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Using Remote Sensing as a Tool for Conservation: Detecting Change in the Sheyenne 
National Grassland (37 pp.)

Director: Roland L. Redmond

A post-classification comparison change detection was performed using satellite 
imagery and a geographic information system. Land cover type was classified from three 
image dates (July 22, 1985; August 10, 1992; July 6, 1998) for a portion of one Landsat 
Thematic Mapper (TM) scene (path 30, row 27). Comparisons were then drawn between 
the areal extents for 12 cover types from each image date. Flooded Vegetation exhibited 
the largest percentage increase of all the cover types mapped (2000% between 1985 and 
1998). Water increased from 447 acres in 1985 to 8,168 acres in 1998, a change of 
1700%. In contrast, the Xeric Grass cover type declined from 60,526 acres in 1985 to 
55,421 acres in 1998, an 8% loss over the 13-year study period. Areal coverage of all 
remaining types fluctuated between increases and decreases, showing no consistency of 
change. Thematic accuracy, averaged across the three classifications, ranged from a high 
of 100% for Water to a low of 52% for Mesic Shrub. Relatively high accuracy levels for 
Water and Flooded Vegetation confirm the ability of the method to measure change in the 
spatial extent of wetlands. Discussion of the results depict how a change detection 
analysis based on remote sensing can address the information needs of land mangers, 
ecologists, and conservationists working on the SNG. Finally, the results suggest that if 
conservation actions are not taken, especially to control livestock grazing, the integrity of 
this relict patch of tallgrass prairie will almost certainly decline.
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INTRODUCTION

Human-induced land cover change has long been a problem in the West. 

Competing land uses, destruction of wildlife habitat, and loss of forest cover are all cause 

for concern in a landscape increasingly lacking in biological diversity. The need to 

quantify and track this type of activity, along with natural fluctuations in ecological 

systems, has led many scientists and conservation professionals to turn to remote sensing. 

Remote sensing provides a reliable and non-intrusive method for monitoring change in 

land cover and land use, while affording the capability to do so on a broad scale. Cost, 

availability, platform stability, and frequency of data capture are also attractive attributes 

characteristic of most satellite-derived information. The interaction between 

electromagnetic radiation (EMR) and Earth features is such that sophisticated sensors on 

board satellite platforms can detect relatively small changes in the energy flux. Recording 

these fluctuations allows scientists to track and even predict landscape changes in a 

particular region or to determine the health and distribution of vegetation types at a 

landscape scale.

Defries and Belward (2000) have stated that one of the most significant 

contributions to be gained from satellite data is the identification of land cover change. 

Change detection studies can be useful in determining what type of land cover change has 

occurred, and more importantly, how this change affects the composition of natural 

vegetation communities and the species they support. These are just a few of the 

questions that can be addressed, at least in part, by performing a change detection



analysis. In any case, the analysis of remotely sensed data can pave the way for the 

predictive modeling of the forces that shape future landscape changes.

Statement of the Problem

The Sheyenne National Grasslands (SNG) in southeastern North Dakota comprise 

a fraction of the area in North America that was once occupied by the tall and mixed- 

grass prairie ecosystems (Brown, 1985). The tallgrass prairie found on the SNG is one of 

the last and best representations of its type and is considered to be the rarest ecosystem 

under management by the U.S. Forest Service in the Northern Region (C. McCarthy, U.S. 

Forest Service, pers. comm.). The SNG is home to two federally listed species; the 

western prairie fringed orchid (Platanthera praeclara)^ listed as threatened by the U.S. 

Fish and Wildlife Service (Seig et al. 1999), and the Greater Prairie Chicken 

(Tympanucus cupido) listed as sensitive by the U.S. Forest Service (C. McCarthy, U.S. 

Forest Service, pers. comm.). This is a fragile ecosystem made more so by intensive 

management activities such as cattle grazing and fire suppression. In addition, the SNG 

has experienced severe flooding since 1993, causing concern for the continued viability 

of the western prairie fringed orchid (Seig et al. 1999). Grazing and fencing, along with a 

network of roads and flooding, have caused biotic impoverishment and fragmentation of 

habitat within the SNG, further endangering this already imperiled area and setting the 

stage for an irretrievable loss of biological diversity.



