
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1987

Using object-oriented techniques in a relation data model Using object-oriented techniques in a relation data model

Gregory D. Hume
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Hume, Gregory D., "Using object-oriented techniques in a relation data model" (1987). Graduate Student
Theses, Dissertations, & Professional Papers. 5096.
https://scholarworks.umt.edu/etd/5096

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5096&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5096?utm_source=scholarworks.umt.edu%2Fetd%2F5096&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

COPYRIGHT ACT OF 197.6

T h i s i s an u n p u b l i s h e d m a n u s c r i p t i n w h i c h c o p y r i g h t

s u b s i s t s . An y f u r t h e r r e p r i n t i n g o f i t s c o n t e n t s m u s t b e

APPROVED BY THE AUTHOR.

Ma n s f i e l d L i b r a r y

Un i v e r s i t y o f Mo n t a n a

Da t e : 1 9 8 7

USING OBJECT-ORIENTED TECHNIQUES

IN A RELATION DATA MODEL

By

Gregory D. Hum e

B. A., University of M ontana, 1978

Presented in partial fu lfillm ent o f the requirem ents

for the degree of

M aster of Science

University of M ontana

1987

Approved by

Chair, Board of Examiners

n, Graduate School /5ian

Date
jo. }^E1

UMI Number: EP40560

All rights reserved

INFORM ATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI*
Diss@mtten:»ti*ig

UMI EP40560

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 4 8 1 0 6 - 1346

Hume, Gregory D. M.S. July 1987 (C om puter Science)

The Application of O b ject-O rien ted Techniques in
Im plem enting a Relation Data M odel (60 pp.)

D a ta -b ase systems are w idely used and the dem ands upon them are
becom ing greater. Their trad itional use has been in business applications
w here the definitions of the dom ain field remain fairly static. Currently
database systems are being used in scientific applications w here the
know ledge about the dom ain field is constantly changing. There is a great
need fo r design strategies that will accom m odate such fluctuations in the
developm ent of a database system.

The author is currently involved in the developm ent of a Fire Effects
Inform ation System (FIRESYS). This project has em ployed o b ject-o rien ted
techniques in the the design of the database. These techniques w ere crucial
in im plem enting constant changes in the FIRESYS database structure.

The FIRESYS database structure does not adhere to an established data
m odel. The goal of this paper is to explore the use of ob ject-o rien ted
techniques in one such m odel, the relation data model.

Table of Contents

A bstract ii
Table of Contents iii
List o f Figures v
Acknow ledgm ents vi
1. INTRODUCTION 1

1.1. The Subject Area 1
1.2. The FIRESYS Project 3
1.3. The Research Goal 5

2. OBJECT-ORIENTED DESIGN 8

2.1. Introduction 8
2.2. Abstraction 8
2.3. Objects 11
2.4. M essage Sending 12
2.5. Inheritance 13
2.6. Objjects in FIRESYS 15
2.7. O b ject-O rien ted Design Com pared w ith Traditional Design 16

3. AN OBJECT-ORIENTED DESIGN FOR A RELATION DATA MODEL 19

3.1. The Relational Data Model 19
3.2. Operations on the Relation Data Model 21

3.2.1. Selection 21
3.2.2. Projection 22
3.2.3. Join 23
3.2.4. Division 25

3.3. Justification fo r Using O b ject-O rien ted Techniques 26
3.3.1. The Design of Objects 30

3.3.1.1. Relation Type 30
3.3.1.2. Domain Type 32

4. IMPLEMENTING A SUBSET OF FIRESYS USING AN OBJECT-ORIENTED 33
RELATIONAL DATA MODEL

4.1. The FIRESYS Data Design 33
4.2. Im plem enting the Plant Species and W ildlife Species Relations 37

4.2.1. Creating the Relations 38
4.2.2. Entering Data 42
4.2.3. Query Operations 45
4.2.4. Changes by the Database Adm inistrator 47

iii

4.2.5. Creating a Data Dictionary 50
4.2.6. Security 51

5. CONCLUSION 53

5.1. Evaluation of Experiment 53
5.1.1. The Sem antic Gap 53
5.1.2. User Interface 56
5.1.3. Utility Program s 57

5.2. Concluding Remarks 58

Bibliography 60

iv

List of Figures

Figure 2-1:
Figure 4-1:

FIRESYS Objects
High Level V iew of FIRESYS

Acknowledgments

I would like to thank the following:

My advisor, Dr. Alden W right for his dedication the past four years.

The University of M ontana C om puter Science D epartm ent and faculty

m em bers for their academ ic, financial and personal support.

All the graduate students I have been associated w ith, particularly those that

have worked on FIRESYS.

Employees of the Fire Sciences Laboratory involved w ith the FIRESYS project.

My fam ily for the ir patience.

Chapter 1

INTRODUCTION

1.1. The Subject Area

The design of data m odels a n d .th e developm ent of database system s is a

rapidly evolving topic in com puter science. Databases provide users w ith quick

access to inform ation. Inform ation is becom ing a m ore im portant resource fo r both

business and governm ent. The need for d ifferent types of inform ation has grow n

along w ith the need for fast access to the inform ation. Databases of the future

must provide more than just numbers and facts. They must make inform ation

available in a form that can im m ediately aid in the decision making process.

There are tw o m ajor com ponents to a database. The first is a logical v iew of

the data, consisting of data item s and the relationship between data item s. The

second com ponent is the im plem entation schem e to query and m odify the actual

data being stored. This paper w ill be prim arily concerned w ith som e

im plem entation concerns of one type of data model.

O b ject-o rien ted program m ing is a relatively new program m ing m ethodology

which has potential applications in the field of im plem enting databases. The

ob ject-o rien ted approach attaches procedural inform ation to data. Both data and

the functions that operate on data are grouped to g eth er in an object. The process

of attaching procedural inform ation to the data creates program s that are sm aller,

1

2

less com plex and more m anageable. O b ject-o rien ted program m ing w ill be

discussed in greater detail in the next chapter.

Traditional, or procedural, program m ing view s procedural inform ation and

data as separate entities. A traditional program is analogous to a black box w here

the details of the program need not be known in order to run the program . Data

is fed to this box and then is m anipulated in som e m anner by the box. The result

of th is process is the desired data.

Several design and program m ing m ethodologies have been created so that

the developm ent and m aintenance of traditional program s are as m anageable as

possible. The to p -d o w n design m ethodology is the m ost w idely used. Changing

aspects of procedural requirem ents is relatively easy w hen using to p -d o w n

techniques. The problem w ith the to p -d o w n and other traditional m ethodologies is

that changing the specifications of the data w ill often necessitate m ajor changes in

the procedural aspects of the design.

Incorporating ob ject-o rien ted techniques in the developm ent of a database

may provide several advantages, particularly in a rapid prototyping environm ent.

The m ost noticeable advantage m ay be the ease in which m odifications can be

s

m ade in the logical structure of the data. A change in the structure of the data

should, theoretically, not change the program s which m anipulate the database.

M ost changes in procedural types o f inform ation would be m ade right along w ith

the changes in the definition o f the data structure.

The com plexity of the data m odel depends som ew hat on the dom ain field.

Som e fields are very well defined and /o r very w ell understood by the potential

users of the database. O ther fields m ay be only partially understood and

experim ental in nature. In the case of the latter, the process of creating data

models and building a database becom es a learning experience fo r the potential

user. This process m ay also prom ote constant changes in the data structures.

1.2. The FIRESYS Project

The author is currently involved in a research project funded by the

In term ountain Fire Sciences Laboratory in Missoula, Montana. This project is

referred to as FIRESYS. This project began in June o f 1985 w ith a developm ent

team of five people. The goal of this project is to create an inform ation system to

aid land m anagers in decisions regarding the use of fire.

Prescribed fires can be very useful for encouraging the grow th of som e plant

species native to a site and elim inating the grow th o f others. The proper use of

prescribed burning, often in the spring, can also reduce the potential of fires in the

hot m onths of summer. M any factors are involved in predicting the effect of a

burn. Som e of these are the particular species in the burn area, the severity of the

burn, the tim e of year and the am ount of m oisture present.

An early potential goal of this project was to develop an expert system that

could advise land m anagers concerning the effects of burning an area and to w rite

a prescription to burn if it was decided that a burn was desirable. The manual

process of w riting prescriptions is very tim e consum ing. This is due to, am ong

other things, insufficient and inconsistent cataloging of current research. The lack

of inform ation on fire effects am ong land m anagers and need for assistance in

writing prescriptions w ere the prim ary m otivational factors fo r this project.

