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Matthew R. Edmonds Mathematical Sciences

Oriented Flow of Rank 3 Matroids 

Advisor: Jennifer M cN uIty^^ '~ ^

A parameter of oriented matroids called the oriented flow number is defined and 
studied. It is an extension of the concept of the circular chromatic number of a 
graph to oriented matroids. Oriented matroids can be realized as signed pseudosphere 
arrangements. When the rank of the matroid is 3, the pseudosphere arrangements 
take the form of line arrangements in the plane, in which the lines are not necessarily 
straight, and each pair of lines intersects exactly once. Rank 3 oriented matroids are 
studied in this setting. It had been conjectured tha t the oriented flow number of all 
rank 3 matroids is at most 4. This is shown to in fact be the case. This is shown first 
for uniform rank 3 matroids, and then the proof is extended to all rank 3 orientable 
matroids. The proof relies upon simple geometric considerations of arrangements 
and orientations of small numbers of lines in the plane. Larger arrangements are 
then viewed as unions of these smaller arrangements. The bound on the oriented flow 
number is then found by orienting the smaller arrangements in an optimal way.
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1 Background

1.1 M atroids

We assume a basic familiarity with the concepts of matroid theory. For a detailed 

treatm ent of the subject, see Oxley’s Matroid Theory [6 ].

A matroid is a  pair M  =  [E ,S ), where .0 is a finite set, called the ground set 

of M , and S  Ç satisfying any of several equivalent axiom systems. It is the 

definition of a matroid in terms of its circuits tha t we will primarily be interested in. 

This is presented below.

D efin itio n  1.1. A  matroid M  is an ordered pair (E,C) consisting o f a finite set 

E  and a collection Ç of subsets of E , called circuits, satisfying the following three 

conditions:

(C l)  0 ^  Ç.

(C2) I f  Cl and Cg are members ofC  and Cj. Ç C^, then Ci — Cg.

(CS) I f  Cl andC 2 are distinct members ofC_ and e € Ci nCg, then there is a member 

C s o fC  such that Cz Ç (Ci U CfSKe.

If a single element e € E  forms a circuit in M, then e is called a loop.

An independent set o /M  is a subset of E  tha t does not contain a circuit. A basis 

is a maximal independent set. l î  A Q E , then the rank o f A is p{A) =  {|B  n  A| :
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B is a  basis of M }. A hyperplane is a subset of E  of rank p{M) — 1 .

If Ç is the set of circuits of a matroid M  with ground set E , then Ç* =  { E \C  : 

C e C }  is the set of bases of a matroid on E. We call this matroid the dual matroid 

of M  and denote it by M*. The circuits, independent sets, bases, circuits, loops and 

hyperplanes of M* are called the cocircuits, coindependent sets, cobases, coloops and 

cohyperplanes of M_.

1.2 Oriented M atroids

The notation and definitions adopted in Sections 1.2 and 1.3 are all taken from Ori­

ented Matroids by Bjorner et. al.[l], except for the information about pseudoline 

arrangements, which is from the work of Griinbaum [4, 5].

A signed set X is a set % together with a partition (%"^, A " )  of X_ into two subsets 

AT"*" and X ~  called the positive and negative elements of X .  The set X  =  X+ U X ~  

is the support of X. Two signed sets X  and Y  are equal if X"*" =  Y+ and X ~  = Y~ . 

The opposite of a signed set X , denoted by —X , is the signed set with (—X )^  =  X “ 

and (—X )“ =  X+. Given a signed set X  and a set A, denote by _^X  the signed set 

with (_xX)+ =  (X +\A ) U (X -  n  A) and ( -a X )"  =  (X "\A ) U (X+ n  A). We say 

tha t the signed set - a X  is obtained from X  by a reorientation on A.
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D efin itio n  1.2. vin oriented matroid M  is an ordered pair {E,C) consisting o f a finite 

set E  and a collection C of signed subsets of E , called oriented circuits, satisfying the 

following three conditions:

(CO) 0 i  C;

(C l) X  £ C = > - X  € C ;

(C2) For a l l X ,Y e C ,  i f X C Y ,  th e n X  = Y  o r X  = - Y ;

(C3) For all X , Y  Ç. C such that X  ^  —Y  and e € X~^ U Y ~ , there is a Z  ^  C such 

that Z+ Ç {X+ U y+)\{e} and Z~ Ç {X~  U y ) \ { e } .

An orientation of an (unoriented) matroid M  is a signing of the ground set th a t 

satisfies the conditions (Cl)-(C3). A matroid is orientable if it has an orientation. A 

matroid is regular if it is representable over all fields. Not all matroids are orientable; 

however, all regular matroids are.

Let M  be an oriented matroid on a finite set E, Let C be the set of signed circuits 

of M. Let A be a subset of E , and let =  { - a X  : X  € C}. Then it follows from 

the axioms tha t is also the set of circuits of an oriented matroid - a M . We say 

th a t - a M  is obtained from M  by a reorientation on A. Two oriented matroids M  

and M ' are isomorphic up to reorientation if their underlying matroids M  and M ' 

are isomorphic. Sets of all matroids tha t are isomorphic up to reorientation are called 

reorientation classes of oriented matroids. An orientable matroid may have several
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reorientation classes.

The collection of signed cocircuits of M  also satisfies the axioms (C0)-(C3) above 

and forms the set of circuits of the dual oriented m atriod M* = (E,C*)-

1.3 Topological Representation Theorem

For d €  Z, d ^  —1 let 5*̂  =  {x G : j|a:|l =  1} denote the d-dimensional

standard sphere. A subset S  of is called a pseudosphere ïî S  = for some

homeomorphism h : S'^ S^. If Se is a pseudosphere of choosing one of the

two components of S^\Se  to be the positive side S f  yields a signed pseusosphere Sg. 

The negative side S~  equals S^\{Se U S ^). We define a pseudosphere arrangement 

% = {S^eeE  to be a  finite set of pseudospheres 5g in such tha t

(Al) Every non-empty intersection S a — Dee a  homeomorphic to a sphere of

some dimension, for AC. E\ and

(A2) For every non-empty intersection S a and every e € E  such tha t S a 0  Se, the 

intersection Sa n  is a pseudosphere in S a with sides S a n  S ^  and 5a H

Every point x  € S^  has an associated sign vector X  € {+, —, 0}^, where Xe indicates 

whether x  is on the positive side of 5«, the negative side of Se, or lies on 5g. A signed
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arrangement of pseudospheres is a pseudosphere arrangement of signed pseudospheres. 

I fH  is a signed arrangement of pseudospheres, then let €{%) be the family of all sign 

vectors X  € {+, —, 0}^ tha t satisfy the following conditions:

(C l) where 5^* denotes or S~, and

(0 2 ) the support X  =  {e € : Xe 0 } is minimal with property (C l).

The Topological Representation Theorem, proven by Folkman and Lawrence in 1978, 

describes the correspondence between oriented matroids and pseudosphere arrange­

ments.

Theorem  1.1 (Topological R epresentation  T heorem ). [1]

(1) If'H  =  (5'e)ees a signed arrangement o f pseudospheres in S'^, then C{'H) is the

family o f circuits of a rank d 4 - 1  simple oriented matroid on E.

(2) I f  {E, C) is a rank d -f 1 simple oriented matroid, then there exists a signed

arrangement of pseudospheres % in such that C = C{'H).

(3) C(?{) =  €{%') fo r two signed arrangements H  and %' in i f  and only i fH ’ =  

/i("H) fo r some self-homeomorphism h of S^.

