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Clifton, Brian K., M.S., September 1995 Microbiology

Cloning and characterization of the flanking region 3’ to flagellin gene {flat) of 
Bartonella bacilliform is

Director: Michael F. Minnick

The flagellin gene (Jïài) o f Bartonella bacilliformis was obtained from a X zap 
expression library (Stratagene) using rabbit anti—flagellin antiserum. The identified 3858- 
bp recombinant, pAULI, was used to further subclone the 3’ flanking region o ffla \. The 
resulting plasmid, pBKCI, contains a 1695-bp HindWl insert Sequence analysis o f 
pBKCI and pAULI identified three putative open reading frames (ORFs) termed o r ff  
orf2, and xuoB, in addition to f la t  The ORFs range in sizes o f 62-bp, 152-bp, and 717- 
bp, respectively. In vitro transcription/translation o f pBKCI and pAULI produced insert- 
encoded polypeptides o f 3 kDa, 7 kDa, and 32 kDa, respectively. DNA hybridizations of 
total DNA isolated from B, bacilliformis strains KC583 and KC584, using the 1695-bp 
insert o f pBKCI as a probe, indicate that the 3’ region containing these genes is unique to 
B. bacilliformis and is not present in Escherichia coli. The largest o f the 3 putative 
ORFs, xuoB, is a 717-bp ORF with a 39 2 G+C mol % content, preceded by a promoter 
region located 44 nucleotides upstream o f the GTG start codon The predicted (-35) 
region (TTGCTT) occurs at nucleotide -44, the (-10) region (TGTCAT) occurs at 
nucleotide -28, and a putative ribosomal binding site (RBS) consisting o f GGGA occurs at 
nucleotide -13 to the start codon The ORF ends with a single TAA stop codon An 
apparant p-dependent transcriptional terminator occurs 17 bases 3’ to the stop codon. 
Homology searches revealed a 47.3 % identity to an electron transfer flavoprotein- 
ubiquinone oxidoreductase from Homo sapiens, thus the gene was termed xuoB  as 
ubiquinone oxidase B with an unknown target “x” . No significant matches were made to 
any bacterial proteins o f similar function Homology searches with o rfl and orf2 revealed 
no significant matches to any proteins. The encoded XuoB protein has alternating 
hydrophilic and hydrophobic regions with a predicted pi of 5.74 and lacks a secretory 
signal sequence.
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CHAPTER I 

Introduction

1.1 Chronicles and Characteristics

Bartonella bacilliformis is a gram negative, obligately aerobic bacterium which causes 

Oroya fever (also known as Carrion's disease) in humans (36). The disease is endemic to 

the Andes regions o f Peru, Ecuador, and Colombia. Two distinct phases occur during 

infection. The primary or hematic phase produces severe hemolytic anemia due to a near 

depletion o f circulating erythrocytes. The secondary or tissue phase produces 

hemangioma-like nodules believed to be caused by the induction o f cellular proliferation of 

the capillary endothelial cells invaded by this organism. These nodules, known as verruga 

peruana, occur on the face and extremities (13,20).

The two distinct phases were shown to be caused by the same organism in 1885.

A Peruvian medical student named Daniel Carrion innoculated himself with verruga 

peruana scrapings and then recorded the progression o f disease. Carrion eventually died 

from a fatal case o f Oroya fever (18) Koch’s postulates were not fulfilled until 1926, 

when B, bacilliformis was re-isolated in pure culture from rhesus macaque monkeys that 

were inoculated with organisms obtained from patients afflicted with either the primary or 

secondary phase o f bartonellosis (29)

Although B. bacilliformis is believed to have been reported as early as 100 A. D. 

to 1400 A D , and is believed to have caused the death o f the last ruler o f the Incan 

Empire, i.e. Huayana Capac, (41), the first confirmed and documented case o f the disease 

was in 1871. Hundreds o f cases were reported by infected laborers o f the Central



Railroad o f Peru (12,18). Oroya fever was fatal in approximately 40% o f these cases (18), 

but the fatality rate has since declined due to the discovery o f antibiotics With antibiotic 

therapy (penicillin, tetracycline, etc.) the disease is rarely fatal. About 10% o f the 

population have been shown to be persistent carriers (9,10,20), and greater than 60% of 

the indigenous population have tested seropositive for the bacterium (19). The high 

fatality rate for untreated cases was witnessed as recently as 1987, when the disease 

claimed the lives o f 14 Peruvian villagers who went undiagnosed until the disease had 

progressed beyond control (16). These surprising deaths reflect the serious need for early 

diagnosis and control of this disease.

