal) node of the tree. This implementation removes 
whatever is currently at the selected node of a given tree, 
and inserts a randomly generated sub-tree at the selected 
mutation node of the individual. To generate a sub-tree, we 
begin by selecting one of the functions or terminals from 
set S instead of the set F (like the generation of initial 
function models), at random and uniform, to be the root of 
the sub-tree. In this implementation, approximately 
MutationRate*PopSize individuals in a population are 
selected for mutation. The mutation operation is performed 
on single node of an individual selected for mutation.

Using the second implementation method, approximately 
MutationRate*(total nodes of all individuals in the current 
generation) mutations occur per generation. An individual 
can contain more than one mutation node. The algorithm of 
the second method is shown in Figure 18.

Our experiments indicated that the second 
implementation of mutation operation was better for some 
test problems. The experiments described in chapter 4 were 
done using the second mutation method.
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(1) For i = 1 to MutationRate*(total nodes of all

individuals in the current generation)
(2) Do

(a) Randomly select an individual from current 
generation, call it as individual j;

(b) Randomly choose a node of individual j, call this
node as the mutation node;

(c) Randomly select a meta function from the function 
table (i.e., set S), call it as new node;

(d) If new node has same number of variables as the 
mutation node, simply replace the mutation node 
by new node;

(e) Else if new node is a terminal, replace the sub
tree whose root is the mutation node with the new
node;

(f) Else if new node is an unary function node, then
(i) If the mutation node is a terminal node,

randomly choose a terminal from set T as the 
operand of new node and use this sub-tree to 
substitute the mutation node;

(ii) Else remove the right child of the mutation 
node and replace the mutation node with new 
node;

(g) Else if new node is a binary function node, then
(i) If the mutation node is a terminal node,

randomly choose two terminals from set T as 
the operands of new node and use the sub-tree 
to substitute the mutation node;

(ii) Else use the left child of the mutation node 
as the first operand of new node, randomly 
select a terminal from set T as the second 
operand of new node, and replace the mutation 
node with this sub-tree;

(3) Endloop
Figure 18: The second mutation method

Note that the mutation operation is controlled by the 
system parameter MaxDepth which specifies the maximum depth 
for the newly created or modified tree. If the depth of the 
modified tree exceeds MaxDepth, then subtrees of nodes whose 
levels in the tree exceed MaxDepth are removed. For each 
such subtree, the tree is replaced by a randomly generated 
terminal (constant or independent variable) node.
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The permute procedure is the process to perform the 

permutation operation. It operates on only one individual. 
The individual is randomly selected from new population. The 
permutation operation selects a function node of the 
hierarchical tree at random. If the function at the selected 
node is a binary function, then left child and right child 
are swapped. Notice that if the function at the selected 
node is commutative, there is no immediate effect from the 
permutation operation on the tree.

Two population-maintenance strategies can be employed 
to direct the evolution. One is a pure selection strategy, 
in which the individuals are reproduced in proportion to 
their fitness as above description.

Another one is elitist strategy. The elitist policy 
stipulates that the best individual always survives into the 
new generation. The elite individual is placed in the last 
position in new generation, and is not changed through 
crossover, mutation, or permutation. In the absence of such 
a strategy (EliteFlag is off), it is possible for the best 
individual to disappear, due to sampling error, crossover, 
mutation, or permutation.

During the process of genetic operations, if the 
function model of an individual is changed, then the



60
attribute needEvaluation of the individual is set as TRUE. 
After processing genetic operations, the models of the 
modified individuals can be simplified using the set of 
simplifying rules if the user chooses the simplification 
option (SimplifyFlag is on). The simplify procedure 
simplifies the function equation using the set of 
simplification rules (i.e., some mathematical rules). For 
example, the equation

Cj. * ( C2 + C3 * X ) 
can be simplified as

C\ + C'2 * X 
where C'i = C3 * C2 and C'2 = C3 * C3.

Using the simplification option can save computer 
resources: space and time. It may improve overall 
performance slightly for some problems. However, our 
experience showed that it could not improve overall 
performance for most of linear regression model problems and 
nonlinear regression model problems we tested. So we only 
applied the simplification to the final stage —  outputing 
function models to a file or on the screen.

Then the attributes numOfNodes and numOfConst of the 
modified individuals are re-counted. In addition, the 
constant lists of the modified individuals are re-built. In 
the building constant list procedure, the values of the
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constants of an individual are adjusted if the individual 
has some changes after genetic operations. The adjustment of 
constant values is to increase them in 10 percent or 
decrease them in 10 percent at random. This adjustment of 
constants is another form of mutation. It may help the 
optimizer (Levenberg-Marquardt algorithm) to move from the 
locally optimal points.

3.3. THE SELECTION OF CONTROL PARAMETER VALDES
Running a genetic algorithm entails setting a number of 

control parameter values. If poor settings are used, a 
genetic algorithm's performance can be severely impacted. 
Finding the optimal control parameter settings can be 
difficult, because different problems have different optimal 
values of control parameters. Each combination of genetic 
operators, representation, and problems has its own 
characteristic. In this section, we give our empirical 
selection of control parameters for function identification 
problems.

(1) The selection of function table (S):
In order to identify the function model for the given 

sample data set, we need first choose the function table 
which consists of the set of terminals and the set of 
functions. The function table must, of course, be sufficient 
to solve the problem. In our experiments, we chose the set
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of terminals as

T = {random_constant, independent_variable}.
The set F of functions was always chosen as

F = { +, *, /, **, exp, log, sin, cos }
unless otherwise specified.

(2) Population size (Ps) :
The population size affects both the ultimate 

performance and the efficiency of the system. Genetic 
algorithms generally do poorly with very small populations, 
because the population provides an insufficient sample size 
for most solution spaces. A large population is more likely 
to contain representatives from a large number of solution 
space. Hence, genetic algorithms can perform a more informed 
search. For the function identification problem, relatively 
large population size is needed. As a result, a large 
population discourages premature convergence to suboptimal 
solutions. On the other hand, a large population requires 
more evaluations per generation, possibly resulting in an 
unacceptably slow rate of convergence. In our experiments, 
the population size ranged from 300 to 500.