One powerful consequence of this theorem is tha t there is a one-to-one correspondence 

between equivalence classes of arrangements of pseudospheres in S'^ and reorientation 

classes of simple rank d -+■ 1  oriented matroids.

When d =  2, the pseudosphere arrai%ements are pseudoline arrangements. A
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pseudoline arrangement in the real projective plane is any family of simple closed 

curves in such th a t every two curves have exactly one point in common, at which 

they cross each other. The arrangement determines a decomposition of P^ into open 

topological cells of dimensions 0 , 1 , and 2 , respectively called vertices, line segments 

and faces of the arrangement. Two arrangements of pseudolines are isomorphic if 

and only if there exists an incidence-preserving one-to-one correspondence between 

the vertices, line segments and faces of one arrangement and those of the other. An 

arrangement of pseudolines is stretchable if it is isomorphic to an arrangement of 

straight lines. It is known that every pseudoline arrangement of at most 7 lines is 

stretchable [4]. An arrangement of straight lines in which no point belongs to more 

than two lines is called a simple arrangement The different isomorphism types of 

simple arrangements of 7 lines or less are all known [4, 5], and shown in Figures 16 

and 17 in the Appendix. In particular, up to isomorphism there is only one simple 

arrangement each of 1, 2, 3, 4 and 5 lines; 4 simple arrangements of 6  lines; and 11 

simple arrangements of 7 lines. The numbers of isomorphism types for larger num­

bers of lines are not known. The uniform matroid C/a.n is represented by pseudoline 

arrangements of n  lines in which no point belongs to more than two lines. When 

n  ^  7, these arrangements are all isomorphic to the simple arrangements shown in 

Figures 16 and 17. We will make use of this fact later on.
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1.4 Circular Chromatic Num ber in Graphs

The circular chromatic number of a graph G is & generalization of the chromatic 

number. Introduced by Vince in 1988 [7], it is denoted by %*(G), and defined as 

follows.

D efin ition  1.3. For two integers 1 ^ d ^ k, a {k^d)-coloring of a graph G is a 

coloring c o f the vertices of G with colors {0 ,1 ,2 , . . . ,  A;—!} such that (x, y) € E{G) => 

d ^  |c(x) — c(y)| ^  k — d. The circular chromatic number of G, is the infimum

of those k jd  for which there exists a {k, d)-coloring of G.

Note th a t a {k, l)-coloring of G is just an ordinary A-coloring. Regarding the 

relation of %*(G) to the chromatic number %(G), it can be shown that %(G) — 1  < 

XXG) <  x(G).

Let A: be a positive integer. A k-fiow in a graph G is an orientation w(G) to­

gether with a function /  : E{G) —)■ {0, ±1, ± 2 , . . . ,  ± {k  -  1 )} such that the net flow 

/ M )  -  Huv^E{G) / ( M  =  0 for each v e V { G ) .  The flow index ^{G) is the 

smallest k for which G has a nowhere-zero k-flow, th a t is, a A:-flow with /(e )  ^  0 for 

all e € E{G).

Goddyn et. al. [3] give an equivalent definition of the circular chromatic number 

by relating it to nowhere-zero flows in graphs. They define a (A:,,d)-fiow and the star
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flow index of a graph G as follows.

D efin ition  1.4. A  (fc,d)-flow in a graph G is a k-flow (w(G), / )  such that d ^  

|/(e ) | ^ { k  — d) for all e e  E{G). The star flow index ^*((7) is the inflmum of those 

k /d  fo r which there exists a {k,d)-flow in G.

Vertex colorings and nowhere-zero flows of graphs are dual concepts. If (7 is a 

plane graph and G^ is its planar dual, then x((7) =

1.5 Oriented Flow in M atroids

Let M  =  {E, C*) be a regular matroid. An integer flow  in M  is an orientation of M  to­

gether with a function /  : F  -> Z such that, for every cocircuit B  € C*, Yle€B+ /(®) — 

X^e€B- /W -  A flow /  is nowhere-zero if /(e )  ^  0 for all e G F . For integers 0 < d <  A;, 

a (k,d)-flowis an integer flow with values in the set { ± d ,± ( d + 1 ) , . .  . , ±(A; — d)}, and 

a nowhere-zero k-flow is a {k, l)-flow. The star flow index ^*(M) is the inflmum of 

k /d  over all {k, d)-flows in M, and the flow index C(M) is the minimum k  for which 

M  has a nowhere-zero A;-flow. If M  has no coloops, then it is known tha t M  has a 

nowhere-zero A:-flow for some k.

Goddyn et. al. proved the following result [3].

Theorem  1.2. A regular matroid M has a (k,d)-flow i f  and only if  there eocists an 

orientation o f M, such that, for any cocircuit B, ^  j^zrj ^

8
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This implies the following, which gives an equivalent definition of the star flow index 

of a regular matroid.

C o ro lla ry  1 . 1 . Let M_ he a regular matroid, with Ç* the set of cocircuits. The star 

flow index E*(M ) is the minimum over all orientations o f of

max imbal(B), flee*  ̂ '

where the imbalance of B  is defined as

\ B \imbal(B) =
m in { |B + |,|B - |} '

Noting th a t a (fc, d)-coloring of a graph G induces a nowhere-zero A:-flow in its co­

graphic matroid M*{G), Goddyn et. al. [3] showed that x*(G) =  so

that

r |C | |C:| 1

where the minimum is over all orientations w{G) of M{G).

Goddyn et, al. [2] generalized this definition of x* to oriented matroids, defining 

the oriented flow number of an oriented matroid M  =  {E, C*) to be

<po{M) =  nun m ^  imbal(B),

where the minimum ranges over the set of reorientations O of M . Since reorientation 

classes of M  correspond to equivalence classes of pseudosphere arrangements of M , 

we have an equivalent definition which will be more suited to our purposes.
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D efin itio n  1.5. Let % =  (ife)c€S 6 ^ an (unsigned) arrangement of pseudospheres 

with underlying matroid M_ such that M  does not have a coloop. Let Ç* be the set of 

unsigned cocircuits. Then we define the oriented flow number <j>o of % to be

4>o{'H) = min max imbal(B), (1 )^  ̂ B£C*

where the minimum is taken over all signings of 71.

We also define the oriented flow number of an orientable matroid M_ as the minimum 

of 4>o{7i) over all pseudosphere arrangements H  of M:

Using probabilistic methods, Goddyn et. al. [2] proved the following bounds on

T h eo re m  1.3. I f  H  is a pseudoline arrangement whose underlying matroid M  =  

{E^C*) is coloop-free and of rank 3, then <f>oi7i) ^  17, and furthermore, |£ |̂ ^  159 => 

<  4, and \E\ ^  427 ^  3.

T h eo rem  1.4. I f  TL is a pseudoline arrangement whose underlying matroid M  =

{E ,C ‘) is coloop-free and of rank r  ^  4, then <f>o{7L) ^  14r^ In r.

We explore the rank 3 case in depth, and show th a t (f>o{'H) ^  4 no m atter the size

of E.

