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Bartlett, R ichard D., Ph.D. January, 1999 Pharm aceutical Sciences

Identification and  characterization of inhibitors of L-glutam ate transport into 
rat brain  synaptic  vesicles (96 pp.)

Research advisor: Richard J. Bridges, Ph.D.

The accum ulation  of L-glutam ate into synaptic vesicles represents a key 
com ponent of excitatory am ino acid (EAA) transm ission. It functions to 
d ivert g lu tam ate  from its norm al metabolic activities and  tow ards its role as a 
neu ro transm itter. Vesicular glutam ate uptake is achieved by a specific 
transport p ro te in  located in  the m em branes of synaptic vesicles w hich is 
rem arkably selective for L-glutamate. Uptake is d riven  by an  electrochem ical 
proton g rad ien t generated by a vacuolar-type pro ton  ATPase and is 
characterized by a low affinity for L-glutam ate (Km = 1-3 mM) In this study, 
two classes of com petitive inhibitors are presented which potently a ttenua te  
glutam ate up take  via this transport system. These com pounds are based 
upon  rigid bicyclic m olecular fram eworks of quinoline and nap h th y lam in e . 
Of the quinolines, two analogues of kynurenate (xanthurenate and  7-C1- 
kynurenate) w hich contain electron donating  groups attached to the  
carbocyclic ring  w ere found to be more potent inhibitors than  kynu rena te  
itself. U sing m olecular m odeling studies, it is dem onstrated that th e  
carbocyclic qu ino line  ring m ay approxim ate the distal carboxylate of L- 
glutam ate, and  this correspondence is enhanced by these electron donating  
groups. O f the naphthylam ines, several heterocyclic organic dyes w ere 
identified w hich  inhibited vesicular glutam ate uptake at n a n o m o la r  
concentrations. These include Evans Blue, Chicago Sky Blue, N aphthol Blue 
Black, and  Congo Red. Curiously, a direct structural com parison of these 
com pounds to L-glutam ate is difficult. A dditionally it was found th a t 
appending  diazo-Iinked arom atic side chains to the naphthy lam ine core 
dram atically  increased inhibitory activity, suggesting that these com pounds 
m ay bind to  the vesicular transporter site in a fashion different than that of L- 
glutam ate, perhaps via a lipophilic interaction.

Insight in to  the m echanism  of vesicular glutam ate transport was m ade by 
m onitoring the efflux of accum ulated 3H-L-glutamate in the presence of these 
com petitive inhibitors. It was observed that at concentrations en su rin g  
saturation of the substrate b inding site (i.e. lOx the inhibitor K( value), certain  
com pounds stim ulated  efflux while others blocked it. Presum ably, this efflux 
stim ula tion  is due  to hom o- or hetero-exchange of the vesicular contents 
w ith an excellent substrate, while efflux attenuation  is caused by com pounds 
that are partia l or non-substrate inhibitors. This approach provides a detailed 
pharm acological and  m echanistic m eans to rapidly differentiate substrates 
from  nonsubstra tes at the vesicular glutam ate transporter.
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Chapter 1: Background and Introduction

L-GIutamate is widely accepted as the prim ary excitatory 

n eu ro tran sm itte r in the m am m alian  central nervous system  (CNS). It 

m ediates both  fast synaptic in ter-neuronal com m unication and  the m o re  

com plex signal processing involved in learning, mem ory, and  d e v e lo p m e n t 

(for review  see Cotm an et al., 1995). The ability of glutam ate to participate i n  

such a w ide range of processes is a function of the excitatory am ino acid 

(EAA) receptors that comprise the glutam atergic system. These receptors 

include subtypes that are coupled to ion channels (ionotropic) and  second 

m essenger system s (metabotropic). The ionotropic receptors were in itia lly  

characterized and  nam ed according to the selective agonists N -m ethyl-D - 

aspartate  (NMDA), a-amino-3-hydroxy-5-methyI-4-isoxazoIe p ro p io n ate  

(AMPA), and kainate (KA). These classes include receptors w hich gate 

curren ts carried by Na*, Kf, and Ca*+ (for review  see M onaghan and  C o tm an  

1986). M etabotropic glutam ate receptors are G-protein coupled to e ither cyclic 

adenosine m onophosphate (cAMP) or to phophoinositide (PI) second 

m essenger systems. They were initially d istinguished by the agonists 1- 

am inocyclo-pentane-trans-l,3-dicarboxylate (frans-ACPD) and L-2-am ino-4- 

phosphonobuty ra te  (L-AP4), respectively (Conn and Pin, 1997). M ore 

recently, the em ploym ent of m olecular techniques to clone these receptors,

1
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2
and  further pharm acological characterization has led to an even greater 

refinem ent in their sub-classification.

The inherent ability of glutam ate to activate such a w ide range of 

pharm acologically distinct receptors is dependen t upon  its acyclic structure.

Free rotation is perm itted about the a(3 and (3y sp3 bonds of glutam ate, w hich

allows it to assum e stable low energy conform ations in aqueous so lu tio n  

(Ham, 1974). This characteristic has been exploited in  the design and  

discovery of conform ationally constrained analogues of glutam ate w hich  

selectively interact w ith these receptors and o ther com ponents of the EAA 

system , such as the high-affinity sod ium -dependent plasm a m em brane  

transporters (Chamberlin and Bridges, 1993; Cham berlin et al., 1998).

Following release from the presynaptic term inal, a ttenuation  of the  

excitatory signal is accomplished by diffusion of glutam ate from the synaptic 

cleft and its subsequent reuptake by high-affinity transporters located on  

neurons and surrounding glia. Analogous to the receptors, these transporters 

have been characterized according to differences in m olecular structure  and 

their relative affinities for selective substrates and inhibitors (G egelashvili 

and  Schousboe, 1997).

A lthough glutam ate is today recognized as one of the m ost co m m o n  

CNS neurotransm itters, one criterion supporting  this role rem ained e lusive  

un til the m id 1980's, nam ely its calcium -dependent release from  synaptic 

vesicles. Before then, studies utilizing variable speed centrifugation and gel
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3
filtration failed to show  a substantial enrichm ent of glutam ate and o ther 

am ino acids in fractions of isolated synaptic vesicles (De Belleroche and 

Bradford, 1973; De Belleroche and  Bradford, 1977). These findings contrasted 

w ith  those of the biogenic amines (i.e., acetylcholine, no rep ineph rine , 

epinephrine, dopam ine, and serotonin), which were found in high quantities 

using  the sam e isolation techniques. Consequently, it was speculated that 

upon  neuronal depolarization, glutam ate may be released directly from the 

cytosol into the synapse, rather than from synaptic vesicles, as purported  for 

o ther neu ro transm itter systems (De Belleroche and Bradford, 1977). This 

controversy was later resolved by two independent lines of investigation . 

First, it was dem onstrated that glutam ate released in a Ca*+-dependent 

m anner originates from a non-cytosolic pool (Nicholls and Sihra, 1986). 

Second, it was show n that glutam ate accum ulation into synaptic vesicles is 

energy dependen t (Naito and Ueda, 1983; Naito and Ueda, 1985; Maycox et al., 

1988). M oreover, efflux of the vesicular contents will occur if the 

electrochem ical gradient is not m aintained, which would explain the earlier 

failure to isolate synaptic vesicles containing glutam ate (Carlson and  Ueda, 

1990). In contrast, the stability of acetylcholine and catecholamines in  synaptic 

vesicles in the absence of ATP is thought to be due to an in travesicu lar 

com plexation (McMahon, 1991).

W ith in  the last 15 years, the bioenergetics of vesicular g lu tam ate 

up take  have been extensively characterized ( see Ozkan and Ueda, 1998).
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T ransport into synaptic vesicles is driven by an electrochem ical p ro ton  

g radient (ApH*) which includes contributions from both a m em brane  

potential (A1?) and a transm em brane pH  gradient (ApH) (Figure 1.1). T his 

electrochem ical gradient is generated by a vacuolar-type M g++-dependent H +- 

ATPase which utilizes energy produced from the hydrolysis of cytosolic ATP 

to direct a flow of protons into the lum en of synaptic vesicles. The resu lting  

charge differential (inside positive) leads to the form ation of a AH' across the  

vesicular m em brane. In the presence of perm eant anions (e.g., Cl ), A1?  w ill 

d im in ish  w ith the influx of negative ions and  the net accum ulation  of H Q  

leading to an increase in ApH. Studies have show n that both  AH' an d  ApH

participate in vesicular glutam ate uptake under physiological conditions, 

a lthough  their relative contributions to the uptake process rem ain  to be 

clarified (Maycox et al., 1988; Tabb et al., 1992; H artinger and  Jahn, 1993). 

Therefore, com pounds reducing either AH'. ApH or both  have been found to

be effective non-com petitive inhibitors of glutam ate transport into synaptic 

vesicles. The effects of such com pounds (e.g. nigericin and  carbonyl cyanide 

p-trifluorom ethoxyphenyl-hydrazine, (FCCP)) on the electrochem ical p ro ton  

g rad ien t are also illustrated in Figure 1.1. N igericin exchanges H* for K+ ions

across the vesicular m em brane and, therefore, reduces ApH w ithou t affecting 

AH'. FCQ? reduces bo th  ApH and  AH' by equilibrating protons across the
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Figure 1.1 Putative m odel of the bioenergetics of vesicular glutam ate 

uptake (m odified from Ozkan and Ueda, 1998).
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6
vesicular m em brane. In each case, m icrom olar concentrations of these 

com pounds are able to effectively reduce the driving force for vesicular 

uptake and consequently attenuate glutam ate accum ulation (Tabb et al., 1992; 

Burger et al., 1989; Maycox et al., 1988; Naito and Ueda, 1985).

In addition  to its contribution to the form ation of ApH, CT has been 

proposed to play a m odulatory role in vesicular glutam ate uptake by b inding 

to a specific site on the transporter protein. It was reported that 4,4'- 

diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS), a general an ion  channel 

blocker, could inhibit the C l-dependent uptake and efflux of g lutam ate, and  

tha t th is inhibition could be overcome with an excess am ount of CT, bu t n o t 

w ith  another anion, such as glutam ate (Hartinger and Jahn, 1993). This resu lt 

could be explained by the presence of a O ' binding site on the in travesicu lar 

surface of the transporter, which m ay function to bind and exchange Ium enal 

Cl' for cytosolic glutam ate during uptake. Such a counter transport system 

m ay even be energetically favorable, acting to balance the negative charge 

g rad ien t across the m embrane. Unfortunately, a counter transport of Cl' ions 

via the transporter itself or a separate chloride conducting site has not yet 

been directly dem onstrated, owing in part to the high non-specific 

perm eability of biological membranes to Cl'.

Despite the finding that vesicular glutam ate uptake is dependen t u p o n  

A(iHf, current evidence does not adequately explain how  ApH and AT 

regulate or drive this uptake process. In regard to data indicating that H +
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7
efflux is coupled to glutam ate uptake, it has been suggested that a 1:1 coun ter 

exchange of these m olecules is energetically feasible (Shioi and Ueda, 1990). 

Additionally, it is quite plausible that the intravesicular acidification resulting 

from H + and Q" accum ulation, m ight significantly change the confo rm ation  

of the transport pro tein  due to p ro tonation /depro tonation  of ionizable am ino

acid residues (Tabb et al., 1992). While the ApH com ponent of Ap.H+ at 

physiological Cl' concentrations (4 mM) is relatively small (ApH = 0.6), such a

change in intravesicular pH could have substantial effects on the  

conform ation and activity of the transporter.

Following the dem onstration of energy-dependent glutam ate uptake by 

synaptic vesicles, num erous studies were aim ed at delineating the  

pharm acology and kinetic properties of this transport system. As a result, key 

differences were identified that differentiated the vesicular and cellu lar 

glutam ate transporters. First, vesicular transport is driven by an

electrochemical pro ton  gradient, stim ulated by physiologically re lev an t 

concentrations of CT, and is Na^-independent. In contrast, cellular tran sp o rt 

predom inantly  responds to N a+ and K+ gradients (N a+0 > Na^; K+0 < K*). 

Secondly, affinity for the endogenous substrate L-glutam ate dram atically  

differs betw een the tw o systems. Thus, Km values for vesicular uptake are in  

the 1-3 mM range (Naito and Ueda, 1985), whereas the Km values for the h igh- 

affinity cellular uptake system vary from 5-50 |±M (Bridges et al., 1994; G arlin  

et al., 1995). This difference in affinity m ay reflect the relative concentrations
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8
of glutam ate inside and  outside of the cell and the fact that a h igh-affinity  

uptake system m ay not be required by synaptic vesicles because cytosolic 

glutam ate levels are in the millimolar range (Maycox et al., 1990). Finally, the 

specificities of the two transport systems are also distinct, as a num ber of well 

know n substrates and inhibitors of cellular transporters exhibit little or no  

activity in the vesicular system (e.g. D-, L-cysteic acid, D,L-threo-(3- 

hydroxyaspartic acid, L-fnuis-2,4-PDC, etc.; Table 6.1).

Presently, pharm acological characterization of the vesicular g lu tam ate 

pharm acophore is still in its infancy. Initial studies included com pounds 

previously reported to interact w ith other com ponents of the EAA system , 

thereby addressing their potential cross-reactivities w ith vesicular uptake. In  

general, these studies m et w ith m arginal success, although a few potentially  

interesting com pounds w ere indentified. For example, kynurenic acid, a non- 

selective inhibitor of EAA ionotropic receptors, and trans-ACPD, a 

m etabotropic receptor agonist, were both reported to com petitively inh ib it 

vesicular glutam ate uptake w ith K( values less than that of g lutam ate itself 

(Fyske et al., 1992; W inter and Ueda, 1993). Even more potent inhibitors w ere 

discovered w hen several high m olecular weight organic dyes, orig inally  

show n to antagonize EAA receptor b inding  (i.e. trypan blue, Evans Blue, and  

Chicago Sky Blue), w ere tested as transport inhibitors (Roseth et al., 1995; 

Roseth et al., 1998). These com pounds inhibit vesicular g lutam ate uptake at 

nanom olar concentrations. Very recently, the inhibitory activity w as also
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9
characterized for an  endogenous substance, term ed inhibitory  pro tein  factor 

(IPF), which is derived  from the cytoskeletal pro tein  fodrin (Ozkan et al., 

1997). A t nanom olar concentrations, IPF inhibits both glutam ate and  GABA 

uptake by synaptic vesicles and is proposed to play an  in v iv o  m odu la to ry  

role in vesicular transport.