1.2 Infection and invasion.

B. bacilliformis is an intracellular parasite of human erythrocytes and is 

transmitted by the bite o f the female nocturnal sand flies within the genus Phlebotomus. 

Humans have been identified as the only reservoir for the bacterium (12,20,41). The 

vector appears to be restricted to an area 2® north o f the equator to 13® south latitude and 

an area between 800 and 2600 meters in elevation. (18).

Previous studies provided evidence leading to several potential virulence factors 

that the bacterium may be using alone or in combination to invade human cells. One o f 

these virulence factors is the bacterium’s ability to produce an extracellular proteinaceous 

factor called deformin which independently deforms the erythrocyte membrane, producing 

deep-invaginations (25). Another virulence factor is the bacterium’s ability to adhere to 

the surface glycolipids of erythrocytes (44). Finally, motility o f the bacterium by its flagella



has been shown to be an important component for invasiveness of erythrocytes by this 

bacterium (3,40). All o f these virulence factors and mechanisms o f pathogenicity are still 

not fully understood and research has focused on the ability o f B. bacilliformis to invade 

erythrocytes A recent discovery by our laboratory has revealed two closely linked genes 

(invA and invB) which are able to convey the ability to invade human erythrocytes upon 

minimally invasive strains o f E. coli. One o f the genes showed a high degree o f homology 

to another invasion-associated protein (Ail) from Y. enterocolitica (28). Invasion by B. 

bacilliformis probably relies on a combination o f some o f these factors possibly along with 

determinants yet to be discovered.

1.3 Phvlogenv. patriarchal and present

The Rickettsiales order contains three families; Rickettsiaceae, Bartonellaceae, 

and Anaplasmataceae (48,49). B. bacilliformis has historically been placed in the 

Rickettsiales order based on its 16S rRNA sequence homology, cell size, and vector- 

mediated route o f transmission (5,6). However, this phylogeny has been in question due 

to the bacterium’s unique motility with its 1 to 10 polar flagella, and the fact that it can be 

grown axenically on blood-containing media Recently the taxonomy of rickettsiae, 

utilizing the 16S rRNA sequencing studies by Weisburg and others (45,46,47), was re

examined. Utilizing the data from these earlier studies along with new data generated 

using DNA hybridization techniques, it has been proposed that the genera Bartonella and 

Rochalimaea do not belong in the order Rickettsiales. The evidence supports the transfer 

o f the genus Rochalimaea from the family Rickettsiaceae to the family Bartonellaceae



and that the bacteria within genus Rochalimaea should now be considered as Bartonella 

species The family Bartonellaceae would then be removed from the order Rickettsiales 

(5,6,7,30,32,33,34,35,50).

1.4 Objectives and goals

Given the importance o f Bartonella's flagella in host cell invasion (3,40), we 

wanted to characterize the flanking regions o f the flagellin gene (flaV). In this study we 

utilized a previously constructed 3858-bp clone (pAULI) containing the f la l  gene o f B. 

bacilliformis, to produce a 1695-bp subclone (pBKCI) to analyze the f la l  3 ’ flanking 

region. The pBKCI plasmid was then double-strand sequenced and the resulting 

nucleotide sequence was fused with GenBank accession #L20677 containing the fldV 

gene. The fusion o f these two sequences resulted in a 3858-bp sequence containing the 

fldV gene within the first 1484-bp and the genes characterized in this study within the 

remaining 2374-bp. Resulting putative ORF’s were then analyzed and mapped. We then 

performed In vitro transcription/translation and analyzed the products by sodium dodecyl 

sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) on both pAULI and pBKCI plus 

their respective vectors pBK-CMV and pUC-19. Southern blot analysis o f chromosomal 