10
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2 Bounding the Oriented Flow N um ber o f Uz,n

Let M  be an oriented matroid on a finite set E , and let H be a projective pseudoline 

arrangement of M. Let C* be the set of signed cocircuits of M . Let be the set 

of faces of and let V be the set of vertices of %. If M  has rank 3, each element 

of M  is represented by a pseudoline in H. We will refer to pseudolines simply as 

lines, with the understanding tha t the lines may be curved. Each signed cocircuit (or 

bond) 5  of M  is represented by a vertex vb in "H in the following way: the elements 

of B  are precisely those represented by lines not passing through vb - We define the 

degree of v b , denoted deg(ug), as the number of lines passing through vb - Then 

|j5| =  |£ |̂ — deg(ug). Two vertices are adjacent if they lie on the same line I, and no 

other vertex on I lies between them. An (open) line segment s of Ms the portion of 

I lying between two adjacent vertices. Let S  be the set of line segments of H. Two 

line segments are adjacent if their closures intersect at a vertex. Every line I is made 

up of the union of line segments and the vertices tha t separate them. Let p  be any 

point in the plane. Define the discrepancy o f p in H , denoted by Snip), to be the 

sum of the orientations of the elements of M  with respect to p in 9^. Each line I 

contributes either 0 , 1  or — 1  to this sura, contributing 0  if and only if p lies on the 

line represented by L If so, we say tha t I contains p. We call |^%(p)| the absolute 

discrepancy of p in H . Note tha t |<̂ %(p)| ^  |E |. If F  is any open face in %, then

11
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define the discrepancy of F  in 'H, denoted by S-n{F), to be equal to 5ji{p) for any 

p e  F. Two faces are adjacent if their closures intersect a t a line segment. We call a 

face F  an n-face if F  is bounded by n line segments. For any two adjacent faces Fi 

and F2 , S-h{F2 ) = 6-h{Fi) ± 2  since Fi and F2  lie on the same side of all lines except 

the one tha t divides them. If s is a line segment separating adjacent faces Fi and F2 , 

then define the discrepancy of s in denoted by 6 9 ^(3 ), to be equal to ôuijp) for any 

p  lying on s, and note that

r f \ +  5'h{F2)
O n { s )  = ------------- -------------- -

Let Vb  be a vertex in Ü  corresponding to a signed cocircuit B  of M . Define the 

discrepancy of B  in H , denoted by 0%{B), to be equal to It follows from the

definitions th a t 5'u{B) = — \B~\. When 'H is evident from the context it will be

dropped from the notation and we will use the notation ^(p), S{F), 0{s) and ô{B).

Since |B | =  \B + \-h \B ~ l

|5(B)| =  ||S + | -  |B - | |  =  |B |- 2 m in { |B + |, |B - |} ,  (2)

so tha t ( 1 ) becomes

max |^ |  J |< 5 ( b ) | ’

We will show that (foiH) <  4 for all pseudoline arrangements H  whose underlying 

matroid M  is coloop-free and has rank 3. The requirement tha t 0o('H) ^  4 is equiva-

12
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II 2

Figure 1 : The relative discrepancy of adjacent faces in Uŝ n-

lent to the requirement tha t |5(B)| < ^  for all B  Ç.C*, since, given some signing of 

H  tha t minimizes (3), we have:

4>o{'H) ^  4 

^ < 4  for all B € C *
\B\ -  \S{B)\

2 |J5| ^  4 \B\ -  4 |<5(B)| for all B e C *

<==> |5(J5)| <  ^  for all B  e  C \ (4)

We first examine the case where M  is the uniform rank 3 matroid with n ^  4 

(when n  ^  3, every element in Uz,n is a coloop and the ratio is undefined). Let be a

13
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pseudoline arrangement of Let C* be the set of cocircuits and !F the set of faces 

of 1-L. Let B  £ C* and let v be the vertex in 7i corresponding to B . Then v is the 

intersection of exactly 2  lines h  and I2 , and v is incident with four faces F i , . . . ,  F 4 . 

The faces F i , . . . ,  F 4  and the vertex v lie on the same side of all lines except h  and I2 , 

so S(Fi) , . . . ,  <5 (F4 ) and ô(B) differ from each other only on account of the orientations 

of k  and h- Ordering F i , . . . , F 4  so tha t S{Fi) ^  ^  ^  ^(F^), we must

have S{F2 ) =  S{Fs) =  6 {Fi) 4- 2 and =  S{Fi) + 4 since, as noted above, S(F) 

differs by 2 for adjacent faces (see Figure 1 ). Now, li and I2  contribute 0 to 6 (F), 

and they contribute 0  to â(F2 ) and ^(Fs) since F 2  and F 3  both lie on the positive 

side of one of li, I2 , and the negative side of the other. So S{B) =  ^(Fg) =  J(F^), and 

furthermore, 0{B) is the average of 5(Fi ) , . . . ,  ^(F^), since

(5)
A  0{Fi) _  5{Fi) +  2{5jF,) +  2) +  {0{Fi) + 4)
^  4 4

_  4J(Fi) +  8 
4

=  <^(Fi)+2

=  S{B).

Noting also th a t |J (F ) | =  m ax { |J(F i) |, |<5 (F4 )|} — 2, we have

^  \H ^)\ -  2 . (6 )

Since each cocircuit B  corresponds to a vertex vb in K , and 6 {B) =  ô{vb), we also

14
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have

max |(5(v)| =  max |J(F)| — 2. (7)

Let Fi be a face with maximum absolute discrepancy and F2 be any face adjacent to 

Fi. Let s be the line segment separating Fi and fg- Then, since =  |<5(Fi)| — 2,

J(Fi) +  J(Fg)
2

S{Fi) + ( I ® ! - . )
=  I W ) i  -  1 .

Since |d(s)| depends directly on j(5(Fi)|, and Fi is a face with maximum absolute 

discrepancy, we have

max;|J(s)| <  m ax |5(F )| — 1. (8)

Note tha t (6 ) holds only when H  is a pseudoline arrangement of C/3 ,„, while (8 ) holds 

for all pseudoline arrangements of rank 3 matroids.

Before proceeding further, we will need a few lemmas.

L em m a 2.1. Let H  he a pseudoline arrangement of U^^n, with n ^  4. Let T  he the 

collection o f faces and C* the set of cocircuits o f H .  I f  F  contains an n-face, then

15
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U3 ,n ‘may be oriented so that

1
2  i f  n is even 

3 i f  n is odd

for all faces F  € F ; furthermore,
r

0  i f  n is even

1  i f  n is odd

for all cocircuits B  € O’*.

Proof: Let "H be a pseudoline arrangement of ^ tha t contains an n-face F„. Let 

Ç* be the set of unsigned cocircuits of W ithout loss of generality, pick a line 

bounding F„ and orient it outwards. Proceed clockwise around the boundary of 

alternately orienting lines inwards and outwards with respect to Since F„ is an 

n-face, this completes the orientation of H. Now, if n  is even, |<5(F„)| =  0, and if n  is 

odd, |<J(F„)| =  1. Let B  be a cocircuit in and let vb be the vertex corresponding to 

B. Suppose Vb lies on the boundary of F„, and n is even. Then vb the intersection 

of two lines, one oriented inwards with respect to F„ and one oriented outwards. So 

the four faces incident with B  have (Î-values —2, 0, 0 and 2, and [di(B)| =  0. Now 

suppose Vb  lies on the boundary of F„, and n  is odd. Then H  has one more line 

oriented outwards with respect to F„ than inwards, and (î(F„) =  - 1 .  If vb is the

16
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Figure 2: Here n =  9 and k = 5. The sign vector of vb is given by vb —

(0,4-, —, + , 0, —, 4 -, —, 4-), and 0{B) = 1.

intersection of an outward-oriented line and an inward-oriented line, then the four 

faces incident with vb have 5-values —3, —1 , - 1  and 1, and |5(B)| =  1. If vb is the 

intersection of two outward-oriented lines, then the four faces incident with vb have 

5-values —1, 1, 1 and 3, and |5(B)j =  1 .