A lthough the num ber of identified inhibitors is increasing, little is 

know n concerning their m olecular interactions w ith the transporter site or, 

how  they mim ic the substrate binding conform ation of L-glutam ate. T he 

w ork introduced in this study begins to address these questions. Two distinct 

series of com pounds are presented which com petitively inhib it vesicular 

g lu tam ate  uptake. O ne is based upon a quinoline core fram ew ork, and the  

o ther a naphthalene ring system. Detailed kinetic analyses and m olecu lar 

m odeling  studies w ere utilized to rationalize the inhibitory activities of these 

com pounds at the vesicular site. Moreover, further insight into the  

m echanism  of vesicular glutam ate transport is m ade and a m ethod  for the  

rap id  differentiation of substrates from non-substrates is presented.
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Chapter 2: Methods and Materials

Isolation of synaptic vesicles

Synaptic vesicles were isolated from the forebrains of male Sprague- 

Dawley rats (200-300 g) essentially as described by Kish et al., (1989). Briefly, 

rats were rapidly decapitated and their cerebrums were rem oved and m inced 

w ith scissors in an ice-cold solution consisting of 0.32 M sucrose, 1.0 m M  

sodium  bicarbonate, 1.0 mM m agnesium  acetate, and 0.5 mM calcium acetate 

(pH 7.2). The finely m inced cerebrums were hom ogenized (m otorized Potter- 

Elvejhem , Teflon/glass (W heaton)) and centrifuged (12,000 gmax, 15 m in , 

Sorval SS-34 rotor), after which the resulting pellet was resuspended in a 6.0 

mM Tris-m aleate buffer (pH 8.1). Following a 45 m in incubation at 4°C, the 

suspension  was centrifuged (43,000 gmax, 15 min, Sorval SS-34 rotor). The 

collected supernatan t was re-centrifuged (222,000 gmax, 55 min, Beckman Ti 

60 rotor) and the resulting pellet resuspended by hom ogenization in 0.32 M 

sucrose, 1.0 mM  sodium  bicarbonate, and 1.0 mM  dithiothreitol (pH 7.2). 

Synaptic vesicles prepared in this m anner and stored at -80 °C exhibited 

sim ilar levels of glutam ate uptake activity for at least 2 weeks.

10
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Assay and kinetic analyses of vesicular glutamate transport:

The uptake of glutam ate into synaptic vesicles was quantified  using  a 

m odification of the procedure described by Kish et al., (1989). Synaptic 

vesicles were resuspended by vortexing in a buffer containing 5.0 mM  MgCI^ 

375 mM sucrose, and 5.0 mM N-[2-hydroxyethyI]piperazine-N '-[2- 

ethanesulfonic acid] (HEPES) (pH 7.4) and m aintained at 4°C. Vesicles (80 |iL, 

100-150 jig protein) were preincubated for 5 m in at 30°C. U ptake was in itia ted  

by the addition of a concentrated stock solution (20 pL, 30°C) that yielded a 

final assay m ixture of (0.25 - 8.0 mM L-[3,4-3H]-gIutamate, 2.0 m M  ATP, 4.0 

m M  MgCI^ 4.0 mM KC1, 300 mM sucrose, and 5.0 mM  HEPES (pH 7.4). 

W here indicated, inhibitors were added to the assays in com bination w ith  3H- 

L-glutam ate. Following a 1.5 m in incubation, uptake was term inated  by the  

add ition  of 3.0 mL of ice cold 150 mM KCI followed im m ediately  by rapid 

vacuum  filtration (<10 psi) through M illipore HAWP filters (25 m m , 0.45 

p.m). Assay tubes and filters were sequentially rinsed twice m ore w ith  3.0 mL 

of ice cold 150 mM KCI. The filters were transferred to 5.0 mL glass 

scintillation vials and 3.5 mL Liquiscint scintillation fluid (N ational 

Diagnostics) was added to each. Radioactivity retained on filters was 

quantified by liquid scintillation counting (LSC, Beckman LS 6500). In the  

instance of certain dye containing assays, colorimetric quenching  artificially
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decreased the  am ount of m easured radioactivity. For these sam ples, 

corrections w ere m ade to account for this reduction, utilizing a one-phase 

exponential decay equation to describe the relationship betw een the degree of 

quenching (H #) and  the reduction in m easurable radioactivity (% of Control) 

(refer to follow ing illustration).

100

eo
U<4*o

H#

Nonspecific uptake, binding, or leakage was corrected for by subtracting 3H-L- 

g lu tam ate  accum ulated in the absence of ATP. Typically, the non-A TP- 

dep en d en t com ponent was less than 20% of the A TP-dependent value. Initial 

experim ents established that under the assay conditions em ployed, g lu tam ate  

up take  into the synaptic vesicles was linear w ith respect to both tim e and  

pro tein  conten t (data not shown). Lineweaver-Burk plots and associated 

kinetic param eters were estim ated by com puter analysis (K»CAT kinetic 

p rogram , BioM etallics Inc.) w ith w eighting based on constant relative error. 

The resulting  K{ values were estim ated on the basis of a replot of K ^  app 

values. Sigm oidal dose-response curves and ICgo values were determ ined  

from  non-linear regression analyses of a one-site com petition m odel (PRISM 

program , G raphPad Software, Inc.). Reported values w ere estim ated from
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IC50 values according to the Cheng-Prusoff relationship (Cheng and Prusoff, 

1973) for competitive inhibitors (refer to the following equation).

K  _  IC 50  
1 [substrate]

1 +
* m

Protein concentrations were determ ined by the Pierce BCA assay 

(bicinchoninic acid; Smith et al., 1985).

Vesicular ATP-dependence of 3H-L-glutamate uptake and retention

In one series of experiments transport assays were m odified to 

specifically exam ine the dependence of 3H-L-gIutamate uptake on ATP. In 

these studies, ATP concentrations were varied from 2-6 mM, and  the vesicle 

content of the assay was increased 4-5 fold. Instead of term inating an 

ind iv idual assay for each time point, aliquots (25 |iL) w ere rem oved at the 

indicated tim es from a common incubation and term inated  by diluting in 3 

mL of ice cold 150 mM KCI, imm ediately followed by vacuum  filtration and 

rinsing  ( 2 x 3  mL). Radioactivity retained on filters w as quantified as 

previously  described.
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Efflux of glutamate from synaptic vesicles
14

Synaptic vesicles were first incubated w ith 3H-L-glutamate u n der the  

sam e conditions used to quantify uptake. Following a 5 m in incubation , 

vesicles (100 (iL) were diluted 20-fold into incubation buffer devoid of ATP, 

b u t containing unlabeled L-glutamate a n d /o r  an inhibitor at the indicated 

concentrations. These assays were then allowed to incubate at 30°C for th e  

indicated times and efflux was terminated by the addition of ice cold 150 m M 

KCI (3 mL), im m ediately followed by vacuum  filtration and rinsing ( 2 x 3  mL) 

as described earlier. Radioactivity retained on filters was quantified by  LSC.

Synaptic plasma membrane preparation and receptor binding assay

Synaptic plasm a membranes (SPMs) were prepared from m ale  

Sprague-D aw ley rat forebrains by differential centrifugation and assayed for 

radioligand binding as described by Bridges et al., (1989). Binding assays w ere 

carried ou t using optim ally selective conditions of time, tem perature, and  

buffer for each of the three glutamate ionotropic receptor classes. To quantify  

N -m ethyl-D -aspartate (NMDA) receptor binding, SPMs were incubated w ith

L-[3,4-3H ]-glutam ate (10 nM, 41 C i/m m ol) in 50 mM  Tris-acetate, pH  7.2, at 4°C 

for 10 m in  (M onaghan and Cotman, 1986). Kainate (KA) receptor b ind ing  was
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quantified by incubating SPMs w ith 3H-KA (10 nM, 58 C i/m m ol) in 50 m M

Tris-citrate buffer, pH  7.0, at 4°C for 30 m in  (Simon e t al., 1976; London and

Coyle, 1979), AMPA receptor b inding w as m easured w ith 3H-AM PA (10 nM , 

27.6 C i/m m ol) in 50 mM Tris-acetate buffer, pH  7.2, containing 100 m M

KSCN for 30 m in at 4°C (Honore et al., 1982). Nonspecific binding was 

determ ined in each of the assays by the inclusion of 200 |iM  NMD A, 100 p.M 

KA, or 100 pM  quisqualate respectively. Values represent specific b ind ing  and 

are reported as the percentage of control b ind ing  (mean ± SEM; n = num ber of 

triplicates).

Synaptosome preparation and N a ¥-dependent D -a s p a r ta te  

tran sport

Rat forebrain synaptosom es were prepared  from male Sprague-Dawley 

rats using a d iscontinuous Ficoll g rad ien t essentially as described by B ooth 

and  Clark (1978). The synaptosom al pellet was suspended in assay buffer at a

final concentration of about 0.2 m g p ro te in /m L . Uptake of 3H-D-aspartate (5 

jiM) was m easured in assay buffer containing 128 mM NaCl, 10 mM glucose, 5 

mM  KCI, 1.5 mM  NaH2P0 4 , 1 mM MgSC>4 , 1 mM  C a d i, and 10 mM  Tris (pH

7.4) (Kuhar and Zarbin, 1978). Follow ing a 5 m in preincubation at 25°C,
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uptake w as initiated by the sim ultaneous addition of 3H-D-aspartate and 

inhibitors. Uptake was allowed to proceed for 2 m in after which the reaction 

was quenched w ith  6 mL of ice cold buffer and  rapidly filtered onto W h a tm a n  

G F/F  glass fiber filters. Following a rinse w ith ice cold buffer, the reta ined  

radioactivity  was quantified by LSC. All values were corrected for background 

by  subtracting 3H-D-aspartate accumulated at 4°C. Previous experim ents h av e  

dem onstra ted  that uptake under these conditions is linear w ith respect to 

bo th  p ro tein  content and time.

M a te r ia ls

L-Glutam ic acid, kynurenic acid, 7-chIoro-kynurenic acid, picolinic acid, 

4-hydroxy-pyridine, quinaldic acid, xanthurenic acid, Evans Blue, and  

carbonyl cyanide p-trifluorom ethoxyphenylhydrazone (FCCP) w ere purchased 

from  Sigm a (St. Louis, MO.). Pyridine, 3-hydroxy-picoIinic acid, qu inald ic  

acid, quinoline, 4-hydroxy-quinoIine, 2-pyrazine carboxylic acid, Chicago Sky 

Blue, 4-am ino-5-hydroxy-l-naphthalene sulfonic acid, Congo Red, 4 -am ino-l- 

n ap h th a len e  sulfonic acid, l-naphthol-3,6-disulfonic arid, N aph tho l B lue 

Black, N itro  Red, and  4-am ino-5-hydroxy-2,7-naphthalene disulfonic arid 

w ere purchased  from Aldrich (M ilwaukee, WI). Chicago arid, G allion, 

A zophloxine, and  C hrom otrope 2R were purchased from TCI A m erica
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(Portland, OR). 4-Hydroxy-picoIinic ad d  was synthesized as previously

described by Clark-Lewis and M ortim er (1961). L-[3,4-3H]-Glutam ic add ,

[v iny lid ine-^J-kain ic  add , D,L-a-[5-methyI-3H]-AMPA, and D-[2,3-3H]-aspartic

acid w ere obtained from Dupont NEN (Boston, MA). All o ther reagents were 

obtained from Sigma.
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Chapter 3: Vesicular pharmacology of quinoline and pyridine based 

inhibitors 

Introduction

W hile large num bers of excitatory am ino acid (EAA) analogues h av e  

been tested as potential blockers of vesicular glutam ate uptake, only a few 

po ten t competitive inhibitors have been identified; e.g., trails-1- 

aminocycIopentane-l,3-dicarboxylic acid (fnzns-ACPD) (W inter and Ueda, 

1993), brom ocriptine (Carlson et al., 1989), certain naphthalene d isu lfon ic  

acids (Roseth et al., 1995), and kynurenate (Fyske et al., 1992). This last 

com pound is of particular interest because it is not only present in the CNS 

(for review  see Stone, 1993) bu t also because it exhibits activity at EAA 

ionotropic receptors. Specifically, kynurenate acts as a com petitive in h ib ito r 

at the glutam ate sites on the NMDA, KA and AMPA receptors (Ganong et al., 

1983), and  at the glycine site on the NM DA receptor (Kessler et al., 1989; 

W atson et al., 1988).

The w ork presented in this chapter details an analysis of the struc tu re- 

activity relationships and kinetic properties of a panel of kynu rena te  

analogues as inhibitors of the vesicular glutam ate transporter. Further, tw o 

closely related derivatives of kynurenate, 7-chIoro-kynurenate and

18
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xan thurenate, are identified that are m arkedly more potent as uptake 

inhibitors than  the paren t com pound. Parallel studies assessed the activity of 

these inhibitors at the sodium -dependent synaptosom al transporter and at 

the EAA ionotropic receptors. Com puter-based molecular m odeling w as used 

to analyze the structure-activity data in an attem pt to explain the inh ib ito ry  

activities of these com pounds and identify the active conform ations of 

g lu tam ate  that b ind  to the vesicular transporter. The findings will help to 

fu rther define the pharm acological specificity of the glutam ate b ind ing  site o n  

the vesicular uptake system and identify novel pharm acological probes w ith  

w hich to investigate its function.

Results

Pharmacology o f  the vesicular glutamate transporter

A series of quinoline and pyridine analogues of kynurenate w ere tested 

for their ability to inhibit the uptake of ^ -L -g lu tam ate  into synaptic vesicles 

p repared  from  rat forebrain (Table 3.1). Consistent w ith previous studies 

(Fyske et al., 1992), kynurenate m arkedly reduced the uptake of ^ - L -  

g lu tam ate  (0.25 mM) to 11% of control values (1532 ± 111 p m o l/m in /m g  

pro tein ) w hen  included in  the assay at 5.0 mM. Analogues of kynurena te
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Table 3.1 Inhibitory activities of kynurenate analogues on the vesicular up take o f L-glutam ate

C om pound Structure
Vesicular Uptake 

of ’H-L-Glutamate 
(% of Control)

C om pound Structure
V esicular Uptake 

o f ’H-L-Glutam ate 
(% o f Control)

Quinoline and Quinoxaline Analogues Pyridine and Pyrazine Analogues

Q uinoline

4-O H -Q uinoline

Q uinaldate

2-Q uinoxaiine
carboxytate

K ynurenate

X anthurenate

7-Cl-

4-Methoxy-2-
quinoline
carboxylate

00 56 ± 4  (5) Pyridine 0 91 ± 2 (3)
OH

CO 61 ± 2  (4) 4-OH-Pyridine
OH

0 98 ± 9  (3)

ax. 34 ± 3  (5) Picoiinate 86 ± 3  (5)

ax.
OH

14 ±1 (3) 2-Pyrazine
carboxytate

clN ^ * C O o  

OH

90 ± 3  (3)

ax . 11 ± 1 (IS) 4-OH-Picoiinate

0 - C M

79 ± 8 (3)

OH

ox.
OH

4 ±1(12) 3-OH'PicoIinate cxrh ' ^ c o o
27 ± 3  (6)

OH

jOcX 2 ± 1 (6)

OCHi

aX 25 ±  1 (4)

The vesicular up take  of 3H-L-glutamate (0.25 mM) w as perform ed as described in C hap ter 2. 