(3) Maximum generation (MG) :
As previously mentioned, one generation comprises the 

following steps: reproduction, crossover, mutation, 
permutation, evaluation, and some data collection
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procedures. This parameter is used to control an overall 
maximum number of generations to be run. For all of our 
experiments, the maximum generation is 50. Note that the 
maximum number of generations actually is 51 if the initial 
generation is considered.

(4) Crossover rate (Rc) :
The crossover rate controls the frequency with which 

the crossover operator is applied. In each new generation,
Rc * Ps function models undergo crossover. The role of 
crossover is to introduce new function models into the 
population. If the crossover rate is too low, then the 
search may stagnate due to the lower exploration rate; the 
population may tend toward a stable selection of the best 
initial guesses. On the other hand, if the crossover rate is 
too high, the many superior individuals would quickly be 
crossed out of existence. The crossover rate in our 
experiments is in the range [0.8, 0.95]. Our experiments 
showed crossing 90 percent of the population works 
reasonably well, because good function models often have a 
high-enough fitness value to make their way into the 
noncrossed 10 percent.

(5) Mutation rate (Rm) :
Mutation is a secondary search operator which increases 

the variability of the population. The fitness function
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drives the system toward better solutions, and sometimes it 
takes a wrong turn. The system will often converge after 
running and rerunning the fitness several times. A mutation 
operator can help move the process out of a niche. If the 
mutation rate is too high, the system starts declining in 
performance. For different implementations of mutation 
operation, the range of mutation rates is quite different.
In the experiments we did with the second implementation 
method, the mutation rate was in the range [0.0, 0.2]. In 
most situations, we used the mutation rate as 0.01 or 0.02. 
For the first implementation of mutation operation, the 
range of the mutation rate could be larger than that of the 
second one. Note that in the experiments described in the 
next chapter, the mutation operation was performed using the 
second implementation method.

(6) Permutation rate (Rp) :
The permutation operator is an extension of the 

inversion operation for string-based genetic algorithms to 
the domain of hierarchical genetic algorithm. The 
permutation operation can potentially bring closer together 
nodes of a relatively high fitness individual so that they 
are less subject to later disruption due to crossover (Koza 
1990). However, our experience is that the benefits of this 
operation are purely potential and have yet to be observed 
for function identification problems. The permutation rate
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(7) Convergent value (Cv) :
This parameter serves as the convergence condition of 

the system. Usually we chose the convergent value Cv to be 
0.99. This means that the system is successful in solving 
the given problem if at least one individual function model 
has the average of absolute differences between the 
predicted values of the model f(x, B) and the given values 
of observations within 1% of the average of absolute values 
of observations (see equation (3.3)). For some problems, we 
chose the convergent value Cv as 0.999.

(9) Maximum depth of initial function models (Dj) :
This parameter defines the maximum depth of initial

function models. In our experiments, this parameter was set 
to be 4 or 5.

(10) Maximum depth of function models (Dm) :
This parameter defines the maximum depth of function 

models generated by the genetic system. This limit prevents 
large amounts of computer time being expended on the 
extremely complicated function models. It was always set as 
15 in our experiments.

(11) Options ( O = {e, o, s} ):
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(a) The option of the "elitist" selection strategy (e):

The elitist strategy stipulates that the 
individual with the best fitness in the current 
generation always survives intact to next generation.
In the absence of this strategy, it is possible that 
the best individual disappears, due to crossover, 
mutation, or permutation.
(b) The option of LM optimization (o):

The HGSFI allows users to choose whether the 
system includes the optimizer (the Levenberg-Marquardt 
nonlinear regression algorithm) for a particular 
running in order to compare the two approaches.
(c) The option of simplifying function model (s):

If this option is chosen, the system variable 
SimplifyFlag is set as TRUE. This means that during 
each iteration after processing genetic operations, the 
models of the modified individuals will be simplified 
using the set of simplification rules. If the option is 
absent, the function models are simplified only in the 
final stage —  outputing function models to a file or 
on the screen.

Let HGSFI = ( S, Ps, Mg, Rc, K, Rp, Cv, D±, Dm, O ) 
represent a particular running of the HGSFI with the 
settings of control parameters for the given problem. For 
example,
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HGSFI = ({ c, x, + , -, *, /, exp, log, sin, cos},

500, 50, 0.9, 0.02, 0.1, 0.99, 4, 15, {e, o}) 
indicates one running of the HGSFI with

(a) The function table
S = { c, x, +, -, *, /, exp, log, sin, cos } 
where c is a random constant and x is the 
independent variable;

(b) Population size is 500;
(c) Maximum number of generations is 50;
(d) Crossover rate is 0.9;
(e) Mutation rate is 0.02;
(f) Permutation rate is 0.1;
(g) Convergent value is 0.99;
(h) Maximum depth of initial function models is 4;
(i) Maximum depth of function models is 15;
(j) The options are { e, o }, which means this

particular run of the HGSFI includes the elitist 
selection strategy and the Levenberg-Marquardt 
optimization.



4. TEST AMD EVALUATION
We now describe the experiments of the HGSFI machine 

function identification system. These experiments were run 
under the UNIX operating system on DEC-5500 system. The 
HGSFI was compiled using gcc (GNU project C Compiler) 
version 1.36. These experiments were designed to test and 
evaluate the performance of the HGSFI. From the outset, 
generality has been a motivating force in the design of the 
HGSFI. Consequently, it seems appropriate that the system be 
tested and evaluated in a wide range of task domains. First 
we did some experiments to compare the system performance 
with and without the Levenberg-Marquardt optimization. 
Section 4.1 presents the detail of this comparison. Then we 
chose two sets of task domains to test the HGSFI. Section 
4.2 discusses the results of the experiments of linear 
regression model problems. The experimental results of 
nonlinear regression model problems will be presented in 
section 4.3.

For all of the test problems, we randomly generated 
initial function models. This learning system does not need 
any prior knowledge about function models of the given 
problems. The only prior knowledge needed is the primitive 
functions, such as addition, multiplication, exponentiation, 
etc., that are to be used in representing the population of 
function models.

