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The United States Forest Service sells timber in the form of timber 
sales. In the 1980's the Forest Service has experienced an increase in 
the number of timber offerings that receive no bid, i.e. an unsold 
offering. During sample period, 1980 through 1985, certain national 
forests have experienced 25% of their offerings receiving no bid. The 
Northern Region in 1984 reached a high of approximately 24% of their 
volume offered receiving no bids. These unsold offerings, given all of 
the hours of planning needed in order to generate a timber sale that is 
ready for auction, are considered wasteful in terms of dollars and 
manpower. Modeling the occurrence of unsold timber offerings was the 
central issue of this work. 

The characteristics of the timber sale, the timber sale contract, 
and the local and national economy were used to specify the 
classification models. The statistical models, Discriminant Analysis 
and Logistic Regression, were used to classify timber offerings into the 
categories of sold or unsold timber offerings. Also, given the large 
number of characteristics that describe a timber offering, Principal 
Components were developed to generate a smaller, parsimonious set of 
attributes. 

The final models classified approximately 80% of the sales 
correctly. These models provide accurate information concerning the 
probability of a timber sale offering selling, given timber sale and 
economic characteristics of the offering. The models could prove to be 
an effective planning tool for land managers. 
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CHAPTER 1 

INTRODUCTION 

The Western Montana and Northern Idaho area is the prime timber 

producing area of the Northern Region of the United States Forest 

Service. Within this area can be found a very diverse group of timber 

purchasers. They range from large national wood products firms like 

Champion International and Louisana Pacific, to small private loggers 

(gypos). A major source of their timber supply, the input into their 

production process, is found on federal lands. There are major holdings 

of industrial and nonindustrial timber, but the United States Forest 

Service is still the major supplier (see Table 1.1 below). 

TABLE 1-1: 

REGION 1 TIMBER HARVEST (MMBF) 

TIMBER HARVEST FOREST SERVICE 
YEAR FOREST SERVICE PERCENTAGE OF TOTAL 
1980 822.1 36.6 
1981 853.8 42.9 
1982 523.4 29.9 
1983 1061.0 42.1 
1984 907.7 35.9 
1985 983.4 41.8 

1.1. PLANNING THE TIMBER SALE 

The Forest Service sells timber from federal lands in the form of 

timber auctions. The time span encompassing timber sale development 

typically ranges from approximately two to ten years. The first step in 

this process is for a field forester to walk through a particular area 

TOTAL 
HARVEST 
2247.8 
1988.2 
1751.6 
2522.4 
2526.2 
2352.4 
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and determine whether the area can support a timber sale; meaning that 

the trees in the area are mature and ready to harvest. The area is 

reviewed by foresters, engineers, and planning team members to determine 

how best to package the timber into a timber sale. The planning team 

makes decisions concerning total volume harvested and how it will be 

harvested. For example, in some areas, maintenance of certain visual 

quality objectives is desirable. If the sale is in one of these areas, 

adequate standing timber will be left on the land and the shape of the 

cutting units will be designed to mesh with the natural landscape. 

Decisions are made concerning whether road building is necessary, and if 

so, what road standards should be used. If the soil is erosive, both 

road building and the yarding method (the means used to get the logs 

from the stump to the landing site) may be altered to reduce erosion. 

There are also considerations concerning wildlife. "Is the area summer 

or winter range for elk?" "Is it elk calving habitat or is there any 

evidence of rare and endangered species?" If any of these are true, 

logging plans may be further modified. 

Timber sales can be used to produce positive externalities. The 

timber sale, for instance, may be used to benefit wildlife, recreation 

and other nontimber outputs (Lyon et al, 1985). 

1.2. OFFERING THE TIMBER SALE - FAILURE TO SELL 

Once the timber sale planning is finalized, the sale is offered to 

the public. The outcome desired by the Forest Service is for the sale 

to sell and for the return in stumpage sold to cover their costs of 

planning and administration. However, sometimes the result, especially 
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in the 1980's, is that the timber sale offering will result in a no bid 

sale, i.e. an unsold offering. This result, given all of the hours of 

planning needed to generate a timber sale that is ready for auction, is 

wasteful in terms of dollars and manpower. It is not, as some Forest 

Service officials claim, something that can be put on a shelf and 

stored. Many of these timber sales will need to be revised in order to 

arrive at an offering that has a high probability of selling. Of course 

these revisions require more money, and there is no guarantee that the 

revisions produce a sale that is more appealing to a potential buyer. 

Table 1.2 presents the problem of unsold offerings in terms of volume 

offered, volume sold, and volume unsold over the period of the study, 

1980 - 1985. 

TABLE 1.2: 

REGION 1 VOLUME SOLD AND VOLUME NOT SOLD (MMBF) 

YEAR VOLUME OFFERED VOLUME SOLD VOLUME UNSOLD 
1980 1287.0 1096.2 190.8 
1981 1223.4 969.7 253.7 
1982 1179.5 951.0 228.5 
1983 1223.6 1048.0 175.6 
1984 1169.5 878.5 291.0 
1985 1145.7 914.4 231.3 

The failure of sales to sucessfully sell raises the obvious 

question: "Why do these timber sale offerings go unsold?" Can the 

problems be traced to the characteristics of the timber sale or to 

problems in the economics of the wood products industry or to a 

combination of both? Modeling this phenomena will be the central issue 

of this thesis. Hopefully as a result of this analysis, a policy tool 
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will result that allows planners to quantify the likely consequences of 

their timber sale planning decisions. 

1.3. AUCTION THEORY - A BRIEF REVIEW OF THE LITERATURE 

An auction process has long been considered an efficient means of 

allocating resources. The auction market not only allocates resources, 

but also generates information that is of value for both buyer and 

seller. The English auction is used by the USDA Forest Service, R-l, as 

a means of selling timber sales. The English auction starts at a low 

price level, and then gradually rises until only one willing bidder 

remains (Milgrom and Weber, 1982). In Forest Service timber sale 

auctions, the starting point of the auction is the advertised rate. 

Table 1.2 indicates that buyers of Forest Service timber sales are 

generating important information concerning timber sales by not bidding 

on approximately 20% of the volume. The following will review three 

theoretical auction frameworks set forth in the economic literature, and 

then, review several empirical works that focus on timber sale auctions. 

The first theoretical auction framework is the Independent Private 

Values (IPV) model. The IPV model suggests that each bidder knows his 

own valuation with certainity, but not those of his competitors (this is 

the private values assumption). "When firms are bidding for inputs, 

differences in the good's subjective values may be due to differences in 

location, product mix, and resources" (Brannman, Klein and Weiss, 1987, 

p. 24). These bids are considered independent and drawn from a known 

value distribution which is known by all auction participants. "Bidders 

are assumed to behave competitively; therefore, the auction is treated 
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as a noncooperative game among the bidders" (Milgrom and Weber, 1982, p. 

1090). The outcome using the IPV model, under an English auction is 

Pareto optimal; that is, the winner is the bidder who values the object 

most highly. 

The second theoretical auction framework set forth is the Common 

Value (CV) model. "The CV model assumes that the object offered for 

sale has some "true" value which is common but unknown to all bidders" 

(Brannman, Klein and Weiss, 1987, p. 25). The CV model allows for 

statistical dependence among bidders' value estimates, however offers no 

role for differences in individual tastes (Brannman, Klein and Weiss, 

1987). The CV model is susceptible to the winner's curse. The winner's 

curse arises when more than one bidder bids more than his estimate of 

the good's value. The winner's curse can be avoided if more cautious 

bids are submitted. More caution in the auction process means lower 

bids. 

The Milgrom and Weber framework (MW) is not as restrictive as the 

IPV and CV models. MW argues that the IPV model does not allow for 

uncertainty concerning the goods true value to enter the process. It 

also considers the bids to be interdependent, not independent. Under 

the CV model, the restriction does not allow differences in tastes. 