K ynurenic a d d  analogues were present in the incubation m edium  at a final concentration of 

5mM . Results are reported  as a percentage of control up take ± SEM with n  num ber of 

experim ents in parentheses. The control value for glutam ate up take  w as 1532 ± 111 

p m o l/m in /m g  pro tein  (n = 49).
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were selected in an effort to examine the contribution of the carboxylate and  

the hydroxy m oieties to the process of substrate binding. Thus, 4-hydroxy- 

quinoline, which lacks the 2-carboxyIate group of kynurenate, and quinaldate, 

in w hich the 4-OH m oiety is absent, proved to be less effective th a n  

kynurenate, reducing uptake to approxim ately 60% and 30% of control, 

respectively. Interestingly, w hen both functional groups were absent, as in  

quinoline, some inhibitory activity was retained. Replacing the 4-OH m oiety  

w ith a m ethoxy group (4-methoxy-2-quinoIine carboxylate) or em bedding a N 

atom  at the 4-position of the hetero-ring (2-quinoxaIine carboxylate) resulted  

in inhibitory activities that were more comparable to that of kynurena te . 

M arked increases in inhibitory activity were observed in those analogues in  

w hich electron donating groups (e.g., OH, Cl) were added to the aryl ring of 

kynurenate. Thus, both xanthurenate and 7-Cl-kynurenate a lm ost

completely abolished the uptake of 3H-L-gIutamate (0.25 mM ) into the  

synaptic vesicles w hen included in the assays at 5.0 mM.

In contrast to the activities of the quinoline and qu inoxaline  

derivatives, the mono-heterocyclic analogues exhibited little or no inh ib ito ry  

activity. Included am ong these com pounds was 4-OH picolinate, w hich is 

structurally  identical to the hetero-aryl ring of kynurenate. The exception to 

this pattern  was 3-OH picolinate (5.0 mM), which reduced the up take of 3H-L- 

glutam ate (0.25 mM) into the synaptic vesicles to 27% of control.
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More detailed kinetic studies were carried ou t on those analogues 

identified in Table 3.1 as potent inhibitors of vesicular uptake. A 

representative L inew eaver-Burk plot for the inhibition  of vesicu lar 

glutam ate transport by xan thurenate is illustrated in Figure 3.1. The Km and  

Vmax values for the transport of L-glutamate were found to be 2.77 ±  0.15 m  M 

and  24.86 ± 2.06 n m o l/m in /m g  protein (n=26), respectively. The patterns of 

inhibition observed w ith  xanthurenate, as well as w ith the o ther co m p o u n d s 

analyzed, were all consistent w ith actions of com petitive inhibitors. V alues 

for Kj were determ ined  on the basis of a replot of Km app values (inset F igure 

3.1; Table 3.2) which, in the instance of xanthurenate, was found  to be 0.19 ± 

0.04 mM (n=6). W hen L-glutam ate was tested in this m anner the K, v a lu e  

obtained (1.63 ± 0.21 mM) was sim ilar to its observed Km. C onsistent w ith  th e  

initial assays of inhibitory activity, xanthurenate and 7-C l-kynurenate p ro v ed  

to be the m ost potent inhibitors, exhibiting Kt values m arkedly less than th e  

endogenous substrate L-glutam ate (Table 3.2).

Pharmacological specificity o f kynurenate analogs

Those com pounds identified as potent inhibitors of vesicu lar 

glutam ate uptake w ere also evaluated for their ability to block: i) the tran sp o rt

of H-D-aspartate in to  rat forebrain synaptosom es and  ii) the b ind ing  of
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Figure 3.1 Demonstration of the competitive inhibition by xanthurenate on

3H-L-glutamate uptake into synaptic vesicles.

p

1.0

P
j s

" o
6 
a .
o  0.0 

>

0.0 0.1 0.2 03 0.4
[ I ] (mM)

0.0- 1.0 2.0 3.0 4.01.0

1 /ES] (mM)

R epresentative Lineweaver-Burk plot of a single experim ent dem o n stra tin g  
com petitive inhibition by xanthurenate (0.1, 0.3, 0.5 mM) on the uptake of 3H- 
L-glutam ate (0.25 - 8.0 mM) into rat brain synaptic vesicles. The above plots 
y ielded  a control Vmax = 20.99 ± 1.33 nm ol /m in  /m g  protein and Km = 2.46 ± 0.23 
mM . Inset shows a replot of Km apparen t versus  xanthurenate concen tra tion  
p roducing  a K, = 0.24 ± 0.06 mM.
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Table 3.2. Kinetic analyses of kynurenic acid analogues as com petitive 

inhibitors of 3H-L-gIutamate uptake into synaptic vesicles.

C om pound Kt ± SEM
L-GIutamate

3-OH-Picolinate

K ynurenate

2-Q uinoxaline
carboxylate
7-CI-Kynurenate

X anthurenate

1.63 mM ± 0.21 (5) 

1.58 mM ± 0.21 (3) 

1.28 mM ± 0.19 (4) 

0.70 mM ± 0.07 (3) 

0.59 mM ± 0.14 (5) 

0.19 mM ± 0.04 (6)

Vesicular glutam ate uptake was determ ined essentially as described in  
C hapter 2 w ith  the exception that 3H-L-glutamate concentrations were varied 
from  0.25 - 8.0 mM in the presence of three different concentrations of 
inhibitor. K( values were estim ated on the basis of a replot of Km values and 
are reported  as m ean K{ ± SEM, w ith n num ber of experim ents in  
paren theses.
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radioligands to the EAA ionotropic receptors on rat forebrain synaptic plasm a 

m em branes (SPMs). W hen included in the synaptosom al transport assays at

250 |±M, the kynurenate derivatives failed to attenuate the uptake of ^ - D -  

aspartate (5 (J.M) (Table 3.3). In contrast, both L-glutam ate and L-aspartate 

produced an alm ost complete inhibition. C onsistent w ith  distinct 

specificities, D -aspartate d id  not inhibit the uptake of 3H -L-glutam ate into the 

synaptic vesicles (data not shown). W hile synaptosom es have historically 

been considered to represent presynaptic transport, recent pharm acological 

data (e.g., sensitiv ity  to dihydrokainate) suggest that up take in th is 

p reparation  m ay include a significant contribution from glial system s (Arriza 

e t al., 1994). Thus, w hile the kynurenate analogues exhibited no inhib itory  

activity, fu rther resolution of neuronal vs glial activity requires additional 

studies.

The analogues were then assessed for their ability to block the b ind ing  

of 3H-L-gIutam ate (10 nM), 3H-kainate (10 nM), and 3H-AM PA (10 nM) to 

NMDA, KA and  AMPA receptors, respectively. The results of these b inding 

studies are sum m arized in Table 3.4 as percent of control: 0.19 ± 0.02 p m o l/m g  

pro tein  for 3H-L-gIutamate, 0.27 ± 0.04 pm ol / m g pro tein  for 3H -kainate, and 

0.13 ± 0.01 p m o l/m g  protein for 3H-AMPA. As expected, kynurena te  (100 pM ) 

and  7-CI-kynurenate (100 |iM) inhibited the binding of all three radioligands. 

In contrast, xanthurenate, which proved to be the m ost po ten t vesicu lar
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Table 3.3 Activity of kynurenate analogs in inhibiting the uptake of 3H-D- 

asparta te  into synaptosom es isolated from rat forebrain.

C om pound C oncentration
OiM)

Inhibition of Synaptosom al 
3H-D -A spartate U ptake 

(% of Control)

L -G Iutam ate 250 0

L-Aspartate 250 2 ± 2 (5)

K ynurenate 250 103 ± 3 (5)

7-C hIoro-kynurenate 250 100 ± 6 (5)

X an thu rena te 250 102 ± 2 (5)

3-Hydroxy-picoIinate 250 104 ± 2  (5)

4-Hydroxy-picoIinate 250 96 ± 3 (3)

2-Q uinoxaIine
carboxylate

250 104 ± 2  (5)

Q uina lda te 250 101 ± 1 (5)

The abilities of the com pounds listed above to block the uptake of 3H-D- 
aspartate  (5 jiM) into rat forebrain synaptosom es was determ ined as described 
in C hapter 2. Results are reported  as the m ean ± SEM of the percentage of 
control uptake (2.86 ± 0.28 n m o l/m in /m g  protein) w ith n num ber of 
experim ents in parentheses.
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Table 3.4 Pharmacological specificity of kynurenic acid analogues as 

inhibitors of EAA ionotropic receptor binding.

C om pound
JH-L-GLU binding 

to NM DA receptors 
(% of Control)

jH-AMPA binding 
to AMPA receptors 

(% of Control)

JH-KA binding 
to KA receptors 
(% of Control)

K ynurenate 41 ± 2  (4) 58 ± 7 (4) 72 ± 6 (3)

7-Chloro-
kynurenate

39 ± 2 (4) 33 ± 7  (4) 62 ± 3 (3)

X anthurenate 78 ± 3 (4) 84 ± 10 (4) 91 ± 10 (3)

EAA ionotropic receptor binding was selectively assayed as described in  
Chapter 2. Kynurenate analogues were included in the assay at a
concentration of 100 pM. All values represent specific b ind ing  and are 
reported as the m eans of the percentage of control b inding  ± SEM (see text), 
w ith  n num ber of experim ents in parentheses.
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transport blocker, produced much less inhibition of 3H-L-glutamate (22%) and  

3H-AMPA (16%) binding and exhibited little or no effect on 3H-KA binding.

Discussion

The identification of kynurenate as an inhibitor of glutam ate uptake 

into synaptic vesicles prom pted our investigation into the struc tu re-func tion  

relationships governing this activity (Fyske et al., 1992). The d em o n stra tio n  

that several of the substituted quinolines are com petitive inhibitors and  

exhibit Kt values lower than L-glutamate itself is consistent w ith their binding 

to the substrate site on the transporter and raises intriguing questions as to 

the chem ical/conform ational basis of their ability to m im ic the b ind ing  of 

glutam ate to the transport protein. While a few com pounds have been 

identified as m ore potent inhibitors (e.g., naphthalene-disulfonic a d d  dyes, 

Roseth et al., 1995), the greater structural similarities w ith L-glutam ate (e.g.,

possession of an a-nitrogen and a-carboxylate) allows for a m ore direct 

analysis of glutam ate binding. In the instance of the kynurenate derivatives, 

direct com parison of the molecules would suggest that the ring n itrogen and  

2-carboxyIate of kynurenate most likely correspond to the a-am ino  and a - 

carboxylate m oieties of glutamate, respectively. The identification of the
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analogous distal carboxylate mimic is how ever, less straight forward. 

A lthough the positioning of the 4-OH group of kynurenate  places it at an  

appropriately relevant distance from the proxim al carboxylate, its pKa of 10.5 

indicates that there is little chance that it will be ionized a t physiological pH 

(Robinson e t al., 1985). Rather than a specific functional group mim icking the 

presence of this second acidic group, we hypothesize that the electron density 

associated w ith  the conjugated aryl ring m ay be sufficient to m im ic the 

negative charge of the distal carboxylate. This process w ould  be analogous to 

the well know n ability of aryl rings to electrostatically in teract w ith positively 

charged functional groups of proteins (e.g., arg in ine and lysine). Such a 

relationship is supported  by both the inhibitory potency of quinaldate and 2- 

quinoxaline carboxylate, which lack the hydroxyl m oiety, and  the lack of 

activity of the substitu ted  monocyclic pyridine analogues, particularly  4-OH 

picolinate. Further evidence that the second ring system  m ay provide a 

requisite negative character rests w ith the tw o quinoline analogues that 

proved to be m ore potent than kynurenate, xan thu renate  and 7-C1- 

kynurenate. In  bo th  cases, the substituents p resent on the aryl rings of these 

analogues (OH and  Q , respectively) are considered electron donating  and 

w ould increase the electron density of the ring. If p roperly  oriented, this 

increase in electron density may more closely approxim ate the negative 

charge of the distal carboxylate and explain the greater effectiveness of 

xanthurenate an d  7-Cl-kynurenate as inhibitors.
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To explore this possibility in m ore detail, we carried out a series of 

com puter-based m olecular m odeling studies (SYBYL m odeling program ; 

TRIPOS Inc.; St. Louis, MO) with L-glutamate, xanthurenate and (1R,3S)- 

ACPD (previously  identified as an inhibitor; W inter and  Ueda, 1993). T he 

strategy em ployed was to first identify m inim ized  conform ations of the  

in d iv id u a l m olecules and then compare the spatial positioning of th e ir  

functional g roups (i.e., a-am ino, a-carboxyl, and  distal carboxyl groups) in a

three  po in t best fit analysis to identify conform ers exhibiting the greatest 

degree of overlap (Chamberlin et al., 1998). In the instance of L-glutamate, the 

resu lting  m inim ized structures are sim ilar to nine stable solution conform ers 

p rev iously  identified  in  NMR analyses (Ham, 1974; C ham berlin and Bridges, 

1993). The m odeling process was also sim plified by  the fact that xanthurenate, 

as w ell as the other quinoline derivatives, are conform ationally locked p lanar 

m olecules. Since xanthurenate does not posses a distal acidic group, the  

regions of m axim um  electron density above and below the aryl ring w ere 

designated  as the  distal carboxylate mimics. Thus, the m odeling was 

perform ed by fitting the charged groups of m inim ized L-glutam ate

conform ers (i.e., the nitrogen, a-carboxylate carbon, and distal carboxylate)

w ith  the p roposed  functional moieties of xan thurenate  (the nitrogen, 2- 

carboxylate carbon, and  aromatic ring electron density).

The resu lting  com parisons of L-glutamate and xanthurenate (Figure 3.2 

and  3.3) yielded tw o conform ations of L-glutam ate w ith  a relatively h ig h
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Figure 3.2 Depiction of the overlap of the distal carboxylates of L-glutam ate 

and  (1R ,3S)-A C PD  with the electron density above the carbocvciic ring of 

x an thu rena te .

#6H

C om puter-based overlays of m inim ized conformations of xanthurenate (I), L- 
g lu tam ate (II), and (1R, 3S)-ACPD (III) were perform ed as described in text. 
The m olecules are aligned to achieve m axim um  overlap of the alpha- 
nitrogens, alpha-carbons, and electron densities of the arom atic ring  and  
d istal carboxylates. In this rendition, the overlap of the distal carboxylates and  
carbocyclic ring electron density is show n occuring above the arom atic ring.
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Figure 3.3 Depiction of the overlap of the distal carboxylates of L-giutam ate 

and  (1R,3S)-ACPD with the electron density below the carbocvclic ring of 

xan thu rena te .

