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MODELING OF AQUEOUS EQUILIBRIUM:  THREE-DIMENSIONAL TREND SURFACES (TOPOS) 
 
Chairperson: Dr. Garon C. Smith              Department of Chemistry & Biochemistry 

 

This dissertation establishes a comprehensive approach to looking at aqueous equilibria 

phenomena over essentially all feasible compositions of two component solutions – acid-base 

titrations, metal-ligand complexation, oxidation-reduction couples and solubility of binary ionic 

compounds.  Fundamental to this method is the definition of a composition grid above which 

numerous system properties can be plotted as three-dimensional trend surfaces to visualize 

important aspects of system behavior.  These have been named “topos” because their 

appearance is similar to topographic maps.  In each case Microsoft ExcelTM worksheets have 

been designed with embedded Visual BasicTM macros that provide an easy means for anyone to 

generate surfaces of interest.  The only inputs required are thermodynamic values such as acid 

dissociation constants (Ka), overall formation constants (βs), standard reduction potentials (Eo) 

or solubility product constants (Ksp).  Once the macro is started, the software generates 

equilibrium values for system parameters at every composition grid point and then constructs 

3-D surfaces in plotting windows.  The resultant plots can be rotated in any direction to 

enhance viewing of surface features. 

 

Several new chemical phenomena have been identified in the course of this project:  1) in acid-

base systems buffering against dilution effects has been characterized more thoroughly than 

previously found in the literature.  2) New equations relating buffer capacity to titration 

procedures have been derived and visualized as topos.  3) Anti-buffering, a new behavior in 

metal-ligand complexation systems has been identified; it was confirmed experimentally with a 

Cu2+-ethylenediamine system where the activity of free Cu2+ ion increased more than 100-fold 

as the system was diluted more than 1300 times.  4) Overall trends in cell potentials have been 

clarified and utilized in describing why batteries supply a nearly constant voltage until suddenly 

dying.  5) A composition grid has been designed for future studies on the solubility of ionic 

compounds. 

 

The interactive Excel spreadsheets are easily adapted to use in pedagogic settings.  Suggested 

PowerPoint teaching resources and explanations of the numerical methods used to solve the 

equilibrium calculations have been supplied as examples in the acid-base studies. 
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Chapter 1 
Introduction and Statement of the Problem 

 
1.1 Introduction 

This thesis is primarily a theoretical study of aqueous equilibrium chemistry 

focusing on aspects of acid-base reactions, metal-ligand complexation 

reactions, redox reactions and the solubility of ionic salts.  The investigation of 

these areas is initiated through a series of composition grids and associated 

three-dimensional trend surfaces (topos).  Over the wide ranges of 

compositions established by the grids, numerical methods are employed to 

model chemical behavior based on underlying equilibrium expressions.  The 

output of the modeling is a series of 3-dimensional topo surfaces that present 

a visual summary of system trends.  Features on these topos often prompt new 

questions about the underlying chemistry. Previously unperceived or 

uncharacterized trends may appear as dramatic ridges, plateaus or chasms on 

the surfaces themselves.  New conceptual understandings emerge in seeking 

their explanation.  Counterintuitive outcomes have been confirmed through 

laboratory experiments. 

 

1.2 Acid-base systems 

For acid-base neutralization reactions, a new composition grid has been 

developed for which the x-axis holds the volume of titrant added while the y-

axis tracks dilution of the reagents.  Topo surfaces plotted above this grid show 

both a buffer’s pH and its extent of effectiveness (i.e., its capacity).  The topos 

exhibit not only visual evidence for buffering against addition of acids and 

bases, but also buffering when reagent concentrations are diluted.  It is easy to 

demonstrate how sufficient dilution eventually erodes a buffer’s effectiveness, 

how the simplified Henderson-Hasselbalch1 equation for calculating a buffer’s 
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pH eventually breaks down, and how the titration curves beyond that point are 

reminiscent of a dilute strong acid/dilute strong base titration curve.  At 

sufficient dilution, the buffer properties of a system are a function of Kw, the H+ 

and OH- concentrations of the solvent water itself. 

 

               This study portrays the buffer capacity changes during a titration as a 

function of the volume of base added, a viewpoint rarely addressed in acid-

base studies.  The difference between this new viewpoint and traditional 

buffer capacity plots is illustrated with side-by-side topo surfaces for 

comparison.  The new buffer capacity surfaces also explore the meaning of 

buffer capacity for conditions not often considered – strong acid solutions, 

strong base solutions and extremely dilute systems.  Acid samples modeled 

include a strong acid, a weak monoprotic acid, a weak diprotic acid and a weak 

triprotic acid. 

 

1.3 Metal-ligand complexation systems 

For metal complexation systems a traditional composition grid has been used 

that plots the total analytical concentration of metal on the x-axis and the total 

analytical concentration of ligand on the y-axis2.  The z-axis records the 

equilibrium activity of free metal.  This study identifies an unusual behavior in 

the concentration of free metal ions that can occur under the right 

circumstances – the presence of complexes with higher coordination numbers, 

i.e., more than just a 1:1 stoichiometry, under excess ligand compositions.  

When these conditions are met, the activity of free metal will actually increase 

as the overall system is diluted.  This behavior will be denoted by the term 

“anti-buffering”.  The higher the coordination number of the complexes, the 

more pronounced the observed anti-buffering in model calculations.  A copper 
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(II) ethylenediamine system was employed to experimentally demonstrate this 

behavior. 

 

 

1.4 Redox systems 

For redox systems, a new composition grid has been developed to portray the 

Nernst equation and the chance of half-cell voltages as electrochemical cells 

operate.  One grid axis holds the activity of the oxidized species; the other 

holds the activity of the reduced species.  Calculated potentials for a given 

composition are plotted as the z-coordinate to form Nernst topo surfaces.  The 

Nernst topos: 1) dramatize the importance of the Eo value over most solution 

compositions (it is essentially flat); 2) display, as surface pairs, the point where 

a galvanic cell reaches equilibrium, viz Eanode – Ecathode = Ecell = 0 V; 3) reveal the 

underlying principle of a concentration cell; and 4) illustrate systems in which 

the spontaneous reaction can run in either direction given the proper starting 

compositions or with changes in temperature or pH. 

 

1.5 Solubility of ionic salts 

Solubility equilibrium is traditionally taught from the standpoint of a simple Ksp 

expression3.  This is an inadequate description of the rich chemistry that can 

occur.  Ion pairing, hydrolysis reactions, dissolved aqueous complexes and 

polynuclear species are all possibilities.  This study presents the simple Ksp case 

topos as the first stage toward looking at these complicating side-reactions in 

other topo surfaces above a composition grid.  The composition grids 

employed in this part contain the analytical concentration of the anion on the 

y-axis and the analytical concentration of the cation on the x-axis.  A modified 

definition of solubility is introduced for these surfaces because many systems 
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are more than just an ionic salt and water.  Other components containing 

common ions can be modeled.  The composition topos allow pre-visualization 

of experimental procedures through which the cation and anion can interact to 

form a precipitate. 

 

 

1.6 Numerical Methods and Excel Macros 

The exploration and construction of the 3-dimensional topo surfaces described 

above necessitated the development of numerical techniques and substantial 

computer programs (Visual Basic macros embedded in MicroSoft Excel) to 

calculate the equilibrium activities/concentrations of all species in a specified 

system4.  These tools provide a rich framework for investigating aqueous 

equilibria in its full measure. 

 

1.7 Thesis organization 

Chapter 2 of this thesis provides an historical account of aqueous equilibrium 

modeling and three-dimensional trend surfaces.  Chapter 3 is an article on 

acid-base titration surfaces, “3-D Surface Visualization of pH Titration “Topos”: 

Equivalence Point Cliffs, Dilution Ramps, and Buffer Plateaus,” that was 

published in the Journal of Chemical Education4.  Chapter 4 is a companion 

manuscript on buffer capacity that is being readied for submission to the same 

journal.  Chapter 5 describes a new phenomenon, named anti- buffering, 

where the activity of free metal increases with overall system dilution.  

Chapter 6 consists of an application of Nernst topo surfaces “Why Batteries 

Deliver a Fairly Constant Voltage until Dead” that was also published in the 

Journal of Chemical Education5.  Chapter 7 is a more complete discussion of 

topo surfaces for all variables in the Nernst equation.  Chapter 8 introduces 
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solubility topos for the simple Ksp case.  Finally, Chapter 9 summarizes the 

insights that have emerged from the topo surface approach and where further 

development might proceed. 

 

                The Appendices include listings of the Visual Basic macros that 

generate the topo surfaces that are discussed in this thesis.  They also contain 

more detailed descriptions of the experimental methodologies than are 

possible in published manuscripts.  Finally, the complete derivations of the 

new equations that were required for the buffer capacity topos are provided. 

Digital copies of all programs used in preparing the topo figures in this thesis 

are included on a CD that is found in a storage sleeve inside the back cover.   
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Chapter 2 

Background of the Problem: Composition Grids and 3-D Trend 

Surfaces 

 

2.1 Composition grids 

This thesis introduces a series of composition grids, a method of visualizing 

trends in chemical behavior over a wide range of solution compositions. While 

many composition grids have been used in the past by other authors, their use 

has generally been restricted to the characterization of the mixture’s 

composition, not following the trends in some solution parameter as system 

composition varies.  The surfaces displayed in this research are largely 

innovative.  Some of the grids have never before appeared in the literature.  

Neither have the topo trend surfaces for how pH, buffer capacity, extent of 

complexation, electrochemical cell voltages and solubility change with solution 

composition. 

 

 2.1.1 Ternary Grids:  Triangular composition grids are probably the most 

frequently encountered style in the scientific literature.  A comprehensive 

review article on ternary diagrams appeared in 19961.  This general method of 

displaying the interaction of three variables was used by Isaac Newton in his 

1718 description of hues and shades in his color spectrum2.  In 1876, J. Willard 

Gibbs presented the notion of triangular representation of ternary systems as 

equilateral triangles3and in 1894 H.W.B. Roozeboom introduced a right 

triangular representation of ternary systems4. They are used extensively in 

chemistry5-7, geology8,9, biological sciences10-12 and metallurgy 13-15.  The 

compositions of a ternary system, one that contains three components, can be 
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expressed graphically as a point on a triangular-shaped grid (Figure 2.1)16. The 

three corners of the diagram represent the pure components.  A mixture of 

any two components will appear as a point on the edge of the triangle.  A 

mixture of all three will be a point on the interior of the grid.  Several schemes 

have been in use to represent the composition of these three-component 

systems. 

   

 

Figure 2.1.  Triangular diagram for a ternary mixture with components A, 
B, and C. The point highlighted on the diagram has the composition xA = 
0.30, xB= 0.45, and xC = 0.25 where x denotes mole fraction16.  
Coordinates here are read by constructing lines to the appropriate axis 
that are parallel to the diagram’s boundaries.   
 

Not all ternary diagram coordinates are read in the same manner.  Since there 

are at least four methods available for interpreting a ternary composition 

diagrams, confusion is always possible.  Of the available methods for reading 

ternary diagrams, the parallel and perpendicular approaches are most widely 
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used (Figure 2.2).   Some authors prefer a right isosceles triangle instead of the 

scalene version shown in Figure 2.2 because it is advantageous pedagogically 

to represent composition grids in a manner similar to reading conventional 

rectangular coordinates17. Although ternary representations are frequently 

used in various fields of science, most of them end by simply partitioning the 

ternary diagram into related groups of composition or phase diagrams. 

 

Panel I 

 

Panel II 

 

Figure 2.2.  Methods of reading ternary diagrams.  Panel I demonstrates 
the perpendicular method of interpretation.  Panel II demonstrates the 
parallel method17. 



P a g e  | 9 

 

 
For example, in a study on a new class of molten salts as electrolytes, Kubota 

and others constructed ternary diagrams to note compositional variations with 

temperature (Figure 2.3). 

 

Figure 2.3. Compositional changes in a ternary system with temperature. 
Molten electrolyte compositions vary in their sodium, cesium and 
potassium triflet contents as a function of temperature18. 

 
Note that the main point of this plot is how the composition of the system 

varies with temperature.  It is not about how the composition of the system 

affects some dependent system variable.  The authors actually did generate an 

(x,y,z)-set of data that is presented as the contour diagram in Figure 2.3.  This is 

a much less effective way to present the overall findings than a 3-dimensional 

wire-frame surface.  When the same data from Figure 2.3 are displayed as a 

wire-frame surface, the compositional shift to the sodium form at high 

temperatures is immediately unmistakable.  Presented with only the contour 

diagram of Figure 2.3, the reader must dedicate a significant amount of time in 

digesting the data and then mentally visualizing what it looks like.  With such 



P a g e  | 10 

 

easy access to 3-dimensional surface plotting software, wire-frame surfaces 

should be used more frequently to convey important points about data trends.   

 

Figure 2.4. 3-Dimensional wire-frame compositional representation of 
Figure 2.3. 
 

 

2.2 Composition grids with 3-D surfaces   

The equilibrium concepts studied for this thesis are all based on binary 

composition grids above which three-dimensional topo surfaces for dependent 

variables are constructed.  Constructing a surface plot for a dependent variable 

above a composition grid, in itself, is not a new idea.  Figure 5 illustrates four 

such examples from the literature:  a. Feigenson and Buboltz plot a 3-D surface 

of fluorescence responses above a composition grid for mixtures of hydrated 

lamellar lipids 19;  b. Catlett et al. illustrate the changes in free Zn2+ activity as 

the pH of a solution and the percent of organic matter are varied 20;  c. 

Bermudez et al. present dose-response changes that occur as the composition 

of two estrogen compounds are varied21; and d. Almas et al. show the greater 
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uptake of Zn-65 in the above-ground plant parts with increasing temperature 

and addition of organic matter to the soil22. 

         Panel I                                                                Panel II 

                          

         

 

Panel III                                                              Panel IV 

        

 

Figure 2.5.  Surfaces for dependent variables plotted above a 
composition grid.  Panel I- From reference 19; Panel II- from reference 
20; Panel III- from 21; Panel IV- from 22. 
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2.2.1 Reaction paths 
 
A reaction path on the composition grid is defined by the sequence of 

compositions that form as solutions are being mixed during the course of an 

experimental procedure.  Reaction paths can be straight lines or curved tracks 

across the composition grid (Figure 2.6).  Batch titrations that maintain one 

component constant as the other is varied generate experimental paths that 

parallel one of the grid axes.  If the composition axes are logarithmic, dilution 

procedures diminish both components at the same rate and are represented 

by lines moving down and to the left with a slope of 1.  A traditional titration 

generates a curved path because, as the titrant is added, its addition dilutes 

the analyte.  Once generated, these reaction paths can be superimposed onto 

the 3-D surfaces above the grid. 

 

                                

Figure 2.6:  Log-log composition grid with reaction paths.  (a) Metal into 
ligand batch titration, (b) ligand into metal batch titration, (c) dilution, 
(d) symmetrical (i.e. equimolar metal and ligand solutions) metal-into-
ligand regular titration, (e) symmetrical ligand-into-metal regular 
titration. Note that (d) and (e) also correspond to symmetrical 
continuous variations plot, with most of the experimental points 
generally lying in the region (f) 23. 
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2.3.1 Composition grids for this thesis 

This thesis project introduces the use of composition grids and 3-D topo 

surfaces to extend understanding of aqueous equilibrium concepts.  Each 

category of reaction types will require a unique composition grid and/or 

unique definitions of z-axis variables.  The x-axis of most composition grids will 

usually, but not always, represent analytical activities/concentrations of one 

species present in the equilibrium system under study and the y-axis will 

represent the analytical activities/concentrations of the second one.   With an 

appropriate range of values for scales on the x- and y-axes, the composition of 

essentially any feasible solution made by the mixing of these two species can 

be represented as a point (x, y) on this two-dimensional coordinate system. 

The addition of a third variable as the z-axis creates the three-dimensional 

topo surfaces that will be explored and interpreted in this study. 

 

2.3.2 Acid-base surfaces 

The composition grid for visualizing acid-base reactions is constructed by 

plotting the volume of strong base added on the x-axis and the overall dilution 

of starting reagents on the y-axis.  Most undergraduate analytical chemistry 

textbooks and many journal articles about titration curves come close to 

generating this type of composition grid when they plot multiple titration 

traces at successively more dilute conditions (Figure 2.7). This composition has 

a linear x-axis but a logarithmic y-axis.  Several z-axes will be used to generate 

topos:  1) pH which is a logarithmic axis; 2) buffer capacity which can be either 

linear or logarithmic; and 3) distribution diagrams to follow extent of 

dissociation which is a linear variable.  The typical topo is 41 points in the x-

direction by 37 points in the y-direction for a total of 1517 grid points. 
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Figure 2.7. Dilution effects on a titration curve for 100 mL of acetic acid titrated 
with NaOH. Both the acetic acid and NaOH stock solutions are at the molarity 
noted on each trace. 

 

Figure 2.8. The typical composition grid for acid-base titration dilution topo 
surfaces. For simpler representation number of grid points are reduced. The 
orientation of the composition grid is rotated 90o counter-clockwise to match 
the viewing angle of the topos presented in Chapters 3 and 4. 
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2.3.3 Metal-ligand surfaces 

The composition grid for visualizing metal complexation reactions is 

constructed by plotting the total analytical concentration of metal on the x-axis 

and the total analytical concentration of the ligand on the y-axis (Figure 2.9).  

The main focus of this part of the thesis project is to present a rather 

unexpected consequence of metal complexation systems that contain 

stoichiometries above 1metal:1ligand.  When higher stoichiometries are 

present (e.g., 1:2, 1:3, etc.) and ligand is in excess, modeling suggests that a 

situation exists for which trace free metal activities actually increase as a 

sample is diluted. 

 

 

 

Figure 2.9. Composition grid for metal-complexation topo surfaces. 
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(The total metal undergoes dilution as expected.)  This has been assigned the 

name “anti-buffering” for the present.  Because the anti-buffering 

phenomenon occurs over many orders of magnitude, a log-log composition 

grid is used that contains 37 points in each dimension for a total of 1369 grid 

points.  Variables that will be plotted on the z-axis to produce the 3-D topo 

surfaces are: 1) pMn+, the free metal activity; 2) the activity of other system 

species; 3) experimental parameters such as absorbance for looking at reaction 

paths. 

 

2.3.4 Redox surfaces 

The composition grid for visualizing redox reactions can be either a linear-

linear version or a log-log version depending on what system behavior is being 

highlighted (Figure 2.10). This is most novel grid because it is constructed by 

plotting the activity/ concentration of the oxidized form of a half-cell couple on 

the y-axis and the activity/ concentration of the reduced form of a half-cell 

couple on the x-axis. The z-axis records the half-cell potential as calculated by 

the Nernst equation for the redox couple.  Reaction paths on this grid 

correspond to the series of half-cell compositions that are encountered during 

a current flow, either discharging a voltaic cell or operating an electrolytic cell.  

The most interesting consequence to emerge through 3-D modeling of Nernst 

equation surfaces involves superimposed surfaces that correspond to two half-

reactions that form a Galvanic cell.  
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       Panel I                                                          Panel II 

 

Figure 2.10. The redox composition grid and a Nernst surface. Panel I- 
The 2-diemensional coordinate system for the Fe3+ + e- →Fe2+ redox 
couple.  Panel II- The 3-dimensional surface for the calculated Nernst 
potential (E).    
 
 
 

2.3.5 Solubility Surfaces 

The composition grid for visualizing solubility of ionic salts is identical to that 

used for metal complexation topos.  It is constructed by plotting the total 

analytical concentration of cation on the x-axis and the total analytical 

concentration of the anion on the y-axis (Fig 2.9 is a similar composition grid).  

The difference here is only in the choice of z-variables.  Here the z-axis will be 

assigned to solubility (both as a linear and a logarithmic value) as well as the 

activities of individual species or combined aqueous species. The focus of this 

portion of the overall project is to generate a series of surfaces that embody 

ever increasing sophistication in capturing the variety of chemical interactions 

that are possible in a system containing a potential precipitate. 
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Chapter 3 

3-D Surface Visualization of pH Titration “Topos”: Equivalence Point 

Cliffs, Dilution Ramps, and Buffer Plateaus 

 

3.1 Introduction 

One of the traditional approaches to understanding acid− base chemistry and pH 

is to study titration curves. Titration curves appear in virtually every general 

chemistry textbook1−3 and titration procedures constitute an experiment in 

essentially every introductory laboratory manual4,5. But there are subtleties to 

titration curves that are often overlooked. For example, as a system is diluted, the 

magnitude of the equivalence point break deteriorates, buffer plateaus erode, 

and auto-dissociation of water eventually begins to dominate a system. This 

paper introduces 3-D topographic pH surfaces (“topos”) with “cliffs”, “plateaus”, 

and “ramps” that change with addition of base or dilution of the system. The pH 

topos are designed to help beginning students see how acid dissociation 

constants, Ka’s, affect pH and titration curves. As such, they are appropriate in 

teaching pH fundamentals in first-year college chemistry courses. But because the 

topos invite the reader to consider acid−base behavior over a broad range of 

conditions, they can also help students in upper-division analytical chemistry 

courses appreciate some nuances of acid−base behavior. Most specifically, the 

topos reveal how dilution affects a buffered system, a topic not pursued in 

standard analytical texts. The interactive spreadsheets permit students to quickly 

see the results of what would otherwise be an infeasible set of extensive 

calculations. The Supporting Information includes suggested timing and uses of 
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topos in lecture, provides PowerPoint slides to use in the classroom, suggested 

worksheets, and extensions into laboratory activities. 

 

3.2 Titration curve calculations 

S.P.L. Sørensen first formulated the concept of pH in 1909,6 realizing that pH 

control via buffers was critical to his experiments with enzymes. But pH as a 

concept in introductory chemistry courses did not occur until about forty years 

later.7 Even then, before the advent of digital computers, rigorous pH calculations 

were arduous. Titration curves were often computed using approximations with 

concomitant underlying assumptions. As computers and hand-held calculators 

evolved, a steady stream of papers appeared regarding how to solve the exact 

equations using numerical methods. A leader in this area was Lars Sillén of 

Sweden’s Royal Institute of Technology8.   Software packages that performed a 

wide variety of titration calculations for pH, buffers, and species distributions 

were available from JCE Software in 19899 and in an updated version again in 

199810.  Unfortunately, these are no longer available. At this writing, CurTiPot, 

spreadsheets that do many of the same functions, is provided as a free download 

from I.G.R. Gutz11.  This paper introduces a 3-D topo surface approach to pH and 

buffer calculations that offers new insights into old topics. Included in the 

Supporting Information is an Excel spreadsheet with embedded macros that will 

allow the reader to reproduce all pH surfaces discussed here as well as allowing 

them to create a pH surface for any other mono-, di-, or triprotic acid they wish to 

view. The only input required is acid dissociation constants, Ka values. Calculations 

utilized in creating the figures in this paper were performed in the Excel 
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environment using its Visual Basic programming capabilities. For topo surface 

plots, pH values must be calculated at regularly spaced grid intervals. A grid point 

consists of the volume of base added plus the logarithm of the overall system 

dilution, (Vb, log Cdil). The regular volume intervals required for topos demands 

numerical methods to solve a higher-order polynomial expression for each grid 

point. Many titration curve calculations in the literature are done in the inverse 

direction where the pH is stepped at regular intervals and plotted at whatever 

volume of base results12,13.  Although these offer computational ease, they are not 

suitable for topo surface plots. A separate gridding operation would be required 

to yield interpolated volume values. Grid point pH values were computed to 15 

significant figures. This permits species concentrations to be expressed far beyond 

the precision that can be measured in real experimental procedures. Although 

such precise results are beyond any instrumentation, they are completely valid in 

a theoretical sense. For the purpose of clarity, activity effects have not been 

explicitly included in the model systems. Their inclusion would be necessary 

before modeled results would match experimental measurements. They would 

not affect any of the conceptual points made in this paper. Real systems whose 

ionic strength is controlled would exhibit surfaces identical to those in this paper 

except for scalar factors. Values for Ka’s are taken from Martell and Smith’s 

Critical Stability Constants14. 

 

3.3 The titration and dilution pH topo surface 

The discussion of pH changes and buffers is usually illustrated by means of 

titration curves. But a single titration curve displays only one set of solution 
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concentrations. As the reagents for a titration are diluted, the associated titration 

curve also changes (Figure 3.1). This point is made by many authors who, with 

multiple traces, show the equivalence point break diminishing as one goes to 

progressively more dilute conditions15−17.  A close examination of the curves 

reveals that dilution causes each successive curve to start at a slightly higher level 

plus the magnitude of the post-equivalence point plateau drops by one pH-unit 

each time the reagents are diluted by a factor of 10. 

                A more comprehensive view of pH behavior during acid− base titrations 

can be visualized by plotting 3-D topo surfaces above a composition grid that 

encompasses most feasible reagent concentrations. The grid is constructed by 

recording the progress of a titration (volume of strong base added) on the x axis 

and following the overall dilution of the system (log Cdil) on the y axis. All 

concentrations are expressed in molarity (M). It is important to note that the x 

axis is linear whereas the y axis is logarithmic. When the pH associated with a set 

of regularly spaced grid points is plotted on the logarithmic z axis, a 3-D pH topo 

surface is generated. All surfaces for this paper are based on an initial volume of 

100.0 mL for the acid analyte.  The pH topo surface for acetic acid is shown in 

Figure 2 based on a Ka of 1.75 × 10−5. The right-hand edge of the surface 

corresponds to a traditional titration curve as seen in texts and papers. As one 

moves to the left along the log Cdil axis, progressively more dilute conditions are 

encountered. For the most concentrated system (i.e., the line that forms the 

right-hand edge of the surface), 1.0 M CH3COOH is being titrated with 1.0 M 

NaOH. Successive lines in the dilution direction indicate repeating the titration 

with both the acid and base concentrations adjusted identically. 
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Figure 3.1. Dilution effects on a titration curve for 100 mL of acetic acid titrated 
with NaOH. Both the acetic acid and NaOH stock solutions are at the molarity 
noted on each trace. 

Thus, at the most dilute point (the left-hand edge of the surface), 1.0 × 10−9 

MCHCOOH is being titrated with 1.0 × 10−9 M NaOH. The five traces in Figure 3.1 

are simply five of the 37 slices that comprise the overall pH topo surface of Figure 

3.2, specifically, those slices corresponding to log Cdil values of 0, −1, −2, −3, and 

−4. With the complete topo surface, finer gradations between whole-numbered 

dilution values are seen. With an entire pH topo surface to view, one can discern 

a series of ramp, cliff, and plateau features. Ramps are associated with grid 

regions where dilution dominates the solution pH. Cliffs occur at initial and 

equivalence points during a titration procedure. Plateaus are indicative of 

situations in which pH is somewhat stable, that is, buffer zones plus extreme 

dilution conditions. The equivalence point cliff on the acetic acid pH topo appears 

at 100 mL of NaOH added. At the equivalence point, the solution is identical to 
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dissolving pure NaCH3COO in water. Beyond the 100 mL mark, excess NaOH 

titrant is now being added to the solution. 

 

 

Figure 3.2. The acetic acid pH topo surface for a 100 mL sample. 

Because NaOH is a strong base, the pH rapidly rises toward the pH of the titrant 

solution itself. As one moves to the left on the topo surface with dilution, the 

heights of cliffs diminish and all ramps proceed toward the pH 7 dilution plateau. 

Notice, for example, the change in the equivalence point cliff from its dramatic 

rise at a log Cdil of 0 to its pinched out ending at a log Cdil of about −6. As titration 

traces to the left are considered, the concentration of the NaOH titrant (as well as 

that of the analyte) is being systematically lowered. For a while, each log unit 

moved to the left also drops the post-equivalence point ramp pH by one unit. 