68
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4.1. COMPARISON OF THE SYSTEM PERFORMANCE WITH AND WITHOUT 

LEVENBERG-MARQUARDT OPTIMIZATION
This set of experiments was conducted to compare the 

system performance with and without the Levenberg-Marquardt 
optimization. The test function equations are listed in 
Table 3. It includes the "symbolic regression" task domains 
faced by Koza's "genetic programming paradigm" (Koza 1990), 
which are problems (4.1), (4.2), (4.3), and (4.5).

Table 3: The first set of test problems

Prob
-lem

Function Equation X
range

Pts

4.1 Y = X + X2 + X3 + X4 [-2.0,2.0] 100
4.2 Y = sin (X) + cos (X) + X + X2 [-5.0,5.0] 150
4.3 Y = cos (X + X) [0.0, 6.0] 20
4.4 Y = X2 - X7 [-5.0,5.0] 150
4.5 Y = 3.1416*X+2.718*X2 [-5.0,5.0] 100
4.6 Y = 0 . 808162*exp(-1.21*X) [-2.0,8.0] 100
4.7 Y = -2.3 + 3. 0*X+0 . 45*X2-1.23*X3 [-5.0,5.0] 100
4.8 Y = 21.10-19.81*

exp (-0.00177*X3'180)
[0.0,14.0] 140

The first four function equations have no numerical 
coefficients, the next four function equations have 
numerical coefficients. The sample data (no noise) of the 
test problems are uniformly generated using the test 
function equations in the given X ranges with the given 
number of points. For above test problems, except for 
problem (4.8), we chose the following control parameters
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HGSFI = ( {c, x, + , -, *, /, exp, log, sin, cos},

500, 50, 0.9, 0.02, 0.0, 0.99, 4, 15, {e} )
to run the HGSFI without the option of LM optimization. The 
control parameters for problem (4.8) without the Levenberg- 
Marquardt optimization were

HGSFI = ( {c, x, +, -, *, /, **, sq, exp, log, sin, cos}, 
500, 50, 0.9, 0.02, 0.0, 0.99, 4, 15, {e} ).

where sq(X) means X2 and X**C means Xc. For the runs with
the Levenberg-Marquardt optimization, the option of LM 
optimization should be added to the control parameters. The 
experimental results of these test problems with and without 
LM optimization are shown in Table 4 and 5, respectively.

We define that a run is successful for the given sample 
data set if at least one function model in the run satisfies 
the given system convergence condition within the maximum 
number of generations.

In the tables, the total runs column contains the total 
number of runs for the given problem. The success rate means 
the ratio of the number of successful runs to the total 
number of runs for a given problem. The converged generation 
for a successful run is the generation at which at least one 
function model satisfies the system convergence condition 
within the maximum number of generations. The avg. gen. for 
sue. runs means the average number of the converged
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Table 4: Experimental results of the first set of 

test problems without LM optimization

Prob
-lem

Tot
-al
run
s

Suc
cess
Rate
(%)

Avg. 
gen. 
for 
sue. 
runs

CPU
time
per
run
(min)

Average
test
value
for
success
runs

Average 
test 
value 
for all 
runs

Average 
best R 
squares 
for
success
runs

4.1 30 43.3 32 .85 5.411 .998040 .965313 .999980
4.2 30 73.3 23.73 6.190 .996840 .987427 .999962
4.3 25 100 3.36 0.048 .999633 .999633 .999997
4.4 30 0.0 - 4 .274 - .449476 -

4.5 30 56.7 32 .17 6.702 .992964 .983683 .999894
4.6 30 50.0 25.47 8 .549 .994589 .976314 .999965
4.7 30 0.0 - 10.82 - .919131
4.8 30 0.0 - 2.825 - .890589 -

Table 5: Experimental results of the first set of 
test problems with LM optimization

Prob
-lem

Tot
-al
run
s

Suc
cess
rate
(%)

Avg. 
gen. 
for 
sue. 
runs

CPU
time
per
run
(min)

Average
test
value
for
success
runs

Average 
test 
value 
for all 
runs

Average 
best R 
squares 
for
success
runs

4.1 26 100 10.5 37.58 .998411 .998411 .999994
4.2 20 100 10.65 79.33 .998450 .998450 .999983
4.3 30 100 1.066 0.425 .999952 .999952 1.00000
4.4 30 80.0 31.13 84.44 .997754 .923638 .999957
4.5 20 100 3.65 6.94 .999929 .999929 1.00000
4.6 20 100 2.05 3.92 .999880 .999880 .999994
4.7 50 100 10 .44 30.10 .998385 .998385 .999992
4.8 49 100 14.31 107.4 .993469 .993469 .999791
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generations for successful runs. Note that we define 
generation counter starts from 1 instead of 0 when we 
calculate the average number of the converged generations 
for successful runs. That is, initial generation is 1, the 
first generation is 2, and so on. The CPU time per run means 
the average of CPU time for all runs. The average test 
values for success runs and all runs are the averages of 
convergence test values (equation 3.3) of best function 
models for successful runs and all runs, respectively. The 
average best R squares for success runs is the average of R 
squares of best function models for successful runs.

For problems (4.1), (4.2), and (4.3) which are simple
equations without numerical coefficients, the machine 
function identification system HGSFI without the option of 
LM optimization can find the highly fit function models, 
which are same as the function equations generated the 
sample data. For example, the highly fit function models 
that the HGSFI found for the test problems (4.1), (4.2), and
(4.3) in some runs are as follows,
(1) y = (x+(((((x*x)*x) + (x*x))*x) + (x*x) )) at generation 9,
(2) y = ((sin(x)+((x*x)+x))+cos(x)) at generation 26,
(3) y = cos((x+x)) at generation 0,

respectively. The success rate for problems (4.2) and (4.3) 
is high. Note that the SSResid (see equation 2.16) for these 
correct function models the HGSFI found is not equal to zero
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because of roundoff error.