C om puter-based overlays of m inim ized conform ations of xanthurenate (I), L- 
g lu tam ate  (II), and (1R, 3S)-ACPD (III) were perform ed as described in text. 
The m olecules are aligned to achieve m axim um  overlap of the alpha- 
nitrogens, alpha-carbons, and electron densities of the arom atic ring an d  
distal carboxylates. In this rendition, the overlap of the distal carboxylates an d  
carbocyclic ring electron density is show n occuring below the aromatic ring.
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degree of overlap: one position ing  the distal carboxylate above the arom atic 

ring (Figure 3.2; RMS dev ia tion  of 0.278 A) and one locating the distal 

carboxylate below the arom atic ring (Figure 3.3; RMS deviation of 0.692 A). Of 

the tw o g lutam ate conform ations, the one pictured in Figure 3.2 also exhibits 

a greater overlap w ith xan thurenate in regard to the positioning of its carbon

backbone, particularly the a ,  |3 and y carbon atoms. Analogous com parisons 

w ith  (1R,3S)-ACPD identified a single m inim ized "cupped" conform er tha t 

could be positioned w ith the  distal carboxylate either above (Figure 3.2) or 

below  (Figure 3.3) the aryl ring  of xanthurenate: (RMS of 0.583 A and 0.705 A) 

in Figure 3.2 and 3.3, respectively). Interestingly, this "cupped" confo rm ation  

of (1R,3S)-ACPD was also proposed as the active conform er in earlier 

m odeling  studies of m etabotropic receptor binding (Chamberlin and Bridges, 

1993). Even though the tw o proteins exhibit distinct pharm acologies, it is 

en tirely  possible that ACPD or other ligands bind to these two proteins in  

sim ilar conform ations. If this is the case, it would suggest that o ther factors 

(e.g., steric tolerance, hydrophilicity  or hydrophobicity of the su rro u n d in g  

p ro te in  am ino acids, or hydrogen-bonding capacity of the binding pocket) 

contribute to the respective specificities of the binding sites.

Beyond their value in  m odeling the binding site of the vesicu lar 

g lu tam ate  transporter, this library  of quinoline- and pyridine-based inhib ito rs 

is of in terest because it includes kynurenate and xan thurenate, two 

kynuren ine m etabolites endogenous to the m am m alian CNS. The presence
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of these com pounds in the brain raises obvious questions as to w hether or 

not they m ay influence the function of the vesicular uptake system in v ivo .  

This issue is sim ilar in many ways to the lengthy discussions that have also 

revolved around the potential inhibitory action of kynurenate at the EAA 

ionotropic receptors (Stone, 1993). In the instance of the vesicular glutam ate 

transporter, how ever, the action of these m etabolites w ould be dependent 

upon their accum ulation in neurons, rather than  the extracellular location 

required to interact w ith EAA receptors. A lthough our data indicate that the 

kynurenate derivatives do not inhibit the sod ium -dependen t synaptosom al 

glutam ate transporter, it is unclear as to the relative contributions of 

neuronal or glial m em branes to this process. Further, a lack of activity at 

these cellular transporters does not preclude the possibility that the 

com pounds m ay be substrates of other uptake systems. Interestingly, it has 

also been suggested that the majority of kynurenate in the CNS is of glial 

origin (Wu et al., 1992). While the potential in vivo actions of kynurenate 

and xan thurenate  w ithin  the EAA system rem ain  to be resolved, these new  

inhibitors provide a valuable molecular fram ew ork for delineating the 

pharm acophore of the vesicular glutam ate transporter and  the design of 

m ore potent and  selective uptake blockers.
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Chapter 4: Inhibition of vesicular glutamate uptake by naphthalene

sulfonic add dyes

Introduction

In a previous study, two naphthylam ine-based disulfonic a d d  dyes, 

Evans Blue and  Chicago Sky Blue, were reported to com petitively block the  

uptake of 3H-L-gIutam ate into rat brain synaptic vesicles, with values of 40 

and 190 nM  respectively (Fyske et al., 1992). As these dyes are apparently  

greater than  1000-fold more potent as inhibitors than the kynurenic a d d  

analogues characterized in Chapter 3, it was d e d d ed  to examine the inh ib ito ry  

activities of these and sim ilar com pounds w ith in  this class in greater detail. 

A cursory exam ination reveals certain structural sim ilarities betw een 

naphthylam ine sulfonic ad d  dyes and kynurenic a d d  analogues. M ost 

notably, both  series of com pounds incorporate a bicyclic 6-m em bered 

conjugated ring system  as their core fram ework. Due to the rigidity of the  

adjoined arom atic rings, both frameworks are conform ationally p lanar, 

which causes the functional group substitutions to be held in spedfic spatial 

orientations. In addition, each class of com pounds includes substitutions (e.g. 

am ine, carboxylic a d d  or sulfonic add , aryl ring, and hetero-atom  hydrogen  

bonding m oieties) which can potentially approxim ate the basic and  ad d ic

35
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groups of L-glutamate. In the instance of the dyes how ever, a direct 

correspondence of the positioning of these substitu tions and the functional 

groups of L-glutam ate is even less straight-forw ard than  was prev iously  

m odeled for the kynurenic acid analogues (Chapter 3).

A structural characteristic of this class of dyes not present in the  

kynurenic acid analogues is the inclusion of one or tw o arom atic side chains 

linked to the bicyclic core via a diazo bond. A lthough the role of these diazo- 

Iinked groups in b ind ing  to the transporter is as yet unknow n, it is possible 

that they m ay be directly involved or, alternatively, m ay affect the chem ical 

characteristics of the adjacent functional groups (e.g. pKa of am ine or hydroxy 

m oiety).

Sim ilar to kynurenic acid, som e of these dyes have been reported to 

interact w ith  other com ponents of the glutam atergic system . Evans Blue, for 

exam ple, has been show n to non-com petitively inhibit g lu tam ate-evoked 

currents m ediated by EAA ionotropic receptor subtypes in transfected HEK 

293 cells (Price and Raym ond, 1996) and  in X. laevis oocytes (Keller et al., 

1993). This inhibition appears to be lim ited to the AM PA and KA type 

receptors, although it is disputed w hether this dye selectively binds to one 

sub type over the other. Interestingly, little if any  inhib ition  of AM PA or KA 

receptor b inding  was observed with the structurally  related dyes Chicago Sky 

Blue and  Congo Red (Keller et al., 1993).
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In this chapter, the inhibitory properties of these n ap h th v lam in e  

disulfonic acid dyes on the vesicular glutam ate transporter are fu rth e r 

characterized. A library of closely related com pounds was chosen to study  the  

structure-activity  relationships and kinetic properties which governed th e ir 

interactions w ith the vesicular uptake system. In particular, the con tribu tion  

of the arom atic side chains to the inhibitory activity of the dyes was addressed 

by com paring analogous naphthalene sulfonic acids w ith and w ithou t the  

diazo-Iinked substituents. In addition, the relative positions of specific 

functional groups around the naphthalene carbon ring fram ew ork was 

exam ined. As a consequence of this work, several naphthalene sulfonic acid 

dyes have been identified which potently inhibit the uptake of 3H-L- 

g lu tam ate into synaptic vesicles. Parallel studies determ ined the cross- 

reactivities of these com pounds w ith the high-affinity sod ium -dependen t 

synaptosom al glutam ate transporter and w ith the EAA ionotropic receptors. 

These findings help to further refine our knowledge of the vesicu lar 

glu tam ate pharm acophore and identify new probes w ith which to explore its 

function .
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Synaptic vesicle transporter pharmacology: inhibition by

naphthalene sulfonic acid dyes

These series of naphthalene sulfonic adds were initially tested at a 

single concentration (5 mM) for their ability to inhibit the uptake of 3H-L- 

glutam ate (0.25 mM) into synaptic vesicles isolated from rat forebrain (Tables 

4.1 and 4.2). The concentration dependence of the inhibitory activity was then 

determ ined  for those com pounds exhibiting m arked activities in the in itia l 

pharm acological assays (Figure 4.1, Table 4.3). As antiripated, the dyes Evans 

Blue and Chicago Sky Blue reduced the uptake of 3H-L-gIutamate in to  

synaptic vesicles to background levels (Fyske et al., 1992). Control transport 

values were 3.83 ± 0.39 n m o l/m in /m g  protein (Table 4.1). Indeed these tw o 

dyes w ere am ong the m ost potent inhibitors identified in this study, 

exhibiting sim ilar Ki values of 0.21 ± 0.03 |iM (i.e., determ ined from ICSQ 

values according to the Cheng-Prusoff relationship; Cheng and Prusoff, 1973), 

Table 4.3. A lm ost equipotent w ith Evans Blue and Chicago Sky Blue, 

N aph tho l Blue Black and Congo Red exhibited K, values of 0.30 ± 0.12 and  

0.49 ± 0.18 pM, respectively. A chemical characteristic com m on to these four 

dyes is the inclusion of two diazo linked aromatic side chains w ithin  the ir 

structures. In contrast, dyes containing only one diazo linked arom atic side
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Table 4.1 Inhibition of 3H-L-gIutamate uptake into synaptic vesicles by

naphthalene sulfonic acids

Compound Structure
Vesicular Uptake 
of 3H~L-Glutamate 

(% of Control)

Chicago Sky Blue

Evans Blue

l-Amino-8-nap thoI-2,4- 
disulfonic add 
(Chicago Add)

4-Amino-5-hydroxy-l- 
naphthalene sulfonic add

Chicago Sky Blue Analogues

/V~\ OH NH’ \

. \  cn  vr.  /SOjN'a 

OH NH,
SQ3Na

r . » u n  rv»

X T O ? '
V  SOj.NIa

OH NH;

SO,H

OH NH,

SO,H

0 ± 0 (4)

0 ± 0 (3)

2.9 ± 0.8 (3)

3.8 ± 1.5 (6)

Congo Red Analogues

Congo Red
NH,

SOjNa
NH,

4-amino-l-naphthalene 
sulfonic add

SQjNa

1.4 ± 0.7 (3)

54.5 ± 5.9 (5)

The vesicular uptake of 3H-L-gIutamate (0.25 mM) was performed as described in 
Chapter 2. Naphthalene sulfonic acids were present in the incubation medium at a final 
concentration of 5 mM. Results are reported as a percentage of control uptake ± SEM 
with n number of experiments in parentheses. The control value for glutamate uptake 
was 3.83 ± 0.39 nm ol/m in/ mg protein (n = 14).
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Table 4.2 Inhibition of 3H-L-gIutamate uptake into synaptic vesicles by

naphthalene sulfonic acids

Vesicular Uptake 
of 3H-L-Glutamate 

(% of Control)
Compound Structure

Naphthol blue black analogues

O H

 N = N _

N H ,

Naphthol Blue Black 0.8 ± 0.8 (3)

,OH
OHG allion

SOjt-HO
OH

Nitro Red 0.2 ± 0.2 (3)

OHAzophloxine :— c h ,

Nj O,S'

O - —'
N aO jS '''

OH

Chromotrope 2R

OH

4-Am ino-5-hydroxy-2,7- 
napthalene disulfonic 

acid

30.9 ± 3.3 (5)

OH

l-N aphthol-3,6- 
disulfonic acid

44.7 ± 3.3 (3)

The vesicular uptake of 3H -L-glutam ate (0.25 mM) was performed as described in C hap ter 2. 
N aphthalene sulfonic acids w ere present in the incubation medium  at a final concentration of 5 
mM. Results are reported as a percentage of control uptake ±  SEM w ith n number of experim ents 
in parentheses. The control value for glutam ate uptake was 4.35 ± 0.41 n m o l/m in /m g  protein (n 
= 9).
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Table 4.3 Inhibitory potencies of naphthalene sulfonic acids on vesicular 3H- 

L-glutam ate uptake.

C om pound IQo QiM) K. (|iM)

Chicago sky blue 0.24 ± 0.04 (3) 0.21 ± 0.03 (3)

Evans blue 0.23 ± 0.03 (4) 0.21 ±0.03 (4)

N aphthol blue black 0.34 ±0.12 (3) 0.30 ± 0.12 (3)

Congo red 0.55 ± 0.20 (4) 0.49 ± 0.18 (4)

G allion 3.90 ± 0.94 (4) 3.47 ± 0.83 (4)

C hrom otrope 2R 5.53 ± 1.27 (3) 4.91 ± 1.13 (3)

N itro red 6.95 ± 1.92 (3) 6.18 ± 1.71 (3)

A zophlox ine 32.56 ± 4.21 (3) 28.9 ± 3.74 (3)

l-A m ino-8-napthol-2,4- 
disulfonic acid

1058 ±330 (3) 940 ± 294 (3)

4-A m ino-5-hydroxy-l- 
napthalene sulfonic 

a d d

2424 ± 376 (3) 2155 ± 334 (3)

The transport of 3H-L-gIutamate (0.25 mM) into synaptic vesicles was 
perform ed as described in Chapter 2. IC50 values were determ ined  from  n o n 
linear regression analyses according to a one-site com petition m odel, re
values were estim ated from IC50 values according to  the Cheng-Prusoff 
relationship. Results are reported as mean ± SEM w ith  n num ber of 
experim ents in parentheses.
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chain (e.g. Gallion, C hrom otrope 2R, N itro Red, and  A zophloxine) proved to 

be a t least an order of m agnitude less potent as inhibitors of vesicular 3H-L- 

glutam ate uptake (e.g. Ki values ranging from 3.47 - 28.9 |iM). It m ust be 

taken into consideration, however, that these com pounds still exhibited a 50 - 

1000 fold greater ability to inhibit vesicular uptake than  the endogenous 

substrate L-glutam ate.