The Objective

The objective of this study is to identify and articulate the potential applications 

of remote sensing technology for addressing the information needs of ecologists, land 

managers, and conservation professionals. To illustrate this potential, I will provide 

evidence, in the form of a digital database and hard-copy maps, of quantifiable land cover 

change in the Sheyenne National Grasslands in southeastern North Dakota. This study is 

a multi-temporal, image-based monitoring project, focusing on whether change detection 

techniques are capable of detecting temporal and spatial change in the extent of wetlands 

across the SNG landscape. The result of this analysis should reveal the practicality of 

using such data in other real world monitoring situations.



THE STUDY AREA

The study was conducted in the Sheyenne National Grasslands (SNG), in 

southeastern North Dakota, 60 miles southwest of Fargo (Figure I). The study area 

encompasses the 70,100 acres under management of the U.S. Forest Service and 

approximately 66,746 acres of intermixed private land, all occurring within the 

administrative boundary of the SNG.

Barker and others have described the vegetation of the SNG as consisting of 

tallgrass prairie, mixed grass prairie, and forest and woodland communities interspersed 

with agricultural cropland (1974, in Svedarsky et al. 1996). The sandhills that comprise 

the underlying geology of this unique area are the remnants of a massive sand delta left 

over from the last glaciation. Retreating ice sheets produced large amounts of glacial 

meltwater that in turn deposited vast amounts of sand, silt, and debris at the mouth of 

what was once Glacial Lake Agazziz (Shephard 1996). The lake has long since gone, but 

the high sand delta remains. It is here that tallgrass prairie mingles with oak savanna and 

sedge meadow while deciduous woodlands occupy the lowlands alongside the Sheyenne 

River. Major tree species include bur oak (Quercus macrocarpa), aspen (Populus 

tremuloides), green ash (Fraxinus pennsylvanica), basswood (Tilia americana), and plains 

cottonwood (Populus deltoides). Big bluestem (Andropogon gerardii), little bluestem 

(Andropogon scoparius)^ and blue grama (Bouteloua gracilus) are but a few of the 

grasses that occur within the study area. This is a biologically rich environment with 

many habitat types supporting several animal species and over 800 species of plants 

(Shephard 1996).



METHODS 

Source Data

Three image dates for one Landsat Thematic Mapper (TM) scene (path 30» row 

27) were used in the analysis. Of the three images, one (August 10, 1992) was already 

part of the WSAL eirchive. A July 6, 1998 image was acquired from the U.S. Geological 

Survey’s Earth Resources Observation Systems (EROS) data center through the Multi- 

Resolution Land Characteristics Consortium (MRLC), and a July 22, 1985 image was 

also purchased from EROS. The 1985 and 1992 images were both comprised of the full 

seven bands, while the 1998 image was absent band six (thermal). Although not precise 

anniversary dates, which could not be obtained due to cloud cover, all of the images fall 

within the same general growing season of mid-to-late summer, U.S. Geological Survey 

(USGS) 7.5’ digital elevation models (DEMs) were used as general reference data and to 

provide elevation, slope, and aspect information for the supervised classifications.

Ground reference data were obtained from the U.S. Forest Service in the form of plot 

data for an earlier land cover classification (Redmond et al., 1997) and as aerial 

photographs that were scanned and registered by the U.S. Forest Service.

Pre-Processing

Satellite imagery often contains significant distortion that must be rectified before

processing. Terrain correction removes geometric distortion that results from the image
5



acquisition process, thus allowing for multiple images to be co-registered to a common 

projection. The 1992 image was terrain corrected by the Hughes/STX Corporation using 

proprietary techniques. The 1985 image was terrain corrected by the EROS data center, 

as was the 1998 image. All scenes were projected into a Universal Transverse Mercator 

(UTM) projection. Zone 14, NAD27 datum, and co-registered in ERDAS Imagine 

version 8.0. Following projection and registration, all scenes were clipped to the study 

area boundary using a masking operation available in ERDAS Imagine. Original 30m^ 

pixels then were resampled to 15m^ using the cubic convolution resampling algorithm. 

Prior to classification, the spectral bands for all three images were combined into a single 

20-band image using a layer stacking procedure available in ERDAS Imagine.