4

The first im m ediate goal of the FIRESYS project was to develop a know ledge

base. A knowledge base is one of the key com ponents of an expert system. This

knowledge base was to contain general inform ation about fire effects, and

biological inform ation about plants, animals and com m unities that could be

affected by fire.

During the course of developing FIRESYS som e goals changed. The goals o f

predicting the effects o f fire on plants and of w riting prescriptions have e ither

been postponed or transferred to o ther systems. The current goal is to create an

inform ation system, or database, th a t will provide a synthesis of current research

to land managers. The program m ing part of this goal has essentially been

reached, although the task of sum m arizing the knowledge of fire effects and

entering it into the database is not com plete. There currently is no emphasis on

creating a system that can w rite prescriptions. The change of goals was due to

m any factors, the m ost prevalent being:

1. The lack of clear objectives in the beginning of the project.

2. The poor diffusion of existing knowledge in the field of fire effects in

general

3. The lack of inform ation available to land m anagers concerning the

effects of prescribed burns.

4. The need early on in the project fo r presentable prototypes, creating

the justification for further funding.

5. The difficulty of creating an expert system.

These factors have created an environm ent w here the process of specifying

5

system requirem ents, designing system architecture and developing initial

prototypes all occurred sim ultaneously. During the sam e period the users

(m em bers of the Fire Sciences Laboratory) w ere continuing to refine th e ir ideas

about how inform ation on fire effects m ight be presented to the land m anager. In

spite of the constant state of flux, there has been a usable prototype system for

inputting data operational since O ctober 1, 1985.

The decision to explore ob ject-o rien ted principles stem m ed from research

that suggested that ob ject-o rien ted techniques w ere artificial intelligence

techniques. Our experience has been th a t ob ject-o rien ted techniques gave

FIRESYS much flexibility in accom m odating a great m any changes in the definitions

of the FIRESYS data structure. A great influence in our decision to use o b je c t-

oriented techniques was an article w ritten by Russell Greiner titled "R ill: a

Representation Language Language". (Greiner, 1980) The essence of this article

was that representation languages that are designed fo r a particular dom ain are

inflexible, hard to m odify and impossible to use on another dom ain. A

representation language whose domain is the field of representation languages is

flexible, easy to m odify and reusable.

1.3. The Research Goal

The FIRESYS data structure has not been m odeled according to one of the

com m only used data m odels (ie. relational, en tity -re la tionsh ip). This is due to the

fact that the initial goal of the project was to build a know ledge base for an expert

system rather than to build a database. My hypothesis is that if o b jec t-o rien ted

6

techniques w ere used to im plem ent a database using the relational data m odel, the

database would possess the same type of advantages as FIRESYS did. These

advantages deal with the sim plicity of the designing process and the ease in which

m odifications are made.

My first objective is to design, using o b ject-o rien ted techniques, a database

using the relational data m odel. Included in this design will be m echanism s fo r

sim ple queries of the database, fo r adding data, fo r re -design of data structures

and for m aintaining security and integrity of data. M y hypothesis is that the

fo llow ing are potential advantages of using an ob ject-o rien ted approach:

1. Reducing the sem antic gap. How closely can the logical design of a

relational database correspond to the design of its im plem entation?

2. Enforcing constraints. Does the ob ject-o rien ted approach provide an

easy m echanism to enforce constraints?

3. Creation of data dictionaries. A data dictionary defines the logical

relationships betw een the entities of a database. Can the o b jec t-

oriented approach provide an autom ated production of a data

dictionary?

4. M aintaining security. Can portions of the database be unreadable by

som e users?

M y second objective is to im plem ent a prototype containing a subset o f the

FIRESYS data structure using the ob ject-o rien ted relational data m odel. The

programming, environm ent fo r this prototype will be sim ilar to that of FIRESYS. The

com puter w ill be a VAX running the UNIX operating system . The program m ing

language w ill be LISP.

7

This prototype will highlight key elem ents of FIRESYS at an early point in its

developm ent. A system to m odify the properties of objects w ill then be designed.

Som e of the same types of changes made in the evolution of FIRESYS w ill be

im plem ented in the relational prototype.

M y hypothesis is that this new system will be as flexible in accom m odating

changes as FIRESYS. This flexibility w ill com e from:

1. Data structures that represent real world entities.

2. Logical and physical data independence.

3. Ease in adding and m odifying data structures.

4. Sim plicity of data jnput.

The rem ainder of the paper is outlined as follows:

* Chapter 2 is a study of the key aspects of the o b ject-o rien ted

approach to design.

* Chapter 3 is a brief description of the relation data model.

* Chapter 4 is a sum m ary of the ob ject-o rien ted , relational data m odel

prototype.

* Chapter 5 contains concluding remarks.

There are aspects of using ob ject-o rien ted techniques in database system s

that w ill not be addressed in this paper. A topic that w ill not be addressed is the

efficiency aspects of using the relational data m odel. Both the LISP program m ing

language and the relation data m odel are often criticized fo r being inefficient.

Optim ization techniques can be used to m inim ize inefficient use of m em ory and to

speed up processing.

Chapter 2

OBJECT-ORIENTED DESIGN

2.1. Introduction

There has been much w ritten .about the ob jec t-o rien ted approach. Many

researchers state a list of characteristics that can be attributed to the o b je c t-

oriented approach. There are several characteristics that m ost researchers in this

field include. These characteristics are:

1. Abstraction

2. Object Identity

3. Message Sending

4. Inheritance

These characteristics are very interrelated. A com plete description o f any of

these involves references to the others. The fo llow ing sections w ill highlight

im portant aspects of these characteristics.

2.2. Abstraction

The ob ject-o rien ted approach is one step in a natural evolution o f softw are

developm ent. This constant evolution is striving tow ards greater abstraction.

Abstraction often caries a connotation that it is theoretical and therefore difficult

to understand. Abstraction is a process that strives fo r the opposite. Abstraction

8

9

in Com puter Science is hiding as many details as possible w hile concentrating on

the essence o f the problem s at hand.

The successive generations of languages are good exam ples of m ilestones in

the above m entioned evolution. The first generation of languages are m achine

code languages. These languages consisted of nothing but zeros and ones. An

example of several lines o f machine language code m ight look like:

00100111
00100010
01101110
00101010

Every digit in every location has a particular meaning. The program m er m ust

constantly be aware of these meanings. There is no abstraction involved w ith

machine languages because there are no non essentials details that can be

ignored when a solution to a problem is coded.

The second generation of languages are assem bly languages. Assem bly

languages provide instructions that have intuitive meanings, therefore providing

some abstraction. Examples of typical assem bly languages instructions are inc

(increm ent), ts t (test), m ov (m ove), add (addition) and so on. These instructions

correspond directly to m achine instructions and, therefore, alleviate the

program m er from having to be aware of w hat particular com binations of digits

m ight mean. Using an assem bly language instead o f a machine language is

analogous to being able to listen to letters as opposed to listening to Morse code.

The third generation of languages are high level languages such as

FORTRAN, COBOL and Pascal. These languages provide greater abstraction than

assem bly languages by allowing the developer to ignore som e im plem entation

10

details. For exam ple, adding num bers in assem bly code may involve m any lines of

code. An expression to add num bers in a high level language requires only one

line of code. The low level im plem entation details of evaluating expressions are

ignored when using a high level language.

The concept of an abstract data type is a recent developm ent in the

evolution tow ard greater abstraction. There are tw o parts to an abstract data type,

the operations that can be perform ed on that type, and the im plem entation of

those operations. In an abstract data type, the syntax and sem antics of the

operations are specified independently o f the im plem entation o f the operations.

A typical exam ple of an abstract data type is a stack. A stack is a list of

elem ents. The sem antic essence o f a stack is th a t the last e lem ent entered on the

list w ill be the next elem ent taken o ff the list. Typical operations for this abstract

data type are to 'push' an elem ent onto the list and to 'pop' an elem ent off the list.

An abstract data type specifies the syntax of its operations. For example, the push

operation m ight require a param eter fo r a value and a param eter for the nam e of

the stack. If this is the case, the call would look som ething like:

push(item, stack).

The process of specifying the exact operations that are allowed on a data

structure ensures that the integrity of the data w ill be preserved, and m odifications

of the data will never be unintentional. The exact im plem entation of the data

structure is not dependent on the operations th a t m odify the data structure. This

schem e follow s the predom inant principle of abstraction: ignore non essential

details and concentrate on essential details. The concept of the abstract data is

11

the natural precursor to the concept of an object and the ob ject-o rien ted approach

to softw are developm ent.

