
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1991

Machine function identification system based on genetic Machine function identification system based on genetic

algorithms algorithms

Mingda Jiang
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Jiang, Mingda, "Machine function identification system based on genetic algorithms" (1991). Graduate
Student Theses, Dissertations, & Professional Papers. 5658.
https://scholarworks.umt.edu/etd/5658

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5658&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5658?utm_source=scholarworks.umt.edu%2Fetd%2F5658&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Copying allowed as provided under provisions
of the Fair Use Section of the U.S.

COPYRIGHT LAW, 1976.
Any copying for commercial purposes

or financial gain may be undertaken only
with the author’s written consent.

University of
Mcosttera

A MACHINE FUNCTION IDENTIFICATION SYSTEM
BASED ON GENETIC ALGORITHMS

by
Mingda Jiang

B.S., Northeast Heavy Machinery Institute, 1982

Presented in partial fulfillment of the requirements
for the degree of
Master of Science
in Computer Science

University of Montana
1991

Approved by

Chairman, Thesis Committee

D€an, Graduate School '

Tinr. /^. m /
Date

UMI Number: EP41122

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI EP41122

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Jiang, Mingda, MS, November 1991 Computer Science
A Machine Function Identification System Based on Genetic
Algorithms (99 pp.)

The function identification problem is a fundamental
problem of science, medicine and engineering. The function
identification problem is to find a function model of a
system, in symbolic form, that fits the experimental data
points of the system. In this problem, the fundamental
properties of a system are to be determined from observed
behavior of that system. The function model is a
mathematical idealization that is used as an approximation
to represent the output of the system. It is "good fit" to
the given experimental data according to a chosen evaluation
criterion.

This thesis is concerned with the construction of a
general intelligent machine system to solve function
identification problems. The machine function identification
system does not need any priori knowledge about the system
or function model to find a function, in symbolic form, that
fits a set of given sample data points. The author combines
a symbolic computing method and a numeric computing method
to identify function models. The new approach dynamically
creates a highly fit function model to the given sample data
points, using Darwinian principles of reproduction and
survival of the fittest, and optimizes the coefficients of
the function model using the nonlinear regression algorithm.
To this end, a machine function identification system,
HGSFI, is implemented.

As a demonstration of the feasibility of the design an
HGSFI implementation is tested in two categories of function
identification problems: linear regression problems and
nonlinear regression problems. Initialized in each test with
randomly generated initial function models, the HGSFI
implementation is shown to rapidly converge to high
performance function models in both task domains.

Director: Alden H. Wright,

ii

ACKNOWLEDGMENTS

I would like to express my thanks to those who have
helped make this research possible. A special note of
appreciation to Alden H. Wright, my thesis advisor, for
providing a constant source of guidance and new
perspectives, to my thesis committee members Youlu Zheng and
David Patterson for their enthusiasm about my thesis
research, and especially to my wife Changhui Zhao who was
called on in countless capacities and always responded with
unwavering support, understanding, and encouragement.

The computer experiments were run on the excellent
facilities provided by the University of Montana Computer
Center.

TABLE OF CONTENTS
ABSTRACT .. ii
ACKNOWLEDGMENTS iii
1. INTRODUCTION TO THE PROBLEM 1
1.1. INTRODUCTION .. 1
1.2. SOME RELATED EFFORTS 2
1.3. DISCUSSION 6
2. HGSFI — A MACHINE FUNCTION IDENTIFICATION SYSTEM 9
2.1. INTRODUCTION .. 9
2.2. BACKGROUND ... 10
2.2.1. GENETIC ALGORITHMS 10
2 . 2 .1.1. BASIC GENETIC ALGORITHM 12
2.2.1.2. HIERARCHICAL GENETIC ALGORITHM 18
2.2.2. NONLINEAR REGRESSION 25
2.3. THE KNOWLEDGE REPRESENTATION OF HGSFI 33
2.4. THE FITNESS FUNCTION 34
2.5. THE LEARNING PARADIGM OF HGSFI 38
3. THE IMPLEMENTATION OF HGSFI 43
3.1. DATA STRUCTURES 44
3.1.1. INDIVIDUAL AND NODE 44
3.1.2. POPULATION 4 6
3.1.3. GENETIC_SYSTEM 48
3.2. THE FRAMEWORK OF THE MAIN PROGRAM 52
3.3. THE SELECTION OF CONTROL PARAMETER VALUES 61
4. TESTING AND EVALUATION 68

iv

4.1. COMPARISON OF THE SYSTEM PERFORMANCE WITH AND WITHOUT
LEVENBERG-MARQUARDT OPTIMIZATION 69

4.2. LINEAR REGRESSION MODEL PROBLEMS 78
4.3. NONLINEAR REGRESSION MODEL PROBLEMS 83
5. FUTURE RESEARCH ,......... 90
6. SUMMARY AND CONCLUSIONS 93
BIBLIOGRAPHY .. 96

v

1. INTRODUCTION TO THE PROBLEM

1.1. INTRODUCTION
One of the aims of sciences is to find, to describe,

and to predict relationships among events in the world in
which we live. One way that this is accomplished is by
finding a formula or equation that relates quantities in the
real world. We may be interested, for example, in the
relationship between temperature and pressure in a chemical
process; or in the relationship between the number of apples
on trees in an orchard and the amount of fertilizer the
trees receive; or we may be interested in the relationship
of supply, demand, and price of certain commodities, or in
how a certain vaccine affects a disease; or in the
relationship of rainfall, temperature, and humidity; or in
the yields of various varieties of wheat. In other words, we
are concerned with the problem of determining the
relationship between the internal structure of a system and
the observed output. This is the function identification
problem.

The function identification problem is to find a
function model of an experimental system, in symbolic form,
that fits the experimental data points of the system. In
this problem, fundamental properties of an experimental
system are to be determined from observed behavior of that
system. The function model is a mathematical idealization

1

that is used as an approximation to represent the output of
the system. It is "good fit" to the given experimental data
according to a chosen evaluation criterion.

Here we are concerned with the problem of constructing
a computer program system to solve the function
identification problems. Researchers in artificial
intelligence (machine learning) have investigated the
mechanisms of machine discovery and designed some machine
learning systems to find empirical laws (function models)
from the observations. Most of these methods vary widely by
task domains. The purpose of this research is to investigate
the feasibility of designing a general-purpose machine
function identification system which can automatically build
a function model to fit the given experimental data. The new
method combines the hierarchical genetic algorithm and the
Levenberg-Marquardt nonlinear regression algorithm to find a
highly fit function model approximating the given data
points. This approach is a domain independent method of
learning. To this end, a machine function identification
system, HGSFI, is implemented.

1.2. SOME RELATED EFFORTS
The goal of machine discovery on empirical laws is to

find mathematical relations between numeric variables from
observation.

During last decade, many AI discovery systems on
empirical laws and discovery were developed. The most
important class is BACON-like systems, including BACON
(Langley, Bradshaw, & Simon, 1983; Langley, Simon, Bradshaw
& Zytkow, 1987), ABACUS (Falkenhainer & Michalski, 1986),
FAHRENHEIT (Zytkow, 1987), and IDS (Nordhausen & Langley,
1990) . The BACON-like systems are successful in generating
equations for some chemical and physical laws. The major
components of BACON-like systems focus on discovering
numeric laws from experimental data and use a similar
approach — heuristics. The major difference among the
various systems lies in the discovery heuristics that each
uses in its search for empirical laws. Here we only discuss
the detail of the BACON system to introduce the problem.

BACON is a set of concept-learning programs. These
programs solve a variety of single concept learning tasks,
including "rediscovering" such classical scientific laws as
Ohm's law, Newton's law of universal gravitation, Kepler's
law, and Snell's law of refraction. The programs are also
capable of using the learned concepts to predict future
training instances.

BACON's discovery method consists of a number of
interacting techniques. The system begins by gathering data
in a systematic fashion, varying one independent term at a

time and examining the values of dependent variables. After
gathering a set of values, BACON looks for monotonic
relations between terms, uses these to define new terms, and
recurses until it finds terms with constant values. After
finding laws that hold in a given context, the system varies
another independent term, using the constants found at the
previous level as dependent terms at this higher level of
description. This process continues until all terms have
been incorporated into some law.

BACON'S method for finding constant terms is simple
that it can be described here by three straightforward
heuristics:

1. If term X has near-constant values, formulate a law
involving X.

2. Else, if X increases as Y increases, consider the ratio
X/Y and go to step 1.

3. Else, if X increases as Y decreases, consider the
product X*Y and go to step 1.

Table 1 presents a simple example of BACON's application of
this method in discovering Kepler's third law of planetary
motion. This law can be stated as D3/P2 = k, where D is the
distance of a body from its primary, P is the period of that
body's revolution around the primary and k is some constant.

5

Table 1: Discovering Kepler's Third Law of Planetary Motion

Moon Distance
(D)

Period
(P)

Term-1
(D/P)

Term-2
(D2/P)

Term-3
(D3/P2)

A 5.67 1.769 3.203 18.153 58.15
B 8.67 3.571 2.427 21.036 51.06
C 14.00 7.155 1.957 27.395 53.61
D 24.67 16.689 1.478 36.459 53.89

The table presents Borelli's original data for Jupiter's
satellites, which contain a substantial amount of variation
(Langley, Simon, Bradshaw, and Zytkow, 1987). BACON begins
by noting that D and P increase together, leading it to
consider the ratio D/P. This term is not constant, but its
values decrease as those of D increase; this leads BACON to
define the product D2/P. Again, the values of this term are
not constant, but its values increase as those of D/P
decrease. As a result, the program considers the term D3/P2.
The values of this term are constant (within the acceptable
range of 7.5%), so BACON formulates a law to this effect.
The same method can be used to discover a variety of numeric
laws.

BACON's main contribution is in the area of
quantitative discovery relating real-value variables, the
use of rule-space operators to create new (product,
quotient, slope, and intercept) terms as combinations of

6
existing terms, and its ability to recast the training
instances on the basis of developed hypotheses. There are
some difficulties with the current BACON programs, however.
BACON is unable to handle noisy training instances. The
triggering of the constancy detectors, for instance, is
based on the near equality of the values seen in as few as
two training instances. Such calculations are highly
sensitive to noise. The slope detectors are similarly
sensitive.

BACON can handle only relatively simple concept
formation tasks of function identification. The approach
will result in a huge search space if BACON increases its
rule spaces to solve general function identification tasks.

The other BACON-like systems have similar problem —
combinatorial explosion.

1.3. DISCUSSION
Traditional artificial intelligence learning systems

for function identification problems are typically based on
heuristic rule sets which guide the search process. Most
function' identification problems, however, are not readily
approached by standard rule-based search techniques. For
instance, it is difficult to apply heuristic rules to
general function identification problems. Not only are the

7
combinations of rules that govern the movement of learning
systems very large, but the rules themselves need to change.
Rules that might work in one realm need adjustment to work
in another realm. The characteristically large search spaces
pose formidable obstacles for traditional search techniques.
The combinatorial complexity of such problems is a major
deterrent to the application of most simple solution
strategies.

One technique for solving these kinds of problems,
called genetic algorithms, comes from analogy to nature.
These algorithms are an outgrowth of a theory of adaptation
developed by John Holland (1975) . They are motivated by
standard models of heredity and evolution in the field of
population genetics, embodying abstractions of the
mechanisms of adaptation present in natural systems. Nature
provides the best demonstration of the power of genetic
search wherein the best suited "structures" of organisms
evolve in response to environmental pressures. This genetic
metaphor encompasses a wide range of (domain independent)
search strategies. It is a very flexible way to get
computers to learn how to solve problems for themselves.
Smith used genetic algorithms to build his general model
machine learning system to solve a simple maze walk problem
and the problem of making bet decisions in draw poker (Smith
1980) . Koza applied hierarchical genetic algorithms to breed

8
populations of computer programs to solve a wide range of
problems such as simple robotic planning, sequence
induction, symbolic function identification, automatic
programming, and so on (Koza 1989, 1990). The author
combines Koza's hierarchical genetic algorithm and the
Levenberg-Marquardt nonlinear regression algorithm to build
the general-purpose machine function identification system
which can find a "good fit" function model to a given sample
data set.

2. HGSFI — A MACHINE FUNCTION IDENTIFICATION SYSTEM

2.1. INTRODUCTION
A learning system is a system that improves its

performance with respect to a given task domain over time
through its interactions with the task environment (Smith
1980) . The mechanisms by which such a system manipulates its
knowledge about the task environment in response to these
interactions constitute the system's methods of learning. In
constructing an artificial learning system, the particular
methods employed determine, to a large extent, the ultimate
generality of the system. A learning system capable of
functioning in a variety of task domains necessarily
requires the presence of domain independent methods of
learning. HGSFI (Hierarchical Genetic System for symbolic
Function Identification) is a general machine learning
system for function identification. It manipulates a
population of individual function models to find a good fit
function model for the given experimental data points. The
learning component of the HGSFI takes advantage of two kinds
of domain independent techniques — genetic algorithms and
nonlinear regression algorithms — to attempt to identify a
highly fit function model and to optimize its coefficients
for the given data set. Section 2.2 introduces the
background knowledge the HGSFI uses. Section 2.3 presents
the knowledge representation of the HGSFI. Section 2.4

9

10
presents the fitness function of the HGSFI which plays
important role in this function identification system. The
learning paradigm of the HGSFI learning system is presented
in section 2.5.

2.2. BACKGROUND
In the machine function identification system, HGSFI,

we combine a symbolic computing method and a numeric
computing method to identify function models. Section 2.2.1
introduces the background of genetic algorithms. Section
2.2.2 presents the optimization technique of coefficients of
function models — nonlinear regression.