Given these criticisms, the MW model allows elements of both IPV and CV 

to enter the process. However, as competition increases it is expected 

that the winning bids in the MW model should lie between the IPV and 

pure CV predictions. 
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Haynes (1980) analyzed the competition for Forest Service timber 

sales. The study covered three regions, Pacific Southwest, Pacific 

Northwest and the Northern Region. Throughout the research the 

assumptions of competitive markets was used. "A competitive market 

model assumes that neither the buyer nor the seller can influence price 

through the sizes of their purchases or sales" (Haynes, 1980, p. 8). 

With the assumption of a competitive market as a basis, sales are 

delineated into two groups, competitive and noncompetitive. The 

delineation is based upon a price variable, overbid. Overbid is equal 

to the bid price minus road costs and appraised stumpage (Haynes, 

1980). Haynes argues that overbid provides an absolute and consistent 

measure of competition in comparison with a bid-appraisal ratio used in 

other research (see Mead, 1981). Using overbid as a measure of 

competition, a sale is defined to be noncompetitive if the overbid was 

less than one-half of 1 percent of the average overbid for the appraisal 

zone in which the sale is located; and competitive if the overbid is 

greater than one-half of one percent of the average overbid for the 

appraisal zone in which the sale is located. The assumption is that 

noncompetitive sales are somewhat different in terms of physical and 

administrative characteristics. These physical and administrative 

characteristics, along with appraisal information, were used to measure 

the quality of the sale. When faced with a sale of questionable 

quality, bidders will not increase their bid above the minimum 

acceptable bid, advertised rate. Bidders, by placing a low bid, are 

expressing their belief that the sale is of questionable quality and 



7 

will result in low or no profitability for the firm. Discriminant 

analysis, using physical, administrative, and appraisal information as 

independent variables, was used as the classification tool. The 

discriminant models provided an objective means of classifying timber 

sales into the classes of competitive and noncompetitive. The results 

from the three Regions were quite similar. In general, timber sales 

with lower volumes per acre and lower grade species, but higher road and 

logging costs, are more likely to be noncompetitive sales. These 

characteristics identified a sale of low quality, and therefore, of low 

or no profitability. 

Johnson (1979) analyzed sold timber sales during July 1, 1973 to 

July 1, 1975 in the Northern Region. His "major objective was to show 

that there are certain circumstances whereby oral and sealed bidding can 

be expected to yield the same price and other circumstances where sealed 

bidding is expected to yield a higher price" (Johnson, 1979, p. 316). 

Johnson delineates the two cases by distinguishing between two bidding 

cases, homogenous and nonhomogenous. The homogeneous bidding case is 

derived in the following manner. Each bidder evaluates the quality of 

the timber on the sale site. Each bidder determines the products that 

can be produced from the timber on the sale site. Given that the final 

products can be determined, an end product value (P^) follows. Each 

bidder has a known cost structure, C^, for manufacturing and logging. 

However, the true logging and manufacturing costs are not known. "Given 

uncertainity and errors in estimation, both P^ and can vary from 

bidder to bidder" (Johnson, 1979, p. 317). "The maximum value, V^, 
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that any bidder (i) is willing to pay for the timber is, = P^ -

C^" (Johnson, 1979, p. 317). The homogeneous bidding case is where 

each bidder has an equal chance of drawing the highest V and winning 

the auction (Johnson, 1979). The nonhomogenous case is when a bidder or 

group of bidders will be known to have a lower cost structure for a 

particular type of timber sale. The criteria for identifying sales 

where bidders don't have an equal chance of winning the timber sale 

auction is based upon the road building requirements. 

"The most important existing constraints on sale size are those 
imposed by the necessity of road development funding through timber 
purchases. The high per mile costs ... mean that a sufficient 
volume of timber must be included in a sale to enable the purchaser 
to recover his road building costs through stumpage payment credits. 
This is a particular problem in areas with high road costs and low 
values per unit of timber volume. As a result, the smaller 
purchasers are often incapable of handling such sales because of the 
working capital requirements and specialized equipment needed" 
(Johnson, 1979, 320). 

Sales with less than $20,000 of road building are considered to be in 

the homogeneous class; and sales with more than $20,000 of road building 

are in the nonhomogeneous class. .Sales with smaller road developments 

have the likelihood of receiving more bids because a larger number of 

potential purchasers exist that can harvest the sale profitably. More 

firms (both small and large) possess the necessary capital equipment 

needed to harvest the sale profitably. However, sales with large road 

building requirements have a smaller number of potential purchasers that 

can profitably bid on the sale because of the ownership of the necessary 

capital requirements and specialized equipment needed. 

Merzenich (1981) in his developmental transaction evidence appraisal 

work in the Northern Region found that when skyline yarding was 
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required, a lower number of bidders participated in the timber sale 

auction. Skyline yarding systems are specialized systems, which are not 

owned by all purchasers, especially small purchasers. Like specialized 

road building equipment, required skyline yarding systems reduce the 

number of potential buyers, and translate into higher costs. If the 

timber sale is composed of lower valued species and specialized yarding 

systems, the profitability of the sale is likely to be small. However, 

as in the case of road building equipment, purchasers who own 

specialized yarding systems will have the advantage of a lower cost 

structure for sales of this type. 

Jackson and McQuillan (1979), using a sample of timber sales from 

three districts on the Lolo National Forest, developed a hedonic price 

function. The model predicted stumpage price based upon tree diameter, 

stand composition, logging method, reproduction system and market 

conditions. They hypothesized that net stumpage value for trees smaller 

than a given diameter, woodland processing and delivery costs exceed the 

log values delivered at a mill (Jackson and McQuillan, 1979). For trees 

with larger diameters, a positive value exists, "because per-unit 

felling, bucking, skidding and loading costs decrease with increasing 

diameter while realized value at a mill increases with size due to 

reduced handling costs and higher product values" (Jackson and 

McQuillan, 1979, p. 621). As in Haynes1 research, Jackson and McQuillan 

use sale characteristics as proxies of sale quality. In general, the 

model indicates that sales which have on the average smaller diameter 

timber (lower value), lower volumes per acre (less value per acre), 
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skyline yarding (higher yarding costs), and are sold during depressed 

markets (depressed lumber prices), will have a lower sale value. The 

empirical model was highly successful at explaining the variation found 

2 
in bid price, R - .81. 

The auction frameworks set forth describe the theoretical 

foundations that can be expected under certain assumptions. Timber 

sales are a resource that possess significant uncertainity. The 

uncertainity stems from a lack of knowledge with respect to the quality 

of the timber to be harvested, the exact cost of harvesting the sale, 

and the volatility of end product prices. The empirical auction 

research centered on using these quality indicators to model various 

aspects of federal timber sales. 

1.4. GENERAL MODEL SPECIFICATION 

The model specification was based on the knowledge generated from 

the literature review. None of the literature cited specifically dealt 

with unsold sales. However, unsold sales can be considered a special 

category of Haynes1 noncompetitive sales category. 

The empirical research reviewed above used quality measures in their 

model specifications. In general, the quality measures reflect the 

revenues that are expected to be generated from the stumpage versus the 

costs of harvesting the stumpage. Given the objective of this research, 

understanding and modeling of unsold versus sold sales, the general 

model specification was the following: 

Sold and Unsold Sales - f( 1. Sale characteristics 
2. Administrative characteristics 
3. Economic characteristics). 
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The specific variables that were used to represent the above model 

specification are presented in the following chapter. 
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CHAPTER 2 

STATEMENTS OF HYPOTHESES 

This chapter will deal with the identification of the variables that 

could be used in the models and statements of the hypotheses about the 

expected signs on these variables. 