Eventually, however, when the titrant becomes sufficiently dilute with respect to 

NaOH (e.g., 1.00 × 10−6 M), the contribution of OH− from the auto-dissociation of 

water (1 × 10−7 M) begins to become more significant. By the last titration slice, 

when the titrant is 1.0 × 10−9 M NaOH, the OH− from water overwhelms that from 



P a g e  | 26 

 

the titrant a hundred-fold. The concentration of OH− in the 10−9 titrant would 

actually be 1.01 × 10−7 M where the first “1” is OH− from water and the second “1” 

is OH− from NaOH. The pH of this titrant is essentially 7. So, too, is the pH of the 

starting analyte mixture about 7. From modeling calculations, the H3O+ 

concentration in the 1 × 10−9 M CH3COOH at the start is 0.000 000 100 498 M, a 

pH of 6.9978. There is no equivalence point cliff in the pH 7 dilution plateau 

because the total pH range of the entire trace varies from 6.9978 at 0 mL NaOH 

added to 7.00073 at 200 mL of NaOH added. 

 

3.4 Strong acid versus weak acid topo surface 

To better understand the initial point cliff and buffer plateau features on the 

acetic acid pH topo surface of Figure 3.2, it is helpful to first look at the topo for a 

strong acid−strong base titration. An example of this, the pH topo surface for 

hydrochloric acid titrated with NaOH, is shown as Figure 3.3. The pH topo for a 

strong acid shows no plateau in front of the equivalence point cliff. There is simply 

a broad pre-equivalence point ramp. This ramp shows solution behavior when 

there are no buffer interactions occurring. In the volume direction, the pH shows 

a shallow rise until the equivalence point is reached. This is “pseudo buffering”, an 

artifact of the logarithmic nature of pH18.  With dilution, however, there is a direct 

relationship with pH. The pre-equivalence point ramp rises to the left at a 45° 

slope; the concentration of H3O+ changes by an order of magnitude with each 

order of magnitude change caused by dilution. The linearity of the ramp 

eventually begins to degrade as contributions of H3O+ from the water of dilution 

start to become significant at about a log Cdil of −6. Weak acid pH topo surfaces 
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will have a buffer plateau and an initial point cliff that is not seen with a strong 

acid pH surface. This is immediately apparent when comparing Figures 3.2 and 

3.3. To assist in visual comparison, Figure 3.4 superimposes the pH topo of acetic 

acid on top of that for HCl. The influence of the buffer action between acetic acid 

and acetate ion lifts the pH surface above the pre-equivalence point ramp.   

 

Figure 3.3. The hydrochloric acid pH topo surface for a 100 mL sample. 

Any portions of the pH surface that are oriented at less than a 45° angle in the 

dilution direction have some buffer influence taking place. 

 

 3.5 A detailed analysis of other topo features for acetic acid 

Weak acids will usually exhibit both an initial point cliff as well as a buffer plateau 

prior to the equivalence point cliff. Acetic acid is a typical monoprotic carboxylic 

acid. Its buffer plateau is centered around pH = pKa = 4.757 and extends from the 

front edge of the surface to about midway toward the back. 
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Figure 3.4. Overlay of acetic acid (red) and hydrochloric acid (blue) pH topo 

surfaces. 

In the volume direction, it sits between the initial point cliff and the equivalence 

point cliff. This is the type of buffer behavior that is generally described. Most 

introductory chemistry texts introduce the Henderson−Hasselbalch equation 3.19 

to demonstrate that pH is primarily governed by the pKa and is then modified by 

the ratio of the buffer’s base form to acid form to account for any imbalance in 

their relative amounts (eq 3.1): 

Table 3.1. A Dilution Example for a 1.0 M System of Acetic Acid 

 [H3O+] [CH3COO-] [CH3COOH] base/acid 
ratio 

pH 

Before dilution 1.749816 x10-5 0.3333508 0.3333158 1.000105 4.7570075 

After dilution* 1.839816 x 10-6 0.03333508 0.03333158 1.000105 5.7535226 

At equilibrium 1.748165 x 10-5 0.03335081 0.03331585 1.001049 4.7574175 

“Includes a contribution of [H3O+] from the pH 7 diluent water before accounting 
for equilibrium shifts” 
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Table 3.2. A Dilution Example for a 10−3 M System of Acetic Acid in Which the 
Henderson−Hasselbalch Equation Is Beginning To Fail 

 [H3O+] [CH3COO-] [CH3COOH] base/acid 
ratio 

pH 

Before dilution 1.590600 x10-5 3.492387 x10-4 3.174280 x 10-4 1.100214 4.7984391 

After dilution* 1.680600 x 10-6 3.492387 x 10-5 3.174280 x 10-5 1.100214 5.7745356 

At equilibrium 9.645684 x 10-6 4.297798 x 10-5 2.368869 x 10-5 1.814283 5.0156670 

“Includes a contribution of [H3O+] from the pH 7 diluent water before accounting 
for equilibrium shifts” 

                                                     (eq 3.1) 

Cb and Ca are the respective stoichiometric concentrations of the base and acid 

forms of the buffer compound uncorrected for dissociation and hydrolysis. This is 

really just a special case for the more general mass action law of Guldberg and 

Waage20, 21.  The Henderson−Hasselbalch form is only valid at relatively high 

concentrations of acid and base. Movement along the volume axis corresponds to 

adding a relatively concentrated solution of strong base, NaOH. When the base 

buffer capacity is exceeded, the Henderson−Hasselbalch equation no longer 

holds. The pH rapidly shoots upward at the equivalence point cliff, headed 

eventually for the pH of the NaOH solution that is being used as the titrant. Less 

frequently discussed is buffer behavior of a system as it undergoes dilution. A 

classical treatment of this subject was presented by Bates in 195415. He organized 

his discussion around the pH shift caused by diluting a sample by a factor of 2, 

ΔpH1/2, and follows dilution effects over a total dilution range of 40-fold. The 

treatment in this paper tracks the pH changes across nine orders of dilution 

magnitude. Dilution of a buffer is a complex situation. For this analysis, it is better 

to consider the logarithmic form of the Guldberg and Waage mass action law (eq 
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3.2) that is general for all conditions20, 21.  Note that, unlike eq 3.1, it employs 

equilibrium concentrations rather than stoichiometric concentrations: 

 
= K

  
-

3

a

3

CH COO
pH  p  +   log

CH COOH
                           (eq 3.2)                       

When the pH of the buffer plateau is less than 7, the dilution effects are largely 

controlled by the concentration of the buffer’s acid form. Diluting a 1 M H3O+ 

solution by 10, for instance, should drop the H3O+ concentration to 0.1 M and give 

rise to a ∼1 pH unit change. This is where changes would stop with concentrated 

solutions of a strong acid and is the basis for the pre-equivalence point ramp for 

the HCl surface of Figure 3.3. But a solution containing a buffer will rebound from 

the dilution-caused pH rise. The basis for the counteraction comes out of the acid 

dissociation reaction (eq 3.3): 

CH3COOH +  H2O ↔  CH3COO−   +   H3O+          (eq 3.3) 

Because H2O is a reactant in eq 3.3, Le Chatelier’s principle and mass action law 

dictate that the reaction will shift to the right until a new equilibrium is 

established. Thus, [CH3COOH] will drop and [CH3COO−] will rise. If the buffer is 

working well, the system will rebound to almost the same pH. The dissociation of 

CH3COOH needs to supply essentially 90% of the H3O+ if the effect of 10-fold 

dilution is to be overcome. Dilution will also drive the base form’s hydrolysis 

reaction, but this will be small in magnitude because Ka (1.75 × 10−5) ≫ Kb (5.71 × 

10−10). Consider the situation at the half-equivalence point volume of 50 mL of 

NaOH added (the Before Dilution row in Table 3.1). Next, let the system be 

diluted by a factor of 10 (the After Dilution row in Table 3.1). This has upset an 

equilibrium that will now shift toward the right in eq 3.3 until an equilibrium has 

once again been established. Using the Ka for acetic acid and the starting values in 
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the After Dilution row, one can solve for the amount of shift. This is calculated to 

be 1.573 × 10−5 M, which can be used to correct the After Dilution values to the 

new At Equilibrium values. These reveal that acetic acid has dissociated a small 

amount, but this amount of dissociation provides enough H3O+ to almost make up 

for the 10-fold dilution factor. Instead of the pH rising by one whole pH unit as 

dilution would suggest, the new pH has only risen 0.00041 pH units from its 

Before Dilution value. As long as there is a sufficient quantity of the acid form to 

dissociate, it maintains a reservoir of stored protons ready to be released through 

dissociation.  

              The Henderson−Hasselbalch equation is valid for dilution events as long as 

only a small part of the acid form must dissociate. Note in Table 1 that the ratio of 

base form to acid form has only changed by about 0.1% between the Before and 

After Dilution values. With successive 10-fold dilutions, an increasing proportion 

of the acid form must dissociate to maintain the pH. Consider, for example, a 10-

fold dilution when the system concentration is 1.0 × 10−3 M. Table 3.2 

demonstrates that a higher percentage of the acid form disappears. This results in 

a noticeable change in the base/acid ratio. Equation 3.2 shows that as the 

base/acid ratio changes, so too does the pH. The ∼65% shift in the ratio translates 

into a pH rise of 0.2172279 pH units. Note that the concentration of acetic acid 

drops by more than an order of magnitude. One order of magnitude for the drop 

is lost because of dilution. It drops even more, though, because now significant 

amounts of CH3COOH are being converted to the base form through dissociation 

caused by H2O driving eq 3.3 even further to the right. It is ∼34% lower than just 

dilution would cause. Conversely, the concentration of acetate does not drop by 

an order of magnitude, but is 23% higher than dilution alone would produce. 
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Table 3.3. A Dilution Example for a 10−7 M System of Acetic Acid in Which 
Contributions from the Auto-dissociation of H2O Become Significant 

 [H3O+] [CH3COO-] [CH3COOH] base/acid 
ratio 

pH 

Before dilution 1.749816 x 10-5 0.3333508 0.3333158 1.000105 4.7570075 

After dilution* 1.839816 x 10-6 0.03333508 0.03333158 1.000105 5.7535226 

At equilibrium 1.748165 x 10-5 0.03335081 0.03331585 1.001049 4.7574175 

“Includes a contribution of [H3O+] from the pH 7 diluent water before accounting 
for equilibrium shifts” 

As the dilution of a system approaches 10−6 M, a new controlling force for the 

system pH begins to emerge, namely, the H3O+ and OH− content of the diluent 

water where [H3O+] and [OH−] are both 1.0 × 10−7 M. Continued additions of this 

level of H3O+ and OH− begin to overtake influence from the small quantities of 

buffer components that are present. Table 3 illustrates details of this situation at 

10−7 M. The diluent water has nearly the same [H3O+] as the Before Dilution 

system so the After Dilution concentration changes little. CH3COOH is still 

undergoing further dissociation with dilution, but the H3O+ it produces (6.06685 × 

10−12 M) does not contribute much. The overall system [H3O+] is nearly 5 orders of 

magnitude larger at 1.016610 × 10−7 M. The upward drift essentially stops when 

the titration surface pH reaches the vicinity of 7. It is interesting to note, however, 

that the base to acid ratio continues to change as required by mass action effects. 

 

3.6 The effect of pKa on pH changes caused by dilution 

The lower the pKa, the sooner dilution causes the buffer plateau to start drifting 

upward. Figure 3.5 illustrates modeled systems for weak acids with hypothetical 

pKa’s of 1.00, 2.00, 3.00, and so forth. The traces shown are the dilution slices at 

20 mL of NaOH added. This places the slices in a portion of whatever buffer 
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plateaus exist. Also included is a trace for the 20-mL slice of HCl so that visual 

comparisons with a strong acid can be made. There are three possible pH 

behaviors that can occur upon dilution: (1) the pH can vary directly with the 

amount of dilution; (2) the pH can be controlled by the auto-dissociation of the 

diluent; and (3) the pH can be stabilized to varying extents by the presence of a 

buffer system. A system with a strong acid exhibits behaviors 1 and 2 only 

whereas a system with a weak acid may exhibit all three (Figure 3.5). When the 

weak acid trace begins to overlap the HCl trace, then both strong and weak acids 

exhibit similar dilution behavior. 

 

Figure 3.5. Dilution effect on pH vs pKa value for 20 mL-added slices. 

A strong acid system shows no buffer character. Strong acids essentially dissociate 

completely, so almost no associated form, that is, an HCl molecule, exists in water 

to react with added OH−. The only significant acid in the system is H3O+.As a 

concentrated system is diluted, so too is the H3O+. This is the type 1 behavior 

listed above and leads to a graphical trace that rises at a 45° angle to the left. 

Eventually, however, the H3O+ content of the diluent water itself becomes 
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significant compared to the diluted H3O+ produced by the strong acid. When the 

system approaches 10−6 M, the H3O+ from diluent water starts to make headway 

over the remaining trace-level amounts of strong acid. Ultimately, it completely 

overwhelms the original H3O+ from the strong acid. The pH sits close to 7. This is 

type 2 behavior. A weak acid system will demonstrate type 3 behavior, a situation 

in which the effect of dilution is counteracted, sometimes almost completely. This 

is buffering against dilution and will occur to greater and greater extents as the 

pKa of the acid approaches 7.00 (Figure 3.5). Weak acids only partially dissociate 

upon dilution, but they release sufficient protons in doing so that the pH does not 

rise so swiftly. The reason that pKa’s closer to 7.00 show more protracted 

buffering against dilution is because the weaker the acid, the less it dissociates 

when placed in water. Ever greater degrees of dilution are required to consume 

its base buffer capacity.  

               Figure 3.6 illustrates how many orders of magnitude of dilution are 

required to raise the pH of the system by 1 unit at the half equivalence point. This 

is illustrative of where the assumptions in the Henderson− Hasselbalch equation 

(eq 3.1) are beginning to fail. Note that pKa = 5 is the highest value shown in 

Figure 3.6. At a pKa of 6 there is never a 1-pH unit rise caused by dilution. 

Eventually, weak acids with pKa’s lower than 7 dissociate to the point at which 

they are indistinguishable from a strong acid. Figure 3.5 illustrates this point for 

weak acids. At a log Cdil value of around −6.0, there is no difference between the 

acidity of a solution of HCl and a weak acid with a pKa of 5. Under these 

conditions, the pKa 5 weak acid is a strong acid. As a special case, consider a 

hypothetical acid with a pKa of 7.00. This acid would exhibit perfect buffering 

against dilution to any extent. Our modeled system for the pKa 7.00 acid shows a 
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dilution slice at the 50-mL half-equivalence point with a pH of exactly 7.00000...  

across the entire surface. 

 

 

Figure 3.6.  Orders of magnitude of dilution required to shift the base form/acid 
form ratio by a factor of 10 at the half equivalence point. 

The species distribution coefficients, α0 (the fraction of acetic acid in the 

protonated form) and α1 (the fraction of acetic acid in the deprotonated form), 

are uniformly 0.500000... across the entire surface as well. This is consistent with 

the mass action law (eq 3.2). At pH = 7.00, the equilibrium in to being upset and 

the ratio of base form to acid form is always 1.00000.... so the log term 

disappears. Dilution does not affect the pH. 
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3.7 pH topo surfaces for polyprotic acid titrations 

The pH topo surfaces for polyprotic acids have the same types of features, cliffs, 

plateaus, and ramps, just more of them.  Figure 3.7, for example, displays the pH 

topo surface for the titration 

 

 

Figure 3.7. The pH surface for a 100 mL sample of the diprotic oxalic acid 

(HOOCCOOH). 

and dilution of diprotic oxalic acid. The modeled surface is based on a Ka1 of 5.6 × 

10−2 (pKa1 =1.252) and a Ka2 of 5.42 × 10−5 (pKa2 of 4.266). The first Ka is so low that 

oxalic acid is already missing most of its first titratable proton when initially 

dissolved in water. This leads to no initial point cliff being observed as it was for 

acetic acid. Note that there are two equivalence point cliffs, one for each of the 

two protons that can react with NaOH. Unless successive pKa’s are well separated, 

the equivalence point breaks are small. Thus, the first equivalence point cliff for 
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oxalic acid is not dramatic because the difference between pKa1 and pKa2 is only 

3.14. The first equivalence point cliff begins diminishing at about log Cdil = −2. 

Recall that the extent of buffer plateaus is related to the pKa of the acid form. 

Because the pKa1 for oxalic acid is so low, its ability to buffer against dilution has 

essentially already been exceeded by simply dissolving it in water (see pKa = 1 

trace in Figure 5). The buffer plateau associated with the pKa2 of 4.266 extends to 

about log Cdil = −5, as predicted from Figure 6. While oxalic acid can be modeled at 

a concentration of 1.0 M, in reality, a saturated solution in water at 25 °C is about 

0.1 M. Thus, in experimental settings, the first equivalence point break will always 

be small. The second equivalence point break extends all the way to the pH 7 

dilution plateau. This happens for any system for which the pKa2 associated with 

the break is within the range of 4−7. An example of the triprotic pH topo surface 

for L-histidine dihydrochloride is presented in Figure 3.8. The Ka’s used in its 

calculation were 2.2 × 10−2, 9.5 × 10−7, and 8.3 × 10−10 (or pKa’s of 1.7, 6.02, and 

9.08, respectively). It shares similar features to the oxalic acid topo surface up to 

the second equivalence point break. It has no initial point cliff and essentially no 

buffer plateau for the first proton. The first equivalence point break is more 

pronounced than that of oxalic acid because the difference in pKa1 and pKa2 is 

4.32, more than one unit larger.  

               The only new feature seen with the L-histidine dihydrochloride surface is 

a third equivalence point above pH 7. The third buffer plateau (pH = pKa3 = 9.08) 

begins to degrade before the 10−3 level on the log Cdil axis. In this instance, Kb1 

≫Ka3 so the diluent water is driving the hydrolysis reaction to reprotonate the 

his2‑ species. From log Cdil values of −3 to −7, mass action effects from diluent 

water drive the protonation of Hhis− and converts it to H2his. 
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Figure 3.8. The pH surface for a 100 mL sample of the triprotic L-histidine 
dihydrochloride (C6H9N3O2·2HCl). 

At these alkaline starting pHs, very little H2his is present to dissociate in 

opposition. From alpha species distribution calculations, the pH 7 dilution plateau 

shows a mixture that is roughly 90% Hhis− and 10% H2his. The pH TOPO software 

permits one to easily illustrate conditions under which equivalence point breaks 

will be weak or unseen. This can happen when: (1) successive pKa’s are spaced at 

less than 3 orders of magnitude; (2) a pKa is less than 3 pH units from the initial 

point; or (3) when the final pKa is close to the pH of the titrant base. This is 

illustrated in the Supporting Information for case 1 in the pH TOPO surface for 

citric acid. A good example of case 2 is found in sulfuric acid. A good example of 

case 3 is present in the phosphoric acid surface. 
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3.8 Conclusions 

A 3-D visualization of pH topo surfaces on the titration and dilution composition 

grid helps draw out subtle aspects of acid−base chemistry that might otherwise 

be overlooked. It converts a myriad of tedious calculations into a single, easy-to-

understand picture. Students are much more likely to grasp difficult concepts 

from an image than they are from an abstract equation. This is especially true 

with regard to how dilution influences the pH of a system. The software provided 

in the macro-enabled Excel worksheets make it possible for students to EASILY 

view pH topo surfaces for a multitude of acids. All a user needs to supply here are 

Ka values. A few seconds later a complete pH topo surface is displayed. For 

advanced students,[H3O+] and the associated pH values for every grid point can be 

examined in detail. For example, one can demonstrate the poor equivalence point 

breaks that correspond to the first two protons in citric acid by entering 7.44 × 

10−4, 1.73 × 10−5, and 4.02 × 10−7 as Ka’s on the triprotic acid worksheet and then 

pressing Control+Shift+T. A few seconds later the topo surface will morph to one 

that has a broad ramp leading up to only a single perceivable equivalence point 

cliff. A particularly nice outcome of the pH surface approach is a visual 

demonstration of the limitations for the Henderson− Hasselbalch equation. The 

boundaries of the plateau portions of the surfaces denote where assumptions in 

the classical equation are breaking down. By noting that buffer plateaus persist on 

dilution to an extent that is a function of their pKa’s is not a result that is easily 

seen in just looking at the equation itself. All surfaces for this paper were 

modeled assuming that the diluent was pure water at pH 7.0. In reality, obtaining 

and maintaining a reservoir of water at pH 7.0 is extremely difficult unless you 

isolate the system in a CO2-free atmosphere. Many of the points raised here 
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would need to be modified if one used a typical surface water at pH 8.0 as the 

diluent or meteoric rainwater at pH 6.0. But with an understanding of the trends 

illuminated here, reasonable predictions of the changes would be rather 

straightforward. We hope that the pH topo program begins to replace the JCE 

Software titration curve software that is no longer available. 

 

3.9 Associated content 

Supporting information 

Suggested timing and uses of topos in lecture; PowerPoint slides to use in the 

classroom; suggested worksheets; extensions into laboratory activities; an Excel 

spreadsheet with embedded macros that will allow the reader to reproduce all pH 

surfaces discussed here as well as allowing them to create a pH surface for any 

other mono-, di-, or triprotic acid. This material is available via the Internet at 

http://pubs.acs.org. 

References 

1. Cracolice, M.S. and Peters, E.I., General Chemistry: An Inquiry Approach, 

Second Semester, Cengage Learning, Mason, OH, 2009. 

2. Chang, R.; Goldsby, K.A., Chemistry, 11 ed., McGraw-Hill, Columbus, OH, 

2013. 

3. Brown, T.E.; LeMay, H.E.H.; Bursten, B.E.; Murphy, C.; Woodward, P.; 

Chemistry: The Central Science, 12 ed., Pearson Prentice Hall, Upper Saddle 

River, NJ, 2013. 

4. Abraham, M.R.; Pavelich, M.J Inquiries into Chemistry, 3 ed., Waveland 

Press, Long Grove, IL, 1999. 

http://pubs.acs.org/


P a g e  | 41 

 

5. Nelson, J.H.; Kemp, K.C. Chemistry: The Central Science, Laboratory 

Experiments, 10 ed., Pearson Prentice Hall, Upper Saddle River, NJ, 2006. 

6. Sørensen, S.P.L. Meddelelsierfra. Carlsberg Laboratoriet 1909, 8, 1-168.  

7. Myers, R.J. J. Chem. Educ 2010, 87(1), 30-32. 

8. Sillén, L.G. Acta Chem. Scand. 1962, 16 (1), 159-172. 

9. Ramette, R.W. J. Chem. Educ. 1989, 2B No. 2. 

10. Ramette, R.W. J. Chem. Educ. 1998, 75(11), 1504. 

11. Gutz. I.G.R. http://www2.iq.usp.br/docente/gutz/Curtipot_.html accessed 

6/19/13. 

12. Waser, J. J. Chem. Educ. 1967, 44, 274-276. 

13. de Levie J. Chem. Educ. 1993, 70(3), 209-217. 

14. Martell, A.E.; Smith, R.M. Critical Stability Constants, Plenum Press, New 

York, 1974. 

15. Bates, R.G. Anal. Chem. 1954, 26 (5), 871-874. 

16. Butler, J.N. Ionic Equilibria: Solubility and pH Calculations, John Wiley, New 

York, 1998. 

17. Harris, D. Quantitative Chemical Analysis, 8 ed., W.H.Freeman, New York, 

NY, 2011. 

18. Clark, R.W.; White, G.D.; Bonicamp, J.M.; Watts, E.D. J. Chem. Ed. 1995, 

72(8),746-750,. 

19. Hasselbalch, K. A. Biochemische Zeitschrift 1917, 78, 112–144. 

20. Guldberg, C.M.; Waage, P. L. prakt. Chem. 1879, 19(2), 69-114. 

21. de Levie, R. Chem. Educator 2002, 7, 132-135. 

 

http://www2.iq.usp.br/docente/gutz/Curtipot_.html%20accessed%206/19/13
http://www2.iq.usp.br/docente/gutz/Curtipot_.html%20accessed%206/19/13


P a g e  | 42 

 

Chapter 4 
3-D Surface Visualization of Buffer Capacity Topos: Buffer Ridges, 

Equivalence Point Canyons and Dilution Ramps 
 

 
4.1 Introduction 

Buffers have two characteristics:  1) the pH that they establish and stabilize, and 

2) the capacity to maintain that pH against additions of strong acids or bases and 

dilution.  These are analogous to the two characteristics of energy measurements:  

1) temperature, and 2) heat.  A system’s pH and temperature are intensive 

properties that are independent of sample size1.  A thimble full of water and a 

lake full of water can both exhibit the same pH and temperature but will 

undoubtedly differ greatly in their total buffer capacity and heat content.  This is 

because buffer capacity and heat are extensive properties that depend on sample 

size2.  In practice, however, buffer capacity is converted to a “per liter” basis so 

that comparisons between systems can be made.  

              Buffer capacity is an important concept for students who need a 

comprehensive understanding of chemistry fundamentals – especially those 

majoring in chemistry 2- 4, biochemistry 5-6 and geochemistry 7. Buffers maintain 

the pH necessary for chemical analyses, physiological reactions and aquatic 

ecosystem health.  As soon as a system’s buffer capacity is exceeded, it no longer 

will have its pH stabilized at the desired level.  Frequently, buffer capacity is at the 

heart of a situation.  For example, the administration of IV fluids for patients who 

are in respiratory distress boosts the buffer capacity of the blood and prevents it 

from dropping too low 8.  The vulnerability of a freshwater lake hinges on its 

natural buffer capacity to counteract atmospheric deposition of sulfuric and nitric 
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acid from acid rain 9.  The accuracy of commercial buffers can be invalidated if the 

solution is diluted too far. 

             An earlier paper was aimed at generating 3-D surface “topos” for a 

system’s pH behavior against additions of strong acid or base and dilution 3.  This 

paper adds new 3-D surface topos for buffer capacity behavior.  It offers 

downloadable spreadsheet software that generates a clear visual connection 

between pH changes during a titration and the associated buffer capacity at each 

point.  It should help beginning students see the inter-relationship between a 

buffer’s two characteristics – the pH it establishes and its capacity to maintain it.  

At the same time, it can provide some new insights into buffer behavior that are 

of interest to more advanced students.  Instructors and students in upper-division 

and graduate-level analytical, biochemistry and aquatic chemistry courses will 

find it particularly useful. 

 

4.2 Computational approach 

The quantitative expression of buffer capacity was introduced by Van Slyke in 

1922 4,9.  It addressed buffer capacity in a sample of a given volume with respect 

to the addition of strong base or strong acid.  Since then, numerous papers have 

refined buffer capacity calculations.  Bates (1954) defined buffer capacity on the 

basis of the pH change when the volume of a sample was diluted by a factor of 

two 10.  Olson (1977) graphically portrayed dilution conditions in a system where 

the buffer capacity of a sample was controlled by the contributions from the 

diluent water11.   Michlowski and Parczewski (1978 Chemia Analityczna) tracked 

the influence of dilution on buffer capacity when performing experimental 

procedures that changed sample volumes12. 
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Beginning in 1989, computer software to calculate buffer capacities became 

widely available.  Ramette’s DOS-based program entitled “The Acid-Base 

Package” was featured as a Journal of Chemical Education Software item13.  A 

year later, Lambert created a Turbo-Pascal program BUFCALC14.   In 1998 Ramette 

updated his earlier program to the Windows 95 environment and renamed it 

“Buffers Plus”15.  Unfortunately, these comprehensive buffer calculation software 

packages are no longer available.  At this writing, CurTiPot, a collection of 

spreadsheet programs that do many of the same functions, is provided as a free 

download from I.G.R. Gutz16. 

            This paper introduces 3-D visualization of how buffer capacities change as 

the result of two very common procedures – titrations and dilutions.  A 

composition grid is established with “volume of NaOH added” on the x-axis (as for 

a typical titration of an acid sample) and following the overall dilution of the 

system (log Cdil) on the y-axis.  Plotted above this grid on the z-axis are the buffer 

capacities associated with each pair of grid coordinates.  The 3-D surface topo 

that results depicts how these two variables affect buffer capacity.  The macro-

enabled Buf Cap Excel spreadsheet is provided as Supporting Information through 

which the reader can modify both the pH and buffer capacity topos to represent 

any desired mono-, di- or triprotic acid system by simply supplying the 

appropriate Ka value(s). The values for Ka’s are taken from Martell and Smith’s 

Critical Stability Constants.17 
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The buffer capacity calculations displayed in this paper assume that the analyte is 

a 100.0 mL aliquot of acid.  For the dilution axis, the acid analyte and NaOH titrant 

are assigned identical concentrations, so equivalence points always occur at 100-

mL intervals.  For a monoprotic acid, the x-axis ranges in 5-mL steps from 0 to 200 

mL, terminating 100 mL beyond the equivalence point.  The y-axis is logarithmic 

and provides the starting concentration for both the analyte and titrant, Ca
0 and 

Cb
0.  These values begin at 1.0 M and are reduced in 0.25 log-unit increments until 

a final concentration of 1 x 10-9 M is reached.  In plots the dilution axis is labeled 

as “log Cdil” but in the mathematical equations below it corresponds to yCa
0 where 

y is the dilution factor.  The two axes establish a base that is 41 x 37 = 1517 total 

grid points. 