Unsupervised Classification

For the purposes of this study, three separate steps were employed in the overall 

classification process. The first step was to perform an unsupervised classification of 

pixels on the combined 20-band image using an algorithm known as the Iterative Self- 

Organizing Data Analysis Technique (ISODATA; Tou and Gonzales 1974). This method 

clusters pixels into classes according to the natural groupings of spectral values that are 

inherent in the imagery. The user specifies the maximum number of spectral classes 

allowed and the number of iterations or passes to be made over the image. The algorithm 

then measures the Euclidean distance between cluster sets starting with an arbitrarily 

chosen seed pixel. This process is repeated until the natural groupings or clusters of pixel



values in the image reach a point where their divergence from their initially determined 

cluster set is at a minimum (ERDAS 1997).

The unsupervised (ISODATA) classification initially produced 119 spectral 

classes, but several of these were quite large in terms of numbers of pixels. To more 

accurately reflect the heterogeneity that existed in the multi-date image, classes 

containing more than 250,000 pixels were split in two and re-classified, thus producing a 

final set of 130 spectral classes.

In the output of the unsupervised classification, spectral values were assigned to 

each pixel in each image. Once every pixel had been classified, the images were then 

subjected to a merging process designed to aggregate pixels of similar spectral values 

into regions representative of the natural features and patterns found on the ground (Ford 

et al., 1997 and Ma et al., 2001). In the merging process, a group of pixels smaller than 

the user-specified minimum mapping unit (MMU), in this case varying between 5 pixels 

(0.28 acres) and 22 pixels ( 1.2 acres), were aggregated with their most similar neighbor. 

Ultimately, the objective was to segment the classified image into raster polygons or 

regions that represented patterns on the ground. Once the merging process was 

completed, the resulting raster image was imported into ARC/INFO (GRID module) and 

ancillary attribute fields were added to each region in the database. At this point, the raw 

imagery was used to calculate mean TM values for each region in the database, while 

7.5-minute DEM’s were the basis for calculating mean elevation, mean slope, and 

majority aspect.



Ground-truth Data

From the WSAL archive, 359 data points were retrieved, reviewed, and evaluated

for use in the new classification. An intensive review of the training set was necessary

due to the fact that all of the points were acquired for use in the earlier classification of

p30r27 (1992). To insure that these points accurately reflected conditions present in 1985

and 1998, they were displayed over these two image dates. Ultimately, the goal was to

determine the feasibility of using the 1992 training set for all three classifications. The

entire data set was screened for positional accuracy, data attribute accuracy, and

agreement with all three image dates. The results of the review process revealed that

many of the points were not suitable. The majority of the points deemed to be unusable

were duplicates, that is, more than one plot fell within the same region. Also, as land

cover could be assumed to have changed between image dates, attribute accuracy for

some of the points was called into question. This was most evident on the 1998 image, as

many of the 1992 vegetation points were now located in water. Likewise, the ground data

did not always fit the 1985 image, apparently because vegetation cover had changed in

the intervening years. In light of these problems, an attempt was made to obtain

additional training data to better reflect land cover as it existed in 1985 and 1998.

Additional points were selected and labeled by interpreting Im^-resolution scanned aerial

photographs provided by the U.S. Forest Service. Subsequent to review, some of the

points were moved through participation in a conference “net-meeting"’ with SNG

biologists. Here again, further examination revealed that many of the new plots were

duplicates, and thus had to be eliminated from the training set. Due to the relative
8



similarity between the 1992 and 1985 images, all of the remaining plots were deemed 

appropriate for use in the classification of both images. This was not the case with the 

1998 image due to intensive flooding. The final training sets consisted of 292 points for 

the supervised classification of the 1985 and 1992 images, and 229 points for the 1998 

image (Figures 2 and 3).

Supervised Classification

The second step in the classification process was the assignment of land cover 

type labels to each region based on a supervised classification. Supervised classifications 

were carried out separately for each image date using a posterior spatial probability (PSP) 

classifier which first measured the Euclidean distance between known and unknown 

regions in the data set, then adjusted the posterior probability estimates based on spatially 

derived information (Steele and Redmond, 2000).

Manual Modifications

The third and final step was the manual classification of special features. Special

features included agricultural classes. Urban, Water, and Flooded Vegetation. Manual

classification of agriculture was necessary because of the spectral similarity that can exist

between land use and land cover. Commercially grown crops and natural vegetation often

times have similar spectral values, thus leading to a confusion that can only be adjusted

through the use of a modified classification. Similarly, urban areas are characterized by a
9



spectral heterogeneity that is sufficient to cause confusion with other non-urban classes. 