The variables that were used to predict sold and unsold timber sales 

can be grouped into three categories: sale characteristics, 

administrative characteristics and economic characteristics. Each of 

these categories represent specific attributes of the timber sale. Sale 

characteristics represent physical features of the timber sale; 

administrative characteristics represent the contractual agreements of 

the timber sale; and the economic characteristics represent the economic 

situation at the time of the auction. These attributes are proxies for 

the items that increase (decrease) revenues or increase (decrease) 

costs. For example, as stump to mill costs increase, holding revenues 

from the sale constant, it is more likely that the prospective purchaser 

of the sale will not purchase the sale because of the increased costs 

(decreased revenue) that are likely to result. Also, when a sale 

characteristic like percent volume skyline yarded is used in the model, 

it is a proxy for increased costs. Skyline yarding is one of the most 

expensive yarding methods available; when it is required this, 

translates into logging in difficult terrain. 
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One tailed tests of significance were used since I hypothesized the 

sign as well as the non-zero significance of each variable. One must 

remember that these hypotheses are made under the assumptions that all 

other variables in the model are held constant. However, in a model 

that is a linear combination of a set of variables, it is important to 

remember that we are making a conditional probability statement. The 

hypothesis is conditional on the other variables found in the equation. 

Even more caution should be used when certain variables are correlated. 

These hypotheses are derived from my knowledge of economics and 

forestry, and are also backed by what is observed in the empirical 

forest economics literature. 

2.1. HYPOTHESES 

2.1.1. SALE CHARACTERISTICS 

1) Stump to Mill Costs: 
H : B = 0 
H : B < 0 

Stump to mill costs are defined to be Felling and Bucking costs, 
Skidding and Loading costs, Haul costs, Slash Disposal costs, Specified 
Road costs and the Advertised Rate. These activities are the necessary 
steps the purchaser needs to complete in order to make the standing 
trees into log deck inventory. The purchaser must buy the rights to the 
trees with the minimum price as the advertised rate, build the necessary 
roads (Specified Road costs), fell the trees (Felling and Bucking), skid 
the logs to a landing (Skidding and Loading) , dispose of the slash 
(Slash Disposal) and haul the logs to the mill (Haul costs). These are 
Forest Service appraisal estimates that are found on the appraisal form 
2400-17. These appraisal estimates reflect the average costs 
experienced by a sample of purchasers in the region. It is important to 
remember that these cost items are based on average costs, not marginal 
costs and therefore, may not be accurate estimates of the winning 
bidders costs of logging. 
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2) Total Harvested Acres 
- Dense Pack: 

Total Sale Acres 
H : B - 0 
H : B > 0 

Dense Pack is measuring the amount of movement of people and 
equipment that is needed to harvest the given sale volume. As this 
ratio approaches one, I hypothesize that costs of harvesting a certain 
volume decreases. With stump to mill costs decreasing, the sale should 
become more appealing. 

3) Average diameter at breast height: 
H : B - 0 
H : B > 0 

As the average diameter increases, the value of the logs increase, 
this should decrease the chances of a no-bid sale. 

4) Average Logs/Thousand Board Feet: 
H : B - 0 
H : B < 0 

This variabfe indicates the number of logs that need to be moved in 
order to harvest a thousand board feet of timber. The more pieces that 
need to be handled, the higher the stump to mill costs. Logs/thousand 
board feet is highly correlated with average diameter at breast height. 
I will only use one of these variables in the equation in order to 
eliminate any problem with collinearity. As logs/thousand board feet 
increases, this will reduce the chances of the sale selling. 

5) Volume/Acre Harvested: 
H : B - 0 
H : B > 0 

As volume per acre increases this will decrease felling and bucking 
costs and skidding and loading costs per acre harvested. The logger 
will have to move less in a given area in order to harvest more volume. 
Thus, the more volume/acre the better the chances of the sale selling. 

6) Total Haul Miles to the first Appraisal Point 
- - Haul Ratio 

Total Haul Miles to the next Appraisal Point 
H : B - 0 
H : B > 0 
£ 

This ratio represents how isolated the sale is from various milling 
centers. The numerator is the haul distance to the Forest Service 
appraisal point. The denominator is the haul to the next nearest 
appraisal point. If the ratio is small, this indicates the sale is 
isolated from potential milling areas. If the ratio is close to one, 
the sale has at least two potential milling areas as outlets. 
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7) Percent of the volume tractor yarded: 
H : B - 0 
H : B > 0 

Tractor yarling is the cheapest method available to yard logs. If a 
sale has a higher percentage of the volume tractor yarded this should 
decrease skidding and loading costs, which will then make the sale more 
appealing. Having sales that are 100% tractor yarded also increases the 
number of potential bidders because all loggers have tractors, but not 
all have cable systems. 

8) Percent of the volume cable yarded: 
H : B - 0 
H : B < 0 

Cable yarding is more costly than tractor yarding and will increase 
the cost of yarding. And as stated above, fewer loggers have cable 
systems reducing the number of potential bidders. 

9) Percent of the sale volume clearcut, seedtree cut or right 
of way: 

H : B - 0 
H : B > 0 

These silvicultural methods allow the logger to harvest the most 
volume per acre, thus, reducing felling costs per acre. In Jackson's 
study (1987) comparing Forest Service and Department of State Lands bid 
values, the estimated coefficient was negative. This is the opposite 
sign that I hypothesized above. The negative sign is not surprising if 
the quality of the trees is considered. If lower valued species, dead, 
or diseased trees are being harvested then the negative sign is 
justified. 

10) Miles of new specified roads: 
H : B = 0 
H : B < 0 

As the miles of new road construction increase, this will decrease 
the probability of the sale selling. The reason is, it delays the 
logging operation, sometimes for as long as two years. This allows the 
problem of business cycle risk to enter the process. Another view is 
presented by Johnson (1979). Johnson classifies timber buyers into 2 
groups, homogeneous and nonhomogeneous buyers. The membership in these 
groups depends upon the degree to which firms are similar or different 
in regards to ownership of certain capital assets (Johnson, 1979). A 
timber buyer who owns the necessary capital equipment in order to build 
roads in a timber sale will have a distinct bidding advantage. This 
will then cause the above hypothesis to be positve. 

11) Miles of reconstructed specified roads: 
H : B = 0 
H : B < 0 

The comments for miles of new specified roads apply here. 
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2.1.2. ADMINISTRATIVE CHARACTERISTICS 

1) Contributed funds: 
Ho: B = 0 
Ha: B > 0 

If funds are contributed to the sale to cover the cost of the roads, 
this should increase the likelihood of the sale selling. The Forest 
Service has eliminated any risk associated with the road building for the 
potential buyer. This will then make the sale more attractive. 

2) Small Business Administration Setaside Sale: 
H,,: B = 0 
Ha: B + 0 

Two views can be considered. The first is that it reduces the 
number of potential bidders; this will make it more likely to not sell. 
Second, this increases competition for the sale, by giving the small 
purchaser an advantage. An SBA setaside sale is not randomly chosen. 
Forest officials decide if a sale will be advertised as a SBA based on 
whether SBA size firms (500 employees or less) have been successful in 
purchasing a certain percentage of the sales in a particular forest. 

3) Escalation Price Provision: 
H0: B = 0 
Ha: B > 0 

In a sale that uses an escalated price clause, the stumpage price 
is linked to the WWPA price index. If the price falls, the purchaser 
receives a full discount on stumpage; whereas if prices rise, the 
purchaser pays an added price commensurate with only 50% of the increase. 
Escalated sales decrease the risk to the purchaser, and this should make 
the sale more appealing. Escalation can only apply to sales that are not 
appraised as deficit sales. 