2.2.1. GENETIC ALGORITHMS
Genetic algorithms are search algorithms based on the

mechanics of natural selection and natural genetics
(Goldberg 1989). John Holland is the primary founder of the
field of genetic algorithms. In his pioneer book of genetic
algorithms — Adaptation in Natural and Artificial Systems
(Holland 1975), Holland showed that an adaptive learning
system, called a genetic algorithm, can successfully produce
new generations. The new generations can improve their own
performance based on their previous performance by
evolution. The evolutionary process can be viewed (in a
simplified form) as a world where simulated organisms
compete to survive. Individuals (artificial organisms) in a

11
genetic algorithm are potential solutions to the problem.
The individuals that do well in an environment survive and
produce more offspring than the individuals that do poorly.
These offspring will inherit some of the characteristics
that allowed the parents to survive. Each offspring may also
experience some changes through mutation or due to the
combination of its parents' characteristics (crossover). If
these changes help it to survive, the individual will be
able to pass the new characteristics to its offspring. If
the changes are detrimental to its survival, the individual
dies out. In this way, organisms that are better suited to a
particular environment are produced (Ayala and Valentine
1979). This feature of natural selection — the ability of a
population of organisms to explore its search space in
parallel and combine the best findings through crossover and
mutation — is exploited when genetic algorithms are used.
In a similar manner, genetic algorithms combine survival of
the fittest among artificial organisms with a structured yet
randomized information exchange to form a search algorithm
with some of the innovative flair of human search. For
example, in function identification problems, the artificial
organisms are function models which can be represented as
hierarchical tree structures. In every generation, a new set
of artificial organisms is created using sub-structures and
pieces of the more fit from the old generation; an
occasional new part is tried for good measure. While

12
randomized, genetic algorithms are no simple random walk.
They efficiently exploit historical information to speculate
on new search parts with expected improved performance
(Goldberg 1989).

2.2.1.1. BASIC GENETIC ALGORITHM
A genetic algorithm to solve a problem basically has 5

components (Davis 1987):

1. a chromosomal representation of solutions to the
problem,

2. a way to create an initial population of solutions,
3. an evaluation function that plays the role of the

environment, rating solutions in terms of their
"fitness",

4. genetic operations such as crossover and mutation, that
alter the composition of children during reproduction,
and

5. values for the parameters that the genetic algorithm
uses (population size, probabilities of applying
genetic operators, etc.)

Using a genetic algorithm, one represents strategies as
chromosomes. Each chromosome serves a dual purpose: it
provides a representation of the problem solution, and it
also provides the actual material which can be transformed

13
to yield new genetic material for the next generation. In
most applications of genetic algorithms, chromosomes (or
population members) are represented as bit strings — lists
of 0's and l's. For example, the seven-bit string A =
0111000 may be represented symbolically as follows:

A ~ a1a2a3a4asa6a7
Here each of the at represents a single binary feature or
detector (in accordance with natural analogy, it is called
the a/ s genes), where each feature may take on a value 1 or
0. Meaningful genetic search requires a population of
strings. Bit strings have been shown to be capable of
usefully encoding a wide variety of information, and they
have been shown to be effective representation mechanisms in
unexpected domains (function optimization and classifier
systems, for example). The properties of string-based
representations for genetic algorithms have been extensively
studied, and a good deal is known about the genetic
operators and parameter values that work well with them
(Grefenstette 1987; Schaffer 1989; Davis 1987; Wright 1991).

Examples of other representations include real-vectors
(Wright 1991), variable-element lists (Grefenstette 1987),
and hierarchical structure representation (see next
section).

Genetic algorithms begin with an initial population.

14
Initialization routines vary. For some purposes, a good deal
can be learned by initializing a population randomly. Moving
from a randomly-created population to a well adapted
population is a good test for the algorithm, since the
critical features of the final solution will have been
produced by the search and recombination mechanisms of the
algorithms, rather than the initialization procedures. For
some applications, it may be expedient to initialize with
more directed methods such as weighted random initialization
and initialization by perturbing the results of a human
solution to the problem.

There are a great many properties of evaluation
functions that enhance or hinder a genetic algorithm's
performance. The evaluation function plays the role of the
environment, rating solutions in terms of their fitness. In
natural populations fitness is determined by an organism's
ability to survive predators, pestilence, and the other
obstacles to adulthood and subsequent reproduction. In
function optimization applications, the fitness function is
a rescaling of the objective function f of the given problem
of genetic algorithms. Intuitively, we can think of the
fitness function as some measure of profit, utility, or
goodness that we want to maximize. Copying individuals
according to their fitness values means that individuals
with a higher value have a higher probability of

15
contributing one or more offspring in the next generation.

The genetic operators are defined with respect to the
"genetic" representation of a structure. The genetic
operators manipulate structures in a population
independently of any interpretation (i.e. without regard to
the specific task domain), producing new structures for
testing (via interpretation). The three primary operations
for modifying the structures undergoing adaptation are
Darwinian fitness proportionate reproduction, crossover
(recombination) and mutation.

Reproduction is a process in which population members
are probabilistically copied in such a way that the more fit
population members are more likely to be selected to
contribute one or more offspring in the next generation.
This operation is an artificial version of natural
selection. Once a population member has been selected for
reproduction, an exact replica of the member is made. The
population member is then entered into a mating pool, a
tentative new population, for further genetic operation
action.

In crossover, the attributes of two population members
are combined to produce two offspring. After reproduction,
the crossover operation may proceed in two steps. First,

16
members of the newly reproduced population are randomly
mated. Second, one point in each parent is selected
independently and randomly according to a probability
distribution. In the binary string representation, for
instance, the crossover operator recombines two strings from
the population by exchanging string segments. Two strings
are selected from the population for "mating". A crossover
point in the strings is chosen randomly. For fixed length
string representations, there are L - 1 possible crossover
points (each equally likely of being chosen) if the strings
are of length L. The strings are then "broken" at the
crossover point and recombined so that each new string
consists of the initial segment of one of the original
strings and the terminal segment of the other. The following
example illustrates the one point crossover operation:

Parent A: 0 1 1 1 0 0 0 1 0
Parent B: 1 0 0 1 1 0 0 1 1

Parent A
Parent B
Child 1
Child 2

0 1 1 1 1 0 0 0 1 0
I

1 0 0 1 1 1 0 0 1 1
I

0 1 1 1 1 1 0 0 1 1
I1 0 0 1|0 0 0 1 0

Figure 1: single point crossover

The crossover points are marked with separator symbol
"I". The left part of child 1 from parent A, and the right

17
comes from parent B. The left part of child 2 comes from
parent B, and the right comes from parent A.

In mutation, some of the attributes of a single
population member are changed to produce a single offspring.
The mutation operator generates a new string by modifying
the values of one or more positions in an existing string.
An individual member (string) is selected from the
population as before. The position(s) in the string to be
modified are determined by a random process where by each
position has a small probability of being chosen,
independently of what happens at other positions. For each
string position chosen, a new value is selected randomly
from the set of possible values for that position.

The fifth major component is values for the parameters
used by genetic algorithms. These parameters, for example,
include population size, crossover rate, mutation rate,
number of generations to be run,- and so on. The selection of
the population size is the most important choice. The
population size must be chosen with the complexity of the
problem in mind. Effective values of the parameters used in
the running of genetic algorithms have been studied
intensively for string-based representation, and less
intensively for other types of representations. Each
combination of genetic operators, representation, and the

problem has its own characteristics.
18

2.2.1.2. HIERARCHICAL GENETIC ALGORITHM
One powerful representation scheme for chromosomes (or

population members) is the hierarchical structure
representation developed by John R. Koza (Koza 1989 and
1990). In a hierarchical structure representation,
population members for a particular domain of interest are
represented by hierarchical trees. For instance, the cubic
polynomial model

y - cx + c2x + c3x2 + c4x3

can be represented as the following hierarchical tree.
+

/ \
/ \

+ +
/ I I \
/ I I N

Cl * * *
/ I / \ I N

/ I / N I N
c2 x c3 * c4 pow

/ N / N
/ N / N
x x x 3

Figure 2: One hierarchical tree for the cubic
polynomial model

Note that this representation is not unique for the function
model. Another hierarchical tree to represent the cubic
polynomial model is shown in Figure 3.

Suppose that in a function identification problem the

19
available set of n functions is F={flf f2/ . .., fn} and the
available set of m terminals is T={ax, a2, . .., am}. The
"terminals" may be variable atomic arguments or constants.
Each particular function f in F takes a specified number
z (f) of arguments bx, b2, . .., bz(f). Depending on the
particular problem of interest, the functions may be
standard arithmetic operations (such as addition,
subtraction, multiplication, and division), standard
mathematical functions (such as exp, sin, etc.).

+
/ \

/ \
+ *

/ I I \
/ I I \

+ * c4 pow
/ I I \ I \
/ I I \ I N

cx * c3 * x 3
/I / \

/ I / \
C 2 X X X

Figure 3: Another hierarchical tree for the cubic
polynomial model

Generation of the initial random population begins by
selecting one of the functions from the set F at random to
be the root of the tree. Whenever a point is labeled with a
function that takes k arguments, then k lines are created to
radiate out from the point. Then, for each line so created,
an element is selected at random from entire combined set S
= F U T (which is the set of functions and terminals) to be
the label for the endpoint of that line. If a terminal is

20
chosen to be any point, the process is then complete for
that portion of the tree. If a function is chosen to be the
label for any such point, the process continues.

The probability distribution over the terminals and
functions in the combined set S and the number of arguments
taken by each function implicitly determines an average size
for the trees generated by this initial random generation
process. In genetic algorithms, this distribution is usually
a uniform random probability distribution over the entire
set S (with the exception that the root of the tree must be
a function).

Crossover can be implemented as the following. First,
two parents are chosen from the current population with a
probability proportional to their fitness. Then one point in
each parent is selected randomly and independently according
to a probability distribution. The "crossover fragment" for
a particular parent is the rooted sub-tree whose root is the
crossover point for that parent and where the sub-tree
consists of the entire sub-tree lying below the crossover
point.

The first offspring is produced by deleting the
crossover fragment of the first parent from the first parent
and then impregnating the crossover fragment of the second

21
parent at the crossover point of the first parent. The
second offspring is produced in a symmetric manner.

Parent 1 Parent 2

/
/ \

/ \
+ +

/ \ I V
/ \ I \C, * c3 +

/ I / \
/ I / \

C, x * *
/
/

c4 x C5
/ Y

/ \ *
/ \

/ \
x x

+
/ \

/ \
Ci *

/ \
/ \
C2 exp

*
/ \

/ \
C3 x

Parent 1: q+c2x-
C3+C4x+C5x2

C.XParent 2: Cĵ +Cje 3

Figure 4: The two parental hierarchical trees

For example, consider the two parental hierarchical
trees in Figure 4. Assume that the points of trees are
numbered in a depth-first way starting at the left. Suppose
that the seventh point (out of the 17 points of the first
parent) was selected as the crossover point for the first
parent and that the fifth point (out of the 8 points of the
second parent) was selected as the crossover point of the
second parent. The two crossover fragments (sub-trees) are
shown in Figure 5.

22
+ exp
/ \ I
/ \ I

C3 + *
/ \ / \

/ \ / \
* * C3 x
/ \ I \

/ \ I \
'5c, x c5 *

I \
I \
X X

Figure 5: The two crossover fragments
The two offspring resulting from crossover are shown in

Figure 6. The result function models are

„ Cx+C2xOffspring 1: - ■ ■ 2 -
e 3*

Offspring 2: Cx+C2 # (C3+C4x+ C5x2)

/ +
/ \ / \

/ \ / \
+ exp Cx *

/ \ I / \
/ \ I /. \

Ci * * c2 +
/ I I \ / \

/ I I \ / \C2 x C3 x C3 +
/ \

/ * *
/ I I \

/ I I \c4 X C5 *
/ \

/ \
X X

Offspring 1 Offspring 2
Figure 6: The two offspring resulting from crossover

23

The mutation operation selects a point of a
hierarchical tree at random. This operation removes whatever
is currently at the selected point and inserts a randomly
generated sub-tree at the selected point of a given tree.

Koza used the LISP programming language to implement
his hierarchical genetic system. Individuals in his system
are represented as LISP S-expressions. For instance, the
function model

q+c2e^*

can be represented as the following LISP S-expression:
(+ Cx (* C2 (exp (* C3 x))))

which is graphically depicted in figure 4. He defined the
"raw fitness" of any LISP S-expression as the sum of the
distances (taken over all the environmental cases) between
the points in the range space returned by the S-expression
for a given set of arguments and the correct points in the
range space. If the S-expression is integer-valued or real
valued, the sum of distances is the sum of absolute values
of the differences between the numbers involved. In
particular, the raw fitness r(i,t) of an individual LISP S-
expression i in the population of size Ps at any
generational time step t is

24

x0
r(i,t) = ^ | S(i,j)-C(j) |

J=i

where S(i/j) is the value returned by S-expression i for
environmental case j (of Ne environmental cases) and C(j) is
the correct value for environmental case j. Then the
adjusted fitness r(i,t) is defined as

a(i,t) = 1+r (i, t)

The adjusted fitness is larger for better individuals in the
population. It lies between 0 and 1. Finally, he defined the
evaluation function in his system as the following
normalized fitness function:

j)a(k. t)
i»=l

The normalized fitness not only ranges between 0 and 1 and
is larger for better individuals in the population, but the
sum of the normalized fitness values is 1.

Using hierarchical structure representation of
population members, we can easily represent the complex
structures whose size and shape are dynamically determined
(rather than predetermined in advance), and handle the
operators of recursions, iteration, and compositions of
functions. Koza applied hierarchical genetic algorithms to
sequence induction, automatic programming, planning, and

function identification (Koza 1990).
25

2.2.2. NONLINEAR REGRESSION
Regression analysis is a statistical technique for

investigating and modeling the relationship between
variables. One of the common situations in regression
analysis is that of data which consist of observed,
univariate responses yk known to be dependent on
corresponding inputs xk. This situation may be represented
by the regression equations

yk = f(xk, B) + e k (2.1)

where f(x, B) is the known response function, x is an
independent variable, B = [bx, b2, ..., bM]T is an M-
dimensional vector of parameters to be estimated, the ek
represent a random error from a distribution with mean zero
and unknown variance a2, and the subscript k = 1, 2, ..., N
ranges over the N observations. The sequence of values of
the independent variable {xk} is treated as a fixed known
sequence of constants, not random variable (Gallant 1987).