2.3. Objects

An object in the ob ject-o rien ted schem e is the representation o f any entity

that can be perceived. Employees, missiles, state governm ents, grocery stores are

all real world entities and softw are has been w ritten to maintain inform ation on all

these entities. The o b ject-o rien ted approach treats these entities as 'objects'. W ith

this attitude, a softw are design can have a close correlation to a real world

situation.

As w ith an abstract data type, exactly how a ob ject is im plem ented in a

softw are environm ent does not need to be known outside of th a t object's

environm ent. The essence of an object to the outside environm ent is its identity.

If the object's identity is known, the object can be accessed. The m echanism s for

com m unicating w ith an object w ill be discussed in the subsequent sections. The

details of an object, such as its unique properties or the data structures used to

represent the object, are hidden from the environm ent external to the object.

The potential advantages of using this notion of an object are the sim plicity

of design of data structures and the independence that these designs have from

im plem entation concerns. A high level design of softw are, using the o b je c t-

oriented approach, concentrates on the high level objects and the ir im portant

properties. A high level design that is less technical in nature is m ore

understandable by end users and softw are developers.

12

2.4. Message Sending

There are basically tw o types o f properties that an object can posses. One

type is factual inform ation and the o ther type is procedural inform ation. Factual

inform ation is the typical type of data that can be associated w ith entities. For

exam ple, an em ployee has a name, a social security num ber, an address and so on.

An exam ple of an em ployee possessing procedural inform ation can be the

algorithm used to calculate that em ployee's pay. This algorithm can be em bedded

within an em ployee object and hidden from the environm ent outside of the

em ployee object. W hen a property em bedded in an object is procedural in nature,

it is called a method.

The m echanism used to com m unicate w ith objects is called m essage

sending. To access an em ployee's address, a m essage is sent to that em ployee

object requesting its address. To access the em ployee's am ount of pay, a

m essage is sent to th a t em ployee object requesting its am ount of pay. In this

latter case, there is no factual inform ation available, only a m ethod that is capable

of calculating the am ount of pay. This situation would cause the m ethod to be

activated. The result would be an am ount of pay which then would be returned to

the sender.

M essage sending is the only m echanism used to access the properties of an

object. Message sending supports another principle of abstraction, th a t of

inform ation hiding. Inform ation cannot be accessed or altered except through a

standardized set of messages. The m essage sending system perm its objects to

have the knowledge of how to access inform ation from other objects, but no

13

fu rther knowledge about these o ther objects. This protocol ensures the in tegrity

of data w ith in an object. Data can only be accessed or altered through specified

m eans and never in an unintentional or accidental way. This is analogous to

abstract data type principles w here there are specified operations and the details

of im plem entation are hidden.

2.5. Inheritance

The concepts of inheritance is crucial to the o b ject-o rien ted schem e.

Consider the above em ployee exam ple to illustrate this concepts. If a com pany has

hundreds of em ployees it would not make sense to embed the sam e pay algorithm

in hundreds of objects. The solution to this problem is to consider 'em ployee ' a

class of objects. The pay algorithm can then be attached to that class of object.

Each individual em ployee is an object that can inherit the pay algorithm from the

class of objects called em ployee.

A class of objects is itself an object. An object that is a m em ber o f a class

of objects is an instance of the class of objects. An instance of an ob ject is

capable of inheriting properties from that object.

The previous exam ple illustrates that an individual em ployee ob ject can

inherit a property, the pay algorithm , from the em ployee class of objects. The

individual em ployee object m ay also m aintain its own properties. The best

exam ples would be a name and a social security number. Every em ployee has

h is /her own name and a unique social security number. Some individual em ployee

objects may also possess their own pay algorithm s. A practical exam ple of this

would be when som e em ployees receive a com m ission in addition to a salary.

14

The m essage schem e can be used to im plem ent inheritance. W hen a

m essage is sent to an ob ject and that object does not know how to respond, the

object re-sends the m essage to the object that it is an instance of. This first

object is not concerned w ith how the m essage is processed, it only expects a

value to be returned. W hen it receives this value, it then returns it to the original

sender.

All objects handle m essage passing in this m anner. W hen an object re -sends

a m essage to its parent class of objects, it does not know if that object had to re

send the message to its parent class of objects. Inheritance may occur through

many levels of classes of objects.

The first advantage o f th is inheritance schem e is to reduce the am ount of

code that needs to be m aintained. Using the em ployee exam ple, it could be that a

large m ajority of em ployees are paid in the same manner. That pay algorithm can

then be stored in one place, inside the object that is the class of em ployee

objects.

A second advantage of the inheritance schem e is the ease in which

m odification can be made. For example, when an em ployee is given special

incentives along w ith h is /her salary, a separate pay algorithm can be placed w ithin

the object representing th a t individual em ployee. This m odification w ill have no

effect on the rest of the system .

15

2.6. Objects in FIRESYS

This sections provides a short description of how the ob jec t-o rien ted

approach was em ployed in FIRESYS. Consider figure 2 -1 which contains several

FIRESYS objects.

v
SPECIES

DATA FRAME
V

i

J

\

BI6L0W
SAGEBRUSH

IDAHO FESCUE
V

Figure 2-1 : FIRESYS Objects

Both the Bigelow sagebrush object and the Idaho fescue object are instances of a

class of objects called SPECIES. Each of these tw o instances maintain som e

unique properties. They have the ir own names, the ir own geographic locations

w here they grow and so on. These tw o instances also inherit properties from the ir

parent class of objects, the SPECIES object. M any of the properties that the tw o

instances inherit deal w ith the im plem entation o f FIRESYS. For example, both

16

inherit the same prefix used in generating a symbol that is used by the system to

identify objects. This prefix is "SPECIES".

The object SPECIES is an instance of the class of objects called DATA

FRAMES. The SPECIES object m aintains som e properties unique to it. An exam ple is

the above m entioned prefix. The SPECIES ob ject also inherits properties from its

class of objects, called DATA FRAMES. One such property is a display routine. The

contents of alm ost all instances of DATA FRAMES are displayed on the screen in

the sam e manner.

2.7. Object-Oriented Design Compared with Traditional Design

The concept of an object containing such inform ation is a radical departure

from the more traditional approach, called top down design. This m ethodology

decom poses a problem into hierarchy o f sub-problem s. The first em phasis o f this

m ethodology is on the processing, the second emphasis is on the structure of

data. Another approach often used in business applications, called data structure

design, takes the opposite approach. The data structures are designed first, then

the sub-program s that will operate on the data structures are designed.

The point is that traditional approaches to design have treated data and

procedures as separate entities. The ob ject-o rien ted approach treats data and

procedure as the sam e type of entity. They are both properties that can be

contained within an object.

An argum ent against the use of traditional m ethodologies is that they do not

provide a high degree of abstraction for both procedures and data. For exam ple.

17

the design of the hierarchy of modules in the to p -d o w n approach provides a high

degree of abstraction fo r the procedures that need to be perform ed. A high degree

of abstraction o f the data structures involved is not incorporated into this

hierarchy of modules.

An exam ple from the FIRESYS project is used to further illustrate the

difference of the tw o approaches. Various types of data are required to be

displayed on the term inal in d ifferent form s. For exam ple, W hen the references to

inform ation are displayed, they need to be num bered and listed on separate lines.

W hen tex t-like inform ation is displayed, the screen m ust be cleared if it w ill not fit

at the current position on the screen.

In the traditional top down approach, one of several things m ay occur when

som ething, for exam ple a list of references, needs to be displayed on the screen.

One possibility is th a t a high level display subprogram would be called and the

data would be sent to that subprogram as a param eter. This subprogram would

then make decisions, due to the fact that the param eter is a list of references, to

activate the appropriate sub m odule within the display subprogram.

Another possibility is that there is a control structure involved before the call

to a display sub-program . This control structure w ould determ ine th a t the data is a

list of references and then make the call to the appropriate sub-program . Either

possibility includes a greater degree of com plexity due to a lesser degree of

abstraction.

In FIRESYS, w hen an object like a list o f references is to be displayed, a

m essage is sent to that object. There is no contro l structure before the call and

18

no decisions that have to be m ade according to the type of param eters a fte r the

call is made. The details of how the object is displayed are hidden w ith in the

object and hidden from the outside environm ent. The only added com plexity deals

with the inheritance m echanism and this m echanism is standard fo r all objects.