4) Contract length in months: 
Ho: B - 0 
Ha: B ? 0 

A specific sign will not be stated for this variable because of the 
changes that occurred in the wood products industry during the early 
1980's. At one time, a long contract period could be translated into 
greater flexibility to the purchaser. But today, long contract periods 
could be viewed as greater risk because of the problems in the wood 
products market. Also, contract length is correlated with total volume, 
miles of road constructed and total acres harvested. This correlation is 
created by the regulations found in the Forest Service Manual. 
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2.1.3. ECONOMIC CHARACTERISTICS 

1) Selling Value (Lumber Tally): 
H: B = 0 
H: B > 0 

Selling Value L.T. (SPLT) is the value of the product that can be 
produced from the given log species input. This is not a perfect 
estimator of the value of the lumber that can be produced from the logs, 
as the Forest Service assumes that the producer will maximize the volume 
of lumber that can be produced from the logs. The producer may maximize 
profits by maximizing the output of specific types of products, which 
may not lead to the maximum lumber output. Given this slight drawback, 
SPLT is still a good measure of lumber price. 

2) Monthly Housing Starts: 
H : B - 0 
H : B > 0 

Since a majority of the output from Region 1 mills is housing 
construction products this economic measure will give an indication of 
the strength of the demand for raw materials. 

3) Home Mortgage Interest Rates: 
H : B = 0 
H : B < 0 

Home mortgage interest rates is the cost of financing a new home to 
the consumer. High rates tend to reduce the demand for new housing, 
thus depressing the demand for stumpage. 

4) Framing lumber composite prices: 
H : B - 0 
H : B > 0 

If the framing lumber composite price is rising this an indication 
of good lumber markets. If lumber markets are perceived to be rising, 
and this rise is expected to continue, this will spur timber buyers to 
buy timber sales. 

5) Uncut Volume Under Contract: 
H : B - 0 
H : B < 0 

Uncut volume under contract is the amount of volume purchasers have 
under contract with national forests. It can be considered their 
savings account. If the purchaser possesses a large amount of uncut 
volume under contract, he will be more selective when purchasing new 
sales. The purchaser knows mill needs will be met by his uncut volume 
under contract and other sources, thus, he will forgo timber sales that 
are of questionable value. 
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6) Lumber orders by mills in the Intermountain region: 
H : B - 0 
H : B > 0 
£ 

If mills are filling more orders, this indicates an increase in 
demand. With an upswing in this measure, mills will be more willing to 
add logs to their inventory. 

2° 

7) Mill Production in the Intermountain region: 
B = 0 
B > 0 

Mill production indicates a positive change in the lumber market (or 
a company increasing a depleted lumber inventory). This will lead to a 
hypothesized positive sign on this variable. 

8) Mill 1: 
H : B - 0 
H : B > 0 

This variable indicates if the appraisal point chosen by the Forest 
Service is competitive. A competitive appraisal point is one with more 
than one competing mill. If the appraisal point meets the above 
criteria then it is coded as a one, otherwise it is coded as a zero. 

9) Canadian/United States dollar exchange rate: 
H : B = 0 
H : B < 0 

The exchange rate is the price of one currency in terms of another 
currency, and in the long run, is determined by the general price level 
within the two economies (McCarl and Haynes, 1985). There has been much 
said concerning the effect Canadian lumber has had on U.S. markets. 
Most of the discussion has centered on the "subsidy" the Canadian timber 
purchasers receive when purchasing stumpage. Research has been done 
examining the issue from the aspect of exchange rates (McCarl and 
Haynes, 1985). During the early 1980's the U.S. dollar has been very 
strong, especially compared to the Canadian dollar. Exchange rates have 
the following two effects: 1. An increasing exchange rate encourages 
imports into the country and acts as an implicit import subsidy for 
foreign producers; 2. An increasing exchange rate discourages exports 
from the country and acts as an explicit tax on domestic producers 
(McCarl and Haynes, 1985). As this inbalance persists, Canadian lumber 
will continue to supply approximate 30% of the lumber sold in the United 
States, and thus, this will have a negative effect on the outcome of 
timber sale auctions. 

Most of these variables have been used in other work dealing with 

timber sale economics (Buongiorno and Young, 1984; Connaughton, 1981; 

Jackson and McQuillan, 1979; Matthews, 1942; Merzenich, 1981; 
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Johnson-True, 1985). A much smaller number of variables were used in 

formulating the models. There are several reasons why all of the 

variables can't be used. First, the objective was to build a prediction 

model that is parsimonious. This means that the model should not be 

redundant in the variables that are present. Second, some of the 

variables stated above explain the same variation. This means these 

variables can be substituted for one another, and the final model will 

explain approximately the same amount of the variation. Third, if all 

of the variables were used in the modeling process, a degrees of freedom 

problem would arise. 

The timber sale data can be found in the timber sale folders located 

at the Forest Supervisor's office and on computer file at the Regional 

office. The economic data can be found in published documents. 
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CHAPTER 3 

METHODS 

The motivating factor in this research was the development of a 

model (policy tool) that could be used to predict the outcome of a 

timber sale auction. It is important to have the ability to predict 

outcomes. However, it is also important to understand the phenomena 

that is being studied. The models developed in this research will allow 

the prediction of a timber sale auction, and also, will allow one to 

draw conclusions as to why unsold sales occur. Two statistical models 

were developed, Logistic Regression and Discriminant Analysis. In 

general, the logistic regression model predicts the probability of an 

outcome occurring (probability of a sale selling), and discriminant 

analysis classifies objects (timber sales) into groups (sold or unsold). 

3.1. SAMPLING 

A random sample of USDA Forest Service timber sales comprised the 

data for this study. It was viewed to be statistically beneficial to 

have a large sample of sold and unsold timber sales; therefore, a more 

intense random sampling was used for the unsold sales given that fewer 

of these sales occurred. The final sample consisted of 204 sold timber 

sales and 145 unsold timber, sales from the seven westside forests 

(Bitterroot, Lolo, Flathead, Kootenai, Idaho Panhandle, Clearwater and 

Nezperce) in Region One during the years 1980 through 1985. 
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3.2. MODEL SELECTION CRITERIA 

During model development, a model selection criteria must be 

developed which allows the modeler to objectively choose between models. 

The following items were used to decide which model was considered best: 

1. How well does the model predict (goodness of fit) and; 

2. What type of information does it provide to the user. 

3.3. DISCRIMINANT ANALYSIS 

In this analysis we have two populations, call them at, and jt2. These 

two populations represent sold and unsold sales. The basic goal of 

Discriminant Analysis is to produce a linear function that will optimally 

separate these two populations. Each population has its own expected 

value E(x) = and E(x) = n2, but, they share the same variance-covariance 

2 matrix, (This is actually a pooled variance-covariance E matrix). This 

assumption of equal variance-covariance matrix may empirically be a heroic 

assumption. Research has shown that if the covariance matrices are not 

equal for the two populations then the linear discriminant function is not 

robust (Press and Wilson, 1978). If the assumption of equal 

variance-covariance is violated, then it is appropriate to replace the 

pooled variance-covariance matrix with the individual variance-covariance 

matrices. By making this substitution the method is no longer linear but 

is a quadratic discriminant function (Johnson and Wichern, 1982). 
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Like most of the multivariate techniques, the discriminant function 

is a linear combination of p variables. A discriminant score is produced 

from this linear combination as follows: 

Y — i'x — + i2x2 +••••+ ipxp. 

Each population has its own mean 

/i1Y = E[Y|jt,] - i'/x, and m2Y - E[Y|jt] -

The variance of Y is: 

Var(Y) = i'Zi - cty2 

The £' s, the coefficients of the linear combination, are chosen to 

maximize 

(Miy " ^2Y)/CTy2-

The numerator can be thought of as the between population variance and the 

denominator, variation within the population. 

i' - (li, - ̂  

Y - (m, - M^x 

The above equation is known as Fisher's Linear Discriminant Function. 

There are two major assumptions that are the foundation of 

Discriminant Analysis. They are: 

1. the X matrix is distributed as a Multivariate Normal; 

2. and each population has equal variance-covariance matrices. 

