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  In the 1820’s, Nikolai Ivanovich Lobachevski discovered and began to explore the 
world’s first non-Euclidean geometry. This crucial development in the history of 
mathematics was not recognized as such in his own lifetime. When his work finally 
found a sympathetic audience in the late 19th century, it was reinterpreted in the light of 
various intermediate developments (particularly Riemann’s conception of geometry), 
which were foreign to Lobachevski’s own way of thinking about the subject. 
  Because our modern understanding of his work derives from these reinterpretations, 
many of Lobachevski’s most striking ideas have been forgotten. To recover them, I have 
produced an “illuminated” version of Lobachevski’s most accessible work, Geometrische 
Untersuchungen zur Theorie der Parallellinien (Geometric Investigations on the Theory 
of Parallels), a book that he published in 1840. I have produced a new English version of 
this work, together with extensive mathematical, historical, and philosophical 
commentary. The commentary expands and explains Lobachevski’s often cryptic 
statements and proofs, while linking the individual propositions of his treatise to the 
related work of his predecessors (including Gerolamo Saccheri, J.H. Lambert, and A.M. 
Legendre), his contemporaries (including János Bolyai and Karl Friedrich Gauss), and his 
followers (including Eugenio Beltrami, Henri Poincaré, and David Hilbert). This 
dissertation supplies the contemporary reader with all of the tools necessary to unlock 
Lobachevski’s rich, beautiful, but generally inaccessible world. 
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Introduction 
 

Through the ostensibly infallible process of logical deduction, Euclid of Alexandria (ca.  

300 B.C.) derived a colossal body of geometric facts from a bare minimum of genetic 

material: five postulates – five simple geometric assumptions that he listed at the 

beginning of his masterpiece, the Elements. That Euclid could produce hundreds of 

unintuitive theorems from five patently obvious assumptions about space, and, still more 

impressively, that he could do so in a manner that precluded doubt, sufficed to establish 

the Elements as mankind’s greatest monument to the power of rational organized thought. 

As a logically impeccable, tightly wrought description of space itself, the Elements 

offered humanity a unique anchor of definite knowledge, guaranteed to remain eternally 

secure amidst the perpetual flux of existence – a rock of certainty, whose truth, by its 

very nature, was unquestionable.  

  

This universal, even transcendent, aspect of the Elements has profoundly impressed 

Euclid’s readers for over two millennia. In contrast to all explicitly advertised sources of 

transcendent knowledge, Euclid never cites a single authority and he never asks his 

readers to trust his own ineffably mystical wisdom. Instead, we, his readers, need not 

accept anything on faith; we are free and even encouraged to remain skeptical 

throughout. Should one doubt the validity of the Pythagorean Theorem (Elements I.47), 

for example, one need not defer to the reputation of “the great Pythagoras”. Instead, one 

may satisfy oneself in the manner of Thomas Hobbes, whose first experience with Euclid 

was described by John Aubrey, in his Brief Lives, in the following words. 

 

He was 40 years old before he looked on Geometry; which happened 

accidentally. Being in a Gentleman’s library, Euclid’s Elements lay open, and 

’twas the 47 E. Libri I. He read the Proposition. By G --, says he, (he would now 

and then sweare an emphaticall Oath by way of emphasis) this is impossible! So 

he reads the Demonstration of it, which referred him back to such a Proposition; 

which proposition he read. That referred him back to another, which he also 
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read. Et sic deincips and so on that at last he was demonstratively convinced of 

that truth. This made him in love with Geometry.

 

The Elements was an educational staple until the early twentieth century. So long as 

reading it remained a common experience among the educated, Euclid’s name was 

synonymous with demonstrable truth*. It is not an exaggeration to assert that Euclid was 

the envy of both philosophy and theology. In his Meditations, Descartes went so far as to 

base his certainty that God exists on his certainty that Euclid’s 32nd proposition is true. 

This was but a single instance out of many in which theology has tried to prop itself up 

against the rock of mathematics. Euclid's Elements, for all its austerity, appeals to a deep-

seated human desire for certainty. This being the case, any individual with the 

impertinence to challenge Euclid’s authority was certain to inspire reactions of both 

incredulity and scorn. 

 

But how exactly can one challenge Euclid’s authority? Euclid asks us to accept nothing 

more than five postulates, and all else follows from pure logic. Therefore, if there is 

anything to challenge in the Elements, it can only be in the postulates themselves. The 

first four seem almost too simple to question. Informally, they describe the geometer's 

tools: a straightedge, a compass, and a consistent means for measuring angles. The fifth 

postulate, however, is of a rather different character: 

 

That, if a straight line falling on two straight lines make the interior angles on 

the same side less than two right angles, the two straight lines, if produced 

indefinitely, meet on that side on which are the angles less than the two right 

angles.

 

                                                 
* At the very least, the demonstrations in the Elements were acknowledged as the strongest possible sort of 
which the rational mind is capable.  As the great Laurence Sterne writes in The Life and Opinions of 
Tristram Shandy (Book IV, Ch. XXVII), “It is curious to observe the triumph of slight incidents over the 
mind: –   What incredible weight they have in forming and governing our opinions, both of men and things 
– that trifles, light as air, shall waft a belief into the soul, and plant it so immovably within it – that Euclid’s 
demonstrations, could they brought to batter it in breach, should not all have power to overthrow it.” 
(Sterne, p. 221.) 
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This is Euclid's famous parallel postulate, so called because it forms the basis for his 

theory of parallels, which, in turn, forms the basis for nearly everything else in geometry. 

Modern geometry texts almost invariably replace this postulate with an alternative, to 

which it is logically equivalent: given a line and a point not on it, there is exactly one line 

that passes through the point and does not intersect the line. Particularly when expressed 

in this alternate form, the parallel postulate does strike most as “self-evident”, and thus 

beyond question for any sane individual. It would seem, therefore, that Euclid has no 

significant weaknesses; his geometry is the geometry – impregnable, inevitable, and 

eternal. 

 

The timeless, almost icy, perfection that characterizes Euclid’s work made it not only a 

logical masterpiece, but an artistic one as well. In this latter aspect, commentators often 

singled out the parallel postulate as the unique aesthetic flaw in the Elements. The 

problem was that the parallel postulate seemed out of place: it read suspiciously like a 

theorem – something that Euclid should have proved from his earlier postulates, instead 

of adjoining it to their ranks. This structural incongruity - a postulate that “should be” a 

theorem - disturbed many mathematicians from antiquity to the 19th century. We may 

safely presume that Euclid tried and failed to prove the postulate as a theorem. We know 

that Euclid’s followers and admirers also tried to do as much, hoping to perfect their 

master’s work by polishing away this one small but irritating blemish. Many believed that 

they had succeeded. 

 

Records of flawed “proofs” rarely survive, as there generally seems no reason to preserve 

them, so the astonishing number of alleged proofs of the parallel postulate that have come 

down to us should serve to indicate just how much attention was given to this problem. 

Proclus, a 5th-century neo-Platonic philosopher, who wrote an extensive commentary on 

the first book of the Elements, describes two attempts: one by Posidonius (2nd century 

B.C.), the other by Ptolemy (the 2nd-century A.D author of the Almagest, the Bible of 

geocentric astronomy). Both arguments, Proclus points out, are inadmissible because they 

contain subtle flaws. After detailing these flaws, Proclus proceeded to give his own proof, 
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thus settling the matter for once and all – or so he thought. Proclus’ proof, for all his 

critical acumen, was just as faulty as those he had criticized. 

 

We have flawed proofs by Aghanis (5th century) and Simplicius (6th-century), two 

Byzantine scholars. Many others by medieval Islamic mathematicians have survived, 

including attempts by al-Jawhari and Thabit ibn Qurra in the 9th century, al-Haytham and 

Omar Khayyam in the 11th, and Nasir-Eddin al-Tusi in the 13th. There are even a few 

specimens from medieval Europe, such as those concieved by Vitello in the 13th century 

and Levi ben Gerson in the 14th. A veritable horde of later Europeans left purported 

proofs of the postulate (to cite just a few examples: Christopher Clavius in 1574,  Pietro 

Antonio Cataldi in 1604, Giovanni Alfonso Borelli in 1658, Gerolamo Saccheri in 1733, 

Louis Bertrand in 1788, and Adrien Marie Legendre, who published many attempts 

between 1794 and 1832). Indeed, in 1763, G.S. Klügel wrote a dissertation examining no 

less than twenty-eight unsound “proofs” of the postulate. Interestingly, most would-be 

postulate provers followed Proclus in explicitly criticizing one or more of their 

predecessors’ attempts before giving their own flawed “proof to end all proofs”.*

 

Adhering to long-standing custom, Nikolai Ivanovich Lobachevski (1792 – 1856) began 

many of his own works on the subject by criticizing the alleged proofs of his immediate 

predecessor, Legendre. However, instead of forging the chain’s next link, Lobachevski 

suggested that the chain be discarded altogether. He insisted that the parallel postulate 

cannot be proved from Euclid’s first four postulates. In this sense, Lobachevski was a 

great defender of Euclid: he felt that Euclid was fully justified in assuming the parallel 

postulate as such; indeed, he believed that Euclid had no other way to obtain it.  

 

In another sense, Lobachevski believed that Euclid was wholly unjustified in assuming 

the parallel postulate, for we cannot be certain that it accurately describes the behavior of 

lines in physical space. Euclidean tradition declares that it does, but the universe is not 

obliged to respect humanity’s traditional beliefs about space, even those codified by its 

                                                 
* For detailed descriptions of many alleged proofs of the postulate, consult Rosenfeld (Chapter 2) or Bonola 
(Chapters 1 and 2). 
 

 4



great authority, Euclid of Alexandria. Lobachevski considered the validity of the parallel 

postulate an empirical question, to be settled, if possible, by astronomical measurements. 

 

Unorthodoxy quickly led to heresy: proceeding from the assumption that the parallel 

postulate does not hold, Lobachevski began to develop a new geometry, which he called 

imaginary geometry*, whose results contradicted Euclid’s own. He first described this 

strange new world on February 24, 1826, in a lecture at the University of Kazan. His first 

written publication on the subject dates from 1829. Several others followed, and after a 

decade of failed attempts to convince his fellow Russians of the significance of his work, 

he published accounts of it in French (in 1837) and German (in 1840), hoping to attract 

attention in Western Europe. He found none. By the time that he wrote Pangeometry 

(1855), he was blind (he had to dictate the book), exhausted, and embittered. He died the 

following year. †

 

In fact, although Lobachevski never knew it, his work did find one sympathetic reader in 

his lifetime: Karl Friedrich Gauss (1777-1855), often classed with Isaac Newton and 

Archimedes as one of the three greatest mathematicians who have ever lived. Gauss 

shared Lobachevski’s convictions regarding the possibility of an alternate geometry, in 

which the parallel postulate does not hold. He reached these conclusions earlier than 

Lobachevski, but abstained, very deliberately, from publishing his opinions or 

investigations.  Fearing that his ideas would embroil him in controversy, the very thought 

of which Gauss abhorred, he confided them only to a select few of his correspondents, 

most of them astronomers. When Gauss read an unfavorable review of Lobachevski’s 

Theory of Parallels, he dismissed the opinions of the reviewer, hastened to acquire a copy 

of the work, and had the rare pleasure of reading the words of a kindred, but more 

                                                 
* By the end of his life, he preferred the name pangeometry, for reasons that will become clear by the end 
of The Theory of Parallels. Other common adjectives for Lobachevski’s geometry are non-Euclidean (used 
by Gauss), hyperbolic (introduced by Felix Klein), and Lobachevskian (used by Russians). 
 
† His French paper of 1837, Géométrie Imaginaire, appeared in August Crelle’s famous journal, Journal 
für die Riene und Angewandte Mathematik (Vol. 17, pp. 295-320). His German publication of 1840 was 
The Theory of Parallels; its full title is Geometrische Untersuchungen zur Theorie der Parallelinien 
(Geometric Investigations on the Theory of Parallels). Lobachevski wrote two versions of Pangeometry, 
one in French and one in Russian.  
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courageous, spirit. Gauss was impressed; he even sought out and read Lobachevski’s 

early publications in Russian. To H.C. Schumacher, he wrote in 1846, “I have not found 

anything in Lobachevski’s work that is new to me, but the development is made in a 

different way from the way I had started and, to be sure, masterfully done by 

Lobachevski in the pure spirit of geometry.”  