Finally, preliminary results from the supervised classification revealed that a great deal of 

confusion existed between Water and Flooded Vegetation, thus requiring the use of an 

alternate classification method.

Agriculture

For the purposes of this study, agricultural lands were designated as either wet or 

dry. This can be taken to mean that the fields are either under irrigation or not. The 

manual classification is a 6-step process developed at WSAL, and is based on the 

following observations and assumptions:

1. Agricultural lands tend to be associated with particular spectral classes;

2. They tend to occur in larger patches (> 25 pixels) than other types;

3. These patches tended to be more homogenous in terms of their spectral 

composition than did other types; and

4. They tended to be spatially clumped across the TM scene.

First, all spectral classes representing probable agricultural classes were

identified from the merged image. This was accomplished by manually selecting, in

Imagine, the spectral classes associated with agricultural fields. All classes thought to be

associated with lush, green growing crops (irrigated agriculture) were coded with the

color blue, whereas all classes associated with fallow fields or dry pasture land (dry
10



agriculture), were coded with the color yellow. Once all possible classes were chosen, the 

next step was to separate the “wet” and “dry” classes into three sub-classes. Sub-class 

labels were used to identify how strongly correlated a particular spectral class was with 

agriculture. The sub-classifications are as follows:

(0) Never agriculture

(1) Occasionally dry agriculture

(2) Sometimes dry agriculture

(3) Usually dry agriculture

(4) Occasionally irrigated agriculture

(5) Sometimes irrigated agriculture

(6) Usually irrigated agriculture

Once all of the previously identified spectral classes had been assigned to one of

the above sub-classes, a database file containing those values was exported from Imagine.

This export database file was used in conjunction with the unsupervised classification (u-

grid), the merged image file (m-grid), and the full database zone grid (z-grid) in the

production of an output grid. This process is known as the outperc and was developed at

WSAL using ARC Macro Language (AML). The output, or outperc grid was a new grid,

resulting from the AML assigning output class values to all raster polygons in the m-grid.

The output class values are based on three attributes: the seven possible agricultural class

values (0-6, listed above), the number of pixels in each raster polygon, and a

homogeneity class value based on the spectral similarity of pixels in the “u” versus “m”
II



grids. This process yields 130 possible output codes that are assigned one per region, by 

the AML, to each region in the grid. Once this is done, each region in the output grid is 

color coded according to its output code.

The next step was to visually determine, by comparing the outperc grid 

with the raw TM imagery, the final class, wet or dry, for all of the regions in the oupterc. 

It is possible and advantageous to limit this manual classification to areas specific to 

agriculture. This is done to avoid mis-classifying non-agricultural regions. To accomplish 

this, agricultural areas were broadly digitized on the raw imagery, thus limiting the 

classification to these predominately agricultural regions.

Urban Areas

Urban areas were delineated simply by digitizing their perimeter and creating a 

separate “hard-coded*' class. An AML was written to merge the manual classification 

with the full database grid. The AML stipulates that the manual classification takes 

precedence over the supervised in any instances where the two classifications intersect.

Water and Flooded Vegetation

Regions from the zone grid (z-grid) were recoded to Water and Flooded

Vegetation using a rule-based approach in ARC/INFO. Decision rules were developed by

visually determining the spectral classes and TM band signatures most closely related to

these cover types. For each cover type, an AML was written to perform the rule-based
12



classification particular to the spectral values in a given scene. The AML classified each 

scene and then created a new grid from the results of the classification. Once this was 

done, the AML converted the grid to a polygon coverage. Invariably, some confusion 

existed between spectral classes sufficient to cause an over-classification, i.e., regions 

that shared spectral characteristics with Water or Flooded Vegetation were inadvertently 

included in the classification. This necessitated a manual editing process designed to 

remove the confused regions from each polygon coverage. Once this was done, the edited 

coverages were converted to grids and merged with the manually classified images prior 

to being merged with the full database grid. In addition. Water was classified with the use 

of training data. This allowed not only for a comparison of methods, but provided, by 

combining the manual and supervised procedures, the strongest classification possible.