For problems (4.5) and (4.6) which are simple equations 
with numerical coefficients/ the system without the option 
of LM optimization can still find a reasonably good fit 
function model to the given sample data set/ at relatively 
high success rate. For example, the success rate in 30 runs 
for problem (4.6) without the option of nonlinear regression 
is 50.0 percent. The summary statistics and a highly fit 
function model the HGSFI found in a run without the option 
of LM optimization is shown in Figure 19. The highly fit 
function model the HGSFI found in the run is equivalent to

y = 0 .8073855e_1,211x
which is very close to the equation (4.6). This result shows 
that the genetic algorithm can do pretty good job for some 
"constant discoveries".

Note that the meanings of the columns in Figure 19 are 
as follows:

(1) Gens stands for the generation number;
(2) Trials is the number of individuals evaluated;
(3) The online performance is defined as the average of 
the normalized performance of all evaluated individuals 
over the course of the genetic search.
(4) The offline performance is defined as the average 
of the normalized performance of best individuals over
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##### HGSFI Summary Report ##### 
### Best Function Model ###
# Y=EXP((((Cl-X)*C2)-X))
num_of_const = 2 
Cl C2
-1. 014e+00 2 .110e-01
### Summary Statistics for the Best Function Model ###

Source DF
Residual 98
Uncorrected Total 100
Corrected Total 99

Sum of Squares 
2.42873e-04 
3.84288e+02 
3.20693e+02

Mean Squares 
2.47830e-06

R_squared = 1 - Residual SS / Corrected SS = 0.9999992
Sum of absolute (Yi - Yi'): 5.54913e-02 

Sum of absolute Yi: 7.97468e+01 
ConvergentTestValue = 1 - SumOfAbsDy / SumOfAbsY = 0.9993042 
( Success condition: ConvergentTestValue > 0.9900 )
Gens Trials Online Offline Best Average Current Best

Performance SSResid Rsquared
0 500 .00465 .02412 .024118 .004649 3.657e+01 .885958
1 956 .00576 .02412 .024118 .007172 3.657e+01 .885958
2 1407 .00643 .04207 .077975 .008023 3.631e+00 .988677
3 1861 .00691 .05211 .082230 .008574 3.465e+00 .989196
4 2314 .00782 .05864 .084778 .011758 4.027e+00 .987444
5 2766 .00898 .08193 .198345 .015764 1.178e+00 .996328
6 3220 .01111 .10029 .210478 .025507 5.747e-01 .998208
7 3677 .01395 .15413 .530978 .036361 4. 953e-02 .999846
8 4135 .01657 .19600 .530978 .042642 4.953e-02 .999846
9 4589 .01914 .22950 .530978 .049673 4.953e-02 .999846

10 5045 .02132 .25690 .530978 .053639 4.953e-02 .999846
11 5502 .02313 .27974 .530978 .050640 4.953e-02 .999846
12 5961 .02447 .29907 .530978 .050649 4.953e-02 .999846
13 6424 .02584 .31563 .530978 .053312 4.953e-02 .999846
14 6880 .02740 .32999 .530978 .059563 4.953e-02 .999846
15 7339 .02861 .34255 .530978 .056663 4. 953e-02 .999846
16 7801 .02976 .35364 .530978 .057022 4.953e-02 .999846
17 8259 .03069 .36349 .530978 .058276 4.953e-02 .999846
18 8723 .03195 .37230 .530978 .059776 4.953e-02 .999846
19 9182 .03330 .38024 .530978 .065697 4 .953e-02 .999846
20 9650 .03531 .40726 .947426 .079663 2.429e-04 .999999

Figure 19: The summary report of problem (4.6) in a run
without LM optimization
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the course of the genetic search.
(5) Best performance and average performance are the 
best normalized performance and the average normalized 
performance in the current generation, respectively.
(6) Current best SSResid and R squared are the sum of 
squared residuals and R squared of the best individual 
in the current generation, respectively.

For the complicated problems such as problems (4.4), 
(4.7), and (4.8), however, the system without the option of 
LM optimization cannot find a function model which satisfies 
the given system convergence condition within the given 
maximum number of generations. For example, the success 
rates in 30 runs for problems (4.4), (4.7), and (4.8) are
zero. With the option of LM optimization, the system can 
find the function models, which satisfy the system 
convergence conditions, for the given sample data points of 
these problems. Figure 20 is the summary report of one run 
of the HGSFI with LM optimization for problem (4.7). After 
simplification, the most fit function model the system found 
in the run is equivalent to

y =  -2.3+3.0*X+0.45**2-1.23*X3 .
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##### HGSFI Summary Report #####
### Best Function Model ###
# Y=((((X*X)* <C1*X))+C2)+C3-(((X*X)C4*) + ((X*C5)-C6))))
num_of_const = 6
Cl C2 C3 C4 C5

-1.230e+00 4.596e+00 -5.138e+00 -4.500e-01 -3.000e+00
C6

-1.758e+00
Uncertainties:
5.295e-03 4.472e+02 3.162e+02 1.344e-02 8.661e-02
3.162e+02

### Summary Statistics for the Best Function Model ###
Source DF
Residual 94
Uncorrected Total 100
Corrected Total 99

Sum of Squares 
6.40283e-27 
2.57184e+05 
2.56378e+05

Mean Squares 
6.81152e-29

R_squared = 1 - Residual SS / Corrected SS = 1.0000000
Sum of absolute (Yi - Yi'): 4.09665e-13 

Sum of absolute Yi: 3.20289e+03 
ConvergentTestValue = 1 - SumOfAbsDy / SumOfAbsY = 1.0000000 
( Success condition: ConvergentTestValue > 0.9900 )
Gens Trials Online Offline Best Average Current Best

Performance SSResid Rsquared
0 500 .00019 .00055 .000546 .000194 4 . 962e+04 .806465
1 952 .00023 .00056 .000580 .000269 1.039e+05 .594881
2 1404 .00025 .00057 .000584 .000291 1.035e+05 .596337
3 1857 .00025 .00057 .000584 .000275 1.035e+05 .596337
4 2313 .00026 .00058 .000584 .000290 1.035e+05 .596337
5 2766 .00027 .00060 .000710 .000301 3.177e+04 .876084
6 3222 .00027 .00083 .002242 .000305 2.64 0e+03 .989703
7 3674 .00028 .00102 .002309 .000314 2.414e+03 .990586
8 4126 .00028 .00116 .002309 .000334 2.414e+03 .990586
9 4579 .00029 .00135 .003023 .000372 1.454e+03 .994330