Chapter 3

AN OBJECT-ORIENTED DESIGN FOR A RELATION DATA MODEL

3.1. The Relational Data Model

The relational data m odel is a schem e fo r defining the logical relationships of

various inform ation. The details of im plem enting a database are ignored in the

relations data model. The prim ary com ponent of this m odel is the relation. A

m athem atical definition of a relation is a subset of a cross product of sets of

attribute values. (Smith 19 8 7 / p. 305)

The relational data m odel puts all inform ation in tab le form . The advantage

of this is that it is easy fo r the user of a system to understand the logical v iew of

the data. The fo llow ing is a sim ple example. It is im portant to stress that this is a

logical v iew of the data.

NAME ID SEX AGE TITLE

Johnson, Pete 32)782 M 42 Manager
Billings, Sara 34551 F 29 Clerk
Jones, Phil 44021 M 34 Janitor
Fraizer, Susan 34618 F 22 Clerk

The notation for specifying the above relation is:

EMPLOYEE F IL E (N A M E ,ID ,S E X ,A G E ,T ITLE)

All relations are tables th a t have the fo llow ing properties:

19

20

1. Each entry in a table represents one data item ; there are no repeating

groups.

2. They are column hom ogeneous; that is, in any colum n all item s are of

the sam e kind.

3. Each colum n is assigned a distinct name.

4. All rows are distinct; duplicate rows are not allowed.

5. Both the rows and the columns can be view ed in any sequence at any

tim e w ithout affecting either the inform ation content or the sem antics

of any function using the table. (Martin 1 9 7 6 / p. 96)

In the relational data model, colum ns are referred to as dom ains and rows

are referred to as tuples. A relational database is com posed of one or m ore

relations. Every relation contains a primary key which is used to uniquely identify

the a tuple. A prim ary key is com posed of one or m ore of the domains o f the

relation. Each tuple m ust be uniquely identified by its primary key. Consider the

example above. The prim ary key is the ID domain. Every other domain lends itself

to the possibility of com m on values for different tuples

Let us assume that the name of the above relation is EMPLOYEE FILE. The

prim ary key is ID (underlined). The ordering of the dom ains is not im portant. There

are four tuples and five dom ains in this relation.

21

3.2. Operations on the Relation Data Model

There are four basic operations perform ed on relations when a relational

database is used fo r query purposes. These are selection, projection, join and

division. These operations are presented in very simple form . Any operations

required in a query could be perform ed by com binations of these four operations.

The result of using any com bination of these four operations w ill be a new

relation. A new relation created by any operation will be referred to as tem porary

relation. Their lifetim e consists of the duration of a query session. They are not

stored on a storage device (disk or tape) for later use. Relations that are stored on

such devices for later retrieval will be referred to as perm anent relations.

3.2.1. Selection

The selection operation selects certain tuples from a relation based on the

value of one domain in a tuple. The selected tuples then form a new relation. This

new relation has the same set o f domains and the same prim ary key as the

original relation. The tuples in the new relation are a subset of the tuples of the

original relation.

Suppose w e wish to v iew all the tuples of EMPLOYEE FILE w here the

em ployees are o lder than thirty. The fo llow ing is the notation used fo r the

selection operation:

EMPLOYEE FILE2 <~ Select EMPLOYEE FILE
Where (AGE > 30)

22

The resulting relation, EMPLOYEE FILE2 (l\IAME,ID,SEX,AGE,TITLE), w ould look

like:

NAME ID SEX AGE TITLE

Johnson, Pete 34782 M 42 Manager
Jones, Phil 44021 M 34 Janitor

The actual im plem entation of the selection operation could allow fo r m ultiple

conditions or boolean com binations of conditions. If the im plem entation does not

allow for this, the desired result could be achieved through successive calls to the

selection operation.

3.2.2. Projection

The selection operation can be thought of as processing a relation by tuples.

Som e of the tuples of the first relation may not be included in the resulting

relation. The projection operation can be thought of as processing a relation by

domains. The projection operation creates a relation that has few er dom ains than

the original relation.

If w e wish to view all the possible titles and sexes of EMPLOYEE FILE, the

notation of the projection operation is:

EMPLOYEE FILE3 <— Project EMPLOYEE FILE
On (TITLE,SEX)

23

The resulting relation, EMPLOYEE FILE3 (TITLE,SEX), would look like:

SEX TITLE

M Manager
F Clerk
M Janitor

The projection operation often forces all of the domains to be the prim ary

key. If the primary key(s) are not included in the projection operation then no

subset of domains can guarantee the uniqueness of each tuple. The exception is

when the original relation's prim ary key is included in the projection. In this case,

the resulting relation would have the sam e num ber of tuples as the original tuple.

In EMPLOYEE FILE there w ere tw o fem ale clerks. In EMPLOYEE FILE3 there is

just one tuple for fem ale clerks. This is consistent w ith the fourth rule in the

definition of a relation. Every tuple, or row, m ust be unique.

3.2.3. Join

24

Selection and projection are m onadic operations. They are perform ed on only

one relation. Join is a dyadic operation. It is perform ed on tw o relations. A join

concatenates tuples from different relations if the ir com m on dom ains have equal

values. Consider the relation: EMPLOYEE RELIGION (NAME,ID,RELIGION) :

NAME ID RELIGION

Johnson, Pete 34782 Catholic
Gil, Russell 34979 Protestant
Billings, Sara 34551 Jewish
Fraizer, Susan 34618 Protestant

The operation:

EMPLOYEE FILE3 <-- Join EMPLOYEE FILE, EMPLOYEE RELIGION

would look like:

NAME ID SEX AGE TITLE RELIGION

Johnson, Pete 34782 M H2
Billings, Sara 34551 F 29
Fraizer, Susan 34618 F 22

Manager Catholic
Clerk Jewish
Clerk Protestant

In this example the tw o relations have the same prim ary keys. This ensures

that there are no duplicate tuples. This is not always the case in the join

operation. Just as in the projection operation, the join operation m ust discard

duplicate tuples. The resulting pr imary key(s) of a join is the combinat ion of the

prim ary key(s) of the original tw o relations.

25

3.2.4. Division

Division is another dyadic operation. Division discards all dom ains from one

relation that are com m on dom ains w ith another relation.

Let us suppose that EMPLOYEE FILE4 looked like:

SEX AGE SALARY

M 44 37,000
F 31 16,500
M 44 12,125
M 27 14,000
M 29 22,250
F 31 27,400

Now let us suppose that there was an EMPLOYEE FILE5 that looked like:

ID SALARY

99981 37,000
25987 16,500
43761 12,125
38982 14,000
26991 22,250
23741 27,400

26

At this point, if w e wish to give the command:

EMPLOYEE FILE6 <— DIVIDE EMPLOYEE FILE4 by EMPLOYEE FILE5

The relation would look like:

SEX AGE

M 44
F 31
M 27
M 29

Division is som ew hat sim ilar to projection. The difference is that division

requires another file to determ ine the domains to discard. Like projection and join,

division must discard duplicate tuples.

3.3. Justification for Using Object-Oriented Techniques

The relational data model has been used the past tw o decades and o b je c t-

oriented techniques have received much attention in the past decade. There is,

however, very little research on using ob ject-o rien ted techniques w ith the

relational data model. This section contains a justification fo r com bining these tw o

concepts and a prelim inary o b ject-o rien ted design of a relation data model.

As stressed earlier in this chapter, the advantage of using the relational data

m odel is that it presents a logical v iew of the data in a m anner that the end user

can understand. The end user does not need to know anything about the

im plem entation of the database. The end user does need to w ork w ith the

database developer to create the logical definitions but never w ith any

considerations tow ard the internal representations of the definitions.

27

The process of the end user and the developer working together to produce

the exact logical specifications of the database is trad itionally called the analysis

phase of the softw are lifecycle. This is traditionally the first phase of the softw are

lifecycle. The end product is a docum ent that contains a set of precise

specifications. In the case of a database, this specification docum ent, or a portion

of it, is called a data dictionary. A data d ictionary contains the logical definitions

of the in ter-re lationships of the data. Tor exam ple, a data dictionary would specify

the domains and prim ary keys of a relation.

A data d ictionary does not address any im plem entation concerns. These

concerns are generally addressed in the second phase, called the design phase.

Som e of these concerns deal w ith w hat m achine to use and w hat program m ing

language to use. A m ore im portant im plem entation concern fo r this discussion is

w hat data structures should be used to represent the sem antics of the real world

situation as outlined in the data dictionary. The conclusion of this design phase

will produce a second view of the world to be m odeled. These tw o view s are:

1. A logical v iew of the w orld to be m odeled as defined in a data

dictionary.