If all variables in the analysis are continuous and if the sample size is 

large, i.e. greater than 50, then it is safe to make the assumption that 

the distribution is multivariate normal. 
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In this research as in most economic research, there are several 

variables that are measured in discrete terms, zero or one. When this 

occurs the assumptions of multivariate normality and equal 

variance-covariance matrices are violated (Press and Wilson, 1978; 

Eisenbeis, 1977). For example, assume we have two variables. If we plot 

these variables, the plot should resemble an ellipse if the bivariate 

normal holds. If the linear discriminant function is to be successful, 

these two populations should be separable with a linear function. But if 

assumption 1 and 2 above do not hold, then it will require a nonlinear 

function to perform the separation (quadratic discrimination). Also, if 

the covariance matrices are not equal it is not appropriate to pool them. 

It is this pooled covariance matrix that is the central building block to 

the Fisher linear discriminant function. Since access to computer 

software that would have allowed the estimation of a quadratic 

discriminant function was lacking, the use of dichotomous variables was 

held to a minimum. 

The above statements indicate that the linear discriminant function 

is based on very strict assumptions which are seldom observed. Research 

has investigated the robustness of the linear discriminant function when 

the above assumptions are violated (Press and Wilson, 1978; Eisenbeis, 

1977). Robustness refers to the deterioration in error rates caused by 

using a classification procedure with data that do not conform to the 

assumption on which the procedure was based (Johnson and Wichern, 1982). 
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In discriminant analysis it is not possible to determine the 

significance of individual variables as in classical linear regression 

(Eisenbeis, 1977). There are a number of methods which attempt to 

determine the relative importance of individual variables (Eisenbeis, 

1977). A few examples of these are the univariate F-statistic and the 

stepwise forward inclusion method. The univariate F-statistic indicates 

which means are significantly different. The problem is that the 

variables are treated independently. The F-statistic may indicate that 

a variable is insignificant. When combined with another variable this 

variable may be quite important. Collinearity may help the discriminating 

power of the function up to the point where it is no longer possible to 

invert the dispersion matrices (Eisenbeis, 1977). The stepwise procedures 

are based upon the conditional methods which take into account 

correlations among the variables (Eisenbeis, 1977). The method used was 

a stepwise inclusion method based upon Wilk's Lambda. Wilk's Lambda is 

a statistic used in testing the hypotheses of equal group means. All of 

the methods used for testing significance assume equal dispersion 

matrices. 

Once the models were estimated, the question of which variables 

(characteristics) were most important in determining sold and unsold 

timber sales arises. This question was answered by using the standardized 

canonical discriminant function coefficients. The standardized canonical 

discriminant function coefficient represents the relative contribution of 

its associated variable to that function, when the sign is ignored. The 
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sign indicates if the variable is making a positive or negative 

contribution. The interpretation of these coefficients is comparable to 

the interpretation of beta weights from regression analysis. 

Once the model was estimated, its predictive power was determined. 

An estimate of the models error rate is a count of the number of correctly 

classified outcomes compared to the total number of cases. This ratio 

indicated the accuracy of the model. However, this measure of accuracy is 

considered to be upwardly biased (Lachenbruch, 1975) . A model should be 

able to predict the data from which it was built fairly accurately. The 

jackknife procedure builds the model on n-1 observations and then predicts 

the observation that was left out. This is done for each observation and 

an error rate is calculated. The jackknife error rate estimate is 

considered a better estimate. Both error estimates were used in this 

research. 

Given that the assumptions of multivariate normality and equal 

dispersion matrices were not met in this research, a second statistical 

tool was developed that has been found to be robust under the above 

violations (Press and Wilson, 1978). 

3.4. QUALITATIVE RESPONSE MODELS 

There are basically three common forms of probability function used 

in application (Ameniya, 1981). 

Linear Probability (LP) Model: F(w) = w 

ui ,— -t2/2 dt 
Probit Model: F(w) = 5(w) - Sjol/JIn e 

Logit Model: F(w) = L(w) = e^/l+e" 
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3.4.1. LINEAR PROBABILITY MODEL 

The LP model is nothing more than a linear regression model that can be 

estimated using either Ordinary Least Squares (OLS) or Weighted Least 

Squares (WLS). The most obvious defect with this model is that it does 

not constrain its predictions to the interval zero-one, as a probability 

should. One method that has been used to correct this problem is to 

truncate the prediction, that is, any prediction greater than one is 

considered to be a one and any prediction less than zero is considered to 

be zero. Also, when this function is estimated using OLS, the variance 

of the error is heteroscedatic, var(u,) — a2 (Koutsoyiannis, 1977). This 

problem can be remedied by estimating the function using WLS. This 

approach still has the shortcoming of predicting outside the interval of 

zero-one. However, it is still considered a good starting point for the 

model building process (Ameniya, 1981). Since the coefficient estimates 

still are statistically unbiased, the objective is strictly prediction, 

and there is not access to software that allows estimation of a probit or 

logit model, the linear probability model is a viable option. Since 

heteroscedasticity affects the standard error, tests of significance are 

not appropriate. 

3.4.2. LOGIT VERSUS PROBIT 

Given the above problems, a technique that is based on a cumulative 

probability distribution function would be more appropriate. There are 

many types of cumulative probability distributions. The two most commonly 

used are the cumulative normal probability function (Probit) and the 
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cumulative logistic probability function (Logit). The Probit model is 

based on the standard normal probability density function, and the Logit 

model is based upon the logistic probability density function (Ameniya, 

1981). Both of these distributions are symmetric around zero and have 

variances equal to 1 and tt2/3 , respectively (Ameniya, 1981). The 

literature has shown that these two distributions are very similar, in 

fact, it is difficult to distinguish them statistically unless one has an 

extremely large number of observations (Ameniya, 1981). Given this and 

the fact that the Probit model is much more computer intensive when 

considering model estimation, this research used the Logit model. 

Much of the earlier work done using the logistic regression model 

consists of data that can be grouped. For example, a model contains a 

variable that measures three dosage levels of insecticide. The data can 

be grouped into three categories, each with a certain sample size. When 

the sample size is large in each "cell" the estimation process is 

relatively straightforward. In economic research, many of the independent 

variables are continuous. This translates into one observation per cell; 

or in other words, only one choice is associated with each set of 

independent variables. It is possible to aggregate the continuous 

variable into categories. For example, if income is an independent 

variable in the model, it is possible to aggregate the income data into 

categories. However, aggregation leads to a loss of information. 

Fortunately a maximum-likelihood-estimation procedure can be applied to 

the model (Ameniya, 1981). The maximum-likelihood-estimation procedure 
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does not require that the data be grouped (aggregated). This allows each 

individual observation within the sample to have a distinct probability 

with which it is associated (Pindyck and Rubinfeld, 1981). Briefly, the 

maximum-likelihood method chooses among all possible estimates of the 

parameters those values which make the probability of obtaining the 

observed sample as large as possible (Koutsoyiannis, 1977). These 

maximum-likelihood-estimates have several desirable properties (Pindyck 

and Rubinfeld, 1981). All parameters are consistent and efficient 

asymptotically. All parameter estimators are known to be normal, so that 

the t-test can be applied in order to test for the statistical 

significance of coefficients. The discriminant function does not allow 

us to do this. 

Another advantage of the logistic regression approach is that the 

coefficients can be interpreted. It is important to note that the 

coefficients of the logistic regression cannot be directly interpreted as 

you would interpret standard regression coefficients. The interpretation 

of the standard regression coefficient is, ceteris paribus, a one unit 

increase in the exogeneous variable will lead, to a change in the 

endogeneous variable equal to the amount of the estimated coefficient, Bi. 