A linear regression model is the model in which all the
parameters appear linearly. That is, the response variable y
has some linear relationship with the unknown parameters b2,
b2, ..., bM. For instance, the following two regression
models are linear in the parameters.

26

y=b3 +jb2x+Jb3x2 + Jb4x3 where fl= [2\ Jb2 b3 bt] T

y=b1+b2x+b2e x where B= [bx bz b3] T

A nonlinear regression model is one in which at least
one of its parameters appears nonlinearly. Frequently,
nonlinear regression models arise in instances where a
specific scientific discipline specifies the form that data
ought to follow, and this form is nonlinear in the
parameters. For instance, the logistic model is

which produces sigmoidal or "S-shaped" growth curves. This
model is widely used in biology, agriculture engineering,
and economics. In this case B = [a P y]T. Another example is
a set of responses that is known to be periodic in time but
with an unknown period function for such data is

f(x,B) = b1+b2cos/?Ix+jb3sin/?2x.

where B = [bx b2 b3 P2]T-

A univariate nonlinear regression model can be written
in a convenient vector form

1.0 + ye ̂x

Y = F (B) + E (2.2)
where

Y = [yx y2 ... yN]Tf

27
F (B) = [f(x1# B) f(x2, B) ... f(xN, B)]T,
E = [Cj e2 ... cn]t.

The error sum of squares for the nonlinear model and the
given data is defined as

S(B) = lyk-f(xk'B)]2 (2.3)

Using vector form, equation (2.3) becomes

S{B) = [F-F(B)] T[Y-F(B)] =|tf(i3) |2 (2.4)

where
H (B) = Y - F (B)

= ({Yl-f (Xl,B) > {y2~f (x2, B) } ... {yN-f (xn,B) }]t
= [hx (B) h2 (B) ... hN(B)]T

Note that since yk and xk are fixed observations, the sum of
squared residuals is a function of B. We denote by Bmln, a
least squares estimate of B, that is a value of B which
minimizes S (B) . To find the least squares estimate Bmln we
need to differentiate equation (2.3) with respect to B. This
provides the M normal equations, which must be solved for
Bmln. The normal equations take the form

J > t - W = 0 (2.5)

for i = 1, 2, ..., M, where the quantity denoted by brackets
is the derivative of f (xk, B) with respect to b± with all
B's replaced by the corresponding Bmln's which have the same
subscript.

28
Consider a Taylor expansion of S(B) about the point B0.

This takes the form

BPS
2 i,j dbjdbj

It can approximately be expressed as

S(B) = S(B0) + (fl-B0) r -G(B0) + -±(B-B0) T -£>(B0) • (B-B0)z (2 .6)

where G(B0) is the gradient vector of function S(B) at the
point B0, i.e.

(2.7)

The matrix J is the N*M Jacobian matrix of the vector H(B)

J(B0) =

dh, (B) oh, (B)

dhjf(B) dh„(B)

B=Bo

D(B0) is the M*M Hessian matrix of function S (B) at the
point B0 whose components are the second partial
derivatives, i.e.

&h k{B) dhk(B) dhk(B)]
Jc=l db±dbj db± dbj

Thus D(B) is readily seen to have the form

29

N
D(B) = J t(B) J(B) + J2hk(B)Hk(B) (2.8)

*=i

where Hk(B) is the Hessian matrix of hk(B) .

In the approximation of (2.6), the gradient of S(B)
around point B0 is easily calculated as

VS(B) = G(B0) + D{B0)'(B - B0) (2.9)

The minimum point Bmln satisfies

DiB^-iB^ - B0) + G(B0) - 0 (2.10)

If D is positive definite, this suggests the general
iterative scheme

Bl+1 = B1 ~ D^GiBj = Bd - D-1J T(Bi)H(B1) (2.11)

where D is the Hessian matrix of function S(B) at the point
Bx.

Equation (2.11) is called as Newton's iterative method.
This method requires use of both the gradient vector and the
Hessian matrix in computations, hence it places more burden
on the user to supply derivatives. Another problem with
Newton's method is that the Hessian matrix may not be
positive definite at each iteration. Thus the method
requires modification to insure that the resultant method is
acceptable but still retains the desirable characteristics

30
of Newton's method.

Let us consider the Gauss-Newton method. This method
consists of linear approximation of function H(B). If we
expand H(B) using only the first two terms in the Taylor
series about B0/ we have

H(B) = H(B0) + J(B0) (B-B0)

Then

G(B) = J t(B)H(B) * J t{B0)H{B0)+Jt(B0)J(B0){B-B0)

At B=Brain, G (Bmln) = 0. That is

J T(B0) J(B0) (Bmin-B0) = -Jt(B0)H(B0) (2.12)

So we can get generally iteration equation (2.13).

Bi+1 = Bi ~ U T(Bi)J(Bi)]-1J T(B1)H(Bi) (2.13)

Notice that this method is essentially Newton's method using
an approximation to the Hessian matrix (2.8) which consists
of only the first term JT(B)J(B) in that expression. Also
note that each iteration in the Gauss-Newton method requires
that the system of linear equations (2.12) be solved. These
equations are in the form of normal equations, and in this
case it is usually better to compute

J (Bi) (Bi+1 - Bx) = -H (Bi)
to preclude introducing excessive amounts of errors in the
components of the solution (Bi+1 - Bi) (Kennedy and Gentle
1980). If there was every assurance that the residuals hk(B)

31
were all small near the minimum, we would fell confident
that this method would operate like Newton's method due to
the form of equation (2.8). Unfortunately, large residual
problems occur all too frequently and the Gauss-Newton
method often does not behave as Newton's method.

Another method is the steepest descent method. The
steepest descent method involves concentration on the sum of
squares function, S(B) as defined by equation (2.3) and use
of an iterative process to find the minimum of this
function. The basic idea is to move, from an initial point
B0, along the vector with the negative vector of the
gradient vector of function S(B). For this method, the
iteration equation becomes

BU1 = B± - a ± G(B±) = B± - a iJ T(Bi)H(B1) (2.14)

where is a positive constant. The steepest descent method
is seldom used today because it is often slow to converge.

A more frequently used method of computing nonlinear
least squares estimators is the Levenberg-Marquardt
algorithm (Draper & Smith 1981; Gallant 1987). When J(B) is
rank-deficient, or nearly so, in the Gauss-Newton iteration,
the problem of computing the (Bi+1 - Bi) in equation (2.13)
is difficult and may admit multiple solutions (Kennedy &
Gentle 1980). The Levenberg-Marquardt modification
transforms J(B) to a better-conditioned full rank matrix.

32

The usual statement of the modification is to find (Bi+1 -
Bi) according to

[JrT(Si) J(B±) + X2I] » -JT(Bi)H(Bi) (2.15)

where X2 is a chosen scaler. When X is very large, the
matrix

[JT{Bi)J(Bi) + X2I]
is forced into being diagonally dominant, so equation (2.15)
goes over to be identical to (2.14). On the other hand, as X
approaches zero, equation (2.15) goes over to (2.12).

The Levenberg-Marquardt algorithm is as follows (Press,
Flannery, Teukolsky, and Vetterling 1988) :

(1) Give an initial guess for the set of fitted
parameters B0 = [b^01, b2<0), ..., bM(0)]T;

(2) Compute the sum of squared residuals S(B0) using the
equation (2.3);

(3) Pick a modest value for X, say X = 0.001, Set
iterative count K and J to be 0;

(4) While (J < 2) Do
(a) Solve the linear equation (2.15) for dBK and

evaluate S (BK + dBK) where dBK = BK+1 - BK;
(b) If S(Bk + dBk) < S(Bk) and

|S(Bk + dBk) - S (Bk) | < 0.001
J <— J + 1

Else J <— 0;
(c) If S (Bk + dBK) > S (BK) , increase X by a factor of

10 (or any other substantial factor) and go back
to (4);

(d) If S (Bk + dBK) < S (BK), decrease X by a factor of
10, update the trial solution BK+1 <— BK + dBK, and
go back to (4);

(5) End
Figure 7: The Levenberg-Marquardt algorithm

The Levenberg-Marquardt algorithm appears to enlarge

considerably the number of practical problems that can be
tackled by nonlinear estimation. Marquardt's method
represents a compromise between the linearization (Gauss-
Newton) method and the steepest descent method and appears
to combine the best features of both while avoiding their
most serious limitations. It is good in that it almost
always converges and does not "slow down" as the steepest
descent method often does (Draper & Smith 1981).

2.3. THE KNOWLEDGE REPRESENTATION OF HGSFI
Knowledge representation is a key issue in any learning

system because the representation scheme can severely limit
the window by which the system observes its world. In the
machine function identification system, HGSFI, the knowledge
structures are various function models in the search space.
Suppose that the available set of n function operations is F
= {fx, f2, ..., fn} and the available set of m terminals is T
= {x, clf c2, Cn,.!). The search space for the HGSFI is
the valid function models that can be recursively created by
compositions of the available function operations and the
available terminals for the problem. This search space can,
equivalently, be viewed as rooted node-labeled trees with
ordered branches having internal nodes labeled with the
available function operations and external nodes (leaves)
labeled with the available terminals. Note that the set of
functions and terminals being used in a particular problem

34
should be selected so as to be capable of solving the
problem.

For different problems, the function models to fit them
are various. Even if the sample data sets are same, there
can be many different function models which are "good fit"
to the experimental data according to the chosen evaluation
criterion. That is, the function models of different size,
shape, and complexity need to be tested during the process
of function identification. String-based representation
schemes do not provide the hierarchical structure and any
convenient way to process the dynamically varying and
complex structures of function models and to calculate the
values of function models. Using the hierarchical structure
representation scheme, however, we can represent any complex
function model, can easily implement the genetic operations
(such as crossover and mutation) as described in section
2.2.1.2, and can efficiently evaluate the values of function
models. So the knowledge (i.e. function models) in the HGSFI
are represented as hierarchical structures.

2.4. THE FITNESS FUNCTION
In genetic algorithms, each individual in a population

is assigned a fitness value as a result of its interaction
with the environment. Fitness is the driving force of
Darwinian natural selection and, likewise, of genetic

35
algorithms (Koza 1990). The fitness function in genetic
algorithms plays the role of the environment. Based on the
proportional to the fitness of individuals in a population,
genetic algorithms probabilistically select individuals on
which to apply the genetic operations of reproduction,
crossover, and mutation. (In the most commonly used
selection procedure, the probability of selection is
proportional to the normalized fitness of the individual.)
The fitness of individuals become very important because
they can determine whether the individuals survive in the
next generation. Proper selection of the fitness function is
the key for success of the genetic algorithm process. Choice
of the fitness function should base on the problem and
coincide with the choice of representation.

Statistians usually use the following two methods to
describe the difference between the predicted model f(x, B)
and real value yk (equation 2.1). The first method is the
sum of the squares between the given values of observations
and computed values of the dependent variable. That is

SSResid = [yk - f{xk, B)] 2 (2.16)
k=l

The another one is the sum of absolute residuals

SAResid = | yk - f(xk, B) | (2.17)
Jc=l

36
If we choose the sum of squared residuals to be the

performance measure, then we have a performance measure
function which is consistent with that of nonlinear
regression algorithms. However, if the residual yk - f (xk,
B) of some point is less than 0.1, then the squared residual
will be less than 0.01. And if the residual of some point is
greater than 100, then the squared residual of that point
will be much greater than 100. That is, the sum of squared
residuals is not directly proportional to the residual of
each point.

The sum of absolute residuals has linear relationship
with the residual of each point. Our experimental results
indicate that using the sum of absolute residuals as the
performance measure is better than using the sum of squared
residuals. In our system, the performance measure Perf(i, t)
of an individual function model i in the population at
generation t is defined as follows:

Perfii, t) = Y, I Vk ~ fit) Bit]) I (2.18)
k=l

where fi(t) (xk, Bi(t>) is the function equation of individual i
at generation t. B^10 is the estimated parameter vector of
individual i at generation t. Note that this definition of
Perf(i,t) is same as the raw fitness in Koza's system. The
smaller the performance, the better an individual in the
population. We might try to directly use this performance to

37
calculate the fitness as follow:

f(i, t) = PerfU.t)

J2 Perf(k, t)
*=1

where Ps is the population size. However, the performance of
the worst individual in a population might be much larger
than the performances of other individuals in the
population. Then

Ps
J) Perfik, t) = the performance of the worst guy
*= i

In this case, the fitness of the worst individual would be
very close to 1, and the fitness of the others would be very
close to 0. This fitness function would do a poor job of
distinguishing the relative performances of the better
individuals in the population. In other words, this
performance measure does not stress good performance, the
genetic algorithm may fail to converge on good results in a
reasonable time and will be more likely to lose the best
members of its population. For this reason, we need employ a
normalization technique for performance measure. In a manner
similar to Koza's system, we define the normalized
performance of individual i at generation t as following

PerfNorm(i,t) = ■ -.--JL-- .-v (2.19)"° 1+Per.f U, fc)
Then, the fitness of individual i at generation t is

38
calculated as

f(i,t) = t]. (2.20)
E PerfNoim(k>*=1

The fitness lies between 0 and 1 and is larger for better
individuals in the population. The sum of the fitness values
in a population is 1. In our system, we use this fitness to
be as the probability of individuals' performance in a
population. When we say "proportional to fitness" or
"proportional to the probabilities of individuals'
performances in a population", we are referring to the
fitness as defined above.