10 5033 .00030 .00162 .004365 .000475 7.845e+02 .996940
11 5486 .00033 .00185 .004365 .000711 7.845e+02 .996940
12 5944 .00055 .07863 1.00000 .003088 6.403e-27 1.000000
Figure 20: The summary report of problem (4.7) in a run

with LM optimization

If we define "the correct function model" the HGSFI 
found for the given problem as

(1) after simplification, the form of "the correct
function model" is same as the form of the function
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equation generated the sample data, except for the 
difference of some constant term, and

(2) its R squares > 0.999999, 
then the success rates for finding the correct function 
models of problems (4.1) to (4.8) by HGSFI with and without 
LM optimization are listed in Table 6.

Table 6: The success rate for finding the correct function 
models of the first set of test problems

Problem Total
runs

without
LM

Success 
rate 

without LM 
option

Total
runs
with
LM

Success 
rate 

with LM 
option

4.1 30 30.00% 26 53.85%
4.2 30 30.00% 20 60.00%
4.3 25 96.00% 30 100%
4.4 30 0.00% 30 23.33%
4.5 30 3.33% 20 95.00%
4.6 30 3.33% 20 85.00%
4.7 30 0.00% 50 56.00%
4.8 30 0.00% 49 0.00%

Comparing the system performance with and without the 
option of LM optimization, the average convergence test 
value of all runs and the average R squares of success runs 
with nonlinear regression are better than those without 
nonlinear regression. The success rate with LM optimization 
is much higher than that without LM optimization except in 
some extremely simple problems such as problem (4.3). In 
addition, the average number of the converged generations



78
for successful runs with LM optimization is less than that 
without LM optimization. In other words, the system 
performance with the Levenberg-Marquardt optimization is 
better than that without the Levenberg-Marquardt 
optimization. However, the average CPU time to solve the 
given problems with LM optimization is longer than that 
without LM optimization, because the optimizer spends a lot 
of time to optimize the coefficients of function models.

4.2. LINEAR REGRESSION MODEL PROBLEMS
Linear regression model is the model in which all the 

parameters (i.e. estimated coefficients) appear linearly. 
This does not mean the response variable Y has the linear 
relationship with independent variable X. For example, the 
model

Yt = C0 + <\Xt + C2X\ + e t 

is a linear regression model instead of a nonlinear 
regression model (because Yt is nonlinear in Xt) . For this 
set of experimental problems, we use the function equations 
in Table 7 to generate the corresponding experimental data 
(no noise).

For this set of test problems, we chose the following 
control parameters:
HGSFI = ({c, x, +, -, *, /, exp, log, sin, cos},

500, 50, 0.9, 0.02, 0.0, 0.99, 4, 15, {e, o}).
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Note that LM optimization was included on all runs for this 
set of test problems. The experimental results of the second 
set of test problems are listed in Table 8.

Table 7: The second set of test problems

Prob
-lem

Function Equation X
range

Pts

4.7 Y = -2.3+3. 0*X+0 .45*XZ-1.23*X3 [-5.0,5.01 100
4.9 Y = 3.2*sin(X)+2.5*cos(X) [-2.0, 18] 200
4.10 Y = 0.45+6.032*exp(-X) [0.0,20.0] 100
4 .11 Y = 0.l-2*X+0.5*log(X) (0.0,20.0] 100

Table 8: Experimental results of the second set of 
test problems with LM optimization

Prob
-lem

Tot
-al
run
s

Suc
cess
Rate
<%)

Avg. 
Gen. 
for 
sue. 
runs

CPU
time
per
run
(min)

Average
test
value
for
success
runs

Average 
test 
value 
for all 
runs

Average 
best R 
squares 
for
success
runs

4.7 50 100 10.44 30.10 .998385 .998385 .999992
4.9 20 100 4.8 16.62 .999776 .999776 1.00000
4.10 23 95.7 10.36 95.75 .999231 .991547 .999993
4.11 25 100 1.0 2.04 .996607 .996607 .999830

Problem (4.7) is a third-degree polynomial model in one 
independent variable. The degree (or order) of an individual 
term in a polynomial is defined as the sum of the powers of 
the independent variable in the term. The degree of the 
entire polynomial is defined as the degree of the highest- 
degree term. All polynomial models, regardless of their
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degree, are linear in the parameters. Higher-degree 
polynomial models are regarded in most situations as 
approximations to the true models. Figure 20 shows the 
statistical report of one run for problem (4.7).

##### HGSFI Summary Report #####
### Best Function Model ###
# Y=(Cl*COS((X+C2)))
num_of_const = 2 
Cl C2
4.061e+00 -9.076e-01

Uncertainties:
9.998e-02 2.468e-02

### Summary Statistics for the Best Function Model ###
Source DF Sum of Squares Mean Squares
Residual 198 1.66727e-13 8.42055e-16
Uncorrected Total 200 1.65295e+03
Corrected Total 199 1.64781e+03
R_squared = 1 - Residual SS / Corrected SS = 1.0000000

Sum of absolute (Yi - Yi'): 5.01913e-06 
Sum of absolute Yi: 5.19388e+02 

ConvergentTestValue = 1 - SumOfAbsDy / SumOfAbsY = 1.0000000 
( Success condition: ConvergentTestValue > 0.9900 )
Gens Trials Online Offline Best Average Current Best

Performance SSResid Rsquared
0 500 .00109 .00238 .002381 .001093 1.072e+03 .349228
1 953 .00133 .00281 .003234 .001607 5.969e+02 .637759
2 1405 .00215 .33520 .999995 .003694 1.667e-13 1.000000