 

True to his intent, Gauss’ radical thoughts remained well-hidden during his lifetime, but 

within a decade of his death, the publication of his correspondence drew the attention of 

the mathematical world to non-Euclidean geometry. Though the notion that there could 

be two geometries did indeed generate controversy, the fact that Gauss himself endorsed 

it was enough to convince several mathematicians to track down the works of the 

unknown Russian whom Gauss had praised so highly.  Unfortunately, Lobachevski 

reaped no benefit from this interest; he was already dead by that time, as was the equally 

obscure Hungarian mathematician, János Bolyai (1802-1860), whose related work also 

met with high praise in Gauss’ correspondence. 

 

Bolyai had discovered and developed non-Euclidean geometry independently of both 

Lobachevski and Gauss. He published an account of the subject in 1832, but it had 

essentially no hope of finding an audience: it appeared as an appendix to a two-volume 

geometry text, written by his father, Farkas Bolyai, in Latin. Farkas Bolyai, who had 

known Gauss in college, sent his old friend a copy of his son’s revolutionary studies. 

Gauss’ reply – that all this was already known to him – so discouraged the young János, 

that he never published again, and even ceased communicating with his father, convinced 

that he had allowed Gauss to steal and take credit for his own discoveries. Father and son 

were eventually reconciled, but Bolyai was doubly disheartened some years later to learn 

that his own Appendix could not even claim the honor of being the first published account 

of non-Euclidean geometry: Lobachevski’s earliest Russian paper antedated it by several 

years. 

 

As mathematicians began to re-examine the work of Lobachevski and Bolyai, translating 

it into various languages, extending it, and grappling with the philosophical problems that 
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it raised, they changed the very form of the subject in order to assimilate it into 

mainstream mathematics. By 1900, non-Euclidean geometry remained a source of 

wonder, but it had ceased to be a controversial subject among mathematicians, who were 

now describing it in terms of differential geometry, projective geometry, or Euclidean 

“models” of the non-Euclidean plane. These developments and interpretations helped 

mathematicians domesticate the somewhat nightmarish creatures that Lobachevski and 

Bolyai had loosed upon geometry. Much was gained, but something of great 

psychological importance was also lost in the process. The tidy forms into which the 

subject had been pressed scarcely resembled the majestic full-blooded animal that 

Lobachevski and Bolyai had each beheld, alone, in the deep dark wild wood. 

 

Today, in 2007, the vigorous beast is almost never seen in its original habitat. Just as we 

give toy dinosaurs and soft plushy lions to children, we give harmless non-Euclidean 

toys, such as the popular Poincaré disc model, to mathematics majors. We take advanced 

students to the zoo of differential geometry and while we are there, we pause – briefly, of 

course – to point out a captive specimen of hyperbolic geometry, sullenly pacing behind 

bars of constant negative curvature. 

 

If we are to understand the meaning of non-Euclidean geometry – to understand why it 

wrought such important changes in mathematics - we must first recapture the initial 

fascination and even the horror that mathematicians felt when confronted with the work 

of Lobachevski and Bolyai. This, however, is difficult. The advent of non-Euclidean 

geometry changed the mathematical landscape so profoundly that the pioneering works 

themselves were obscured in the chaos of shifting tectonic plates and falling debris. 

Mathematical practices of the early 19th century are not the same as those of the early 

21st. The gap of nearly two centuries generally precludes the possibility of a sensitive 

reading of Lobachevski’s works by a modern reader. This dissertation is an attempt to 

rectify the situation, by supplying the contemporary reader with all of the tools necessary 

to unlock this rich, beautiful, but generally inaccessible world. But where does one start? 

 

 7



Gauss left us nothing to work with. Bolyai’s Appendix is out of the question; his writing 

is often terse to the point of incomprehensibility. Lobachevski is far clearer, but he too 

makes heavy demands on his readers. Perhaps we should read his earliest works? In 

1844, Gauss described them (in a letter to C.L. Gerling) as “a confused forest through 

which it is difficult to find a passage and perspective, without having first gotten 

acquainted with all the trees individually.” At the other chronological extreme, 

Lobachevski’s final work, Pangeometry, is inappropriate for beginners since it merely 

summarizes the elementary parts of the subject, referring the reader to The Theory of 

Parallels, his German book of 1840, for proofs. Pangeometry does make a logical second 

book to read, but the book that it leans upon, The Theory of Parallels, remains the best 

point of ingress for the modern mathematician. 

 

Accordingly, the following pages contain a new English version of The Theory of 

Parallels, together with mathematical, historical, and philosophical commentary, which 

will expand and explain Lobachevski’s often cryptic statements (which even his 

contemporaries failed to grasp), and link his individual propositions to the related work of 

his predecessors, contemporaries, and followers. Resituated in its proper historical 

context, Lobachevski's work should once again reveal itself as an exciting, profound, and 

revolutionary mathematical document. 

 

Regarding the format, I have broken each of Lobachevski’s propositions into pieces, 

providing commentary between them. I have set Lobachevski’s words in a distinctive 

font (Bookman Old Style) and color (brown) to distinguish them from my own. For the 

benefit of readers who would like to compare my somewhat free rendering of 

Lobachevski’s German with the original, I have included, as an appendix, the original 

text, retyped in Roman (rather than Fraktur) characters by the indefatigable Karel 

Stroethoff. 
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Theory of Parallels – 
Lobachevski’s Introduction. 
 
In geometry, I have identified several imperfections, which I hold 
responsible for the fact that this science, apart from its translation into 
analysis, has taken no step forward from the state in which it came to us 
from Euclid. I consider the following to be among these imperfections: 
vagueness in the basic notions of geometric magnitudes, obscurity in the 
method and manner of representing the measurements of such 
magnitudes, and finally, the crucial gap in the theory of parallels. Until 
now, all mathematicians’ efforts to fill this gap have been fruitless. 
Legendre’s labors in this area have contributed nothing. He was forced to 
abandon the one rigorous road, turn down a side path, and seek 
sanctuary in extraneous propositions, taking pains to present them – in 
fallacious arguments – as necessary axioms. 
 I published my first essay on the foundations of geometry in the 
“Kazan Messenger” in the year 1829.  Hoping to provide an essentially 
complete theory, I then undertook an exposition of the subject in its 
entirety, publishing my work in installments in the “Scholarly Journal of 
the University of Kazan” in the years 1836, 1837, and 1838, under the 
title, “New Principles of Geometry, with a Complete Theory of Parallels”. 
Perhaps it was the extent of this work that discouraged my countrymen 
from attending to its subject, which had ceased to be fashionable since 
Legendre. Be that as it may, I maintain that the theory of parallels 
should not forfeit its claim to the attentions of geometers. Therefore, I 
intend here to expound the essence of my investigations, noting in 
advance that, contrary to Legendre’s opinion, all other imperfections, 
such as the definition of the straight line, will prove themselves quite 
foreign here and without any real influence on the theory of parallels. 
 
 
Legendre 
“I have read M. Legendre’s book. Ach! It is beautiful! You shall find in it no flaw!” 
   - Herr Niemand, in Euclid and his Modern Rivals*. 
 
 In 1794, when Lobachevski was an infant, Adrien Marie Legendre published his 

famous Éléments de Géométrie, a textbook that attempted to improve Euclid’s 

presentation of geometry by simplifying the proofs in Euclid’s Elements, and reordering 

its propositions. In subsequent editions and translations, Legendre’s text became a 19th-

century educational staple. Its admirers were legion; they taught and learned from it in 

                                                 
* Carroll, p. 54. 
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locations throughout Europe, the antebellum United States, and even in Lobachevski’s 

remote Russian city of Kazan. Legendre died in 1833, but his textbook remained 

immensely popular for the duration of the 19th century. In the epigraph for this section, 

Herr Niemand waxes enthusiastic over the 14th edition of Legendre’s Éléments, published 

in 1860*. 

 Legendre never doubted that the parallel postulate was a logical consequence of 

Euclid’s first four axioms. Indeed, he claimed to have discovered several proofs of the 

postulate - all flawed, of course. New editions of his textbook often featured new proofs 

of the postulate, not because Legendre recognized that the proof in the previous edition 

was invalid, but rather, because he feared that the old proof had been too complex for 

beginners to follow. I have reproduced one of his “proofs” in the notes to TP 19. His 

argument is ingenious, but contains a very subtle flaw, as you shall see. Each of his 

proofs contains a hidden circular argument of the same variety: he implicitly assumes the 

truth of a property equivalent to the parallel postulate. Legendre’s little loops of logic are 

the “side paths” to which Lobachevski refers above. In the introduction to his New 

Principles of Geometry (1835-8), Lobachevski describes and criticizes some of 

Legendre’s attempts on the postulate†. 

 Near the end of his life, Legendre summarized his work on the parallel postulate 

in his memoir, Reflections on the Different Ways of Proving the Theory of Parallels or 

the Theorem on the Sum of the Three Angles of the Triangle. In it, he laments the inherent 

                                                 
* In fact, Charles Dodgson (a.k.a. Lewis Carroll) published Euclid and his Modern Rivals in the year 1879. 
Despite the lapse of 85 years since its original publication, Dodgson (in the guise of his character, Minos) 
clearly preferred Legendre’s book to all the other “modern rivals” of Euclid. He describes the book and its 
proofs as “beautiful”, “admirable”, and “a model of elegance”, but worries that it may be too difficult for 
beginners. When one reflects that today’s (2007) elementary mathematics courses are never taught from 
books published in 1922, one can appreciate the special nature of Legendre’s text. 
 
† In the same place, he criticized a popular “proof” due to the Swiss mathematician Louis Bertrand in 1778. 
Bertrand’s reductio ad absurdum argument involved dubious comparisons of infinite areas, a technique that 
Legendre also used in one of his proofs. Areas, along with lengths and volumes, are the “geometric 
magnitudes” to which Lobachevski alludes; he criticizes Bertrand and others for applying techniques that 
hold for finite figures to infinite figures, for which they may no longer be valid. A description of Bertrand’s 
proof is in Rosenfeld (p. 102). In modified form, this proof resurfaced in Crelle’s Journal in 1834 (the 
same journal that published a paper by Lobachevski in 1837!), and as late as 1913, an article in The 
Mathematical Gazette (Vol. 7, p. 136) would claim, “Bertrand of Geneva proved the parallel-axiom finally 
and completely.” 
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difficulty of proving the postulate, and suggests reasons why it had resisted proof for so 

long. 

 
Without doubt, one must attribute to the imperfection of common language and to 
the difficulty of giving a good definition of the straight line the little success 
which geometers have had until now when they have wanted to deduce this 
theorem.*

 
Lobachevski responds to this in the last sentence of his introductory remarks above. The 

logical reasons for the parallel postulate’s necessity are not, as Legendre suggests they 

are, deep. Rather, they are nonexistent. In the pages that follow, Lobachevski will 

dispense with the parallel postulate, accept its negation, and defiantly proceed to develop 

geometry anew. 

                                                 
* Laubenbacher & Pengelly, p. 26. 
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Theory of Parallels – 
Preliminary theorems (1 - 15) 
 
Mathematical terms cannot be defined ex nihilo. The words that one uses in any given 

definition require further definitions of their own; these secondary definitions necessitate 

tertiary definitions; these in turn require still others. To escape infinite regress, geometers 

must leave a handful of so-called primitive terms undefined. These primitive terms 

represent the basic building blocks from which the first defined terms may be 

constructed. From there, one may build upward indefinitely; all subsequent development 

will be grounded upon the primitive terms, and circular definitions will be avoided. 

 Only in the late 19th-century was such clarity achieved in the foundations of 

geometry. Euclid never identifies his primitive terms and several of his early definitions 

founder in ambiguity. His vague definition of a straight line, “a line which lies evenly 

with the points on itself”*  is useless from a logical standpoint: since Euclid does not tell 

us what “lying evenly” means, we have no way of deciding whether a given curve is 

straight or not. Euclid has given us a description rather than a genuine definition of a line, 

and as such, he has given us something that is worthless in a strict logical development of 

geometry. 

 Mathematics encompasses more than logic, however†. The very fact that Euclid 

attempts to describe a line has philosophical significance. It suggests that, for Euclid, 

straight lines are “out there”, capable of description. It implicitly asserts that straight 

lines exist independently of the mathematicians who study them. For one who accepts this 

Platonic concept of geometry, the logical gaps in The Elements are so superficial as to 

scarcely merit mention. For example, Euclid does not bother to justify the obvious fact 

that if a straight line enters a triangle through one of its vertices, then it must exit through 

the opposite side. Nevertheless, he frequently uses this fact in his proofs; he knows that 

the line must exit through the opposite side. Of course, we know it as well, but how do 

we know it? Where is this mysterious Platonic realm and how do our minds gain access 

to it? Might our intuitions about it be mistaken? 