The B coefficient from the logit model indicates the increase in the log 

of the odds that an event (sold offering) will occur given a unit change 

in the independent variable X, (Pindyck and Rubinfeld, 1981). It can be 

shown that a change in P(, as a result of a change in X,, is a function of 

both B, and ?! (Pindyck and Rubinfeld, 1981) . 
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P, = B1*[P,*(1-PI) ] . 

This also implies that changes in independent variables will have their 

greatest impact on the probability of choosing a given option at the 

midpoint of the distribution (Pindyck and Rubinfeld, 1981). This can also 

be understood when viewing the cumulative logistic curve. At the low 

slopes near the endpoints of the distribution large changes in X are 

necessary to bring about small changes in probability. At the center of 

the distribution (probability equals .50) the slope of the cumulative 

logistic curve is the greatest; a change in the X will yield the greatest 

change in the probability. 

To measure how well the logistic regression fits is not as 

straightforward as in classical linear regression. The R-squared from 

classical linear regression indicates how much of the variation found in 

the dependent variable is explained. In this case the dependent variable 

is a continuous random variable. Given that the dependent variable in my 

analysis was a zero or a one, other methods were used to measure goodness 

of fit. 

A goodness of fit method that is used extensively in the field of 

meteorology is the Quadratic score (Winkler and Murphey, 1980). The 

following is the quadratic scoring rule for evaluating a model's 

prediction: 

3 [1 - 2 * (£ - E)2] 

— Average score 

number of timber sales 
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where i runs over all sales found in the sample, where E is a random 

variable with a value equal to one if an offering sells and equal to zero 

if the offering does not sell. If £, the predicted probability from the 

logistic regression model, is near 1 and E — 1, the prediction is good. 

Likewise, if £ is near zero and E = 0, the prediction is good. The range 

of possible values for this quadratic score is -1 to +1, with values being 

close to 1 being good scores and values near -1 being poor scores. 

Another method used to test goodness-of-fit is identical to the 

method used for discriminant analysis. The number of correct predictions 

divided by the number of total cases will provide an error rate estimate. 

The problem with this measure is that cases are equally penalized. For 

example, predictions of .01 and .49, assuming the decision rule is > .50 

equals sold and < .50 equals unsold, are equally predicted to be unsold, 

when actually the prediction of .01 is truly a correct prediction while 

the .49 could be considered an indecision (Ameniya, 1981). Like the 

discriminant function, the logistic regression model will do well by this 

criteria. I have provided both of these goodness-of-fit measures for the 

estimated logistic regression model. 

3.5. Principal Components 

From reading chapter 2, one notices there are many variables that 

could possibly affect a timber sale auction. As stated above, not all of 

the variables were considered as possible variables in the final model. 

Many of these variables were used for descriptive purposes only. However, 

the number of explanatory variables that were used to specify the model 



31 

approached 20. Given the large number of variables considered and that 

many of them are correlated, the technique of principal components was 

used. Principal components can achieve three goals: 

1. variable reduction; 

2. create new orthogonal variates that can be used in further 

analysis; 

3. analytically determine how these variables are related. 

The general form of the principal components model is: 

Y, = i,x 

where Y is the new variable, the principal component, i', is a row vector 

of coefficients and X is the matrix of original variables. The i,'s are 

chosen such that i', maximizes Var(Y,) and i'2 maximizes Var(Y2) subject to 

= 0 (i',^ = 0 indicates that two vectors i', and i'2 are orthogonal, 

at 90 degrees to each other). These new variates have a mean, E(Y) = 

and a variance, Var(Y) = = A, (Johnson and Wichern, 1982). A; is 

the ith eigenvalue, found by solving the characteristic equation, 

|Z - Al| - 0 

It can be shown that the i,'s are nothing more than the eigenvectors 

which correspond to their respective eigenvalues (Johnson and Wichern, 

1982; Morrison, 1976). The eigenvectors are found by solving the 

following equation: 

Ex = Ax. 

Geometrically, the eigenvectors define new axes in the plane (or of an 

ellipse). It is these new axes that define the principal components. 
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The calculation of the principal components is usually based upon 

the variance-covariance matrix, E. If the variables are measured in the 

same units or if the variances are equivalent, then the analysis should 

be based on the variance-covariance matrix. But this occurence is rare, 

especially when considering the variables in this research. For example, 

average diameter is measured in inches and stump to mill costs is measured 

in dollars per thousand board feet; not only are the units quite 

different, but the variances will also be quite different. When this 

problem occurs, the analysis of principal components should be based on 

the correlation matrix, p. The variables in the correlation matrix are 

all unitless and have a variance equal to one. This eliminates the 

problems of units and unequal variances. The analysis is carried out in 

the same manner, except the matrix (p) is used instead of (E). There is 

one observation that should be made at this point. The outcome of the 

analysis based on p compared to E can be quite different, especially when 

considering the interpretation of the principal components (Y,) (Johnson 

and Wichern, 1982). Given differences in units, my principal components 

analysis was based on the correlation matrix. 
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CHAPTER 4 

EMPIRICAL RESULTS 

Given the problem of estimating a statistical model (policy tool) to 

predict the outcome of a timber sale auction, two statistical models 

were chosen. The analysis began with the estimation of the linear 

discriminant function and the logistic regression model based upon the 

original explanatory variables. Once the 'goodness of fit' was 

determined, principal components were formed. The principal components 

were used as independent variables and the 'goodness of fit' for the two 

modeling approaches was determined. The final estimated models will be 

presented in the following order: linear discriminant model, logistic 

regression model and both of these models based on the principal 

components. 

4.1. LINEAR DISCRMINANT FUNCTION RESULTS 

When viewing the linear discriminant function coefficients in Table 

4.1 one must keep in mind how the discriminant function operates. The 

model produces a discriminant score that is a linear combination of the 

variables. When the score is less than zero the offering is predicted 

to be a sold offering, and when greater than zero the offering is 

predicted to be unsold. The interpretation of the coefficient's signs 

is now clear in light of how the discriminant analysis performs its 

classification. Variables with positive signs increase the discriminant 

score making it more likely that the offering will be unsold. Variables 
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with negative signs decrease the discriminant score increasing the 

likelihood that the offering will be sold. 

Variable 

Sale Characteristics 

1. Ln(Stump to Mill Costs) 
2. Haul Ratio 
3. Dead 
4. (% volume cable yarded)2 

5. (Volume/Acre Harvested),/2 

6. Ln(Dense Pack) 
7. (Acres Harvested)1/2 

Administrative Characteristics 

8. Pricing Method 

Economic Characteristics 

9. Ln(SPLT) 
10. Uncut Volume Under Contract,^ 
11. Exchange Rate,_3 
12. Mill 1 

Constant 

Table 4.1: 

Linear Discriminant Model 

Coefficient 

3.307 
- .744 
.023 

.0001 
- .113 
-.183 
.114 

- .593 

- .824 
.0006 
6.856 
- .636 

•23.213 

Standarized 
Coefficient 

.830 
- .173 
.270 
.487 

- .150 
- .148 
.137 

.218 

- .194 
.149 
.419 
-.318 

Model significance: x2 = 127.80, DF = 12, P(x2 > 127.80) .0000 

4.1.1. SALE CHARACTERISTICS 

Certain variables have a positive influence (increasing the 

discriminant score) in determining whether an offering will sell. The 

natural logarithm of stump to mill costs, percent volume dead lodgepole 

or dead white pine, percent volume cable yarded squared and the square 

root of the total acres harvested will increase the discriminant score. 

If these factors are present, or are increased, then it is more likely the 
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offering will not sell. Other variables have a negative effect 

(decreasing the discriminant score) in determining whether an offering 

will sell. The haul ratio, the square root of the volume per acre 

harvested, and the natural logarithm of dense pack, are factors which work 

to decrease the discriminant score, making it more likely the offering 

will sell. All signs were consistent with the proposed hypotheses. 