2. A technical v iew of the data structures used to represent the logical

view of the world to be modeled. This technical v iew has tw o main

components:

a. Storage of the data structures in the com puter.

b. User interface to the data structures.

These tw o view s pose several questions. How closely do these tw o view s

28

correspond to each other? Is it possible that all of the details of a real world

object can be captured in a data structure object?

How im portant the answers to these questions are depends, to a degree, on

the com plexity of the data. If the data structure objects do not corre late closely

with the real world objects in a simple database yet all the requirem ents o f the

system are met, then the answers to these questions are irrelevant. This situation

m ay be alm ost impossible if there are changes m ade in the logical v iew of the

data or if the logical view of the data is complex. Com plexity may arise from a

large num ber of relations or from aspects not covered by the relation m odel.

Examples of such aspects m ight be constraints on dom ain values and security

privileges on portions of the data base.

The ability to design data structure objects that capture all the essential

qualities o f real world objects will provide several advantages. The first is the

sim plicity of the design process. The developer has already em ployed a particular

m ethodology to specify the logical v iew of the data. It would be less tim e

consum ing to re -u se the previous strategies and techniques in the creation of a

design of the data structures than it would be to use a separate approach.

Another advantage would be that the end user can be m ore involved in the

to tal developm ent of the system. In the typical softw are lifecycle, the end user's

participation is suspended at the end o f the analysis phase. The developer then

perform s the design and coding phases w ithout the end user. It is often not until

the testing phase that the end user resum es involvem ent in the developm ent of

the system . This is som ew hat of an oversim plified situation but often is the case

29

because the end user does not understand the technical aspects of the design

phase. If the design of the data structure objects w ere as sim ple as the definition

of the real world objects then the end user could participate to a greater degree.

The ability to make future m odifications to the logical v iew of the data w ill

depend greatly on the sim plicity of the data structures used. If the details o f a real

world object are not all encapsulated in a corresponding data structure then

m odifications to the logical v iew of a real w orld object will involve more than just

m odifications to a corresponding data structure.

O b ject-o rien ted techniques have been acclaim ed for being able to fully

represent real world entities. The process of using these techniques in designing a

relational database would reduce the gap betw een the logical v iew of the data and

the structures used to represent them .

The term user needs to be addressed at this point. There are several types

of users when referring to a data base. One is the end user that will be allow ed to

access the database trough a query language. A second type of user is a data

entry person. A third type of user is a database adm inistrator. This person is

responsible fo r m aintaining the data dictionary and for m aintaining the database

software. Unless specifically stated otherw ise, the term user will refer to the later

definition for the rem ainder of this chapter. One of the prim ary justifications fo r

using o b ject-o rien ted techniques is to provide easy to use tools fo r a database

adm inistrator.

30

3.3.1. The Design of Objects

There are three primary objects, or classes of objects, to consider: relations,

dom ains and tuples. The prim ary com ponents of an instance of a relation are a

list o f domains, a prim ary key and a list of tuples. A tuple object contains actual

data values. A tuple is designed as an instance of a relation type class of objects

so th a t a .tu p le can inherit its list of dom ains from the relation object. Therefore,

this prelim inary high level design will address the relation and dom ain object but

not tuple object.

3.3.1.1. Relation Type

The first object to design in this relational data model is the relation. The

norm al process of query creates many tem porary relations. Both relations that are

perm anently stored and relations that are created for tem porary use will usually

share som e com m on characteristics. The fo llow ing are the m ethods are properties

of a typical relation object. These m ethods are invisible to the user.

1. DISPLAY-RELATION - This m ethod provides a m echanism for displaying

a relation on a screen. It is very likely that many instances of relations

will not inherit this m ethod since they w ill have their own DISPLAY-

RELATION m ethod. Some instances of relations will require custom ized

display mechanisms. This m ethod w ill repeatedly call DISPLAY-TUPLE.

2. DISPLAY-TUPLE - This m ethod provides a m echanism for displaying a

tuple that belongs to the relation, This m ethod will call D ISPLAY-

DOMAIN.

3. SELECTION - Described above.

31

4. PROJECTION - Described above.

5. JOIN - Described above.

6. DIVISION - Described above.

The fo llow ing m ethods o f a relation object are accessible to the user through

a user interface. This user interface is designed fo r use by a database

adm inistrator who is responsible fo r the m aintenance of the data.

1. USER-CREATE-RELATION - This m ethod allows the user to add a

perm anent relation. The prim ary purpose o f this domain is to allow the

user to specify the dom ains and the prim ary key(s).

2. USER-DELETE-RELATION ̂ This m ethod allows the user to delete a

perm anent relation.

3. USER-MODIFY-RELATION - This m ethod allows the user to add or

delete domains from the domain list of a relation, or m odify

characteristics of a relation.

The fo llow ing m ethods allow a data entry person to enter or delete data:

1. CREATE-TUPLE - This m ethod allows the user to input data into a tuple

of a perm anent relation. This m ethod will access the domain list of the

relation and call USER -A D D -D O M A IN -VA LU E fo r each domain on the

domain list.

2. DELETE-TUPLE - This m ethod allows the user to delete a tuple in a

perm anent relation.

The fo llow ing are properties (but not methods) o f a relation object:

32

1. PRINT-NAME - This contains a short phrase used to logically identify a

relation when it is displayed.

2. PARENT-OBJECT - This contains the identification of the class of

objects that this relation is an instance of.

3. DOMAINS - This contains the list of dom ains that this relation contains.

4. TUPLES - This contains a list identifying the tuples that are currently

m aintained by this relation.

5. PRIMARY-KEY - This contains a list of dom ains that com prise the

logical identification of a tuple.

3.3.1.2. Domain Type

A domain can be more trad itionally referred to as a type. A dom ain has

certain constraints as to w hat its legal values are. Many of the properties of a

dom ain object deal w ith these constraints. The fo llow ing are some of the m ethods

of a typical domain object:

1. IS-LEGAL - This is a m ethod that checks if a value m eets the

restrictions placed on its domain. If the domain is of some string type,

the restrictions may deal w ith size. If the value is numerical, the

restrictions m ay deal w ith a maxim um or m inim um value.

2. ADD-VALUE - This m ethod is called when a data entry person is

adding data. This method w ill call IS-LEGAL.

3. D ISPLAY-DOM AIN - This m ethod will provide inform ation on how to

display its dom ain on the screen.

Chapter 4

IMPLEMENTING A SUBSET OF FIRESYS

USING AN OBJECT-ORIENTED RELATIONAL DATA MODEL

4.1. The FIRESYS Data Design

The Firesys design is based on a fram e system. This is because the original

goal was an expert system . The original design was based on research in a fram e

based knowledge representation scheme. M any of the differences betw een a fram e

based knowledge representation schem e and a database are little m ore than

term inology.

A fram e in analogous to a tuple in that a fram e contains related values.

These values are stored in slots. A slot is analogous to a domain in th a t a slot

contains a value, and there are usually constraints on the values of a particular

slot type. There are only five types of slots in FIRESYS. These are:

1. Atom . This term was borrowed from lisp. It means that the value of

this slot m ay contain a single value. This value could be a num ber, a

word or a short phrase.

2. List. This term was also borrowed from lisp. It means a collection of

atoms.

33

34

3. Text. A text slot may be of any size. It m ay contain any com bination of

prose or tables. An im portant consideration of this slot is that, although

very readable and inform ative to the end user, the system may not

make any inferences based on the value of this type of slot.

4. Header. This slot contains no value. It is use to group other slots into a

logical category.

5. Generated Frame Pointer. This slot links the parent fram e to its

subordinate frame.

6. Generated Frame Pointer List. This slot is sim ilar to the generated

fram e pointer slot except that there may be any num ber of subordinate

fram es linked to the parent fram e through this slot.

The last tw o slots m entioned are crucial in im plem enting the data as a tree

like structure. These slots are the equivalent of arcs in tree term ino logy. The

overall schem e of the FIRESYS tree is as follows:

1. The the higher the node (fram e) is in the tree, meaning the closer to

the root, the more general in nature the inform ation is.

2. The low er the node in the tree, the m ore specific the inform ation is.

The root node in the FIRESYS tree structure is called the SUPERIOR fram e.

There are various slots in this fram e that deal prim arily w ith internal system

m aintenance. In fact, this fram e is to tally invisible to the end user.

The SUPERIOR fram e contains three slots of type generated fram e pointer

list. These slots are:

35
*

1. Ecosystems. A list of ecosystem s. Currently FIRESYS contains one

ecosystem ; the sagebrush ecosystem .