DNA was then performed in order to confirm that the insert of pBKCI was unique to 

B. bacilliformis and was not present in E. coli. The largest ORF, xuoB, and its encoded 

protein, XuoB, were further analyzed with respect to homology, hydropathy, codon 

usage, signal sequences, and secondary structure prediction analysis



Chapter H 

Materials and Methods 

BACTERIAL STRAINS AND GROWTH CONDITIONS

B, hacilliformis strain KC583 and KC584 were purchased from the American Type 

Culture Collection, Rockville, MD. Bartonellae were grown under high humidity 

conditions at 28° C on heart infusion agar (Difco Laboratories, Detroit, Michigan) 

enriched with 5% defribrinated sheep red blood cells and 5% filter-sterile sheep serum by 

volume (Colorado Serum Co., Denver, Colorado) B. hacilliformis cells were harvested 4 

to 6 days post-inoculation Escherichia coli strain D H 5a was utilized in cloning and E. 

coli strain HBlOl was utilized in DNA hybridization experiments. All E. coli strains were 

grown overnight in LB broth at 37® C with constant shaking. LB medium was 

supplemented with 0.1 mg/ml ampicillin or 0.05 mg/ml kanamycin when needed.

DNA ISOLATION AND PURIFICATION

B. bacilliformis chromosomal DNA was isolated by the methods o f Ausubel et al. 

(2). Plasmid pAULI, a 3858-bp Bam\U. insert in the vector pBK-CMV contains the 

flagellin gene fla l, and was obtained from a lambda zap expression library o f B. 

hacilliformis by screening with rabbit anti-flagellin antiserum generated as previously 

described (40). Subcloning o f pBKCI was done by fractionating the desired insert DNA 

on an ethidium-bromide stained 1% agarose gel followed by purification utilizing a 

GeneClean kit (Bio 101 LaJolla, California). The purified DNA fragment was then ligated



into the vector pUC19 (51) (Figure 2) by standard protocol (38). Transformation o f E. 

coli D H 5a with pUC19 recombinants was done by the methods o f Chung et al. (8). 

Plasmids were extracted and purified using standard alkaline extraction (4). Large scale 

isolations o f the purified plasmids were performed using a QIAGEN Midi-prep kit per the 

manufacturer’s instructions (QIAGEN, Chatsworth, California).

DNA HYBRIDIZATION

Chromosomal DNA was isolated from E. coli strain H B 101 and B. hacilliformis 

strains KC583 and KC584 (2) and digested to completion with Bam ^^. Plasmid DNA 

from pBKCI was isolated and digested to completion with H inàlll. Separation o f DNA 

was then performed on an ethidium bromide-stained 1% agarose (w/v) gel. Blotting o f the 

gel to 0.45um pore size nitrocellulose (Schleicher & Schuell, Keene, N.H.) was done by 

the methods of Southern et al (42). The nitrocellulose was then baked at 80^C for 1 hour 

The 1695-bp HiudWl fragment o f pBKCI was obtained from an ethidium-bromide stained 

1% agarose (w/v) gel and purified with a GeneClean (BiolOl) kit. The pBKCI insert 

DNA was then labeled by random primer extension (11) using [a-^^P]dCTP (New 

England Nuclear, Boston, Mass ) and the Klenow fragment o ïE . coli polymerase I 

(Gibco-BRL, Gaithersburg, MD) and subsequently used as the probe. Probing o f the 

nitrocellulose blot with the ^^P-labeled pBKCI insert was done overnight at 50^C and was 

washed at high stringency (65®C) as previously described (27). The blot was then exposed 

on Kodak (Sigma) XAR-5 X-OMAT film.