Change Analysis

A post-classification change analysis technique (Jensen, 1996) was used to

determine change, over time, of the 12 land cover types mapped (Table 1). Typically,

post-classification change detection studies involve the use of independently produced

classifications for each of the image dates (Mucher et al. 2000). This study differed in

that a single unsupervised classification was performed on a combined 20-band image.

The effect was to produce the equivalent of three individual unsupervised classifications,

but in a much shorter time frame. Once the supervised and manual classifications were

complete and all of the regions in the database grid were assigned one of the 12 cover

type labels (Figures 4, 5, and 6), a comparison was made among dates for each region,
13



thus allowing the development of a “from-to” change matrix (Jensen 1996). In essence, 

change was found to have occurred if land cover in a region differed from one date to 

another. For example, a region that was classified as Xeric Grass (3192) in 1985 and 

Water (5300) in 1998 would have a “from- to" classification of Xeric Grass to Water.

The areal extent of this change could then be calculated by determining the sum of the 

changed pixels.

Accuracy Assessment

Thematic (users’) accuracy of the supervised classifications was measured using a 

leave-one-out, cross-validation method (McLachlan 1992). With this method, one 

training point was removed from the training set and classified using the remainder of the 

points. The predicted code resulting from the classification of the single point is then 

compared to the actual code, thus arriving at an estimation of accuracy through cross- 

validation. This process was repeated until all training points were “left out" once.

14



RESULTS OF THE ANALYSIS

Changing Trends in the Project Area

As a class, Flooded Vegetation exhibited the largest percentage increase of all the 

cover types mapped. From 1985 to 1992 it increased 30% from 91 acres to 118 acres. 

This would pale in comparison to the 1500% increase (1,823 acres) that occurred 

between 1992 and 1998 and the total change between 1985 and 1998 (2000%), (Table 2). 

Similarly, Water coverage increased from 447 acres in 1985 to 8,168 acres in 1998, a 

change of 1700%. None of the other classes came close to the percentage increase seen in 

Water and Flooded Vegetation. Unlike the increase in Water and Flooded Vegetation, 

Xeric Grass experienced a consistent loss of cover over time, declining from 60,526 acres 

in 1985 to 55,421 acres in 1998, an 8% loss in cover over the 14 year time period (Table 

2). Areal coverage of all remaining classes fluctuated between increases and decreases, 

showing no consistency of change. Like Xeric Grass, six of the remaining classes 

experienced a loss in cover between 1985 and 1998. Percentage-wise, the combined 

agricultural classes experienced the largest cover loss for a total of 38%. Urban was close 

behind, losing 28%. Riparian Broadleaf lost 21%, Mesic Shrub lost 20%, and finally, 

Mesic Grass declined by 13% over the course of the 14-year study period. Three classes, 

excluding Water and Flooded Vegetation, experienced positive change over the duration 

of the study period. Mixed Broadleaf expanded by 60% since 1985, while Sumac/Xeric 

Shrub increased by 28%. Finally, Willow increased by 26% between 1985 and 1998.

15



The Nature of Change

Changes between 1998 and each of the earlier years are shown in Tables 3 and 4 

for each cover type. For example, of the 60,525 acres that were classified as Xeric Grass 

(3192) in 1985 (Table 3), only 42,103 of these acres were still classified as Xeric Grass in 

1998; 8,142 acres became Mesic Grass and 1,859 acres became water, while the 

remainder was distributed among all other cover types, excluding Urban and Riparian 

Broadleaf.

Results from the analysis indicate that over 7,200 acres of potential habitat were 

lost to water and flooded vegetation during the period under study. In other words, 7,200 

acres that were not Water or Flooded Vegetation in 1985 or 1992 were classified as such 

in 1998. The entirety of this inundation occurred after 1992 and peaked in 1998.

Accuracy

As mentioned previously, the accuracies of the manually classified types (e.g.. 

Water and Flooded Vegetation) could not be addressed by the cross-validation procedure. 

Nevertheless, because the study area was small relative to the size of a full TM seene, it 

was possible to perform a subjective visual analysis of the results from the spectral 

classification of these two cover types. Through a careful process of comparing the 

spectral classification with aerial photographs, my subjective impression was that

16



accuracy levels for Water and Flooded Vegetation exceeded 80%. Manual classes such 

as dry agriculture, irrigated agriculture, and urban were evaluated in much the same 

fashion and as such should be accorded similar accuracy.