                                                 
* Euclid’s “line” is our “curve”. 
† But compare Bertrand Russell: “The subject of formal logic, which has now at last shown itself to be 
identical with mathematics...” (Russell, Mysticism and Logic, p. 72.) 
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 We can wage long battles over such questions, but it is much more comfortable 

for mathematicians to retreat to philosophical positions that are easier to defend than 

Platonism. Behind the bunkers of formal axiomatic development, we can generally 

remain safe from philosophers’ attacks. There are several ways to reconstruct the formal 

foundations of geometry, making them nearly unassailable. In his book Foundations of 

Geometry, originally published in 1900, David Hilbert based the entire subject upon five 

primitive terms: point, line, contain, between, and congruent. Hilbertian formalism denies 

that lines (or any other undefined concepts) inhabit a reality that one can contemplate 

outside the context of rigorous deduction. Consequently, his definitions are not intended 

to describe ideal objects, but rather to endow empty words with precise mathematical 

meanings. Euclid was content to leave certain fundamental notions on an intuitive basis, 

such as the simple statement about lines and triangles mentioned in previous paragraph, 

but for Hilbert, the geometric atheist, such a procedure is anathema; truth is synonymous 

with proof. To use theorems that one cannot prove is to abandon mathematics for 

theology*. 

 
 
A Rough Start: TP 1 – 5. 
“...the beginning...was without form, and void.”  - Genesis 1:1-2. 
 
 Much of the defensive work that went into shoring up the foundations of 

geometry was inspired by the shock caused by Lobachevski’s non-Euclidean geometry 

when it became known in the late 19th century. The existence of a second geometry raises 

the disturbing possibility that our basic intuitions about geometry might be fallible, after 

all. This foundational work, however, came after Lobachevski’s death, so we should not 

expect to see its like in The Theory of Parallels. Indeed, following Euclid’s tradition of 

doubtful preliminaries, Lobachevski begins his book with five confused “theorems”, four 

of which should certainly be demoted to the status of descriptions (or axioms), as they do 

not admit proof on the basis of Euclid’s axioms. Even the one genuine theorem in the 

group (TP 4) is superfluous: it is just a special case of TP 7. 

 

                                                 
* Compare Blaise Pascal’s dictum: “Reason is the slow and tortuous method by which those who do not 
know the truth discover it.”  
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Lest my reader become fatigued by a multitude of theorems whose proofs 
present no difficulties, I shall list here in the preface only those that will 
actually be required later. 
 
1) A straight line covers itself in all its positions. By this, I mean that a 
straight line will not change its position during a rotation of a plane 
containing it if the line passes through two fixed points in the plane. 
 

 In TP 1, Lobachevski begins with an assertion suspiciously similar to Euclid’s 

definition of a straight line. Unlike Euclid, he seems to recognize its weakness, and tries 

to clarify it with his second sentence. He does not succeed. He is apparently claiming that 

straight lines are the fixed-point-sets of spatial rotations. To prove that this is so, we 

would have to demonstrate that the set of fixed points under such a rotation satisfies the 

definition of a straight line. Since Euclid’s definition is clearly useless for this task (How 

does one demonstrate that a set of points “lie evenly with themselves?”), and 

Lobachevski proposes no alternate definition, we must conclude that TP 1 cannot be 

proved rigorously. 

 Just as Euclid never subsequently refers to his vague definition of a straight line, 

Lobachevski never refers to TP 1 elsewhere in the Theory of Parallels. What are we to 

make of this inauspicious beginning? Why does Lobachevski begin his treatise with a 

vague statement, labeled as a theorem yet incapable of proof, to which he never 

subsequently refers? That this inscrutable pronouncement heads a list of theorems 

specifically designated as vital for the sequel and amenable to easy proof makes it 

stranger still. 

 I believe that we must read TP 1 as I have suggested that we read Euclid’s 

definition of a straight line: as an implicit assertion that straight lines have an intrinsic 

“nature”, reflected in our experience of straightness (or approximate straightness) in the 

natural world. Thus, the implicit role of this proposition is to rule out certain “unnatural” 

behaviors of straight lines, such as self-intersection. A curve in the plane that loops back 

and intersects itself obviously does not correspond to our intuition of straightness. 

Considered as logical tools, Euclid’s definition of straightness and Lobachevski’s TP 1 

are undoubtedly problematic, if not altogether meaningless. If any value can be ascribed 

to them, it must be historical rather than mathematical. Each, if nothing else, hints at an 
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underlying Platonist philosophy of mathematics in their respective author. This indication 

of a Platonist strain in Lobachevski’s work helps explain why his investigations into the 

foundations of geometry took such a different path than those undertaken by Hilbert. 
 

2) Two straight lines cannot intersect one another in two points. 
 

 Two lines intersecting one another in two points would violate Euclid’s first 

postulate, which states that a unique line may be drawn through any two points*. 
 

3) By extending both sides of a straight line sufficiently far, it will break 
out of any bounded region. In particular, it will separate a bounded plane 
region into two parts. 
 

 These exemplify the types of intuitive statements that Euclid and Lobachevski use 

without axiomatic justification. Naturally, Hilbert’s foundations allow one to prove them, 

but only after devoting a good deal of labor to defining terms and establishing a host of 

preliminary lemmas. 
 In The Theory of Parallels, Lobachevski uses TP 3 as follows. When a line enters 

a bounded figure, such as a triangle, TP 3 simply guarantees that the line, if extended far 

enough, will eventually come out again. 

 We shall discuss this again in TP 17, when Lobachevski first invokes TP 3. 

 

4) Two straight lines perpendicular to a third will never 
intersect one another, regardless of how far they are 
extended. 
 

 TP 4 is just a special case of TP 7. 
  

5) When a straight lines passes from one side to the other of a second 
straight line, the lines always intersect. 
 

                                                 
* Euclid explicitly postulates only the existence of a line through any two points, but his failure to mention 
uniqueness seems to have been an oversight, since he makes specific use of its uniqueness several times (in 
his proof of I.4, for example). Many editions of the Elements alter the wording of the first postulate to make 
the uniqueness of the line explicit. 
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 Here, Lobachevski posits the continuity of straight lines: they lack holes through 

which one might thread a second line. Euclid assumes this as obvious. We shall do the 

same and proceed onward. 

 
 
Neutral Results in Plane Geometry: TP 6 – 10. 
“...from those propositions of Euclid’s first Book that precede the twenty-ninth, wherein begins the use of 
the disputed postulate...”          
  - Gerolamo Saccheri, Euclides Vindicatus. 
 
The dubious beginning is over. From now on, Lobachevski will deal only with genuine 

theorems. The important point to observe in these preliminary theorems is that they are 

neutral results: their truth does not depend on Euclid’s parallel postulate. Since Euclid 

delayed his own first use of the parallel postulate until his 29th proposition, Lobachevski 

is free to use the first propositions I.1 – I.28 of the Elements.  

 

6) Vertical angles, those for which the sides of one angle are the 
extensions of the other, are equal. This is true regardless of whether the 
vertical angles lie in the plane or on the surface of a sphere. 
 

 Euclid’s simple proof of this result (Elements, I.15), works on the sphere as well 

as on the plane. 

 

7) Two straight lines cannot intersect if a third line cuts them at equal 
angles. 
 

 That is, if two lines are equally inclined toward a third, then 

the first two lines will never meet. Euclid proves this in I.28. Since 

he defines parallels as lines in the same plane that do not intersect 

one another, Euclid would describe the two lines in this proposition 

as being parallel. Lobachevski does not use this terminology here; he 

simply says that the two lines do not intersect one another. We shall see the reason for 

this in TP 16, where Lobachevski proposes a new definition of the word parallel, which 

these two lines will not satisfy. 
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 As mentioned above, TP 4 is a special case of TP 7, when the two lines each meet 

the third at right angles. 

 

8) In a rectilinear triangle, equal sides lie opposite equal angles, and 
conversely. 
 

 This is the famous pons asinorum (the base angles of an isosceles triangle are 

equal) and its converse. For proofs, see Euclid (Elements, I.5 and I.6). 

 

9) In rectilinear triangles, greater sides and angles lie opposite one 
another. In a right triangle, the hypotenuse is greater than either leg, and 
the two angles adjacent to it are acute. 
 

 This all follows from propositions I.17- I.19 in the Elements. 

 Euclid proves that in any triangle, the greater of two sides will have the larger 

opposite angle (I.19), and conversely, the greater of two angles will have the larger 

opposite side (I.18). 

 Because Euclid shows that any two angles in a rectilinear triangle sum to less than 

two right angles (I.17), it follows that in any right triangle’s right angle will be the largest 

of all of its angles. Consequently, the side opposite the right angle - the hypotenuse - 

must be the right triangle’s largest side (I.18). 

 

10) Rectilinear triangles are congruent if they have a side and two angles 
equal, two sides and their included angle equal, two sides and the angle 
that lies opposite the greatest side equal, or three sides equal. 
 

 This list of triangle congruence criteria includes the familiar four, SAS (Elements, 

I.4), SSS (I.8), ASA (I.26), and AAS (I.26). In general, ASS is not a valid criterion, 

although it does imply congruence when the angle lies opposite the larger of the two 

sides. In The Theory of Parallels, Lobachevski requires only one sub-case of this 

criterion: the case in which the angle is right (and thus lies opposite the hypotenuse, the 

largest side). Since Euclid does not prove this “RASS criterion” (right angle – side – 

side), I shall provide one to justify Lobachevski’s later use of it.  
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Claim. (RASS) If two right triangles have a leg equal and their hypotenuses equal, then the 
triangles are congruent. 
Proof. Let ABC and A′B′C′ be the right triangles (with right angles at C and C′), 
where AC = A′C′ and AB = A′B′. 
 Extend BC to D so that CD = B′C′. 
 Then ADC ≅ A′B′C′ by SAS (Elements, I.4). 
 Hence, AD = A′B′ = AB, so ABD is isosceles.  
 Thus, the base angles at B and D are equal (I.5). 
 Consequently, ABC ≅ ADC by AAS (I.26). 

th congruent to ADC, we conclude that 

ote that the preceding proof does not make use of the parallel postulate. Hence, RASS 

eutral Results in Solid Geometry: TP 11 – 15. 
t, because it’s so absurdly undeveloped.” 

 several later propositions (TP 26, 27, 34, 35), Lobachevski calls upon a handful of 

1) If a straight line is perpendicular to two intersecting lines, but does not 

This is one of Euclid’s first theorems of solid 

omet

t 

 Having shown that ABC and A′B′C′ are bo
they are congruent to one another, as claimed.       
 

N

is a congruence criterion in neutral geometry. 

 
 
N
“In my hurry I overlooked solid geometry, which should come nex
       - Socrates, in Plato’s Republic (528d)  
 
In

basic neutral theorems of solid geometry, which he has collected in the present section. 

The reader need not worry about them until reaching those portions of The Theory of 

Parallels that take place in three-dimensional space, at which time he can refer back to 

this section as needed.  

 

1
lie in their common plane, then it is perpendicular to all straight lines in 
their common plane that pass through their point of intersection. 
 

 

ge ry (Elements, XI.4). We say that a line in space is 

perpendicular to a given plane if it is perpendicular to all 

lines in the plane that pass through the point at which it 

pierces the plane. Since there are infinitely many such lines, 

verifying that a line is perpendicular to a plane could be difficult in practice were it no
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for the present theorem. It tells us that once we know that a certain line in space is 

perpendicular to two lines in a given plane, we may conclude that the line is 

perpendicular to the plane. 

 An examination of Euclid’s proof shows that this is a neutral result. 

2) The intersection of a sphere with a plane is a circle. 
rsection of two 

I shall prove these two neutral theorems, neither of which appears in Euclid’s 

3, we must first recall that the angle formed by two planes at 

 a dihedral angle of π/2. 

laim 1 (TP 13). Given a pair of perpendicular planes, if a line lying in one of them makes a 

section. 

l and h meet. 
h X and is 

perpendicular to h. 

                                                

 

1
13) If a straight line is perpendicular to the inte
perpendicular planes and lies in one of them, then it is perpendicular to the 
other plane. 
 

 

Elements, in reverse order. 