The standardized coefficients indicate that stump to mill costs are 

by far the most important discriminator, with a standardized coefficient 

equal to .830. The percent of the volume cable yarded is the second most 

important discriminator, with a standarized coefficient equal to .487. 

4.1.2. ADMINISTRATIVE CHARACTERISTICS 

The only variable in this category, pricing method, indicates if the 

bid price is allowed to fluctuate with the WWPA price index it is more 

likely the offering will sell. This was consistent with the stated 

hypothesis in Chapter 2. 

4.1.3. ECONOMIC CHARACTERISTICS 

The following economic characteristics increase the discriminant 

score, causing one to predict that the offering will not sell. The uncut 

volume under contract lagged three months, and the Canadian/United States 

exchange rate lagged three months results in an increase in the 

discriminant score. This indicates that when these factors are increasing 

it is less likely the offering will sell. The remaining economic 

characteristics, logarithm of the selling value, lumber tally, and Mill 

1, decrease the discriminant score. Thus, as the species mix is of higher 
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value and the Forest Service appraisal point is considered competitive, 

it will be more likely the offering will sell. The estimated signs were 

consistent with the hypothesized signs of Chapter 2. 

The standardized coefficients indicate that, exchange rate,.3, is the 

third most important discriminator. With a standardized coefficient of 

.419, it is slightly less important than percent of the volume cable 

yarded. However, it has approximately half of the discriminating power 

of stump to mill costs. 

4.1.4. GOODNESS OF FIT RESULTS 

Table 4.2 presents one of the goodness of fit measures used to 

quantify the linear discriminant model. The linear discriminant model 

correctly classified 77.9% of the timber sales. 79.3% (115 out of 145) 

of the unsold sales were correctly classified and 76.7% (157 out of 204) 

of the sold sales were correctly classified. Also, the model was 

extremely significant; the calculated x2 = 127.80 with an associated 

probability equal to .0000. This indicated that the model using the above 

variables was successful at separating the two populations. 

TABLE 4.2: 

DISCRIMINANT MODEL CLASSIFICATION RESULTS 

ACTUAL GROUPS 4 OF CASES 
PREDICTED GROUP 
UNSOLD SOLD 

Unsold Sales 145 115 
(79.3%) 

30 

Sold Sales 204 47 157 
(76.7%) 

Percent of cases correctly classified: 77.9% 
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Table 4.3 presents the jackknife classification results. The 

jackknife results are a means of verifying the stablility of the 

classification results found in Table 4.2. From the standpoint of 

unsold sales, the correct classification decreases by 1 (from 115 to 

114). In terms of sold sales, a 4 unit decrease is experienced (from 

157 to 153). Overall correct classification decreases by 1.4% (272 to 

267). These results indicate that the model is stable and that the 

error rate presented in Table 4.2 is a good estimator of the true error 

rate. 

TABLE 4.3: 

DISCRIMINANT MODEL JACKKNIFE CLASSIFICATION RESULTS 

PREDICTED GROUP 
ACTUAL GROUPS # OF CASES UNSOLD SOLD 

Unsold Sales 145 114 31 
(78.6%) 

Sold Sales 204 51 153 
(75.0%) 

Percent of cases correctly classified: 76.5% 

4.2. LOGISTIC REGRESSION RESULTS 

The interpretation of this model is straightfoward, as long as we 

keep in mind that the parameter estimates are a change in the log of the 

odds that an offering will sell given a unit change in the independent 

variables. The logistic regression model is presented in Table 4.4. 
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Variable 

Sale Characteristics 

1. Ln(Stump to Mill Costs)2 
2. (% volume cable yarded) 
3. Dead 
4. Ln(Haul Ratio) 

Administrative Characteristics 

5. Pricing Method 

Economic Characteristics 

6. (SPLT)2 

7. MILL 1 
8. Ln(Uncut Volume)^ ^ 
9. Lumber Production 
10. Exchange R&tet 3 

Intercept 

Table 4.4: 

Logistic Regression Model 

Coefficient Std Error Coef/S.E. 

-2.654 
-.00009 
- .018 

.323 

.462 

.00001 

.432 
-4.670 
.013 

-2.982 

.357 
.00002 
.006 
.124 

.203 

.000004 

.144 
1.816 
.005 
1.562 

14.221 

-7.434 
•4.500 
•2.779 
2.604 

2.276 

2.237 
3.000 
•2.572 

2 . 6 0 0  
•1.909 

4.236 60.235 

Goodness of fit statistics: Quadratic Score = .675. 

4.2.1. SALE CHARACTERISTICS 

The natural logarithm of stump to mill costs, the percent volume 

cable yarded squared, and the percent volume dead lodgepole or dead 

white pine decrease the log of the odds that an offering will sell. If 

stump to mill costs are high, or the sale has some form of cable 

yarding, or the species composition consists of dead lodgepole or dead 

white pine the probability of the sale selling will be reduced by the 

amount of their estimated coefficient and the given probability level. 

The last variable in this category, the natural logarithm of haul ratio, 

has a positive effect on the probability of the offering selling. When 

two competing milling centers are found close to the sale area, the 
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probability of the offering selling increases. All of the signs were 

consistent with the stated hypotheses. 

4.2.2. ADMINISTRATIVE CHARACTERISTICS 

If the escalation clause was used in order to establish the value of 

the stumpage (pricing method), the probability of the offering selling 

increases. This agreed with the hypothesis stated in Chapter 2. 

4.2.3. ECONOMIC CHARACTERISTICS 

If the appraisal point is competitive (mill 1) , if the species 

composition is of high value, or the lumber production in the 

Intermountain Zone is increasing, holding all other things constant, the 

probability of the offering selling will increase. The reverse is true 

when considering the natural logarithm of uncut volume under contract 

lagged three months and the Canadian/United States exchange rate lagged 

three months. If these measures are increasing, then the probability of 

the sale selling will decrease holding all other things constant. The 

estimated signs were consistent with the hypotheses set forth in Chapter 

2 .  

4.2.4. GOODNESS OF FIT RESULTS 

The logistic regression model when used as a classification tool 

correctly classified approximately 77% of the sales (see Table 4.5). 

The model achieved only 69.0% (100 out of 145) correct classification 

when considering unsold sales, but correctly classified 83.3% (170 out 

of 204) of the sold sales. The quadratic score (average score = .675) 

indicated that the model fits well; recall a score close to one 

indicates a good fit and a score close to -1 indicates a poor fit. Both 
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techniques used to measure goodness of fit, number correctly classified 

and quadratic score, indicate a good fit. 

Both estimated models proved to be adequate predictive tools. The 

logistic regression model and the discriminant model correctly classified 

77.4% and 77.9% respectively. The dissimilarity occurred when considering 

the unsold sales; the discriminant model correctly classified 79.3% in 

comparison to 69.0% for the logistic regression model. 

TABLE 4.5: 

Logistic Regression Classification Results* 

Predicted Groups 
Actual Groups # of cases Unsold Sold 

Unsold Sales 145 100 45 
(69.0%) 

Sold Sales 204 34 170 
(83.3%) 

Percent of cases correctly classified: 77.4% 

* Decision rule: Estimated probability > .50, then offering is 
sold. 
Estimated probability < .50, then offering is not 
sold 

4.3. PRINCIPAL COMPONENTS MODEL 

Many of the variables presented in Chapter 2 are interrelated. For 

example, the miles of road construction will be related to total volume 

harvested and the contract length. Given these interrelationships, 

principal components were estimated and used in the modeling process. All 

the variables from Chapter 2 were used in the principal components 

analysis. The resulting principal components are linear combinations of 

the original variables, and thus, the interpretation of the principal 
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components can be difficult. I did not attempt to interpret the 

principal components; only the predictive results using the principal 

components will be presented. 