For all other classes, accuracy was assessed using the leave-one-out cross- 

validation method (McLachlan 1992) described previously. Error matrices (Tables 5, 6, 

and 7) detail resulting map accuracy by depicting the confusion that exists between 

classes while also providing an overall percentage of accuracy. Accuracy, averaged 

across the three classifications, ranged from a high of 100% for Water to a low of 52% 

for Mesic Shiub (Table 8).

17



DISCUSSION

Despite some classification errors, the results from the change detection analysis 

appear to be a reliable measure of long-term change on the Sheyenne National Grassland. 

The objective was to ascertain the amount of change that occurred in the spatial extent of 

wetlands, and high accuracy levels among Water (5300) and Flooded Vegetation (6600) 

illustrate the successful realization of this goal.

Over 85% of the federally administered portion of the SNG is divided into range 

allotments for cattle grazing, and the majority of these allotments are grazed with an 

intensity sufficient to cause lasting changes in the composition of vegetation communities 

on the SNG (McCarthy et al. 1998). An illustration of this can be found, as depicted in 

the study, by examining the decline in Xeric Grass levels. Xeric Grass (3192) declined by 

1% from 1985 to 1992, followed by a 7% decrease between 1992 and 1998. These 

findings reinforce the suggestion that the decline in upland grass species is getting 

progressively worse, perhaps as a result of overgrazing. Couple this with the fact that the 

remnant prairie habitats on surrounding private lands have largely been converted to 

cropland (McCarthy et al. 1998), and the long-term viability of this last vestige of 

tallgrass prairie is left in doubt.

To lose any more of the habitat on the SNG is to further endanger resident TES 

species; the western prairie fringed orchid and the greater prairie chicken. The orchid 

depends upon the moist or wet conditions that predominate in the lowland swales or 

sedge meadows that occur across the SNG (Bjugstad and Fortune, 1989). But in times of 

flooding, such as the m id-1990*s, many of these areas are no doubt under water
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(Newell 1987, in McCarthy et al. 1998). Seig and Wolken (1999) found that protracted 

flooding on the SNG is negatively correlated with the persistence of the western prairie 

fringed orchid, but they also discovered that limited numbers of orchids do manage to 

survive by growing on higher ground. Unfortunately, this shift out of the flooded swales 

serves only to relocate to areas where there is an increased danger of grazing or trampling 

by livestock.

Due to heavy livestock grazing in upland aieas, nesting availability for the greater 

prairie chicken has become severely limited. In times of drought, these animals can seek 

refuge in the lowland depressions or swales that occur on the SNG, but again, in times of 

flood many of these swales are under water. A dramatic increase in woody vegetation 

(Willow increased by 26% over the duration of the study period) has also functioned to 

further fragment habitat and reduce suitable nesting sites for the prairie chicken 

(McCarthy et al. 1998).

Catastrophic flooding, heavy livestock grazing, intensive agriculture, and poor 

land management practices have led to the fragmentation and ultimate decline of habitat 

on the SNG. The end result is an increased stress on the remaining populations of orchids 

and prairie chickens. And as Ruggiero and others found (1994), habitat changes that 

result in a decrease of population size increase the likelihood of extinction.
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CONCLUSION

The results from the analysis demonstrate the capability of Landsat TM imagery 

to detect change in land cover on the Sheyenne National Grassland. The previous 

discussion depicts how this type of technology can address the information needs of land 

mangers, ecologists, and conservationists working on the SNG. Monitoring the spatial 

distribution of habitat on the SNG is integral to promoting the biodiversity potential of 

this landscape, and doing so at large scales and regular intervals will require the use of 

remote sensing. The changes detected by this analysis suggest that, if conservation 

actions are not taken, ecological conditions on the SNG will almost certainly decline.