 To understand TP 1

their line of intersection is called a dihedral angle. We measure a dihedral angle as 

follows. From an arbitrary point of its “hinge” (the line in which the two planes meet), we 

erect two perpendiculars, one in each plane. We call these perpendiculars lines of slope 

for the dihedral angle, and we define the dihedral angle’s measure to be equal to the 

measure of the plane angle between the lines of slope. Naturally, we must show that the 

measure of dihedral angle is a well-defined concept. That is, we must show that it yields 

the same value no matter which point of the hinge from which we draw the lines of slope. 

I have given a neutral proof of this fact in the notes to TP 26*. 

 TP 13 concerns perpendicular planes: planes meeting at

 
C
right angle with the hinge between them, then that line is perpendicular to the other plane. 
Proof.  Let α and β be perpendicular planes. 
 Let h be their hinge, their line of inter
 Let l be a line in α such that l ⊥ h. 
 We must show that l ⊥ β. 
 Let X be the point at which 
 Let m be the line in β that passes throug

 
* See the subsection, “A Dihedral Digression”, in the TP 26 notes. The proof that the dihedral angle is well 
defined does not depend on any intermediary work, so the interested reader may examine it immediately.  
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 Since l and m are lines of slope for the dihedral angle between the perpendicular planes, 

In future propositions, Lobachevski will often drop a perpendicular from a point 

laim 2 (Euclid XI.11 - neutralized). 
erpendicular from the point to the plane. 

ne. 

ane A

 line of slope in it. Since the lines of slope 

nce GF lies in one of the perpendicular planes (the given plane), and is perpendicular to 

.  

the definition of dihedral angle measure tells us that the plane angle between l and m is π/2. That 
is, l ⊥ m. Moreover, we already know that l ⊥ h. Hence, l is perpendicular to two lines in plane β, 
from which it follows that l is perpendicular to plane β (by TP 11).     
 
 
 

to a plane, or erect a perpendicular from a point on a plane. These basic procedures are 

legitimate in neutral geometry, but the relevant constructions in Euclid’s Elements 

(XI.11, 12) involve the parallel postulate. Consequently, we are obliged to legitimize 

their use in the present context by “neutralizing” Euclid’s proofs. That is, we must assure 

ourselves that we can drop or erect perpendiculars without using the parallel postulate in 

the process. 

 
C
Given a plane and a point not on it, we may drop a p
Proof.  Let A be the point, and let BC be a random line in the given plane. 
 In plane ABC, drop a perpendicular AD from A to BC. 
 In the given plane, erect DE perpendicular to BC at D. 
 In plane AED, drop a perpendicular AF from A to ED. 
 We shall show that AF is perpendicular to the given pla
 In the given plane, erect GH perpendicular to ED at F. 
 Line BC is perpendicular to plane AFD (TP 11).
 Thus, the given plane is perpendicular to 
pl FD. (Proof: Erect lines of slope from D, a 
point on the hinge between the two planes. Since the 
line of slope in the given plane, DB, is perpendicular 
to the other plane, it is a fortiori perpendicular to the
are perpendicular, the dihedral angle between the planes is π/2, so the planes are perpendicular, as 
claimed.) 
 Si

the hinge between them, it must be perpendicular to the other plane, AFD, by TP 13 (Claim 1). 
 Thus, AF is perpendicular to GF and DF, both of which lie in the given plane. 
 Hence, AF is perpendicular to the given plane (Euclid XI.4 / TP 11), as claimed
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Claim 3 (Euclid XI.12 - neutralized) 

 erect a perpendicular from the point to the plane.

ne (by Claim 2). 

a perpendicular AD to line AC at point A. 
 was to be constructed.  

Now that we know that we may drop or erect perpendicular as we please in solid 

 4 (TP 12). The intersection of a sphere and plane is a circle.
 it consists of all points in the 

es n

endicular 
 2). 

  
 of the 

Given a plane and a point on it, we may
Proof. Let A be the given point on the given plane. 
 Let B be a random point not on the plane. 
 Drop a perpendicular BC from B to the pla
 Plane ABC is perpendicular to the given plane. 
(Draw lines of slope from C, on point on the hinge 
between the two planes. Since BC, which is the line of 
slope in plane ABC, is perpendicular to the given plane, it 
is a fortiori perpendicular to the line of slope that lies in 
it. Since these lines of slope meet at right angles, the 
dihedral angle between the planes is π/2, so the planes are 
perpendicular, as claimed.) 
 In plane ABC, erect 

 By TP 13, AD is a line perpendicular to the given plane, which
  
 
 

neutral geometry, we shall return to TP 12, which we have yet to prove. 

 

Claim
Proof. To prove that the intersection is a circle, we must show that
plane that lie at some fixed distance from a particular center. If the cutting plane happens to pass 
through the sphere’s center O, then it is easy to see that the intersection can be characterized as 
the set of points in the cutting plane whose distance from O is equal to the radius of the sphere. 
That is, the intersection is a circle, as claimed. 
 If the cutting plane 
do ot contain O, we 
proceed as follows. 
 Drop a perp
OC to the plane (Claim
 Let P and Q be 
arbitrary points
intersection. 
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 We know that OCP = OCQ = π/2, since OC is perpendicular to the plane. We also 

e of the plane). Then CX = CP = r, 
 OC

4) In a spherical triangle, equal angles lie opposite equal sides, and 

On a sphere, any two non-antipodal points can be joined by a unique great circle. 

positions (or TP 8, for 

at ma

’s proofs for these theorems are in fact valid on the sphere, although we 

5) Spherical triangles are congruent if they have two sides and their 

Although Lobachevski mentions only SAS and ASA here, he uses AAS as well in 

know that OP = OQ, since P and Q lie on the sphere. Thus, OCP ≅ OCQ,  by RASS (TP 10). 
From this it follows that CP = CQ. That is, all points of the intersection are equidistant from C. 
Calling this common distance r, we have shown that all points of the sphere-plane intersection lie 
on the circle of radius r whose center is C. It remains only to establish the converse – that every 
point on this circle is a point of the sphere-plane intersection. 
 To this end, let X be any point of the circle (and henc

so X ≅ OCP by SAS. Hence, OX = OP, which means that X lies on the sphere. That is, X is 
part of the sphere-plane intersection. Consequently, the sphere-plane intersection and the circle 
are identical, as claimed.         
 

1
conversely. 
  

 

The two points split “their” great circle into a pair of arcs. We form a spherical triangle 

as follows: pick three points on a sphere (no two of which are antipodal), and connect 

each pair by the shorter of the two great circle arcs that join them. 

 TP 14 is the spherical analog for Euclid’s 5th and 6th pro

th tter). 

 Euclid

must be careful: at one point in his proof of I.5, he uses his 2nd postulate (a line segment 

can be extended indefinitely), which does not hold on the sphere. Luckily, when Euclid 

extends the side of a triangle in this proof, it does not matter how small the extension is. 

Hence, we can accommodate the extension on the sphere: we always have a little room to 

extend the sides of a spherical triangle, since they are always strictly less than half the 

circumference of a great circle. 

 

1
included angle equal, or one side and its adjacent angles equal. 
 

 

his proof of TP 27. This is not a problem since spherical triangles (when defined as in the 
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notes to TP 14) admit all the congruence criteria that hold for plane triangles, plus one 

additional one: AAA.  

 

Explanations and proofs shall accompany the theorems from now on. 
 

 The preliminary material is over. We now begin The Theory of Parallels proper. 
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Theory of Parallels 16  
 

 In a plane, all lines that emanate from a point can be partitioned 
into two classes with respect to a given line in the same plane; namely, 
those that cut the given line and those that do not cut it. 
 The boundary-line separating the classes from one another shall 
be called a parallel to the given line. 
 

 Lobachevski commences his Theory of Parallels by redefining parallelism. This 

is no mere preliminary matter, but a bold decision to alter a definition that had stood 

largely unquestioned since ancient times. For a first-time reader, accustomed to the 

simplicity of Euclid’s definition of parallels (coplanar non-intersecting lines), 

Lobachevski’s replacement will no doubt seem mysterious, if not presumptuous. What 

exactly does it mean? Is it permissible to redefine a familiar term? What is wrong with 

the classical definition? Why does Lobachevski not simply contrive a new name for his 

“boundary-line” relation instead of appropriating the term “parallelism”? 

 We shall answer all of these questions shortly. For now, let us read Lobachevski’s 

description of the geometric configuration that inspired his definition: a configuration 

directly related to Euclid’s parallel postulate. 

 
 
 From point A (see 
the figure), drop the 
perpendicular AD to the 
line BC, and erect the 
perpendicular AE upon it. 
Now, either all of the lines 
entering the right angle 

EAD through A will, like 
AF in the figure, cut DC, 
or some of these lines will 
not cut DC, resembling 
the perpendicular AE in this respect. The uncertainty as to whether the 
perpendicular AE is the only line that fails to cut DC requires us to 
suppose it possible that there are still other lines, such as AG, which do 
not cut, no matter how far they are extended. 

D

D’

A
E

G

H
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B

K
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Radical Caution 
 
Consider the various rays that one can draw from point A. Let us call such a ray a 

“cutting ray” if it intersects ray DC; a “non-cutting ray” if it does not. Since Euclid I.28 

(a neutral theorem) implies that AE is a non-cutting ray, it follows that all rays entering 

D′AE are non-cutting as well. (Proof: To cut DC, such a ray would have to cross AE a 

second time, which is impossible by TP 2.) Of the rays entering DAE, it is clear that 

some will cut DC. Will all of them cut DC? 
 
 Euclid’s parallel postulate asserts that they will. 

 Yet suppose we ignore the postulate for a moment, and consider the question 

afresh, in all innocence of geometric tradition. If we choose point X such that DAX = 

89.99999999°, the human eye cannot distinguish AX from AE. Thus, the evidence of our 

senses suggests that these two rays will behave similarly: that is, AX “ought” to be a non-

cutting ray, like its indistinguishable twin, AE. 

 “Nonsense!” cries a naysayer, “AX is obviously a cutting ray. Its approach toward 

DC is so slow that their intersection might not occur in this galaxy, but nonetheless, it is 

approaching it, so the rays will eventually meet.”  

 So it may seem, but is it prudent to presume knowledge of how lines behave over 

distances so vast that they dwarf all human experience? 

 Perhaps it is, at least in certain cases. Is this such a case? 

  

 The point here is not that one side is right or wrong, but rather that there is room 

for debate. Since a decisive argument would entail proving (or disproving) the parallel 

postulate, the debate must continue unresolved ad infinitum, until one side, in 

exasperation, ends it at last by formally adopting their own opinion as an article of faith 

(a postulate), thus rendering further debate impossible*. This was Euclid’s course. Lest I 

be misunderstood, let me emphasize that Euclid’s assumption of the parallel postulate 

                                                 
* Cf. Bertrand Russell’s description of his first encounter with Euclid at age eleven: “I had been told that 
Euclid proved things, and was much disappointed that he started with axioms. At first I refused to accept 
them unless my brother could offer me some reason for doing so, but he said: ‘If you don’t accept them we 
cannot go on’, and as I wished to go on, I reluctantly admitted them pro tem.” (Russell, Autobiography, p. 
38.) 
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should not be taken as a sign of argumentative weakness. Considering the number of 

mathematicians throughout two millennia who believed that the parallel postulate could 

be proved, Euclid’s insightful recognition that it must be assumed stands as testimony to 

his genius. The late 19th-century proof that Euclid’s fifth postulate is not a logical 

consequence of his first four vindicated not only Lobachevski, but Euclid as well. 

 Lobachevski exercised radical caution and restraint with respect to the parallel 

postulate. He acknowledged that we do not know whether it holds in physical space; he 

suggested that we may never know, expect perhaps through the analysis of future 

astronomical measurements; and consequently, since there is room for debate, he 

believed that we should not presume the answer. Euclid might, after all, have been 

wrong. Instead, we should examine both possibilities, thus preparing ourselves for either 

eventuality, should we ever learn the truth. 

 Accordingly, Lobachevski asks us to consider the possibility that a ray may exist, 

which enters DAE but fails to intersect DC. By tracing the consequences that would 

follow, he developed the first non-Euclidean geometry. We begin this long journey with a 

simple observation. If there is one such ray, then there will be infinitely many: for if AG 

is a non-cutting ray, all rays entering EAG must also fail to cut DC. We are thus 

confronted with a picture of two segregated groups of rays. Lobachevski will describe 

this picture next, but rather than cutting (or non-cutting) rays, he refers to cutting (or non-

cutting) lines. These are simply the lines that contain the rays in question.   
 