Suppose Vb does not lie on the boundary of Then vb is still the intersection

of two lines that lie on the boundary of since the boundary of Fn includes all 

lines in H  (see Figure 2 ). Label the lines Z i , o f  so that vb is the intersection 

of Zi and Ik (here k ^  2 and k ^  n). W ithout loss of generality, assume li is

17
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oriented outwards with respect to F„. The lines h  and 4  divide into two projective 

half-planes. F„ lies entirely within one of these half-planes. The remaining lines 

of H  are partitioned into {I2 , . . ,  and {/jt+i,. . . ,  /«}• One of the sign vectors 

of {Z2 , . • ., Ik-i}  or {4 +1 , . . . ,  4 } agrees with its sign vector relative to Fn, and the 

other is its negative. W ithout loss of generality, assume {4+i> • . . ,  4 }  is oriented the 

same direction with respect to vs as it is with respect to Fn. Let ûg be the sign 

vector of B . If n  is even, then vb =  (0, —, , ± , 0, =F, * • •, —, +)• Now 4  may

be oriented outwards or inwards with respect to but in either case, |J(B )| =  0 . 

If n is odd, assume tha t both 4  and 4  are oriented outwards with respect to F„. 

Then vb =  (0, ± , 0, , -H, —). Again, 4  may be oriented outwards or

inwards with respect to F„, but in either case, =  1. So, considering all possible

cases, we have

0  if n is even
(9)

1  if n  is odd

for all B  £ C*, implying by (6 ) tha t

2  if n is even
if(ni < ^

3 if n is odd

for all F  E F .

18
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The next corollary follows easily.

C o ro lla ry  2.1. I f n ^ 4 ,  then

1
2  i f  n is even

if  n is odd.

Proof: Let % be a pseudoline arrangement of Let Ç* be the set of unsigned 

cocircuits of C/3 ,„, and let B  €  Ç*. First note th a t if n  is even, the smallest can

be is 0, and if n  is odd, the smallest |6 (B)| can be is 1. So,

2  if n  is even, /o/\ 2  |B| IM H )  =  mm m ^  >  <
|H j^ if n  is odd.

Since |B | =  n  — 2  for all B  eC*,

2  if n is even(
if n  is odd.fi—3

For each n ^  4, there is a pseudoline arrangement %' of with an n-face. This 

may be constructed by arranging the n  lines of Uz,n so they all border a single face. 

By Lemma 2.1, %' may be oriented so th a t the lower bounds of 0 and 1 for |<5(B)| 

are attained for all B  € C*. So

2  if n  is even

if n is odd

19
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and it follows that

4>o{U ,̂n) =  rmzï(i>o{U) =  0o(>^')-

We now develop notation for a partition of pseudolines. Let M  be a coloop- 

free orientable matroid of rank 3. Let H he & pseudoline arrangement of M  with 

orientation O. Let C* be the set of signed cocircuits of %. Let II =  (Oi , . . . ,  Ilk) be 

a partition of the lines h , . I n  o î H .  Each ITj gives rise to a subarrangement Hi of 

H.  For each i, let be the collection of faces of Hi, let Si be the collection of line 

segments of Hi, let Vi be the collection of vertices of Hi, and let Oi be the orientation 

of H  restricted to 11*. Now, each face F  e  is contained in some face F* € F j for 

each i. Define 0-h^{F) to be equal to S-UiiFi). Let (Fi , . . . ,Ffc)  be the faces of the 

subarrangements Hi tha t contain F, with each F* € F*. Then F  =  Fi n  • • • fl F^ and 

=  E L i  implying

\àn{F)\ =
k

(10)
i=li=l

If g is a line segment in H , then for each Hi, s either lies in a face Fi £ Fi, or lies on 

a line segment Si £ Si. We define

6 %. (F*) if Vb lies in a face F* £ Fi
^Uiis) = ^

Smisi) if Vb lies on a line segment s* £ Si.

20
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Then Ô n { s )  =

i=l i=l
(11)

IÎ B  £ C*, then for each Hi, the vertex vb corresponding to B  either lies in a face 

Fi G is a vertex î;* € Vj, or lies on a line segment Si £ Si. So, we define

ôm{Fi) if  Vb lies in a  face Fi £ ^

=  Suiivs) = < ô'u^(si) if Vb lies on a line segment Si £ Hi 

^Uiif^i) if Vb is a vertex Vi £ Hi.

Then 5n{B) =  So, we also have

i=l i=l
(12)

We now use Lemma 2.1 to prove a bound on |^(F)| in the particular case when H  is 

a pseudoline arrangement of t/3 ,7 . This will be used in the proof of Theorem 2 .1 .

L em m a 2 .2 . Let H  he a pseudoline arrangement of U zj, and let T  be the collection 

of faces o f H .  Then H  may be oriented so that |^ (F )| ^  3 for all faces F  6  F .

Proof: There are only 1 1  nonisomorphic pseudoline arrangements of f/gj [4]. These 

are shown in Figure 17. Figure 17a contains a 7-face, Figures 17b-e contain a 6 - 

face, and Figures 17f-k contain neither a  6 -face nor a 7-face. By Lemma 2.1, the

21
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arrangement containing a 7-face may be oriented so th a t it contributes at most 3 to 

|J (F ) | for all F  € The arrangements tha t contain a 6 -face can be partitioned into 

two pieces: the 6  lines bounding the 6 -face and the one leftover line. By Lemma 2.1, 

the 6 -line arrangement can be oriented so tha t it contributes at most 2  to )| for 

all F  e F ,  and the remaining line can be oriented arbitrarily, contributing 1  to |(5(F)| 

for all F  € F . So, these arrangements can be oriented so th a t they contribute at most

3 to |<5(F)| for all F  Ç F . The other 6  arrangements of are shown in Figures 3,

4 and 5. They have all been oriented so tha t )| ^  3 for all F  € F .

Consider C/3 ,4 . Let H  be the unique pseudoline arrangement of C/3 ,4  (up to iso­

morphism). It contains three 4-faces and four 3-faces and is shown in Figure 6 . It is 

symmetric in the sense tha t each of the 4-faces is adjacent to  the four 3-faces. Choose 

one of the 4-faces and orient the 4 lines bordering the face alternately with respect to 

this face. By Lemma 2 .1 , if the lines are oriented in this way, 1^(-F)| <  2 for all faces 

F  and |J(B )| =  0 for all cocircuits B . By Corollary 2.1, this orientation minimizes

Our strategy for finding an upper bound for 4>o{Ua,n), with n >  4, relies on the fact 

th a t there is only one pseudoline arrangement for C/3 ,4 , and we know what the optimal 

way to orient it is. Let W be a pseudoline arrangement with underlying matroid C/3 ,„.

22
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-1

-1
-3

-3
- 1

-3

- 1- I

-3

-1
- 1

-3

-3
-I -1

- 1-I
-3

- I
-3

- 1

- I - 1
-3

-1-I

-3

- 1

Figure 3: An orientation of two of the pseudoline arrangements of satisfying 

|J(F’)| ^  3 for all F  E T .  These correspond to Figures 17f and 17g. The values of 

5{F) for each face are shown.
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-I
-3

- 1

- 1 - 1

- 1-3 -3
- 1

- 1 -3 - 1

—I

- 1

-1 - 1

- J

—1

-1
—3

-3 - 1- I

- 1

—3
“ 1

Figure 4: An orientation of two of the pseudoline arrangements of C/3 ,7 , corresponding 

to Figures 17h and 17i, satisfying |J (F )| ^  3 for all F  e  T ,
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-I - 1

-3

- 1

- 1

— 1

-3- 1
- 1

- 1

- 1
-3

- 1- 1

-1-3

- 1— 1
-3

- I
- 1

- 1

-3

- 1

- 1

-3
- 1

Figure 5: An orientation of two of the pseudoline arrangements of Uzj,  corresponding 

to Figures 17j and 17k, satisfying |5(F)| ^  3 for all F  €
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Figure 6 : An orientation of the pseudoline arrangement of 1/ 3 ,4  with minimal discrep­

ancy.