2.5. THE LEARNING PARADIGM OF HGSFI
Function identification is a complicated and iterative

learning process. Faced with so many indeterminancies and
uncertainties, our system should find the "best" model to
fit the given sample data set through the iterative process
of learning by experiment. Our problem is to so organize
matters that we are likely in due learning process to be led
to the right conclusion even though our initial choice of

o
the function models may not all be good. Our strategy must
be such as to allow any poor initial choices to be rectified
as we proceed. To meet these requirements and general-
purpose learning requirement, the learning component of the
HGSFI takes advantage of two kinds of domain independent

39
techniques — the hierarchical genetic algorithm and the
Levenberg-Marquardt algorithm — to attempt to identify a
highly fit function model and optimize the coefficients of
the model for the given sample data set. The learning
paradigm of the HGSFI machine function identification system
is depicted in Figure 8.

Best"
model

User's
initial
models

Feedback
Modified
models

Optimizer

Environment

Critic
Component

New1--
models

Performance
Component

Initial
Model

Generator

Model Breeding
Component

Figure 8: The Learning Paradigm of the HGSFI

This learning system manipulates a population of
individual function models to cope with their environment.
The environment includes the given sample data set, the
possible solution (function model) space, control
parameters, and the fitness of individuals in a population.
At the beginning, the initial model generator randomly
generates initial function models (i.e., the original
population of function models). The initial individuals may
not be good generally. Through the evolution of populations,
generation after generation, the initial individual function

40
models and their offspring are gradually modified to adapt
to their environment. Note that the "environment" differs
for different generational individuals, but is same for the
individuals in the same generation.

The optimizer (Levenberg-Marquardt algorithm) optimizes
the coefficients of input function models and tries to make
the function models to best fit the given sample date set.
Note that the nonlinear regression subroutines (i.e.
optimizer) are embedded in the evaluate procedure when the
HGSFI is implemented (see section 3.2).

During each cycle through the learning loop (i.e. the
evolution process of population of individual function
models), the performance component (including the evaluate
'procedure) interacts with the environment. It applies the
system's current knowledge (i.e. new generation function
models) to the sample data set and evaluates performances
and fitness of individuals in the new generation. The new
generation function models and their fitness are analyzed by
the critic component (including the measure procedure) with
respect to the given performance criterion. The critic
component compares the fitness of individuals in the
population to determine the "best" individual. If some
individual satisfies the given performance criterion then
the system returns the most fit function model that the

41
system has found, and halts. Otherwise, the system attempts
to produce a better population of individual function models
through the adaptive changes which consist of the
adjustments made by individuals in response to the
environmental conditions, and enable the population of
individuals to cope with the environment and to continue its
existence.

The population of individual function models and their
associated fitness are sent as feedback to the model
breeding component (including the reproduce, crossover,
mutate, permute, and elitist procedures, see section 3.2).
Based on the engine of Darwinian reproduction and survival
of the fittest, the model breeding component selects
individuals to produce new generation of individuals
according to their fitness. Individuals that were not
selected do not survive. A selected individual will
generate a number of offspring in direct proportion to its
relative fitness compared with the other individuals. In
other words, if the fitness of an individual is twice that
of another individual, the first individual will have on
average twice the number of offspring in the succeeding
generation.

Then some of the selected individuals are recombined
with the others of the selected individuals to produce their

42
offspring which inherit the parents' merits and adjust
themselves to environmental fluctuations. Some of the
selected individuals make some changes by themselves through
mutating the "genes" (i.e. the members of set S = F U T)
they carry. These inheritable adjustments made by
individuals in response to specific environmental conditions
are a facet of the individuals to cope with their
environment and to continue survival. Here the genetic
algorithm is no simple random walk. It efficiently exploits
the wealth of information by genetic operations to speculate
on new search points with improved performances.

3. THE IMPLEMENTATION OF HGSFI
The HGSFI is implemented using the C programming

language. The main control structure of the system basicly
is same as that of the GENESIS (Grefenstette 1984) . The
HGSFI processes populations of hierarchical structures. It
consists of four programs: setup, main, report, and
plotmodl.

The program SETUP creates the input parameter file for
the MAIN. The user can give values of control parameters or
use the default values of control parameters. The control
parameters include population size, crossover rate, mutation
rate, permutation rate, maximum depth of initial
hierarchical structures, maximum depth of hierarchical
structures, converged condition, maximum generation the
system runs and so on.

The MAIN program implements the learning process which
attempts to find a highly fit function model for the given
sample data set, using the hierarchical genetic algorithm
and the Levenberg-Marquardt nonlinear regression algorithm.

The REPORT program generates the statistical report
summarizing the mean and variance of a number of performance
measures of several runs of the HGSFI, and outputs the
"best" function model, its estimated coefficients, and the

43

44
summary statistics of nonlinear regression for each run of
the HGSFI.

The PLOTMODL program plots the observed curve and the
predicted curve on the screen.

3.1. DATA STRUCTURES
The MAIN program consists of an implementation of the

general-purpose machine function identification system using
the hierarchical genetic algorithm and the Levenberg-
Marquardt nonlinear regression algorithm. The hierarchy
chart of data structures used in the MAIN program is shown
in Figure 9.

NODE

INDIVIDUAL

POPULATIONBEST INDIV META FUNC TABLE

GENETIC SYSTEM

Figure 9: The hierarchy chart of data structures

3.1.1. INDIVIDUAL AND NODE
INDIVIDUAL is the basic class of data structures in the

HGSFI. It defines the basic attributes of an individual. The

45
definition of the INDIVIDUAL structure is shown in Figure
10.
typedef struct {

struct NODE *model; /* hierarchical tree of the
function model */

int numOfNodes; /* number of nodes in the
hierarchical tree */

double performance; /* normalized performance */
double fitness; /* fitness of the individual */
double sumOfSqResid; /* sum of squared residuals */
double *constList; /* constList[numOfConst] */
int numOfConst;
unsigned char needEvaluation;

} INDIVIDUAL;
Figure 10: The definition of the INDIVIDUAL structure

The attribute model of the INDIVIDUAL structure is a
hierarchical tree which consists of the base structure type
NODE. The NODE structure describes the attributes of a node
in the hierarchical tree of a function model. The definition
of the NODE structure is depicted in Figure 11. Each node
contains 5 attributes. The attribute type indicates the node
is a constant, independent variable, or function operation
node.

struct NODE {
char type; /* C — constant node,

V — independent variable node,
F — function operation node */

int index; /* index in FuncTable or constList */
double value;
struct NODE *leftChild;
struct NODE *rightChild;

};
Figure 11: The definition of the NODE structure

The index attribute is the index in the function table (see
section 3.1.3) for a function node or in the constant list

46
of the model for a constant node. The attribute value keeps
the value of a constant if the node is a constant node. The
other two attributes are leftChild and rightChild which
point to the children nodes of the node.

In the INDIVIDUAL structure, the attribute numOfNodes
is the number of nodes to constitute the model. In order to
easily change the values of constants in a model during
computation of nonlinear regression, we set a constList
attribute for each individual. The constant list is an array
to save the values of the constants (i.e. estimated
parameters) of a model. The attribute needEvaluation
indicates whether the performance of the model need to be
evaluated in the current generation. If the structure of a
model has no changes from preceding generation to the
current generation, the performance of the model does not
need to be evaluated again.

3.1.2. POPULATION
The population structure maintains some basic

information about individuals in the current generation.
The attributes of the POPULATION structure are shown in
Figure 12. AveCurrentPerf and AveCurrFitness are calculated
over the entire population whenever the population is
evaluated. BestCurrFitness and NorstCurrFitness keep the
best fitness and the worst fitness in the generation,

47
respectively. In addition, the population structure
maintains two variables BestGuy and RorstGuy, which point to
the best member and the worst member in the current
generation, respectively.

int PopSize; /* population size */
INDIVIDUAL *01d; /* INDIVIDUAL 01d[PopSize] */
INDIVIDUAL *New; /* INDIVIDUAL New[PopSize] */
double AveCurrentPerf ; /* average normalized perf. in

current generation */
double AveCurrFitness; /* average fitness in current

generation */
double BestCurrFitness; /* best fitness in current

generation */
double WorstCurrFitness; /* worst fitness in current

generation */
int BestGuy; /* point to best member in

current generation */
int WorstGuy; /* point to worst member in

current generation */
Figure 12: The definition of the POPULATION structure

Old generation New generation
1 1
2 2

reproduction
crossover 33

------- --------- /

mutation
• permutation •

PopSize PopSize

Figure 13: Schematic of nonoverlapping population

In the HGSFI, we apply genetic operators to an entire
population at each generation, as shown in Figure 13. To
implement this operation cleanly, we utilize two

48
nonoverlapping populations Old and New, thereby simplifying
the birth of offspring and the replacement of parents. Note
that the population size can be set by the user.

3.1.3. 6ENETIC_SYSTEM
GENETIC_SYSTEM is the top class of data structures in

the HGSFI. It consists of the following global variables to
control the process of the genetic algorithm and to save
statistical information.

BEST_INDIV *BestSet; /* BEST_INDIV BestSet[MaxGen]; */
META_FUNC_TABLE FuncTable[MAX_FUNC_SIZE];
double BestPerf; /* best performance seen so far */
double BestFitness; /* best fitness seen so far */
int MaxGenerations; /* maximum number of generations */
int Generation; /* generation counter */
int InitMaxDepth; /* maximum depth of initial function

models */
int MaxDepth; /* maximum depth of function models */
double CrossoverRate;
double MutationRate;
double PermutationRate;
int NumOfPoints; /* number of sample points */
double *DataX; /* double DataX[NumOfPoints]; */
double *DataY; /* double DataY[NumOfPoints]; */
double CorrectSSTotal;/* total of corrected sum of squares*/
double UncorSSTotal; /* total of uncorrected sum of

squares */
double ConvergentValue;/* convergent condition of HGSFI */
int ConvergedFlag; /* converged flag of the system */

char EliteFlag; /* use elitist selection strategy */
char RegressionFlag;/* use nonlinear regression to

optimize the coefficients of
function models */

char SimplifyFlag; /* simplify function model */

Figure 14: The attributes of GENETICJSYSTEM

49
In order to keep track of "best" individuals in all

generations, the system has a global array, BestSet, to save
them. The member structure of BestSet is shown in Figure 15.

typedef struct {
struct NODE *model; /* hierarchical tree of the

function model */
int numOfNodes; /* number of nodes in the

hierarchical tree */
double performance; /* normalized performance */
double fitness; /* fitness of the individual */
double sumOfSqResid; /* sum of squared residuals */
double *constList; /* constList[numOfConst] */
int numOfConst;
int gen; /* generation number */
int trials; /* trial number */

} BEST_INDIV;
Figure 15: The definition of BEST_INDIV structure

In the HGSFI, there is a global variable, FuncTable, to
save the set S which is the union of terminal set T and
function operation set F. The member structure
(META_FONC_TABLE) of FuncTable is shown in Figure 16. The
schematic of the function table is depicted in Table 2.

typedef struct {
char name[10];
int numOfVars;
int restriction;

double value;
} META FUNC TABLE;

/*/*

/*

function name
-1 — constant;

*/
0 — variable;

*/1 or more — functions
0 — No restriction;
1 — first variable != 0;
2 — second variable != 0;
3 — first variable > 0

/* only for constants
*/
*/

Figure 16: The definition of META FUNC TABLE structure

50
Table 2: The Schematic of Function Table in the HGSFI

index name numOfVars restriction value
1 n 0 No 3.1415926
2 random

constant
0 No

3 independent
variable

0 No

4 + 2 No
5 - 2 No
6 * 2 No
7 / 2 second

variable
! = 0

8 exp 1 NO
9 log 1 variable

> 0
.

Note that
(1) The initial value of a random constant is randomly

generated in the range [-25.0, 25.0] uniformly.
After optimization, the value of a random constant
can be any floating point number in the range
[-MAX_DOUBLE_VALUE, MAX_DOUBLE_VALUE]. Our
MAX_DOUBLE_VALUE is defined as 1.7e+140.

(2) The restriction of function operation indicates
what kind of restrictions of operands to do the
function operation. For example, division
operation requires the second operand to not be
equal to zero. In this case, if the second operand
is zero, then the division function will return

51
MAX_DOUBLE_VALUE. And log is the restricted
logarithm function which is defined as

log(x) =■
0, x < 0 , X = 0

ln(x) , x > 0

where the infinite is MAX_DOUBLE_VALUE.

The minimum set of functions in HGSFI is

F = { + , - , * , / };
the maximum set of functions in HGSFI is

F = { + , -, *, /, minus_sign, **, sq, sqrt, exp, log,
sin, cos, tan, arcsin, arccos, arctan, sinh,
cosh, tanh, int}.

The given sample data points {xk, yk) (k = 1, 2, ...,
NumOfPoints) are saved in arrays DataX and DataY,
respectively. The total of corrected sum of squared
residuals (CorrectSSTotal) is defined as

where N is the number of the sample points, yavg is the
average value of yk. The total of uncorrected sum of squared
residuals (UncorSSTotal) is defined as

CorrectSSTotal= ^ [y*-yav!732 (3.1)

N
UncorSSTotal= ^ (yk)2 (3.2)

52
The other attributes of GENETIC_SYSTEM are discussed in

next two section.

3.2. THE FRAMEWORK OF THE MAIN PROGRAM
The kernel of the main program is the genetic

algorithm. The main loop of the main program is an iterative
procedure which maintains a constant-size population P(t) of
candidate solutions. The main loop is shown in Figure 17.
BEGIN

(1) Choose the initial population of size Ps/ call this
population P(0). Set the generation counter t to be
0;

(2) Evaluate the performance (if needEvaluation for the
individual) and the fitness of each individual in
P(t);

(3) Measure each individual in P(t) to check
convergence;

(4) If ConvergedFlag is on or
generation counter t > maximum generation

then terminate;
(5) Increase generation counter by 1;
(6) Reproduce P(t) from P(t-l), call population P(t) as

new_pop, population P(t-l) as old_pop;
(7) Crossover P(t);
(8) Mutate P(t);
(9) Permute P(t);
(10) If EliteFlag is on then

Call Elitist;
(11) For each individual (call i) in P(t) do

(i) If new_pop[i].needEvaluation then
(a) If SimplifyFlag is on then

Simplify the new_j?op[i] .model of
individual i at generation t;

(b) Count the number of nodes in
new_j>op[i] .model;

(c) Count the number of constants in
new_j?op[i] .model;

(d) Build constant list of individual i at
generation t;

(ii) Endif;
(12) Go to (2) ;

END.