 
At the transition from the cutting lines such as AF to the non-cutting 
lines such as AG, one necessarily encounters a parallel to DC. That is, 
one will encounter a boundary line AH with the property that all the lines 
on one side of it, such as AG, do not cut DC, while all the lines on the 
other side of it, such as AF, do cut DC.  
 

 
 There will be one ray that acts as the boundary between those that cut and those 

that do not. The boundary ray is a non-cutting ray*, but in contrast to the other non-

                                                 
* Proof: Suppose, by way of contradiction, that the boundary-ray AH is a cutting ray. Then it cuts DC at 
some point X. Choose any point K∈DC to the right of X, and draw the line AK. Since AK lies above the 
boundary-line AH, it must be a non-cutting ray, by definition of the boundary-line. However, by its very 
construction, we know that AK cuts DC at K. Contradiction. 
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cutting rays, this one admits no “wiggle room”: if we rotate the boundary ray about A 

towards ray DC, then regardless of how minuscule the rotation, it will always intersect 

DC, since every ray below the boundary is, by definition, a cutting ray. 

 

 According to Lobachevski’s definition, the boundary ray is parallel to DC. (More 

accurately, he defines the line containing the boundary ray to be parallel to DC.) We shall 

now examine his definition, and consider his reasons for adopting it. 
 
 
 
A Deeper Definition 
 
Let AB and CD be two coplanar lines. Euclid calls them parallel if and only if they do not 

meet. Lobachevski, however, insists that parallels satisfy a second condition as well.   

 
Lobachevski’s Definition of Parallelism 

 

       If AH and DC are coplanar lines, then AH is parallel to DC 

(in symbols, AH || DC) if: 

       1) The lines do not meet, and 

       2) There is no “wiggle room”. 

           (That is, every ray AX that enters HAD intersects DC.) 

 

        Important Note: AH || DC is not equivalent to HA || CD. In 

the former case, line DC is cut by all rays entering HAD. In the 

latter, the same line is cut by all rays entering AHC. It is not 

hard to show that if one of these conditions holds, the other 

necessarily fails. 

 

This definition takes some time to digest, and it invariably raises questions, some of 

which Lobachevski does not answer until TP 25, some of which he does not even address 

at all. I shall anticipate some of these questions, provide their answers, and indicate 

where Lobachevski gives his own answers. 
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1. Lobachevski’s words in TP 16 suggest that D should be the foot of a perpendicular 

dropped from A to the second line. Why is this not part of the definition? 

 

 I have deliberately omitted it because it is distracting and irrelevant. It is easy to 

show that if AH || DC, then AH || XC for any choice of X on the second line, DC.  

 

2. Parallelism is a relation between two lines, but point A seems to play a very special 

role in Lobachevski’s definition. This poses a problem: if AH || DC, and P∈AH, we 

should expect that PH || DC, since PH and AH are just different names for the same line. 

Is this actually the case? 

 

 Yes, it is. (The proof is in TP 17.) 

 

3. Parallelism should be symmetric: AH || DC should imply DC || AH. This is obvious 

under Euclid’s old definition of parallelism. Is it still true under Lobachevski’s new 

definition? 

 

 Yes, it is. (The proof is in TP 18.) 

 

4. Parallelism should be transitive: if two lines are parallel to a third, then they should 

also be parallel to each other. Does this follow from Lobachevski’s definition? 

 

 Yes, it does. (The proof is in TP 25.) 

 

5. Lobachevski is supposed to be addressing problems in geometry that have plagued 

mathematicians for millennia; by redefining a key term, isn’t he actually avoiding the old 

problems, rather than confronting them? 

 

 No, he is not; Lobachevski’s definition is a generalization of Euclid’s own. That 
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is, in the presence of the parallel postulate, the two definitions are logically equivalent*. 

Therefore, a traditional geometer, one content to accept the parallel postulate, can raise 

no logical objections to Lobachevski’s definition. One may complain that it is unwieldy 

or uneconomical, but so long as we retain the parallel postulate, it is just a different way 

of saying the same thing; using it is as harmless as doing geometry in Spanish rather than 

English: the words have changed, but the theorems and problems remain the same. 

 

6. In that case, why bother with a new definition? After all, Euclid’s is easier to 

understand. 

 

 For one who does not wish to question the parallel postulate, there is no need to 

bother. But for one who adopts Lobachevski’s more cautious stance, the new definition 

will prove itself considerably more robust. In the presence of the parallel postulate, the 

two definitions are equivalent, but in the wider context of neutral geometry (where we 

assume only the first four postulates), Euclid’s definition reveals its weakness: it is not 

transitive. For example, Euclid would say that AE and AG (in Lobachevski’s figure) are 

both parallel to DC, but he would have to admit that they are not parallel to one another 

since they meet at A. In contrast, Lobachevski’s definition of parallelism retains its 

transitive, even in the absence of the parallel postulate. (See TP 25.) 

 To recapitulate - in Euclidean geometry, the two definitions are interchangeable; 

in the larger context of neutral geometry, Lobachevski’s definition is superior. It is 

therefore a deeper definition: it incorporates the old definition as a special case, while 

successfully extending the notion of parallelism to a broader setting. We may consider 

ourselves fully justified in using it. One last question, a subtle one, which I have hitherto 

sidestepped, remains. 

 

7. Must a parallel exist in Lobachevski’s figure? In other words, must there be a “last” 

non-cutting line? Or might the non-cutting lines resemble the positive real numbers, 

being bounded below, but without a least member? 

                                                 
* Proof: Since lines satisfying Lobachevski’s definition do not intersect, they obviously satisfy Euclid’s 
definition. Conversely, if AH and DC satisfy Euclid’s definition, then HAD + CDA = 180° (by Euclid 
I.29); this being the case, the parallel postulate itself rules out the possibility of “wiggle room”, so we may 
conclude that AH and DC satisfy Lobachevski’s definition as well. 
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 We can secure the existence of our parallel as follows.  

 Every ray AX entering the angle EAD corresponds to a real number between 0 

and π/2 (the radian measure of the angle XAD) and conversely. The set of real numbers 

corresponding to the cutting rays is bounded above by π/2, since this number corresponds 

to AE, a ray known to be non-cutting. Any bounded set of reals has a least upper bound, 

and the ray corresponding to this least upper bound is easily seen to be the boundary 

between the cutting and non-cutting lines. Thus, the parallel exists.   

 

 
Homogeneity and the Angle of Parallelism 

D

A

H

C

��p)
p

 
The angle HAD between the parallel AH and 
the perpendicular AD is called the angle of 
parallelism; we shall denote it here by ∏(p), 
where p = AD. 
 

 Given any line segment, if we draw two rays from its endpoints such that the first 

ray is perpendicular to the segment and the second ray is parallel to the first, then the 

angle between the second ray and the segment is the segment’s “angle of parallelism”. 

 Like Euclid, Lobachevski implicitly assumes the homogeneity of space. That is, 

he assumes that empty space “looks the same” from every point, and from every 

direction*. The plane has no crinkles or other irregularities. An important consequence of 

this assumption is that if we take two line segments of the same length to distinct 

locations, and then carry out the same set of constructions upon each of them, the 

homogeneity of space ensures that the resulting figures are congruent to one another.  

 Consequently, line segments of the same length will have the same angle of 

parallelism, which explains why Lobachevski expresses the angle of parallelism as a 

function of length, p. 
 

 

 

                                                 
* Obvious expressions of homogeneity in Euclid’s Elements include the fourth postulate (“all right angles 
are equal”) and the use of superposition in the proofs of I.4 and I.8 (the SAS and SSS congruence criteria).  

 30



The Path to Imaginary Geometry 
 
 If ∏(p) is a right angle, then the extension AE´ of AE will be parallel 
to the extension DB of the line DC. Observing the four right angles 
formed at point A by the perpendiculars AE, AD, and their extensions 
AE´ and AD´, we note that any line emanating from A has the property 
that either it or its extension lies in one of the two right angles facing BC. 
Consequently, with the exception of the parallel EE', all lines through A 
will cut the line BC when sufficiently extended. 
 
 Using the ideas in this passage, we can easily demonstrate an important theorem.  

 

Claim 1.  The parallel postulate holds if and only if ∏(p) = π/2 for all lengths p. 

Proof. ⇒) If the postulate holds, then ∏(p) is obviously a right angle for all lengths p. 

 ⇐) If ∏(p) = π/2 for all lengths p, then Lobachevski’s 

words in the preceding passage tell us the following: if l is any 

line and P any point not on it, then there is exactly one line 

through P that does not intersect l. This statement, commonly 

known as Playfair’s axiom, implies the parallel postulate, as we shall now demonstrate. 

A B

D

C

E

F
G H

 Suppose that two lines, AB and CD, cut by a transversal EF, as in the figure, such that 

FEB + EFD < 180°. Draw the unique line GH through E that makes FEH + EFD = 180°. 

By Euclid I.28, GH will not intersect CD. By Playfair’s axiom, every other line through E will 

intersect CD. In particular, EB will intersect CD. Hence, the parallel postulate holds, as claimed.  

 

 We have suspended judgment on the parallel postulate, but we are approaching a 

fork in the road, where we choose one path or the other. On one path, ∏( p) is always a 

right angle; on the other, it must sometimes be acute (In fact, we shall see that it will 

always be acute on the second path). Lobachevski’s policy of radical caution in geometry 

dictates that we must explore both paths; after all, either one could turn out to be the 

geometry of physical space. For over 2000 years, Euclid’s parallel postulate had acted as 

a barricade, directing all traffic toward the first path, which leads to Euclidean geometry 

(which Lobachevski called the ordinary geometry). In contrast, the second road leads to 

unexplored territory. Since no one had ever mapped it out (apart from some brief 

sketches made by unwitting trespassers, such as Saccheri and Lambert), Lobachevski 
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devoted his own energies to the task. This second road leads to what he called imaginary 

geometry, a term that he will first use at the end of TP 22. 

 
 
Parallelism has Direction in Imaginary Geometry 
 

 If ∏(p) < π/2, then the line AK, which lies on the other side of AD 
and makes the same angle DAK = ∏(p) with it, will be parallel to the 
extension DB of the line DC. Hence, under this hypothesis we must 
distinguish directions of parallelism.  
  

 This follows from homogeneity of the plane. 

 Let AD be the perpendicular dropped from a point A to a line l. In general, there 

will be a line AH that is parallel to l “towards the right” and a second line AK parallel to l 

“towards the left”. If ∏(AD) is a right angle, then these two parallels will coincide, but if 

the angle of parallelism is acute, then the parallels will be distinct.  

 The existence of a second parallel might seem to contradict my claim that 

Lobachevski’s definition of parallelism is transitive: there are now two lines parallel to l, 

and they cannot possibly be parallel to one another, since they intersect at A. This 

problem vanishes if we associate a direction with parallelism, in which case transitivity 

means that two lines are parallel to a third in the same direction will be parallel to one 

another in the same direction. Consequently, the failure of AK and AH to be parallel is not 

a violation of transitivity after all: these two lines are parallel to l in opposite directions. It 

is for this reason that Lobachevski is careful to distinguish that while AH is parallel to DC 

(i.e. AH is parallel to the line l in the direction indicated by the ray DC), AK is parallel to 

DB (i.e. AK is parallel to the line l in the opposite direction as indicated by the ray DB).  
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Lobachevski’s Summary 
 
 Among the other lines 
that enter either of the two 
right angles facing BC, 
those lying between the 
parallels (i.e. those within 
the angle HAK = 2∏(p)) 
belong to the class of 
cutting-lines. On the other 
hand, those that lie 
between either of the 
parallels and EE' (i.e. those 
within either of the two 
angles EAH = π/2 - ∏(p) 
or E´AK = π/2 - ∏(p)) belong, like AG, to the class of non-cutting lines. 
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 Similarly, on the other side of the line EE´, the extensions AH´ and 
AK´ of AH and AK are parallel to BC; the others are cutting-lines if they 
lie in the angle K'AH', but are non-cutting lines if they lie in either of 
the angles K´AH´ or H´AE´. 
 Consequently, under the presupposition that ∏(p) = π/2, lines can 
only be cutting-lines or parallels. However, if one assumes that 
∏(p) < π/2, then one must admit two parallels, one on each side. 
Furthermore, among the remaining lines, one must distinguish between 
those that cut and those that do not cut. Under either assumption, the 
distinguishing mark of parallelism is that the line becomes a cutting line 
when subjected to the smallest deviation toward the side where the 
parallel lies. Thus, if AH is parallel to DC, then regardless of how small 
the angle HAF may be, the line AF will cut DC.   
 