2. Plant Species List. A list of plant species. Currently FIRESYS contains

approxim ately one hundred plant species.

3. W ildlife Species List. A list of w ild life species. Currently FIRESYS

contains approxim ately ten w ild life species.

An ecosystem m ay contain any num ber of cover types. These are

im plem ented w ith a slot of type generated fram e pointer list w ithin the ecosystem

fram es. A cover type's prim ary key, in a relational data m odel schem e, is the

com bination of nam es of the cover type and its superior ecosystem .

There are fram es subordinate to the plant species and w ild life species

fram es. These subordinate fram es contain m ore specific inform ation. Unlike the

cover types within the ecosystem s, the only real purpose fo r m ost of these

subordinate fram es is to partition data into logical groups. The prim ary Key for

such subordinate fram es is the inherited species (plant or w ildlife).

Figure 4 -1 shows a subset of the high level logical v iew of the FIRESYS tree

like data structure. The actual FIRESYS design does not fo llow a recognized data

m odel such as the relational m odel. There are several reasons fo r this. The project

evolved to the point w here a custom ized inform ation system was the goal. M any

of the norm al type queries (queries that would require the projection, selection,

join and division operations) that would be perform ed on a database w ere not

required on this inform ation system . Access to inform ation must fo llow , a lm ost

exactly, the tree like structure of the data.

36

(PLANT
SPECIES
FRAMES

ECOSYSTEM

FRAMES

WILDLIFE
SPECIES
FRAMES

SUPERIOR
FRAME

Figure 4 -1 : High Level V iew of FIRESYS

Another reason the FIRESYS design does not fo llow a recognized data model

and does not incorporate many of the usual type queries is its heavy dependence

on textual inform ation. The FIRESYS queries w ere designed prim arily to lead the

user through a library of textual inform ation. Queries that use the projection

selection, join and division operations rely on com paring actual values. A lthough

com parisons can be made on textual inform ation, only certain com parisons are

easy to im plem ent. For example, a sim ple com parison m ight involve a search fo r a

key word. Com paring textual inform ation fo r sem antic meaning is very difficult.

There is current research on making such com parisons on textual inform ation, but

the current technology is insufficient.

37

4.2. Implementing the Plant Species and Wildlife Species Relations

The purpose of im plem enting a subset of the FIRESYS database using an

ob ject-o rien ted relational data m odel is to explore possible advantages and

disadvantages of using this approach. The prototype im plem entation is incom plete

in that it does not m odel the entire FIRESYS database and there is not a polished

user interface.

As noted in the previous section, textual inform ation may be of little value

fo r making many traditional type queries. Therefore, the fo llow ing design om its

text slots. W ithout the text slots there is less need to partition m ore specific

inform ation into sub-fram es. For the purposes of this im plem entation, the

follow ing list are the dom ains for the plant species relation. Included w ith each

dom ain is the class of dom ain objects that it is an instance of. This could also be

an entry into a data dictionary.

SPECIES (atom-type)

ABBREVIATION (atom-type)

LIFE FORM (atom-type)

BLM PHYSIOGRAPHIC REGIONS (list-type)

ECOSYSTEMS (list-type)

STATES (list-type)

ADMINISTRATIVE UNITS (list-type)

38

The fo llow ing is a data dictionary entry fo r the im plem entation of the w ild life

species relation:

WILDLIFE SPECIES (atom-type)

ABBREVIATION (atom-type)

CLASS (atom-type)

ECOSYSTEMS (list-type)

STATES (list-type)

ADMINISTRATIVE UNITS (list-type)

BLM PHYSIOGRAPHIC REGIONS (list-type)

4.2.1. Creating the Relations

The first step in this im plem entation is to create the instances of the above

tw o relations. This is the responsibility of a database adm inistrator. Through an

in terface program, a m essage is sent to the re la tio n -typ e object. This ob ject is the

class of objects that all relation objects are instances of. The message is to create

a new relation. This activates the appropriate m ethod within the re la tio n -ty p e

object. This m ethod interacts w ith the database adm inistrator. The fo llow ing is an

exam ple of that interaction for the plant species relation:

Please enter the print name
for the new relation: Plant Species

You are to enter the names of the primary keys,
after each entry you will be prompted for a domain

39

type. Enter a period to conclude.

Choose a domain type

1 : positive-integer-type-domain
2 : list-type
3 : atom-type

ENTER-OPTION: 3

Enter a primary key domain: .

The primary key has been entered. You are to
enter the names of the non-primary key domains;
after each entry you will be prompted for a domain
type. Enter a period to conclude.

Enter a domain: Abbreviation

Choose a domain type

1 : positive-integer-type-domain
2 : list-type
3 : atom-type

ENTER-OPTION: 3

Enter a domain: Life Form

Choose a domain type

1 : positive-integer-type-domain
2 : list-type
3 : atom-type

ENTER-OPTION: 3

Enter a domain: Ecosystems

40

Choose a domain type

1 : positive-integer-type-domain
2 : list-type
3 : atom-type

ENTER-OPTION: 3

Enter a domain: States

Choose a domain type

1 : positive-integer-type-domain
2 : list-type
3 : atom-type

ENTER-OPTION: 3

Enter a domain: Administrative Units

Choose a domain type

1 : positive-integer-type-domain
2 : list-type
3 : atom-type

ENTER-OPTION: 3

Enter a domain: BLM Physiographic Regions

Choose a domain type

1 : positive-integer-type-domain
2 : list-type
3 : atom-type

ENTER-OPTION: 3

Enter a domain: .

Plant Species relation has been added.

41

In this case, the add relation m ethod allows the database adm in istrator to

add dom ains that are one of th ree types already in the system , positive integers,

lists and atoms. A utility can be provided to allow the database adm inistrator to

add a new domain type. It m ay be that the num ber of types of dom ains remains

static and such a utility m ight not be very im portant.

It is very im portant that the database adm inistrator be able to attach special

properties to specific domains. For example, there are only certain values allowed

fo r the domain Life Form. These are:

1. Tree

2. Shrub

3. Graminoid

4. Forb

Life Form is an instance o f the atom type domain and that the atom type

dom ain object has its own m ethod to determ ine if a value is legal. The database

adm inistrator can attach a m ethod to the Life Form dom ain object th a t ensures

that only one of the above values are allowed. Utility programs can be provided to

m ake such a task easy.

42

4.2.2. Entering Data

Assuming that both relations have been created the next step is to enter

data. This is the responsibility of a data entry person, not the database

adm inistrator. A user friendly interface program com m unicates w ith the user. If the

user chooses to add a new plant species an appropriate m essage w ould be sent to

the plant species relation. The fo llow ing is an exam ple of that interaction:

Entering for Species Name

Enter : Fectuca Idahoensis

Entering for Abbreviation

Enter : FEID

Enter one of the following numbers
representing a value for Life Form

1 : Tree
2 : Shrub
3 : Graminoid

: Forb

ENTER-OPTION: 3

Adding value for :
BLM PHYSIOGRAPHIC REGIONS

Enter each item when prompted.

43

Enter a period to terminate list :

Enter : Northern Rocky Mountain

Enter : Wyoming Basin

Enter : .

Adding value for :
States

Enter each item when prompted.
Enter a period to terminate list :

Enter : Idaho

Enter : Montana

Enter : Wyoming

Enter : .

Adding value for :
Ecosystems

Enter each item when prompted.
Enter a period to terminate list :

Enter : Sagebrush

Enter : .

44

Adding value for :
Administrative Units

Enter each item when prompted.
Enter a period to terminate list :

Enter : Yellowstone

Enter : .

Fectuca Idahoensis has been added.

The Life Form domain object is an instance o f lis t-typ e domain object just as

several of the other dom ains are. However, the m ethod used to interact w ith the

user for data input was different than the other instances of lis t-typ e domain

objects. This is an exam ple of an object not inheriting a m ethod from its parent

class of object.

The user also has options to view an d /o r m odify existing species tuples. A

m ethod is attached to the appropriate relation object (a tuple is an instance of a

relation) that allows the user to select a dom ain to modify. A message would be

sent to the appropriate dom ain that would activate a m odification m ethod.

45

4.2.3. Query Operations

A com plication involved with perform ing trad itional query operations on the

FIRESYS database was the heavy dependence on textual inform ation. The above

data dictionary does not include textual inform ation, therefore the problem of

making traditional type queries on textual inform ation will not be discussed.