              At each grid point a polynomial equation was solved for the [H3O+] to 16 

significant figures.  The polynomial forms used for strong acids, monoprotic acids, 

diprotic acids and triprotic acids are widely available in the literature7.  The [H3O+] 

is simply converted to a pH value to create a pH titration topo surface.  

Computation of the associated buffer capacity is not so easily accomplished.  An 

equation was derived for the volume of base added as a function of [H3O+] and 

the dilution factor (y) (Eq 4.1).  The molar concentrations of the acid analyte and 

the base titrant before dilution, when y = 1, were Ca
0 = 1 M and Cb

0 = 1 M, 

specifically.  Also appearing in the expression are Kw (the auto-dissociation 

constant of water), Ka (any acid dissociation constants), and Va (the volume of acid 

with which each titration slice always starts).  For a monoprotic weak acid, the 

equation is: 
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Traditionally, buffer capacity, , Is a measure of how many moles of acid or base 

can be added to 1 liter of buffer until the pH changes by one unit.  

Mathematically, it is usually expressed as a differential 4 (Eq 4.2): 
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Where Cb and Ca are in mol/L.  (Note that the Ca
0 and Cb

0 in Eq 4.1 and other 

equations in this chapter refer to the concentration of the titrant and analyte, 

NOT the buffer capacity definition in Eq 4.2.) 

                 To relate each point in the titration curve to its corresponding buffer 

capacity, Eq 4.1 is first differentiated with respect to [H3O+] (Eq 4.3) 
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then modified with implicit differentiation (Eq4) to transform it with respect to pH 
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The traditional definition of buffer capacity of a solution is presented as a “per 

liter” basis.  To achieve this, the final expression must convert Va to a 1-liter 

volume.  The (1/Va) that appears as the first term in Eq5 accomplishes this.  For 

example, because the Buf Cap TOPOS program uses a default value of 100 mL (0.1 

L) as Va, the program will multiply the raw buffer capacity it calculates by (1/0.1), 

or 10, to convert it to the 1 liter buffer capacity definition. 
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Note that Eq 4.5 does not include Vb as an independent variable through which to 

calculate .  Instead, we use the value of [H3O+] that is specifically attached to a 

pair of grid-point coordinates, i.e., [H3O+] = (Vb, y).    The ’s that emerge from 

this procedure are plotted as log  values above grid-points so that a wide range 

of magnitudes can be captured simultaneously into a single plot.  (The complete 

set of Vb and  equations for strong, diprotic and triprotic acids can be found in 

the Supporting Information.) 

            The validity of all buffer capacity equations was checked by using the raw 

pH data to compute finite difference approximations to the differential 

expression using the factor of 10 to force the 1-L definition (Eq 4.6). 
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        (4.6) 

The surface resulting from the finite difference procedure was essentially 

indistinguishable from the exact expression surface except at the initial point and 

at the equivalence point where the finite difference procedure cannot access 

these specific grid point values.  

 

4.3 Titration curves and buffer capacities 

Often, but not always, buffer capacity is discussed as part of explaining titration 

curves 18-20.  It is logical to describe how a titration curve’s flat spots, buffer 

plateaus, behave (Figure 4.1).  As more base titrant is added, the pH of a buffer 

plateau eventually begins to change more rapidly because the protonated form of 

the buffering agent is being depleted, i.e., the buffer capacity has been reached.  

A few more mL of NaOH will cause the pH to rapidly rise in an equivalence point 

break. A plot of buffer capacity () vs. pH often accompanies the discussion.  This 

set of axes is not directly related to the titration curve itself but is shown because 

of the explicit definition of buffer capacity that relates it to a 1-pH unit jump 

(namely, Eq 4.2).  Figure 4.2 illustrates this type of plot for the acetic acid system.  

It demonstrates that buffer capacity is essentially directly proportional to the 

concentration of the buffer components in the vicinity of the buffer’s pKa.  Acetic 

acid’s pKa is 4.75, so  reaches a local maximum at pH = pKa = 4.75.  As will be 

seen in a later section, this direct relationship between buffer capacity and 

concentration is eroded under continuous dilution procedures. Sometimes the 

buffer capacity vs. pH curve is even positioned underneath or on top of a Cb vs pH 

curve to illustrate that the derivative of the Cb curve generates the buffer capacity 

profile of the  curve.   
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Figure 4.1.  Traditional titration curve with buffer plateau and equivalence point 
labeled for 100 mL of 0.100 M acetic acid titrated with 0.100 M NaOH. 
 

The same acetic acid system is used to illustrate this point in Figure 4.3.  

This representation also demonstrates that the maximum buffer capacity of 

acetic acid’s buffer plateau is located at the spot where pH = pKa = 4.75 and 

that the minimum buffer capacity occurs at the equivalence point where pH 

= 8.73.  Although the Cb vs. pH trace is related to a titration curve (with the 

x- and y-axes interchanged), it does not permit the eye to associate the 

buffer capacity values point-for-point with the progress of a titration.  

Typically, data for this plot are generated by stepping at regular increments 

of pH, not by regular increments of volume of base added.   
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Figure 4.2.  Buffer capacity vs. pH for acetic acid (pKa = 4.75) at 0.1000 M 
and 0.1778 M concentrations. 
 

With pH as a logarithmic x-axis, it is not possible to see the relationship 

between and the linear volume of base added.  To view this relationship 

directly, both pH and must be plotted against “Vol of NaOH mL” as shown 

in Figure 4.4.  A logarithmic y-axis is used to display both pH and  traces 

together.   
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Figure 4.3.  Buffer capacity,  as the derivative of a Cb vs. pH curve. 

Half-way to the equivalence point, the -curve shows a maximum value at 

50 mL that aligns with the pH trace at pH = pKa = 4.75 for acetic acid.  Note 

that the buffer capacity subsequently plunges to a minimum at the exact 

equivalence point, the same place where pH changes most dramatically.   

No comparable visual feature appears at the equivalence point in Figure 4.3 

with the traditional graphic representation.   
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Figure 4.4.  The relationship between buffer capacity and a titration curve 
for 100.0 mL of 0.100 M acetic acid titrated with 0.100 M NaOH. 
 
 
4.4 pH and buffer capacity surfaces 

A complete description of pH and buffer capacity behavior during acid-base 

titrations and dilution procedures can best be visualized by constructing 3-D topo 

surfaces above a Vb vs log Cdil composition grid.  This is really just an extension of 

plots that have appeared in many previous discussions that show multiple traces 

based on concentrations.  Figure 4.5 illustrates four concentration “slices” for 

both a titration curve (panel I) and the corresponding buffer capacity curves 

(panel II).  If a multitude of dilution slices, 37 for the present paper, are stacked in 

the right manner, one can generate an overall topo trend surface.  For example, 

the complete 3-D pH topo surface for acetic acid appears as Figure 4.6 3.  Each 
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slice represents a 100 mL acid sample titrated with a NaOH solution at same 

concentration.   

 

 

Panel I                                                                      Panel II 

 

Figure 4.5.  Multiple “slices” depicting dilution of the system.  Panel I – 
acetic acid pH.  Panel II – acetic acid buffer capacity 
 

The right-hand edge of the surface is a profile of the first titration curve slice of 

Figure 4.5, Panel I.  As one moves to the left along the log Cdil axis, progressively 

more dilute conditions are encountered.  For the most concentrated system (i.e., 

the line that forms the right-hand edge of the surface), 1.0 M CH3COOH is being 

titrated with 1.0 M NaOH.  Successive lines in the dilution direction indicate 

repeating the titration with both the acid and base concentrations adjusted 
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identically.  Thus, at the most dilute point (the left-hand edge of the surface), 1.0 

x 10-9 M CH3COOH is being titrated with 1.0 x 10-9 M NaOH.  

 

 
Figure 4.6.  The acetic acid pH topo surface based on 100 mL aliquots of acid 
being titrated 3.  
 

With the entire pH topo surface to view, one can discern a series of ramp, cliff 

and plateau features.  Ramps are associated with grid regions where dilution 

alone dominates the system’s pH.  Cliffs occur at initial and equivalence points 

during a titration procedure.  Plateaus are indicative of situations in which pH is 

somewhat stable against addition of NaOH titrant or dilution, i.e., buffer zones 

and extreme dilution conditions.  These three surface features have been 

discussed in detail in a previous paper 3. 3-D topo surfaces can also be generated 

for associated buffer capacities.  Figure 4.7 introduces two varieties of buffer 

capacity surfaces.   
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Panel I is a linear buffer capacity surface that relates to the traditional pH vs. 

buffer capacity plots.  Note, this surface is not plotted above a composition grid.  

Instead, it uses a system parameter, pH, as one of the axes rather than the 

concentration of a component solution.  What is shown here for the first time is 

the buffer capacity vs. pH extended systematically in the dilution direction.  

Because the dilution axis is linear, so too is the buffer capacity axis.  It is only 

feasible to see information from dilutions over one order of magnitude on this Cdil 

axis. 

             Panel II presents a logarithmic dilution axis, log Cdil.   This corresponds to 

exactly the same (Vb, log Cdil) composition grid as the acetic acid pH topo of Figure 

4.6.  A logarithmic buffer capacity axis, log , is employed to draw out values that 

cover many orders of magnitude of dilution.  Note, however, that a different 

plotting angle is employed than in Figure 4.6 to promote easy viewing of as many 

surface features as possible. The linear buffer capacity surface essentially shows 

only one feature of the buffer system, namely, that buffer capacity is linearly 

related to the concentration of the buffer component.  The height of the buffer 

capacity “ridge” at 4.8 (the grid point closest to the half-equivalence point) is 

0.572714 mol/L for a 1.0 M buffer content and 0.286375 mol/L for a 0.5 M buffer 

content, a ratio of 1.99987:1.  The “wings” at either edge of the linear surface 

represent additions of concentrated NaOH or HCl that are necessary to generate 

specific high or low logarithmic pH grid values.  They are not related to the buffer 

component itself.  They show large buffer capacities because of “chemical inertia” 

that must be overcome once the concentrated NaOH or HCl present under these 

conditions 
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Panel I 

 

 

Panel II 

 

 

 

Figure 4.7.  The buffer capacity topo surface for the same acetic acid system of 
Figure 4.6.  Panel I. Linear; Panel II. Logarithmic. 
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The linear surface contains no feature that corresponds to a titration endpoint.  

The endpoint break is the indistinguishable lowest spot on the flat valley floor 

between the buffer ridge and the NaOH wing.  Note in Figure 3 the location of the 

equivalence point labeled on the “sideways” plotted titration curve.  The 

derivative buffer capacity curve is essentially flat beneath it between pH values of 

7 and 10.5.  Neither is there any surface features to show where the linear 

relationship between buffer capacity and buffer component concentration breaks 

down due to dilution-driven dissociation.  The linear dilution scale compresses 

much interesting buffer behavior into the last grid interval.  This only becomes 

visible if one expands the last linear interval with a logarithmic scale. 

             Panel II uses a logarithmic dilution scale to draw out additional buffer 

capacity behavior.  For viewing clarity, the surface is oriented differently than the 

pH topo.  The back edge of the surface is the most concentrated (1 M) “slice” for 

the buffer capacity topo (see top curve in Figure 4.5, Panel II).  The most dilute 

conditions are found at the front of the surface.  The logarithmic z-axis 

accommodates a wider range of buffer capacities.  Most previous work with 

buffer capacity has only explored dilution to a minor extent 11 a factor of two or at 

most slightly more than an order of magnitude.  In Figure 4.7, dilutions of eight 

orders of magnitude are displayed. 

             Logarithmic buffer capacity surface features fall into three general 

categories:  ramps, ridges and canyons.  Ramps are associated with pseudo-buffer 

situations where changes in conditions are mostly physical dilution processes as 

opposed to acid-base interactions2. Ridges correspond to true buffer situations 

where the ratio of acid to base forms plays a controlling role.  Canyons represent 
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the equivalent point breaks and are the lowest buffer capacities observed during 

a titration. 

              There is a steep rise toward top of the “buffer ridge” from the initial point.  

Then, as one moves half-way to the equivalence point, the buffer capacity 

increases to a maximum value along the crest of the buffer ridge.  The pH is quite 

stable here.  Near the equivalence point, the system’s pH is highly sensitive to the 

addition of more NaOH and at the exact equivalence point, buffer capacity 

plunges to its lowest value in the bottom of the “equivalence point canyon”.  

Finally, the buffer capacity climbs up to high values as the system is essentially 

dominated by excess NaOH beyond the equivalence point.  The extra NaOH adds 

“chemical inertia’ to changes in the system’s pH. 

              Moving in the log Cdil direction, all slices slope downwards toward the “pH 

7 dilution ramp”.  This is a manifestation of buffer capacity being an extensive 

property of the system, one that is directly proportional concentration.  At half-

equivalence points on buffer capacity topos there are no “buffer plateaus” 

extending in the dilution direction as are seen in the pH surfaces.  The pH 

depends on the ratio of the buffer’s base to acid form whereas buffer capacity 

depends on concentrations.   Dilution does not initially alter the ratio of base to 

acid but it does steadily decrease concentration.  Eventually, dependent on the Ka 

of the buffer’s acid form, dilution will also shift the base to acid ratio and the pH 

“buffer plateau” tilts toward a pH of 7 3. 

             When dilution reaches about 10-6 M, the auto-dissociation of water starts 

providing almost equivalent amounts of H3O+ and OH- as the buffering agent 

itself.  Beyond 10-7 M, the H3O+ and OH- of water overwhelms what little buffering 

agents are present.  Dilution no longer changes the buffer capacity because it is 
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the diluent itself that is determining it.  It is not possible to dilute water with 

water.  Thus the buffer capacity slices in the dilution direction become essentially 

horizontal beyond 10-6 M. 

             The entire “pH 7 dilution ramp” slopes gently upwards in the Vb direction.  

This is another instance in which the “chemical inertia” of the system is at play.  

Even though the NaOH titrant being added is very dilute, it still can slowly 

accumulate sufficiently to raise the pH a slight amount. For comparative 

purposes, it is useful to look at the pH and buffer capacity surfaces for a strong 

acid such as HCl.  Figure 4.8 panel I displays the HCl pH topo. Figure 4.8 Panel IIa   

and 4.8 Panel IIb both hold the log buffer capacity topo and the linear buffer 

capacity surface respectively.  Note that the log buffer capacity topo shows a 

distinct feature for equivalence point where buffer capacity plummets.   The 

linear surface shows no internal feature; it simply has the HCl and NaOH wings at 

either edge.  

             Buffer capacity surface features correlate to topo features seen on the pH 

surface.  The “initial point cliff” on the pH topo manifests itself as the rapid rise to 

the “buffer ridge” on the buffer capacity topo.  This makes logical sense because 

wherever the pH is changing quickly, buffer capacities will be small.  Whenever pH 

stabilizes, buffer capacities will increase.  By the time a few 5-mL aliquots of NaOH 

have been added to the starting solution of acetic acid, a reasonably stable buffer 

system has been established. 
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           Panel I 

 

 

           Panel II a                                                    Panel IIb 

        

 

 

Figure 4.8.  Trend surfaces for strong acid, HCl.  Panel I – pH topo surface, Panel 
IIa – log buffer capacity topo, Panel IIb – linear buffer capacity surface. 



P a g e  | 61 

 

4.5 Effect of pKa and dilution on buffer capacity 
 
The size of the initial point cliff is contingent on the pKa of the buffer – the higher 

the pKa of the buffer, the more dramatic the initial point cliff.   The higher the pKa 

of an acid is, the more dramatic the rise to its buffer ridge crest, too.  This is 

illustrated in Figure 4.9.  Shown are three traces of the buffer capacities during 

the titration of a 0.100 M acid solution with 0.100 M NaOH.  HCl, a strong acid 

with a pKa of about -6.0, has no initial point cliff.  Correspondingly, there is no rise 

to a buffer ridge on its trace, the solid line in the figure.  In fact, the buffer 

capacity is at a maximum at the initial point and then systematically declines until 

the equivalence point is reached.  HCl exhibits pseudo-buffering behavior2.  The 

dashed line (seen only at the beginning of the trace and in the middle of the 

equivalence point canyon) is for acetic acid with a pKa of 4.75.  A rise of about one 

order of magnitude is seen between the buffer capacity of the initial solution at a 

pH of 2.38 and the maximal value at 50 mL at a pH of 4.75.  Finally, the dotted line 

is for phenol, a very weak acid with a pKa of 9.98.  The rise to the buffer ridge 

crest is about four orders of magnitude.  The pH that it stabilizes as a buffer (9.98) 

is much higher than its starting pH value of 4.98. One insight that comes from 

observing the buffer capacity for titrations is that the pre-equivalence point 

buffer capacities are almost identical for all weak acids.  While acetic acid and 

phenol differ greatly in their strength, once the initial point rise has occurred and 

a buffer ratio has formed, their traces lie atop one another.  They have the same 

ability to consume added NaOH while maintaining the current pH value. The 

difference is that acetic acid will maintain the pH near 4.75 (its pKa) while phenol 

will maintain the pH around 9.98.   Acid is acid.  As long as it will react with NaOH, 

there is no buffer capacity difference that is significant.   
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Figure 4.9.The effect of pKa on the buffer capacity curve of three acids at 0.100 M. 
 

The HCl buffer capacity tracks above the weak acid traces until about 60-mL of 

NaOH have been added.  It is a “pseudo-buffer” situation, not really buffering 

controlled by a ratio of acid to base forms.  Beyond the equivalence point, the 

traces for all three systems are superimposed on one another.  They all exhibit 

the pseudo-buffer capacity of a NaOH solution.  Note that the depth of the 

equivalence point canyon is dependent on the size of the equivalence point 

break.  HCl’s buffer capacity plunges much more than the two weak acids.  

              A second point worth making is that the initial point rise disappears as 

one goes to successively more dilute systems.  Comparative plots for three acids 

are shown in Figure 4.10 hydrochloric, formic and acetic acids.  At higher 

concentrations weak acids display differing amounts of dissociation according to 

their strength.  In the upper group of traces for 0.100 M systems, acetic acid 
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displays the lowest initial buffer capacity since it is the weakest of the three that 

are plotted.  It experiences the greatest jump between its initial pH (2.38) and its 

optimal buffered pH (4.75).  The bigger the pH jump, the lower the buffer 

capacity.  Formic acid undergoes a smaller pH jump from its initial pH (1.88) to its 

optimal buffer pH (3.745).  Hydrochloric acid exhibits only pseudo-buffering.  It’s 

buffer capacity decreases monotonically with the addition of NaOH.  The second 

tier of traces is for the three systems at 1.00 x 10-3 M.  The dilution has cause both 

formic and acetic acids to dissociate some more.  In fact, formic acid is so 

sufficiently dissociates that its buffer capacity trace is scarcely distinguishable 

from that for hydrochloric acid.  For all intents it now, too, exhibits pseudo-

buffering; there is no buffer ridge present.  By the time the three systems are all 

diluted to 1.00 x 10-5 M, the weak acid buffer capacity curves fall on top of that 

for HCl.  Sufficient dissociation has made their buffer capacities practically 

equivalent and all of a pseudo-buffering nature.  

 

Figure 4.10.  The effect of dilution on the buffer capacity curve for three acids at 
0.100 M, 0.00100 M and 0.0000100 M. 
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4.6 Buffer capacity surfaces for polyprotic systems 

Buffer capacity topos for polyprotic species can display multiple equivalence point 

canyons and buffer ridges.  The depths of the equivalence point canyons are 

dependent on the size of the equivalence point breaks for the associated pH 

titration surface.  Unless there is a difference of about three orders of magnitude 

in the pre- and post-equivalence point pHs, there will only be a shallow canyon on 

the buffer capacity surface.  Our polyprotic surfaces extend the V mL axis twice as 

far – to 400 mL.  Because of this, there will be a more noticeable sag in the far end 

of the pH 7 dilution ramps for the surfaces.  This is a manifestation of the growing 

chemical inertia with respect to changing system concentrations through dilution 

by the tritrant.  Panel I of Figure 4.11 which holds both the pH and log buffer 

capacity topo surfaces for oxalic acid. 

             The log buffer capacity topo surface nicely shows both buffer capacity 

minima.  There is little initial point rise on either the pH or buffer capacity topo.  

The first equivalence point canyon is rather modest because pKa1 and pKa2 differ 

by just three orders of magnitude.  The smaller the equivalence point break on 

the pH surface, the shallower the canyon on the buffer capacity topo.  The second 

equivalence point canyon for oxalic acid is much more substantial in that there is 

an eight orders of magnitude jump in pH. Oxalic acid has a pKa1 of 1.252 and a 

pKa2 of 4.266.  Panel II of Figure 4.11 shows the pH vs dilution buffer capacity 

surface.  Since pKa1 is so small, the first buffer ridge of this plotting style is 

completely consumed in the “HCl wing”.   
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Panel I 

 

 

Panel II 

 

Figure 4.11.  Topo surfaces for diprotic oxalic acid.  Panel I, Upper – pH surface.  
Lower – buffer capacity. Panel II - linear buffer capacity surface that relates to the 
traditional pH vs. buffer capacity plots.   
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Figure 4.12 shows superimposed buffer capacity slices at 1.00 M for oxalic acid 

and 8-hydroxquinolie (8HQ).  The pKas for 8HQ are 4.91 and 9.81.  Notice that the 

higher pKa1 leads to a more pronounced initial point rise.  The smaller difference 

between its pKa1 and pKa2 reduces the depth of the second equivalence point 

canyon. Between the canyons of polyprotic systems are buffer ridges all of similar 

height.  The maximum buffer capacity on most buffer ridges usually exhibits a log 

 value near -0.23.  The maximum values for the 1.00 M slice of oxalic acid (log Ca 

= 0) is -0.16 halfway to the first equivalence point (50 mL) and -0.23 halfway 

between the first and second equivalence points (150 mL).   

 

Figure 4.12.  Buffer capacity curves for the 1.00 M slice of oxalic acid (solid line) 
and 8-hydroxquinoline (dotted line) 
 

The first buffer ridge value for oxalic acid is higher than the typical -0.23 value for 

weak acids because Ka1 is so large that near pseudo-buffering is seen.  (Refer back 
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to the 1.00 M slice for HCl in Figure 9.)  A weaker Ka1 will lead to a first buffer 

ridge crest at -0.23.  Both buffer ridges for 8HQ show a maximum of -0.23. 

              Example topos for a triprotic system, L-histidine dihydrochloride (L-his), 

are presented in Figure 4.13 – the pH topo in Panel Ia, logarithmic buffer capacity 

topo in panel Ib.  The linear pH vs. dilution buffer capacity surface in Panel II. The 

Ka values used in their calculation were 2.2 x 10-2, 9.5 x 10-7 and 8.3 x 10-10 with 

corresponding pKa values of 1.7, 6.02 and 9.08, respectively.  As with oxalic acid, 

the linear buffer capacity surface for L-his (Panel II) has only a partial first buffer 

ridge visible because its pKa1 is rather low.  The logarithmic buffer capacity surface 

(Panel Ib) again gives a much clearer indication of the first equivalence point with 

a canyon feature.  It is more pronounced than that of oxalic acid because the 

difference in pKa1 and pKa2 is 4.32 orders of magnitude, more than one unit larger 

than was found with oxalic acid.  Hence, the first equivalence point canyon is 

deeper.  The second and third equivalence point canyons are comparable in depth 

because their equivalence point cliffs are similar in magnitude.  The extent of the 

equivalence point canyon in the dilution direction is a combination of the size of 

the equivalence point break and how close the pH of the equivalence point break 

is to the pH=7.00 for the diluent water.  The second equivalence point canyon of 

L-his is fairly shallow because the difference between pKa2 and pKa3 is only 3.06 

orders of magnitude.  Shallow though it is, it extends almost all the way down the 

slopping surface to the pH 7 dilution ramp.  Consider the three canyons present in 

Figure 4.12.  Even though all are about the same depth, they have very different 

extents.  The further away a pKa is from 7.00, the more quickly dilution will cause 

its depth to decline.   
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Panel Ia                                                                  Panel Ib 

         

 

 

 

Figure 4.13.  Trend surfaces for L- his.  Panel Ia – pH surface, Panel Ib – log buffer 

capacity topo. linear pH vs. dilution buffer capacity surface in Panel II. 
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It is hydrolysis effects on the buffer agents that drive this process. Notice that the 

third canyon is the shortest of the three and that the middle canyon is about two 

times longer than the first.  The only new feature seen with the L-histidine 

dihydrochloride surface is a third equivalence point above pH 7.   

 

Table 4.1.  Equivalence Point Canyon Parameters for L-his Buffer Capacity Topo 

Equivalence Point Magnitude of 

break: 

pH  50 mL of 

equivalence point 

pHep: Offset of 

equivalence point 

pH from 7.00 

Extent of canyon  

(log dilution 

factor)  

Acetic acid 1st 13.30 – 4.75 

= 8.55 

9.23 -7.00 

=2.23 

6.0 

Oxalic acid 1st 4.27 – 1.36 

= 2.91 

7.00 – 2.78 

= 4.22 

2.75 

Oxalic acid 2nd 13.15 – 4.27 

= 8.88 

8.89 – 7.00 

=1.89 

6.0 

1st equivalence 

point canyon 

@100 mL 

6.03 - 1.75 

= 4.28 

7.00 - 3.87 

= 3.13 

4.5 

2nd equivalence 

point canyon 

@200 mL  

9.08 – 6.03 

= 3.05 

7.55 – 7.00 

= 0.55 

5.75 

3rd equivalence 

point canyon 

@300 mL 

13.05 – 9.08 

 = 3.97 

11.23 – 7.00 

= 5.23 

2.25 
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The third buffer plateau (pH = pKa3 = 9.08) begins to degrade before the 10-3 level 

on the log Ca axis.  In this instance, Kb1 >> Ka3 so the diluent water is driving the 

hydrolysis reaction to reprotonate the his2- species.  From log Ca values of -3 to -7, 

mass action effects from diluent water drive the protonation of Hhis- and converts 

it to H2his.  At these alkaline starting pHs, very little H2his is present to dissociate 

in opposition.   From alpha species distribution calculations, the pH 7 dilution 

plateau shows a mixture that is roughly 90% Hhis- and 10% H2his. For brevity, we 

omit surfaces and buffer capacity calculations for the titration of bases with a 

strong acid.  Their chemical characteristics are analogous. 

 

4.7 Conclusions 

An Excel file that implements the calculations for buffer capacity surfaces is found 

in Appendix IIA.  It contains embedded Visual BasicTM macro-enabled formulas for 

the buffer capacity equations -- a strong acid, and weak monoprotic, diprotic and 

triprotic acids titrated by NaOH.   Each worksheet is populated with the weak acid 

examples presented in this chapter.  To generate buffer capacity surfaces for any 

other acid, the user needs only to supply new Kas.  By examining several example 

surfaces, anyone should be able to predict systematic trends in buffer capacities 

without resorting to detailed calculations. 
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Chapter 5 
Metal Anti-Buffering:  A Situation in Which Aqueous Free Metal 

Activities Increase upon Dilution 
 
5.1 Introduction 

Metal ions in solution can display a form of buffer behavior similar to acid-base 

systems.  Under the right conditions, the activity of a free metal ion can remain 

steady as the overall system is changed with respect to total metal, total ligand 

or dilution1,2.  This is important in the stabilization and detection limits of some 

ion-selective electrodes as well as in biochemical experiments where constant 

metal activities are desired3.  This chapter describes an unusual buffer situation 

that can occur with metal ions, but does not occur in acid-base systems.  