 
 Having demonstrated that an 

acute angle of parallelism implies a 

pair of parallels through the point 

A, Lobachevski concludes TP 16 by 

reiterating the behavior of the non-

parallel lines through A, and 

summarizing the results he has 

obtained so far. In particular, he 

draws attention to the fact that when the angle of parallelism is acute, the lines passing 

through A fall into three classes. Namely, those intersecting BC, those parallel to BC, and 
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those that neither intersect BC nor are parallel to it. Lines of the third type, which do not 

exist in Euclidean geometry, are sometimes called ultraparallels or hyperparallels by 

modern authors*.   
 
 
Problematic Pictures 
 
In geometry, a triangle’s sides are supposed to be perfectly straight, and devoid of 

thickness. Triangles drawn with pen and paper can approximate this perfection, but they 

cannot actually attain it. In practice, this disturbs no one, for we recognize that our 

pictures are simply representations that assist our reasoning about the real triangles (those 

inhabiting Plato’s world of ideal forms, as it were). 

 However, imaginary geometry poses additional problems of representation, which 

do trouble beginners. In TP 23, we shall see that imaginary geometry admits line 

segments with arbitrarily small angles of parallelism. Suppose that we wish to depict a 

segment whose angle of parallelism is 30°, together with rays emanating from its 

endpoints, the first of which is perpendicular to the segment, the second of which is 

parallel to the first. If we draw this in such a way as to represent the angles accurately, we 

will immediately run into a dilemma: the rays, which ought to be parallel, will clearly 

meet. 

 One compromise is to draw the rays very short, so that their intersection will not 

actually be depicted on the page. Unfortunately, if we adopt this strategy, we must 

constantly remind ourselves, “these lines are supposed to represent parallels, even though 

they don’t look parallel at all in the figure.”  

 A second possible compromise, one that I often employ, preserves the appearance 

of non-intersection by sacrificing the appearance of straightness. That is, we draw the 

second ray as a curve asymptotic to the first ray. This forces us to bear in mind, “this is a 

representation of a straight line, although it doesn’t look straight on the page.” Moreover, 

if we represent one line by a curve and the other by a straight segment (in an attempt to 

minimize our infelicities), our representation of the plane will immediately appear to 
                                                 
* A potentially misleading designation. The prefixes “ultra” and “hyper” refer in this context only to the 
fact that such lines lie “above” the parallels. Words like hypersensitive or ultraconservative might lead one 
to suspect that ultraparallels possess all the ordinary characteristics of parallels and then some. This is not 
the case. To cite one obvious example, ‘ultraparallelism’ is not a transitive relation.  
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have a favored direction – a direction in which “straight lines look straight”. Thus, our 

plane’s representation will not look homogeneous, despite the fact that it is homogenous 

in reality. We must constantly remember, “there is nothing special about this direction, 

despite the drawing.” 

 The moral of the story is that in imaginary geometry, the relationship between a 

geometric figure and its representation on the page is more complex than it is Euclidean 

geometry. Provided one keeps this in mind, one quickly becomes accustomed to distorted 

representations, and learns to read them comfortably. Do not let such representations 

mislead you into thinking that parallels are not straight in imaginary geometry, or that the 

plane is not homogenous. The one sacred relation that we shall always depict accurately 

is intersection (or lack thereof): lines that do (or do not) intersect one another will 

faithfully appear that way on the page. It is to preserve this appearance that we sacrifice 

others. 

 A skeptic might claim, “These very problems of representation indicate that 

imaginary geometry is utter nonsense: they arise precisely because the parallel postulate 

actually does hold in the physical universe, the space which also includes our paper and 

pencils!” This is a thought-provoking claim, but imaginary geometry cannot be disposed 

of so easily. We shall soon learn (in TP 23) that although imaginary space is homogenous 

(it looks the same at every point), it looks very different at different scales. On a tiny 

scale, it resembles Euclidean geometry, and serious deviations become noticeable only on 

a large, possibly astronomical, scale. Since similar figures do not exist in imaginary 

geometry (see the notes to TP 20), accurate scaled down drawings are impossible. Thus, 

if a line segment with a 30° angle of parallelism is several light-years long, then even if 

our universe is governed by imaginary geometry, we have no way to depict it accurately 

as a three-inch drawing. We would need a piece of paper that would cover much of the 

galaxy.  
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A Digression on Rigor in Geometry 

 

 In the section that I labeled, “The Path to Imaginary Geometry”, we examined a 

passage in which Lobachevski considers a pair of perpendicular lines that cross at A. 

These lines (which I shall call the horizontal and vertical axes) naturally divide the plane 

into four quadrants. Lobachevski asserts that any line through A necessarily enters one of 

the two lower quadrants below the horizontal axis. This seems so obvious as to render 

commentary unnecessary, but I wish to dwell upon it for a moment since it will serve 

well to illustrate a profound philosophical shift that overtook the discipline of 

mathematics within fifty years of Lobachevski’s death. 

 For Lobachevski’s assertion to be false, a line would have lie entirely above the 

horizontal axis, touching it once at A, but never actually cutting through to the other side. 

In other words, the line would have to be tangent to the horizontal axis. Both Euclid and 

Lobachevski would have considered this situation (two straight lines, tangent to one 

another at a point) so obviously absurd that a proof of its impossibility would be 

superfluous. David Hilbert, in contrast, might have proposed a smug inversion: the only 

thing obvious about Lobachevski’s assertion is that if either he or Euclid had tried to 

prove it rigorously, they would have found the task impossible*. 

 Both attitudes are reasonable, according their own philosophies. 

 Let us begin with Hilbert’s criticism. Hilbert might point out that if the 

foundations upon which Euclid based geometry seem capable of supporting such majestic 

mathematics as the Pythagorean Theorem and the theory of regular polyhedra, it is only 

because they have been unconsciously wedded to intuitive yet logically unjustified ideas 

about how lines ought to behave. When examined in the hypercritical mindset that 

demands rigorous demonstrations of even the most obvious assertions, one finds that the 

Elements, the book venerated for millennia as the pinnacle of human reasoning, is in fact 

riddled with logical lacunae. Infamously, one discovers that these gaps begin in the very 

first proposition, and continue to accumulate throughout the thirteen books. Viewed in 

this harsh unforgiving light, Euclid’s masterwork resembles a stately yet dangerous old 

                                                 
* I am using Hilbert’s name here to represent the work of all those mathematicians who worked on the 
foundations of geometry in the late 19th and early 20th centuries.   
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mansion whose architecture suggests eternal soundness even as its unseen foundations 

threaten to crumble away.  

 To prove Lobachevski’s assertion that any line passing through A must actually 

cut through the horizontal axis, one must construct a purely logical argument, every 

statement of which is grounded in the axioms (no appeals to pictures or intuition!), 

demonstrating that on any line through A, there exists a pair of points separated by the 

horizontal axis. That is, one must be able to distinguish between the two regions of the 

plane lying to either side of a line. 

 Hilbert can accomplish this with the “betweenness” axioms* that he built into his 

foundations of geometry. “Betweenness” is one of Hilbert’s undefined concepts, and his 

axioms concerning this relation (for example, “if A and C are two points on a line, there 

exists at least one other point B on the line that lies between A and C.”) yield theorems 

capable of distinguishing between the two regions into which a line divides a plane; the 

interior and exterior of a triangle; and other fundamental concepts that Euclid leaves 

entirely to intuition. Since these axioms have no Euclidean analogue (Robin Hartshorne 

has accordingly called them “the most striking innovation in this set”†), any attempt to 

prove a statement about passing from one region to the other in Euclid’s system is 

doomed to failure. Hilbert’s criticism would seem therefore to be valid. 

 This raises an intriguing question. When Lobachevski made assertions such as the 

one singled out above, didn’t he realize that he was relying upon instinct rather than 

logic? One would think that he, of all people, would have been acutely sensitive to such 

issues; his work in non-Euclidean geometry is itself a profound and extended meditation 

upon an axiom. 

 In fact, Lobachevski contemplated foundational issues deeply and broadly. In his 

largest work, New Principles of Geometry with a Complete Theory of Parallels (1835-8), 

for example, he endeavored to base all of geometry on the topological concepts of 

touching and cutting. In this vein, he proposed that solid bodies, rather than points, are 

the true fundamental geometric entities; surfaces, for example, should be understood in 

terms of solids, of which they are abstractions; curves arise as sections of surfaces and so 

                                                 
* These derive from the work of Moritz Pasch, whose Vorlesungen über neuere Geometrie (1882) was the 
first major work devoted to reinforcing the foundations of geometry.  
† Hartshorne, pg. 65. 
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forth. Leibniz, incidentally, was of the same opinion. Both Hilbert and Lobachevski 

devoted much attention to foundations, but motivated by distinct philosophies, they 

followed quite different paths of inquiry. 

 

 For Lobachevski, and Lobachevski’s age, geometry was still the study of forms 

occurring in the physical universe, or abstractions thereof. According to this view, the 

axioms of geometry must be basic self-evident truths. In turn, theorems deduced from 

these axioms reveal aspects of physical reality not directly evident to the senses, yet 

irrefutable all the same, since they derive wholly from immaculate sources – a set of self-

evident axioms and the pure methods of logical deduction. Naturally, when one conceives 

of geometry this way, the proper choice of axioms is crucial. An axiom asserting a 

statement contrary to the true nature of space would seriously compromise geometry’s 

accuracy as physical description. 

 Euclid’s parallel postulate, Lobachevski suspected, might be such an axiom. As 

discussed earlier, one cannot verify it in a physical setting. Imagine two drawings: one of 

a transversal cutting a pair of lines so that the angles it makes with them on one side add 

up to 179.999999°, the other drawing depicting the same situation except that the angles 

add up to 180°. The human eye cannot distinguish such small differences. We can prove 

(via the first four of Euclid’s postulates) that the lines in the second drawing will never 

meet. If the lines of the first drawing, indistinguishable from those of the second, 

somehow manage to intersect, this should come as a great surprise to us, as an instance of 

physical reality contradicting the evidence of the senses. Such surprises can be delightful 

when deduced as theorems, but as axioms, they are dubious indeed. 

 Lobachevski never claimed that the parallel postulate does not hold in reality, 

only that we do not know for certain whether it does. The difficulty stems from the fact 

that the parallel postulate makes assertions about intersections that occur at indefinite, 

possibly unfathomable distances. Even with eyesight sufficiently sharp to distinguish 

between the two drawings in the thought experiment above and even to observe the lines 

in the first drawing coming closer together, we would remain unable to verify an eventual 

intersection, which, if it does occur, might happen millions of light-years away. Bound as 

we are to an insubstantially small portion of the universe, such large-scale phenomena 
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defeat our powers of observation, and therefore we must exercise caution in making 

statements about them. 

 By way of contrast, let us reconsider the assertion that intersecting lines must 

actually cross one another. This statement concerns only the small-scale, local behavior 

of lines in the immediate vicinity of a specific point. Indefinite distances are not involved. 

Our physical experience with straight lines, whether drawn by hand or occurring in 

nature, leaves us with no doubt that this assertion is true. Consequently, Lobachevski’s 

omission of a proof is, according to his philosophy, of trifling significance. Had someone 

specifically questioned him about this, he almost certainly would have acknowledged the 

existence of a gap in the structure of his argument. He would have been justified all the 

same in dismissing this gap as innocuous and his questioner as pedantic. Lines, in 

Lobachevski’s mind, were forms with definite intrinsic properties. If the axioms of 

geometry failed to capture those properties, the fault lay with the axioms. An obvious fact 

that eludes proof remains a fact nonetheless. 

 

 While Lobachevski’s work drew inspiration from the relationship of mathematics 

to the natural world, a major impetus for rebuilding the foundations in the years around 

1900 was Lobachevski’s own discovery, non-Euclidean geometry. Mathematicians were 

forced to proceed with unusual care while learning or developing this new subject, 

exercising caution not to inadvertently use a theorem that relied upon the parallel 

postulate. With their critical attention heightened out of necessity, many mathematicians 

began to pay more attention to the little holes in the foundations that they had previously 

ignored, and they noted with some alarm the existence of more holes than they had 

suspected. The efforts to repair, if not rebuild, the foundations began shortly thereafter. 