To confirm  the com petitive nature of this inhibition by th e  

naphthylam ine sulfonic a d d  dyes, m ore detailed kinetic analyses w ere carried 

ou t w ith  two of the m ost potent inhibitors. R epresentative L inew eaver-B urk 

plots are illustrated for the inhibition of vesicular g lutam ate uptake by Congo 

Red and  N aphthol Blue Black in Figures 4.2 and  4.3, respectively. The Km and  

Vmax values for the transport of L-glutam ate were found  to be 1.87 ± 0.12 m M  

and 18.26 ± 1.26 n m o l/m in /m g  protein  (n = 7). Sim ilar to the p rev ious 

findings for Evans Blue and Chicago Sky Blue, the patterns of in h ib itio n  

exhibited by Congo Red and N aphthol Blue Black were consistent w ith the 

actions of com petitive inhibitors. K{ values were determ ined on the basis of a 

replot of Km apparen t values (insets Figures 4.2 and  4.3) versus  inh ib ito r 

concentrations and  w ere found to be 0.70 ±  0.25 for Congo Red and 0.37 ±0.11 

|iM  for N aphthol Blue Black. In both instances, these values w ere 

com parable to those determ ined from IC50 values and  the Cheng-Prusoff 

calculations as reported  in Table 4.3.
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Figure 4.2 Demonstration of the competitive inhibition by Congo Red on 3H-

L-glutamate uptake into synaptic vesicles.
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R epresentatative Lineweaver-Burk plot of a single experim ent dem o n stra tin g  
com petitive inhibition by Congo Red (0.5, 1.5, 2.5 (iM) on the uptake of 3H-L- 
g lu tam ate  (0.25 - 8.0 mM) into rat brain synaptic vesicles. The above p lots 
y ielded  a control Vmax = 17.94 ± 3.39 n m o l/m in /m g  protein and Km = 2.06 ±  0.59 
mM . Inset show s a replot of Km apparent versus  Congo Red concen tra tion  
p roducing  a K{ = 0.84 ± 0.34 (iM.
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Figure 4.3 Demonstration of the competitive inhibition by Naphthol Blue

Black on 3H-L-gIutamate uptake into synaptic vesicles.
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R epresentatative Lineweaver-Burk plot of a single experim ent dem onstra ting  
com petitive inhibition by N aphthol Blue Black (0.3, 0.9, 1.5 (iM) on the  
uptake of 3H-L-gIutamate (0.25 - 8.0 mM) into rat brain synaptic vesicles. The 
above plots yielded a control Vmax = 17.15 ± 0.36 n m o l/m in /m g  protein and  Km 
= 1.64 ± 0.06 mM. Inset show s a replot of Km apparent versus N aphthol Blue 
Black concentration producing a K{ = 0.22 ± 0.03 (iM.
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The significance of the diazo-Iinked groups of these n a p h th a le n e  

sulfonic a d d  dyes was evaluated by com paring several com pounds w h ich  

lacked the arom atic side chains, yet contained the sam e core s tru c tu ra l 

fram ew orks (i.e., naphthalene ring w ith  the analogous functional g roup  

substitutions). The two such com pounds that possess the sam e core s truc tu re  

as Evans Blue and Chicago Sky Blue, l-am ino-8-naphthol-2,4-disulfonic a d d  

an d  4-am ino-5-hydroxy-l-naphthalene sulfonic ad d , reduced 3H -L -glutam ate 

up take by the synaptic vesicles to 2.9 and  3.8 % of Control, respectively (Table 

4.1). Further investigation revealed that the K{ values exhibited by these  

com pounds (940 ± 294 and 2155 ± 334 |iM , respectively, Table 4.3) w ere m o re  

on  p a r  w ith  those of L-glutamate and kynurenate (see C hapter 3), ra ther th a n  

those of the parent com pounds. Similarly, the analogous core com pound  of 

N aph tho l Blue Black, 4-am ino-5-hydroxy-2,7-naphthaIene disulfonic ad d , 

reduced vesicular 3H-L-gIutamate uptake to only 30.9 % of Control (Table 4.2). 

Clearly, the diazo-linked arom atic side chains of these dyes play an im p o rta n t 

role in increasing the affinity w ith w hich these com pounds b ind to the  

vesicular transporter.
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Pharmacological specificity of naphthalene sulfonic acids
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The potential cross-specificities of the naphthalene sulfonic acids w ith  

o ther com ponents of the glutam atergic system , was in part assessed by 

exam ining  the ability of these com pounds to block the so d iu m -d ep en d en t 

up take of 3H-D-aspartate into synaptosom es and radioligand b ind ing  to EAA 

ionotropic receptors on rat forebrain synaptic plasm a m em brane (see C hapter 

2). As reported  in Table 4.4, Evans Blue and Congo Red were found to be the  

m ost po ten t inhibitors of synaptosom al transport, reducing the up take of 3H- 

D-aspartate (5 |iM ) to 4.1 and 6.5% of Control (1.10 ± 0.04 n m o l/m in /m g  

pro tein) respectively, w hen included in the assays at a concentration of 250 

(iM. Chicago Sky Blue and N aphthol Blue Black reduced the uptake to  

approxim ately  50% of Control and only m oderate levels of inh ib ition  w ere 

observed  w ith  the other com pounds.

These naphthalene sulfonic adds were then  exam ined for their ability 

to block the binding of 3H-L-gIutamate (10 nM) to NM DA receptors, 3H- 

kainate  (10 nM) to kainate receptors, and 3H-AMPA (10 nM ) to A M PA 

receptors (Table 4.5). The results are reported as percentages of Control: 0.13 ± 

0.01 p m o l/m g  protein for 3H-L-gIutamate, 0.22 ± 0.03 pm o l/ m g protein  for 3H- 

kainate, and  0.15 ± 0.02 p m o l/m g  protein for 3H-AMPA. In agreem ent w ith  

p rev ious studies (Price and Raymond, 1996; Keller et al., 1993), Evans Blue 

(100 pM ) potently  inhibited radioligand binding to the kainate and  AM PA
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Table 4.4 Inhibitory activities of naphthalene sulfonic ad d s  on the uptake of 

3H -D -aspartate in to  rat forebrain synaptosomes.

Inhibition of Synaptosom al 3H-D -A spartate Uptake 
(% of Control)

C om pound
C oncentration 

(250 pM)
C oncentration 

(25 pM)

Chicago Sky Blue 51.5 ±3.3 (3) 80.9 ± 4.8 (7)

Evans Blue 4.1 ±0.5 (3) 38.9 ± 3.4 (7)

N aphtho l Blue Black 46.9 ± 3.3 (3) 80.4 ± 4.2 (7)

Congo Red 6.5 ±3.2 (3) 36.5 ± 3.1 (7)

l-A m ino-8 -naph tho I- 
2,4-disulfonic a d d

78.5 ± 11.2 (3)

4-A m ino-5-hydroxy-l - 
naphthalene sulfonic 

a d d

74.7 ± 18.0 (3)

G allion 73.0 ± 10.9 (3)

N itro  Red 85.1 ± 7.6 (3)

A zophlox ine 82.5 ± 3.3 (3)

C hrom otrope 2R 70.4 ±1.3 (3)

The abilities of the com pounds listed above to block the uptake of 3H-D-
asparta te  (5 pM) into rat forebrain synaptosom es was determ ined as described 
in  Chapter 2. Results are reported as the m ean ± SEM of the percentage of 
control uptake (1.10 ± 0.04 n m o l/m in /m g  protein) w ith n num ber of 
experim ents in parentheses.
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Table 4.5 Pharm acological specificity of naphthalene sulfonic a d d s  as inh ib itors o f EAA 

iono trop ic  recep tor b inding.

Compound
JH-L-GLU binding 

to NMDA receptors 
(% of Control)

^H-AMPA binding 
to AMPA receptors 

(% of Control)

3H-KA binding 
to KA receptors 
(% of Control)

Chicago Sky Blue 45 ±25 (9) 42.1 ±4.4 (10) 12.7 ±3.2 (6)

Evans Blue <0(4) 52.3 ±6.4 (5) 40.5 ±5.9 (3)

Naphthol Blue Black 69.5 ± 7.6 (5) 92.1 ±6.7 (5) 90.4 ±3.9 (3)

Congo Red 1.4 ± 1.6 (6) 48.6 ±35 (11) 152 ±6.0(6)

Gallion 67.7 ±8.8 (9) 77.0 ±55 (9) 65.4 ±2.6 (5)

Chromotrope 2R 95.1 ± 35 (6) 1015 ±3.4 (3) 91.5 ±5.9 (4)

Nitro Red 92.2 ± 83 (6) 93.2 ±3.9 (6) 815 ±4.7 (4)

Azophloxine 107.8 ± 2.8 (4) 105.4 ±2.1 (5) 95.3 ±5.3 (4)

l-Amino-8-naphthol-2,4- 
disulfonic add (Chicago 
add)

35.4 ±6.4 (9) 72.2 ±2.5 (8) 66.6 ±6.9 (5)

4-Amino-5-hydroxy-l- 
naphthalene sulfonic add

733 ±12.7 (5) 96.1 ±4.3 (5) 602 ±6.2 (4)

4-Amino-5-hydroxy-2,7- 
naphthalene disulfonic 

add

905 ± 13.0 (6) 98.8 ±4.5 (5) 75.8 ±7.4 (4)

4-Amino-1 -naphthalene 
sulfonic add

100.6 ±7.6 (5) 1095 ±8.0 (5) 95.4 ±8.9 (4)

EAA iono trop ic  receptor binding w as selectively assayed  as described in C h ap te r 2. 
N ap h th a le n e  sulfonic a d d s  w ere induded  in the assays a t a concentration o f  100 |iM . All 
values rep resen t specific b ind ing  and  are reported  as file m eans of the percen tage o f con tro l 
b in d in g  ± SEM, w ith  n num ber o f experim ents in  parentheses.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



50
receptors reducing levels to 40.5 and 52.3 % of Control, respectively. Its 

inhibitory  activity was even more substantial a t the NM DA receptor, w here  

the am ount of b inding  was reduced to background levels. Sim ilarly, Chicago 

Sky Blue and  Congo Red exhibited a m arked affinity for each of these EAA 

receptors. In contrast, the naphthylam ine dyes w ith 3,6-disuIfonic a d d  

substitu tions exhibited m uch less cross-spedfid ty  w ith the EAA receptors. 

For instance, C hrom otrope 2R, N itro Red, and  Azophloxine caused very little  

if any inhibition of radioligand binding. N aphthol Blue Black reduced 

b inding  to the NM DA receptor to only 69.5% of Control and  had  v irtually  n o  

effect on AMPA and  KA receptor binding.

Discussion

In this study, several naphthylam ine sulfonic a d d  dyes have been 

identified as po ten t inhibitors of the glutam ate transporter on synaptic 

vesicles. Of these, Evans Blue, Chicago Sky Blue, N aphthol Blue Black, and  

Congo Red were determ ined  to be the m ost potent w ith K, values ranging  

from  about 0.2 to 0.5 |iM  (Figure 4.3). L inew eaver-Burk kinetic analyses 

dem onstrate  that the nature of this inhib ition  is com petitive and indicates 

that these com pounds have greater than  a 4000-fold higher apparen t affinity 

for the transporter b inding  site than the endogenous substrate L-glutam ate
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(Km = 2 mM). Since this interaction w ith the transporter is com petitive, it 

w ou ld  seem  plausible to expect that these dyes bind in an analogous fash ion  

to th a t of L-glutamate. Yet, com parison betw een the chemical struc tu res of 

these com pounds and L-glutamate is even less straight-forward than  w h a t 

w as previously  proposed for the kynurenic a d d  analogues in C hapter 3. In  

add ition , key structural differences exist betw een these four dyes (e.g. 

p lacem ent of functional groups around the naphthalene ring system), w h ich  

belie the sim ilar levels of inhibitory activity exhibited tow ard vesicu lar 

g lu tam ate  uptake. In light of these findings, it is likely that these co m p o u n d s 

m ay  in teract w ith the vesicular transporter in a m anner different than  that of 

L -glutam ate.

Clearly, a comparison betw een the functional groups of the com pounds 

listed  in Tables 4.1 and 4.2, suggests that there is a great deal of flexibility in  

the regio-positioning of the groups around the naphthalene ring system . For 

exam ple, am ong the m ost potent dyes (e.g. Evans Blue, Chicago Sky Blue, 

N ap h th o l Blue Black, and Congo Red), the sulfonic ad d s m ay occupy 

positions 2,4-, 3,6-, or 4- in relation to the exocyclic am ine and  still re ta in  

activity. Additionally, location of the hydroxy and am ine m oieties at 

positions 1- and 8- appear to be interchangeable or not required. T his 

cond ition  is best dem onstrated am ong the com pounds Gallion, N itro  red, and  

C hrom otrope  2R where these functional groups are interchanged relative to 

the  position  of the diazo-Iinked arom atic side chain, and a sim ilar level of
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activity is retained (X, = 3.47 to 6.18 (iM). Interestingly though, about a 6 fold 

reduction in activity is observed w ith Azophloxine (relative to C hrom otrope 

2R) w hich incorporates an acetylated am ine at position 1- . This difference 

m ay reflect steric effects caused by this bulky substitu tion w ith the transporter 

p ro tein .

An even m ore dram atic reduction in inhibitory activity is observed 

w hen  the diazo-Iinked arom atic side chain is rem oved. As seen w ith  the core 

bicydic fram ew orks of these dyes, Chicago a d d  and  4-amino-5-hydroxy-2,7- 

naph thalene disulfonic ad d , a > 4700 fold reduction in inhibitory activity 

occurs w hen the diazo-linked groups are absent. A sim ilar conclusion was 

reached in a recent study w here the core substituted naphthylam ine sulfonic 

a d d s  e lid ted  no inhib itory  activity on vesicular glutam ate transport w h en  

com pared to the activities of the analogous paren t dye molecules (Roseth et 

al., 1998).

There are several possible explanations for the increased activity of the  

dyes containing diazo-Iinked arom atic side chains. First, the diazo linkage 

m ay play a direct role in binding to the transporter or m ay affect the chem ical 

characteristics of adjacent functional groups. Since the diazo group n itrogens 

are electron rich, they m ay act to w ithdraw  a proton from the adjacent a m in o  

or hydroxy functional group thereby generating a hydrogen bonding capacity. 