Termed “anti-buffering”, it is an outcome of using a composition grid approach 

to look at all possible situations in which a metal ion (Mn+) could interact with a 

ligand (L) in aqueous solution under controlled conditions of temperature, pH 

and other interfering ligands.  Species considered in the modeling below are 

the free metal ion itself along with its various hydroxo-complexes, free and 

protonated ligands, and all reported stoichiometries of mononuclear 

complexes.  A composition grid was established to cover essentially all feasible 

ratios with which the metal and ligand could be combined.  Free metal 

activities were plotted as pMn+ values on the z-axis above the grid to generate a 

3-D topo trend surface 4.  A counterintuitive result was noted in that in some 

situations the free metal activity increased orders of magnitude as the overall 

system underwent dilution.  

 
5.2 Theoretical Explanation 
 
Metal anti-buffering is only observed when diluting systems of aqueous metal 

complexes where stoichiometries higher than 1:1 are dominant.  It also 
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requires that excess ligand conditions exist and that the overall protonation 

constants for the ligand are greater than the formation constant for the 1:1 

metal complex but less than the overall formation constant for the 1:2 

complex.  When a system with these properties is now diluted, some of the 

complex will dissociate but the metal released in this dissociation will be so 

significant, compared to what was there prior to dilution that the free metal 

activity will actually rise. 

Table 5.1.  Three scenarios that can occur when a metal-ligand system is 
diluted. 

System condition:  Free metal sources:   Behavior 

Excess ligand with 1:2 complex: Contribution from dissociation > dilution Metal Anti-buffering 

Excess ligand with 1:1 complex: Contribution from dissociation = dilution Metal Buffering 

Excess metal or very dilute: Contribution from dissociation < dilution Unbuffered 

Consider a theoretical examination of a simplistic system where a strong 1:3 

complex having an overall stability constant 3 overwhelms any other effects.  

Under excess ligand conditions the major species in solution will be ML3 and L.  

Only a trace of the free metal ion, Mn+, is present.  (The development below 

will use M in place of Mn+ for ease in viewing.)  If a 10-fold dilution is made, the 

concentrations of both ML3 and L will essentially drop by an order of 

magnitude. 

M   + 3 L    ML3      (Eq 5.1) 

Before dilution:  
 

   
3

3 3

old

ML
β =

M L
      (Eq 5.2) 

After dilution:   
 

   
3

3 33

new

0.1 ML
β =

M (0.1) L
        (Eq 5.3) 

Ratioing the before and after expressions and solving for [M]new/ [M]old yields: 
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new

old

M
 = 100

M
     (Eq 5.4) 

This clearly suggests that the small amount of complex that dissociates 

releases a significant amount of free metal compared to what was there 

before, a 100-fold increase.  While the change in free trace metal activity is 

substantial, the ratio of ML3 and L activities is essentially the same as before.  

Overall, the system was diluted by a factor of 10, and the free metal 

concentration went up by a factor of 100.  This is an “anti-buffering effect” of 

1000 = 100-fold increase x 10-fold expected dilution.  A parallel mathematical 

treatment of a system with only a 1:1 complex present would show 

[M]new/[M]old = 1, namely, the traditional example of metal buffering systems1.  

 

5.3 Computational approach: 3-dimensional free metal topo surfaces  

To demonstrate where metal anti-buffering will be found and to compare it to 

that of traditional metal buffer, a composition grid and associated pMn+ topo 

surfaces will be employed. The composition grids4 used here plot the total 

concentration of metal (Mtot) on the x-axis and the total concentration of 

ligand (Ltot) on the y-axis (Fig 5.1).  Any point on the two dimensional 

composition grid represents a particular composition from the mixing of metal 

ion and ligand.  One is illustrated in Fig 5.1 for a system with Ltot = 10-2 M and 

Mtot = 10-7 M.  Both the metal and ligand total concentrations span from 1M to 

1x10-9 M.  The axes are logarithmic with spacing intervals of 0.25 log units.  

This creates total of a 37 × 37= 1369 grid points.  Addition of a third z-axis 

allows pMn+ or other system parameters (e.g., free ligand, individual complex 

stoichiometries, absorbance, etc.) to be examined as trend surfaces. These 

topo surfaces on the composition grid provide a comprehensive framework for 
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interpretation of the results from the equilibrium experiments.  Free metal 

topo surfaces for six modeled systems will demonstrate the extent and 

magnitude of the metal anti-buffering. 

 

Figure 5.1: The metal-ligand composition grid. 

Metal anti-buffering requires an examination of systems as they undergo 

dilution.  Thus, it is necessary to identify what constitutes a dilution path on 

the two dimensional composition grid.  A dilution path is defined by the 

sequence of compositions that are encountered during the procedure.  

Dilution procedures diminish the total concentration of both components at 

the same rate and are represented by paths that move down and to the left 

with a slope of +1 (refer again to Fig 5.1).   Once a specific dilution path has 

been selected, the changes in any given species during the dilution procedure 
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can be depicted as the upward projection of the path onto the specie’s 3-D 

topo surface above the grid.  Complexation TOPOS software with macro-

enabled Excel spreadsheets (see Appendix II.B) has been developed parallel to 

the pH and BufCap TOPOS from the acid-base studies. 

5.4 A Sample system – Cu(II)-ethylenediamine 

The copper(II) – ethylenediamine system we be used to illustrate how the 

modeling is done. A complete accounting requires inclusion of free metal, all 

stoichiometries of complexes and hydrolytic species of both metal and ligand.  

In addition, the activity effects are taken into account for all charged species.  

The ultimate goal of the modeling is to calculate the activity of metal and free 

ligand.  We fix pH and ionic strength for all grid points.  Thermodynamic 

formation constants for all possible interactions were obtained from the 

literature.  Overall formation constants (s) were used to reduce a large 

system of nonlinear equations into a pair of master variable expressions, i.e., 

free metal (Cu2+) and free ligand (ethylenediamine, or en for short).  The 

concentration of all other species present in the equilibrium mixture can be 

expressed as a function of Cu2+ and en. 

Table 5.2 Overall formation constants (s) for the Cu/en system 

 Species    Reference 

 Cu(OH)+ 107.34  5 

 Hen+ 1010.18  6 

 H2en2+ 1017.65  6 

 Cu(en)2+ 1010.47  7 

 Cu(en)2
2+ 1019.67  7 
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 Cu(en)3
2+ 1020.36  6 

All constants were corrected to concentration constants using the Davies 
equation to compute activity coefficients for all charged species at 0.1 M 
KNO3

8. 

The mass balance for Copper is: 

Cutot =  [Cu2+] + [CuOH+] + [Cu(en)2+] + [Cu(en)2
2+] + [Cu(en)3

2+] 
 

Cutot =  [Cu2+] + KOH
o [Cu2+][OH−] + β1

0[Cu2+][en]  + 2β2
0[Cu2+][en]2

+ 3β3
0[Cu2+][en]3 

The corresponding mass balance for en is: 

entot =  [en] + KenH
o [H+][en] + Ken2H

o [H+][en]2 + β1
0[en][Cu2+]

+ 2β2
0[en]2[Cu2+] + 3β3

0[en][Cu2+]3 

The pair of mass balance equations was solved for each grid point using a 

numerical method as described in Smith (1983)9.  It is a modified continued 

fraction algorithm that was first applied to aqueous modeling by Perrin10.  A 

detailed description and program listing is found in Appendix.  

              The Cu(II)-en system’s free metal topo surface, as pCu2+, is shown in 

two forms (Figure 5.2) for most clearly demonstrating metal anti-buffering.   

Anti-buffering occurs on the down-sloping “upper buffering ramp”.  A 

“stoichiometric cliff” runs diagonally across surface.  This marks the boundary 

between excess ligand conditions and excess metal conditions.  The anti-

buffering is only seen under excess ligand compositions.  Below and rising to 

the left of the stoichiometric cliff is the “lower normal dilution ramp”.  The 

stoichiometric cliff fades out when dissociation of complexed metal can no 

longer make up for dilution effects.  Two dilution paths have been projected 

onto the pCu2+ topo, one for excess en conditions (red + blue trace) and one 

for excess copper conditions 
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Panel I                                                               Panel II 

 

 

                                 Panel III 

 

Figure 5.2.  Anti-buffering vs. buffering vs. unbuffered systems.  Panel I - 
pCu2+ topo surface in the bent-wire form with anti-buffering shown as a 
red dilution path and unbuffered behavior shown as a blue dilution path. 
Panel II, contour map version of Panel I.  Panel III compares the the anti-
buffering behaviour of Cu-en to the traditional buffering in the Cu-EDTA 
system. 
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Anti-buffering occurs where the path has been colored red and is descending 

diagonally across the upper buffering ramp.  Eventually, dilution overtakes the 

anti-buffering effect whereupon the free Cu2+ activity begins to drop with 

dilution.  This portion of the projected path is blue.  The experimental path 

projection that is entirely blue, demonstrates that anti-buffering never occurs 

in the excess metal portion of the topo.  The path monotonically rises 

diagonally across the lower normal dilution ramp. 

                If one selects a specific set of starting conditions and traces a dilution 

path through the composition grid data, the predicted anti-buffering effect can 

be calculated.  For example, if one starts with the total en concentration at log      

-1.5 (0.031 M) and total copper concentration at log -2.5 (0.0031 M), there is a 

ten-fold excess of ligand and anti-buffering will occur.  As one progresses 

through the series of grid points corresponding to system dilution, the pCu2+ 

value drops from 9.041997 to 6.093596, a difference of 2.948401 log units or a 

linear increase of 887.9755 times.  At the same time, the system has been 

diluted from a starting ligand concentration of log -1.5 to log -5.25.  This is a 

3.75 log unit drop or a dilution of 5623.413 times.  Total metal concentration 

has undergone the same 5623-fold dilution.  Multiplying the two factors 

together yields an anti-buffering effect of 4, 993,453.   Thus, while both the 

total en and copper concentrations dropped by more than 5000 times, the free 

metal activity went up about a 1000 times.  This magnitude of anti-buffering is 

more than can be feasibly measured given limits of detection constraints of ion 

selective electrodes (ISE), the most direct means by which to measure Cu2+ 

activity.  
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 Anti-buffering is easily seen on the contour map version of the topo.  Here, 

anti-buffering shows up as an experimental path that crosses contour lines in 

the upper buffering ramp region.  This is equivalent to saying that anti-

buffering is found anywhere that the upper buffer ramp contour lines have a 

slope less than +1 and are not parallel to the stoichiometric cliff.  Because of 

the nature of p-functions, the activity of free metal ion is rising wherever there 

is downward movement on the pCu2+ surface.   Anti-buffering breaks down 

when the pCu2+ contour lines of the upper buffering ramp begin to curve 

towards the log Cutot axis.  Notice that the completely blue trace under excess 

metal conditions shows a steady rate of crossing contours in an upward 

surface direction; there is a constant 45o-angle between the contour lines and 

the dilution path whenever normal dilution behavior is observed. 

5.5 A Free metal topo surface for traditional metal buffering 

Consider the pCu2+ topo surfaces for the Cu-EDTA system (Fig 5.3).  Because 

only 1:1 complexes form in this system, there is no anti-buffering that occurs.   

 

Panel I                                                              Panel II                                                                                  

        

 Figure 5.3.  Metal buffering in the Cu-EDTA system.  Panel I - bent-wire and 

Panel II- contour map versions of the Cu-EDTA pCu2+ topo surfaces at pH 5.5. 
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This provides an opportunity to visualize the difference between metal anti-

buffering and traditional metal buffering. The same type of features are 

prominent for this topo surface, too: 1) an upper buffer ramp in the region of 

excess ligand; 2) a stoichiometric cliff; and 3) a lower normal dilution ramp   

As was done for the Cu-en system, two dilution paths have been projected 

onto the pCu2+ topo surface.  The orange trace illustrates traditional metal 

buffer behavior.  The pCu2+ value does not change with overall system dilution.  

Metal buffering is characterized by a dilution path traversing the upper buffer 

ramp in a horizontal orientation.  This is most easily seen on the contour map 

plot in that the orange dilution path is parallel to the contour lines of the upper 

buffer ramp.  The dilution path is also parallel to the stoichiometric cliff that 

runs across the topo at a 45o angle.   Sample dilution in the region of excess 

metal is identical to the trace seen in the Cu-en system.  Neither metal anti-

buffering or metal buffering will be exhibited here. The blue dilution path 

steadily crosses contours in an upward surface direction; intersecting them at a 

45o-angle in all cases. 

 

 
5.6 Other model systems that show the metal anti-buffering effect 

 
The discovery of the anti-buffering phenomenon prompted an exploration for 

systems beyond Cu-en that display the same behavior.  Complete 

thermodynamic data must be available before modeling can be performed.  

The compendiums of critically reviewed constants by Smith and Martell11 

offered a wide range of systems to evaluate.  Because there was a desire to 

possibly conduct experimental confirmation of model results, ligands that form 

complexes with Cu2+ were examined first.  It was not difficult to locate many.  
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Table 5.3 summarizes systems of ligands with Cu2+ that were modeled, the 

location of the selected dilution pate and the resultant anti-buffering effect. 

 

Table 5.3.  Metal Anti-Buffering Exhibited by Other Ligands with Cu2+ 

 Ligand  Log Ltot Path (start-finish) Anti-Buffering Effect 

 Pyrrolidine   -3.00  -5.00   2511 

 NTA monoamide  -2.50  -8.25   2.04 x 1018 

 Ammonia (pH 9.0)  -4.00  -5.50   301,277 

 Methionine   -3.00  -7.25   7.07 x 107 

 2HMI    -2.50  -5.00   2.19 x 106 

The pCu2+ topo surfaces for four of these systems are collected as Figure 5.4.   

Several nuances in anti-buffering behavior can be seen with these topos. 

The systems for Panels I, III and IV contain ligands that form stable higher 

stoichiometric complexes but have 1:1 formation constants lower than the 

ligand protonation constants.  This is not true for the NTA monoamide topo in 

Panel II.  For NTA monoamide the 1:1 copper(II) complex log formation 

constant is slightly higher than the ligand log protonation constant, 9.68 vs. 

8.9.  A consequence of this is that both anti-buffering and traditional metal 

buffering are seen on the upper buffer ramp.  Under more concentrated 

conditions, anti-buffering occurs.  

              But as the system is diluted, the higher complex dissociates more and 

more.  In the other three systems the protonation reaction is favored over the 

1:1 complex and regular metal buffering never happens.  But with NTA 

monoamide, the 1:1 complex slightly overpowers the protonation reaction so 

for a while the metal ion activity remains constant.  The shift from anti-

buffering behavior to simple buffering behavior is seen as a slight change in the 

steepness of the upper buffer ramp’s slope. 
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Figure 5.4.  pCu2+ topo surfaces for four other systems.  Panel I – pyrollidine; 
Panel II – NTAm; Panel III – 5-hydroxyimidazole; Panel IV – DL-methionine. 
 

 
5.7 Experimental apparatus and protocols 

Once the model systems had indicated the metal anti-buffering phenomenon, 

experimental confirmation of its existence was desired.  A basic potentiometric 

apparatus was built to follow the activity of free metal ions as a metal ligand 

complexation system was diluted.  The design followed was adapted from one 

originally described by Spositi et. al.12 and modified for composition grid 

applications by Smith9. A Cu2+-en aqueous equilibrium system was selected for 
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the initial anti-buffering demonstration because the expected Cu2+ activities 

were sufficiently inside the working range of commercially available cupric ion- 

selective electrodes. 

              A 400-mL PFTE beaker was used as the reaction vessel to minimize 

adsorption of trace metal ions.  The reaction vessel was placed in a circulating 

water bath to maintain a constant temperature of 25.0 + 0.5oC to avoid 

significant fluctuations in thermodynamic constants.  A transparent acrylic disc 

was fabricated to cover the reaction vessel and prevent the influx of CO2 into 

the solutions.  Several holes were drilled in it to accommodate electrode 

bodies, two temperature probes, solution delivery tubes, and a tube that 

released N2 bubbles to help stir the solution and prevent the influx of CO2 by 

creating a positive pressure in the headspace above the bulk solution.  A 

magnetic stir bar was placed at the bottom of the reaction vessel to assure 

complete mixing of all fluid contents.  

               All solutions, except 0.1M KNO3 diluent and ion adjustor medium for 

all other solutions, were delivered to the reaction vessel from calibrated 

microburets (10.0 mL total volume, Model 03-701-26A, Fisher Scientific, 

Pittsburgh, PA) through plastic tubing to keep them out of contact with 

atmospheric CO2.  Delivery of 0.1M KNO3 solution for dilution purpose was 

through a calibrated 25-mL Pyrex@ burette (Model 2122A 625 East Bunker 

Court Vernon Hills, IL 60061 USA.). Tubing was connected to the tip of each 

burettes by cementing it into a modified Leur hub which was then press-fit 

onto the burette tip.  The tops of all burettes were fitted with Ascarite II® (CAS 

1310-73-2 or CAS 1318-00-9, Thomas Scientific, Swedesboro, NJ) guard tubes 

to prevent uptake of CO2 from ambient lab air.  Any absorbed CO2 would 

introduce carbonic acid and bicarbonate into the reagent solution.  These 
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could both alter a solution’s pH as well as potentially complex with copper ion. 

Experimental probes included a combination copper ion-selective electrode 

(EW-27504-10 Cupric Combination ISE, Cole-Parmer, and Vernon Hills, IL) and a 

pH combination electrode (WD-35801-00, Oakton Instruments, and Vernon 

Hills, IL).  Measurements were taken by two pH/mV meters with attached 

temperature probe corrections (Model pH 6, Oakton Instruments, Vernon Hills, 

IL). 

 

 

Figure 5.5 A Photograph of the reaction vessel. 

Solutions were prepared from freshly degassed deionized water and stored in 

nitrogen-flushed bottles.  The 1.0 M KNO3
 ionic strength adjusting (ISA) 

solution was diluted to a final working concentration of 0.1 M.  The reaction 

vessel pH was maintained by small additions of 0.1 M HNO3 (CAS 7697-37-2, 

Trace metal grade, Fisher Scientific, Pittsburgh, PA) and 0.1 M KOH (CAS 1310-

58-3, ACS reagent grade, J.T. Baker, Phillipsburg, NJ). The pH adjusting 
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solutions needed to be diluted as the experimental path went to lower total 

concentrations for Cu and en.  These more dilute solutions of HNO3 and KOH 

were at concentrations of 0.01M, 0.001M. 

            The ionic strength of all solutions was kept constant by using 0.1 M KNO3 

as a background electrolyte to avoid fluctuations in activity coefficients of free 

Cu2+ ion during dilution experiments and other charged species.  KNO3 is an 

ideal ISA because K+ and NO3
- are essentially not involved in additional 

hydrolytic or complexation processes.   ACS reagent grade KNO3 has trace 

levels of iron (maximum of 3 ppm), heavy metals as Pb (maximum 5 ppm) and 

Cl- (maximum 0.0002%).  When employed as a 0.1 M ionic strength adjustor 

(ISA), these correspond to 30 ppb Fe, 50 ppb Pb and 200 ppb Cl.  

 

5.8 Sample preparation 

Stock solutions of Cu2+ (0.1 M Cupric Standard, CAS 3251-23-8 in CAS 7732-18-

5, Thermo Fisher Scientific, and Beverly, MA) and en (0.1 M ethylenediamine, 

CAS 107-15-3, Fisher Chemical, Fair Lawn, NJ) were added to the Teflon 

reaction vessel such that the pre-dilution volume was about 50-mL containing 

0.031 M en and 0.0031 M Cu2+.  These were selected to roughly correspond to 

composition grid points of -1.5 and -2.5, respectively such that there was a 10-

fold excess of ligand.  This quantity of mixture filled the reaction vessel to a 

depth of at least 1 cm so that the sensing membranes and liquid junctions of 

both electrodes were completely immersed.  The reference half of the pH 

combination electrode in particular requires this depth for a proper liquid 

junction connection.  A slow input of N2 bubbles was used to help stir the 

solution and keep CO2 from diffusing into the reaction cell.  The 50.00-mL 
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mixture aliquot was diluted through diluent additions by a factor of about 7, 

the point at which the reaction vessel capacity had been reached.  A 50.00 mL 

portion of the final solution was used to start a second 7-fold dilution 

sequence.  This procedure was continued an additional two to three times to 

create an overall dilution maximum of about 75 = 16,800-fold.  After each 

addition of diluent, the pH was adjusted to a pre-selected value (4.5, 5.0, 5.5, 

or 6.0). 

             Free copper ion activity, ACu
2+, was monitored via the cupric ion-

selective electrode. No mV readings from the cupric ISE were recorded until 

the meter readings were stable for at least one minute. The dilution 

experiment for each pH was run at least two times to ascertain its 

reproducibility. Temperature data were also logged to assure that constant 

temperature conditions had been maintained.   

 

5.9 Cu ISE electrode calibration 

The Cu ISE was calibrated by sequential additions of an analytical standard 

solution of 0.1M Cu (NO3)2 (0.1 M Cupric Standard, CAS 3251-23-8 in CAS 7732-

18-5, Thermo Fisher Scientific, Beverly, MA) into 0.1M KNO3 solution to match 

the matrix between the calibration medium and the experimental solution.  

Separate calibration runs for each pH value that was investigated.  Electrode 

potential (E) vs. pCu2+ (-log Cu2+) calibration plots were constructed and 

subjected to a linear regression procedure to determine the slope, intercept 

and uncertainties of the electrode response. 

            Dilution experiments were conducted at pH of 4.5, 5.0, 5.5 and 6.0.  At  

pH lower than 4.5, protons begin to dominate control of ligand binding sites 



P a g e  | 89 

 

and anti-buffering becomes less significant.  Above a pH of 6.0, solid Cu (OH) 2 

begins to precipitate from the solution13-14(Burgess, 1978 Metal Cations in 

Solution) and compete with aqueous complexes.   

Table 5.4.  Cupric Ion-Selective Electrode Calibration Parameters 

pH r2  slope   intercept (mV) std. dev. in y (mV) 

4.5      1.000  28.81 ± 0.23  317.1 ± 0.70   ± 0.54               

5.0 0.998  28.98 ± 0.41  317.2 ± 1.3   ± 1.0 

5.5 0.999  28.50 ± 0.40  320.9 ± 1.5   ± 1.7 

6.0 0.999  28.52 ± 0.40  319.6 ± 1.6   ± 1.4 

5.10 Results and discussion 

The data used to construct metal anti-buffering plots were ACu2+ vs. log en tot.   

Each ACu2+ value was obtained by using the linear regression parameters from 

the ISE calibration curve for the pH of interest (Table 5.3). The corresponding 

log entot value was calculated by summing the additions from all three burets 

(diluent water with ISA, acid and base) to produce a total dilution factor that 

was then applied to the starting total ligand concentration.   

            The most dramatic metal anti-buffering effect was observed at a pH of 

6.0 (Figure 5.6).  The x-axis records the progress of dilution in the Log entot 

values.  A 10-fold dilution of the system corresponds to a 1-log unit step on the 

x-axis to the left.  Since the first experiment data point was log en  = -1.50 and 

the final data point was -5.71, the overall dilution achieved during the 

experiment was 10(5.71-1.50) = 16,200 fold.  But the copper(II) anti-buffering does 

not persist over the entire dilution process.  It stops when the activity of Cu2+ 

reaches its maximum level at a log entot value of -4.62.  Thus, the dilution factor 



P a g e  | 90 

 

used to compute the anti-buffer effect is 10(4.62-1.50) = 1318-fold.  Over this 

same dilution range, the log activity of Cu2+ went from -8.75 to -6.74 for an 

increase of 10(8.75-6.74) = 102 times higher.  Putting the two factors together 

yields a combined anti-buffering effect (abf) of 1318 x 102 = 134,896 ≈135,000 

times.  This indicates that in diluting the system by more than three orders of 

magnitude, the activity of copper(II) ion has increased two order of magnitude.  

The anti-buffering phenomenon at pH 6.0 is not a small effect when it is 

present.  The match between the model and experimental data is not perfect, 

but the general shape and magnitude of the anti-buffering effect is quite 

similar on both curves.  Small offsets between the two curves are  no surprise 

as there is quite a range of reported formation and protonation constants in 

the literature from which to choose.  Sometimes the differences are nearly a 

factor of two.  Another source that can cause discrepancies in the fits lies in 

the activity coefficients for charged species and activity corrections in the 

model.  At this juncture, the model still needs refinement in that regard.  The 

next generation of programming should help tighten the agreement.  Lastly, 

some earlier experiments with a cupric ion-selective electrode have shown 

that the sensing membrane can experience interfering side-reactions that 

affect its readings9.  

           Anti-buffering is a consequence of the Law of Mass Action as well as an 

illustration of Le Chatelier’s Principle.  Under excess ligand conditions and 

stable 1:2 Cu(en)2
2+ complexes, very little free Cu2+ can be found in solution.  As 

the system is diluted, the equilibrium is perturbed and some of the complex 

dissociates.   
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Figure 5.6.  Anti-buffering in Cu-en system at pH 6.0.  There is 1318x factor 
from dilution and 102x factor from anti-buffering for an overall anti-buffer 
effect of ~135,000.  

The amount of Cu2+ released by the dissociation is so much greater than the 

free Cu2+ in the original solution, that the overall ACu
2+ goes up.  This continues 

until sufficient free copper has been released through dissociation that new 

releases are no longer so much greater in size, i.e., complexed Cu ≈ free Cu2+.  

Figure 5.7 presents a schematic diagram to help visualize this point. The lower 

the pH of the system, the less dramatic the metal anti-buffering becomes.   

This is evident in looking at the experimental vs. modeled behavior of the Cu-

en system at pHs of 5.5, 5.0 and 4.5, respectively (Figure 5.8). These runs all 

used the same starting value of log entot = -1.5 for comparative purposes.  The 
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observed anti-buffering factors for the three systems were 1290-fold, 16.4-fold  

and 2.74-fold, respectively.  Cu2+ ion and H+ are both Lewis acids and compete 

for base, i.e., ethylenediamine here in the solution.   More ethylenediamine is 

now bonded with hydronium ion to produce   Hen+ and H2en2+. At lower pH’s, 

the number of protons that compete with Cu2+ for binding to en increases 

dramatically, a factor of 10 for each pH unit.   

 

 

Figure 5.7.  Schematic diagram of metal anit-buffering.  Font size indicates 
relative magnitude.  The Cu2+ released via dissociation is greater than the Cu2+ 
that was previously free. 

There is a 31-fold increase of protons at a pH 4.5 compared to pH 6.0.  

Furthermore, pH 6.0 is no too distant from pKa1 of 6.848 for the en system.  

This is another indication that the fraction of available binding sites will be 

dropping as the pH wanders to lower values. While the effect seems small, it is 

actually much larger when the dilution is started at a higher concentration.  For 

a system like Cu-en where a 1:2 complex dominates under excess ligand 
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conditions, Equation 5.4 indicates that the anti-buffering factor will increase by 

100 times with each order of magnitude of dilution.  Had the cupric ion-

selective electrode been capable of sensing lower than 10 -9 M of Cu2+ activity, 

greater anti-buffering factors would have been recorded.  We could have 

measured factors of 13,500,000-fold at pH 6.0, 129,000-fold at pH 5.5, 1640-

fold at pH 5.0, and 274-fold at pH 4.5.   

Panel I                                                               Panel II 

           

                              Panel III 

 

Figure 5.8.  Experimental vs. model behavior for the Cu-en system at pH 5.5 
(panel I), pH 5.0 (panel II) and pH 4.5 (panel III). 
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An operational limit on the starting value of entot was the requirement to 

maintain the ionic strength of the system.  This becomes increasingly difficult 

above 0.1 M.  The behavior of activity coefficients begins to be problematic, 

too. 

 

Figure 5.9.  The effect of pH and the log entot starting point on metal anti-
buffering.  The dashed line indicates the log entot value used in the actual 
experiments. 