The mathematicians who led these efforts emphasized that, if geometry is to be a truly 

deductive science, one must be able to trace any geometric theorem back to the axioms 

using logic alone. Intuition may be useful as a guide, but it may never substitute for logic. 

Physical reality might suggest the axioms, but once they are decided upon, appeals to 

physical forms are inadmissible in a rigorous proof. Hilbert insisted that the lines of 

geometry have no platonic existence, and thus have no intrinsic properties other than 

those with which the axioms endowed them. 
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 Consequently, many of Lobachevski’s arguments cannot stand up to Hilbertian 

criticism. This does not render them invalid. Indeed, not one of his theorems collapses 

under the strain of the newly imposed rigor, even if their proofs can be improved by 

erecting them over Hilbert’s new airtight foundations. For this reason (coupled with the 

fact that geometric proofs that leave nothing to the imagination tend to be quite long and 

somewhat repellent), I shall not dwell overmuch upon Hilbert’s foundations in these 

pages except where they convey extra insight into Lobachevski’s mathematics.  

 

 

Violets in Spring 
“…many things have an epoch in which they are found at the same time in several places, just as violets 
appear on every side in spring.” 
   - Farkas Bolyai. 

 

 Lobachevski, Gauss, and Bolyai independently redefined parallelism essentially 

the same way, at approximately the same time. Gauss confided few of his ideas on non-

Euclidean geometry to paper, and made none of them public, but two brief memoranda 

containing his definition of parallels along with a few relevant theorems (including a 

proof of the transitivity of parallelism) were found among his personal papers after his 

death in 1855. These were published posthumously in his complete works*. 

 Bolyai defines parallelism in the first sentence of §1 of his Appendix. More 

accurately, Bolyai defines the relation that Lobachevski and Gauss call “parallelism”; 

surprisingly, he does not actually use the word himself. His definition reads, “If a ray AM 

is not cut by a ray BN, situated in the same plane, but is cut by every ray BP in the angle 

ABN, this is designated by BN ||| AM.”† This definition, which is clearly equivalent to 

(and, it must be admitted, stated more concisely than) Lobachevski’s, was apparently first 

suggested to Bolyai by Carl Szàsz, a friend from his years (1817-22) at the Royal College 

for Engineers in Vienna, with whom Bolyai had frequently discussed geometry.‡  

                                                 
* Gauss, pp. 202-209. A detailed exposition (in English) of Gauss’ notes on the definition of parallelism can 
be found in Bonola, pp. 67-75. 
† Halsted inserts the phrase, “we will call ray BN parallel to ray AM” into his translation; it does not occur 
in Bolyai’s original Latin.  
‡ Gray, János Bolyai, p. 50. 
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Theory of Parallels 17 
 
A straight line retains the distinguishing mark of parallelism at all its 
points. 
   
 In TP 17, Lobachevski proves that his new sense of parallelism* is well defined. 
 Recall that AB || CD only if AB admits no wiggle room about A. (i.e. AB must 

exhibit the “mark of parallelism” at A.) Since A has no particular significance among the 

infinitely many points on line AB, its conspicuous presence in the definition of 

parallelism is disconcerting. To set our minds at ease, Lobachevski demonstrates that A’s 

ostensibly special role is an illusion: he proves that if the line exhibits the mark of 

parallelism (lack of wiggle room) at any one of its points, then it will exhibit the mark at 

all of its points. Therefore, parallelism does not depend upon any particular point.  
 
 Let AB be parallel to CD, with AC perpendicular to the latter. We 
shall examine two points, one chosen arbitrarily from the line AB and 
one chosen arbitrarily from its extension beyond the perpendicular. 
 
 Lobachevski’s proof requires two cases. Assuming that AB || CD, he first shows 

that EB || CD, where E is an arbitrary point of ray AB; he then shows that E'B || CD, 

where E′ is an arbitrarily point chosen from the rest of line AB.  
 
 
First Case (and Interlude with Pasch) 
 
 Let E be a point on that side 
of the perpendicular in which AB is 
parallel to BC. From E, drop a 
perpendicular EK to CD, and draw 
any line EF lying within the angle 

BEK. Draw the line through the 
points A and F. Its extension must 
intersect CD (by TP 16) at some 
point G. This produces a triangle 

ACG, which is pierced by the line 
EF. This line, by construction, 
cannot intersect AC; nor can it intersect AG or EK a second time (TP 2). 
Hence, it must meet CD at some point H (by TP 3). 
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* See the section, “A Deeper Definition” in the notes to TP 16 (pp. 27-30). 
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 The idea behind the first case is straightforward, although it may be worth noting 

that the coup de grace - Lobachevski’s claim that EF must exit ACG through side CG, 

is another example of an intuitively obvious statement that cannot be rigorously justified 

on the basis of Euclid’s axioms. Hilbert would justify this claim by appealing to one of 

his betweenness axioms, known today as Pasch’s axiom. Pasch’s axiom asserts that if a 

line intersects one side of a triangle, but does not pass through any of its vertices, it will 

intersect one (and only one) of the other sides as well*. 

 Where Hilbert would call on Pasch’s axiom, Lobachevski invokes his own TP 3, a 

very general “what-goes-in-must-come-out” theorem, applicable not only to lines 

piercing triangles, but also to lines piercing any bounded region. It cannot be proved as a 

theorem using Euclid’s foundations, and thus, strictly speaking, should be considered an 

axiom in Lobachevski’s development of geometry. 

 Since TP 3 deals with arbitrary bounded regions, as opposed to mere triangles, it 

may appear to be much stronger than Pasch’s axiom. However, in the specific case of 

triangles, it is actually the weaker of the two, inasmuch as it provides no detail as to 

where the line will exit the triangle. To demonstrate this weakness, we shall review the 

last two steps of the proof above and compare how Hilbert and Lobachevski would 

justify them. In doing so, we shall see that TP 3 is not quite powerful enough to establish 

the intersection of EF and CD. 

 The steps are as follows: 1. Line EF enters triangle ACG, so it must exit the 

triangle as well. 2. Since it cannot leave through either side AC or side AG, it must pass 

through CG. (Lobachevski’s comment that it cannot intersect EK a second time is true, 

but superfluous as far as the proof is concerned.) 

 Both Hilbert and Lobachevski can justify step one with an axiom (Pasch’s axiom 

or TP3 respectively). 

 As for step two, Hilbert has the upper hand. Since EF intersects side AG, Pasch’s 

axiom asserts that it must cut either AC or CG on its way out of the triangle. Hilbert can 

easily demonstrate that EF cannot intersect AC (although this takes a little work when 

arguing from first principles), and may therefore conclude that it passes through CG as 

                                                 
*From this axiom and some very basic results, one can prove the related crossbar theorem: if a line enters 
the interior of a triangle through one of its vertices, it must exit through the opposite side.  Together, 
Pasch’s axiom and the crossbar theorem guarantee that if a line enters the interior of the triangle, it must 
also leave it.  
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claimed. Lobachevski, on the other hand, runs into several problems. To cite just one 

example, the possibility that EF might exit the triangle through AG (the same side 

through which it entered) is not ruled out by TP 3, so Lobachevski must prove this. In an 

attempt to do so, he invokes TP 2. This almost works, but a tiny hole remains in his 

demonstration -- TP 2 does rule out the possibility that EF might leave AG via the same 

point through which it entered. Absurd as this possibility sounds, Lobachevski lacks the 

logical apparatus to expose it as such. If pressed, he might appeal to the enigmatic TP 1, 

which, as we have argued in the notes to that proposition, amounts to an article of faith 

that certain behavior, such as self-intersection, is “repugnant to the nature of a straight 

line” and consequently, need not be considered at all.   
 
 
Second Case 
 
 Now let E′ be a point on 
the extension of AB, and drop 
a perpendicular E′K′ to the 
extension of the line CD. 
Draw any line E′F′ with the 
angle AE′F′ small enough to 
cut AC at some point F´. At 
the same angle of inclination 
towards AB, draw a line AF; 
its extension will intersect CD 
(by TP 16) at some point G. 
This construction produces a triangle AGC, which is pierced by the 
extension of line E′F′. This line can neither cut AC a second time, nor can 
it cut AG, since BAG = BE′G′ (by TP 7). Thus, it must meet CD at some 
point G′. 
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 The second case involves an argument similar to that used in the first, though 

slightly more involved. We want to prove that E′B || CD, so according to our definition of 

parallelism, we must show that all rays entering angle BE'C must intersect CD. All such 

rays cut AC (apply the crossbar theorem, which mentioned in the last footnote, to 

AE′C), so when Lobachevski restricts his attention to those rays that cut AC, there is no 

loss of generality. 
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 Therefore, regardless of which points E and E′ the lines EF and E′F′ 
emanate from, and regardless of how little these lines deviate from AB, 
they will always cut CD, the line to which AB is parallel. 
 
 By demonstrating that the mark of parallelism propagates throughout the entire 

line once it appears at any one point, TP 17 confirms that parallelism is a relation strictly 

between lines, without dependence upon an intermediary point.  
 
 
Bolyai, Gauss, and What Might Have Been 
 

As mentioned in the notes following TP 16, Bolyai’s definition of parallelism (§1 of his 

Appendix) is expressed in the language of rays: If a ray CD is not cut by a ray AB, but is 

cut by every ray AP in the angle BAC, Bolyai defines AB to be parallel to CD. In §2, he 

proves that parallelism between rays depends only upon their directions, not their initial 

points. This is, of course, analogous to Lobachevski’s TP 17, and Bolyai’s proof is 

essentially identical to the proof we have just examined. 

 Gauss also works with rays. His proof is identical to Bolyai’s, although his 

writing is considerably more lucid. Indeed, Gauss’ few surviving personal memoranda on 

non-Euclidean geometry are notable for their clarity of exposition. He had intended to 

compose, though probably never to publish, a full treatise on non-Euclidean geometry, as 

a means of ensuring that an account of this subject would survive him. After reading 

Bolyai’s Appendix, however, he considered himself released from this burden. The world 

might be richer today had Gauss never read the works of Bolyai and Lobachevski. We 

would possess not only a beautiful Gaussian treatise on non-Euclidean geometry, but 

perhaps more geometric works of an undiscouraged János Bolyai as well. 

 44



Theory of Parallels 18 
 
Two parallel lines are always mutually parallel. 
 
 Lobachevski is going to show that parallelism is a symmetric relation: given  

AB || CD, he will prove that CD || AB. To do so, he must verify that every ray CE 

entering DCA intersects AB. Clever though his proof is, Lobachevski’s obscures his 

geometric artistry under murky exposition. Accordingly, I shall follow his proof with an 

alternate explanation of my own. 
 

 Let AC be perpendicular to CD, a 
line to which AB is parallel. From C, draw 
any line CE making an acute angle ECD 
with CD. From A, drop the perpendicular 
AF to CE. This produces a right triangle 

ACF, in which the hypotenuse AC is 
greater than the side AF (TP 9). 
 If we make AG = AF and lay AF 
upon AG, the lines AB and FE will assume 
positions AK and GH in such a way that 

BAK = FAC. Consequently, AK must intersect the line DC at some 
point K (TP 16), giving rise to a triangle AKC. The perpendicular GH 
within this triangle must meet the line AK at some point L (TP 3). 
Measured along AB from A, the distance AL determines the intersection 
point of the lines AB and CE. 
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 Therefore, CE will always intersect AB, regardless of how small the 
angle ECD may be. Hence, CD is parallel to AB (TP 16). 
 
 
The Idea Behind the Proof 
 
 The best way to understand Lobachevski’s proof is to imagine that we have two 

identical (i.e. congruent) copies of the figure ABCDEF, the first drawn on an opaque 

piece of paper, the second on a transparent sheet of plastic. To distinguish the two, we 

shall put primes on the letters of the second copy. Lay the transparent sheet on top of the 

opaque one so that the two figures coincide point for point, as in the first figure below. 

 Keeping the bottom sheet fixed, rotate the top one about A until A′F′ lies on AC, 

as in the second figure. By the definition of parallelism, A′B′ must cut CD, (AB || CD and 

ray A′B′ enters BAC). Yet in order to cut CD, ray A′B′ must first intersect C′E′. That is, 
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C′E′ and A′B′ are intersecting lines in figure A′B′C′D′E′F′. Hence, the corresponding lines 

on the congruent figure ABCDEF also intersect one another. Namely, CE intersects AB, 

which was to be shown.
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D=D’
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E=E’
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Last Thoughts on TP 18 
 
 If one insists on Hilbertian rigor, one must either produce a rigorous definition of 

rotation and prove that this operation possesses all the properties that we expect of it*, or 

one must abandon the ill-defined procedure of “laying upon,” and construct a proof more 

rigorous, though inevitably less direct, than Lobachevski’s. Gauss’ memoirs contain a 

proof along such lines; it is clever, meticulous, not particularly transparent, and involves 

two cases. Bolyai, for his part, establishes the symmetry of parallelism in §5 of the 

Appendix with a superposition argument, which depends, in turn, upon a pair of lemmas 

(§3 and §4). Of the three proofs, Gauss’ comes closest to Hilbert’s standards of rigor, but 

Lobachevski’s is by far the most elegant. 