4.3.1. LINEAR DISCRIMINANT FUNCTION 

Table 4.6 presents the estimated coefficients and the classification 

results. Comparing the classification results found in Table 4.6 and 

Table 4.2 indicates that their is only a slight difference in the 

classification results. Using the principal components the percent 

correctly classified has increased to 78.2% (273 out of 349) from 77.9% 

(272 out of 349). The principal components did not capture any "new" 

information not already found in the original variables used in the 

model. 
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Table 4.6: 

Discriminant Model Using Principal Components 

Variable Coefficient 

1. Principal Component 2 .414 
2. Principal Component 5 - .649 
3. Principal Component 7 .279 
4. Principal Component 8 - .457 
5. Principal Component 13 .439 
6. Principal Component 19 -.231 
7. Principal Component 20 .380 
8. Principal Component 21 -.175 
9. Principal Component 31 .229 
10. Principal Component 32 .202 

Intercept .000 

Classification Results 

Predicted Groups 
Actual Groups 4 of cases Unsold Sold 

Unsold Sales 145 118 27 
(81.4%) 

Sold Sales 204 49 155 
(76.0%) 

Percent of cases correctly classified: 78.2% 

Model Significance: x2 = 115.226, DF = 10, Significance = .0000 

4.3.2. LOGISTIC REGRESSION RESULTS 

Table 4.7 presents the estimated coefficients and the classification 

results. There was no change in the model's predictive ability. The 

principal components model correctly classified 77.4% of the sales (270 

out of 349), which was identical to the logistic regression model using 

the original untransformed variables. 



43 

Table 4.7: 

Logistic Regression Model using Principal Components 

Variable Coefficient Std. Error Coeff/S.E 

1. Principal Component 2 .258 .068 3.784 
2. Principal Component 5 - .407 .071 -5.664 
3. Principal Component 7 .207 .070 2.941 
4. Principal Component 8 - .306 .073 -4.156 
5. Principal Component 13 .267 .069 3.864 
6. Principal Component 19 - .149 .065 -2.284 
7. Principal Component 20 .247 .067 3.634 
8. Principal Component 21 - .115 .069 -1.659 
9. Principal Component 31 .153 .069 2.217 
10. Principal Component 32 .147 .066 2.214 
Intercept 5.252 .067 78.415 

Classification Results 

Predicted Groups 
Actual Groups # of cases Unsold Sold 

Unsold Sales 145 102 43 
(70.3%) 

Sold Sales 204 36 168 
( 8 2 . 8 % )  

Percent of cases correctly classified: 77.4% 

In general, these results indicate that the modeling process was not 

improved by using principal components. In fact, the results were much 

more difficult to interpret, since the "new" variables are a linear 

combination of all variables, and if basic assumptions of the model are 

not met it is difficult to rectify the problem. Granted, theoretically 

only certain variables are highly correlated with the principal 

component, but this is not guaranteed. If latent variables could have 

been observed from this modeling process, not only would this help the 

modeling process, but would help describe the underlying relationships 

to the decision maker. 
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In summary, the modeling process was successful in producing a model 

that predicts if an offering will sell given sale characteristics, 

administrative characteristics and economic characteristics. The 

principal components did not aid the modeling, both from a prediction 

and interpretability standpoint. 
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CHAPTER 5 

CONCLUSIONS 

Sold and unsold timber offerings became a common occurrence during 

the period of 1980 through 1985 in Region 1. The large number of unsold 

timber offerings had many forest managers puzzled as to the problems 

with the offerings and what could be done to better understand the 

offerings that were planned and ready for auction. This was not a study 

that would investigate Forest Service timber sale policy; the objective 

of the study was to formulate the problem of unsold timber offerings 

into a statistical model that could be used to provide planning 

information. The statistical model (planning tool) could provide 

important information to the planner concerning such things as, given 

the sale offering, will it sell in today's market, and what 

characteristics are statistically important in determining a sold 

offering or an unsold offering. 

Two statistical models (Discriminant Analysis and Logistic 

Regression) were chosen in order to address the problem. Both models 

allowed us to model a yes/no occurrence (sold/unsold). Sale 

characteristics, administrative characteristics and market 

characteristics were used as the information in order to specify the 

models. 

Both models, the discriminant function and the logistic regression, 

were successful at predicting sold and unsold timber offerings. They 
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correctly classified approximately 80% of the offerings. The models 

were estimated using various types of information, sale characteristics, 

administrative characteristics, and economic characteristics, all of 

which are available to the planner before the timber sale auction. In 

the beginning we assumed that this process could be modeled using 

information that forest planners have available to them before the 

auction. The models point to the fact that the planner can begin to 

develop a means of measuring the sale potential in an efficient fashion 

using available data. 

If the models are straightforward and use information that is 

available to forest planners before an auction, these models could be 

used by planners during the timber sale planning process. Computerized 

timber sale planning tools are currently used on certain forests. These 

tools allow the planner to view how costs are affected given different 

planning scenarios. If a planner thinks that certain cutting units 

should be cable yarded instead of tractor yarded, he will then be able 

to see the effect on stump to mill costs. The models estimated in this 

research could be integrated into the computer software which would 

allow the planner to view the predicted outcome of the timber sale 

auction, given his proposed changes. He may be able to include more 

cable yarding in the sale given that he knows the effect of the proposed 

change on the predicted timber sale auction. This allows the planner to 

view how changes on the ground affect the predicted outcome of the 

timber sale auction. 
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Forest managers are creating a good that will be sold in a 

competitive market. The manager should try, if possible, to produce a 

product that will sell and return the most money possible to the United 

States Treasury. Given models like the ones estimated here, the 

forester can develop sales so as to avoid the occurrence of unsold 

sales. The manager should be thinking in terms of sale monitoring, and 

planning tools like the ones developed here will give the planner the 

ability to do this. However, one must remember that the manager does 

not control the cycles of the economy, and during downturns in the 

market, sales that have the characteristics of a viable sale, may not 

sell. This is not a product problem; it is a demand problem. 

Given that these equations are stochastic models and that the timber 

market is dynamic, the models presented are not the final models. The 

equations would have to be updated (re-estimated) in order to account 

for changes and may even require reworking to reflect major changes in 

the industry. 

5.1. Further Research 

Several promising areas of research related to this topic exist. 

They deal with concepts of market areas, log markets and sale 

monitoring. 

The first concerns market areas. The model was built using data 

from seven forests on the west side of Region 1. This area is very 

diverse when considering terrain, timber types, milling centers and 

potential buyers. Research could be conducted in establishing market 

areas within these seven forests. For example, the market area 
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definition could be based on log flows within and between different 

forests. But the forest level definition may be too large. Forests 

could be divided into their districts and then aggregated into market 

areas. For example, the Nezperce National Forest could be grouped with 

the two southern districts of the Clearwater National Forest. This 

would reflect logs flowing to mills in the Grangeville, Idaho area. 

The second area of research concerns the transition of the market to 

a log market. Today more mills are relying on the log market to supply 

their log needs. Years ago the large purchaser, like Champion 

International, bought and logged Forest Service timber sales. Mills are 

now purchasing much of their needed input in the form of delivered 

logs. The Forest Service still relies on pricing the logs from a sale 

in the form of lumber output, selling price, lumber tally. But the 

small purchaser does not have a mill and is at the mercy of what the 

mill is paying for different species of logs. The models presented 

could be specified to reflect this transition to a log market by using a 

weighted average delivered log price instead of selling price, lumber 

tally. However, an accurate time series doesn't exist. 

The final area of research concerns expanding the notion of sale 

monitoring. The sold and unsold classes of sales are not the only ones 

of interest. The classes could be expanded to include noncompetitive 

sales. There are several ways to measure a noncompetitive sale, but for 

this discussion we can consider noncompetitiveness to be a sale that 

receives only one bid. In this work, noncompetitive sales were within 

the class of sold sales. The models could be expanded to include this 
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additional class rather easily. If this is done, the model would be a 

more complete sale monitoring tool. 
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