Figure 1. Vector pBK-CMV (Stratagene Inc.) used to generate pAULI.
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Figure 2. Vector pUC19 (51) used to generate pBKCI



Dr* I 2S74 1
ajmA I 2531 A# I 2617 \  
S » l 2501 \   *

Bgll 2*5
fso \  256 1̂^  

P w l 276 / 
/Mill 306

fcoAl 396 
3soMt 433 

S - HifKS in 4-47.

Seal 2177

ACT

Pvul 2066 
Avsll 2059 Avu II 623

2000

Fspl 1919

A/T III 806
C n3\9C8

1000

10



DNA SEQUENCING

Double stranded sequencing of the Hind III insert o f pBKCI was performed by the 

methods o f Sanger et al. (39) using an ABI model 373A automated nucleic acid sequencer 

(Applied Biosystems, Foster City, Calif) Sequencing primers included M l3 universal 

forward and reverse, plus primers designed from the template synthesized by an ABI 

model 394 DNA synthesizer (Applied biosystems). Translational start and stop codons, 

hydropathy plots, codon usage tables, signal sequence analysis, predicted secondary 

structure, and homology analyses were performed using PCGENE 6.8 software 

(Intelligenetics, Mountain View, Calif.) and the National Center for Biotechnology 

Information’s sequence-homology search program, BLAST (1).

GENE EXPRESSION

DNA of pUC19, pBKCI, pAULI, and pBK-CMV was purified using a QIAGEN 

Midi-prep kit per the manufacturer’s instructions (Qiagen, Chatsworth, California). In  

vitro transcription and translation o f these plasmids was then performed utilizing a 

prokaryotic DNA transcription/translation kit (Amersham Co., Arlington Heights, Illinois). 

Proteins were prepared for analysis by labeling with an S] methionine/cysteine mix 

(Express;NEN, Boston, Mass.), and boiling for 10 minutes in Laemmli sample buffer 

(LSB) (22). Denatured samples were fractionated on a 0.1% SDS-PAGE gel (12.5% 

acrylamide; w/v) and the gene products o f pBKCI and pAULI DNA were visualized by 

exposing the dried gel overnight to KODAK (Sigma) XAR-5X-OMAT film.

11



CHAPTER m  

RESULTS

3.1 DNA SEQUENCING

Mapping o f the HindlW  insert o f pBKCI allowed for a computer-generated fijsion 

o f the sequence with GenBank accession #L20677 (sequence containing_/7arI) producing 

the entire nucleotide sequence o f pAULI. A partial restriction map of the BarnHl insert 

o f pAULI is shown in Figure 3. Nucleotide sequencing of pBKCI using M l3 universal 

forward and reverse primers along with synthetic oligodeoxynucletide primers indicated 3 

ORF’s o f 62-bp, 152-bp, and 717-bp lengths are present. These ORF’s have been 

designated orfl, orf2, and xuoB^ respectively. All three o f these ORF’s are in opposite 

orientation to the lacZ ' promoter on the pUC19 cloning vector, and all three have 

potential endogenous promoter sites.

The xuoB  gene, a 717-bp ORF, begins at nucleotide number 1423 and utilizes a 

GTG translational-start codon and extends through to nucleotide number 2140, a TAA 

stop codon (Figure 4). A putative promoter region was located 44 bases 5’ to the start 

codon containing a -35 region (TTGCTT) and a -10 region (TGTCAT). Ten bases 

separates these hexameric sequences which have similarities to the E, coli consensus 

promoter sequence (23). A putative ribosomal binding site (RBS) was located 13 bases 5’ 

to the start codon. This polypurine-rich sequence (GGGA) is similar to other RBS 

sequences previously discovered in E. coli (15,43). Analysis o f the region 3’ to the stop 

codon revealed a 5-nucleotide inverted repeat located 17 bases downstream from the stop 

codon which may serve as a p—dependent transcription terminator (37).