Consequently, the diazo group w ould carry a partial charge from  th is 

in teraction and  in com bination w ith  the adjacent hydrogen bonding group
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m ay approxim ate the a-am ino and a-carboxy groups of L-glutam ate. The y- 

carboxylate group of L-glutamate in this paradigm  could be approxim ated  by 

the substitu ted  3- or 4- sulfonic acid substituent (Figure 4.4). Second, the 

arom atic substituent attached via the diazo-Iinkage m ay in teract w ith a 

com plim entary  hydrophobic pocket on or near the substrate b ind ing  site of 

the transporter protein. For this reason, exactly m im icking the con fo rm ation  

w ith which glutam ate binds to the vesicular transporter m ay no t be required  

in order to achieve maxim um  inhibitory activity. In fact, if this hypothesized  

hydrophobic interaction is valid, pu rsu ing  inhibitors of this class ra ther th an  

the m ore obvious glutam ate analogues m ay prove to be m ore beneficial, as 

they are a t least 1000 fold greater in potency than  glutam ate itself and  m ay 

exhibit less cross-reactivity with other com ponents of the EAA system . T hird , 

the addition  of the diazo-Iinked side chain m ay serve to effectively elongate 

the m olecule and interfere w ith a conform ational change in the tran spo rte r 

after b inding of the inhibitor. Since the prim ary  function of the transporte r is 

to bind and translocate a substrate across the vesicular m em brane, a 

conform ational change in the protein is required to reorient the b ind ing  site 

from  one surface of the m em brane to the other. In regard to  the  dyes, 

transporter b ind ing  m ay be facilitated by the ionic substituents on  the  

naphthalene ring, however, upon a subsequent conform ational change in the  

protein , the presence of the diazo-Iinked side chain could p rev e n t 

reorien tation  of the binding site across the m em brane. A dditionally , if the
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Figure 4.4 Depiction of glutam ate, naphthylam ine sulfonic acid dyes, and an  

overlay of bo th  show ing the potential vesicular glutam ate binding 

conform ation .
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R epresentative m olecular line drawings depict (A) glutam ate, (B) the core 
naph thy lam ine  dye fram ew ork including sulfonic acids in the 3- and 4- 
positions (i.e. analogous to Naphthol Blue Black and Evans Blue
respectively), and  (C) a potential overlay aligning the a-nitrogen, a- 
carboxylate, an d  y-carboxylate of glutamate w ith  the diazo nitrogen, 8-hydroxy, 
and  4-sulfonic acid groups of the dye framework.
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dyes initially stim ulate the transport mechanism and then becom e trapped in  

the binding pocket due to a partial conform ational change in the transporter, 

their apparent b inding to the substrate site would be enhanced. Since the Kt 

value is a ratio of Kon and Kaff rates (i.e., Kt = Km]Kjff), such an in teraction 

w ould be observed as an increase in KaS and consequently a decrease in

Of these three possibilities, present evidence suggests that the latter two 

are the most likely. Recent studies have dem onstrated that the addition of 

lipophilic groups appended to a quinoline 2,4-dicarboxylic acid fram ew ork at 

positions 6- or 7- also m arkedly increase inhibitory activity (unpublished  

data). Im portantly, this enhanced activity is not dependent upon a diazo 

linkage to the quinoline ring system.

In conclusion, the present study dem onstrates that am ong this 

naphthylam ine sulfonic acid series of compounds, those linked via a diazo 

bond to an aromatic side chain exhibit the highest level of inhibitory  activity 

at the vesicular glutam ate transporter. The evidence suggests that this 

activity may be due to e ither a hydrophobic interaction w ith  the transporter 

not required for substrate binding, or interference w ith the transporter 

m echanism . Since there appears to be a great deal of latitude in the 

positioning of ionic functional groups around the naphthalene ring system, 

an exact mimic of the L-glutam ate conform er which binds to the transporter 

m ay not be preferred for optim al inhibitory activity. In fact, since little cross

reactivity was observed w ith  m any of the 3,6- disulfonic a d d  substitu ted  dyes
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at o ther EAA sites, these may be ideal lead com pounds for the deve lopm en t 

of m ore potent and selective inhibitors of this transport system . As inhib ito rs 

em erge w ith increasing potency and specificity, they shall prove invaluable as 

probes of vesicular glutam ate transport.
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Chapter 5: Characterization of the vesicular transporter

mechanism: Roles of ATP-dependence, trans-stimulation, and efflux 

attenuation. 

Introduction

Early investigations focused on characterizing the action of glutam ate

as an excitatory transm itter, and  dem onstrated that subcellular fractions of

synaptic vesicles contain relatively low levels of this am ino acid follow ing

their isolation by variable speed centrifugation and gel filtration (De

Belleroche and Bradford, 1973). Since the synaptic vesicles w ere not found to

be substantially enriched w ith  glutam ate, it raised the possibility that during

neuronal firing this am ino acid m ay be released from cytosolic rather than

vesicular stores. This issue was later resolved using  TEM and

im m unocytochem ical labeling for L-glutamate, w hen studies dem onstrated

that h igh levels of glutam ate are present in the synaptic vesicles of specific

nerve endings (Storm -M athisen et al., 1983). Consistent w ith  this conclusion,

num erous studies have show n that isolated synaptic vesicles rapidly

accum ulate glutam ate and tha t this uptake is dependent upon  the presence of

an electrochemical pro ton  gradient generated by a vacuolar-type M g++-ATPase

(N aito and  Ueda, 1983; N aito and Ueda, 1985; Maycox et al., 1988). In th is

57
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regard, it is likely that the electrochemical gradient required for g lu tam ate  

uptake, is also required for glutam ate retention by synaptic vesicles. Thus, in  

retrospect, if the proton gradient was not m ain tained  during  p rev ious 

isolation a ttem pts, it would explain the lack of glutam ate present w ith in  the 

vesicle fraction. That this was indeed occurring, was later verified by Burger 

et ah, (1989), w hen it was dem onstrated that glutam ate efflux du rin g  synaptic 

vesicle isolation could be attenuated by the inclusion of ATP in the iso lation  

m edium . F u rther the treatm ent of synaptic vesicles w ith N -e thy lm ale im ide  

(NEM), could also attenuate the efflux, presum ably by m odifying a sulfhydryl 

m oiety requ ired  for transporter function.

In add ition  to the dependence upon a pro ton  gradient, the vesicular 

transporter is also affected by the concentration gradient of L-glutam ate 

betw een the vesicle lum en and the extravesicular env ironm ent. Studies 

have dem onstra ted  that by diluting synaptic vesicles containing 3H-L- 

glutam ate into a buffer in which concentrations of substrates are reduced to a 

level at w hich uptake is negligible, a rapid efflux of the vesicle contents is 

observed (Carlson and Ueda, 1990; W ang and Floor, 1994). Further, this efflux 

was hypothesized  to be carrier-mediated since it w as found to be a ttenuated by 

both  reduced  tem perature and treatm ent w ith NEM. These findings support 

the conclusion th a t transport through the vesicle carrier is bi-directional and 

raises an  in teresting  question regarding this transport m echanism . Since 

glutam ate efflux is apparently m ediated by a reversal of the transport process,
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can the rate of efflux out of the vesicle be increased by the addition of external 

substrate? This process, referred to as frans-stim ulation, has been observed 

w ith  a num ber of transport systems (Christensen, 1975). It was previously  

reported  that the rate of vesicular 3H-dopam ine efflux could be increased over 

control levels w hen unlabeled dopam ine was included in the d ilu tio n  

m ed ium  (Floor et al., 1995). This same study also dem onstrated that the  

inclusion of a non-transportable inhibitor, reserpine or tetrabenazine, 

decreased the rate of 3H -dopam ine efflux below that of Control levels. 

Presum ably, this effect is due to the extravesicular occupation of the 

transporter substrate binding site by the inhibitor, causing a decrease in 3H- 

dopam ine efflux by favoring the orientation of the transporter towards the 

extravesicular surface.

In this chapter, two aspects of the process of vesicular glutam ate 

transport are exam ined in greater detail. First, the role of ATP in establishing 

and  m ain tain ing  glutam ate concentrations w ithin synaptic vesicles is 

addressed. Second, the effect of the application of the inhibitors previously  

identified  in Chapters 3 and 4 on this vesicular glutam ate pool is exam ined. 

T h rough  the latter studies, a potential paradigm  is presented for the rapid 

identification and differentiation of substrates versus  non-substrates by 

de term in ing  the abilities of these com pounds to either initiate the trans- 

s tim u la tion  of vesicular glutam ate (substrate) or block its efflux (non

substrate) from synaptic vesicles. Therefore, the utility of these com pounds
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extends beyond their use in  specificity studies, as they can be additionally used 

to probe the m echanism of transporter function.

Results

ATP-dependence of 3H-L-glutamate uptake and retention

Initial studies attem pted  to isolate synaptic vesicles con tain ing  

accum ulated 3H-L-gIutamate by differential centrifugation (222,000 x gmax, 55 

m in) in the presence of 2 m M  ATP. Following the centrifugation how ever, 

less than 30% of the original 3H-L-gIutamate rem ained in the vesicle fraction 

(data not shown). It was assum ed that this loss was m ost likely attributable to 

the consum ption of ATP during  the re-isolation phase, and  consequently a 

reduction in the electrochem ical proton gradient generated by the vesicu lar 

M g^-ATPase. This could have resulted in an efflux of g lu tam ate  from the  

synaptic vesicles, since a d isrup tion  of the pro ton  g rad ien t has been 

previously linked w ith a decrease in 3H-L-gIutamate uptake (N aito and  Ueda, 

1983; Naito and Ueda, 1985; Maycox e t al., 1988). In o rder to test th is  

hypothesis, experim ents w ere conducted in which the concentration  of ATP 

in the uptake assays was varied  from  2-6 mM. The incubations w ere carried 

o u t for a period of 30 m in and  at the indicated times, aliquots w ere rem oved
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to m on ito r glutam ate levels w ithin the vesicle fraction of the in d iv id u a l 

assays. Due to the small size of the aliquots (25 piL), vesicle p ro tein  content i n 

the incubations was increased 4-5 fold relative to the standard transport assay 

to obtain a  m easurable signal. As shown in Figure 5.1, in the presence of 2 

mM  ATP, there was a rapid  accum ulation of glutam ate by the synaptic 

vesicles tha t reached near m axim um  levels (2.5 - 3.5 nmol /  m g protein) in 2-3 

m in. This was followed shortly  thereafter by efflux of the radiolabel to a lm ost 

background levels. W hen the ATP concentration was increased to 4 mM, a 

sim ilar m axim al level w as reached, but in this case the intracellular level was 

m ain ta ined  for up  to 15 m in. The length of time for w hich this m axim al 

level of g lutam ate was sustained  increased to alm ost 30 m in w hen the ATP 

level was increased to 6 mM. These results suggest that not only is ATP 

required  for the initial sequestration of glutam ate by  synaptic vesicles, b u t also 

for its m ain tenance in the vesicle lum en. This conclusion is fu rther 

supported  by a second set of experiments in w hich ATP was re-added during  

the incubation. As show n in Figure 5.2, the addition of a second aliquot of 

ATP (at an  assay equ ivalen t of 3 mM) at 8 m in prevented the previously  

observed efflux and  allow ed the am ount of glutam ate accum ulated by the  

synaptic vesicles to be m ain tained  over the 30 m in incubation period. In  

contrast, the add ition  of carbonyl cyanide p-

trifluorom ethoxypheny lhydrazone (FCCP, 1 |ig /m l) at 8 m in  caused the 

im m edia te  efflux of accum ulated glutam ate. Consistent w ith  p rev ious
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Figure 5.1 ATP dependence of vesicular 3H-L-glutamate 

accumulation and retention

Time (min)

3H-L-GIutamate uptake into synaptic vesicles w as m easured in the presence of 
2 m M  (— ■ — ), 4 mM (—A —), and 6 mM ATP (— • — ) as described in  
C hapter 2. Individual incubations were allowed to proceed for the indicated 
tim es before termination of uptake. Results represent the m ean ± SEM for n 
= 4 determ inations.
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Figure 5.2 Dependence of vesicular 3H-L-glutamate retention on  

ATP
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Vesicular 3H-L-gIutamate uptake was carried o u t in the presence of 3 m M  
ATP essentially as described in Chapter 2. The arrow  represents a 5 p i 
addition at 8 m in yielding a final assay concentration of: 3 mM  ATP (—& —),
ethanol, (—■ — ), 1 p g /m l FCCP in ethanol (—_0 ---- ). Individual incubations
were allowed to proceed for the indicated times before term ination of uptake. 
Results represent m ean ± SEM for n = 4 determ inations.
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findings (Carlson and Ueda, 1990; Maycox et al., 1988), the rapid efflux caused 

by this ionophore is likely due to an abolished proton gradient. Since th is 

effect is not attributed to an inhibition of the Mg^-ATPase, it is in d ep en d en t 

of the ATP concentration.

Glutamate induced trans-stimulation

W hile the experim ents described in the previous section dem onstra te  

that d isrup tion  of the proton gradient, either by energy depletion  or the  

addition  of an  ionophore, results in the efflux of glutam ate from  synaptic 

vesicles, they fail to address the route of this efflux. This raises questions as to 

w hether or no t this transport process is bi-directional and  if the efflux of L- 

g lu tam ate occurs through the same carrier responsible for its up take via  the 

reversal of the transport process. To address this question an approach was 

required  that perm itted the rate of vesicular glutam ate efflux to be easily 

quantified u n d er various experim ental conditions. First, it was necessary to 

determ ine the stability of the accum ulated vesicular glutam ate pool u n d e r 

the assay conditions described in Chapter 2 (2 mM ATP, 0.25 m M  3H-L- 

glutam ate, 100-150 jig vesicle protein content, etc.). As show n in Figure 5.3, 

m axim um  vesicular glutam ate levels (=4 n m o l/m g  protein) are reached 

w ith in  3 m in, and  in general, m aintained over the 10 m in assay period. To
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Figure 5.3 Time course for the ATP-dependent uptake of 3H-L-

glutamate into synaptic vesicles.
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V esicular 3H-L-glutamate uptake was perform ed as described in  C hapter 2 
w ith  term ination of the assays at the tim es indicated. Values rep resen t the  
m ean ± SEM for n = 6 determ inations.
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follow efflux, the vesicles were incubated under these conditions for 10 m in , 

and  then  dilu ted 20 fold into buffer devoid of ATP and L-glutamate. In th is 

m anner the extra vesicular levels of ATP and L-glutamate were decreased to at 

least 100 jiM  and 12.5 jiM respectively. As illustrated in Figure 5.4, these 

d ilu tions resulted in the rapid efflux of 3H-L-glutamate w hen the buffer was 

m ain tained  at 30°C. Decreasing the tem perature of the dilu tion  buffer 

dram atically  slowed this efflux process, as evidenced at 20, 10, and 2°C. T he 

a ttenuation  of glutam ate efflux as a function of tem perature is m ore  

consistent w ith a carrier m ediated process rather than through an open 

channel or diffusion across the mem brane, as these relatively sm all changes 

in tem perature w ould not be expected to affect the latter processes.

The bi-directionality of vesicular transport raises a num ber of 

interesting possibilities. One addressed in the present work concerns w h e th er 

or no t efflux is affected by the presence of an external substrate. As illustrated  

in Figure 5.5, the inclusion of unlabeled L-glutamate in the d ilu tion buffer at 

a concentration of 20 mM  (i.e., lOx its Km) significantly increases the in itia l 

rate of efflux. Such an increase is consistent w ith the process of trans- 

s tim ula tion  (for review  see Christensen, 1975) and m ost likely reflects the  

exchange of in ternal for external substrate, rather than a net m ovem ent in  

any one direction.