 

5.11 Conclusions 

Using the composition grid approach to examining metal-ligand complexation 

systems led to the discovery of an unanticipated phenomenon which has been 

named metal anti-buffering.  Its existence suggested a series of dilution 
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experiments that could be conducted to confirm its existence.  The 

experimental results nicely followed the model’s predicted behavior with 

respect to both overall shape and extent of the behavior.  Some further 

refinement in thermodynamic constant selection, activity corrections and 

electrode behavior are needed to optimize agreement between experiment 

and model traces. 

 

Anti-buffering is not a behavior that is seen over a wide range of possible 

solution compositions.  It is restricted to situations in which the ligand is 

present in excess over the metal and where higher stoichiometries dominate 

the protonation constants for the ligands.  Where it does occur, however, the 

effect can be dramatic.  Modeling of the Cu-NTA monoamide system, for 

example, predicted an anti-buffering effect of 18 orders of magnitude.  This 

would be difficult to demonstrate in an experiment, however, because the 

levels of free Cu2+ are far too low to measure with anything other than nuclear 

methods. 

            Could anti-buffering ever be observed in a real-world setting?  Modeling 

the Cu-ammonia system suggests that it could happen.  If a small influx of acid 

mine drainage entered a larger body of water that was strongly buffered and 

had a high natural ammonium ion content, anti-buffering could occur.  

Furthermore, this could impact the partitioning of a toxic metal into an 

organism if it is the uncomplexed form that transports through cell 

membranes. 

Irrespective of it possible significance in the real world, anti-buffering is a 

strong example of how the composition grid topo approach helps reveal new 

and unexpected chemical behavior in aqueous systems. 
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Chapter 6 

Why Batteries Deliver a Fairly Constant Voltage until Dead 

 

6.1 Introduction 

Have you ever wondered why batteries seem to be working fine right up to the 

moment that they fail? You get a warning “low battery” and shortly thereafter 

your flashlight or electronic device quits working. Hopefully, you have some spare 

batteries to install and you backed up your data. Once you are close to failure, 

batteries slip from “weak” to “dead” in a very short time. So how can the 

batteries be okay one minute and not the next? To understand how batteries 

behave, one must understand how the Nernst equation describes the voltages 

produced in a Galvanic cell. After all, batteries are a nothing more than a type of 

Galvanic cell. This paper shows how the voltage behaves over the lifespan of a 

battery. The voltage is fairly constant until it suddenly plummets as one of the 

component species is exhausted. 

 

6.2 The Nernst Equation Viewed as a Surface 

The Nernst equation (Equation 6.1) for a half-reaction is typically given as: 

𝐸 = 𝐸0 +  
𝑅𝑇

𝑛𝐹
ln

𝐴𝑂𝑥

𝐴𝑅𝑒𝑑
                              (6.1) 

where E is the half-cell potential expressed in volts, E0 is the half-cell standard 

reduction potential for unit activity and 298.15 K, R is the universal gas constant, T 

is the absolute temperature, n is the number of electrons transferred in the half-

reaction, F is the Faraday constant, AOx is the activity of the oxidized form of the 

redox couple, and ARed is the activity of the reduced form of the redox couple. The 
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two most important terms in eq 6.1 on which to focus are (1) the half-cell 

standard reduction potential, E0 and (2) the logarithmic term, ln(AOx/ARed). The E0 

largely controls the voltage of the half-reaction while the battery is “doing fine”. 

As the battery is “going dead”, the logarithmic term suddenly dominates. The 

interplay between the two terms becomes easy to see when you view a three-

dimensional plot of the Nernst equation using linear axes that extend to relatively 

high activities. Its appearance also depends on whether the species involved in 

the half-reaction are in aqueous solution versus in a solid or pure liquid state. We 

will begin with a wet cell that corresponds to half-reactions for which both the 

oxidized and reduced forms of the redox couple are present in the aqueous 

phase.  

                  To look at all possible voltages that an aqueous redox couple could 

generate, we need to build a grid that holds the full range of activities for both 

forms. The range of the oxidized form’s activity will be indicated on the y axis and 

the range of the reduced form’s activity on the x axis. The two axes represent the 

balance between oxidized and reduced forms of the substance comprising the 

redox couple (not the reactants). Substituting a specific ratio of AOx/ARed into the 

Nernst equation generates a single voltage, E. A systematic substitution of many 

AOx/ARed ratios that cover the full activity range of both forms yields a collection of 

voltages that can be plotted on a z axis above the grid. This set of voltages 

collectively describes a three-dimensional picture of the Nernst equation 

behavior. Figure 6.1 illustrates the Nernst potential surface for the half-reaction 

Fe3+ +e− ⇄ Fe2+ with E0 = 0.770 V3. What is compellingly obvious in looking at the 

Nernst potential surface in Figure 6.1 is that a large portion of it is flat. What is 

more, the voltage corresponding to the flat region is essentially equal to 0.770 V, 
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the E0 value! (The definition of E0 is shown as the grid point at the right-hand back 

corner of the surface, that is, the point at which both AFe
2+ and AFe

3+ are at unit 

activity.) Given the linear axes of the grid, the voltage for a redox couple never 

moves far from the E0 value over most ratios of Fe3+ to Fe2+. It is only when either 

AFe2+ or AFe3+ approach extremely small values that the potential begins to change. 

Once there, however, the change is dramatic; it rises or falls at an exponential 

rate.  

 

Figure 6.1. The Nernst potential surface for the Fe3+ +e− ⇄ Fe2+ aqueous redox 

couple. All E0 values for this paper are from ref 3. Note that E values plotted for 

zero activity correspond to 10−12 M to avoid ±∞. 

In fact, the surfaces along both axes have been artificially truncated by using an 

activity of 1.0 × 10−12 M instead of 0.0 M. At activities of 0.0 M, the surface would 

theoretically rise to +∞ along the y axis and drop to −∞ along the x axis. The 

Nernst equation basically says that E0 is the predominant contributor to the 

potential for a linear surface half-cell everywhere except immediately adjacent to 

the two axes. As will become apparent later in this paper, the flatness of the 

linear grid Nernst potential surface for most AOx/ARed ratios is responsible for the 
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relatively steady voltage delivered by a battery during its working life. The second 

term on the right-hand side of eq 6.1, (RT/nF)ln(AOx/ARed), is an “adjustment 

factor” for fluctuations in the ratio of the oxidized and reduced forms. It does not 

have much impact on the computed value of E when the AOx/ARed ratio is fairly 

close to unity. With linear axes, the impact is small for most grid points. Because 

the activity ratio is preceded by a natural logarithm operator and the natural 

logarithm of 1 is equal to 0, not much voltage adjustment is needed until the ratio 

departs significantly from 1. Furthermore, the coefficient preceding the 

logarithmic term is equal to 0.05917 at 298.15 K. Unless the AOx/ARed ratio has 

changed greatly, its impact is further attenuated by this small coefficient. A 

detailed examination of the plateau region reveals that equipotential lines radiate 

outward from the origin like spokes on a wheel because these denote constant 

values for the AOx/ARed ratio. In fact, the line between the origin and E0 is the locus 

of points for which AFe2+ = AFe3+ and the second term of the Nernst equation goes 

to zero. Points to the right of that line are slightly lower than E0 and points to the 

left are slightly higher. As soon as one form of the redox couple is nearly depleted, 

the “adjustment factor” suddenly becomes an important determiner of the half-

cell potential. The act of discharging a Galvanic cell corresponds to moving 

diagonally toward one axis or the other at a steady rate. Thus, when the left-hand 

“wall” or the front “face” is approached, any additional movement quickly 

changes the half-cell potential. This rapid change in potential is responsible for 

the quick demise of a failing battery. 
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6.3 Galvanic cells 

A Galvanic cell involves two half-reactions, one for the anode half-cell and one for 

the cathode half-cell, so two Nernst surfaces are needed to display the sequence 

of potentials that occur as a totally aqueous cell operates. For purposes of 

illustration, consider a wet-chemistry-based Galvanic cell in which Fe3+ at unit 

activity in one half-cell oxidizes Cu+ at unit activity in the other half-cell (Figure 

6.2).  

 

Figure 6.2. Diagram for a wet Galvanic cell with aqueous iron and copper species. 

The cathode reaction is given by the same iron redox couple cited earlier, namely, 

Fe3++e− ⇄ Fe2+ (E0 = 0.770 V). The anode reaction (which runs in reverse as it has 

the lower E0) is given by the standard reduction potential Cu2+ +e− ⇄ Cu+ (E0 = 

0.158 V). Just as it takes two half-cells to form a Galvanic cell, it takes two Nernst 

surfaces to illustrate the behavior of the half-cell potentials that accompany its 

operation (Figure 6.3). The upper Nernst surface represents iron. The reduction 

path (shown in green) starts with the Fe3+ at unit activity and Fe2+ essentially 

absent. As the Fe3+ is consumed, it is converted to Fe2+. Thus, the ratio of 

AFe3+/AFe2+ moves diagonally down and to the right on the composition grid. The 

potential drops instantaneously from an initial high value on the left-hand wall 
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down to a value near E0 on the flat plateau area of the Fe surface. The lower 

Nernst surface represents the copper half-cell. The oxidation path (shown in red) 

starts with Cu+ at unit activity and Cu2+ essentially absent. As the cell operates, the 

Cu potential rapidly ascends to the plateau region of the Cu surface. The Fe3+ 

reduction reaction continues to be spontaneous as long as the iron half-cell 

potential is greater than that in the Cu half-cell. Because the entire Fe3+/Fe2+ 

plateau is well above that for Cu2+/Cu+, the reaction path moves diagonally across 

the surface until it hits the front face. When the Fe3+ is nearly depleted, the 

potential quickly plummets.  

 

 

Figure 6.3. Nernst surfaces for a wet Galvanic cell shown in Figure 2 with iron 

(upper) and copper (lower). The reduction half-reaction is tracked on the iron 

surface; the oxidation half-reaction is tracked on the copper surface. The cell dies 

when the two paths are at the same z value. 



P a g e  | 104 

 
 The Cu+ oxidation path rises from its start on the front face, progresses diagonally 

across its plateau to its left-hand wall, and then begins to rapidly climb when the 

Cu+ is nearly gone. The Galvanic cell reaction stops (“dies”) when the dropping 

Fe3+ path and the rising Cu+ path achieve the same potential. Given the symmetry 

of these two hypothetical half-cell reactions, the equilibrium point corresponds to 

a potential exactly half way between the two plateaus, that is, EFe = ECu = (0.770 + 

0.158)/2 = 0.464 V. Figure 6.3 is a visual depiction of the two explanations 

promised in the title of this paper: Why Batteries Deliver a Fairly Constant Voltage 

until Dead. The voltage delivered by an operating cell is dictated by Ecell, the 

vertical spacing between the two colored discharge reaction paths. Because the 

paths traverse essentially horizontal planes, the voltage difference is nearly 

constant. The reason batteries suddenly die is a result of the discharge path 

leaving the planar portion of the Nernst surface. When a reduction path drops 

over the front face or an oxidation path rapidly rises up the back wall or both, the 

voltage difference rapidly diminishes to zero and the cell dies. Given a constant 

current draw on the cell, the rapid voltage change happens over a very short 

stretch of the reaction path. It is a “sudden death” phenomenon. 

 

6.4 Batteries utilizing solid or pure phase redox species 

Nernst potentials for dry cell batteries are vastly simpler in appearance than those 

for wet cells. This is because the variables in the logarithmic term of the Nernst 

equation are restricted to aqueous species. The activity of a solid phase or a pure 

liquid phase is always unity. The Nernst potential for these reactions is often a 

function of only one redox species. Thus, a single trace captures the series of 

potentials that are encountered during a discharge event. A surface is not 



P a g e  | 105 

 
needed. As an illustrative example, consider the mercury oxide battery that was 

commonly used for watches, cameras, and pacemakers until environmental 

disposal concerns led to its being phased out4.  The half-reactions for a mercury 

oxide cell are typically given as5: 

Anode: Zn(s) + 2 OH-(aq) → Zn(OH)2(s) + 2 e-     (6.2) 

Cathode:  HgO(s) + H2O(l) + 2 e- → Hg(l) + 2 OH-(aq)    (6.3) 

Both reactions are really net reactions for two-step processes (Figure 6.4). Even 

though these batteries are referred to as dry cells, they usually have some liquids 

present in a paste or gelled state. This is apparent from the presence of the 

OH−(aq) species in both eqs 6.2 and 6.3. The anode reaction involves a redox step: 

 

 

Figure 6.4. Diagram for a mercury oxide dry cell battery. Chemical reactions 
illustrate the two-step process at each electrode. 

 

Zn(s) → Zn2+ + 2 e-    (Eo = -0.763 V)   (6.4) 
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Followed immediately by a precipitation event: 

 Zn2+ + 2 OH-(aq) → Zn(OH)2(s)       (6.5) 

The cathode reaction involves a dissolution step: 

 HgO(s) + H2O(l) → Hg2+(aq) + 2 OH-(aq)      (6.6) 

And then a reduction step: 

 Hg2+(aq) + 2 e- → Hg(l)   (Eo = 0.851 V)   (6.7) 

As the battery discharges, the zinc “can” of the battery is converted into zinc 

hydroxide (or zinc oxide) that coats the inside of the remaining zinc can.  

 

 
 

Figure 6.5. Nernst potential traces for a mercury oxide dry cell battery. Traces are 

based on the redox reactions of eqs 6.4 and 6.7 using an activity range of 

0.000−0.010 M. The lower end of each trace was artificially truncated to avoid a 

−∞ V result from the Nernst equation. 

 Mercuric oxide dissolves to a slight extent and the Hg2+ ions formed can then pick 

up electrons from the cathode and change into liquid mercury. The liquid mercury 
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disperses throughout the paste or gel filled core of the battery. (If the mercury did 

not disperse, the cell would be rechargeable.)The Nernst potentials are 

predominantly regulated by the two redox half-reactions shown in eqs 6.4 and 

6.7. A plot with two traces is sufficient to display the series of potentials that 

occur during a mercury oxide battery discharge (Figure 6.5).  

                 The upper trace represents the reduction half-cell potentials whereas 

the lower trace follows the oxidation half-cell potentials. The theoretical voltage 

available between eqs 6.4 and 6.7 is (0.851 V) − (−0.763 V) = 1.614 V. Generally, 

mercury cells deliver an open circuit voltage of about 1.4 V due to resistance 

losses, differences in ion mobilities, accumulation of species at the metal 

electrode surfaces, and circuit over-potentials. Once again, the trends in the two 

traces provide a visual explanation for the cell behaviors incorporated into the 

title of this paper. First, as there is essentially a constant vertical difference 

between the two traces over most activities, the cell output voltage will be 

relatively constant. Second, the battery will die suddenly because the upper 

mercury trace exponentially drops when Hg2+ is depleted. As the plunging upper 

mercury trace hits the slowly rising potential of the lower zinc trace, the cell dies. 

 

6.5 Some additional teaching points with Nernst surfaces 

Galvanic cells are a frequently encountered topic in chemical education.6−10 Their 

use typically falls into one of two categories: use as a source of energy as 

batteries11 or use in analytical measurements via pH or ion selective 

electrodes.12−15 The Nernst surface approach provides a nice way to contrast how 

the potentials are used in the two applications by illustrating the difference 
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between displaying the Nernst equation on linear versus logarithmic scales. 

Battery applications are best understood using a linear composition grid; 

analytical measurements employing electrodes are best under-stood using a 

logarithmic composition grid. The surface shown in Figure 6.1 has linear grid axes 

that extend to 1.0 M, a large value compared to those found in most real 

solutions. This was done expressly to illustrate the grid-point that defines the E0 

conditions. The Nernst surface looks the same for smaller ranges of activities as 

long as it is still plotted on a linear set of axes. Restriction of the activity range to a 

maximum value of 0.01 M makes essentially no perceptible difference in the 

appearance of the Nernst surface (Figure 6.6). 

 

 

Figure 6.6. Linear-grid Nernst surface with maximum activity of 0.01 M. 

The region of rapid change is still completely contained within the first grid 

interval. The potentials generated by the Nernst equation will be dominated by E0 

whenever they are plotted on linear scales and are associated with the relatively 

high levels of ions that are present in batteries. The logarithmic term is only a 
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minor contributor until battery failure. An analogous effect is seen in acid−base 

chemistry with the Henderson−Hasselbalch equation16 and the pH value of a 

buffer solution: 

                               𝑝𝐻 = 𝑝𝐾𝑎 + log
[𝑏𝑎𝑠𝑒 𝑓𝑜𝑟𝑚]

[𝑎𝑐𝑖𝑑 𝑓𝑜𝑟𝑚]
                                (6.8) 

When significant quantities of both an acid and its conjugate base form are 

present, it is largely the pKa value that determines a buffer pH, not the logarithmic 

term that contains the ratio of acid- to base-forms. A buffer possesses a relatively 

stable value until its capacity is exceeded. Then, it, too, shows rapid pH changes. 

          Plotting the Nernst surface over a logarithmic grid reveals an entirely 

different look. The logarithmic axes yield a sloped surface that is perfectly planar 

(Figure 6.7). The planar behavior is the basis for another extremely useful 

application of the Nernst equation, namely, using the observed potential of a 

sensing electrode to measure the activity of an aqueous analyte. The logarithmic 

scales permit useful information to be extracted over many orders of magnitude. 

We selected 1 × 10−9 M to 1 M in Figure 6.7 to include the working range of most 

commercial ion selective electrodes. Electrodes for determining pH, for example, 

depend on a linear response of 59.17 mV for each order of magnitude change in 

H+ activity. The sensing electrode is one half-cell in a Galvanic cell. The other half 

of the Galvanic cell is maintained at a constant potential by means of a reference 

half-cell, typically Ag/AgCl. All change in the overall cell potential is attributable to 

the change in the analyte activity.  
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Figure 6.7. Logarithmic-grid Nernst surface with maximum activity of 1.0 M. 

 

Other ion selective electrodes   have been developed to follow the activities of a 

number of charged species in solution such as Cl−, F−,Cu2+, and Ag+. For upper-

level analytical courses, the linear surfaces give a unique visualization of exactly 

what E0 represents. The conditions that define E0 are not a very practical solution 

and it is unlikely that they will be encountered in an actual experiment. On the 

other hand, it is quite likely that a potential equal to E0 will be encountered when 

equal activities of the oxidized and reduced forms are present, such as half way to 

an equivalence point in a redox titration. Students should realize that the diagonal 

locus of points from the origin to E0 (at the 1.0 M, 1.0 M grid point) are all 

equipotential. Finally, the concept of mapping experimental paths onto a 

composition grid forces students to consider the sequence of compositional 

changes that relate to procedures carried out on a system.17 The redox paths 

shown in this paper that correspond to cell discharges form paths that angle 
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across the grid with negative slopes. They are easy to understand because there 

are no volume changes that accompany the redox reactions. If you ask the 

students to characterize what happens during a dilution procedure on the linear 

grid, they should respond with a path that tracks from its starting coordinates and 

proceeds straight toward the origin. Because the ratio of oxidized to reduced 

form does not change, all points will be at an equipotential voltage. A more 

challenging exercise would ask students to plot the experimental path for a redox 

titration. The use of composition grids helps students visualize the behavior of an 

aqueous equilibrium concept over a universe of possible concentrations. Realizing 

how compositions of a system change during experimental procedures such as 

titrations or dilutions will deepen their appreciation of some subtle points. Papers 

exploring composition grids for acid− base, metal complexation, and solubility 

equilibrium in aqueous solution are in preparation. Shows essentially two types of 

features. Parts of it are flat spots and the other parts are cliffs. Flat spots are 

responsible for the near constancy of the voltage. The voltage for a half-cell 

remains quite close to its E0 value over most of its useful life because drawing a 

current (a linear process) only makes small changes in species’ activities. 

Furthermore, the impacts of these small changes are damped by the logarithmic 

nature of the second term in the Nernst equation (eq 6.1) and its small coefficient 

of 0.05917. It is only when a redox species is nearly depleted, that drawing a 

current can suddenly change its activity by orders of magnitude. Under these 

conditions, the logarithmic term quickly goes from being inconsequential to being 

dominant. These are cliff events on the plots. The cell dies as the difference 

between the two half-cell potentials diminishes. Equilibrium, another term for a 

dead battery, is rapidly approached. 
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Chapter 7 

Visualizing the Nernst Equation and Galvanic Cells via 3-D Surfaces 

7.1 Introduction 

Most introductory and analytical chemistry courses apply the Nernst equation to 

calculate potentials in redox problems. But many subtle aspects of aqueous redox 

equilibria are missed by simply looking at the calculated results for a single set of 

solution conditions.  Take, for example, the difference between calculating the 

potential for a single solution composition versus the series of potentials in a 

redox titration curve.  The titration curve possesses much richer information for 

the reader to understand as the solution composition systematically approaches 

and passes an equivalence point.  Even more insights are available by adding a 

third axis for an even wider set of conditions.  The additional axis allows the 

behavior of aqueous systems to be displayed over all possible ratios of the 

oxidized and reduced forms of the redox couple.  The calculated potentials for the 

entire set of possible compositions (a composition grid) generate a three-

dimensional surface.  This paper uses three-dimensional surfaces to demonstrate 

how the Nernst equation behaves over a broad range of solution conditions.  It 

shows how paths across the surface correspond to cell reactions as Galvanic cells 

operate.  It also illustrates the effect of varying each parameter in the equation. 

 

7.2 The Nernst Equation and the Redox Composition Grid 

The Nernst equation (Equation 1), as typically used, should probably be called the 

Peters equation:   
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𝐸 = 𝐸0 + 
𝑅𝑇

𝑛𝐹
ln

𝐴𝑂𝑥

𝐴𝑅𝑒𝑑
                                                            (7.1) 

Where,  

E is the potential expressed in volts, 

E0 is the standard reduction potential for unit activity and 298K, 

R is the universal gas constant, 

T is temperature in kelvin, 

F is the Faraday constant, 

and n is the number of electrons transferred in the reaction. 

V.A. Shaposhnik1 traces the role that Nernst played in developing the form of the 

equation that appears in most textbooks.  In 1877 Helmholtz, Nernst’s mentor, 

derived an equation for a Galvanic concentration cell – one in which both 

electrodes are identical and the electrolytes in the two half-cells differ only in 

concentration.  In 1889 Nernst published a formula in which he replaced an 

empirical factor in the Helmholtz equation with one containing the familiar R, T, n 

and F parameters2.  The equation conventionally called “the Nernst equation” 

first appeared in an 1898 paper by Rudolf Peters3.  Peters and Nernst both 

worked for Ostwald at Leipzig University.  The Peters equation is applicable not 

only to concentration cells, but also to cells in which the two half-reactions are 

completely distinct from one another. 

Use of a novel, redox composition grid helps visualize the overall behavior 

of the Nernst equation.   While composition grids have appeared in past papers 

discussing large-scale trends in aqueous equilibria, they have generally been 

associated with complexation reactions.  They recorded the concentration of 

ligands on one axis and the concentration of metal on the other 4-7.  The redox 
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composition grid introduced here is different in that the two axes represent not 

two reactants, but the balance between oxidized and reduced forms of the 

substance comprising the redox couple.  Figure 7.1, for example, displays the 

redox composition grid for the couple involving the single electron transfer 

between Fe3+ and Fe2+.  Any single calculation involving the Nernst equation 

corresponds to substituting in a specific pair of x,y-coordinates from the grid.  The 

x-coordinate signifies the activity of the reduced form (AFe
2+) and the y-coordinate 

signifies the activity of the oxidized form (AFe
3+).  
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0.0

0.2

0.4

0.6

0.8

1.0

AFe
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Figure 7.1.  The redox composition grid for the Fe3+ + e- → Fe2+ redox- couple. 

7.3 Nernst Equation Surfaces for Single Redox Couples 

Substituting every pair of (AFe
2+, AFe

3+) grid coordinates into the Nernst equation 

generates the third value needed as the z-coordinate to construct the Fe3+/Fe2+ 

surface plot.  Two versions of the redox grid are possible – one in which the x- and 

y-axes are linear (Figure 7.2, panel I) and the other in which the x- and y-axes are 

logarithmic (Figure 7.2, panel II).  Each has its merits. 
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The linear-axis surface illustrates that the potential for a redox couple never 

moves far from the E0-value over most ratios of Fe3+ and Fe2+.  The definition of Eo 

itself is associated with the grid point at the right-hand back corner of the surface, 

i.e., the point at which both AFe
2+ and AFe

3+ are at unit activity.  It is only when 

either AFe
2+ or AFe

3+ approach small levels that the potential begins to change.  

Once there, the change is dramatic.  In fact, we have artificially truncated the 

surfaces along both axes by using an activity of 1.0 x 10-12 instead of 0.  At 

activities of 0 the surface would rise to +∞ along the y-axis and drop to -∞ along 

the x-axis.  The Nernst equation basically says that E0 is the predominant 

contributor to the potential for a half-cell.  The second term in the equation is a 

“correction factor” to adjust for fluctuations in the ratio of the oxidized and 

reduced forms.  Note that the majority of the linear axis surface is essentially a 

plane at the level of E0, namely, 0.771 V for the Fe3+/Fe2+
 example here.  A 

detailed examination of the plane reveals that equipotential lines radiate outward 

from the origin like spokes on a wheel.  The line between the origin and E0 is the 

locus of points for which AFe
2+ = AFe

3+ and the second term of the Nernst equation 

goes to zero.  Points to the right of that line are slightly lower than E0; points to 

the left are slightly higher. The logarithmic-axis surface is not quite as rich in new 

insights, but it does demonstrate the logarithmic variation in potentials as 

activities change over many orders of magnitude.  The redox composition grid has 

been rotated in Figure 7.2, panel II to place the E0-point at the front.  This is 

necessary to make the rest of the surface easily visible.  All but the nearest ten 

grid points of this surface correspond the x,y-coordinates on the linear-axes plot 

that are in the front face that drops toward -∞ or the left-hand wall that rises 

toward +∞.    
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Figure 7.2.  The Nernst surface for the Fe3+ + e- → Fe2+ redox couple.  Panel I – 

linear axes.  Panel II – logarithmic axes. Eo values used here and in other plots are 

from Reference 8. 

In other words, most grid-points on the logarithmic axis surface are nearly 

depleted in at least one form of the redox couple. 

               The Nernst equation surface on a linear set of axes looks largely the same 

no matter what the range of activities is employed.  The axes for the redox 

composition grid of Figure 7.1 extended to activities of 1.0, a large value 

compared to those found in most real solutions.   It was done expressly to 

illustrate the grid-point that defines the E0 conditions.  Restriction of the activity 

range on the linear axes to a maximum value of 0.1 or even 0.01 makes an almost 

imperceptible difference in the appearance of the Nernst surface (Figure 7.3).  

The only differences reside in the left-hand wall and the front face.   These 

differences are mostly an artifact of maintaining an activity or 1.0 x 10-12 as a cut-

off equivalent to zero.  All other grid points retain the same AFe
3+/AFe

2+ ratio, so 
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the corresponding correction term values are identical.  What does change, 

however, is the capacity of the system to respond to e- fluxes.  This point will be 

discussed further in the next section which addresses reaction paths on Nernst 

surfaces.   
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Figure 7.3.  The Nernst surface for more dilute systems of the Fe3+ + e- → Fe2+ 

redox couple.  Panel I – 0.1 maximum activity.  Panel II – 0.01 maximum activity. 

Since the Nernst equation is written in terms of activities, how would a potential 

surface look when concentrations are used instead?  Electrodes respond to 

activities, but real systems may contain significantly higher amounts of dissolved 

materials in them.  Figure 7.4 represents an attempt to illustrate the differences 

in potentials that would be exhibited by building the redox composition grid on 

concentration axes rather than activity axes.  The maximum concentration for 

both the reduced and oxidized forms was set at 0.001 M.  A constant ionic 

strength was imposed on the system at 0.2 M.  Experimentally this could be 

accomplished by using an ionic strength adjusting solution at all points.  Thus, 
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activity coefficients are constant for each of the two species involved.  The activity 

coefficient for Fe2+ at 0.2 M is given by Kielland’s classic table9 as 0.405.  For Fe3+ 

the activity coefficient is 0.18.  Because the activity coefficient is so much smaller 

for the trivalent Fe3+ ion, the ratio of Fe3+ to Fe2+ in the correction term of the 

Nernst equation has been reduced.  The calculated potential for the 

corresponding grid point is lower than that of the activity surface.  Beyond that, 

the overall shape of the surface is basically unchanged.  There is a constant gap 

between the two plateaus and the left-hand wall and front face are 

correspondingly displaced.  
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 Figure 7.4.  Comparison of the Nernst surfaces for Fe3+ + e- → Fe2+ redox couple: 

concentration-based axes (lower - black) and activity-based axes (upper - red). For 

the concentration axis surface ionic strength was fixed at 0.2 M.  Activity 

coefficients are from reference 9.  