Figure 17: The main loop

53
The user could provide some of initial function models

which suit his/her problem. In our experiments, we always
chose the initial population P(0) randomly. The method to
generate initial population P(0) at random was described in
section 2.2.1.2. Note that the initial function model trees
are controlled by a system parameter, XnitMaxDepth, which
specifies the maximum depth of the randomly generated
initial function trees.

The evaluate procedure evaluates the performance of
each individual in the current generation if the function
model of the individual is changed during the process of
previous generation (i.e., it needs be evaluated again), and
computes the fitness of the individuals in the population.
The nonlinear regression subroutines (Levenberg-Marquardt
algorithm) are embedded in the evaluate procedure, which
optimize the coefficients of the function model of an
individual to reduce the sum of squared residuals and to fit
the given sample data points. The main loop of the
Levenberg-Marquardt algorithm was given in Figure 7 (see
section 2.2.2). Note that there are two cutoff values used
to stop iterative calculation in our implementation of the
LM nonlinear regression algorithm. The first one is the
convergence criterion for the sum of squares. When S(B)
decreases by less than 0.001 on two consecutive iterations,
the fit is considered complete. The second one is the

maximum number of iterations allowed. It is controlled by
the iterative counter K (see Figure 7). In our experiments
described in Chapter 4, it was always set to be 50. In
addition, we set the initial value of X to be 0.001 in our
implementation.

The measure procedure computes some statistical
information such as the average performance and the average
fitness of the current generation and calculates performance
measures. It compares the fitness of individuals in the
current generation to determine the "best" individual and
saves the "best" individual into BestSet. It measures each
individual function model to check if it has converged. This
procedure calculates the convergence test value of
individual i at generation t as the following

E l y t - -fi'1 <•**.« |
Convgii, t) = 1.0 - -is ----------- (3.3)

Y,\y* I
*=l

where fjl(t) (x, B) is the function equation of individual i at
generation t. { (xx, y2), (x2, y2), (xN, yN) } is the
sample data set of the given problem. If the convergence
test value for some individual is greater than the system
convergence condition (ConvergentValue), then the function
model has converged and the global variable ConvergedFlag in
the system is set as TRUE.

55
The genetic system uses two techniques for stopping an

experiment. These are the maximum number of generations and
the convergence condition of the system. The MaxGenerations
variable is set by the user. It is controlled by an
iterator. The system never lets an experiment continue past
this ceiling on the number of generations. In each
iteration, after evaluating performance of individuals, the
system measures each individual function model to check if
it has converged. If the system variable ConvergedFlag is
TRUE, that means some individual function model has
satisfied the criterion of the system convergence condition.
The terminate procedure outputs the statistical information
and then stops the process of an experiment.

The reproduce procedure implements the process of
choosing individuals for the next generation from the
individuals in the current generation. The individuals in
reproduction pool (New population) are chosen from old
population by a randomized reproduction procedure that
ensures that the expected number of times an individual is
chosen is approximately proportional to that individual's
fitness.

In the crossover procedure, the individuals in
reproduction pool are randomly chosen for crossover
(employing a user-specified crossover probability,

56
CrossoverRate). There are two strategies to select a
crossover site in our system. One is to choose the crossover
point randomly using uniform distribution over the internal
and external nodes in the parents. Another one is to use a
non-uniform probability distribution over the potential
crossover points in the parents that allocates 90% of the
crossover points equally amongst the internal (function)
nodes of each tree. The remainder of the crossover points
are allocated equally amongst the external (terminal) nodes
of each tree. Note that if the depth of any offspring tree
exceeds the maximum depth of function models (determined by
the system parameter MaxDepth), then subtrees of nodes whose
levels in the offspring tree exceed MaxDepth are removed.
For each such subtree, the tree is replaced by a randomly
generated terminal (constant or independent variable) node.
In our experiments described in chapter 4, we always used
the non-uniform strategy to select a crossover site in an
individual.

After crossover, some individuals are mutated according
to a user-specified mutation probability (MutationRate). We
have two different implementations of the mutation operation
in our system.

The first method is similar to Koza's implementation
(Koza 1990). In the first implementation, the individuals

57
are randomly selected from reproduction pool for mutation.
The mutation operation selects a node of the individual at
random. The node can be an internal (function) or external
(terminal) node of the tree. This implementation removes
whatever is currently at the selected node of a given tree,
and inserts a randomly generated sub-tree at the selected
mutation node of the individual. To generate a sub-tree, we
begin by selecting one of the functions or terminals from
set S instead of the set F (like the generation of initial
function models), at random and uniform, to be the root of
the sub-tree. In this implementation, approximately
MutationRate*PopSize individuals in a population are
selected for mutation. The mutation operation is performed
on single node of an individual selected for mutation.

Using the second implementation method, approximately
MutationRate*(total nodes of all individuals in the current
generation) mutations occur per generation. An individual
can contain more than one mutation node. The algorithm of
the second method is shown in Figure 18.

Our experiments indicated that the second
implementation of mutation operation was better for some
test problems. The experiments described in chapter 4 were
done using the second mutation method.

58
(1) For i = 1 to MutationRate*(total nodes of all

individuals in the current generation)
(2) Do

(a) Randomly select an individual from current
generation, call it as individual j;

(b) Randomly choose a node of individual j, call this
node as the mutation node;

(c) Randomly select a meta function from the function
table (i.e., set S), call it as new node;

(d) If new node has same number of variables as the
mutation node, simply replace the mutation node
by new node;

(e) Else if new node is a terminal, replace the sub
tree whose root is the mutation node with the new
node;

(f) Else if new node is an unary function node, then
(i) If the mutation node is a terminal node,

randomly choose a terminal from set T as the
operand of new node and use this sub-tree to
substitute the mutation node;

(ii) Else remove the right child of the mutation
node and replace the mutation node with new
node;

(g) Else if new node is a binary function node, then
(i) If the mutation node is a terminal node,

randomly choose two terminals from set T as
the operands of new node and use the sub-tree
to substitute the mutation node;

(ii) Else use the left child of the mutation node
as the first operand of new node, randomly
select a terminal from set T as the second
operand of new node, and replace the mutation
node with this sub-tree;

(3) Endloop
Figure 18: The second mutation method

Note that the mutation operation is controlled by the
system parameter MaxDepth which specifies the maximum depth
for the newly created or modified tree. If the depth of the
modified tree exceeds MaxDepth, then subtrees of nodes whose
levels in the tree exceed MaxDepth are removed. For each
such subtree, the tree is replaced by a randomly generated
terminal (constant or independent variable) node.

59
The permute procedure is the process to perform the

permutation operation. It operates on only one individual.
The individual is randomly selected from new population. The
permutation operation selects a function node of the
hierarchical tree at random. If the function at the selected
node is a binary function, then left child and right child
are swapped. Notice that if the function at the selected
node is commutative, there is no immediate effect from the
permutation operation on the tree.

Two population-maintenance strategies can be employed
to direct the evolution. One is a pure selection strategy,
in which the individuals are reproduced in proportion to
their fitness as above description.

Another one is elitist strategy. The elitist policy
stipulates that the best individual always survives into the
new generation. The elite individual is placed in the last
position in new generation, and is not changed through
crossover, mutation, or permutation. In the absence of such
a strategy (EliteFlag is off), it is possible for the best
individual to disappear, due to sampling error, crossover,
mutation, or permutation.

During the process of genetic operations, if the
function model of an individual is changed, then the

60
attribute needEvaluation of the individual is set as TRUE.
After processing genetic operations, the models of the
modified individuals can be simplified using the set of
simplifying rules if the user chooses the simplification
option (SimplifyFlag is on). The simplify procedure
simplifies the function equation using the set of
simplification rules (i.e., some mathematical rules). For
example, the equation

Cj. * (C2 + C3 * X)
can be simplified as

C\ + C'2 * X
where C'i = C3 * C2 and C'2 = C3 * C3.

Using the simplification option can save computer
resources: space and time. It may improve overall
performance slightly for some problems. However, our
experience showed that it could not improve overall
performance for most of linear regression model problems and
nonlinear regression model problems we tested. So we only
applied the simplification to the final stage — outputing
function models to a file or on the screen.

Then the attributes numOfNodes and numOfConst of the
modified individuals are re-counted. In addition, the
constant lists of the modified individuals are re-built. In
the building constant list procedure, the values of the

61
constants of an individual are adjusted if the individual
has some changes after genetic operations. The adjustment of
constant values is to increase them in 10 percent or
decrease them in 10 percent at random. This adjustment of
constants is another form of mutation. It may help the
optimizer (Levenberg-Marquardt algorithm) to move from the
locally optimal points.

3.3. THE SELECTION OF CONTROL PARAMETER VALDES
Running a genetic algorithm entails setting a number of

control parameter values. If poor settings are used, a
genetic algorithm's performance can be severely impacted.
Finding the optimal control parameter settings can be
difficult, because different problems have different optimal
values of control parameters. Each combination of genetic
operators, representation, and problems has its own
characteristic. In this section, we give our empirical
selection of control parameters for function identification
problems.

(1) The selection of function table (S):
In order to identify the function model for the given

sample data set, we need first choose the function table
which consists of the set of terminals and the set of
functions. The function table must, of course, be sufficient
to solve the problem. In our experiments, we chose the set

62
of terminals as

T = {random_constant, independent_variable}.
The set F of functions was always chosen as

F = { +, *, /, **, exp, log, sin, cos }
unless otherwise specified.

(2) Population size (Ps) :
The population size affects both the ultimate

performance and the efficiency of the system. Genetic
algorithms generally do poorly with very small populations,
because the population provides an insufficient sample size
for most solution spaces. A large population is more likely
to contain representatives from a large number of solution
space. Hence, genetic algorithms can perform a more informed
search. For the function identification problem, relatively
large population size is needed. As a result, a large
population discourages premature convergence to suboptimal
solutions. On the other hand, a large population requires
more evaluations per generation, possibly resulting in an
unacceptably slow rate of convergence. In our experiments,
the population size ranged from 300 to 500.

(3) Maximum generation (MG) :
As previously mentioned, one generation comprises the

following steps: reproduction, crossover, mutation,
permutation, evaluation, and some data collection

63
procedures. This parameter is used to control an overall
maximum number of generations to be run. For all of our
experiments, the maximum generation is 50. Note that the
maximum number of generations actually is 51 if the initial
generation is considered.

(4) Crossover rate (Rc) :
The crossover rate controls the frequency with which

the crossover operator is applied. In each new generation,
Rc * Ps function models undergo crossover. The role of
crossover is to introduce new function models into the
population. If the crossover rate is too low, then the
search may stagnate due to the lower exploration rate; the
population may tend toward a stable selection of the best
initial guesses. On the other hand, if the crossover rate is
too high, the many superior individuals would quickly be
crossed out of existence. The crossover rate in our
experiments is in the range [0.8, 0.95]. Our experiments
showed crossing 90 percent of the population works
reasonably well, because good function models often have a
high-enough fitness value to make their way into the
noncrossed 10 percent.

(5) Mutation rate (Rm) :
Mutation is a secondary search operator which increases

the variability of the population. The fitness function

64

drives the system toward better solutions, and sometimes it
takes a wrong turn. The system will often converge after
running and rerunning the fitness several times. A mutation
operator can help move the process out of a niche. If the
mutation rate is too high, the system starts declining in
performance. For different implementations of mutation
operation, the range of mutation rates is quite different.
In the experiments we did with the second implementation
method, the mutation rate was in the range [0.0, 0.2]. In
most situations, we used the mutation rate as 0.01 or 0.02.
For the first implementation of mutation operation, the
range of the mutation rate could be larger than that of the
second one. Note that in the experiments described in the
next chapter, the mutation operation was performed using the
second implementation method.

(6) Permutation rate (Rp) :
The permutation operator is an extension of the

inversion operation for string-based genetic algorithms to
the domain of hierarchical genetic algorithm. The
permutation operation can potentially bring closer together
nodes of a relatively high fitness individual so that they
are less subject to later disruption due to crossover (Koza
1990). However, our experience is that the benefits of this
operation are purely potential and have yet to be observed
for function identification problems. The permutation rate

in our experiments ranged from 0 to 0.3.
65

(7) Convergent value (Cv) :
This parameter serves as the convergence condition of

the system. Usually we chose the convergent value Cv to be
0.99. This means that the system is successful in solving
the given problem if at least one individual function model
has the average of absolute differences between the
predicted values of the model f(x, B) and the given values
of observations within 1% of the average of absolute values
of observations (see equation (3.3)). For some problems, we
chose the convergent value Cv as 0.999.

(9) Maximum depth of initial function models (Dj) :
This parameter defines the maximum depth of initial

function models. In our experiments, this parameter was set
to be 4 or 5.

(10) Maximum depth of function models (Dm) :
This parameter defines the maximum depth of function

models generated by the genetic system. This limit prevents
large amounts of computer time being expended on the
extremely complicated function models. It was always set as
15 in our experiments.

(11) Options (O = {e, o, s}):

66
(a) The option of the "elitist" selection strategy (e):

The elitist strategy stipulates that the
individual with the best fitness in the current
generation always survives intact to next generation.
In the absence of this strategy, it is possible that
the best individual disappears, due to crossover,
mutation, or permutation.
(b) The option of LM optimization (o):

The HGSFI allows users to choose whether the
system includes the optimizer (the Levenberg-Marquardt
nonlinear regression algorithm) for a particular
running in order to compare the two approaches.
(c) The option of simplifying function model (s):

If this option is chosen, the system variable
SimplifyFlag is set as TRUE. This means that during
each iteration after processing genetic operations, the
models of the modified individuals will be simplified
using the set of simplification rules. If the option is
absent, the function models are simplified only in the
final stage — outputing function models to a file or
on the screen.