12



Figure 3. Partial restriction endonuclease map of the pAULI and pBKCI
inserts Bold arrows indicate positions o f open reading frames, xuoB, orfl, 
and o rfl. Arrowheads indicate direction o f lacZ ' promoter in the pUC19 
and pBK-CMV cloning vectors o f pBKCI and pAULI, respectively.
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Figure 4. Nucleotide sequence analysis of the pBKCI insert. ORFs are
shown in bold capital letters and from top to bottom include orfl, orf2, and 
xuoB. Putative -35 and -10 promoter regions are indicated along with the 
predicted ribosomal binding sites (RBS). Stop codons are indicated with a 
bold asterisk. Predicted p-dependent termination signals are indicated with 
bold opposing arrows.
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N C I H C K T C D I K D P N Q N I N W T  
2041- AACTGCATACATTGTAAAACATGTGACATTAAAGACCCAAACCAAAATATTAACTGGACT

C P Q G N E G P V Y P N M *  ---
2101- TGTCCTCAAGGTAATGAAGGACCTGTTTATCCAAATATGTAA t cagcacctcatcacCTC

2161-
—  >

TTGctaCAAGAtccgttctttctaaaaatgtatcatttat
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A codon usage table generated illustrates the AT richness of this bacterium. B. 

bacilliformis has an obvious codon bias in the 3rd position o f codons. Of all possible 

codon combinations for the amino acids shown in this table, B. bacilliformis utilizes an A 

or T in the 3rd position o f the codons whenever possible. For example. Lysine has an A in 

the third codon position 20 times in comparison to a G used in the third codon position 

only 2 times (Table 1).
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Table 1. Codon usage table analysis of xuoB.
Percentages of each codon used by xuoB  are given.
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TTT Phe 6 2.4% TCT Ser 6 2.4% TAT Tyr 8 3.3% TGT Cys 5 2%
TTC Phe 2 .8% TCC Ser 2 .8% TAC Tyr 3 1.2% TGC Cys 2 .8%
TTA Leu 2 .8% TCA Ser 5 2% TAA —  — 1 .4% TGA --------------- 0 0%
TTC Leu 2 .8% TCG Ser 0 0% TAG -------------- 0 0% TGG Trp 6 2.4%

CTT Leu 8 3.3% CCT Pro 11 4.5% CAT His 8 3.3% CGT Arg 2 .8%
CTC Leu 2 .8% CCC Pro 2 .8% CAC His 1 .4% CGC Arg 3 1.2%
CTA Leu 1 .4% CCA Pro 6 2.4% CAA Gin 7 2.8% CGA Arg 0 0%
CTG Leu 3 1.2% CCG Pro 0 0% CAG Gin 1 .4% CGG Arg 1 .4%

ATT lie 9 3.7% ACT Thr 5 2% AAT Asn 11 4.5% AGT Ser 1 .4%
ATC lie 4 1.6% ACC Thr 3 1.2% AAC Asn 4 1.6% AGC Ser 1 .4%
ATA lie 5 2% ACA Thr 3 1.2% AAA Lys 20 8.2% AGA Arg 1 .4%
ATG MET 1 .4% ACG Thr 1 .4% AAG Lys 2 .8% AGG Arg 0 0%

GTT Val 4 1.6% GCT Ala 7 2.8% GAT Asp 8 3.3% GGT Gly 5 2%
GTC Val 1 .4% GCC Ala 2 .8% GAC Asp 5 2% GGC Gly 6 2.4%
GTA Val 0 0% GCA Ala 6 2.4% GAA Glu 10 4.1% GGA Gly 7 2.8%
GTG Val 3 1.2% GCG Ala 1 .4% GAG Glu 0 0% GGG Gly 0 0%



3.2 DNA HYBRIDIZATION

High stringency DNA hybridizations (allowing for approximately 7% DNA 

mismatch) were performed in order to confirm that the pBKCI insert had originated from 

B. bacilliformis. Probing o f Southern blots with the ^^P-labeled pBKCI insert showed 

hybridization signals of 7200 bp in both 5i//wHI-digested chromosome strains KC583 and 

KC584 o f B. bacilliformis^ and the pBKCI HinàlW  insert (positive control). BamYH. - 

digested chromosomal DNA from E. coli HBlOl showed no hybridization signal. (Figure 

5).