Use of 0.2 M as the ionic strength probably represents about the maximum 

discrepancy between an activity-based potential versus a concentration-based 

potential.    If one were to calculate a surface for a system in which the ionic 

strength changes with the extent of reaction, there would be a slight downward 
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slope to the plateau.  The end result is that the concentration-based system will 

have long-term trends that are not greatly different from the idealized activity 

surfaces.  

 

7.4 Reaction paths 

The richness of insights provided by viewing Nernst equation surfaces emerges 

when potentials for the series of points corresponding to a redox reaction are 

tracked across the grid. The section defines reaction paths for redox processes 

and then employs them to illustrate Galvanic and concentration cell reactions.  It 

provides a visual depiction of a redox reaction’s equilibrium point and a method 

for determining which direction for a cell reaction is spontaneous. 

         Given the manner in which the redox composition grids are constructed, any 

half-reaction that occurs will generate a slanted line across the grid with a 

negative slope.  Reduction half reactions will proceed downward and to the right; 

oxidation half reaction will proceed upward and to the left.  For a single electron 

transferred in a half reaction, the slope of the lines will always be -1.0 (Figure 7.5, 

Panel I) This is a result of the half-reaction stoichiometry.  In the Fe3+/Fe2+ redox 

couple, i.e., Fe3+  +  e-   →  Fe2+, the coefficient for both Fe3+ and Fe2+ is one.  For 

each Fe3+ that disappears in a reduction process, a Fe2+ appears.  The converse is 

true in the oxidation reaction, for each Fe2+ that disappears, a Fe3+ appears.  Half 

reactions that contain stoichiometries other than 1:1 will yield lines at other 

negative slopes (Figure 7.5, Panel II).  
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Figure 7.5.  Reaction paths.  Panel I – Reaction paths for Fe3+ + e- → Fe2+ reduction 

(red) and Fe2+  +  e-  →  Fe3+ oxidation (blue) plotted on the Fe3+/Fe2+ Nernst 

surface.  Panel II – Projections of the reaction paths for various stoichiometries on 

the redox grid.  Sample half reactions:  Br3
-  +  2 e-  →  3 Br- (slope  -0.33); Br2(aq)  

+ 2 e-  → 2 Br- (slope -0.5); Fe3+  + e-  →  Fe2+ (slope -1.0); 2 Rh3+ + 2 e-  →  Rh2
4+ 

(slope -2.0). 

A Galvanic cell involves two half reactions, one for each half-cell, so two Nernst 

surfaces are needed to display the sequence of potentials that occur as the cell 

operates.  For purposes of illustration, consider a Galvanic cell in which Fe3+ at 

unit activity in one half-cell oxidizes Cu+ at unit activity in the other half cell 

(Figure 7.6).  As the Fe3+ is consumed, the potential drops from the left-hand wall 

down onto the Fe plateau area.  The Fe3+ reduction reaction continues to be 

spontaneous as long as its potential is greater than that in the Cu half-cell.  As can 

be seen in the figure, the entire Fe3+/Fe2+ plateau is well above that for Cu2+/Cu+, 

so the reaction path moves diagonally across the surface until it hits the front 

face.  As the Fe3+ is nearly depleted, the potential quickly plummets.  At the same 
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time, the Cu+ oxidation path rises from its start on the front face, progresses 

diagonally across its plateau to its left-hand wall and then begins to climb as the 

Cu+ is nearly gone.  The Galvanic cell reaction stops when the dropping Fe3+ path 

and the rising Cu+ path achieve the same potential.  Given the symmetry of the 

two half-cell reactions, this corresponds to a point exactly half-way between the 

two plateaus. 
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Figure 7.6.  Galvanic cell.  The upper surface represents the Fe3+ + e- → Fe2+ redox 

path for a starting point with Fe3+ at unit activity and Fe2+ essentially absent.  The 

lower surface represents the Cu+ → Cu2+  +  e- redox path for a starting point with 

Cu+ at unit activity and Cu2+ essentially absent.  The Galvanic cell ceases to 

operate when the two path potentials are equal.  For this symmetric pair of half-

cell reactions, Ecell = 0 V halfway between the two E0 values (EFe path = ECu path = 

0.466 V). 

The Nernst surface approach nicely illustrates how concentration cells work, too.  

As noted earlier, these are the cells with which Nernst originally worked.  They are 

a particular type of Galvanic cell, one in which both electrodes are identical and 
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the electrolytes in the two half-cells are also identical except in concentration.  

Only one Nernst surface is needed here.   
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Figure 7.7.  Concentration cell reaction paths for the Fe3+/Fe2+ surface.  The pair of 

reaction paths starting at an activity of 0.5 are for a symmetric system – both 

starting activity and volumes are the same magnitude.  These meet at the surface 

diagonal where ERed
 = EOx = E0. The other pair of paths illustrate an asymmetric 

reaction.  Both half-cells had identical volumes, but different activity levels.  They 

meet at a non-diagonal point, but all other surface points with this E value define 

a line emanating out from the origin. 

                The driving force for the cell comes from choosing a pair of starting 

coordinates on the redox grid that have substantially different potentials.  This 

generally means one half-cell will be enriched in the oxidized form of the couple 

(high on the left-hand wall) and the other half-cell predominantly holds the 

reduced form (a point low on the front face).  Two pairs of starting points are 

illustrated in Figure 7.7.  As the concentration cell operates, the two opposing 

reaction paths approach each other on the plateau.  If the two half-cells started 
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with the same concentration and volumes of the active species, the two paths will 

meet on the plateau’s diagonal where each half-cell will exhibit an E0 voltage.  If 

the two half-cells are different in starting concentrations or volumes of the active 

form, then the cell reaction will stop as the paths meet on another equipotential 

line that emanates out from the origin.    

 

7.5 Varying “Correction Term” Parameters 

The “correction term” of the Nernst equation, namely, RT/nF ln(AOx/ARed), 

includes a number of parameters that can affect the overall look of the resultant 

surface.  These include n (the number of electrons transferred), T (the 

temperature), pH (if hydronium or hydroxide ions are included in the half-

reaction) and solid/pure phases.  This section details the changes imparted to the 

Nernst surface as each parameter listed above is changed. 

               The number of electrons transferred in the half reaction, n, appears in 

the denominator of the correction term.  Its effect on linear surfaces is to alter 

the slope of the plateau.  This is particularly noticeable where the plateau rises up 

against the left-hand wall or drops off of the front face.  The higher the n-value, 

the flatter the plateau is as it approaches the left and front edges.  In Figure 8, 

surfaces for two half reactions with different n-values are superimposed.  The 

black surface for the single electron transfer between Fe3+ and Fe2+ exhibits a less 

abrupt curvature as is approaches the left wall and front face.  It rises up at a 

distinctly faster rate at the back left edge of the plot.  The flatter red surface for 

the three electron transfer between Cr6+ and Cr3+ can be seen below it.   
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Figure 7.8.  The effect of n on the Nernst surface plateau slope.  The black surface 

corresponds to the Fe3+ +  e-   →  Fe2+ couple.  The red surface corresponds to the 

Cr6+ +  3e-   →  Cr3+  (in 2 M H2SO4) couple.  The blue pair of reaction paths follows 

a spontaneous reaction between Fe3+ and Cr3+.  The red pair of reaction paths 

follows a spontaneous reaction in the opposite direction between Cr6+ and Fe2+. 

A close look at the right edge of the two surfaces reveals that the black surface 

curls down through the flatter red surface such that the black surface is below the 

red one at the front right corner.  This leads to an interesting consequence for the 

direction of spontaneity in the cell.  Over most possible half-cell compositions, the 

black Fe-surface is above the red Cr-surface so the spontaneous reaction will be 

Fe3+ oxidizing Cr3+ (e.g., blue reaction path pair).  For a limited set of half-cell 

compositions, however, the spontaneous reaction is briefly in the other direction.  

Here Cr6+ oxidizes Fe2+ (green reaction path pair). 

            Changing the temperature of a half cell has two effects with respect to the 

Nernst surface.  First, E0 itself is a function of temperature, so the E0 used for the 
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surface must be adjusted.  Second, the appearance of T in the numerator of the 

“correction term” conveys a slight increase in the slope of the plateau portion of 

the surface.  Both of these effects are seen for the Cu2+/Cu+ couple in Figure 7.9.  

An upper limit of 1000C was selected to accentuate the maximum effect of 

temperature changes in a aqueous medium.  The Eo was corrected from its value 

of 0.161 V at 250C to 0.219 V at 1000C.  Since the E0 at 1000C is larger, the entire 

surface is displaced upward by the more dominating Eo-term of the equation.   
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Figure 7.9.  The effect of T on Nernst surfaces.  Both surfaces represent the half 

reaction Cu2+ + e- → Cu+. The lower red surface corresponds to a temperature of 

250C (298.15 K).  The upper black surface corresponds to a temperature of 1000C 

(373.15 K).  The E0 was corrected for temperature using the relationship E0(T)  =  

E0  + (dE0/dT)T 8. 

The smaller, second effect of T in the “correction term” is seen in the slope of the 

upper surface’s plateau.  It is most easily seen at the back left corner where the 

100-degree surface rises faster on its approach to the wall and in the front right 

corner where it rolls off sooner into the front face. 
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Many half-reactions include species that can undergo changes in activity other 

than the actual redox couple itself.  The most common additional species are 

hydronium ion, H3O+, or hydroxide ion, OH-.  
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 Figure 7.10.  The effect of pH on a Nernst surface for a half-reaction containing 

H3O+.  The half-reaction used here is Fe(OH)2+  +  H3O+  →  Fe2+  +  2 H2O.  Half-cell 

conditions fixed pH = 7.00 (lower surface), pH = 5.00 (middle surface), and pH = 

2.00 (upper surface). 

 Their activities appear as extra terms in the logarithmic portion of the “correction 

term”.   Consider as an example the reduction of a FeOH2+ complex ion.  The half 

reaction is FeOH2+ + H3O+ → Fe2+ + 2 H2O with an E0 = 0.9 The “correction term” 

for this reaction at 250C and with log10 is 0.05917 log (AFeOH2+AH3O+/AFe2+).  At a 

fixed pH, the AH3O+ can be factored out as a second constant alongside the E0 

term, i.e., 0.05917 log AH3O+.  Because the AH3O+ will be less than 1.0, this term will 

always carry a negative sign and be more significant in magnitude as the pH rises.  

This is easily seen in Figure 7.9 where the surfaces for pH=2.0 (upper surface), 
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pH=5.0 (middle surface) and pH=7.0 (lower surface) are superimposed on the 

same axes.  The surfaces are identical except for the added constant offset.  In an 

experimental setting for which pH was not fixed, the potential would change 

0.059 V for each pH-unit shift that the half-cell solution experiences.  An 

additional complication would be the shift in complex ion activities, i.e., alpha 

coefficients for fractional composition diagrams, occasioned by any hydrolytic 

ligand interactions.    

              Nernst surfaces for cell reactions with a redox couple species that is a 

solid or pure liquid phase are less complicated than those already discussed.  They 

will simply be missing the left wall or the front face depending on which species 

comprises the pure phase.  Figure 7.10 shows an example of each.  The upper 

surface is for a half-cell with a solid reduced form.  Since its Nernst equation has 

no activity term in the denominator of the logarithm, it never increases toward 

+∞ to form the left wall feature.  In a similar fashion, the lower surface relates to 

a half-cell with a solid oxidized form.  The Nernst equation for it has no activity 

term in the numerator of the logarithm.  The ratio of species never goes to zero 

and its logarithm never plummets to form the front face.  While pure phase 

surfaces carry no new information on the pure phase axis, they are still useful to 

view when interacting with other half cells that have both left walls and front 

faces. 
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 Figure 7.11.  Nernst surfaces for half-reactions containing solids or pure liquid 

species.   The upper surface is for a redox couple with a solid reduced form:  

FeO4
2- + 3 H2O + 3 e- → FeOOH(s) + 5 OH- at pH = 10.00.  The lower surface is for 

redox couple with a solid oxidized form:  FeOOH(s) + 3 H3O+ + e- → Fe2+ +  5 H2O at 

pH = 2.0. 

 

7.6 Conclusion 

Use of composition grids to visualize equilibrium concepts holds much value to 

enhance the understanding of overall trends and subtle influences.  This was 

personally experienced by the authors during the preparation of this manuscript.  

We originally envisioned about half of the figures that are included in this paper, 

but each surface prompted new questions and yielded new insights. This suggests 

that even more Nernst surface nuances are yet to be discovered.  We are 

currently employing similar composition grid studies to investigate other aqueous 

equilibrium concepts. 
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7.7 Note 

The calculations for each individual redox topo included in this chapter were 

performed through an Excel file named Redox TOPOS (Appendix II.C.).  Sliders 

allow the use to select the half-reaction’s Eo, n or T from which to compute the 

surface.  Other user inputs can include H+ or OH- species (with the pH specified) 

and pure phases (solids or liquids). Figures with superimposed surfaces were 

generated with the PSI-Plot (Version 9.01) commercial software package (Poly 

Software International, Pearl River, NY).  
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Chapter 8 

3-D Surface visualization of aqueous solubility of sparingly soluble 

salts 

 

8.1 Solubility of Ionic Salts 

The solubility product expression, Ksp, was first introduced by Walther Nernst in 

18891.  When the solubility phenomenon of slightly soluble salts is introduced 

in general chemistry courses, it is traditionally it taught from the standpoint of 

simple Ksp expression2. This is an inadequate description of the rich chemistry 

that can occur in solution.  Ion pairing, dissolved aqueous complexes, 

hydrolysis reactions, and polynuclear species are all possibilities (Figure 8.1).  

3-D visualization of solubility topo surfaces above a cation-anion composition 

grid can systematically address each of these complicating side-reactions and 

reveals the conditions under which they become significant.  This chapter only 

includes detailed topo surfaces and analysis for the simplest Ksp-only case due 

to time constraints.  It does, however, set the framework for future 

developments in which the more complicated interactions can be compared to 

the limitations of the Ksp-only model. 

AgCl(s) 100% dissociated as [Ag+] and [Cl-]

AgCl(aq) or (AgCl)0

AgOH AgCl2
-, AgCl3

2-, 
AgCl4

3-. 

Ag2Cl+ , Ag3Cl2+

 

Figure 8.1.  Some possible interactions in the AgCl system. 
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The composition grid for solubility topo surfaces shows the total analytical 

concentration of the anion on the y-axis and the total analytical concentration 

of the cation on the x-axis. The principal z-axis for solubility systems will 

represent the overall solubility of the salt of interest, often in the presence of 

common ions.  Because compositions for the surface include more than just 

adding a solid ionic salt to water, a broad view of solubility must be kept in 

mind.  The dissolution of AgCl in water corresponds to a limited series of 

mixtures that define a simple diagonal trace across the composition grid from 

the upper right corner of the grid to the lower left. The topo treatment here 

also considers all the off-diagonal combinations of Ag+ and Cl- ions that could 

be formulated. This broader investigation of the AgCl system can be visualized 

as mixing various combinations of AgNO3 and NaCl solutions to produce one of 

the two components in excess. 

The definition of solubility shifts from one region of the topo surfaces to 

another to take into account those situations in which common ions are 

present.  Without common ions, i.e., a stoichiometric mix, the solubility of the 

salt can be determined from either of its component ions.  With common ions 

around, however, their influence on solubility equilibrium must be taken into 

account.  Consider, for example, the simple Ksp-only case for AgCl in which only 

a 1:1 salt exists.  Under excess Cl- conditions, e.g., AgCl is dissolved in NaCl, the 

solubility will be defined by the [Ag+] concentration.  Under excess Ag 

conditions, e.g., AgCl is dissolved in AgNO3, it is the [Cl-] that determines the 

solubility.   

Stoichiometric mix: solubility = [Ag+] = [Cl-]   (Eq 8.1) 

Excess Ag:   solubility = [Cl-]     (Eq 8.2) 
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Excess NaCl :  solubility = [Ag+]    (Eq 8.3) 

  

8.2 Computational approach for solubility topo surface calculations 

The log-log composition grid used for solubility topos contains 1369 grid points 

(37 x 37) where each axis covers a range from 1 x10-9 M to 1 M in 0.25 log unit 

increments.  This permits modeling of a wide range of compositions, 

essentially most that are feasible. It is essentially the same grid as was used for 

the metal-ligand complexation grid (see Figure 5.1).  A Microsoft ExcelTM 

spreadsheet, Solubility TOPOS has been created with embedded Visual BasicTM 

macros to automatically compute and plot the solubility topos for many Ksp-

only systems.  They only required inputs are a choice of the salt’s stoichiometry 

and the associated Ksp value.  The version included here is incomplete in that 

no aqueous species other than the bare component ions are included. 

For illustrative purposes, the AgCl system is chosen as it has numerous 

applications ranging from photography to the most widely employed reference 

electrodes.  Because it has been extensively studied, there is a large body of 

available thermodynamic and experimental data.  For the simple model 

presented here, a Ksp value of 1.8 x 10-10 was adopted3.  In order to calculate 

the complete solubility topo surface, six different solubility assignment 

procedures were employed depending on the region of the composition grid 

(Figure 8.2).  Three regions, 1 through 3, are associated with unsaturated 

solutions and three others, 4 through 6, correspond to saturated conditions.  

Separating the two groups of regions is the diagonal saturation boundary that 

is determined by the Ksp value.  It intersects both axes at log (1.8 x 10-1 M) =      

-.74. For Regions 1 through 3 no solid AgCl is present.  For a stoichiometric mix, 
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when AgCl is dissolved in pure water, either Agtot = [Ag+] or Cltot = [Cl-] provides 

the solubility value. Region 2 contains all compositions where AgCl completely 

dissolves in a NaCl solution.  Since Cl- can come from two sources, either AgCl 

or NaCl, we determine the amount of AgCl that has dissolved from Agtot = [Ag+].  

The complementary case occurs over Region 3 as AgCl completely dissolves in 

a solution of AgNO3.  These assignments generate two ramps that are inclined 

at 45o and meet in a ridge over the Region 1 stoichiometric mix line (Figure 

8.3).   

 

Figure 8.2.  Solubility assignment regions for the AgCl system. 

 Color filled surfaces are presented for the solubility topos because their 

pyramidal structure is difficult to perceive in an open wire-frame plot.  The 

pyramid faces on the back side from the viewer make too much visual clutter. 

log Agtot 
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g
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In Regions 4 through 6 the solution is saturated with respect to AgCl and solid 

is present.  The solubility of AgCl along the Region 4 stoichiometric mix line 

uses the familiar solubility = Ksp
0.5 formula for a 1:1 salt4.  Regions 5 and 6 are 

complementary.  In both cases one begins with the assumption that the free 

species of interest is equal to its excess amount.  This is then successively 

substituted into the Ksp expression and refined until no additional changes are 

noted within the allowed precision.  Because the contributions from the 

solubility of sparingly soluble salts are small in comparison to the excess levels, 

not many iterative refinement cycles are needed.  

          

Figure 8.3.  Wire frame (left) and contour (right) versions of the AgCl solubility 
topos for the Ksp-only model.  

A default value of 8 cycles is built into the program but can be easily altered if 

necessary.  The Region 4 through 6 portions of the 1:1 AgCl surface shows a 

“stoichiometric spine” running from the middle of the saturation boundary to 

the (0,0) point at the upper right corner of the grid.  The spine is horizontal 

without any breaks.  An artifact of the Excel routines that draw three-

dimensional surfaces makes it appear as a series of individual, toothy peaks.  

Finer grid point increments would confirm its smooth horizontal character.  To 

log Agtot 
log Agtot log Cltot 
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g
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either side are sloping ramps that complete an overall pyramid shape 

elsewhere. 

 

8.3 Surfaces for other stoichiometries 

Sparingly soluble salts with stoichiometries beyond a 1:1 ratio show similar 

solubility topos.  Figure 8.4, for example, illustrates the solubility topo surface 

for lead (II) iodide, PbI2 with a Ksp of 7.9 x 10-9.  While the overall surface still 

has a pyramidal shape, it is not symmetric.  The two faces visible in the wire-

frame view below are tipped toward the high point at an incline of 45o.  The 

face for excess ligand in the saturated regions is tipped more steeply at 60o. 

That is why the colored contours are less wide in the right-hand figure panel.  

The face for excess metal in the saturated regions is more shallowly sloped at 

30o. 

 

Figure 8.4.  Colored wire frame and contour map solubility topos for PbI2 

A complication in visualizing the surfaces is encountered for the 1:2 

stoichiometry because the regular-spaced grid points do not coincide with the 
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stoichiometric spine (Figure 8.5).  At the left edge of the grid, when the Pbtot = 

[Pb2+] is 10-9 M, the Itot = [I-] is 2 x 10-9 M.  Grid points are at log Itot values of       

-9.0, -8.75, 8.50.  Log (2 x 10-9) = -8.70 is not at a grid point.  Thus, the 

stoichiometric ridge has anomalies caused by landing on non-grid points across 

the entire grid.   The ridge edge should be sharp in the unsaturated region.  

Here it is shaved off into a thin flat strip.  The small peak at the top of the 

pyramid, where the saturation boundary intersects the stoichiometric ratio, is 

an artifact.  In reality, once the saturation boundary is encountered, the 

solubility is a fixed constant for the remainder of the spine’s run. 

 

Figure 8.5.  The stoichiometric ratio path for a 1:2 salt on the solubility 
composition grid.  While the path crosses the grid at a 45o angle, it misses grid 
points at every occasion. 
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8.4 Developments beyond the Ksp-only model 

The shortcomings of a simple Ksp interpretation of the aqueous chemistry of 

AgCl can be highlighted by including model situations in which ion 

pairing/neutral complexes, higher chloro-complexes, hydroxyl complexes and 

binuclear species are present.  Unfortunately, time constraints do not allow a 

detailed treatment here.  But the framework has been established with the 

solubility composition grid around which to organize an analysis of where 

additional chemical interactions would come into play.  Increasingly complete 

model scenarios can be systematized into the following cases:  

Case 1: The simplistic Ksp-only model where dissolved species are just Ag+ and 

Cl-  

Case 2: Inclusion of a neutral complex/ion pair AgCl0  

Case 3: Inclusion of higher, negatively charged, chloro-complexes and silver 

hydroxyl hydrolytic species - AgCl2-, AgCl32-, AgCl43-, AgOH, Ag (OH) 2
-, etc.  

Case 4: Inclusion of polynuclear complex, Ag2Cl2.   

The goal of visualizing these new 3-D topo surfaces would be to highlight the 

importance of having increasingly detailed descriptions of the chemistry 

occurring in aqueous solubility systems. Presenting these surfaces with a wide 

range of compositions will provide the knowledge to know under what 

conditions the various discrepancies are encountered.  The expansion of the 

Solubility TOPOS program to include these higher cases is in progress and 

should make it no longer necessary to neglect other important reactions going 

on in the system.  Even beginning students could evaluate the impact of 

omitting various species from the model. 
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The solubility of AgCl in the higher cases will include aqueous species beyond 

[Ag+].  Chloro- and hydroxyl-complexes will enhance the calculated solubility.  

For example, the solubility of AgCl in a saturated region with excess Cl- would 

be;    

𝑠𝑜𝑙𝑢𝑏𝑖𝑙𝑖𝑡𝑦 =  [𝐴𝑔+] + [𝐴𝑔𝐶𝑙0] + [𝐴𝑔𝐶𝑙2
−] + [𝐴𝑔𝐶𝑙3

2−] + [𝐴𝑔𝐶𝑙4
3−] +

[𝐴𝑔𝑂𝐻0] + ⋯                                                  (Eq 8.4) 
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Chapter 9 
Conclusions and Future Directions 

 
9.1 Conclusions 

This thesis has examined aqueous equilibrium chemistry through 3-D 

visualizations of acid-base reactions, metal-ligand complexation reactions, 

redox reactions and the solubility of ionic salts.  The studies established a 

series of composition grids above which topos trend surfaces were 

constructed.  Because it includes a wider range of compositions than other 

traditional approaches, features that were noted on the topos prompted new 

understanding and new questions about the underlying chemistry. Several 

previously unreported behaviors emerged in the process. One of them was 

subsequently confirmed through laboratory experiments.  In each case,  

Microsoft ExcelTM worksheets were developed with underlying Visual BasicTM 

macros that easily compute and plot the resulting topo surfaces. 

Each subsection below holds bullet points that highlight the new insights that 

were gained as a result of using the composition grid topos approach. 

 

9.1.1 Acid-base topos 

Visualization of buffering against dilution. 

Visualization of the limits of the Henderson-Hasselbalch equation 

Visualization of conditions under which weak acids and strong acids 

become indistinguishable 

Visualization of the difference between buffering and pseudobuffering 

Visualization of the relationship between a titration curve and its 

corresponding buffer capacity. 

Visualizations that emphasize where buffer capacity minima are 

encountered 
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Visualization of the equal buffer capacities for polyprotic acids 

 

9.1.2 Metal-ligand topos 

Visualization of metal anti-buffering and the conditions required for its 

observation 

Visualization of metal buffering and the conditions required for its 

maintenance 

 

9.1.3 Redox topos 

Visualization of Eo constant character over most conditions 

Visualization of galvanic and concentration cells 

Visualization of battery life failure, i.e., galvanic cells reaching 

equilibrium 

Visualization of the impacts of other Nernst equation parameters 

 

9.1.4 Solubility topos 

Visualization of solubility impacts from common ions vs. pure salt 

Visualization framework for more complex interactions in a system 

 

9.2 Future directions 

A thorough understanding and appreciation of aqueous equilibrium reactions 

is important to many fields of study yet there has been a lack of modern 

software that can easily model complex equilibrium calculations.  The Journal 

of Chemical Education used to have packages that were widely distributed and 

available for minimal costs. Unfortunately, these have died out and now only 

exist in obsolete operating system languages. The TOPOS software that 

originated with this dissertation can help replace these lost teaching resources.  
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Because they are embedded with Microsoft ExcelTM, they will be usable on 

essentially any computer.  The program use has a minimal learning curve.  It is 

extremely user friendly in that the only inputs needed to run the programs are 

entry of thermodynamic constants into designated, color-coded cells.  The 

Journal of Chemical Education appears interested in having the TOPOS 

software included in a series of papers that as Supplemental Information also 

include teaching resources for their incorporation into lectures (as 

PowerPointTM files) and laboratory exercises.  

 

Not only will the TOPOS programs make is quick and easy for anyone to 

simulate common laboratory procedures, they will also begin to expose them 

to the composition grid approach to looking at overall system trends.  The 

envisioned comprehensive future package will allow the user to see the variety 

of common experimental paths that are contained in a single surface.  This will 

help show the inter-relationships between procedures that might not 

otherwise be realized.  Understanding the wider behavior of equilibrium 

systems makes it easier to predict the possible behaviors to expect without 

doing individual calculations.   

 

Improvements for future versions of the TOPOS programs will be: 

Acid-base/buffer capacity – incorporation of addition of bases into 

strong acid titrations, mixtures of acids or/and bases, weak acid into 

weak base scenarios, species distribution topos, degree of dissociation 

topos, etc.  

 

Metal-ligand – addition of a wider range of possible complexes and 

hydrolytic species, complexometric titrations, multi-metal and multi-
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ligand systems, incorporation of precipitation or redox processes 

involved. 

            Redox – visualization of redox buffers, redox titrations 

 

Solubility – completion of more comprehensive models with 

complexation, hydrolytic species, polynuclear complexes; gravimetric 

titrations, separation by precipitation. 
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Appendix I 
 

Derivation of Exact Equations for Buffer Capacity 
 

I.A   An Equation to Correlate Buffer Capacity with Vb and Dilution for a Strong 
Acid (HCl) Titrated with a Strong Base (NaOH) 

 
A detailed treatment of the system (ignoring activity effects for ease in reading) 
includes four equations involving four dissolved species:  [H3O+], [OH-], [Na+], and 
[Cl-].  Other symbols used in this derivation are:  Va and Vb for the volumes of acid 
and base that have been added to the system at any point; Ca

0 and Cb
0 for the 

concentrations of the acid and base stock solutions; and y for the dilution factor 
associated with a specific titration run. 
 