Let HGSFI = (S, Ps, Mg, Rc, K, Rp, Cv, D±, Dm, O)
represent a particular running of the HGSFI with the
settings of control parameters for the given problem. For
example,

67
HGSFI = ({ c, x, + , -, *, /, exp, log, sin, cos},

500, 50, 0.9, 0.02, 0.1, 0.99, 4, 15, {e, o})
indicates one running of the HGSFI with

(a) The function table
S = { c, x, +, -, *, /, exp, log, sin, cos }
where c is a random constant and x is the
independent variable;

(b) Population size is 500;
(c) Maximum number of generations is 50;
(d) Crossover rate is 0.9;
(e) Mutation rate is 0.02;
(f) Permutation rate is 0.1;
(g) Convergent value is 0.99;
(h) Maximum depth of initial function models is 4;
(i) Maximum depth of function models is 15;
(j) The options are { e, o }, which means this

particular run of the HGSFI includes the elitist
selection strategy and the Levenberg-Marquardt
optimization.

4. TEST AMD EVALUATION
We now describe the experiments of the HGSFI machine

function identification system. These experiments were run
under the UNIX operating system on DEC-5500 system. The
HGSFI was compiled using gcc (GNU project C Compiler)
version 1.36. These experiments were designed to test and
evaluate the performance of the HGSFI. From the outset,
generality has been a motivating force in the design of the
HGSFI. Consequently, it seems appropriate that the system be
tested and evaluated in a wide range of task domains. First
we did some experiments to compare the system performance
with and without the Levenberg-Marquardt optimization.
Section 4.1 presents the detail of this comparison. Then we
chose two sets of task domains to test the HGSFI. Section
4.2 discusses the results of the experiments of linear
regression model problems. The experimental results of
nonlinear regression model problems will be presented in
section 4.3.

For all of the test problems, we randomly generated
initial function models. This learning system does not need
any prior knowledge about function models of the given
problems. The only prior knowledge needed is the primitive
functions, such as addition, multiplication, exponentiation,
etc., that are to be used in representing the population of
function models.

68

69
4.1. COMPARISON OF THE SYSTEM PERFORMANCE WITH AND WITHOUT

LEVENBERG-MARQUARDT OPTIMIZATION
This set of experiments was conducted to compare the

system performance with and without the Levenberg-Marquardt
optimization. The test function equations are listed in
Table 3. It includes the "symbolic regression" task domains
faced by Koza's "genetic programming paradigm" (Koza 1990),
which are problems (4.1), (4.2), (4.3), and (4.5).

Table 3: The first set of test problems

Prob
-lem

Function Equation X
range

Pts

4.1 Y = X + X2 + X3 + X4 [-2.0,2.0] 100
4.2 Y = sin (X) + cos (X) + X + X2 [-5.0,5.0] 150
4.3 Y = cos (X + X) [0.0, 6.0] 20
4.4 Y = X2 - X7 [-5.0,5.0] 150
4.5 Y = 3.1416*X+2.718*X2 [-5.0,5.0] 100
4.6 Y = 0 . 808162*exp(-1.21*X) [-2.0,8.0] 100
4.7 Y = -2.3 + 3. 0*X+0 . 45*X2-1.23*X3 [-5.0,5.0] 100
4.8 Y = 21.10-19.81*

exp (-0.00177*X3'180)
[0.0,14.0] 140

The first four function equations have no numerical
coefficients, the next four function equations have
numerical coefficients. The sample data (no noise) of the
test problems are uniformly generated using the test
function equations in the given X ranges with the given
number of points. For above test problems, except for
problem (4.8), we chose the following control parameters

70
HGSFI = ({c, x, + , -, *, /, exp, log, sin, cos},

500, 50, 0.9, 0.02, 0.0, 0.99, 4, 15, {e})
to run the HGSFI without the option of LM optimization. The
control parameters for problem (4.8) without the Levenberg-
Marquardt optimization were

HGSFI = ({c, x, +, -, *, /, **, sq, exp, log, sin, cos},
500, 50, 0.9, 0.02, 0.0, 0.99, 4, 15, {e}).

where sq(X) means X2 and X**C means Xc. For the runs with
the Levenberg-Marquardt optimization, the option of LM
optimization should be added to the control parameters. The
experimental results of these test problems with and without
LM optimization are shown in Table 4 and 5, respectively.

We define that a run is successful for the given sample
data set if at least one function model in the run satisfies
the given system convergence condition within the maximum
number of generations.

In the tables, the total runs column contains the total
number of runs for the given problem. The success rate means
the ratio of the number of successful runs to the total
number of runs for a given problem. The converged generation
for a successful run is the generation at which at least one
function model satisfies the system convergence condition
within the maximum number of generations. The avg. gen. for
sue. runs means the average number of the converged

71
Table 4: Experimental results of the first set of

test problems without LM optimization

Prob
-lem

Tot
-al
run
s

Suc
cess
Rate
(%)

Avg.
gen.
for
sue.
runs

CPU
time
per
run
(min)

Average
test
value
for
success
runs

Average
test
value
for all
runs

Average
best R
squares
for
success
runs

4.1 30 43.3 32 .85 5.411 .998040 .965313 .999980
4.2 30 73.3 23.73 6.190 .996840 .987427 .999962
4.3 25 100 3.36 0.048 .999633 .999633 .999997
4.4 30 0.0 - 4 .274 - .449476 -

4.5 30 56.7 32 .17 6.702 .992964 .983683 .999894
4.6 30 50.0 25.47 8 .549 .994589 .976314 .999965
4.7 30 0.0 - 10.82 - .919131
4.8 30 0.0 - 2.825 - .890589 -

Table 5: Experimental results of the first set of
test problems with LM optimization

Prob
-lem

Tot
-al
run
s

Suc
cess
rate
(%)

Avg.
gen.
for
sue.
runs

CPU
time
per
run
(min)

Average
test
value
for
success
runs

Average
test
value
for all
runs

Average
best R
squares
for
success
runs

4.1 26 100 10.5 37.58 .998411 .998411 .999994
4.2 20 100 10.65 79.33 .998450 .998450 .999983
4.3 30 100 1.066 0.425 .999952 .999952 1.00000
4.4 30 80.0 31.13 84.44 .997754 .923638 .999957
4.5 20 100 3.65 6.94 .999929 .999929 1.00000
4.6 20 100 2.05 3.92 .999880 .999880 .999994
4.7 50 100 10 .44 30.10 .998385 .998385 .999992
4.8 49 100 14.31 107.4 .993469 .993469 .999791

72
generations for successful runs. Note that we define
generation counter starts from 1 instead of 0 when we
calculate the average number of the converged generations
for successful runs. That is, initial generation is 1, the
first generation is 2, and so on. The CPU time per run means
the average of CPU time for all runs. The average test
values for success runs and all runs are the averages of
convergence test values (equation 3.3) of best function
models for successful runs and all runs, respectively. The
average best R squares for success runs is the average of R
squares of best function models for successful runs.

For problems (4.1), (4.2), and (4.3) which are simple
equations without numerical coefficients, the machine
function identification system HGSFI without the option of
LM optimization can find the highly fit function models,
which are same as the function equations generated the
sample data. For example, the highly fit function models
that the HGSFI found for the test problems (4.1), (4.2), and
(4.3) in some runs are as follows,
(1) y = (x+(((((x*x)*x) + (x*x))*x) + (x*x))) at generation 9,
(2) y = ((sin(x)+((x*x)+x))+cos(x)) at generation 26,
(3) y = cos((x+x)) at generation 0,

respectively. The success rate for problems (4.2) and (4.3)
is high. Note that the SSResid (see equation 2.16) for these
correct function models the HGSFI found is not equal to zero

73
because of roundoff error.

For problems (4.5) and (4.6) which are simple equations
with numerical coefficients/ the system without the option
of LM optimization can still find a reasonably good fit
function model to the given sample data set/ at relatively
high success rate. For example, the success rate in 30 runs
for problem (4.6) without the option of nonlinear regression
is 50.0 percent. The summary statistics and a highly fit
function model the HGSFI found in a run without the option
of LM optimization is shown in Figure 19. The highly fit
function model the HGSFI found in the run is equivalent to

y = 0 .8073855e_1,211x
which is very close to the equation (4.6). This result shows
that the genetic algorithm can do pretty good job for some
"constant discoveries".

Note that the meanings of the columns in Figure 19 are
as follows:

(1) Gens stands for the generation number;
(2) Trials is the number of individuals evaluated;
(3) The online performance is defined as the average of
the normalized performance of all evaluated individuals
over the course of the genetic search.
(4) The offline performance is defined as the average
of the normalized performance of best individuals over

74

HGSFI Summary Report #####
Best Function Model
Y=EXP((((Cl-X)*C2)-X))
num_of_const = 2
Cl C2
-1. 014e+00 2 .110e-01
Summary Statistics for the Best Function Model

Source DF
Residual 98
Uncorrected Total 100
Corrected Total 99

Sum of Squares
2.42873e-04
3.84288e+02
3.20693e+02

Mean Squares
2.47830e-06

R_squared = 1 - Residual SS / Corrected SS = 0.9999992
Sum of absolute (Yi - Yi'): 5.54913e-02

Sum of absolute Yi: 7.97468e+01
ConvergentTestValue = 1 - SumOfAbsDy / SumOfAbsY = 0.9993042
(Success condition: ConvergentTestValue > 0.9900)
Gens Trials Online Offline Best Average Current Best

Performance SSResid Rsquared
0 500 .00465 .02412 .024118 .004649 3.657e+01 .885958
1 956 .00576 .02412 .024118 .007172 3.657e+01 .885958
2 1407 .00643 .04207 .077975 .008023 3.631e+00 .988677
3 1861 .00691 .05211 .082230 .008574 3.465e+00 .989196
4 2314 .00782 .05864 .084778 .011758 4.027e+00 .987444
5 2766 .00898 .08193 .198345 .015764 1.178e+00 .996328
6 3220 .01111 .10029 .210478 .025507 5.747e-01 .998208
7 3677 .01395 .15413 .530978 .036361 4. 953e-02 .999846
8 4135 .01657 .19600 .530978 .042642 4.953e-02 .999846
9 4589 .01914 .22950 .530978 .049673 4.953e-02 .999846

10 5045 .02132 .25690 .530978 .053639 4.953e-02 .999846
11 5502 .02313 .27974 .530978 .050640 4.953e-02 .999846
12 5961 .02447 .29907 .530978 .050649 4.953e-02 .999846
13 6424 .02584 .31563 .530978 .053312 4.953e-02 .999846
14 6880 .02740 .32999 .530978 .059563 4.953e-02 .999846
15 7339 .02861 .34255 .530978 .056663 4. 953e-02 .999846
16 7801 .02976 .35364 .530978 .057022 4.953e-02 .999846
17 8259 .03069 .36349 .530978 .058276 4.953e-02 .999846
18 8723 .03195 .37230 .530978 .059776 4.953e-02 .999846
19 9182 .03330 .38024 .530978 .065697 4 .953e-02 .999846
20 9650 .03531 .40726 .947426 .079663 2.429e-04 .999999

Figure 19: The summary report of problem (4.6) in a run
without LM optimization

75

the course of the genetic search.
(5) Best performance and average performance are the
best normalized performance and the average normalized
performance in the current generation, respectively.
(6) Current best SSResid and R squared are the sum of
squared residuals and R squared of the best individual
in the current generation, respectively.

For the complicated problems such as problems (4.4),
(4.7), and (4.8), however, the system without the option of
LM optimization cannot find a function model which satisfies
the given system convergence condition within the given
maximum number of generations. For example, the success
rates in 30 runs for problems (4.4), (4.7), and (4.8) are
zero. With the option of LM optimization, the system can
find the function models, which satisfy the system
convergence conditions, for the given sample data points of
these problems. Figure 20 is the summary report of one run
of the HGSFI with LM optimization for problem (4.7). After
simplification, the most fit function model the system found
in the run is equivalent to

y = -2.3+3.0*X+0.45**2-1.23*X3 .

76
HGSFI Summary Report
Best Function Model
Y=((((X*X)* <C1*X))+C2)+C3-(((X*X)C4*) + ((X*C5)-C6))))
num_of_const = 6
Cl C2 C3 C4 C5

-1.230e+00 4.596e+00 -5.138e+00 -4.500e-01 -3.000e+00
C6

-1.758e+00
Uncertainties:
5.295e-03 4.472e+02 3.162e+02 1.344e-02 8.661e-02
3.162e+02

Summary Statistics for the Best Function Model
Source DF
Residual 94
Uncorrected Total 100
Corrected Total 99

Sum of Squares
6.40283e-27
2.57184e+05
2.56378e+05

Mean Squares
6.81152e-29

R_squared = 1 - Residual SS / Corrected SS = 1.0000000
Sum of absolute (Yi - Yi'): 4.09665e-13

Sum of absolute Yi: 3.20289e+03
ConvergentTestValue = 1 - SumOfAbsDy / SumOfAbsY = 1.0000000
(Success condition: ConvergentTestValue > 0.9900)
Gens Trials Online Offline Best Average Current Best

Performance SSResid Rsquared
0 500 .00019 .00055 .000546 .000194 4 . 962e+04 .806465
1 952 .00023 .00056 .000580 .000269 1.039e+05 .594881
2 1404 .00025 .00057 .000584 .000291 1.035e+05 .596337
3 1857 .00025 .00057 .000584 .000275 1.035e+05 .596337
4 2313 .00026 .00058 .000584 .000290 1.035e+05 .596337
5 2766 .00027 .00060 .000710 .000301 3.177e+04 .876084
6 3222 .00027 .00083 .002242 .000305 2.64 0e+03 .989703
7 3674 .00028 .00102 .002309 .000314 2.414e+03 .990586
8 4126 .00028 .00116 .002309 .000334 2.414e+03 .990586
9 4579 .00029 .00135 .003023 .000372 1.454e+03 .994330

10 5033 .00030 .00162 .004365 .000475 7.845e+02 .996940
11 5486 .00033 .00185 .004365 .000711 7.845e+02 .996940
12 5944 .00055 .07863 1.00000 .003088 6.403e-27 1.000000
Figure 20: The summary report of problem (4.7) in a run

with LM optimization

If we define "the correct function model" the HGSFI
found for the given problem as

(1) after simplification, the form of "the correct
function model" is same as the form of the function

77
equation generated the sample data, except for the
difference of some constant term, and

(2) its R squares > 0.999999,
then the success rates for finding the correct function
models of problems (4.1) to (4.8) by HGSFI with and without
LM optimization are listed in Table 6.