Advantageously, this exchange process can be employed to differentiate 

substrates from non-substrate inhibitors. At sim ilar levels of occupancy of
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Figure 5.4 Effect of temperature on 3H-L-glutamate efflux from

synaptic vesicles

Time (min)

The uptake of 3H-L-gIutamate was perform ed as described in C hapter 2. 
Follow ing a 5 m in incubation, assays were dilu ted 20 fold into buffers a t 0°C 
(— ■ — ), 10°C (—A —), 20°C ( ▼ ”•), and 30°C ( ~ ~ 0 — ), and allow ed to fu rth er 
incubate for the indicated times. Results represent the m ean ± SEM for n = 4 
determ inations. Total uptake values (3.68 ± 0.18 n m o l/m g  pro tein ) w ere 
determ ined  after the 5 m in incubation w ith 3H-L-gIutamate, b u t p rio r to 
d ilu tio n .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68
Figure 5.5 Stimulatory effect of exogenous L-glutamate on the

efflux of 3H-L-glutamate from synaptic vesicles.

lim e (min)

The uptake of 3H-L-gIutam ate was perform ed as described in Chapter 2. 
Follow ing a 5 m in incubation, assays were diluted 20 fold in to  buffers 
includ ing  (—& —) or devoid of 20 mM L-glutamate (—■ —), and th en  
term inated  at the indicated times. Results represent the m ean ± SEM for n = 
3 determ inations. Total uptake values (3.46 ± 0.21 n m o l/m g  protein) were 
d e te rm ined  after the 5 m in incubation with 3H-L-glutamate, b u t p rior to 
d ilu tion . Statistical analyses were perform ed using the Students T test w ith  
a lternate  W elch's test correction yielding values of p<0.05 (*) w here indicated.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69
the transporter binding site (assured by testing a com pound at lOx its fC, 

value), an excellent substrate would exchange rapidly, evidenced by 

increasing efflux, while a poor substrate would exchange m ore slowly and 

decrease the rate of efflux. Carried to an extreme, a non-substrate inh ib ito r 

should essentially block efflux altogether. This latter effect w as observed w ith  

Congo Red (Figure 5.6). W hen synaptic vesicles containing accum ulated 3H- 

L-glutamate were diluted 20 fold into buffer containing 2 pM  Congo Red, the 

am oun t of efflux was reduced to about the level previously observed at 0°C. 

Further, the inclusion of an excess of Congo Red (20 (iM, 40x its Kt) relative to 

L-glutam ate (20 mM, lOx its K)  inhibited the frans-stim ulation. These results 

are consistent w ith both the binding of Congo Red to the substra te  site and the 

inability of Congo Red to be translocated into the vesicle (e.g. a non-substrate  

inhibitor).

Inhibitor dependent attenuation of vesicular 3H-L-glutamate efflux

As illustrated in Figure 5.7, the inclusion of various up take inh ib ito rs 

identified in Chapters 3 and  4 produced a range of effects on the rate of 

vesicular 3H-L-gIutamate efflux, when included in the d ilu tion  buffers at lOx 

their Kt values. As expected, the presence of 20 mM L-glutam ate in the  

d ilu tion  buffer produced a slight increase in the efflux rate. This
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Figure 5.6 Inhibitory effect of Congo Red on the efflux of 3H-L-

glutamate from synaptic vesicles
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The uptake of 3H-L-gIutamate was perform ed as described in  Chapter 2. 
Assays were diluted 20 fold into buffers including; 20 pM  Congo Red and 20 
mM L-glutamate (—̂ —), 2 (iM Congo Red ( A  -), Control (—■ — ), 20 mM L- 
glutam ate ( ~ 0 ~ ) ,  and term inated at the indicated times. Results represen t 
the m ean ± SEM for n = 6 determ inations. Total uptake values (2.86 ± 0.30 
n m o l/m g  protein) w ere determ ined after the 5 m in incubation  w ith 3H-L- 
glutam ate, bu t prior to dilution.
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Figure 5.7 Inhibitory effects of vesicular glutamate transport

inhibitors on the efflux of 3H-L-glutamate from synaptic vesicles.
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The uptake of ;}H-L-gIutam ate from synaptic vesicles was perform ed as 
described in Chapter 2. Assays were diluted 20 fold into buffers including: 
Control (A), 20 mM L-glutam ate (B), 2pM Chicago Sky Blue (C), 2 (iM E vans 
Blue (D), 3 pM  N aphthol Blue Black (E), 5 pM Congo Red (F), 40 pM  G allion  
(G), 50 pM  Chrom otrope 2R (H), 60 pM  N itro Red (I), 300 pM A zophloxine (J), 
10 m M  Chicago Acid (K), 20 mM 4-am ino-5-hydroxy-l-naphthaIene su lfon ic  
a d d  (L), 2 m M  xanthurenic  a d d  (M), 10 mM  kynurenic a d d  (N), 4 m M  (±) 
trans-ACPD  (O), and  term inated after a 5 m in incubation. Results rep resen t 
the m ean ±  SEM for n = 6-8 determ inations. Total uptake values (2.96 ±  0.16 
n m o l/m g  protein) were determ ined after the 5 m in preloading w ith  3H-L- 
glutam ate, bu t p rio r to dilution. Statistical anlayses were perform ed using  a 
one-w ay ANOVA test followed by the Tukey's m ultip le  com parison test and  
represent p<0.05 for differences from total uptake (+) and control (*) values.
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enhancem en t would have been larger (and statistically significant) if the  

assays had  been term inated earlier (see Figure 5.5). N ot surprisingly , the  

m ajority of the disulfonic acid dyes, including Congo Red, Chicago Sky Blue, 

and  Evans Blue, proved to be either very poor or non-substrates. H ow ever, a 

few of the com pounds (e.g. N itro red, Azophloxine, xanthurenic acid, and  

kynuren ic  acid) were able to exchange w ith the in tra-vesicu lar 3H-L- 

glutam ate, albeit at about half of the rate at which L-glutamate exchanged. 

These results are quite interesting, as they suggest that in som e instances, 

certain naphthalene sulfonic ad d  dyes and kynurenic a d d  analogues can 

actually serve as substrates of the transporter. As a positive control, (±) trans- 

ACPD, w hich had previously been show n to be a vesicular tran sp o rte r 

substrate  (W inter and Ueda, 1993), was also included in the assay. It slow ed 

b u t d id  not completely block the efflux of 3H-L-gIutamate, as w ould  be 

e x p ed ed  of a m oderate substrate.

Discussion

The results of this study help to shed new  light on the m echanism  of 

the vesicular glutam ate transporter. The evidence suggests that v esicu la r 

g lu tam ate  transport is dependent upon both proton and substrate  

concentra tion  gradients, and  occurs via a distinct bi-directional Carrier-
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m ediated  transport process. Previous studies have characterized the 

requirem ent of ATP in the uptake of L-glutam ate into synaptic vesicles (Naito 

and. Ueda, 1983; Naito and Ueda, 1985). Here, it is dem onstrated that under 

the experim ental conditions employed, ATP is also necessary to m ain ta in  

accum ulated levels of glutam ate w ithin the vesicles once it is sequestered 

(Figures 5.1 and 5.2). This finding is particularly interesting in view  of the 

various disorders in which CNS ATP levels are depleted (e.g. ischem ia, 

hypoxia, and  hypoglycemia) (for review see Choi (1990). Since synaptic 

vesicles represent a significant pool of glutam ate in EAA neuronal term inals, 

liberation of this glutam ate reserve into cellular com partm ents could 

potentially  im pact the degree of neurotoxicity incurred during  periods of 

dam age.

The extent to which glutam ate is concentrated in synaptic vesicles is 

also affected by its concentration gradient across the vesicular m em brane. 

This is depicted in Figures 5.4 - 5.6 when, following a 20 fold d ilu tion of 

vesicles containing accumulated ''H-L-glutamate into buffer devoid of 

g lutam ate and ATP, a rapid efflux occurred. Previous investigations revealed 

that under sim ilar experim ental conditions, the pro ton  gradient was 

m ain tained , even during glutam ate efflux (Carlson and Ueda, 1990; W ang 

and Floor, 1994). This would suggest that the efflux is prim arily  due to a 

decrease in the glutam ate concentration gradient, rather than a loss in the 

d riv ing  force for uptake. Therefore, under norm al uptake conditions, efflux
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m ay be occurring sim ultaneously, albeit at a lower rate. This im plies that the 

glutam ate pool in synaptic vesicles, may turn over as a function of time, as 

opposed to rem aining static once quantal levels are reached. U nder no rm al 

physiological conditions, how ever, this w ould be difficult to observe 

considering that net transport is into the vesicles, and  since sufficient 

cytosolic glutam ate levels exist to replenish those lost from  the vesicular pool 

from a relatively m oderate level of efflux.

The observation that the efflux rate of accum ulated vesicular 

glutam ate is enhanced in the presence of external substrate (Figures 5.5 and  

5.6), supports the hypothesis that this efflux is occurring via a bi-directional 

carrier-m ediated process and is consistent w ith the concept of trans- 

stim ulation. Such relationships are more easily v isualized  using a sim ple 

m odel of the transport m echanism . As illustrated in Figure 5.8, there are tw o 

stages w hich com prise carrier-m ediated transport. The first involves the 

binding, translocation, and release of substrate across the m em brane, and the 

second entails resetting this transport m echanism  to its original orien tation . 

As the evidence suggests that vesicular glutam ate transport is bi-directional, 

these processes may occur in either direction. In order for trans-stim u lation  

to occur, m igration of the unoccupied site (Figure 5.8, step (4) k4/k_,) m ust be 

slow  relative to the m igration of the occupied transporter site (step (2) Iq /k j). 

As show n in Figure 5.5, efflux can occur in the absence of external substrate, 

and  suggests that the unoccupied vesicular glutam ate transporter is able to
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Figure 5.8 M odel of glutam ate induced fnzns-stimuiation for the vesicu lar 

tran spo rt system .
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m igrate across the membrane (step (4) k_,). If this w ere not so, efflux w ould be 

lim ited to the transport of only one glutam ate m olecule per transporter since 

the m echanism  would be unable to reset. In the presence of a sa turating  

concentration of external substrate (20 mM L-glutamate), the rate of efflux is 

accelerated since the transporter returning to the intravesicular surface is now  

occupied (step (2) 1c,), allowing for a faster m igration and therefore a h ig h er 

availability of the transporter site on the in travesicular surface (Tr). 

M oreover, while sufficiently high concentrations of substrate exist on e ith e r 

side of the membrane, m igration of the unoccupied transporter (k4/k_J will be 

reduced, and  the transport mechanism will cycle betw een steps k,, k^ k3 and  

k-j, k  2, k , thereby accelerating the efflux rate. This is the paradigm  observed in 

the instance of fnm s-stim ulation.

One final reference should be made to this m echanism  regarding the  

process occurring during the norm al net uptake of glutam ate. It has been  

proposed that glutamate is concentrated in synaptic vesicles up  to a level 10 

tim es higher than that in the cytosol (Maycox et al., 1990). For this to take 

place, transport into synaptic vesicles m ust occur a t a h igher level than the  

rate of efflux (i.e. k2 > k 2). W hile presently there is a lack of sufficient 

evidence to rationalize this occurrence, it is likely due to either differences in  

the concentration gradients of the requisite transport ions (e.g. H+ and CT) 

across the vesicular m em brane, a n d /o r  differences in the substrate affinities 

on  the  extra- and intravesicular surfaces of the transport protein
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In contrast to the dem onstration of fraus-stim ulation in this study, it 

was previously reported by W ang and Floor (1994) that the rate of vesicu lar 

3H-L-gIutamate efflux is not stim ulated by the application of ex ternal 

substrate. This lack of efflux stim ulation, how ever, m ay be explained by th e  

low concentration of L-glutamate (500 JiM) that was included in the d ilu tio n  

buffer of their experiments. Since this concentration is 2-6 fold low er th a n  

the Km value (1-3 mM) of the vesicular glutam ate transporter, sa tu ration  of 

the substrate binding site would not be obtained and com petition for the  

m igration of the unoccupied vs. occupied transporter site w ould exist (k_* vs. 

kj, Figure 5.8). Indeed, in the present study, 20 mM L-glutam ate (10 x Km) was 

included in the dilution buffer to insure saturation  of the substrate site, and  

obtain a significant level of efflux stim ulation (Figure 5.5).

Three criteria have been m et by Congo Red in these experim ents which 

identify it as a nontransportable inhibitor of vesicular glutam ate uptake. 

First, the nature of its inhibition is com petitive (Figure 4.2). Second, it does 

not exchange w ith accumulated vesicular 3H-L-glutam ate (Figure 5.6). T h ird , 

it can attenuate the glutam ate induced trans-stim ulation (Figure 5.6). 

Referring to Figure 5.8, its action is likely to bind to the unoccupied  

transporter site on the extravesicular surface (T0), and effectively "lock" it in  

this position by a saturated level of binding. W hereas a substrate such as L- 

g lutam ate may bind and accelerate the m igration rate of the occupied
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transporte r across the m em brane, a non-transportable inh ib ito r w ill 

com pletely prevent its m ovem ent. This activity is evidenced w hen  Congo 

Red was included in the d ilu tion  buffer and the resu lting  efflux rate was 

low er than  that of the Control.

Since the chemical configuration of the vesicular g lu tam ate  transporter 

p ro tein  is yet unknow n, the optim al binding requirem ents for substrates and  

non-substrates is also no t know n. It is likely, though, tha t the inability of 

Congo Red to be transported is a t least partly due to its large rig id  and  bulky 

structure  which may interfere w ith the proper conform ational folding of the  

transporter protein. Conversely, there m ust exist certain in trinsic  chem ical 

qualities of the sm aller m ore flexible com pound L-glutam ate w hich  allows it 

to b ind  and be translocated. Fortunately, the ability of these com pounds to 

e ither stim ulate or block the efflux of accum ulated 3H -L-gIutam ate from  

synaptic vesicles allows for their categorization as transportable o r no n - 

transportab le inhibitors. In  the experim ents sum m arized  in  Figure 5.7, 

several of the vesicular uptake inhibitors identified previously  w ere tested in  

th is m anner. A lthough m any of these com pounds com pletely o r nearly  

com pletely blocked the efflux of 3H-L-gIutamate, a few, includ ing  N itro  red, 

A zophloxine, xanthurenic acid and (±)trans-ACPD only partially  inh ib ited  

efflux. This suggests tha t these com pounds were able to exchange w ith  the  

accum ulated  3H-L-glutamate, adm ittedly at a m uch slow er rate th an  the  

endogenous substrate L-giutam ate. It is therefore possible to conclude th a t
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these com pounds act as partial substrates of the vesicular g lutam ate 

transporter.

G iven the small size of this sample set of com pounds, it is yet too early 

to d raw  any conclusions regarding the chemical characteristics w hich  

differentiate transportable from non-transportable inhibitors. F urther w ork 

m ust be directed tow ards expanding these groups in order to begin to discern 

differences betw een them. The rapidity of this technique as a m eans of 

d ifferentiating potential substrates from non-substrates m ay aid in the 

even tual com pilation of their respective pharm acophores.
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Chapter 6: Cross-reactivities of EAA analogues with the vesicular

glutamate transporter

Initial studies exam ined the inhibitory properties of several EAA 

analogues on the uptake of 3H-L-gIutamate (0.25 mM) into synaptic vesicles. 