3.3 CO M PU TER ANALYSIS O F XuoB

Using the search algorithm BLAST (1), a significant amino acid sequence identity 

(47.3%) between XuoB and a portion o f a human electron transfer flavoprotein- 

ubiquinone oxidoreductase protein was discovered (Figure 6). Statistical analysis o f this 

homology indicates a p value o f 1x10 e -67. The predicted XuoB protein contains 237 

amino acid residues and a predicted molecular mass o f approximately 28,000 daltons. The 

protein contains alternating hydrophilic and hydrophobic regions (Figure 7), an isoelectric 

point o f 5 .74, and evidence that it may be a peripheral protein o f the cytosol. Further 

computer analysts indicates that no secretory sequence is present in XuoB supporting the 

prediction that XuoB is a peripheral protein o f the cytosol and not surface exposed 

(Figure 8) Secondary structure prediction o f the protein reveals the particular helical, 

turn, coil, and extended conformations (Figure 9) predicted to be present in this protein.
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Figure 5. Detection of sequences with homology to the pBKCI insert in 
chromosomal DNA from B, bacilliformis,.
(A) Ethidium bromide-stained agarose gel (1% agarose; w/v) containing 
lanes: 1, XH indlll DNA size standard; 2, ^izwHI-digested chromosomal 
U N A B. bacilliformis strain KC583; 3, Ba/wHI-digested chromosomal 
U N A B. bacilliformis strain KC584; 4, ^a/wHI-digested chromosomal 
DNA of E.coli strain HBlOl; 5, empty; 6, HindlW  fragment used for 
hybridization probe. (B) The corresponding autoradiograph after DNA 
hybridization with the ^^P-labeled pBKCI insert DNA Open arrow 
indicates the hybridization signal from B. bacilliformis strains KC583 and 
KC584.. Bold arrows indicate the location o f the HindUl insert o f pBKCI 
producing the hybridization signals of approximately 7200 bp.
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Figure 6. Alignment of the B. bacilliformis XuoB protein with Homo sapiens 
electron transfer protein-ubiquinone oxidoreductase (GenPept 
Accession # S69232). Amino acid residue numbers are to the left o f each 
sequence. Solid lines represent exact identity between amino acid 
residues
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Figure 7. Hydropathy plot of the predicted XuoB protein of B, bacilliformis 
utilizing the method of Kyte and Doolittle (20). Values above the 
dotted line indicate hydrophobic regions. Values below the dotted line 
indicate hydrophilic regions. Numbers on the x axis indicate amino acid 
residue number Numbers on the y axis indicate the relative hydrophobicity
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Figure 8. Secretory signal sequence analysis of the XuoB protein of B, 
bacilliformis as predicted by PCGENE ver. 6.8
The X axis illustrates the amino acid residue number and the y axis 
illustrates the probability o f a signal sequence present.
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3.4 GENE EXPRESSION

Utilizing a prokaryote-directed DNA expression kit (Amersham), characterization 

o f the proteins encoded by pAULI and pBKCI recombinants was performed. SDS-PAGE 

analysis o f the in vitro products o f pBKCI showed three insert-specific bands of 3 kDa, 7 

kDa, and 10 kDa with no corresponding bands for these gene products in the cloning 

vector (pUC19)(Figure 10). The 10 kDa product is believed to be a result o f partial 