Figure 21: The summary report of problem (4.9) in a run
with LM optimization

Problem (4.9) is a periodic model. The summary report
and the highly fit function model the system found in a run
is shown in Figure 21. It is equivalent to

y = 3. 20*sin(X) + 2.50*cos(X).
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##### HGSFI Summary Report ##### 
### Best Function Model ###
# Y=((Cl/EXP(X))+C2)
num_of_const = 2 
Cl C2
6.032e+00 4.500e-01

Uncertainties:
6.053e-01 1.054e-01

### Summary Statistics for the Best Function Model ###
Source DF Sum of Squares Mean Squares
Residual 98 7.47844e-14 7.63106e-16
Uncorrected Total 100 1 .60564e+02
Corrected Total 99 9.92914e+01
R_squared = 1 - Residual SS / Corrected SS = 1.0000000

Sum of absolute (Yi - Yi'): 2.30815e-06 
Sum of absolute Yi: 7.82765e+01 

ConvergentTestValue = 1 - SumOfAbsDy / SumOfAbsY = 1.0000000 
( Success condition: ConvergentTestValue > 0.9900 )
Gens Trials Online Offline Best Average Current Best

Performance SSResid Rsquared
0 500 .00731 .02746 .027458 .007314 9.944e+01 -.001525
1 957 .00941 .03955 .051652 .012038 4.333e+00 .956366
2 1411 .01124 .35970 .999998 .015128 7.478e-14 1.000000
Figure 22: The summary report of problem (4.10) in a run

with LM optimization

Problem (4.10) is an exponential (decay) model. The 
model (4.11) is the linear form of Hoerl's special function 
Y = aXbecX (In Y = In a + b (In X) + cX) . The summary reports 
of problems (4.10) and (4.11) in some run are given in 
Figure 22 and Figure 23, respectively. The equivalent 
equations of the highly fit function models the system found 
are

y = 0.45 + 6 . 032*exp(-X)
and

y = 0.1 - 2.0*X + 0.5*log(X),
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respectively.

##### HGSFI Summary Report #####
### Best Function Model ###
# Y=(((C1+(X-C2))/C3)- (C4*LOG(X)))
num_of_const = 4
Cl C2 C3 C4
9.056e-01 9.556e-01 -5.000e-01 -5.000e-01

Uncertainties:
3.162e+02 3.162e+02 2.532e-03 1.089e-01
### Summary Statistics for the Best Function Model

Source DF Sum of Squares Mean Squares
Residual 96 8.84624e-14 9.21483e-16
Uncorrected Total 100 3.10789e+05
Corrected Total 99 8.05437e+04
R_squared = 1 - Residual SS / Corrected SS = 1.0000000

Sum of absolute (Yi - Yi'): 2.62445e-06 
Sum of absolute Yi: 4.79839e+03 

ConvergentTestValue = 1 - SumOfAbsDy / SumOfAbsY = 1.0000000 
( Success condition: ConvergentTestValue > 0.9900 )
Gens Trials Online Offline Best Average Current Best

Performance SSResid Rsquared 
0 500 .00517 1.0000 .999997 .005166 8.846e-14 1.000000
Figure 23: The summary report of problem (4.11) in a run

with LM optimization

Table 9: The success rate for finding the correct function 
models of the second set of test problems

Problem 4.7 4.9 4.10 4.11
Total runs 50 20 23 25
Success rate 
with LM option

56.00% 85.00% 82.61% 8.0%

The success rates for finding the correct function 
models of the second set of problems by HGSFI with LM 
optimization are listed in Table 9. Note that the success



rate for finding the correct function models of problem 4.11 
is quite low. But if we increase the convergent value to 
0.999 to run the HGSFI for problem 4.11, the success rate 
will be higher than 8.0%.

For almost all of the linear regression model problems 
we tested, the HGSFI can rapidly converge on a highly fit 
function model which satisfies the given system convergence 
condition within the maximum number of generations. Note 
that due to roundoff error the SSResids of the highly fit 
function models that the HGSFI found for this set of test 
problems are not exactly equal to zero.

4.3. NONLINEAR REGRESSION MODEL PROBLEMS
A nonlinear regression model is one in which at least 

one of its parameters appears nonlinearly, for example

r* = axl + e* .
In the formal sense, nonlinear means that at least one of 
the derivatives of Yk with respect to a and P is a function 
of at least one of those parameters. In above equation, the 
derivative of Yk with respect to a and the derivative of Yk 
with respect to P are both functions of a and/or P, so that 
this model is a nonlinear regression model. For the third 
set of test problems, we use the following nonlinear 
regression equations to generate the experimental data (no 
noise):
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Problem (4.8): Weibull-type model

y = a - Pe-TX*

where a = 21.10, (3 = 19.81, y = 0.00177, and 8 = 3.180. 
The range of x is [0.0, 14.0]. The number of sample 
data points is 140. This nonlinear statistical model is 
widely used in biology and economics, which produces 
sigmoidal or "S-shaped" growth curve. The parameter 
values of this model are abstracted from Ratkowsky's 
book "Nonlinear Regression Modeling" pp 65 (Ratkowsky 
1983).

Problem (4.12): Inverse polynomial model

v = x
y  O+pX

where a = 0.3 and P = 0.06. The range of X is [0.0,
10.0]. The number of sample data points is 100. This 
function is a monotonically increasing function of X 
that very slowly approaches the asymptote Y = 1/p.

Problem (4.13): Logistic growth model

y = ____ «____1.0 + ye*x
where a = 10.0, p = -0.8, and y = 25.0. The range of X 
is [0.0, 10.0]. The number of sample data points is 
100. The logistic growth model is frequently used in 
biology, agriculture, and engineering. This function
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gives the "S-shaped" growth curve starting at Y = 
a/(l+y) at X = 0 and approaching the asymptote Y = a as 
X gets large. Note that problems (4.12) and (4.13) are 
abstracted from Rawlings' book "Applied Regression 
Analysis" pp 302 (Rawlings 1988).

Problem (4.14): Two term exponential model

r- - e~Cl*)q-c2

where Cj. = 0.6 and C2 = 0.3. The range of X is [0.0,
20.0]. The number of sample data points is 100. This
function is abstracted from Rawlings' book "Applied
Regression Analysis" pp 391 (Rawlings 1988).