Auto-ionization of water: 
 

Kw = [H3O
+][OH-] = 1.0 x 10-14        (I.1) 

 

Mass balance on sodium ion (a conserved species): 
 

+ b b

a b

V yC
Na  = 

V + V

0

             (I.2) 

 
Mass balance on chloride ion (another conserved species): 
 

a a

a b

V yC
Cl  = 

V + V

0
             (I.3) 

 

Charge balance: 

 

[H3O
+] + [Na+] = [OH-] + [Cl-]        (I.4) 

 

Our goal is to solve the set of four equations for Vb as a function of [H3O+] so that 
the exact buffer capacity for each point during a titration can be calculated.  This 
is most easily done by substituting Equations I.1, I.2 and I.3 into the charge 
balance equation. 
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+ b b w a a
3 +

a b a b3

V yC K V yC
H O  +    =    +  

V + V V + VH O

0 0

     

       (I.5) 

 

Algebraic manipulation to isolate Vb involves the following steps: 
 

 

Multiply both sides by the total volume, (Va + Vb) 

 

   + w
a b 3 b b a b a a+

3

K
V + V H O   +  V yC  = V + V   +  V yC

H O

0 0          (I.6) 

Distribute the volume terms to separate Vb and Va terms: 

 

+ + w w
a 3 b 3 b b a b a a+ +

3 3

K K
V H O   +  V H O + V yC  = V   +  V  + V yC

H O H O

0 0                 (I.7) 

Collect all Vb terms on the left: 

 

+ +w w
b 3 b b b a a a a 3+ +

3 3

K K
V H O + V yC  - V = V    + V yC V H O

H O H O

0 0                (I.8) 

Factor out Vb and Va: 

 

+ +w w
b 3 b a a 3+ +

3 3

K K
V H O + yC  - = V    + yC H O

H O H O

0 0
   
                          (I.9) 

Isolate Vb: 

 

+w
a 3+

3

b a

+ w
3 b +

3

K
   + yC H O

H O
V = V

K
H O + yC  - 

H O

0

0

 
        

 
       

               (I.10) 
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This expression is now differentiated with respect to [H3O+] using the chain rule 
for a quotient of functions. 
 

w

2++ w
33 b +

3

b
a+

+w3
a 3+

3
w

2+

3+ w
3 b +

3

- K1
-1

K H OH O + yC - 
H O  

V
 = V

KH O    + yC H O
H O K

                         -  1 + 
H OK

H O + yC - 
H O  

0

0

2

0

 
  
  
             


 

                
             

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  (I.11) 

 
 

Since buffer capacity values relate to pH rather than [H3O+], the relationships 
 

+

3

1
pH = -  ln H O

2.303
            (I.12) 

 

and 
 

+
+3

3

 [H O ]
 = - 2.303[H O ]

 pH

d

d
         (I.13) 

 

are required to express the derivative in terms of pH: 
 

  

w

2++ w
33 b +

3

+b
3 a

+w
a 3+

3
w

2+

3+ w
3 b +

3

- K1
-1

K H OH O + yC - 
H O  

V
 = -2.303[H O ]V  

KpH    + yC H O
H O K

                         -  1 + 
H OK

H O + yC - 
H O  

0

0

2

0

 

 
  
  
             


 

          

    
       

 
 
 
 
 
 
 
 
 
  
  

  
 
 

 

            (I.14) 
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Finally, to express the buffer capacity, , we need to convert the numerator to 
moles of base by multiplying the volume times the diluted concentration: 
 

w

2++ w
33 b +

3

+b b
b 3 a

+w
a 3+

3
w

+ w
3 b +

3

- K1
-1

K H OH O + yC - 
H O  

yC V
=  = -yC 2.303[H O ]V  

KpH    + yC H O
H O K

                         -  1 + 

K
H O + yC - 

H O  

0

0
0

0

2

0

 


 
  
  
             


 

         

 
       

2+

3H O

 
 
 
 
 
 
 
 
  
  
      
 
 

 

 

            (I.15) 

 

Note:  If Va is not 1 L, an added term must be applied to the final form that scales 
it to 1 L.  For example, if Va is taken as 100.0 mL in a specific run, the final 
equation would be 
 

w

2++ w
33 b +

3

+b b
b 3 a

+w
a 3+

3

+ w
3 b +

3

- K1
-1

K H OH O + yC - 
H O  

10yC V
=  = -10yC 2.303[H O ]V  

KpH    + yC H O
H O

                         -  1 

K
H O + yC - 

H O  

0

0
0

0

2

0

 


 
  
  
             


 

         

 
       

w

2+

3

K
+ 

H O

 
 
 
 
 
 
 
 
  
  
      
 
 

 

 

            (I.16) 



P a g e  | 147 

 

Derivation of the Exact Buffer Capacity vs. Vb Equation for a Weak Monoprotic 
Acid (HA) Titrated with a Strong Base (NaOH) 

 

A detailed treatment of the system (ignoring activity effects for ease in reading) 
includes five equations involving five dissolved species:  [H3O+], [OH-], [Na+], [HA], 
and [A-].  Other symbols used in this derivation are:  Va and Vb for the volumes of 
acid and base that have been added to the system at any point; Ca

0 and Cb
0 for the 

concentrations of the acid and base stock solutions; and y for the dilution factor 
associated with a specific titration run. 
 

Auto-ionization of water: 
 

Kw = [H3O
+][OH-] = 1.0 x 10-14        (I.1) 

 

 

Mass balance on sodium ion (a conserved species): 
 

+ b b

a b

V yC
Na  = 

V + V

0

             (I.2) 

 

The acid dissociation constant of the weak acid 
 

 

+ -

3

a

H O A
K  =   

HA

                 (I.16) 

 

And a mass balance on the weak acid: 
 

  -a a

a b

V yC
  =  HA   +  A

V + V

0

  
         (I.17)

 

 

Charge balance: 
 

[H3O
+] + [Na+] = [OH-] + [A-]        (I.18) 

 

Our goal is to solve the set of five equations for Vb as a function of [H3O+] so that 
the exact buffer capacity for each point during a titration can be calculated.  This 
is most easily done by combining Equations I.18 and I.19 into an expression for [A-
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] and substituting that result along with equations I.1 and I.2 into the charge 
balance (Equation I.18). 
 
Equations I.16 and I.17 combine to give the well-known acid species distribution 
relationship: 
 

   
- a a a a a

1 +

a b 3 a a b

V yC K V yC
A   =  α   =  

V + V [H O ]+ K V + V

0 0  
       

  
     (I.19) 

 

The substituted charge balance equation now appears as: 
 

 
+ b b w a a

3 1+
a b a b3

V yC K V yC
H O  +    =    +  α

V + V V + VH O

 
          

      (I.20) 

 

Algebraic manipulation to isolate Vb involves the following steps: 
 

Multiply both sides by the total volume, (Va + Vb) 

 

   + w
a b 3 b b a b 1 a a+

3

K
V + V H O   +  V yC  = V + V   +  α V yC

H O

0 0          (I.21) 

Distribute the volume terms to separate Vb and Va terms: 

 

+ + w w
a 3 b 3 b b a b 1 a a+ +

3 3

K K
V H O   +  V H O + V yC  = V   +  V  + α V yC

H O H O

0 0                (I.22) 

Collect all Vb terms on the left: 

 

+ +w w
b 3 b b b a 1 a a a 3+ +

3 3

K K
V H O + V yC  - V = V    + α V yC V H O

H O H O

0 0              

(I.23) 

Factor out Vb and Va: 
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+ +w w
b 3 b a 1 a 3+ +

3 3

K K
V H O + yC  - = V    + α yC H O

H O H O

0 0
   
                         (I.24) 

Isolate Vb: 

 

+w
1 a 3+

3

b a

+ w
3 b +

3

+w a
a 3++

3 a3

a

+ w
3 b +

3

K
   + α yC H O

H O
V = V

K
H O + yC  - 

H O

K K
   + yC H O

[H O ]+ KH O
      = V

K
H O + yC  - 

H O

0

0

0

0

 
        

 
       

  
           

 
       

      (I.25) 

 

Note that this expression for Vb is identical to that for the strong acid/strong base 
case (Equation I.10) except for the coefficient of the middle term in the 
numerator on the right-hand side. 
 
This expression is now differentiated with respect to [H3O+] using the chain rule 

for a quotient of functions.  (Note it is necessary to replace 1 with its complete 

expression before differentiating because the complete 1 expression has terms 
that include [H3O+], the variable of differentiation.) 
 

 
w

a a2 2+ ++ w
3 3 a3 b +

3

b
a+

+w a3
a 3++

3 a3

+

3 b

- K1 1
+ K yC -1

K H O H O KH O + yC - 
H O  

V
 = V

K KH O    + yC H O
[H O ]+ KH O

                 -  

H O + yC - 

0

0

0

0

 
   

   
                       


                 

  

w

2+

3
w

+

3

K
1 + 

H OK

H O  

2

 
 
 
 
 
 
 
 
  
  
         

        

            

(I.26) 
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Since buffer capacity values relate to pH rather than [H3O+], the relationships 
 

+

3

1
pH = -  ln H O

2.303
            (I.12) 

 

and 
 

+
+3

3

 [H O ]
 = - 2.303[H O ]

 pH

d

d
         (I.13) 

 

are again used to express the derivative in terms of pH: 
 

  

 
w

a a2 2+ ++ w
3 3 a3 b +

3

+b
3 a

+w a
a 3++

3 a3

+

3

- K1 1
+ K yC -1

K H O H O KH O + yC - 
H O  

V
 = -2.303[H O ]V  

K KpH    + yC H O
[H O ]+ KH O

                 -  

H O

0

0

0 

 
   

   
                       


              

  

w

2+

3
w

b +

3

K
1 + 

H OK
+ yC - 

H O  

2

0

 
 
 
 
 
 
 
 
  
  
         

      

 

            (I.27) 

 

Finally, to express the buffer capacity, , we need to convert the numerator to 
moles of base by multiplying the volume times the diluted concentration and 
correcting to 1 L by multiplying by 10: 
 

 
w

a a2 2+ ++ w
3 3 a3 b +

3

+b b
b 3 a

+w a
a 3++

3 a3

- K1 1
+ K yC -1

K H O H O KH O + yC - 
H O  

yC V
=  = -10yC 2.303[H O ]V  

K KpH    + yC H O
[H O ]+ KH O

                 -  

0

0

0

0 


 
   

   
                       


              w

2+

3+ w
3 b +

3

K
1 + 

H OK
H O + yC - 

H O  

2

0

 
 
 
 
 
 
 
 
  

  
                 

 

            (I.28) 
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Derivation of the Exact Buffer Capacity vs. Vb Equation for a Weak Diprotic Acid 
(H2A) Titrated with a Strong Base (NaOH) 

 

A detailed treatment of the system (ignoring activity effects for ease in reading) 
includes six equations involving six dissolved species:  [H3O+], [OH-], [Na+], [H2A], 
[HA-], and [A2-].  Other symbols used in this derivation are:  Va and Vb for the 
volumes of acid and base that have been added to the system at any point; Ca

0 
and Cb

0 for the concentrations of the acid and base stock solutions; and y for the 
dilution factor associated with a specific titration run. 
 

Auto-ionization of water: 
 

KW = [H3O
+][OH-] = 1.0 x 10-14        (I.1) 

 

Mass balance on sodium ion (a conserved species): 
 

+ b b

a b

V yC
Na  = 

V + V

0

             (I.2) 

 

The first acid dissociation constant of the weak acid 
 

 

+ -

3

a1

2

H O HA
K  =   

H A

                (I.29) 

 

The second acid dissociation constant of the weak acid 
 

+ 2-

3

a2 -

H O A
K  =   

HA

      

  

          (I.30) 

 

A mass balance on the weak acid: 
 

  - 2-a a
2

a b

V yC
  =  H A   +  HA   +  A

V + V

0

      
       (I.31)

 

 

And the charge balance: 
 

[H3O
+] + [Na+] = [OH-] + [HA-] + 2 [A2-]      (I.32) 
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Our goal is to solve the set of six equations for Vb as a function of [H3O+] so that 
the exact buffer capacity for each point during a titration can be calculated.  This 
is most easily done by substituting into the charge balance expression (Equation 
I.32) equivalent values for [Na+], [OH-], [HA-] and [A2-] written exclusively in terms 
of [H3O+] and constant values. 
 
Equations I.29, I. 30 and I.31 combine to give the well-known acid species 
distribution relationships for [HA-] and [A2-] in terms of [H3O+], Ka1 and Ka2: 
 

 

   

+
- a a a1 3 a a

1 + 2 +

a b 3 a1 3 a1 a2 a b

V yC K [H O ] V yC
HA   =  α   =  

V + V [H O ] + K [H O ]+ K K V + V

0 0  
       

  
   (I.33) 

 

   
2- a a a1 a2 a a

+ 2 +

a b 3 a1 3 a1 a2 a b

V yC K K V yC
A   =  α   =  

V + V [H O ] + K [H O ]+ K K V + V

0 0

2

  
       

  
   (I.34) 

 

The charge balance equation (Equation I.36) can now be fully substituted.  
Equation I.2 is used for [Na+], Equation I.1 is rearranged to express [OH-] as 
Kw/[H3O+], and Equations I.33 andI. 34 are used for the two charged forms of the 
acid.  The substituted charge balance equation now appears as: 
 

   

 
 

+ b b w a a a a
3 1+

a b a b a b3

w a a
1+

a b3

V yC K V yC V yC
H O  +    =    +  α +  2α

V + V V + V V + VH O

K V yC
                                   =    +  α +  2α

V + VH O

0 0 0

2

0

2

   
                

 
      

   (I.35) 

 

Algebraic manipulation to isolate Vb involves the same steps as previously 
described: 
 

Multiply both sides by the total volume, (Va + Vb) 
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 w a b+

3 a b b b 1 a a+

3

K V + V
H O V + V  +  V yC   =     +  α +  2α V yC

H O

0 0
2

         (I.36) 

 

Distribute the volume terms to separate Vb and Va terms: 

 

 + + w w
a 3 b 3 b b a b 1 a a+ +

3 3

K K
V H O   +  V H O + V yC  = V   +  V  +  α +  2α V yC

H O H O

0 0
2

               (I.37) 

Collect all Vb terms on the left: 

 

 + +w w
b 3 b b b a 1 a a a 3+ +

3 3

K K
V H O + V yC  - V = V  +  α +  2α V yC V H O

H O H O

0 0
2

               (I.38) 

 

Factor out Vb and Va: 

 

 + +w w
b 3 b a 1 a 3+ +

3 3

K K
V H O + yC  - = V  +  α +  2α yC H O

H O H O

0 0
2

   
                        (I.39) 

Isolate Vb: 

 

  +w
1 a 3+

3

b a

+ w
3 b +

3

+
+w a1 3 a1 a2

a 3+ 2 ++
3 a1 3 a1 a23

a

+ w
3 b +

3

K
 +  α +  2α yC H O

H O
V = V

K
H O + yC  - 

H O

K K [H O ]+  2 K K
 + yC H O

[H O ] + K [H O ]+ K KH O
       = V

K
H O + yC  - 

H O

0
2

0

0

0

 
        

 
       

  
           

  

 
 
    

   (I.40) 

 

Note that this expression for Vb is identical to that for the strong acid/strong base 
case (Equation I.10) and the monoprotic weak acid (Equation I.25) except for the 
coefficient of the middle term in the numerator on the right-hand side.
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This expression is now differentiated with respect to [H3O+] using the chain rule for a quotient of functions.  (Note 

again it is necessary to replace 1 and 2 with their complete expressions before differentiating because the 
complete expressions have terms that include [H3O+], the variable of differentiation.) 
 

 
 

a1

2+ +

3 a1 3 a1 a2

w
a2++ w

+33 b + +a1 3 a1 a2
3 3 a122+ +

3 a1 3 a1 a2

b
a+

3

K

H O K H O K K
- K1

 + yC
K H OH O + yC - K [H O ]+  2K KH O              - 2 H O K

H O K H O K K

V
  = V

H O

0

0

 
 

             
  
                 

       


   
+

+w a1 3 a1 a2
a 32+ + +

3 3 a1 3 a1 a2
w

2+

3+ w
3 b +

3

-1

K K [H O ]+  2 K K
   + yC H O

H O H O K H O K K K
          -  1 + 

H OK
H O + yC - 

H O  

0

2

0

  
  

 
 
  

 
 
 

   

  
                        

             






 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

                (I.41) 

 
 

Since buffer capacity values relate to pH rather than [H3O
+], the relationships 

 

+

3

1
pH = -  ln H O

2.303
    (I.12)      and          

+
+3

3

 [H O ]
 = - 2.303[H O ]

 pH

d

d
 (I.13) 
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are again used to express the derivative in terms of pH: 
   

 

 
 

a1

2+ +

3 a1 3 a1 a2

w
a2++ w

+33 b + +a1 3 a1 a2
3 3 a122+ +

3 a1 3 a1 a2

+b
3 a

K

H O K H O K K
- K1

 + yC
K H OH O + yC - K [H O ]+  2 K KH O              - 2 H O K

H O K H O K K

V
 = -2.303[H O ]V  

pH

0

0

 

 
 

            
 
                 

       



+

+w a1 3 a1 a2
a 32+ + +

3 3 a1 3 a1 a2
w

2+

3+ w
3 b +

3

-1

K K [H O ]+  2 K K
   + yC H O

H O H O K H O K K K
          -  1 + 

H OK
H O + yC - 

H O  

0

2

0

 
  
  
  
   

  
  
  
   

  
                      

           

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

 

                 (I.42) 

 

 

 

Finally, to express the buffer capacity,, we need to convert the numerator to moles of base by multiplying the 
volume times the diluted concentration and correcting to 1 L by multiplying by 10: 
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a1

2+ +

3 a1 3 a1 a2

w
a2++ w

+33 b + +a1 3 a1 a2
3 3 a122+ +

3 a1 3 a1 a2

+

b 3 a

K

H O K H O K K
- K1

 + yC
K H OH O + yC - K [H O ]+  2 K KH O              - 2 H O K

H O K H O K K

= -10yC 2.303[H O ]V

0

0

0

 
 

            
 
                 

       

+
+w a1 3 a1 a2

a 32+ + +
3 3 a1 3 a1 a2

w

2+

3+ w
3 b +

3

-1

K K [H O ]+  2 K K
   + yC H O

H O H O K H O K K K
          -  1 + 

H OK
H O + yC - 

H O  

0

2

0

 
 
 
  
   

  
  
  
   

  
                       

            

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

  

                 (I.43) 



P a g e  | 157 

 

Derivation of the Exact Buffer Capacity vs. Vb Equation for a Weak Triprotic Acid 
(H3A) Titrated with a Strong Base (NaOH) 

 

A detailed treatment of the system (ignoring activity effects for ease in reading) 
includes seven equations involving seven dissolved species:  [H3O+], [OH-], [Na+], 
[H2A], [HA-], and [A2-].  Other symbols used in this derivation are:  Va and Vb for 
the volumes of acid and base that have been added to the system at any point; Ca 
and Cb for the concentrations of the acid and base stock solutions; and y for the 
dilution factor associated with a specific titration run. 
 

Auto-ionization of water: 
 

KW = [H3O
+][OH-] = 1.0 x 10-14        (I.1) 

 

Mass balance on sodium ion (a conserved species): 
 

+ b b

a b

V yC
Na  = 

V + V

0

             (I.2) 

 

The first acid dissociation constant of the weak acid 
 

 

+ -

3 2

a1

3

H O H A
K  =   

H A

                (I.44) 

 

The second acid dissociation constant of the weak acid 
 

+ 2-

3

a2 -

2

H O HA
K  =   

H A

      

  

         (I.45) 

 

The third acid dissociation constant of the weak acid 
 

+ 3-

3

a3 2-

H O A
K  =   

HA

      

  

          (I.46) 

 

 

A mass balance on the weak acid: 
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  - 2- 3-a a
3 2

a b

V yC
  =  H A   + H A   +  HA   +  A

V + V

0

          
      (I.47)

 

 

And the charge balance: 
 

[H3O
+] + [Na+] = [OH-] + [H2A

-] + 2 [HA2-] + 3 [A3-]    (I.48) 

 

Our goal is to solve the set of seven equations for Vb as a function of [H3O+] so 
that the exact buffer capacity for each point during a titration can be calculated.  
This is most easily done by substituting into the charge balance expression 
(Equation I.48) equivalent values for [Na+], [OH-], [H2A-], [HA2-], and [A3-] written 
exclusively in terms of [H3O+] and constant values. 
 
Equations I.44 through I.47 combine to give the well-known acid species 
distribution relationships for [H2A-], [HA2-] and [A3-] in terms of [H3O+], Ka1, Ka2 and 
Ka3: 
 

 

   

+ 2
- a a a1 3 a a

2 1 + 3 + 2 +

a b 3 a1 3 a1 a2 3 a1 a2 a3 a b

V yC K [H O ] V yC
H A   =  α   =  

V + V [H O ] + K [H O ] + K K [H O ]+ K K K V + V

0 0  
       

  
 

(I.49) 

 

   

+
2- a a a1 a2 3 a a

2 + 3 + 2 +

a b 3 a1 3 a1 a2 3 a1 a2 a3 a b

V yC K K [H O ] V yC
HA   =  α   =  

V + V [H O ] + K [H O ] + K K [H O ]+ K K K V + V

0 0  
       

  
 

(I.50) 

 

 

   
3- a a a1 a2 a3 a a

3 + 3 + 2 +

a b 3 a1 3 a1 a2 3 a1 a2 a3 a b

V yC K K K V yC
A   =  α   =  

V + V [H O ] + K [H O ] + K K [H O ]+ K K K V + V

0 0  
       

  
 

(I.51) 

 

The charge balance equation (Equation 48) can now be fully substituted.  
Equation I.2 is used for [Na+], Equation I.1 is rearrange to express [OH-] as 
Kw/[H3O+], and Equations I.49, I.50 and I.51 are used for the three charged forms 
of the acid.  The substituted charge balance equation now appears as: 
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+ b b w a a a a a a
3 1+

a b a b a b a b3

w a a
1+

a b3

V yC K V yC V yC V yC
H O  +    =    +  α +  2α +  3α

V + V V + V V + V V + VH O

K V yC
                                   =    +  α +  2α +  3α

V + VH O

0 0 0 0

2 3

0

2 3

     
                      

 
      

 (I.52) 

 

Algebraic manipulation to isolate Vb involves the same steps as previously 
described: 
 

Multiply both sides by the total volume, (Va + Vb) 

 

 
 

 w a b+

3 a b b b 1 a a+

3

K V + V
H O V + V  +  V yC   =     +  α +  2α +  3α V yC

H O

0 0
2 3

         (I.53) 

 

Distribute the volume terms to separate Vb and Va terms: 

 

 + + w w
a 3 b 3 b b a b 1 a a+ +

3 3

K K
V H O   +  V H O + V yC  = V   +  V  +  α +  2α +  3α V yC

H O H O

0 0
2 3

               

            (I.54) 

Collect all Vb terms on the left: 

 

 + +w w
b 3 b b b a 1 a a a 3+ +

3 3

K K
V H O + V yC  - V = V  +  α +  2α +  3α V yC V H O

H O H O

0 0
2 3

              (I.55) 

 

Factor out Vb and Va: 

 

 + +w w
b 3 b a 1 a 3+ +

3 3

K K
V H O + yC  - = V  +  α +  2α +  3α yC H O

H O H O

0 0
2 3

   
                        (I.56) 

Isolate Vb: 
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  +w
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3

b a

+ w
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w a1 3 a1 a2 3 a1 a2 a3
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3 a1 3 a1 a2 3 a1 a2 a33
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H O
V = V

K
H O + yC  - 

H O
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+

3

+ w
3 b +

3

H O

K
H O + yC  - 

H O
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(I.57) 

 

Note that this expression for Vb is identical to that for the strong acid/strong base 
case (Equation I.10), the monoprotic weak acid (Equation I.25) and the diprotic 
weak acid (Equation I.40) except for the coefficient of the middle term in the 
numerator on the right-hand side. 
 
This expression is now differentiated with respect to [H3O+] using the chain rule 

for a quotient of functions.  (Note again it is necessary to replace 1, 2 and 3 
with their complete expressions before differentiating because the complete 
expressions have terms that include [H3O+], the variable of differentiation.) 
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                 (I.58) 
 

Since buffer capacity values relate to pH rather than [H3O+], the relationships 
 

+

3

1
pH = -  ln H O

2.303
     (I.12)      and         

+
+3

3

 [H O ]
 = - 2.303[H O ]

 pH

d

d
  (I.13) 

 

are again used to express the derivative in terms of pH: 
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Finally, to express the buffer capacity,, we need to convert the numerator to moles of base by multiplying the 
volume times the diluted concentration: 
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The General Form for Volume of Base (Vb) as a Function of [H3O+] 
 

The derivations above reveal that it is possible to write a general equation 
between the volume of base added in a titration, Vb, and the hydronium ion 
concentration, [H3O+]. 
 
Strong Acid/Strong Base Form: 
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Weak Acid/ Strong Base Form: 
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      (I.61) 

 

where the completely protonated form of the acid is uncharged, n is the number 

of titratable protons, and ‘s are the fractional coefficients computed from the 

well-known formulas from acid species distribution diagrams. 
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Appendix II 

Program listings, Instructions and Numerical Methods 

This appendix contains programs listings for the four TOPOS programs that have 

been created during this project.  In each case, the program has an initial tab with 

instructions for using the program and backing it up before use.  Some programs 

have an additional tab that explain the numerical methods that were used to 

solve the equilibrium equation sets that give rise to the surface values. 

 

II.1  pH/BufCap TOPOS 

The pH TOPOS program has already been published in the Journal of Chemical 

Education1.  The BufCap TOPOS program will be submitted with the contents of 

Chapter 4 as a companion paper.  Both pH TOPOS and BufCap TOPOS use the 

same numerical method engine to generate the 3-D surfaces.  For that reason, the 

macro subroutines and numerical methods description are only listed once.  Their 

Instruction tab contents are identical except for the program name and the 

additional buffer capacity surfaces, so only the pH TOPOS version is included here. 

 

Instructions Tab 

pH TOPOS:  3-D Topo Surface Plotting Software 

Garon C. Smith, Md Mainul Hossian and Patrick McCarthy 

Department of Chemistry and Biochemistry 

University of Montana 
 

Instructions for using pH TOPOS, a set of Visual Basic macro-enabled worksheets 

that generate 3-D topo surfaces above a titration/dilution composition grid. 

Before trying any computations with this file, save a copy as a macro-enabled 

worksheet under a different name to preserve embedded programming and cell 
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formulas.  If you accidetly overwrite some cells, alter a macro, or delete a plot, 

the program may not function properly.  

Do not delete the topo surface from the worksheet.  The plot is automatically 

modified by the program to relate to your new calculations.  If you delete it, you 

will need to start from scratch on making a new surface plot.  Axes are labeled 

automatically by Excel.  They are often not optimal from all viewing angles. 

This software will automatically compute pH topo surfaces for any monoprotic, 

diprotic and triprotic acid.  All the user need do is: 

 1.  Make sure that the file has been opened and "Macros enabled" has 

been selected. 

 2.  Select the worksheet tab at the bottom for type of acid to be visualized 

(monoprotic, diprotic or triprotic). 

 3.  Enter appropriate Ka values in the colored cells on the worksheet.  Use 

exponential notation, i.e., a Ka of 1.75 x 10-5 would be entered as 1.75e-5.  (To 

visualize topo surfaces for strong acid protons, use a Ka of 1 x 106. ) 

The macro for each sheet can be started in two ways.  The easiest is to use the 

short-cut key: 

 Control+Shift+M for monoprotic 

 Control+Shift+D for diprotic, and  

 Control+Shift+T for triprotic 

You can alternatively open the "View" menu, then open the "Macros" menu and 

select "View Macros".  A "Macro" window will open with the three programs 

listed:  diprotic, monoprotic and triprotic.  Highlight the choice you wish and then 

click on the "Run" button. 