And continued flooding, such as appears to be occurring again in 2001, will only hasten 

the process. In light of this, it is my recommendation that future conservation strategies 

place greater emphasis on the protection of the unique tallgrass prairie ecosystem on the 

SNG. Traditionally, land management plans have not taken into account the dynamic 

nature of natural systems, and as this study has shown, heavy flooding can function to 

remove much of the habitat base set aside for TES species. In short, once the inherent 

variability of natural systems is taken into account, there is simply not enough available 

habitat to support heavy livestock use and simultaneously to provide for the protection of 

native species. If sound conservation strategies are developed and adhered to, the 

tallgrass prairie ecosystem may again flourish on the SNG. The results from this analysis 

should provide insight into which areas are in need of greater protection.
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CROSS WALK TABLE FOR VEGETATION CODES

CODE COVER TYPE

1100 Urban
2010 Dry Agriculture
2020 Wet Agriculture
3191 Mesic Grass
3192 Xeric Grass
3610 Mesic Shrub
3613 Willow
3630 Xeric Shrub / Sumac
4740 Mixed Broadleaf
4760 Riparian Broadleaf
5300 Water
6600 Flooded Vegetation
Table 1. Cross walk between code and cover type name
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COVER TYPE 1984 ACRES 1992
ACRES

% CHANGE 
1984-1992

1998
ACRES

% CHANGE 
1992-1998

% CHANGE 
1984-1998

Urban 128 128 0 92 -28.1 -28.1
Dry Ag 16,773 9,966 -40.5 15,132 +51.8 -9.7
Wet Ag 20,081 24,711 +23.0 14,447 -41.5 -28.0
Mesic Grass 19,228 22,754 +18.3 16,667 -26.7 -13.3
Xeric Grass 60,526 59,913 -1.0 55,421 -7.4 -8.4
Mesic Shrub 4,129 2,748 -33.4 3,322 +20.8 -19.5
Xeric Shrub 3,681 5,064 +37.5 4,656 -8.0 +26.4
Sumac/Xeric Shrub 1,739 1,374 -20.9 2,233 +62.5 +28.4
Mixed Broadleaf 8,354 7,539 -9.7 13,444 +78.3 +60.9
Riparian Broadleaf 1,668 1,901 +13.9 1,322 -30.4 -20.7
Water 447 630 +40.9 8,168 +1196.5 +1727.2
Flooded Vegetation 91 118 +29.6 1,941 +1544.9 +2032.9

TOTAL 136,845 136,846 136,846

(1985-1998).
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ACRES BY COVER TYPE AS THEY EXISTED IN 1985

1998
Cover
Type

1100 2010 2020 3191 3192 3610 3613 3630 4740 4760 5300 6600 Totals
(1998)

1100 92 92
2010 5,425 8,855 163 387 72 52 1 164 6 7 15,132
2020 5,619 7,551 334 287 145 88 11 361 16 34 14,447
3191 815 968 5,874 8,142 279 408 38 129 12 3 16,667
3192 3,546 298 5,963 42,103 1,540 604 541 819 6 2 55,421
3610 97 1 161 1,028 1,407 39 461 129 3,322
3613 176 210 981 1,833 15 968 4 391 77 1 4,656
3630 200 25 66 743 13 33 500 653 2,233
4740 337 179 2,031 3,496 542 1,045 154 5,118 494 24 23 13,444
4760 10 273 1,030 9 1,322
5300 34 463 1,474 3,106 1,859 100 365 26 288 28 406 19 8168
6600 3 95 520 548 647 16 69 5 28 3 8 1,941

Totals
(1985)

129 16,773 20,081 19,227 60,525 4,129 3,681 1,741 8,353 1,669 448 91 136,847

Table 3. Change detection matrix of acres by cover type by year (1985-1998).
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ACRES BY COVER TYPE AS THEY EXISTED IN 1992

1998
Cover
Type

1100 2010 2020 3191 3192 3610 3613 3630 4740 4760 5300 6600 Total
(1998)

1100 92 92
2010 3,256 10,774 393 528 47 107 8 20 15,132
2020 3,292 10,095 325 465 38 170 2 57 3 14,447
3191 632 1,027 6,158 7,534 321 720 39 179 2 35 20 16,667
3192 1,729 629 9,436 41,146 738 567 432 740 2 55,421
3610 73 22 379 1,156 1,101 48 412 131 3,322
3613 94 109 1,282 1,499 19 1,188 2 382 62 4 14 4,656
3630 72 88 91 886 25 37 428 607 2,233
4740 287 339 2,056 3,336 392 1,262 45 4,944 729 13 40 13,444
4760 1 227 1,092 1 1,322
5300 33 415 1,163 2,126 2,761 55 792 6 200 15 570 31 8,168
6600 3 114 467 508 603 12 171 52 7 5 1,941

Totals
(1992)

128 9,966 24,711 22,754 59,913 2,748 5,064 1,374 7,539 1,901 630 118 136,847

Table 4. Change detection matrix of acres by cover type by year (1992-1998).