Table 6: The success rate for finding the correct function
models of the first set of test problems

Problem Total
runs

without
LM

Success
rate

without LM
option

Total
runs
with
LM

Success
rate

with LM
option

4.1 30 30.00% 26 53.85%
4.2 30 30.00% 20 60.00%
4.3 25 96.00% 30 100%
4.4 30 0.00% 30 23.33%
4.5 30 3.33% 20 95.00%
4.6 30 3.33% 20 85.00%
4.7 30 0.00% 50 56.00%
4.8 30 0.00% 49 0.00%

Comparing the system performance with and without the
option of LM optimization, the average convergence test
value of all runs and the average R squares of success runs
with nonlinear regression are better than those without
nonlinear regression. The success rate with LM optimization
is much higher than that without LM optimization except in
some extremely simple problems such as problem (4.3). In
addition, the average number of the converged generations

78
for successful runs with LM optimization is less than that
without LM optimization. In other words, the system
performance with the Levenberg-Marquardt optimization is
better than that without the Levenberg-Marquardt
optimization. However, the average CPU time to solve the
given problems with LM optimization is longer than that
without LM optimization, because the optimizer spends a lot
of time to optimize the coefficients of function models.

4.2. LINEAR REGRESSION MODEL PROBLEMS
Linear regression model is the model in which all the

parameters (i.e. estimated coefficients) appear linearly.
This does not mean the response variable Y has the linear
relationship with independent variable X. For example, the
model

Yt = C0 + <\Xt + C2X\ + e t

is a linear regression model instead of a nonlinear
regression model (because Yt is nonlinear in Xt) . For this
set of experimental problems, we use the function equations
in Table 7 to generate the corresponding experimental data
(no noise).

For this set of test problems, we chose the following
control parameters:
HGSFI = ({c, x, +, -, *, /, exp, log, sin, cos},

500, 50, 0.9, 0.02, 0.0, 0.99, 4, 15, {e, o}).

79
Note that LM optimization was included on all runs for this
set of test problems. The experimental results of the second
set of test problems are listed in Table 8.

Table 7: The second set of test problems

Prob
-lem

Function Equation X
range

Pts

4.7 Y = -2.3+3. 0*X+0 .45*XZ-1.23*X3 [-5.0,5.01 100
4.9 Y = 3.2*sin(X)+2.5*cos(X) [-2.0, 18] 200
4.10 Y = 0.45+6.032*exp(-X) [0.0,20.0] 100
4 .11 Y = 0.l-2*X+0.5*log(X) (0.0,20.0] 100

Table 8: Experimental results of the second set of
test problems with LM optimization

Prob
-lem

Tot
-al
run
s

Suc
cess
Rate
<%)

Avg.
Gen.
for
sue.
runs

CPU
time
per
run
(min)

Average
test
value
for
success
runs

Average
test
value
for all
runs

Average
best R
squares
for
success
runs

4.7 50 100 10.44 30.10 .998385 .998385 .999992
4.9 20 100 4.8 16.62 .999776 .999776 1.00000
4.10 23 95.7 10.36 95.75 .999231 .991547 .999993
4.11 25 100 1.0 2.04 .996607 .996607 .999830

Problem (4.7) is a third-degree polynomial model in one
independent variable. The degree (or order) of an individual
term in a polynomial is defined as the sum of the powers of
the independent variable in the term. The degree of the
entire polynomial is defined as the degree of the highest-
degree term. All polynomial models, regardless of their

80
degree, are linear in the parameters. Higher-degree
polynomial models are regarded in most situations as
approximations to the true models. Figure 20 shows the
statistical report of one run for problem (4.7).

HGSFI Summary Report
Best Function Model
Y=(Cl*COS((X+C2)))
num_of_const = 2
Cl C2
4.061e+00 -9.076e-01

Uncertainties:
9.998e-02 2.468e-02

Summary Statistics for the Best Function Model
Source DF Sum of Squares Mean Squares
Residual 198 1.66727e-13 8.42055e-16
Uncorrected Total 200 1.65295e+03
Corrected Total 199 1.64781e+03
R_squared = 1 - Residual SS / Corrected SS = 1.0000000

Sum of absolute (Yi - Yi'): 5.01913e-06
Sum of absolute Yi: 5.19388e+02

ConvergentTestValue = 1 - SumOfAbsDy / SumOfAbsY = 1.0000000
(Success condition: ConvergentTestValue > 0.9900)
Gens Trials Online Offline Best Average Current Best

Performance SSResid Rsquared
0 500 .00109 .00238 .002381 .001093 1.072e+03 .349228
1 953 .00133 .00281 .003234 .001607 5.969e+02 .637759
2 1405 .00215 .33520 .999995 .003694 1.667e-13 1.000000

Figure 21: The summary report of problem (4.9) in a run
with LM optimization

Problem (4.9) is a periodic model. The summary report
and the highly fit function model the system found in a run
is shown in Figure 21. It is equivalent to

y = 3. 20*sin(X) + 2.50*cos(X).

81
HGSFI Summary Report #####
Best Function Model
Y=((Cl/EXP(X))+C2)
num_of_const = 2
Cl C2
6.032e+00 4.500e-01

Uncertainties:
6.053e-01 1.054e-01

Summary Statistics for the Best Function Model
Source DF Sum of Squares Mean Squares
Residual 98 7.47844e-14 7.63106e-16
Uncorrected Total 100 1 .60564e+02
Corrected Total 99 9.92914e+01
R_squared = 1 - Residual SS / Corrected SS = 1.0000000

Sum of absolute (Yi - Yi'): 2.30815e-06
Sum of absolute Yi: 7.82765e+01

ConvergentTestValue = 1 - SumOfAbsDy / SumOfAbsY = 1.0000000
(Success condition: ConvergentTestValue > 0.9900)
Gens Trials Online Offline Best Average Current Best

Performance SSResid Rsquared
0 500 .00731 .02746 .027458 .007314 9.944e+01 -.001525
1 957 .00941 .03955 .051652 .012038 4.333e+00 .956366
2 1411 .01124 .35970 .999998 .015128 7.478e-14 1.000000
Figure 22: The summary report of problem (4.10) in a run

with LM optimization

Problem (4.10) is an exponential (decay) model. The
model (4.11) is the linear form of Hoerl's special function
Y = aXbecX (In Y = In a + b (In X) + cX) . The summary reports
of problems (4.10) and (4.11) in some run are given in
Figure 22 and Figure 23, respectively. The equivalent
equations of the highly fit function models the system found
are

y = 0.45 + 6 . 032*exp(-X)
and

y = 0.1 - 2.0*X + 0.5*log(X),

82
respectively.

HGSFI Summary Report
Best Function Model
Y=(((C1+(X-C2))/C3)- (C4*LOG(X)))
num_of_const = 4
Cl C2 C3 C4
9.056e-01 9.556e-01 -5.000e-01 -5.000e-01

Uncertainties:
3.162e+02 3.162e+02 2.532e-03 1.089e-01
Summary Statistics for the Best Function Model

Source DF Sum of Squares Mean Squares
Residual 96 8.84624e-14 9.21483e-16
Uncorrected Total 100 3.10789e+05
Corrected Total 99 8.05437e+04
R_squared = 1 - Residual SS / Corrected SS = 1.0000000

Sum of absolute (Yi - Yi'): 2.62445e-06
Sum of absolute Yi: 4.79839e+03

ConvergentTestValue = 1 - SumOfAbsDy / SumOfAbsY = 1.0000000
(Success condition: ConvergentTestValue > 0.9900)
Gens Trials Online Offline Best Average Current Best

Performance SSResid Rsquared
0 500 .00517 1.0000 .999997 .005166 8.846e-14 1.000000
Figure 23: The summary report of problem (4.11) in a run

with LM optimization

Table 9: The success rate for finding the correct function
models of the second set of test problems

Problem 4.7 4.9 4.10 4.11
Total runs 50 20 23 25
Success rate
with LM option

56.00% 85.00% 82.61% 8.0%

The success rates for finding the correct function
models of the second set of problems by HGSFI with LM
optimization are listed in Table 9. Note that the success

rate for finding the correct function models of problem 4.11
is quite low. But if we increase the convergent value to
0.999 to run the HGSFI for problem 4.11, the success rate
will be higher than 8.0%.

For almost all of the linear regression model problems
we tested, the HGSFI can rapidly converge on a highly fit
function model which satisfies the given system convergence
condition within the maximum number of generations. Note
that due to roundoff error the SSResids of the highly fit
function models that the HGSFI found for this set of test
problems are not exactly equal to zero.

4.3. NONLINEAR REGRESSION MODEL PROBLEMS
A nonlinear regression model is one in which at least

one of its parameters appears nonlinearly, for example

r* = axl + e* .
In the formal sense, nonlinear means that at least one of
the derivatives of Yk with respect to a and P is a function
of at least one of those parameters. In above equation, the
derivative of Yk with respect to a and the derivative of Yk
with respect to P are both functions of a and/or P, so that
this model is a nonlinear regression model. For the third
set of test problems, we use the following nonlinear
regression equations to generate the experimental data (no
noise):

84

Problem (4.8): Weibull-type model

y = a - Pe-TX*

where a = 21.10, (3 = 19.81, y = 0.00177, and 8 = 3.180.
The range of x is [0.0, 14.0]. The number of sample
data points is 140. This nonlinear statistical model is
widely used in biology and economics, which produces
sigmoidal or "S-shaped" growth curve. The parameter
values of this model are abstracted from Ratkowsky's
book "Nonlinear Regression Modeling" pp 65 (Ratkowsky
1983).

Problem (4.12): Inverse polynomial model

v = x
y O+pX

where a = 0.3 and P = 0.06. The range of X is [0.0,
10.0]. The number of sample data points is 100. This
function is a monotonically increasing function of X
that very slowly approaches the asymptote Y = 1/p.

Problem (4.13): Logistic growth model

y = ____ «____1.0 + ye*x
where a = 10.0, p = -0.8, and y = 25.0. The range of X
is [0.0, 10.0]. The number of sample data points is
100. The logistic growth model is frequently used in
biology, agriculture, and engineering. This function

85
gives the "S-shaped" growth curve starting at Y =
a/(l+y) at X = 0 and approaching the asymptote Y = a as
X gets large. Note that problems (4.12) and (4.13) are
abstracted from Rawlings' book "Applied Regression
Analysis" pp 302 (Rawlings 1988).

Problem (4.14): Two term exponential model

r- - e~Cl*)q-c2

where Cj. = 0.6 and C2 = 0.3. The range of X is [0.0,
20.0]. The number of sample data points is 100. This
function is abstracted from Rawlings' book "Applied
Regression Analysis" pp 391 (Rawlings 1988).

Table 10: Experimental results of the third set of
test problems with LM optimization

Prob
-lem

Tot
-al
run
s

Suc
cess
Rate
(%)

Avg.
Gen.
for
sue.
runs

CPU
time
per
run
(min)

Average
test
value
for
success
runs

Average
test
value
for all
runs

Average
best R
squares
for
success
runs

4.8 49 100 14.31 107.4 .993469 .993469 .999791
4 .12 20 100 8.4 99.84 .999674 .999674 .999996
4.13 30 96.7 18.55 350.3 .999344 .998610 .999998
4 .14 20 95.0 11.42 152.5 .995469 .994697 .999951

The settings of control parameters for problems (4.12)
and (4.13) are

HGSFI = ({c, x, +, -, *, /, **, sq, exp, log, sin, cos},

86

500, 50, 0.9, 0.02, 0.0, 0.999, 4, 15, {e, o}).
The only difference of the settings of control parameters to
run the HGSFI for problems (4.8) and (4.14) is the
convergent value. The latter uses 0.99 instead of 0.999. The
summary of experimental results of these test problems is
shown in Table 10.

This set of experimental problems is very difficult and
challenge for the current implementation of the HGSFI.
Because function discovery and nonlinear regression are both
global optimization problems. To discover the "correct"
function model and the "correct” values of the coefficients
of the function model, the system needs to search large
function space and large constant space. The two together
make the problem very hard. In addition, so far there are
not any efficient global optimization algorithms for
nonlinear regression. The HGSFI implementation uses the
Levenberg-Marquardt optimization algorithm to find the
"best" fit coefficients of function models for the given
sample data set, which is a local optimization algorithm. If
a function model is "correct" for the given problem but the
starting values of the coefficients of the function model
are not around the global optimizing point, then the poor
starting values may result in convergence to an unwanted
stationary point of the sum of squares surface (Draper and
Smith 1981). This unwanted point may have coefficient values

87
which do not provide the true minimum value of S(B)
(equation 2.3). Then the "correct" function model may be
thrown away due to the poor fitness.