Partition the lines of Ti into sets of four lines and orient them as described above, 

until there are either 0, 1, 2 or 3 lines remaining. Now, every face F  in H  lies in a 

face of each arrangement of the 4-line sets we have chosen. We can think of “H as 

some number of 4-line arrangements laid on top of each other, plus up to 3 leftover 

lines. So 6 {F) is the sum of 5(Fi) for each face Fi tha t contains F  and lies in our 

choices of 4-line arrangements (ignoring, for the moment, the leftover lines). The 

manner in which we partition the lines is irrelevant since every subset of 4 lines in % 

is isomorphic to the pseudoline arrangement of 1/ 3 ,4  shown in Figure 6 . From above, 

|5(Fi)| <  2 for all Fi € ^ { 1/ 3 ,4 ). Using (10), this choice of orientation will be sufficient 

to show ^  4 for all pseudoline arrangements with underlying matroid Ug,».
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We are now ready to prove the main result of this section.

T h e o re m  2.1. Let % he a pseudoline arrangement with underlying matroid Û n̂- 

Then ^  4 fo r  all n  ^  4, with equality possible only i / n  =  2  (mod 4).

Proof: Let T  be the collection of faces of % and Ç* be the set of unsigned cocircuits 

of C/3 ,„. Note, if we can produce an orientation of TL such tha t

m ^ \S{F)\ ^  for all B  e  C \  (13)

then (6 ) implies

Thus, we have by (4),

IBI 4- 4
max |J(F )| =  -—^—  for some B  € C*.

To produce an orientation of V, satisfying (13), we will partition and orient the lines 

of % as described in our discussion of strategy above. Four-line sets will be oriented 

as shown in Figure 6  until we are left with 0 , 1 , 2  and 3 leftover lines. This gives us
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four cases to consider: n = k (mod 4), with & == 0, 1, 2 or 3. We show that in each 

case, the resulting orientation satisfies (13). Note tha t n  =  \B\ +  2.

Case 1: n = i (mod 4), with i € {0,1,2}.

Partition the n  lines of % into sets H i , . . . ,  Ilfc, Ilt+ i, with n =  4A: +  i and |rij| =  4 for 

j  6  and [lït+il =  i. Each 11̂  (except Ilfc+i) gives rise to a  subarrangement

Hi  whose matroid is isomorphic to C/3 ,4 . These subarrangements may all be oriented 

so th a t (f^)| ^  2 for all Fi € Fi. The i leftover lines in Iljt+i may be oriented 

arbitrarily, contributing at most i to |<5(jF’)| for all F  E F . So

<  2  ( 2 ^ )  + i = ^ ^  =
i=l '  '

4>,{H) < 4  by (14),

with equality only if i =  2 .

Case 2 : n  =  3 (mod 4).

This case is not so straightforward. If the strategy followed in the preceding cases 

is used and the three leftover lines are oriented arbitrarily, one obtains an upper 

bound of (j>o{Ui,n) ^  5. So, instead of orienting 4-line sets until only 3 lines remain, 

we orient 4-line sets until 7 lines remain, and then consider the various pseudoline 

arrangements of C/3 ,7 . Formally, we partition the n  lines of H  into sets H i , . . . ,  11 ,̂ with
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n =  +  3, |ITj| := 4  for j (5  1} and [Iltl =  7. Each ü j (except 11*,) gives

rise to a subarrangement "Hi whose matroid is isomorphic to t/3 4̂ . As in Case 1, these 

subarrangements may all be oriented so tha t ^  2  for all Fi G Fi. 0 *, gives

rise to a subarrangement Hk whose matroid is isomorphic to 1/ 3 ,7 . By Lemma 2.2, 

Hk may be oriented so tha t |5w*(F*;}| ^  3 for all faces Fk E Fk. So we have,

n  — 1  |B | +  1
m ^ |i ( F ) |  ^  < 2 ( ^ )  + 3  =

i=l '  '

=> (f>o{'H) < 4 by (14).

In all cases, <̂>o{'H) ^  4. Note also tha t equality is possible only if n =  2 (mod 4). In 

Theorem 2.2 we will show that equality can be attained.

The next corollary actually follows from the proof oï Theorem 2.1. We state it here 

because we will need it in the proof of Theorem 3.1.

C o ro lla ry  2 .2 . Let % he a pseudoline arrangement with underlying matroid 1/3 ,0 - 

Then H  may be oriented so that

for all F  ^  F .
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Figure 7: Three non-isomorphic pseudoline arrangements of t/3 ,6 .

Proof: In Case 1 of the proof of Theorem 2.1, we showed Ti can be oriented so tha t 

max/rgjr |<^(F)| ^  with 0  ^  î <  2 . In Case 2  we demonstrated an orientation with 

maxpgjr |<5(F)j ^  Thus, H  can be oriented so that |<5(F)| ^  for sill F  £ T .

Next we will show tha t the upper bound =  4 can be attained for three of

the four pseudoline arrangements of C/3 ,6 . These are shown in Figure 7.

T h eo rem  2.2. Let % be one of the pseudoline arrangements of C/3 ,6  shown in Fig­

ure 7. Then (j>o{'H) = 4 .

Proof: Let 7i be one of the pseudoline arrangements of C/3 ,6  shown in Figure 7. We 

will show th a t no m atter the orientation, l^(F’)! ^  4 for some F  £ F . Then by (6 )
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g ( F " )  =4

Figure 8 : An orientation of % with |^(F")| =  4.

there exists B  EC* such that |<5(B)| ^  2 , so that

2 |B |
(f>o('H) — min max (15)

a  B € C -  i B | -  |(5(B)| "  4 - 2

Then by Theorem 2.1, ^o (^) =  4.

In Figure 7 we see tha t each % contains a t least one 5-face. Pick a 5-face F ' € F . 

Pick a line bordering F ' and label it li. Proceed cyclically around the boundary of 

F ', labeling the four other lines bordering F* as I2 , h , U and Zg cyclically. Label the 

one remaining line as k .  Let F i , . . . ,  Fg be the faces of 7i adjacent to F ' and incident 

respectively with Zi,...,Zg.
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Figure 9: An orientation of Ti with |<5 (F3 )| =  |^(Fs)| =  4.

We consider all possible orientations of the lines in H  with respect to F ' . Let 

k be the number of lines oriented in the same direction with respect to F'. Then 

/î =  3, 4 or 5. W ithout loss of generality, say these k lines are oriented outwards. If 

k = 5, then &{F') =  —4 or —6 , depending on the orientation of Iq. Suppose fc =  4. 

Then ô(F’) =  —2 or —4, depending on the orientation of If ô{F‘) = — 2  and li is 

the inward-oriented line bordering F ', then S{Fi) =  —4. Now, suppose k = Z. Then 

at least two outward oriented lines, say Zi and Zg, are adjacent on the border of 

Let V be the vertex a t the intersection of Zi and Zg. Let F " be the face adjacent to
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both Fi  and F2, and incident with F '  at v. Now, either Iq is oriented inwards with 

respect to F ’, or it is oriented outwards. First suppose it is oriented inwards. Then 

|(5(F')| =  0, but |<5(Fi)| =  |<5(F2)| =  2 and |<5(F")| =  4. (see Figure 8 ). Now suppose 

le is oriented outwards with respect to F'.  Then S{F')  =  —2 . If li and Ij are the two 

inward-oriented lines bordering F ',  then ô{Fi) =  0{Fj) =  —4 (see Figure 9).