Table 10: Experimental results of the third set of 
test problems with LM optimization

Prob
-lem

Tot
-al
run
s

Suc
cess
Rate
(%)

Avg. 
Gen. 
for 
sue. 
runs

CPU
time
per
run
(min)

Average
test
value
for
success
runs

Average 
test 
value 
for all 
runs

Average 
best R 
squares 
for
success
runs

4.8 49 100 14.31 107.4 .993469 .993469 .999791
4 .12 20 100 8.4 99.84 .999674 .999674 .999996
4.13 30 96.7 18.55 350.3 .999344 .998610 .999998
4 .14 20 95.0 11.42 152.5 .995469 .994697 .999951

The settings of control parameters for problems (4.12) 
and (4.13) are

HGSFI = ({c, x, +, -, *, /, **, sq, exp, log, sin, cos},
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500, 50, 0.9, 0.02, 0.0, 0.999, 4, 15, {e, o}). 
The only difference of the settings of control parameters to 
run the HGSFI for problems (4.8) and (4.14) is the 
convergent value. The latter uses 0.99 instead of 0.999. The 
summary of experimental results of these test problems is 
shown in Table 10.

This set of experimental problems is very difficult and 
challenge for the current implementation of the HGSFI. 
Because function discovery and nonlinear regression are both 
global optimization problems. To discover the "correct" 
function model and the "correct” values of the coefficients 
of the function model, the system needs to search large 
function space and large constant space. The two together 
make the problem very hard. In addition, so far there are 
not any efficient global optimization algorithms for 
nonlinear regression. The HGSFI implementation uses the 
Levenberg-Marquardt optimization algorithm to find the 
"best" fit coefficients of function models for the given 
sample data set, which is a local optimization algorithm. If 
a function model is "correct" for the given problem but the 
starting values of the coefficients of the function model 
are not around the global optimizing point, then the poor 
starting values may result in convergence to an unwanted 
stationary point of the sum of squares surface (Draper and 
Smith 1981). This unwanted point may have coefficient values
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which do not provide the true minimum value of S(B) 
(equation 2.3). Then the "correct" function model may be 
thrown away due to the poor fitness.

##### HGSFI Summary Report ##### 
### Best Function Model ###
# Y=(((Cl+X)/ (C2+X))+C3)
num_of_const = 3 
Cl C2
-7.8333e+01 5.0000e+00
Uncertainties:
1.0730e+01 6.67l3e-01

C3
1.5667e+01 
4 .7124e-01

### Summary Statistics for the Best Function Model ###
Source DF
Residual 97
Uncorrected Total 100
Corrected Total 99

Sum of Squares 
8 .10634e-14 
1.24026e+04 
1.11560e+03

Mean Squares 
8 .35705e-16

R_squared = 1 - Residual SS / Corrected SS = 1.0000000
Sum of absolute (Yi - Yi'): 2.44214e-06 

Sum of absolute Yi: 1.06240e+03 
ConvergentTestValue = 1 - SumOfAbsDy / SumOfAbsY = 1.0000000 
( Success condition: ConvergentTestValue > 0.9990 )
ns Trials Online Offline Best Average Current Best

Performance SSResid Rsquared
0 500 .00076 .01197 .011970 .000764 9.641e+01 .913581
1 956 .00123 .01683 .021690 .001816 3.247e+01 .970898
2 1414 .00169 .01914 .023750 .002947 2.415e+01 .978349
3 1869 .00206 .02307 .034877 .003640 1.047e+0l .990617
4 2327 .00258 .03146 .065009 .005181 3.873e+00 .996528
5 2783 .00308 .04403 .106887 .006788 1.004e+00 .999100
6 3239 .00379 .05419 .115118 .010114 9.501e-01 .999148
7 3706 .00523 .17241 .999998 .017161 8.106e-14 1.000000
Figure 24: The summary report of problem (4.12) in a run

with LM optimization

For these nonlinear regression model problems, the 
HGSFI can still quickly find high performance function 
models to fit the given sample data points with very high 
success rate. Sometimes it can find the highly fit function
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model which is same as the function equation generated the 
sample data set. For example, the "best" function model the 
HGSFI found for problem (4.12) in a run is

y = 0.30000+0.06000X
which is equivalent to the function equation (4.12). The

##### HGSFI Summary Report 
### Best Function Model ###
# Y=((Cl-(C2*X))-(((C3*(C4-X))-(((C5-X)*(C6*X))* 

(X+C7)))*(X*X)))
num_of__const = 7 
Cl C2 C3
1.257e+00 -3.169e-01 5.379e-02
C6 Cl

-5.980e-04 -1.016e+01
Uncertainties:
4.770e-0i 7.021e-01 2.314e+00
1.315e-04 3.llle+02

C4
7.351e+00

C5
2.259e+01

3 .162e+02 3.llle+02

### Summary Statistics for the Best Function Model
Source DF
Residual 133
Uncorrected Total 140
Corrected Total 139

Sum of Squares 
1.27622e+00 
2.79300e+04 
8.64718e+03

Mean Squares 
9.59562e-03

R_squared = 1 - Residual SS / Corrected SS = 0.9998524
Sum of absolute (Yi - Yi'): 1.10132e+01 

Sum of absolute Yi: 1.64304e+03 
ConvergentTestValue - 1 - SumOfAbsDy / SumOfAbsY = 0.9932970 
( Success condition: ConvergentTestValue > 0.9900 )
Gens Trials Online Offline Best Average

Performance
Current 

SSResid
0 500 .00061 .00723 .007230 .000611 1 .7 64e+02
1 955 .00076 .00839 .009540 .000961 1.161e+02
2 1406 .00095 .01019 .013802 .001443 6.239e+01
3 1858 .00126 .01286 .020871 .002394 2.412e+01
4 2315 .00155 .01446 .020871 .003029 2.412e+01
5 2767 .00181 .01553 .020871 .003677 2.412e+01
6 3228 .00218 .01766 .030419 .004940 1.374e+01
7 3695 .00243 .02586 .083241 .005016 1.276e+00

Best 
Rsquared 
.979602 
.986569 
.992785 
.997211 
.997211 
.997211 
.998410 
.999852

Figure 25: The summary report of problem (4.8) in a run
with LM optimization
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summary report of that run is shown in Figure 24. In most 
situations, however, the HGSFI can find a higher-degree 
polynomial function model to fit the given sample data 
points. Figure 25 is an example for problem (4.8). The 
reasonably good fit function model the HGSFI found in that 
run is equivalent to

y = 1.257+0.3169X-0.39541X2+0.19104X3-0.01958X4+0.000598X5 .