Another com plication is the treatm ent of lis t-typ e domains. For exam ple, a

typical query m ight be: W hat are all the plant species in the Yellow stone National

Park Adm inistrative Unit? This would require the selection operation. The

Adm inistration Unit dom ain is an instance of the lis t-typ e domain type. A tup le (a

particular plant species) m ight have several values fo r this dom ain. The

com plication is that a different form of com parison, a set m em bership, m ust be

used to com pare a single value with a list of values than would be used to

com pare tw o single values, which uses equality fo r com parison.

The selection m ethod (operation) is em bedded in the re la tio n -typ e object;

the class of objects that all relations are instances of. How should this m ethod

determ ine w hat form of comparison it should use? The answer th a t it needs to

send a m essage to the domain requesting the appropriate equality operation. In

the above example, the selection m ethod sends a m essage to the Adm inistrative

Unit object requesting its equality m ethod. The Adm inistrative Unit object's

equality m ethod, inherited from the lis t-typ e dom ain object, searches a list of

values for a given value.

The prototype im plem entation is capable o f perform ing the selection

operation and the previous m entioned query: w hat are all the plant species in the

46

Yellow stone National Park Adm inistrative Unit? The selection operation can be

perform ed on domains that are o f p o s itive -in teg er-typ e , a to m -ty p e and lis t-typ e .

The fo rm er tw o domains use equality for comparison and the la tter dom ain uses

set m em bership for comparison. A lthough the query language has not been

w ritten , m ore com plex queries can be m ade w ith a com bination of operations. For

exam ple, consider the follow ing query: W hat are all the plant species found in

M ontana or in W yom ing. The fo llow ing steps can be taken:

1. Perform the selection operation on the plant species relation. The

States domain is com pared w ith Montana. The result is a tem porary

relation w ith dom ains for species and state.

2. Perform the selection operation on the plant species relation. The

states domain is com pared w ith W yom ing. The result is a second

tem porary relation w ith dom ains for species and state.

3. Perform the divide operation on the tw o relations, dividing by the

states domain. The result is a relation that contains only one domain,

that of species. This relation is displayed to the user.

The problem of using selection on lis t-typ e domains is m oderate ly sim ple to

solve. Sim ilar situations in other operations becom e m ore com plex. For exam ple,

the join operation concatenates tuples of separate relations if the ir com m on

dom ains have equal values. In this case a list of values is being com pared w ith a

list of values. Should they be considered equal if each list contains one com m on

value. Do the tw o lists have to share all the same values? If so, should the values

be in the same order? These questions are answerable and the solution of how to

47

im plem ent equality is sim ilar to the solution used for the selection operation. Each

dom ain is responsible fo r determ ination of equality, w hether the equality is

com paring a value w ith a list of values or com paring a list of values w ith a list of

values.

4.2.4. Changes by the Database Adm inistrator

Modifications to the data modei and specification of the system occurred

constantly in FIRESYS. The most frequent changes in the data model w as the

addition, elim ination or change in name of slots in a fram e. The equivalent

situation in this prototype is the m odifications of dom ains w ithin a relation.

Some tools have been im plem ented in this prototype to assist the database

adm inistrator in making such changes. These tools adhere to ob ject-o rien ted

principles and are em bedded within objects. The fo llow ing is an example of the

interaction w ith the database adm inistrator. A new dom ain is being added to an

existing relation.

48

Adding a domain for the relation : Plant Species Type

Please enter the new Domain Name :

References

Choose a domain type

1 : positive-integer-type-domain
2 : list-type
3 : atom-type

ENTER-OPTION: 2

This interaction was the result of a m essage being sent to the plant species

type relation. Existing tuples of this relation would currently have no. values fo r the

references domain. It would be the responsibility of the data entry people to add

such inform ation.

Another com m on change is in the specifications of the display of

inform ation. In the above example, the new references domain would be displayed

as all o ther domains th a t are instances of the lis t-typ e domain. If there w ere a

requirem ent that references are num bered when listed, this could be accom plished

by attaching a display m ethod to the new references domain object. This m ethod

w ould not allow the reference domain object to inherit the lis t-typ e dom ain ob ject

display m ethod.

In this case, tools can be made to assist the database adm inistrator, but the

49

database adm inistrator w ould be responsible fo r w riting some code. The fo llow ing

segm ent of code is the display m ethod used by the lis t-typ e dom ain object:

(display-domain
(lambda (tuple domain row column)

(do
((d-list (get-object-value tuple domain) (cdr d-list))
(currrow row (1+ currrow)))
((null d-list))
(ptgoto currrow column)
(printit (car d-list)))
(length-common (get-object-value tuple domain))))

The follow ing segm ent of code is the new display m ethod to be used by the

references domain object:

(display-domain
(lambda (tuple domain row column)
(do
((d-list (get-object-value tuple domain) (cdr d-list))
(count 1 (1+ count))
(currrow row (1+ currrow)))
((null d-list))
(ptgoto currrow column)
(printit
(string-append
(princ-to-string count) COLON (car d-list))))

(length-common (get-object-value tuple domain))))

There are only tw o m odifications m ade in the second algorithm . There is a

counter variable, called count, the gets increm ented fo r every value to be printed.

This variable is attached, w ith a colon, to each value as it is printed.

50

4.2.5. Creating a Data Dictionary

A data dictionary is an excellent tool fo r com m unication and is a valuable aid

for all levels o f users. Data entry people m ay need to refer to a data dictionary to

ensure the accuracy of their work. The database adm inistrator uses it to confirm

consistency and integrity. Those that com m ission the developm ent of the database

refer to it w hile working with the developers.

The norm al course of developm ent is that softw are is designed from , am ong

other things, a data dictionary. During the course of developm ent requirem ents

may change. A valuable softw are utility would be one that generates a data

dictionary from the current database. This would provide all level of users w ith a

current data dictionary thus avoiding the problem of people using outdated

docum entation.

The ob ject-o rien ted schem e lends itself very easily to such a utility. A data

dictionary utility has been w ritten fo r the prototype im plem entation. The algorithm

is as follows:

1. For every object that is an instance of the re la tio n -typ e object:

a. Print a list containing all the prim ary keys and the name of the

dom ain object that the prim ary key is an instance of.

b. Print a list containing all the o ther dom ains and the name of the

dom ain object that the prim ary key is an instance of.

The data dictionary listings of plant species and w ild life species presented in

this section w ere the output of the data d ictionary utility. The requirem ents o f a

51

data dictionary may vary. A sim ilar schem e can be used to create a data d ictionary

that provides more inform ation on domains.

4.2.6. Security

There are many aspects to security of a database system. Som e o f these

aspects, such as protection from fire or vandalism , have nothing to do w ith a

softw are design m ethodology. Im portant form s of security that m ust be integrated

in the design process are the ability to restrict access to portions of the data,

control w ho can enter or m odify data and control w ho may alter the definition of

the data.

Som e of these constrains m ight be easily handled by a system 's operating

system or other means. For exam ple, the utility program s and files associated w ith

the definitions of the data m ight be m ade accessible to the database adm inistrator

only. Data entry people m ight be required to enter a password th a t the database

adm inistrator would have control of.

The ability to protect portions of the data from a query user should be

incorporated into the softw are design. An exam ple of this in FIRESYS are the slots

containing inform ation on when the fram e was last m odified and by w hom . This

inform ation is im portant to the data entry people and the database adm inistrator

but of no value to the end user.

The equivalent situation in this prototype im plem entation is a relation that

has som e dom ains that are not to be readable by the query users. There are tw o

possible approaches to solve this problem . One approach is to make the relation

object responsible fo r knowing which of its dom ains should be readable by the

52

query user. This could be im plem ented by attaching a property to each relation

object containing the list of dom ains that are readable by the query user. W hen a

tuple is to be displayed, only the dom ains on this list are displayed.

An alternate approach is to make each dom ain object responsible for

knowing if its instances are to be displayed. W hen a relation's tup le is to be

displayed, each domain would be checked to see if it is to be protected from the

end user.

Each of these solutions have m erit and perhaps a com bination of these

solutions would be optim al. Using the FIRESYS example, all of the slots that

pertained to m odification dates and entry person w ere uniform ly inaccessible by

the end user. In this prototype im plem entation, the domain objects could be

responsible for protecting the data. If a domain object was to be unreadable in

som e relations and readable in others, then the particular relation could be

responsible for controlling access.