XuoB gene being contained within pBKCI (Figures 2 and 10). SDS-PAGE analysis o f the 

in-vitro products o f pAULI indicate the predicted gene product of xuoB  at 32 kDa with 

no corresponding band for this gene product seen from expression o f the cloning vector 

pBK-CMV (Figure 11).
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Figure 9. Secondary structure prediction of the XuoB protein of B, bacilliformis 
by the method of Gamier (14 ).
Amino acid residues and their numbers are given above the secondary 
structure prediction. Helical conformations are indicated by an (X), 
extended conformation by a (-), turn conformation by a (>), and coil 
conformations by an (*).
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Figure 10. In-vitro transcription and translation and SDS-PAGE analysis of 
pBKCI and its vector pUC19.
Lanes: 1, ‘"^C-Iabeled protein standards with corresponding Mr values to the 
left in kDa; 2, pUC19 protein products; 3, pBKCI protein products 
Arrows from bottom up indicate position o f ORFl (3 kDa), ORF2 (7kDa), 
and truncated XuoB (10 kDa) protein product respectively.
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Figure 11. In-vitro transcription and translation and SDS-PAGE analysis of 
pAULI and its vector pBK-CMV.
Lanes: 1, '̂*C-labeled protein standards with corresponding Mr values to the 
left in kDa; 2, pBK-CMV protein products; 3, pAULI protein products. 
Arrow indicates the full length XuoB (measured Mr o f 32 kDa) protein 
product
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CHAPTER IV 

DISCUSSION

Previous studies on B, bacilliformis have provided significant evidence supporting 

the importance o f flagella for invasiveness Irreversible deformation of the erythrocyte 

membrane by B. bacilliformis has been observed by Benson et al. (3 ) and in their studies 

they attributed this ability to the functional motility o f the bacterium They theorized that 

the motile bacteria were capable o f creating enough force to “drill” their way into the 

prythrocyte thus causing, possibly along with other factors, the alteration seen in the 

erythrocytic membrane This postulation was further supported when the authors found 

that nonmotile mutants were unable to produce this same deformation. Thus they 

theorized that the loss of motility greatly reduced the drilling effect or that nonmotile 

bacteria perhaps lacked a surface receptor required for attachment.

Mernaugh and Ihler (25 ) identified a proteinaceous factor which is released by B. 

bacilliformis and has the ability to deform the erythrocyte membrane in the absence of the 

pathogen This deformation factor, termed deformin, is believed to be responsible for the 

invaginations seen in the erythrocytic membrane which Benson et al (3). believed was 

caused by a drilling effect from the flagella.

Hill et al. (17) performed invasion studies o f human dermal fibroblasts, laryngeal 

epithelial cells, and umbilical vein endothelial cells by B. bacilliformis. They found that 

when bacteria were treated with a whole-cell antiserum, invasiveness was reduced by 

approximately 50%. These results correlate well with the 41% to 99.8% reduction in
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invasiveness o f erythrocytic cells by B, bacilliformis treated with an antiflagellin antiserum 

reported by Scherer et al (40 ).

Walker and Winkler (44 ) reported that a significant number of bacteria were 

attached to erythrocytes by fiber-like structures emmenating fi-om one pole of B. 

bacilliformis. These electron microscopy studies are very interesting since B. bacilliformis 

contains multiple polar fiagella. Finally, the most recent study published on the 

invasiveness o f B. bacilliformis reveals two genes which may also play a significant role in 

this bacterium’s ability to invade In this study, Mitchell and Minnick (28 ) discovered 

two invasion-associated genes in B. bacilliformis which, when transformed into a non- 

invasive strain o f E. coli, were able to confer the ability to invade human erythrocytes.

All o f these previous studies, although implying that many different virulence 

factors may be involved in conjunction with each other, still suggest that functional 

fiagella are required for the bacterium to invade effectively. Determining the role that 

flagella play in virulence is important because the mechanism o f the invasion process has 

not been elucidated and that one o f the most severe hemolytic anemias occurring in 

humans results from this bacterium’s ability to invade circulating erythrocytes In the 

primary phase of this disease, B. bacilliformis infects nearly all the circulating erythrocytes 

in humans in as little as 3 days Considering the damage this bacterium is capable of 

producing, and after examing all o f the previous studies conducted on invasion by this 

bacteria, we set out to determine if other invasion-associated or motility-associated genes 

were located downstream of the bacilliformis fiagella gene, yZûf/.