In all cases, there exists a face F  £ F  such tha t |6 (F )| ^  4.
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3 Bounding the Oriented Flow Num ber of All Rank 3 

O rientable M atroids

We now consider the general case when M  is a rank 3 matroid not equal to Uẑ n- 

Then any pseudoline arrangement % o î M  contains vertices of degree greater than 

two. We want to find a way to partition and orient the lines in % so tha t 5{B) ^  ^  

for each cocircuit to prove tha t ^  4. The following lemma will be crucial

for our proof.

L em m a 3.1. Let H  he a pseudoline arrangement ofU^^n, with n ^  5 and n  ^ 7 .  Let 

Fi be any face in T . Then Tt may be oriented so that

|6 (f-)| <  for a l l F e F  and |<5(Fi)| ^

Proof: We will partition the lines of H  into sets fli, . . in the manner described 

in the proof of Theorem 2.1. Since n  ^  5 and n  7, |ITi| =  4. In the proof 

of Theorem 2,1, we chose the set IIi arbitrarily. Here, we choose four lines tha t 

guarantee tha t Fi lies in a 4-face of Tii, and then orient them so th a t l<5«i(Fi)| =  0.

Let Fi be an m-face in Ti. I f m  ^  4, choose IIi to be any four lines whose line 

segments bounding jPi are consecutively adjacent. Then Fi lies within a 4-face of Tii 

(see Figure 10). If m =  3, let I1 J 2 and I3  be the three lines bounding Consider
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Figure 10: The case when m ^  4.

the subarrangement %' generated by h , l 2 th  and any two other lines I4  and I5 in "H. 

Now, is isomorphic to the pseudoline arrangement of C/3 , 5  shown in Figure 11 [4]. 

Note tha t %' contains a single 5-face F5 . Since Fi is a 3-face, Fi must be one of 

the five faces adjacent to F5 . Suppose l\ is the line segment separating Fi and F 5 . 

Let 1 1 1  =  { 2̂ , 3̂ , 4̂ , ŝ}- Then Fi lies in a 4-face of Tii. By the symmetry of ?i', the 

argument holds for all 3-faces in H*.

Orient the lines of ITi alternately with respect to Fi, so tha t S^^{Fi) =  0 . This 

orientation is consistent with the method of orientation used in the proof of Theo­

rem 2 .1 . By Corollary 2.2, H  may now be oriented so tha t |J(F )| <  for all F  € F .  

For any given face F, the upper bound is attained precisely when =  2
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I

I

Figure 1 1 : The case when m =  3.

for all i. Now, since =  0, we have |<î(-Fi)| <  — 2 nrzl 
2  •

We now prove the main result of the thesis.

T h eo rem  3.1. Let H  he a pseudoline arrangement with underlying matroid M  such 

that the rank o f M  is 3 and M  does not have a coloop. Then <  4.

Proof: Let /i, be the lines of H. We may assume that there exists a vertex in 7i 

with degree greater than 2 ; i f  not, then H  is isomorphic to a pseudoline arrangement 

of Uz,n for some n  ^  4, and (poiV) ^  4 by Theorem 2.1.
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We define a partition II =  (Ho, H i , , Ilfc) of the lines of % as follows. Find a 

vertex vi in K  of largest degree. If deg(vi) is odd, let 1 1 1  be the set of lines intersecting 

at f i .  If deg(vi) is even, let 1 1 1  be the set of lines intersecting at vi except one (that 

may be chosen arbitrarily). Let H i  be the subarrangement of H  generated by 11%. 

We will say tha t vi gives rise to Hi- Now consider the arrangement H  — Hi. Find 

a vertex % of largest degree m H  — Hi. If deg(v2 ) is greater than 2 , repeat the 

process; namely, if deg(u2 } is odd, let II2  be the set of lines intersecting at V2 , and if 

deg(v2 ) is even, let II2 be the set of lines intersecting a t % except one. Let %  be the 

subarrangement of H  generated by II2 .

Continue the process, defining the sets I I i , . . . ,  11*; until H \{ H iU . . .UTf*.} contains 

no vertices of degree greater than two. Let IXq be the set of remaining lines and H q 

the corresponding subarrangement of H. Let m =  |IIol. Note th a t if m  ^  3, then H q 

is isomorphic to a pseudoline arrangement of Uz,m’ We will call the subarrangements 

H \y .. . ,H k  the odd subarrangements o fH  and Ho the uniform subarrangement o fH .

If m ^  4, we orient the uniform subarrangement H q  as in the proof of Theorem 2.1. 

Let F  € F q .  By Corollary 2.2,

If m ^  3, then no m atter the orientation of H q ,  |< J h q (F } | <  m  for all F  €  F . Since
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m  ^  if m  equals 0 , 1  or 2 , we have

nt+2
2  if m /  3

3 if m  =  3.

Let s be a line segment in H q. By (8 ), maxag% |J% (5 )| <  max/rg^g |5ho(^)I

(16)

1 , 80

that

if m 3
l - 5 « o ( « ) l  <  < ■ ( 1 7 )

2 if m =  3.

Let u be a vertex in 'Hq. By (7), max„gVo l<5«o( )̂l =  maXfg^Fo |J^o(F)| — 2, so that

m —2 if m ^  3
(18)

1 if m =  3.

The vertex vb va "H lies either in a face of 'H q if it lies on zéro lines of % ; a line segment 

of 'H q if it lies on exactly one line of 'H q \ or a vertex of "Ho if it lies on two lines of "Hq . 

Let mo be the number of lines in 'H q containing ug. Note tha t mo 6  {0,1,2} since 

the degree of a vertex in 'H q is a t most 2. Combining (16), (17), and (18), we have

1<5ho( ^ ) 1 =  |(^%oW)| ^ I
m+ 2  _ mo if m ^  3;

(19)

3 — mo if m  =  3.

This implies, furthermore, that
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-1 -1

-1 -1

Figure 12: The method of orientation of odd subarrangements of 

for all m ^  0 .

We orient the odd subarrangements "Hj, for 1  ^  i ^  k, oi % hy alternating 

orientations as one rotates through the lines clockwise around Vi (see Figure 12). 

There are two possible ways to do this, yielding either ( f )  =  1  or S-n-{F) =  — 1  

for any given face F  Ç: T .  When we need to specify which orientation is to be used, 

we will do so. Suppose s is a line segment in %i separating two faces Fi, Fg € Fi. 

Then either S'n^{Fi) or equals 1 , and the other equals —1 . Since (s) is the

average of (F\) and ( ^ ) ,  it follows tha t 6 % (s) =  0 . Suppose is a vertex in 

H. For each i, Vb either equals u,, or vb lies in a face or a line segment of % . For all 

i such th a t v b  v», let k i  be the number of lines of H i  which contain v b -  S o ,  if 

lies in a face of Hi, then =  0, and if vb lies in a line segment of Hi, then A;* =  1. If
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Vb  = Vj for some j ,  let kj =  0. Then hi € {0,1} for all i, and

1  i f  ki = 0 and vb ^  Vi
= \ôm{vB)\ =

0  otherwise.