HGSFI Summary Report #####
Best Function Model
Y=(((Cl+X)/ (C2+X))+C3)
num_of_const = 3
Cl C2
-7.8333e+01 5.0000e+00
Uncertainties:
1.0730e+01 6.67l3e-01

C3
1.5667e+01
4 .7124e-01

Summary Statistics for the Best Function Model
Source DF
Residual 97
Uncorrected Total 100
Corrected Total 99

Sum of Squares
8 .10634e-14
1.24026e+04
1.11560e+03

Mean Squares
8 .35705e-16

R_squared = 1 - Residual SS / Corrected SS = 1.0000000
Sum of absolute (Yi - Yi'): 2.44214e-06

Sum of absolute Yi: 1.06240e+03
ConvergentTestValue = 1 - SumOfAbsDy / SumOfAbsY = 1.0000000
(Success condition: ConvergentTestValue > 0.9990)
ns Trials Online Offline Best Average Current Best

Performance SSResid Rsquared
0 500 .00076 .01197 .011970 .000764 9.641e+01 .913581
1 956 .00123 .01683 .021690 .001816 3.247e+01 .970898
2 1414 .00169 .01914 .023750 .002947 2.415e+01 .978349
3 1869 .00206 .02307 .034877 .003640 1.047e+0l .990617
4 2327 .00258 .03146 .065009 .005181 3.873e+00 .996528
5 2783 .00308 .04403 .106887 .006788 1.004e+00 .999100
6 3239 .00379 .05419 .115118 .010114 9.501e-01 .999148
7 3706 .00523 .17241 .999998 .017161 8.106e-14 1.000000
Figure 24: The summary report of problem (4.12) in a run

with LM optimization

For these nonlinear regression model problems, the
HGSFI can still quickly find high performance function
models to fit the given sample data points with very high
success rate. Sometimes it can find the highly fit function

88

model which is same as the function equation generated the
sample data set. For example, the "best" function model the
HGSFI found for problem (4.12) in a run is

y = 0.30000+0.06000X
which is equivalent to the function equation (4.12). The

HGSFI Summary Report
Best Function Model
Y=((Cl-(C2*X))-(((C3*(C4-X))-(((C5-X)*(C6*X))*

(X+C7)))*(X*X)))
num_of__const = 7
Cl C2 C3
1.257e+00 -3.169e-01 5.379e-02
C6 Cl

-5.980e-04 -1.016e+01
Uncertainties:
4.770e-0i 7.021e-01 2.314e+00
1.315e-04 3.llle+02

C4
7.351e+00

C5
2.259e+01

3 .162e+02 3.llle+02

Summary Statistics for the Best Function Model
Source DF
Residual 133
Uncorrected Total 140
Corrected Total 139

Sum of Squares
1.27622e+00
2.79300e+04
8.64718e+03

Mean Squares
9.59562e-03

R_squared = 1 - Residual SS / Corrected SS = 0.9998524
Sum of absolute (Yi - Yi'): 1.10132e+01

Sum of absolute Yi: 1.64304e+03
ConvergentTestValue - 1 - SumOfAbsDy / SumOfAbsY = 0.9932970
(Success condition: ConvergentTestValue > 0.9900)
Gens Trials Online Offline Best Average

Performance
Current

SSResid
0 500 .00061 .00723 .007230 .000611 1 .7 64e+02
1 955 .00076 .00839 .009540 .000961 1.161e+02
2 1406 .00095 .01019 .013802 .001443 6.239e+01
3 1858 .00126 .01286 .020871 .002394 2.412e+01
4 2315 .00155 .01446 .020871 .003029 2.412e+01
5 2767 .00181 .01553 .020871 .003677 2.412e+01
6 3228 .00218 .01766 .030419 .004940 1.374e+01
7 3695 .00243 .02586 .083241 .005016 1.276e+00

Best
Rsquared
.979602
.986569
.992785
.997211
.997211
.997211
.998410
.999852

Figure 25: The summary report of problem (4.8) in a run
with LM optimization

89
summary report of that run is shown in Figure 24. In most
situations, however, the HGSFI can find a higher-degree
polynomial function model to fit the given sample data
points. Figure 25 is an example for problem (4.8). The
reasonably good fit function model the HGSFI found in that
run is equivalent to

y = 1.257+0.3169X-0.39541X2+0.19104X3-0.01958X4+0.000598X5 .

The success rates for finding the correct function
models of the third set of problems by HGSFI with LM
optimization are listed in Table 11.

Table 11: The success rate for finding the correct function
models of the third set of test problems

Problem 4.8 4.12 4.13 4.14
Total runs 49 20 30 20
Success rate
with LM option

0.00% 20.00% 0.00% 0.00%

5. FUTURE RESEARCH
The experimental results of this research has clearly

established the feasibility of the HGSFI design. However, it
is worthwhile to do further research for the following
problems. Firstly, the further work might include studying
other selection strategies for reproduction in the genetic
algorithm. For instance, the selection for mating can be
distributed such as in the parallel genetic algorithm
(Muhlenbein 1991). In Muhlenbein's parallel genetic
algorithm, the selection is divided into a mate selection
step and an acceptance step. A population is divided into
several groups. (For example, individuals 1 to 10 are in
group 1, individuals 11 to 20 are in group 2, and so on.
Note that Miihlenbein's implementation is more complicated
than this.) In the mate selection step, each individual
selects a partner in the neighborhood (group) for mating. In
the acceptance step, the offspring will replace its parent,
if it is better than the parent. Each individual may improve
its fitness during its lifetime by local hill climbing.
Muhlenbein applied the parallel genetic algorithm (PGA) to
the traveling salesman problem, the autocorrelation problem
and the graph partitioning problem. "In all these problems,
the PGA has found solutions of very large problems, which
are comparable or even better than any other solution found
by other heuristics." (Muhlenbein 1991).

90

91
It would be useful to study the effects of varying the

rates at which the genetic operators are applied. The system
should learn better values for control parameters.
Hopefully, this would yield results concerning the adaptive
and optimal settings of these parameters for the given
problem during the learning process.

Further work might add some general heuristic rules
into the system to guide the generation of initial function
models and the breeding of the new function models. For
instance, we may consider the physical unit consistency of
the given data set and the function model to guide function
model generation such as in ABACUS (Falkenhainer and
Michalski 1986). Units analysis enables one to greatly
reduce the size of the search space by examining the
compatibility of variables' units. And we might include
other statistic analysis techniques to get more information
from the given sample data set to guide function model
generation.

Nonlinear regression is a global optimization problem.
Global optimization, however, is a difficult area in its own
right. So far there are not any practical and efficient
global optimization techniques for nonlinear regression. The
HGSFI uses the Levenberg-Marquardt nonlinear regression
algorithm to find the "best" fit coefficients of function

92
models to the given problem. The Levenberg-Marquardt
algorithm is a local optimization algorithm. Unfortunately,
the results of nonlinear regression often depend on having
good starting values for the coefficients to be estimated.
The poor starting values may result in convergence to an
unwanted stationary point of the sum of squares surface,
which is not the true minimum value of S(B). Then the
"correct" function model may be thrown away thanks to the
poor fitness. In order to overcome the above weakness, the
further research might add a general method to set the
starting values of the coefficients of a function model
according to the given problem.

The new system might use multiple optimization
techniques to optimize the values of the coefficients of a
function model because one algorithm may perform better than
the other for a particular problem.

6. SUMMARY AND CONCLUSIONS
This thesis has focused on the problem of constructing

a machine function identification system to find a highly
fit function model for the given sample data points. We
began by developing the general hierarchical representation
scheme of the system's knowledge (function models). The
hierarchical representation can represent arbitrary function
models whose size, shape, and complexity can dynamically
change during the learning process. Then we discussed the
selection of domain independent learning methods for
manipulating the system knowledge (function models). The
learning component of the machine function identification
system takes advantage of two kinds of domain independent
optimization procedures: the hierarchical genetic algorithm
and the Levenberg-Marquardt nonlinear regression algorithm.
A system called HGSFI was implemented using this design
method. Utilizing the initial function models generated at
random, HGSFI searches the space of function models,
dynamically creates new generation of function models using
Darwinian principles of reproduction and survival of the
fittest. It optimizes the coefficients of the function
models using the Levenberg-Marquardt nonlinear regression
algorithm, and tries to make the function models "best" fit
the given sample data set. Through the iterative learning
process, the individual function models in the new
generation inherit the parents' merits, adjust themselves to

93

94
environmental fluctuation, and enable themselves to cope
with the environment and to continue their existence. They
are getting better and better to fit the given sample data
points. When some function model satisfies the criterion of
the system performance, the system returns the most fit
function model the system has found as the solution of the
given problem and halts.

This machine function identification system, HGSFI,
does not need any prior knowledge about the function model
of the given problem. The only prior knowledge it needs is
the set of function operations and terminals which should be
capable of solving the problem (i.e. some composition of the
available function operations and terminals should yield a
solution).

Having finalized the design, a series of experiments
were conducted to investigate the operative characteristics
of the HGSFI implementation. The experimental results of the
first set of test problems show that the system performance
with the.nonlinear regression optimizer is much better than
that without the nonlinear regression optimizer (as measured
by success rate). As a demonstration of the feasibility of
the HGSFI design as a machine function identification
system, experiments were conducted in a wide range of task
domains. The test problems are grouped in two categories of

95
function identification problems: linear regression model
problems and nonlinear regression model problems.
Initialized in each test with randomly generated initial
function models, the HGSFI implementation is shown to
rapidly converge on highly fit function models in the both
task domains.

BIBLIOGRAPHY

Ayala, Francisco J. and Valentine, James W. (1979),
Evolving: the Theory and Processes of Organic
Evolution, Menlo Park, CA: Benjamin/Cummings

Daniel, Cuthbert, Wood, Fred S. and Gorman, John W. (1980),
Fitting Equations To Data, New York: John Wiley & Sons

Davis, Lawrence (1987), ed., Genetic Algorithms and
Simulated Annealing, Los Altos, CA: Morgan Kaufmann

Draper, N.R. and Smith, H. (1981), Applied Regression
Analysis, 2nd ed., New York: John Wiley & Sons

Falkenhainer, Brian C. and Michalski, Ryszard S. (1986),
Integrating Quantitative and Qualitative Discovery: the
ABACUS System, Machine Learning 1, 367-401

Gallant, A. Ronald (1987), Nonlinear Statistical Models, New
York: John Wiley & Sons

Goldberg, David E. (1989), Genetic Algorithms in Search,
Optimization, and Machine Learning, Reading,
Massachusetts: Addison-Wesley

Grefenstette, John J. (1984), GENESIS: A System for Using
Genetic Search Procedures, Proceedings of the 1984
Conference on Intelligent System and Machines

Grefenstette, John J. (1987), ed., Proceedings of
the Second International Conference on Genetic
Algorithms, Cambridge, Massachusetts: Lawrence Erlbaum

Holland, John H. (1975), Adaptation in Natural and

96

97
Artificial Systems, Ann Arbor, MI: University of
Michigan Press

Kagiwada, Harriet H. (1974), System Identification: Methods
and Applications, Reading, Massachusetts: Addison-
Wesley

Kennedy, W. J. and Gentle, J.E. (1980), Statistical
Computing, New York: Dekker

Koza, John R. (1989), "Hierarchical Genetic Algorithms
Operating on Populations of Computer Programs,”
Proceedings of the 11th International Joint Conference
on Artificial Intelligence (IJCAI), San Mateo, CA:
Morgan Kaufmann

Koza, John R. (1990), Genetic Programming: a Paradigm for
Genetically Breeding Populations of Computer Programs
to Solve Problems, Technical Report STAN-CS-90-1314,
Computer Science Department, Stanford University

Langley, P., Bradshaw, G.L., and Simon, H .A. (1983),
Rediscovering chemistry with the BACON system, in R.S.
Michlski, J.G. Carbonell, & T.M. Mitchell (Eds.),
Machine Learning: An artificial intelligence approach,
San Mateo, CA: Morgan Kaufmann

Langley, P., Simon, H.A., Bradshaw, G.L., and Zytkow, J.M.
(1987), Scientific Discovery: Computational
Explorations of the Creative Processes, Cambridge, MA:
MIT Press

Montgomery, Douglas C. and Peck, Elizabeth A. (1982),

98
Introduction to Linear Regression Analysis, New York:
John Wiley & Sons

Muhlenbein, Heinz (1991), Evolution in Time and Space - The
Parallel Genetic Algorithm, in Gregory J.E. Rawlins
(Eds.), Foundations of Genetic Algorithms, San Mateo,
CA: Morgan Kaufmann

Nordhausen, Bernd and Langley, P. (1990), An Integrated
Approach to Empirical Discovery, in J. Shrager & P.
Langley (Eds.), Computational Models of Scientific
Discovery and Theory Formation, San Mateo, CA: Morgan
Kaufmann

Press, William H., Flannery, Brian P., Teukolsky, Saul A.,
and Vetterling, William T. (1988), Numerical Recipes in
C: The Art of Scientific Computing, New York: Cambridge
University Press

Ratkowsky, David A. (1983), Nonlinear Regression Modeling: A
Unified Practical Approach, New York: Marcel Dekker

Rawlings, John 0. (1988), Applied Regression Analysis: A
Research Tool, Pacific Grove, CA: Wadsworth & Brooks

Schaffer, J. David (1989), ed., Proceedings of the Third
International Conference on Genetic Algorithms, San
Mateo, CA: Morgan Kaufmann

Smith, S.F. (1980), A Learning System Based on Genetic
Adaptive Algorithms, Ph.D. dissertation, Dept, of
Computer Science, University of Pittsburgh

Wallace, Bruce and Srb, Adrian M. (1961), Adaptation,

99
Englewood Cliffs, New Jersey: Prentice-Hall

Wright, Alden H. (1991), Genetic Algorithms for Real
Parameter Optimization, in Gregory J.E. Rawlins (Eds.),
Foundations of Genetic Algorithms, San Mateo, CA:
Morgan Kaufmann

Zytkow, J. (1987), Combining many searches in the FAHRENHEIT
discovery system, Proceedings of the Fourth
International Workshop on Machine Learning (pp. 281-
287), Irvine, CA: Morgan Kaufmann

	Machine function identification system based on genetic algorithms
	Let us know how access to this document benefits you.
	Recommended Citation

	00001.tif