The success rates for finding the correct function 
models of the third set of problems by HGSFI with LM 
optimization are listed in Table 11.

Table 11: The success rate for finding the correct function 
models of the third set of test problems

Problem 4.8 4.12 4.13 4.14
Total runs 49 20 30 20
Success rate 
with LM option

0.00% 20.00% 0.00% 0.00%



5. FUTURE RESEARCH
The experimental results of this research has clearly 

established the feasibility of the HGSFI design. However, it 
is worthwhile to do further research for the following 
problems. Firstly, the further work might include studying 
other selection strategies for reproduction in the genetic 
algorithm. For instance, the selection for mating can be 
distributed such as in the parallel genetic algorithm 
(Muhlenbein 1991). In Muhlenbein's parallel genetic 
algorithm, the selection is divided into a mate selection 
step and an acceptance step. A population is divided into 
several groups. (For example, individuals 1 to 10 are in 
group 1, individuals 11 to 20 are in group 2, and so on.
Note that Miihlenbein's implementation is more complicated 
than this.) In the mate selection step, each individual 
selects a partner in the neighborhood (group) for mating. In 
the acceptance step, the offspring will replace its parent, 
if it is better than the parent. Each individual may improve 
its fitness during its lifetime by local hill climbing. 
Muhlenbein applied the parallel genetic algorithm (PGA) to 
the traveling salesman problem, the autocorrelation problem 
and the graph partitioning problem. "In all these problems, 
the PGA has found solutions of very large problems, which 
are comparable or even better than any other solution found 
by other heuristics." (Muhlenbein 1991).
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It would be useful to study the effects of varying the 

rates at which the genetic operators are applied. The system 
should learn better values for control parameters.
Hopefully, this would yield results concerning the adaptive 
and optimal settings of these parameters for the given 
problem during the learning process.

Further work might add some general heuristic rules 
into the system to guide the generation of initial function 
models and the breeding of the new function models. For 
instance, we may consider the physical unit consistency of 
the given data set and the function model to guide function 
model generation such as in ABACUS (Falkenhainer and 
Michalski 1986). Units analysis enables one to greatly 
reduce the size of the search space by examining the 
compatibility of variables' units. And we might include 
other statistic analysis techniques to get more information 
from the given sample data set to guide function model 
generation.

Nonlinear regression is a global optimization problem. 
Global optimization, however, is a difficult area in its own 
right. So far there are not any practical and efficient 
global optimization techniques for nonlinear regression. The 
HGSFI uses the Levenberg-Marquardt nonlinear regression 
algorithm to find the "best" fit coefficients of function
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models to the given problem. The Levenberg-Marquardt 
algorithm is a local optimization algorithm. Unfortunately, 
the results of nonlinear regression often depend on having 
good starting values for the coefficients to be estimated. 
The poor starting values may result in convergence to an 
unwanted stationary point of the sum of squares surface, 
which is not the true minimum value of S(B). Then the 
"correct" function model may be thrown away thanks to the 
poor fitness. In order to overcome the above weakness, the 
further research might add a general method to set the 
starting values of the coefficients of a function model 
according to the given problem.

The new system might use multiple optimization 
techniques to optimize the values of the coefficients of a 
function model because one algorithm may perform better than 
the other for a particular problem.



6. SUMMARY AND CONCLUSIONS
This thesis has focused on the problem of constructing 

a machine function identification system to find a highly 
fit function model for the given sample data points. We 
began by developing the general hierarchical representation 
scheme of the system's knowledge (function models). The 
hierarchical representation can represent arbitrary function 
models whose size, shape, and complexity can dynamically 
change during the learning process. Then we discussed the 
selection of domain independent learning methods for 
manipulating the system knowledge (function models). The 
learning component of the machine function identification 
system takes advantage of two kinds of domain independent 
optimization procedures: the hierarchical genetic algorithm 
and the Levenberg-Marquardt nonlinear regression algorithm.
A system called HGSFI was implemented using this design 
method. Utilizing the initial function models generated at 
random, HGSFI searches the space of function models, 
dynamically creates new generation of function models using 
Darwinian principles of reproduction and survival of the 
fittest. It optimizes the coefficients of the function 
models using the Levenberg-Marquardt nonlinear regression 
algorithm, and tries to make the function models "best" fit 
the given sample data set. Through the iterative learning 
process, the individual function models in the new 
generation inherit the parents' merits, adjust themselves to
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environmental fluctuation, and enable themselves to cope 
with the environment and to continue their existence. They 
are getting better and better to fit the given sample data 
points. When some function model satisfies the criterion of 
the system performance, the system returns the most fit 
function model the system has found as the solution of the 
given problem and halts.

This machine function identification system, HGSFI, 
does not need any prior knowledge about the function model 
of the given problem. The only prior knowledge it needs is 
the set of function operations and terminals which should be 
capable of solving the problem (i.e. some composition of the 
available function operations and terminals should yield a 
solution).

Having finalized the design, a series of experiments 
were conducted to investigate the operative characteristics 
of the HGSFI implementation. The experimental results of the 
first set of test problems show that the system performance 
with the.nonlinear regression optimizer is much better than 
that without the nonlinear regression optimizer (as measured 
by success rate). As a demonstration of the feasibility of 
the HGSFI design as a machine function identification 
system, experiments were conducted in a wide range of task 
domains. The test problems are grouped in two categories of
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function identification problems: linear regression model 
problems and nonlinear regression model problems.
Initialized in each test with randomly generated initial 
function models, the HGSFI implementation is shown to 
rapidly converge on highly fit function models in the both 
task domains.
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