Let k s  =  ^  Vi for all i, then kB is the number of distinct odd

subarrangements of H  containing v b - If vb =  vj for some j ,  then k s  is the number 

of distinct odd subarrangements of H, other than Hj, which contain v b -

In the proof of Theorem 2 .1 , we used the fact tha t since every vertex had degree 

two, \B\ was the same for all B  € C*. In the general case we do not have tha t 

advantage. We will consider two cases: cocircuits whose corresponding vertices in 

give rise to an odd subarrangement, and cocircuits th a t do not. Further subcases are 

needed depending on the values of k  and m.

Case 1 : vb = Vi for some 1 ^  i ^  k, so vb gives rise to an odd subarrangement. Then 

Vb  is the intersection of all of the lines in some odd subarrangement, say IIi; mo lines 

of the uniform subarrangement and kB lines of other distinct odd subarrange­

ments (for example, see Figure 13). Order the odd subarrangements IIi, ...,11* so 

th a t II2 , .. . , are the ones containing v b - Note tha t uiq € {0,1} since the parti­

tioning of odd subarrangements leaves a t most one line containing u g in  the uniform 

subarrangement. Furthermore, mo =  0 precisely when vb lies in a face of "Hq, and
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n

Figure 13: An example where vb =  ui; here mo =  1 and k s  ~  2. The labels indicate 

which subarrangement each line is contained in.

mo =  1 when vb lies on a line segment of "Hq. Also, 0 3% kgsG & -  1. Now, vb misses 

m  — mo lines of %o; all of the lines in A — /jg — 1  subarrangements; and all but one 

line in kB subarrangements. So vb misses a t least (m — mo) +  2A:g +  Z(k — — 1 )

lines of "H, implying

\B\ ^  (m — mo) +  2 A:g +  3(& — kB — 1 ). 

Since vb lies on at least one line of Hi îoi 1 ^  i ^  kB + 1,

0 =  0-
i= l  »=1

Since vb lies in a face of %  for 4 - 2 ^  z ^  A;,

k ' k
l'5«.(B )l=  Y ,  1 - t - -  - 1 -

i=fcB+ 2  i=ka+2
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So,
k

|«(B)| <  Y '  |<5«,(B)| <  |J% (B )| + k - k B - l .  (22)
i=0

We want to show tha t |^(B)| ^  Suppose

Then (22) implies tha t

|<5(5)| ^  — (m — niQ +  3k — kg — 3)

~  2  ( ( ^  — fUo) +  2kg +  3{k — kg — 1))

So,

I^Wo(^)l ^  2 ”̂  ̂— tuq + k + kg — 1) |(^(^)| ^  (23)

We examine subcases for various values of m and k.

Case 1,1: m =  3. Then \5jig{B)\ ^  3 — mo by (19). If A: ^  4, then 3 — mo ^  

1(3 — mo +  fc 4- — 1 ), and |^(B)| ^  ^  by (23). Suppose fc < 4. The unique

uniform arrangement "Ho with 3 lines has exactly four 3-faces. I t may be oriented so 

tha t |(J(F*)| =  3 for any chosen face F*, and |J(F )| =  1 for the other three faces. If 

fc <  4, there must be at least one face F* in H q that does not contain Vi for all i. 

Reorient Ho so tha t |J(F*)| =  3 and |6 (F )| =  1 for the other three faces. If mo =  0,
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then vb falls within a face F  of H q, and |6 %o (B)| =  =  1 . Then, since k ^  1

and m =  3,

- (m  — mo +  fe +  AiB — =  ,

and (23).

Suppose mo =  1. Then vb lies on a line segment s oî Ho, and \5^^{B)\ <  2, If 

A: ^  3, then 2 ^  ^{m — mo + k + kB — 1), and |^(B)| ^  ^  by (23). Suppose A: =  1. 

Let Fi and F2  be the two faces in Hq bordering s. Reorient Ho so tha t 6 (Fi) =  1  and 

J(F i) =  —1. Then 6-Ho{H) =  J%o(s) =  0, and 0 ^  |(m  — mo +  A: +  Ar̂  — 1 ) =  1  +  Ikg, 

implying |J(B )| <  ^  by (23). Suppose k — 2. Then |B | ^  5 — A:g ^  4 by (21). Now,

«5(B) =  (5«,(B) +  5uA B )  +  ,5%(B).

W ithout loss of generality, suppose vb gives rise to H \.  Then <5%(B) =  0. Now, 

6 % (B ) =  —2 , 0  or 2 , depending on the orientation of H q ,  and

0  if A:B =  1

\^H2{B)\ =

1  if A:g =  0 .

If SuoiB) =  0, then

If |^%o(B)| =  2 and A;g =  1, then
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Suppose j5?^û(^)l =  2 and k s  =  0 . We reorient to  “balance” the discrepancy of 

Vb . T hat is, if 5?£o(^) =  2, reorient % 2  so tha t =  —1 , and if =  —2,

reorient 'H2  so tha t 6 %̂  (B) =  1 . Then

|<5(B)| =  | i „ . + «„,! =  : <  1 |1 .

Case 1 .2 : m ^  3. Then |J%g(B)| <  — mo by (19). If A ^  3, then — mo ^

— mo +  A; +  fcj3 — 1 ), and |J (5 ) | ^  ^  by (23).

Suppose k e  {1 , 2 }. There are various subcases, depending on the value of m, and 

most fixing a special orientation.

Case 1.2a: m =  0. Then % is partitioned into odd subarrangements only. We may 

assume k = 2 since if A: =  1 , then M  has rank 2. Now, |B | ^  3A: — A:g — 3 by (21), 

and 1<5(B)1 ^  A; — jkg — 1  by (2 2 ). Since A: =  2 ,

1  ^  A: +  kB

1 1 1

2  ^  2 *^+ 2 *̂®
, , , _  3 , 1, 3
k — kB — 1 ^  2  A: — —A:g — —

=*• M B ) I  <  i | l .

Case 1.2b: m =  1. Then 71q consists of a single line. We may assume A; =  2  since if 

A: =  1, then M  contains a coloop or has rank 2 . Now, no m atter the orientation of
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^ 0 , |i^%(B)| equals 1 if mo =  0 (so vb lies in a face of ' H q ) ,  and equals 0 if mo =  1 

(so Vb lies on the single line in Ho). So \Sy^{B)\ =  1 — mo. Then

1 — mo -^  H— ^  =  —(1 — tuq +  2 +  k B  — 1),

implying |6 (B)| <  ^  by (23).

Case 1 .2 c: m  =  2 . Then Ho has two faces F i,F 2 and two possible orientations. 

Under one orientation, |<^%(fi)| =  0 and |J % (f 2 )| =  2. Under the other orientation, 

|J%o(f^)| =  2 and |^%o(f2 )| = 0 .  If A: =  1, then vb gives rise to the only odd 

subarrangement. Now, vb  cannot lie on a line segment of Ho since, if it did, M  

would contain a coloop. So Ho can be reoriented so th a t |J ^ ( F ) |  =  0  for whichever 

face F  e  .Fo contains vb, s o  tha t |J%o(J9)| =  0 , hence |<5(B)| =  |J«(,(B)| =  0  and

|5(B)| <  f .

Suppose k = 2. Then }H| ^  5 — mo — Aig ^  3 by (2 1 ). Let H i and Hg be the 

two odd subarrangements of H. W ithout loss of generality, suppose vb gives rise to 

H i. Now, \6noiB)\ ^  2, \5ndB)\ =  0, and |J% (H )| <  1. Suppose |6 % (B )| =  0. If 

mo — 0, then |J5| ^  4, and

| J ( S ) |  =  «  2  ^  i | l .

If mo =  1, then vb lies on a line segment of Ho, and |^%g(B)| =  1 . Then

15(H)! =  |5-ho(^)| =  1  <  2  ^
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Figure 14: I-Lq is shown In bold. is oriented to balance the discrepancy of vi.