In this study we characterized 3 putative ORFs located 3’ to the f la l  gene o f B.
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bacilliformis. Nucleic acid sequencing of pA U LI, utilizing a pBK-CMV vector, revealed 

the locations of these putative ORF’s (Figure 3 and 4). By creating a 1644-bp H indill 

subclone termed pBKCI, we were able to positively identify all 3 in vitro protein products 

o f 3 kDa, 7 kDa, and 32 kDa, from these 3 putative ORF’s (Figures 10 and 11). DNA 

hybridization analysis confirmed that the insert DNA originated from B. bacilliformis 

strains KC583 and KC584, and not from E. co/z HBlOl (Figure 5). We further 

characterized the largest ORF, xuoB^ a 717-bp gene encoding a 32 KDa in vitro expressed 

protein termed XuoB.

Using a computer search algorithm (BLAST) (1) we found a 47.26% sequence 

identity to a human electron transfer flavoprotein-ubiquinone oxidoreductase (Figure 6). 

This human protein protein is encoded by a 617-bp ORF and computer prediction 

estimates a molecular mass o f about 24 kDa compared to XuoB in this study of 32 kDa in 

size Proteins o f similar nature are believed to be responsible for the transfer of electrons 

to a mobile electron carrier coenzyme Q for the metabolism o f lipids (22). Interestingly, 

homology searches produced no significant degree o f homology to any known bacterial 

electron transfer proteins The homology o f B. bacilliformis XuoB to that o f Homo 

sapiens is possibly due to some process requiring electron transfer. This protein may play 

a role in lipid metabolism or perhaps in the generation o f ATP. A potential involvement in 

ATP generation could affect rotation o f the flagella o f B. bacilliformis. It is known that 

phosphorylation in bacteria comes from peripheral proteins located on the inner, 

phospholipid-containing cytoplasmic membrane, where a proton motive force is created 

by lowering the concentration o f hydrogen ions in the cytosol. This allows for a difference
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in electrical charge across the inner membrane to occur. The energy created from this 

proton motive force allows for several processes to occur. First, active transport o f food 

molecules and inorganic ions are able to cross into the cytosol and second, the generation 

o f ATP from ADP utilizing cytoplasmic membrane-bound ATP synthetases occurs. It is 

possible, that the XuoB protein in B. bacilliformis is involved in the generation o f energy 

to drive the flagella.

Upon further analyzing the 32 kDa XuoB protein o f B. bacilliformis, we were 

able to predict a secondary structure (Figure 9), and utilizing a hydropathy plot, we 

hypothesize that XuoB is peripherally located within the cytosol (Figure 7). Supporting 

evidence for it not being a surface protein is the absence o f any predicted signal sequence 

(Figure 8).

A number of theories have been studied as to how this bacterium is able to invade t 

erythrocytes. Mechanical and chemical deformation factors (3, 40, 44), adherence and 

invasive factors (3,25), two newly discovered invasion genes capable o f making a non- 

invasive F7. coli strain invasive for erythrocytes(28), and finally flagellum-based motility (3, 

40, 44), are all strategies believed to be used by the pathogen.

The central mechanism for B. bacilliformis invasiveness is thought to be the 

flagellar-associated motility. Drilling through erythrocytes by the direct power o f the 

proton-motive force driven flagella has been demonstrated using light, scanning-electron, 

and transmission-electron microscopy (44). Adherence to human erythrocytes has also 

been theorized as dependent upon flagella in an analogous fashion to Vibrio cholerae (44). 

Finally, a recent publication by our laboratory revealed that monospecific anti-flagellin
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antibody incubated with B. hacilliformis significantly reduced the bacterium’s ability to 

invade human erythrocytes in vitro.

It was with this information in mind that we went searching for gene products 

which may facilitate this bacterium’s ability to invade and/or might be involved in motility. 

What we discovered was a gene encoding a protein which may serve to transfer electrons 

in B. haciliformis. The actual role o f XuoB in B. bacilliformis metabolism or pathogenesis 

remains to be determined
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