OUTPUT MATRIX FOR:
Resampling Distance Weighted with Nearest Member Group Spatial Classifier
K Value: 10

3191 3192 3610 3613 3630 4740 4760 5300 Total
3191 21 11 0 0 0 2 0 0 34
3192 5 77 3 1 0 0 0 0 86
3610 3 1 9 0 2 1 0 0 16
3613 0 0 0 15 0 8 0 0 23
3630 0 3 2 0 5 0 0 0 10
4740 3 2 1 0 0 52 2 0 60
4760 0 0 0 0 0 2 7 0 9
5300 0 0 0 0 0 0 0 54 54
Total 32 94 15 16 7 65 9 54 292

Total Correct / Total Points: 240 / 292
Cross Validation Accuracy: 82.19
Table 5. Cross validation error matrix for supervised classification (1985)
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OUTPUT MATRIX FOR:
Resampling Distance Weighted with Nearest Member Group Spatial Classifier
K Value: 10

3191 3192 3610 3613 3630 4740 4760 5300 Total
3191 19 13 1 0 0 1 0 0 34
3192 5 78 2 1 0 0 0 0 86
3610 2 4 5 2 0 3 0 0 16
3613 0 0 0 18 0 5 0 0 23
3630 0 0 1 0 8 1 0 0 10
4740 1 1 2 3 0 51 2 0 60
4760 0 0 0 0 0 2 7 0 9
5300 0 0 0 0 0 0 0 54 54
Total 27 96 11 24 8 63 9 54 292

Total Correct / Total Points: 240 / 292 I
Cross Validation Accuracy: 82.19 I
Table 6. Cross validation error matrix for supervised classification (1992).



OUTPUT MATRIX FOR: I
Resampling Distance Weighted with Nearest Member Group Spatial Classifier
K Value: 10 |

3191 3192 3610 3613 3630 4740 4760 5300 Total I
3191 7 1 0 0 0 2 0 0 10
3192 1 48 3 0 0 1 0 0 53
3610 0 4 14 0 0 2 ' 0 0 20
3613 0 0 0 5 0 11 0 0 16
3630 0 5 1 0 5 0 0 0 11
4740 0 1 1 0 0 52 1 0 55
4760 0 0 0 0 0 3 7 0 10
5300 0 0 0 0 0 0 0 54 54
Total 8 59 19 5 5 71 8 54 229

Total Correct / Total Points: 192 / 229
Cross Validation Accuracy: 83.84
Table 7. Cross validation error matrix for supervised classification (1998).
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USER’S ACCURACIES

1985 1992 1998

Urban n/a n/a n/a
Dry Ag n/a n/a n/a
Wet Ag n/a n/a n/a
Mesic Grass 68.5% 70.0% 85.7%
Xeric Grass 87.5% 82.7% 81.6%
Mesic Shrub 52.6% 50.0% 71.4%
Willow 94.1% 75.0% 100.0%
Sumac/Xeric Shrub 75.0% 100.0% 77.7%
Mixed Broadleaf 82.2% 88.1% 79.1%
Riparian Broadleaf 80.0% 80.0% 88.8%
Water 100.0% 100.0% 100.0%
Flooded Vegetation n/a n/a n/a
Table 8. Thematic (users’) accuracy for supervised classifications by cover type by year.
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Sheyenne National Grassland North & South Units 
Covertype Data

Figure 2. Spatial distribution of 292 ground-truth points on the northern and southern
portions of the Sheyenne National Grassland (1985 and 1992).
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Sheyenne N ational Grassland North & South Units 
Covertype Data

Figure 3. Spatial distribution of 229 ground-truth points on the northern and southern
portions of the Sheyenne National Grassland (1998).
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Figure 4. Spatial distribution of 12 land cover classes on the northern portion of the
Sheyenne National Grassland in 1985.
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Figure 5. Spatial distribution of 12 land cover classes on the northern portion of the
Sheyenne National Grassland in 1992.
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Figure 6. Spatial distribution of 12 land cover classes on the northern portion of the
Sheyenne National Grassland in 1998.
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