Now, suppose \6’n^{B)\ — 1. We reorient 9 ^ 2  to “balance” the discrepancy of Ug. So, 

if 0uq{B) is positive, reorient 'H2 so tha t =  — 1 , and if is negative,

reorient %  so th a t 8^^{B) =  1  (see Figure 14). If (B) =  0, then

|i(B)| = \5n,m = 1< f

Suppose 8jia{B) is positive. Then 5-Ho{B) =  2 if ug lies in a face of H,q and 1  if ug 

lies on a line segment of H q. Orient " ^ 2  so tha t =  — 1 . Then

5{B) — 6-uo{B) +  0ui{B) +  6'h^{B) ^ 2  +  0 — 1 =  1, 

and |^(JB)| <  |  <  ^ ,  If à-uaiB) is negative, orient 7 ^ 2  so that (B) =  1 , and the
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result is the same.

Case 1.2d; m =  4. Then %q is isomorphic to the unique pseudoline arrangement 

of 1/ 3,4 . Note tha t % q  contains a 4-face. Orient 'Hq,  following the procedure in 

Lemma 2.1, so tha t <  2 for all faces F  6  T q. Then |6 % (B )| ^  2 —mo- Since

fc ^  1  — (mo +  kB)

1 mo ks  ^  k

=*• I'Sji.C-B)! +  ^  +  |

l‘5«o(^)l ^  — ^0 +  +  k — 1)

=» l«(B)l <  ^  by (23).

Case 1.2e; m =  7. Then, by Lemma 2 .2 , H q  may be oriented so tha t )| ^  3

for all faces F  € T .  Then ^  3 — mo. Since k ' ^  1,

k ^  —mo — k s

rriQ ks  ^  k
2  2 ^ 2  

=> \ ^ ' H q { B ) \  < 3  - mo ^ 3 -----^  +  2  4-

\^ n o {^ ) \ 4  2 (7 — rriQ +  k  +  kB  — 1)
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|5 (5 )| < U  by (23).

Case 1.2f: m ^  5 and m  ^  7. First suppose A: =  1 . Then vb gives rise to the only 

odd subarrangement of Ti. Necessarily, k s  =  0. Suppose tha t mo =  0, so that vb lies 

in a face of H q .  Then by Lemma 3.1, H o  may be reoriented so tha t ^

Since \B\ = m  and |J%(B)| =  |J%Q(B)|, we have

Now suppose k = 1 and mo =  1, so th a t vb lies on a line segment s of H q. Then 

|B | =  m — 1. Let I be the line in H  containing s. Then vb lies in a face of HoXl. If 

m ^  6  then |% V I ^  5, and by Lemma 3.1, HoXl can be reoriented so that

|i(B)| = |5«,(S)| = |5«.-,(B)I < "g' ~  ̂ ^  ^

Suppose m =  5. Then H q is isomorphic to the unique pseudoline arrangement of 

C/3 ,5 . Note tha t Ho contains a 5-face, so by Lemma 2.1, H q  can be reoriented so that 

l<^Ho( )̂l <  3 for all F  e  T q, implying |J%o(s)| ^  2. So,

|5 (B ) | =  |6 % (B )| =  |<5«„(s)| ^  2 =  1 |1 .

Now suppose k = 2. Then \B\ ^  m -f 3 — fcs — mo by (2 1 ). Let H \ and H 2  be the 

two odd subarrangements of H. W ithout loss of generality, suppose vb gives rise to
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'H\. Then 5{B) =  5uq{B) +  (B ). By (19), we have

Note also tha t |^% (B)| =  1  — So, if =  1  then

If A:g =  0  then, as in Case 1 .2 c, reorient each odd subarrangement to “balance” the 

discrepancy of the vertex corresponding to the other. If =  0, then

|<5(S )| =  \Sn,{B)\  =  +

since m ^  5. If is positive, reorient 712 so th a t (B) =  —1 , and if is

negative, reorient % 2  so tha t ô-UziB) =  1. Then by (22),

|^(B)| =  1(Sho( 5 ) | - 1 ,

so that

2 2 2 "  2

This completes the proof of Case 1. The cases in which 7i was reoriented are all 

disjoint; these are cases 1.1, 1.2c, and 1.2f. In all cases, the reorientation was done 

in a manner consistent with the method of proof of Theorem 2.1, so the bounds on
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which we used are all valid. H  is not reoriented in Case 2, so there will be no 

ambiguity regarding the orientation of %.

Case 2 : vb ^  u, for 1 ^  i ^  k. Then vb does not give rise to an odd subarrangement, 

and Vb lies on mo lines contained in Ho, and ks  lines contained in distinct odd 

subarrangements (for example, see Figure 15). Consider the orientation of H  given 

in Case 1 . Reorder the odd subarrangements so that the first kB of

these are the ones containing ug. We must have 0 ^  mg ^  2, 0 ^  ^  A;, and

mo + kB ^  2. Now, vb misses m — mo lines of the uniform subarrangement %o- There 

are a t least 3 lines in each odd subarrangement, and vb misses all the lines in A; — fcg 

subarrangements, and all but one line in A:g subarrangements. So ug misses at least 

(m — mo) +  2 A:g 4- 3(A: — A:g) lines of %, implying

|S | ^  (m — mg) 4 “ 2Aùg 4 - 3(Ai — Azg). (24)

Since ug lies on a line segment of Hi for 1  <  i ^  Aig,

1 = 1  1 = 1

Since vg lies on a face of "Hi for A:g 4-1 ̂  i ^  k,

k k
E  N * (B ) i=  E  i = k - k B .

i=&B+l i=ka+l
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n

Figure 15: An example where Vg #  Vi for all i; here mo =  2 and k s  = 4. The labels 

indicate which subarrangement each line is contained in.

(25)

Using the last two relations, and (20) to bound |<5('Ho)l) we find tha t

|5(B)| ^  <  ( — ? ----- + { k  — ks)-
i=o \  /

Comparing (24) and (25), we see tha t |J(B )| ^  ^  provided tha t

^ —   mo^ +  (A: — ks)  ^  — (m — mo) -b A:g +  —{k — Ag).

But the latter inequality is equivalent to mo+Z^s ^  3— which follows from mo+A:^ ^  

2  and k ^  I.

This completes the proof of the theorem. In all cases, |5(B)| ^  so by (4),

4>oW ^  4.
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4 P otential Topics of Future Research

There are many outstanding questions about the oriented flow number. First, can we 

find a natural bound for ^o(^) in higher ranks? It does not seem that the geometric 

methods used here could be applied to higher rank matroids, except possibly to rank 4 

matroids. In rank 3, how does the upper bound on decrease as the number of

elements in the matroid increases? Goddyn et. al. [2 ] showed that (f>o{'hL) ^  3 when 

\E\ >  427. Perhaps this can be improved. Also, are there any other arrangements 71, 

other than the three shown here, for which ^o{7i) = 4?

The methods of proof used here suggest algorithms for generating relatively “bal­

anced” orientations of line arrangements. There may be applications for this which 

are completely unrelated to matroid theory.
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A Appendix: Simple Arrangem ents o f Small N um ­

bers o f Lines

(a) (b)

(h )

(c)

( f )

(d )

(g)

Figure 16: The nonisomorphic simple arrangements of at most 6  lines.
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(a)

(g)

(b)

(d)

(i)

(c)

(a) ( f )

(h) (i)

(k)

Figure 17: The nonisomorphic simple arrangements of 7 lines.
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