Chapter 5

CONCLUSION

5.1. Evaluation of Experiment

The objectives of this paper have been to explore the possibility of

com bining a m oderately new approach to design w ith an established m odel used

in databases. This paper has reviewed the im portant aspects of the ob ject-o rien ted

approach to design and has identified som e of the key elem ents of the relational

data m odel. Some of the considerations of using this design approach to

im plem ent a database using the relational data model have been discussed. The

developm ent of the FIRESYS project has been outlined: An attem pt to im plem ent

portions of FIRESYS using an o b ject-o rien ted relational data model has been made.

The overriding hypothesis of this paper has been that using the o b je c t-

oriented approach in designing a relational data m odel would provide several

advantages. The fo llow ing sections will sum m arize the results of this experim ent.

5.1.1. The Sem antic Gap

The developm ent of a database produces tw o w orlds to be m odeled. The

first world to be m odeled is the representation of the dom ain field. The second
%

world to be m odeled is the collection of dom ain field entities as represented

w ithin the database. The variations betw een these tw o m odels is the sem antic gap.

A traditional problem in softw are design is to encapsulate into the design of

53

a real world entity all the im portant characteristics of the real w orld entity. If

som e of the im portant characteristics of a real world entity are not encapsulated

within the software representation of that entity, then those characteristics must

be represented elsew here in the softw are design. This situation poses several

potential problems, particularly w ith respect to future m odifications. M odifications

to the m odel of a real world entity m ight result in a m odification of a softw are

com ponent that is not encapsulated in the softw are representation of the real

world entity. This m ay produce an undesirable effect in other com ponents o f the

database.

The objects, or softw are representations of real world entities, in the

prototype im plem entation did successively encapsulate all the essential

characteristics of the real world entities. These characteristics fall into four

categories:

1. Nam es of properties that contain real world data values. For example,

the Abbreviation for the Fescue Idahoensis tuple has the value FEID.

2. Names of properties that contain internal system values. For example,

relations and dom ains objects have a Print Name value that is used

when being displayed on a term inal. A nother example is that alm ost

every object has a parent object, the object that it is an instance of.

3. Procedural inform ation that perform s operations that are invisible to

the user. Examples of these are the selection, projection, join and

division operations.

55

4. Procedural inform ation that provides an interface w ith the interactive

user. This includes interfaces to the query user, data entry user and the

database adm inistrator user.

Changes to properties that fall in each o f these categories have been made

in the prototype im plem entation. None of these changes have caused any effect in

any o ther portion of the system . In this prototype, a change in a real world data

value occurs in a tuple object. A tuple object has no instances and therefore the

change cannot e ffect any o ther portion of the system.

Changes to properties that fall in the la tter three categories do potentially

cause the same change to be m ade in the instances of the object. This is due to

the inheritance of an ob jec t-o rien ted system and is a desired effect. Aside form

the inheritance m echanism , changes m ade to properties of the latter three

characteristics produce no effects to other softw are com ponents.

One im portant note is that the ob jec t-o rien ted relational data model

discussed in this paper is very simple in m any respects. One feature that it does

not address in the possibility th a t an object is an instance of m ore than one

object. This situation would add to the com plexity in ensuring that a change in one

com ponent of a softw are system would not adversely effect another com ponent.

This experim ent has shown that using ob ject-o rien ted techniques in

im plem enting a relational data m odel database does greatly reduce the sem antic

gap. Due to this fact, a variety of m odifications to the database can be m ade easily

w ithou t effecting the reliability of the system.

A reduced sem antic gap has other potential advantages. The process of

56

creating a softw are design from the specifications of a database system m ight

becom e less tim e consuming. In fact, the process of creating a softw are design

m ight becom e part of the process of creating specifications, thus creating an

excellent rapid prototyping environm ent. This, however, cannot be confirm ed from

this experim ent.

5.1.2. User Interface

There are three levels of users in a database: query user, data entry user and

database adm inistrator user. A com plete, high level interface language has not

been w ritten fo r any of these levels of users in the prototype im plem entation. The

prim ary interfaces im plem ented w ere encapsulated within various objects as

m ethods. These m ethods invokes m any screen handling functions that w ere

borrowed from the FIRESYS input/output, or 10, package.

The ease of writing m ethods that interfaced w ith a user was due to the

m odularity o f the ob ject-o rien ted schem e and the m odularity of the 10 package.

The m ethods did not need to know the details o f the 10, only the nam es and

purposes of a small num ber of interface functions.

An interesting point to consider is to extend the ob ject-o rien ted design so

that the term inal screen is considered an object and the existing interface

functions w ould becom e m ethods. This would require that the standard m essage

sending protocol be used to com m unicate w ith the term inal screen.

The task of writing a high level user interface language is not trivial. The

properties o f inform ation hiding, encapsulation and m essage sending inherent in

the the o b ject-o rien ted approach would make the task som ew hat easier.

57

5.1.3. U tility Programs

There was one utility program created in this prototype im plem entation, a

data dictionary program . The high level algorithm for this utility is extrem ely

simple. This is prim arily due to the reduction of the sem antic gap. All the

inform ation that needs to be known about an object is contained w ith in that

object.

There are a great num ber o f utilities that can be w ritten th a t would use a

sim ilar algorithm:

1. Visit every object.

a. If that object has a particular characteristic, do som ething.

Examples of such utilities are:

1. Find all the domain objects w hose legal values are num erical values.

2. Find all domain objects that are instances of a particular object and do

not inherit a particular m ethod.

3. Find all relations w ith m ultiple prim ary keys.

It is obvious that efficiency of visiting every object is not good, but that is a

w orthw hile tradeoff for the sim plicity of the algorithm . The o b jec t-o rien ted design

provides an easy m echanism for the database adm inistrator to extract inform ation

about the database. The sim plicity of creating such tools can assist the database

adm inistrator in m ore effectively controlling all aspects o f the database.

58

5.2. Concluding Remarks

It is the opinion of the author that there are tw o prim ary results of this

study. First is that using ob ject-o rien ted techniques in a relational data m odel

perm its the creation of a non domain specific database. This database can be

used and re-used for a variety of domains. A more com plete im plem entation than

this experim ent could provide a user interface language that is not domain

specific.

The second result of this study is that the ob ject-o rien ted schem e provides

a natural way of developing tools for the database adm inistrator to use in

m aintaining a database. These tools can be particularly valuable w here the dom ain

field is constantly evolving.

There are m any aspects of databases that this study did not address. The

speed of processing queries and the use o f internal m em ory and external storage

devices are im portant factors that must be considered is developing a database.

The handling of m ore than one user making updates to the database is a tedious

problem to solve. This paper makes no conclusions on these topics.

Som e interesting questions arise from this study. If the ob ject-o rien ted

schem e easily accom m odates changes in the domain field, in w hat o ther ways

does the data model becom e extensible? For example, how easily can the data

base be converted to a knowledge base to be used by an expert system?

In sum m ary, it does appear that ob ject-o rien ted techniques provide the same

types of advantages is developing a database using the relational data m odel as

th ey have in o ther softw are systems. In particular, the results of the prototype

59

experim ent w ere com parable to the FIRESYS project. Using ob jec t-o rien ted

techniques is a Relational Data Model in particular and in databases in general is

an im portant topic for further study.

60

Bibliography

Dittrich, Klaus R. "O bject-O riented Database Systems: the Notion and the Issues"
Proceedings of the 1986 International W orkshop on O b ject-O rien ted Database
Systems, p. 2 -4 , 1986

Greiner, Russell "RLL-1: A Representation Language Language." Stanford Heuristic
Program m ing Project, HPP-80^-9 (working Paper), Com puter Science
Departm ent, Stanford University, Stanford California, O ctober 1980

Kersten, Martin L. and Schippers, Frans H. "Toward an O b ject-C en tered Database
Language." Proceedings of the 1986 International W orkshop on O b je c t-
Oriented Database System s, p. 104 -112 , 1986

M artin, James Principles of D ata-B ase M anagem ent. Prentice-H all, Inc., Englewood
Cliffs, New Jersey, 1976

M ctavish, Bruce J. "Analyzing a Frame Based Inform ation System Using the
Relational and Entity-Relationship Data Models." Thesis, University of
Montana, Missoula, M ontana, 1986

Mitchell, James A. "O bject-O riented Program m ing, Lisp Flavors and their
Application to a Fire Effects Inform ation System." Thesis, University of
Montana, Missoula, M ontana, 1986

Sm ith, Peter D. and Barnes, G. Michael Files and Data Bases. Addison W esley,
Reading, M assachusetts, 1987.

	Using object-oriented techniques in a relation data model
	Let us know how access to this document benefits you.
	Recommended Citation

	00001.tif