This series of experim ents was undertaken to identify lead inhibitors of 

vesicular glutam ate uptake and address their potential cross-specificities w ith  

o ther com ponents of the EAA system. When included in the assays at a final 

concentration of 5 mM, a range of activity for these com pounds was observed 

(Table 6.1), although few reduced uptake more than  the endogenous substrate 

L-glutam ate (28.9 % of Control). Two exceptions to these findings were (±) 

fnms-ACPD (11.7 % of Control) (see Chapter 3) and 'L-anti-end.o-yiVDQ (20.5 % 

of Control). The latter being a potent transportable inhibitor of the high- 

affinity N a+-dependent EAA transporter (Bridges et al., 1994). The lack of 

cross-reactivity observed w ith m any of these EAA analogues suggests that the  

vesicular glutam ate transporter is pharmacologically distinct, and encourages 

the search for m ore potent selective inhibitors of this system.

80
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Table 6.1 Cross-reactivities of EAA analogues with the vesicular glutamate

transporter

C om pound S tructure
Vesicular U ptake 

of 3H -L -G lutam ate 
(% of Control)

EAA Activity

L-Glutamic acid
H O O d^^C O O H

28.9 ± 1.4 (8) Endogenous 
broad spectrum  
EAA agonist

D-GIutamic acid HmN , h  -
H O O C '^ ^ C O O H

63.0 ± 1.8 (3) NMDA agonist

L-Aspartic acid H N'H;
.COOH 

HOOC ^
79.0 ± 8.7* (2) NMDA agonist

D-Aspartic acid H2N ^ H
X ^ C O O H  

H O OC ^

95.9 ± 1.1 (4) NMDA agonist

N M D A
H3C-------N H

COOH
HOOC V

96.9 ± 4.4* (2) NMDA agonist

ds-ACPD

HOOC COOH

87.2 ± 6.1 (3) NMDA agonist

DCG-IV HOOC,, ^COOHr
HjN COOH

100 (1) NMDA agonist, 
Group II mGluR 
agonist

L-Homocysteic
a d d

H O O C  ^  SO3H

92.2 ± 2.7 (3) NMDA agonist

L-Hom ocysteine 
sulphinic a d d

H O O C  SOzH

84.9 ± 1.5* (2) NMDA agonist
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Com pound
Vesicular Uptake

Structure of 3H-L-GIutamate EAA Activity
(% of Control)

L-Serine-O-
sulphate

D-AP5

A M PA

K A

P-L-ODAP

L-GIutam ic acid 
diethyl ester

D,L-AP4

\ j <h 2
HOOC ' ° ' S 0 3H

Jrl
X ^ v / po>H

HOOC v

CH3
NH,

COOH

OH

HjC ^ ch,
. \ '" 'S COOH

C \M COOH 
H

NIK,

HOOC Y
COOH

COiCiH;

H,N7
H

COiCiH=

NH*
h o o c^ Ss- ^ po3h2

3-Hydroxy-2- OH
quinoxaline I T T  

carboxylic acid (̂ q o h

91.8 ± 6.9* (2) NM DA agonist

92.1 ± 3.6* (2) N M D A
antagon ist

87.0 ± 0.4* (2) AM PA agonist

92.1 ± 3.6* (2) KA agonist

100 (1)

100 (1)

89.0 ± 5.1 (3)

69.5 ± 2.3 (5)

A M PA /K A
agonist

N o n co m p etitiv e
A M PA
an tagon ist

N on-selec tive  
inontrop ic  EAA 
antagonist; 
G roup III mGIuR 
agonist

N on-selec tive  
inontrop ic  EAA 
an tagon ist
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Compound
vesicular Uptake

Structure of 3H-L-GIutamate EAA Activity
(% of Control)

L-a-A A
HOOC

,COOH
89.8 ± 9.5* (2) N on-selective 

inontropic EAA 
antagonist

(±) frans-ACPD H O O C ,^ ^ n h 2

H ^  COOH

11.7 ±1.2 (5) Group I and  H 
mGIuR agonist

(R,S) 3-Hydroxy- 
phenylglycine

OH

H21N r " C O O H

100 ±  0* (2) G roup I mGIuR 
agonist

D,L-AP3

L-Aspartate-P- i |
hydroxam ate

NH,

HOOC

COOH O

A ^ p o 3h 2

- o h

87.0 ± 5.8 (3)

100 (1)

G roup I mGIuR 
antagonist

G roup I mGIuR 
antagonist

L-atiti-endo- 
MPDC

COOH

^  v.^COOH N 
H

20.5 ± 0.8 (5) EAA cellular
reuptake
inh ib ito r

L-fnms-2,4-PDC HOO c*

O ,
NT
H

COOH

71.7+2.1 (5) EAA cellular
reuptake
inh ib ito r

L-anti-exo-MPDC COOH

h* A > h

N COOH 
H

85.7 ± 0.4* (2) EAA cellular
reuptake
inh ib ito r
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Compound Structure
Vesicular Uptake

of 3H-L-Glutamate EAA Activity
(% of Control)

L-Cysteic acid H N,H

H(
SOjH

85.5 (1) EAA cellu lar
reuptake
in h ib ito r

D-Cvsteic acid . h 93 .3  ( i )
SO,H

HI

EAA cellular
reuptake
in h ib ito r

meso-MPDC HOOC.

n^ n̂ cooh
H

100 (2) EAA cellular
reuptake
in h ib ito r

D,L-threo-$- 
Hydroxy aspartic 
acid

NH-.2 OH

HOOC COOH

100 (1) EAA cellular
reuptake
in h ib ito r

L-DHK H3Cv ,CHa
S ^ /^ C O O H

C \
£[ COOH

89.0 ± 4.8 (3) EAA cellu lar
reuptake
in h ib ito r

The uptake of 3H-L-gIutamate (0.25 mM) into synaptic vesicles was perform ed 
as described in Chapter 2. EAA analogues were present in the incubation  
m edium  at a final concentration of 5 mM. Results are reported  as a 
percentage of Control uptake ± SEM or SD* w ith n num ber of experim ents i n 
parentheses. Abbreviations: NMDA, N-M ethyl-D-aspartic add; (±) czs-ACPD, 
(±)-l-Aminocyclopentane-cfs-l,3-dicarboxylic add ; DCG IV, (2S,2'R,3'R)-2- 
(2,,3'-Dicarboxycydopropyl)gIydne; D-AP5, D(-)-2-A m ino-5-phosphono-
pentanoic add; AMPA, (R ,S)-a-Am ino-3-hydroxy-5-m ethyl-4-
isoxazolepropionic add ; KA, Kainic add ; (5-L-ODAP, P-N-OxaIyI-L-a,P* 
diam inopropionic add ; D,L-AP4, D,L-2-Am ino-4-phosphonobutyric acid;
L-a-AA, L-a-Am inoadipic add ; (±) trans-ACPD, (±)-l-A m inocyclopentane- 
frans-l,3-dicarboxyIic add ; ; D,L-AP3, D ,L-2-Am ino-3-phosphonobutyric add ;
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h-anti-endo-MPDC, L-rtnfz-e?z£/o-3,4-MethanopyrrolidinedicarboxyIic a d d ; L- 
frzzzzs-2,4-PDC, L-trans -2,4-Pyrrolidinedicarboxvlic add ; L-anti-exo-MPDC, L- 
flnfz-exo-3,4-MethanopyrroIidinedicarboxyIic a d d ; zzzeso-MPDC, meso-3,4- 
M ethanopyrrolidinedicarboxylic; L-DHK, L-Dihydrokainic a d d .
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Chapter 7: Conclusions and future directions

W ithin the last 30 years, our knowledge and understand ing  of the EAA 

n euro transm itter system has increased dram atically. N um erous advances 

have been m ade tow ards the pharmacological and m olecular characterization 

of m any of its com ponents (e.g. ionotropic and m etabotropic receptors, 

cellular transporters, enzym atic processes). In spite of this progress, one key 

area of EAA research has lagged behind, namely, the characterization of the  

transporter responsible for packaging glutam ate into synaptic vesicles. In  

part, this is due to the lack of potent and selective inhibitors of this transport 

process. W ith this in m ind, the work in this study  was specifically focused on  

fu rther resolving this issue.

Two series of inhibitors in particular have been stud ied  in dep th  to aid 

in the form ulation of a vesicular glutam ate pharm acophore. The first is 

based upon  a rigid bicyclic quinoline core fram ew ork and includes 

kynurenate, 7-Cl-kynurenate, and xanthurenate. The second is based upon  a 

bicyclic naphthalene fram ework, bu t incorporates one or tw o diazo-linked 

arom atic substituents, as seen in the structures of the dyes Evans Blue, 

Chicago Sky Blue, Congo Red, and N aphthol Blue Black. Taken together, a 

num ber of conclusions can be draw n about the structure-activ ity

86
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relationships of these compounds with the vesicular glutamate transporter by

exam ining their inhibitory activities.

• A substitu ted  bicyclic ring fram ew ork (e.g. qu ino line  or naphthalene) can 

poten tially  m im ic the conform ation of glutam ate w hich binds to the 

vesicular transporter. The determ ination that m any of these com pounds 

w ere com petitive inhibitors suggested that som ething intrinsic about the ir 

structures resembled the conform ation of L-glutamate which binds to the 

vesicular transporter. Therefore a m odel has been proposed for the 

quinoline analogues in which the carbocyclic ring mimics the y-carboxylate 

of L-glutam ate (Figures 3.2 and 3.3). This is supported by the finding that 

electron donating groups attached to positions 7 or 8 as in 7-Cl-kynurenate 

and  xanthurenate, m arkedly increase inhibitory activity. Presumably, this 

is due to the increased electron density of the carbocyclic ring which m ay 

m ore closely approxim ate the carboxylate of glutam ate. Further, 

analogous com pounds lacking the carbocyclic ring are poor inhibitors 

(Table 3.1).

• Inh ib ito ry  potency is dram atically increased w ith  the attachm ent of diazo- 

Iinked  arom atic side chains. This is supported by the finding tha t 

com pounds incorporating these diazo-Iinked side chains exhibit increased 

inhibitory  activity over the analogous naphthalene sulfonic adds w hich
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lack them  (Chapter 4). Since this is clearly a structural feature no t 

associated w ith  the endogenous substrate L-glutamate, it is likely that the 

m ode in w hich these com petitive inhibitors bind to the transporter is 

different. For instance, the aromatic side chain m ay be appropriately 

positioned to interact w ith a lipophilic m oiety of the pro tein  in the 

b ind ing  pocket. M oreover, the significantly increased affinity of these 

com pounds com pared to that of L-glutamate (up to 10,000 fold) suggests 

that closely m im icking a glutam ate conform er m ay not be optim al for 

inhib itory  activity.

Following the identification of the inhibitory properties of these 

com pounds, fu rther investigations into the m echanism  of vesicu lar 

g lu tam ate transport w ere conducted. Using these inhibitors as probes, several 

im portan t findings w ere made.

• Efflux of accum ulated vesicular 3H-L-glutam ate can be stim u la ted  by 

exogenous concentrations of substrate. This is the first clear 

dem onstra tion  of glutam ate induced frans-stim ulation reported  for the 

vesicular system  (C hapter 5). It suggests that vesicular glutam ate tran spo rt 

is no t only carrier-m ediated, but also bi-directional. Further, these 

findings suggest that the in v ivo  pool of vesicular g lu tam ate  m ay tu rn
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over as a function of time due to a continuous hom o-exchange betw een 

extra- and  intravesicular pools.

•  V esicular 3H-L-gIutamate efflux can be blocked by an  exogenous 

non transportab le  inhibitor. In contrast to the substrate-induced  

stim u la tion  of efflux, these findings indicate that certain  com petitive  

up take  inhibitors can attenuate the efflux of the vesicu lar 

n eu ro tran sm itte r contents. This observation is particularly  in teresting , 

since in com parison to the activity of a substrate, it allow s for the  

differentiation  of transportable from non-transportable inhib itors, based 

upon  their abilities to either stim ulate o r attenuate the efflux of 3H-L- 

g lu tam ate from synaptic vesicles (Figure 5.7).

Presented w ithin this study, both the inhibitor pharm acology and  

insigh t into the transport m echanism  further the progress tow ards the  

even tual characterization of this im portant transport system. Still, there is a 

g reat need for additional w ork to address several key issues. For exam ple, 

w hile an  im portan t inhibitory role has been dem onstrated for the diazo- 

Iinked arom atic side chain of the naphthylam ine sulfonic a d d  dyes, 

add itional studies should attem pt to e luddate  its binding interaction. A re 

there  lim ita tions on the regio-positioning of this g roup  a round  th e  

naph tha lene  ring, or restrictions on the length of the arom atic chain? Is th e
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diazo-group even required w ithin this linkage? Additionally, there is a great 

deal of flexibility in the positioning of ionic functional groups around  the  

quinoline and naphthalene ring system s of these com pounds. T herefore, 

studies should  address their contribution to transport inhibition.

In addition to inhibitory potency at the vesicular transporter, fu tu re  

studies should be directed towards the developm ent of com pounds exhib iting  

little cross-reactivity with other sites of EAA activity. A few of the  

com pounds identified in this study (e.g. xanthurenate, N itro Red, 

A zophloxine, and Chrom otrope 2R) fall into this category and m ay p rove to 

be useful tem plates for the developm ent of even more potent analogues. The 

utility  of such selective inhibitors w ould be manifold. Their selective affinity 

could be exploited for the isolation and m olecular characterization of the  

vesicular transport protein. Additionally, they could serve as usefu l 

pharm acological probes and m odulators of glutam atergic processes in vivo.

A long w ith the increasing evidence that the EAA system participates in 

a w ide range of cognitive functions, comes its untapped potential for 

pharm acological m anipulation. In certain CNS pathologies, a failure to 

regulate extracellular glutam ate concentrations has contributed to excitotoxic- 

m ediated neuronal injury. Presently, EAA ionotropic receptor an tagonists 

are u n d er investigation as possible drug  candidates. As an a lterna tive , 

regulation of presynaptic glutam ate pools prior to release m ay prove to be
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beneficial in these disorders. In this vein, inhibitors of vesicu lar g lu tam ate  

uptake may show  promise.

Clearly, vesicular glutam ate transport is an essential and  yet poorly 

understood com ponent of the glutamatergic system . Progress into the  

characterization of the transporter pharm acophore will no t only further o u r 

understand ing  of this system but provide tools w ith  w hich to explore its 

function.
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