Once activated, the user should see new values percolate through the grid-point 

matrix.  An updated pH topo surface will replace any previous image.  The file as 
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originally download contains the Ka values for the acetic acid, oxalic acid and L-

histidine dihydrochloride topos that appear in the main paper.  

Rows 20 - 56 on each worksheet correspond to the [H3O+] that have been 

calculated for each grid point as labeled in Column A and Row 20.  Further down 

the sheet, in rows 61-97, are the corresponding pH values that are actually 

plotted as the pH topos surface. 

Once a surface has been generated, it can be freely rotated in any direction to 

enhance viewing.  To do this, right-click on the surface image and select the 3-D 

Rotation item.  Axis labels may need to be repositioned as you rotate the surface.  

Their positions were optimized for the viewing angle shown in the paper.  Excel 

will automatically adjust the labels during rotation.  Sometimes this helps; at 

other times, it does not. 

Excel offer other options for topo plots including solid colored surfaces, color-

coded 2-D contour maps or solid colored 2-D contour maps. 

 

Visual Basic Macro Listing 

Sub Monoprotic() 

' 

' Monoprotic Macro 

' Monprotic acid pH surface 

' 

' Keyboard Shortcut: Ctrl+Shift+M 

' 

    Dim Kw As Double 

    Dim Ka As Double 
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    Dim Va As Double 

    Dim Vb As Double 

    Dim Ca As Double 

    Dim Cb As Double 

    Dim Col As Integer 

    Dim Row As Integer 

    Dim DecimalPlaces As Integer 

    Dim H As Double 

    Dim FuncValue As Double 

    Dim FigStep As Double 

' 

    Va = Cells(16, 2) 

    Kw = Cells(16, 3) 

    Ka = Cells(16, 4) 

' 

    For Row = 0 To 36 

        Ca = 10 ^ Cells(Row + 22, 2) 

        Cb = 10 ^ Cells(Row + 22, 2) 

        For Col = 0 To 40 

            Vb = Cells(21, Col + 3) * 0.001 

' 

'   Find first non-zero digit in H+ concentration 
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' 

            DecimalPlaces = 0 

            H = 1 

FirstSigFig: FuncValue = H ^ 3 + ((Cb * Vb) / (Va + Vb) + Ka) * H ^ 2 + (-Ka * ((Ca * 

Va - Cb * Vb) / (Vb + Va)) - Kw) * H - (Ka * Kw) 

            If FuncValue <= 0 Then GoTo MoreSigFigs 

            H = H / 10 

            GoTo FirstSigFig 

' 

'   Find additional sig figs for H+ 

' 

MoreSigFigs: FigStep = H 

            H = H * 10 

            DecimalPlaces = DecimalPlaces + 1 

SigFigRed:  H = H - FigStep 

            FuncValue = H ^ 3 + ((Cb * Vb) / (Va + Vb) + Ka) * H ^ 2 + (-Ka * ((Ca * Va - 

Cb * Vb) / (Vb + Va)) - Kw) * H - (Ka * Kw) 

            If FuncValue > 0 Then GoTo SigFigRed 

            H = H + FigStep 

            FigStep = FigStep / 10 

            DecimalPlaces = DecimalPlaces + 1 

            If DecimalPlaces < 15 Then GoTo SigFigRed 
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            Cells(Row + 22, Col + 3) = H 

             

        Next Col 

    Next Row 

End Sub 

Sub Diprotic() 

' 

' Diprotic Macro 

' Diprotic acid pH surface 

' 

' Keyboard Shortcut: Ctrl+Shift+D 

' 

' 

' Diprotic Macro 

' Diprotic acid pH surface 

' 

' Keyboard Shortcut: Ctrl+Shift+D 

' 

    Dim Kw As Double 

    Dim Ka1 As Double 

    Dim Ka2 As Double 

    Dim Va As Double 
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    Dim Vb As Double 

    Dim Ca As Double 

    Dim Cb As Double 

    Dim Col As Integer 

    Dim Row As Integer 

    Dim DecimalPlaces As Integer 

    Dim H As Double 

    Dim FuncValue As Double 

    Dim FigStep As Double 

' 

    Va = Cells(16, 2) 

    Kw = Cells(16, 3) 

    Ka1 = Cells(16, 4) 

    Ka2 = Cells(16, 5) 

' 

    For Row = 0 To 36 

        Ca = 10 ^ Cells(Row + 22, 2) 

        Cb = 10 ^ Cells(Row + 22, 2) 

        For Col = 0 To 40 

            Vb = Cells(21, Col + 3) * 0.001 

' 

'   Find first non-zero digit in H+ concentration 



P a g e  | 172 

 

172 | P a g e  
 

' 

            DecimalPlaces = 0 

            H = 1 

FirstSigFig: FuncValue = H ^ 4 + (Ka1 + (Cb * Vb) / (Va + Vb)) * H ^ 3 + (Ka1 * Ka2 + 

Ka1 * (Cb * Vb) / (Va + Vb) - Kw - Ka1 * (Ca * Va) / (Vb + Va)) * H ^ 2 + (Ka1 * Ka2 * 

(Cb * Vb) / (Va + Vb) - Kw * Ka1 - 2 * (Ca * Va) / (Vb + Va) * Ka1 * Ka2) * H - (Kw * 

Ka1 * Ka2) 

            If FuncValue <= 0 Then GoTo MoreSigFigs 

            H = H / 10 

            GoTo FirstSigFig 

' 

'   Find additional sig figs for H+ 

' 

MoreSigFigs: FigStep = H 

            H = H * 10 

            DecimalPlaces = DecimalPlaces + 1 

SigFigRed:  H = H - FigStep 

            FuncValue = H ^ 4 + (Ka1 + (Cb * Vb) / (Va + Vb)) * H ^ 3 + (Ka1 * Ka2 + Ka1 

* (Cb * Vb) / (Va + Vb) - Kw - Ka1 * (Ca * Va) / (Vb + Va)) * H ^ 2 + (Ka1 * Ka2 * (Cb 

* Vb) / (Va + Vb) - Kw * Ka1 - 2 * (Ca * Va) / (Vb + Va) * Ka1 * Ka2) * H - (Kw * Ka1 

* Ka2) 

            If FuncValue > 0 Then GoTo SigFigRed 

            H = H + FigStep 

            FigStep = FigStep / 10 
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            DecimalPlaces = DecimalPlaces + 1 

            If DecimalPlaces < 15 Then GoTo SigFigRed 

            Cells(Row + 22, Col + 3) = H 

             

        Next Col 

    Next Row 

End Sub 

 

Numerical Methods Tab 

The pH for each grid point is calculated by writing the master charge balance 

equation as a function of [H3O+] and rearranging it to a polynomial expression.  

For a monoprotic acid, it is a cubic equation 

 

 

Eq I.1 

For a diprotic acid it is a quartic equation and for a triprotic acid it is a fifth order 

polynomial.  Due to physical constraints on the problem, only one root exists in 

the interval between 0 M and 1 M.  The macro simply systematically makes 

guesses for the value of [H3O+] and looks for a sign change when substituted into 

the polynomial function.  

Here, for example, is the graph of the function for the first grid point in the acetic 

acid pH topo surface of the paper.  Vb = 0 and Ca = Cb = 1 M.  Va is always 0.100 L.  

Ka is 1.75 x 10-5 and Kw is 1 x 10-14. 
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Figure II.1.   Plot of the cubic function for the first grid point of the acetic acid pH 
topo surface.  Each grid point on the surface has its own unique cubic equation.  
This means that the macro solves 41 x 37 = 1517 different  cubic equations. 

Using a starting guess of 1 M for [H3O+] always yields a positive functional value.  

The program makes each subsequent guess for [H3O+] as 1/10 of the preceeding 

one.  When a sign change is encountered, the program has found which order of 

magnitude corresponds to the root.  (See Order of Magnitude Search  starting at 

cell V1 to the upper right)  Note the function value is negative (yellow cell) for 

0.001, so the root is larger than 0.001.  

The program then shifts into generating the significant figures for the root one 

place at a time.  The function values returned in finding the first two significant 

figures of the root are shown in the searc tables at cells V10 and V19 to the right.  

The negative sign for  a guess of 0.0041 M in cell V29 produced a negative sign, so 

the root is larger than 00.0041 M.  Each time the program encounters a sign 

change, another significant figure has been determined.  The numerical search 

continues until the [H3O+] has been confirmed to 16 significant figures.  The 

ultimate [H3O+] value for this first grid point is 0.0041745592848297 M. 
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Order of 
magnitude 

 
1st sig fig search 

 
2nd sig fig search 

search   
 

0.010 8.27E-07 
 

0.0050 3.79E-08 

[H30+] 
guess 

Function 
value 

 
0.009 5.73E-07 

 
0.0049 3.23E-08 

1 1 
 

0.008 3.73E-07 
 

0.0048 2.7E-08 

0.1 0.000998 
 

0.007 2.21E-07 
 

0.0047 2.2E-08 

0.01 8.27E-07 
 

0.006 1.12E-07 
 

0.0046 1.72E-08 

0.001 -1.6E-08 
 

0.005 3.79E-08 
 

0.0045 1.27E-08 

   
0.004 -5.7E-09 

 
0.0044 8.52E-09 

      
0.0043 4.58E-09 

      
0.0042 8.97E-10 

      
0.0041 -2.5E-09 

Because of the wide range of conditions encountered, the Solver Tool in Excel is 

not capable of reliably finding solutions, particularly in dilute settings.  While it is 

faster to solve an equation in many instances, it will diverge and return a "no 

solution found" message for many grid points in flatish portions of the topos, 

especially the very dilute regions.  The sign change technique is highly robust 

against divergence. 

 

Figure AII.1.  User screen for the pH/BufCap TOPOS program. 
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II.2 Complexation TOPOS 

The Complexation TOPOS program instructions are similar to those for pH TOPOS 

except that more detail is required in describing the exact form of the 

thermodynamic constants that are used as inputs.  In this instance all data are 

input as the logarithmic form of their overall formation constants.  Values are 

required for each complex that will form, for each protonated form of the 

uncomplexed ligand and for any hydrolytic hydroxo-complexes that the metal is 

known to form.  This requires that Ka or pKa values for the ligand first be 

cumulated.  Then they need to be adjusted from the dissociation direction to the 

association direction which means cumulated Kas be inverted or the cumulated 

pKas have the sign changed.  An additional parameter that must be entered is the 

pH that will be maintained over the entire surface. 

 

Visual Basic Macro Listing 

Sub Surface() 

' 

' Metal-ligand complexation surface 

' Logarithmic composition grid 

' 

' Keyboard Shortcut: Ctrl+Shift+M 

' 

    Dim H As Double 

    Dim OH As Double 

    Dim B1 As Double 

    Dim B2 As Double 
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    Dim B3 As Double 

    Dim B4 As Double 

    Dim B5 As Double 

    Dim B6 As Double 

    Dim BMOH1 As Double 

    Dim BMOH2 As Double 

    Dim BH1 As Double 

    Dim BH2 As Double 

    Dim BH3 As Double 

    Dim BH4 As Double 

    Dim BH5 As Double 

    Dim BH66 As Double 

    Dim Row As Integer 

    Dim Col As Integer 

    Dim TotLig As Double 

    Dim TotMet As Double 

    Dim CalcMet As Double 

    Dim CalcLig As Double 

    Dim FreeMet As Double 

    Dim FreeLig As Double 

    Dim NumbIter As Integer 

    Dim NumbConv As Integer 
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    Dim LigGuess As Double 

    Dim MetGuess As Double 

    Dim DifMet As Double 

    Dim DifLig As Double 

' 

'   Initialize formation and protonation constants 

' 

    B1 = 10 ^ Cells(3, 2) 

    B2 = Cells(4, 2) 

    If B2 <> 0 Then B2 = 10 ^ B2 

    B3 = Cells(5, 2) 

    If B3 <> 0 Then B3 = 10 ^ B3 

    B4 = Cells(6, 2) 

    If B4 <> 0 Then B4 = 10 ^ B4 

    B5 = Cells(7, 2) 

    If B5 <> 0 Then B5 = 10 ^ B5 

    B6 = Cells(8, 2) 

    If B6 <> 0 Then B6 = 10 ^ B6 

    BH1 = 10 ^ Cells(11, 2) 

    BH2 = Cells(12, 2) 

    If BH2 <> 0 Then BH2 = 10 ^ BH2 

    BH3 = Cells(13, 2) 
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    If BH3 <> 0 Then BH3 = 10 ^ BH3 

    BH4 = Cells(14, 2) 

    If BH4 <> 0 Then BH4 = 10 ^ BH4 

    BH5 = Cells(15, 2) 

    If BH5 <> 0 Then BH5 = 10 ^ BH5 

    BH6 = Cells(16, 2) 

    If BH6 <> 0 Then BH6 = 10 ^ BH6 

    BMOH1 = Cells(19, 2) 

    If BMOH1 <> 0 Then BMOH1 = 10 ^ Cells(19, 2) 

    BMOH2 = Cells(20, 2) 

    If BMOH2 <> 0 Then BMOH2 = 10 ^ BMOH2 

    BMOH3 = Cells(21, 2) 

    If BMOH3 <> 0 Then BMOH3 = 10 ^ BMOH3 

    H = 10 ^ -Cells(23, 2) 

    OH = 0.00000000000001 / H 

    Base10 = Log(10) 

' 

'   Start grid point loops 

' 

    For Row = 0 To 36 

        TotLig = 10 ^ Cells(Row + 27, 2) 

        For Col = 0 To 36 
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            TotMet = 10 ^ Cells(26, Col + 3) 

' 

'   Set initial guess for free species 

' 

            FreeMet = TotMet * 0.001 

            FreeLig = TotLig * 0.0000001 

' 

'   Set iteration loop counter 

' 

            NumbIter = 0 

' 

'   Set convergence check flag at start of iteration 

' 

Iteration:  NumbConv = 0 

' 

'   Use current guesses in mass balance equations 

' 

CalcMet = FreeMet + BMOH1 * FreeMet * OH + BMOH2 * FreeMet * OH ^ 2 + B1 

* FreeMet * FreeLig + B2 * FreeMet * FreeLig ^ 2 + B3 * FreeMet * FreeLig ^ 3 + 

B4 * FreeMet * FreeLig ^ 4 + B5 * FreeMet * FreeLig ^ 5 + B6 * FreeMet * FreeLig 

^ 6 

CalcLig = FreeLig + BH1 * H * FreeLig + BH2 * H ^ 2 * FreeLig + BH3 * H ^ 3 * 

FreeLig + BH4 * H ^ 4 * FreeLig + BH5 * H ^ 5 * FreeLig + BH6 * H ^ 6 * FreeLig + 
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B1 * FreeMet * FreeLig + 2 * B2 * FreeMet * FreeLig ^ 2 + 3 * B3 * FreeMet * 

FreeLig ^ 3 + 4 * B4 * FreeMet * FreeLig ^ 4 + 5 * B5 * FreeMet * FreeLig ^ 5 + 6 * 

B6 * FreeMet * FreeLig ^ 6 

 

' 

'   Compute mass balance errors, set convergence flags 

' 

DifMet = Abs(TotMet - CalcMet) 

If DifMet <= 0.000001 * TotMet Then NumbConv = NumbConv + 1 

DifLig = Abs(TotLig - CalcLig) 

If DifLig <= 0.000001 * TotLig Then NumbConv = NumbConv + 1 

' 

'Check convergence flags for both converged 

' 

If NumbConv = 2 Then GoTo StoreData 

' 

'   Refine free species guesses since not converged 

' 

FreeMet = FreeMet * (TotMet / CalcMet) ^ 0.5 

FreeLig = FreeLig * (TotLig / CalcLig) ^ 0.5 

' 

'   Update iteration counter, check for iteration limit 
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' 

NumbIter = NumbIter + 1 

If NumbIter = 1000 Then GoTo StoreData 

GoTo Iteration 

' 

'   Store free species values in cells 

' 

StoreData:  Cells(Row + 69, Col + 3) = FreeMet 

            Cells(Row + 111, Col + 3) = FreeLig 

             

        Next Col 

    Next Row 

 

End Sub 
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Figure AII.2.  User screen for Complexation TOPOS program. 
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II.3  Redox TOPOS 

The Redox TOPOS program is different in that no numerical methods are required 

to compute the potential for each grid point coordinates.  The entire calculation is 

done with a simple embed formula.  Three inputs for this program allow a user to 

see the real-time effect of changing the standard resduction potential (E0), the 

number of electrons (n) or the temperature (K).  Other input cells allow the 

inclusion of 1) pure phases (liquid or solid); and 2) pH or acid/base species in the 

half reaction of interest. 

 

Instruction tab 

Instructions for using Redox TOPOS, a set of worksheets that generate 3-D topo 

surfaces above a redox composition grid. 

Before trying any computations with this file, save a copy under a different 

name to preserve embedded programming and cell formulas.  If you accidently 

overwrite some cells or delete a plot, the program may not function properly.  

Do not delete the topo surface from the worksheet.  The plot is automatically 

modified by the program to relate to your new calculations.  If you delete it, you 

will need to start from scratch on making a new surface plot.  Axes are labeled 

automatically by Excel.  They are often not optimal from all viewing angles. 

This software will automatically compute a Nernst potential topo surface based 

on the parameters associated with the half-reaction of interest.  All half-reactions 

are considered to be in the form that corresponds to its Standard Reduction 

potential.  The general form of that would be: 

 a Ox    +    n e-   ↔  c Red  E0 =  in Volts 

Often, a half-reaction will include H3O+ (or more simply H+) on the left-hand side 

or OH- on the right-hand side with accompanying H20 as needed. 

 a Ox   +  b H+   +   n e-   ↔   c Red   +   b/2 H2O for acid conditions 
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or 

 a Ox    +    2d H2O   +  n e-   ↔   c Red   +  d OH-         for basic conditions 

All three of these forms of half-cell reactions have been incorporated into the 

worksheets with the Nernst equation written in the form 

 

 

 

  

 

Two types of input devices, sliders and input cells, are present through which the 

user tells the Redox TOPOS worksheet which surface to generate. 

Three input devices are sliders.  These are employed to enter the E0 value , the 

number of electrons (n), and the temperature (in oC) for the half-reaction. 

 E0 values can range from -3.000 V to +3.000 V.   The current setting of the 

slider is visible in cell B1 immedi- 

                             ately above the slide bar.  The mouse can be used to adjust the 

slider to an approximate value.  Then        clicking on the < and > slide bar buttons 

will let you adjust to an exact final value in 0.001 V increments. 

 n, the number of electrons, can vary from 1 e- to 6 e-.  Manipulate the slider 

until the desired n-value appears 

                             in cell B5 immediately above the slide bar.  The < and > slide bar 

buttons can also be used to make a 

                             selection. 

 T values can range from 0oC to 100oC, or 273.15K to 373.15K, the entire 

possible liquid range of water.  The 
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       current setting off the slider appears in both temperature scales in cells 

B9 (celsius) and D9 (kelvin).  The  

       computations are done utilizing the kelvin temperature.  The mouse can 

be used to adjust the slider to an 

       approximate value.  Then clicking on the < and > slide bar buttons will 

let you adjust to an exact final 

       temperature in 0.01o increments.  

There are five input cells -- four control the coefficients in the half-reaction of 

interest and one stipulates the pH value to be used for the calculations.  These are 

all found in the lavendar-shaded area between lines 13 and 19. 

 The Coefficient of the Oxidized form is entered into cell B14.  The default 

value is 1.  If the half-reaction of 

       interest requires a higher coeficient, enter it here.  If the oxidized form 

is a pure phase, e.g., Br2(l), enter a 0        here. 

 The Coefficient of the Reduced form is entered into cell D14.  The defaultl 

value is 1.  If the half-reaction of 

       interest requires a higher coefficient, enter it here.  If the reduced form 

is a pure phase, e.g., Fe(s), enter a 0 

       here. 

 The Coefficient for H+ in acid medium half-reactions is entered into cell B16.  

If H+ is not present in the half- 

       reaction, enter a 0 here.  The default value for this cell is 0 since most 

half-reactions do not involve H+. 

 The Coefficient for OH- in basic medium half-reactions is entered into cell 

B18.  If OH- is not present in the half- 
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       reaction, enter a 0 here.  The default value for this cell is 0 since most 

half-reactions do not involve OH-. 

 The pH va;ue for surface calculations is entered into cell D9.  Upon entering 

a pH value, the spreadsheet 

       automatically displays the equivalent H+ molar concentration in cell F16 

and the equivalent OH- molar 

       concentration in cell F18. 

As soon as any input value is changed, the user should see new values percolate 

through the grid-point matrix.  An updated Nernst potential topo surface will 

replace any previous image.  The file as originally download contains the input 

values for the Fe3+/Fe2+ half-reaction at 250C and a standard reduction potential of 

0.771 V.  

Rows 24- 64 on the worksheet correspond to the E values that have been 

calculated for each grid point composition as labeled in Column A and Row 23.  

Once a surface has been generated, it can be freely rotated in any direction to 

enhance viewing.  To do this, right-click on the surface image and select the 3-D 

Rotation item.  Axis labels may need to be repositioned as you rotate the surface.  

Their positions were optimized for the viewing angle shown in the paper.  Excel 

will automatically adjust the labels during rotation.  Sometimes this helps; at 

other times, it does not. 

Excel offer other options for topo plots including solid colored surfaces, color-

coded 2-D contour maps or solid colored 2-D contour maps. 
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Figure AII.3.  User screen for Redox TOPOS program. 
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II.4  Solubility TOPOS 

The Solubility TOPOS program is under development.  At this writing it only 

implements the Simple Ksp model for sparingly soluble salts that have a 

stoichiometry with one component ion possessing a subscript of 1, i.e., 1:1, 1:2, 

1:3, 2:1 and 3:1.  User inputs for this simple case are the stoichiometry of interest 

and the Ksp value for the salt. 

 

Visual Basic Macro Listing 

Sub Case1() 

' 

' Case 1 - No complexes (version of 140508 

' Solubility surface 

' 

' Keyboard Shortcut: Ctrl+Shift+M 

' 

    Dim CaseNumb As Integer 

    Dim MetSub As Integer 

    Dim LigSub As Integer 

    Dim Ksp As Double 

    Dim Row As Integer 

    Dim Col As Integer 

    Dim TotLig As Double 

    Dim TotMet As Double 
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    Dim Solubility As Double 

    Dim FreeMet As Double 

    Dim FreeLig As Double 

    Dim XSLig As Double 

    Dim XSMet As Double 

    Dim IterCount As Integer 

    Dim LigGuess As Double 

    Dim MetGuess As Double 

' 

    Cells(10, 1) = "" 

    CaseNumb = Cells(13, 2) 

    If CaseNumb = 1 Then MetSub = 1: LigSub = 1: GoTo LegitCase 

    If CaseNumb = 2 Then MetSub = 1: LigSub = 2: GoTo LegitCase 

    If CaseNumb = 3 Then MetSub = 2: LigSub = 1: GoTo LegitCase 

    If CaseNumb = 4 Then MetSub = 1: LigSub = 3: GoTo LegitCase 

    If CaseNumb = 5 Then MetSub = 3: LigSub = 1: GoTo LegitCase 

    If CaseNumb = 6 Then MetSub = 2: LigSub = 3: GoTo LegitCase 

    If CaseNumb = 7 Then MetSub = 3: LigSub = 2: GoTo LegitCase 

    Cells(10, 1) = "Illegal Case Number": GoTo WrongCase 

' 

LegitCase: 

    Ksp = Cells(16, 2) 
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' 

    For Row = 0 To 36 

        TotLig = 10 ^ Cells(Row + 22, 2) 

        For Col = 0 To 36 

            TotMet = 10 ^ Cells(21, Col + 3) 

' 

'   Determine whether solid is present 

' 

            If TotMet ^ MetSub * TotLig ^ LigSub > Ksp Then GoTo SolidPresent 

' 

'   No precipitate.  Determine which component is in excess 

' 

            FreeMet = TotMet: FreeLig = TotLig 

            If (TotMet / MetSub) > (TotLig / LigSub) Then Solubility = TotLig / LigSub 

            If (TotMet / MetSub) = (TotLig / LigSub) Then Solubility = TotMet / MetSub 

            If (TotMet / MetSub) < (TotLig / LigSub) Then Solubility = TotMet / MetSub 

            GoTo StoreData 

' 

'   Branch to subroutine based on precipitate stoichiometry 

' 

SolidPresent: 

    If MetSub = 1 Then GoTo MetSub1 
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'   If LigSub = 1 Then GoTo LigSub1 

' 

'   Calculations for formulas with just one cation 

' 

MetSub1: 

    If TotMet = (TotLig / LigSub) Then FreeMet = (Ksp / (LigSub ^ LigSub)) ^ (1 / 

(LigSub + 1)): FreeLig = LigSub * FreeMet: Solubility = FreeMet: GoTo StoreData 

    If TotMet > (TotLig / LigSub) Then GoTo M1XSMetal 

' 

'   Excess ligand is present 

' 

M1XSLigand: 

    XSLig = TotLig - (LigSub * TotMet): LigGuess = XSLig: IterCount = 1 

     

M1RefineLigand: 

    MetGuess = Ksp / LigGuess ^ LigSub 

    LigGuess = XSLig + (LigNum * MetGuess) 

    IterCount = IterCount + 1 

    If IterCount = 8 Then Solubility = MetGuess: FreeLig = LigGuess: FreeMet = 

MetGuess: GoTo StoreData 

    GoTo M1RefineLigand 

' 
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'   Excess metal is present 

' 

M1XSMetal: 

    XSMet = TotMet - (TotLig / LigSub): MetGuess = XSMet: IterCount = 1 

     

M1RefineMetal: 

    LigGuess = (Ksp / MetGuess) ^ (1 / LigSub) 

    MetGuess = XSMet + (LigGuess / LigSub) 

    IterCount = IterCount + 1 

    If IterCount = 8 Then Solubility = (LigGuess / LigSub): FreeMet = MetGuess: 

FreeLig = LigGuess: GoTo StoreData 

    GoTo M1RefineMetal 

     

LigSub1: 

    If (TotMet / MetSub) = (TotLig / LigSub) Then FreeLig = (Ksp / (MetSub ^ 

MetSub)) ^ (1 / (MetSub + 1)): FreeMet = MetSub * FreeLig: Solubility = FreeLig: 

GoTo StoreData 

    If (TotMet / MetSub) > (TotLig / LigSub) Then GoTo L1XSMetal 

' 

'   Excess ligand is present 

' 

L1XSLigand: 

    XSLig = TotLig - (MetSub * TotMet): LigGuess = XSLig: IterCount = 1 
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L1RefineLigand: 

    MetGuess = Ksp / LigGuess ^ LigSub 

    LigGuess = XSLig + (MetNum * MetGuess) 

    IterCount = IterCount + 1 

    If IterCount = 8 Then Solubility = MetGuess: FreeLig = LigGuess: FreeMet = 

MetGuess: GoTo StoreData 

    GoTo L1RefineLigand 

' 

'   Excess metal is present 

' 

L1XSMetal: 

    XSMet = TotMet - (TotLig / LigSub): MetGuess = XSMet: IterCount = 1 

     

L1RefineMetal: 

    LigGuess = (Ksp / MetGuess) ^ (1 / LigSub) 

    MetGuess = XSMet + (LigGuess / LigSub) 

    IterCount = IterCount + 1 

    If IterCount = 8 Then Solubility = (LigGuess / LigSub): FreeMet = MetGuess: 

FreeLig = LigGuess: GoTo StoreData 

    GoTo L1RefineMetal 
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' 

'   Store the solubility and free species data 

' 

StoreData:  Cells(Row + 22, Col + 44) = Solubility 

            Cells(Row + 64, Col + 44) = FreeMet 

            Cells(Row + 106, Col + 44) = FreeLig 

        Next Col 

    Next Row 

WrongCase: 

End Sub 

 

 

Figure AII.4.  User screen for Solubility TOPOS program. 
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