                                                 
* This can be done. See, for example, Ch. 9 of Greenberg. 
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Theory of Parallels 19 
 
In a rectilinear triangle, the sum of the three angles cannot exceed two 
right angles. 
 

Angle Sum and the Parallel Postulate 
 
 In proposition I.32 of the Elements, Euclid demonstrates that the angle sum of 

every triangle is π. It was well-known Lobachevski’s day that this theorem is logically 

equivalent to the parallel postulate. In fact, the equivalence of the two statements was 

such common knowledge that Lobachevski apparently felt no need to prove it, or even to 

mention it explicitly, in The Theory of Parallels. It is not a hard equivalence to establish. 
 
Claim 1. Given Euclid’s first four postulates, the parallel postulate holds if and only if the sum of 
the angles in every triangle is π. 
 
Proof. ⇒) Euclid I.32. 
 ⇐) Assuming that every triangle has an angle sum of π, we shall prove that Playfair’s 
axiom holds. 
 Let l be a line, and P be a 
point not on it. From P, drop the 
perpendicular PQ to l and 
construct R′R through P 
perpendicular to PQ. R′R does 
not intersect l, by Euclid I.28. We 
shall show that every other line 
through P does intersect l, and 
thus establish Playfair’s axiom. 

Q

P

T

S

R� R

l

m

 To this end, let m be any other line through P. Clearly, m enters either QPR′ or QPR. 
We will assume without loss of generality that the latter occurs. Let S be any point on the portion 
of m lying within QPR. Let T be any point on l such that QTP < SPR.*

                                                 
* It sounds reasonable that there should be such a point, but this requires proof. Like the parallel postulate, 
the statement that T exists is an assertion that something will happen at an indefinitely large distance. We 
can prove that T exists; Lobachevski does this in TP 21. Skeptical readers may turn there immediately for a 
proof, which employs none of the intervening results. 
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 By hypothesis, the right triangle PQT has angle sum π. Thus, QTP is the complement 
of TPQ. Since TPR is also the complement of TPQ, it follows that TPR = QTP < SPR, 
which implies that PS enters triangle PQT through vertex P. What goes in must come out, and 
PS must intersect QT by the crossbar theorem. Hence, m intersects l, as claimed.   

 This establishes Playfair’s axiom, which, in turn, implies the parallel postulate (see the 
proof of Claim 1 in the notes on TP 16).        
 
 
 This raises the question as to what, if anything, we may say about a triangle’s 

angle sum without invoking the parallel postulate. Euclid provides a partial answer. In 

Elements I.17 (a neutral theorem), he demonstrates that any pair of angles in any triangle 

sums to less than π. From this, we can easily obtain a neutral result on angle sum: the 

angle sum of any triangle must be strictly less than (3/2)π*. 

 Lobachevski sharpens the upper bound in TP 19, proving that in neutral geometry, 

the angle sum can never exceed π. This is the sharpest possible bound on angle sum, 

since we can actually attain the value π by assuming the parallel postulate along with the 

neutral axioms. 

 The proof proceeds by reductio ad absurdum. We shall assume the existence of a 

triangle with angle sum π + α, where α is some positive real number, and reason to a 

contradiction. 
 
 
The Siphon Construction 
 
 Suppose that the sum of the three angles in a triangle is π+α.  
 Bisect the smallest side BC at D, draw the line AD, make its 
extension DE equal to AD, and 
draw the straight line EC. In the 
congruent triangles ADB and 

CDE (TP 16 and TP 10), we 
have ABD = DCE and BAD 
= DEC. From this, it follows 
that the sum of the three angles 
in ACE must also be π+α. We 
note additionally that BAC, the A

B

C

D

E

                                                 
* Proof: In an arbitrary triangle, label the largest angle α, the middle angle β, and the smallest angle γ. By 
I.17, we know that β < π - α. We also know that γ < π/2 (if not, then β + γ ≥ γ + γ ≥ π, contrary to I.17). 
Thus, α + β + γ < [α + (π - α) + π/2] = (3/2)π, as claimed.  
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smallest angle of ABC (TP 9), has been split into two parts of the new 
triangle ACE; namely, the angles EAC and AEC. 
 
 From the original triangle, ABC, Lobachevski produces a second, ACE. The 

construction acts a kind of siphoning process on the original triangle: it empties the 

content of its two largest angles (those at B and C) into a single angle of ACE (the one 

at C), and drains the content of its smallest angle ( BAC) into the two remaining angles 

of ACE (those at A and E). The resulting triangle has the same angle sum (π + α) as the 

original triangle, but comprised of one conspicuously large angle and two very small 

angles. In particular, ACE’s smallest angle must be less than or equal to ( BAC)/2. 

(Proof: If not, then the sum of ACE’s two small angles would exceed BAC, 

contradicting the siphon construction, which dictates that their sum will equal BAC.) 

 To recapitulate, the siphon construction produces a new triangle from an old one: 

in doing so, it preserves the original’s angle sum, but reduces its smallest angle to less 

than (or equal to) half of its original size.  
 
  
The Siphon Iterated : The Proof Concluded 
 
 Continuing in this manner, always bisecting the side lying opposite 
the smallest angle, we eventually obtain a triangle in which π+α is the 
sum of the three angles, two of which are smaller than α/2 in absolute 
magnitude. Since the third angle cannot exceed π, α must be either zero 
or negative. 
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 We may streamline Lobachevski’s argument by invoking Euclid I.17 as follows. 

 We began with ABC, a triangle whose smallest angle is BCE. Applying the 

siphon construction, we produced ACE, whose smallest angle is at most ( BCE)/2. If 

we iterate the siphon n times, we will obtain a triangle whose smallest angle is at most 

( BCE)/2n. We can force this value to be as small as we like by taking n sufficiently 
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large. In particular, we can iterate the procedure until we produce a triangle whose 

smallest angle is strictly less than α. Since the siphon preserves angle sum, this last 

triangle will have the same angle sum as the first: π + α. Consequently, the sum of its two 

remaining angles must exceed π, contradicting Euclid I.17. Having reached a 

contradiction, we conclude that a triangle’s angle sum cannot exceed π in neutral 

geometry, as claimed.   

  The theorem we have just examined is usually called the Saccheri-Legendre 

theorem, for reasons we shall now explain.  
 
 
Legendre 
“It even seems to me that Legendre entered many times on the same path that I have succeeded in 
traversing. But his prejudices in favor of the ideas generally received until then have, without doubt, always 
led him to stop at conclusions which would not be admissible in the new theory.” 
         - Lobachevski*

   

 The wonderful “siphon” proof was actually discovered by Legendre, for whom it 

represented but one half of a much grander achievement. The siphon proof shows that the 

angle sum of a triangle cannot exceed π. In several editions of his Éléments de 

Géométrie, Legendre followed this proof with a disturbingly convincing demonstration 

that the angle sum of a triangle cannot fall short of π either. Concluding that angle sum 

must therefore equal π, Legendre claimed that he had proved the parallel postulate. 

 Regarding Legendre’s faulty proof, Jeremy Gray has written, “In spotting the flaw 

you will discover more about the alien nature of non-Euclidean geometry than by 

following any texts.”† I agree, and accordingly reproduce Legendre’s proof (in the 

translation from Laubenbacher & Pengelley) for the reader’s edification.  
 

 
 
 
 
 
 
 
 
 
 

                                                 
* Lobachevski, New Principles of Geometry, pp. 5-6. 
† Gray, Ideas of Space, pg. 81. 
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 In any triangle, the sum of the three angles is equal to two right angles. 
 
 Having already proved that the sum of the three angles of the triangle 
cannot exceed two right angles, it remains to prove that the same sum cannot be 
smaller than two right angles. 
 Let ABC be the proposed triangle, and let, if possible, the sum of its 
angles = 2P – Z, where P denotes a right angle, and Z is whatever quantity by 
which one supposes the angle sum is less than two right angles. 
 Let A be the 
smallest of the angles in 
triangle ABC, on the 
opposite side BC make the 
angle BCD = ABC, and the 
angle CBD = ACB; the 
triangles BCD, ABC will 
be equal, by having an 
equal side BC adjacent to 
two corresponding equal 
angles. Through the point 
D draw any straight line 
EF that meets the two 
extended sides of angle A 
in E and F. 

ACF

D

E

B

 Because the sum of the angles of each of the triangles ABC, BCD is 2P – 
Z, and that of each of the triangles EBD, DCF cannot exceed 2P, it follows that 
the sum of the angles of the four triangles ABD, BCD, EBD, DCF does not 
exceed 4P – 2Z + 4P, or 8P – 2Z. If from this sum one subtracts those of the 
angles at B, C, D, which is 6P, because the sum of the angles formed that each of 
the points B, C, D is 2P, the remainder will equal the sum of the areas of triangle 
AEF; therefore the sum of the angles of triangle AEF does not exceed 8P – 2Z – 
6P, or 2P – 2Z. Thus while it is necessary to add Z to this sum of the angles in 
triangle ABC in order to make to right angles, it is necessary to add at least 2Z to 
the sum of the angles of triangle AEF in order to likewise make two right angles. 
 By means of the triangle AEF one constructs in like manner a third 
triangle, such that it will be necessary to add at least 4Z to the sum of its three 
angles in order for the whole to equal two right angles; and by means of the third 
one constructs similarly a fourth, to which it will be necessary to add at least 8Z 
to the sum of its angles, in order for the whole to equal two right angles, and so 
forth. 
 Now, no matter how small Z is in relation to the right angle P, the 
sequence Z, 2Z, 4Z, 8Z, etc., in which the terms increase by a doubling ratio, 
leads before long to a term equal to 2P or greater than 2P. One will consequently 
then reach a triangle to which it will be necessary to add to the sum of its angles a 
quantity equal to or greater than 2P, in order for the total sum to be just 2P. This 
consequence is obviously absurd; therefore the hypothesis with which one started 
cannot manage to continue to exist, that is, it is impossible that the sum of the 
angles of triangle ABC is less than two right angles; it cannot be greater by virtue 
of the preceding proposition; thus it is equal to two right angles. 
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 The flaw occurs early, when Legendre asks his reader to draw a straight line 

through D meeting the two sides of the angle. This sounds innocent enough, but the 

statement, “through any point in the interior of an angle, a line may be drawn intersecting 

both rays of the angle” turns out to be logically equivalent to the parallel postulate. Thus, 

Legendre’s argument begs the question, unconsciously assuming that which he claims to 

prove.  
 
Claim 2. Given Euclid’s first four postulates, the parallel postulate holds if and only if 
“Legendre’s assertion” holds. (“Legendre’s assertion”: through any point in the interior of an 
angle whose measure is less than π, a line may be drawn intersecting both rays of the angle.) 
 
Proof.  
 ⇐) Legendre’s flawed proof demonstrates that “Legendre’s assertion” implies that the 
sum of the angles in any triangle equals two right angles, which in turn, implies the parallel 
postulate (by Claim 1). 
 ⇒) Suppose the parallel postulate holds. Given an angle ABC, we let θ be its measure, 
and D be an arbitrary point in its interior. On ray BA, 
choose any point E such that DEB < π - θ *. Draw 
line ED. Since lines BC and ED meet BE at angles 
whose sum is ( ABC + DEB) < (θ + (π - θ)) = π, 
the parallel postulate implies that these lines will 
intersect one another. Thus, ED is a line through D 
that cuts both rays of angle ABC. Hence, 
“Legendre’s assertion” holds.    
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 Interestingly, Legendre was not the first to base an alleged proof of the parallel 

postulate on “Legendre’s assertion”. In the early 9th century, Abbās ibn Sa’īd al-Jawharī 

based his own flawed proof of the postulate upon “Legendre’s assertion”. Unlike 

Legendre, al-Jawharī provided a proof of this assertion, but this second proof relied upon 

yet another statement equivalent to the parallel postulate: parallel lines are everywhere 

equidistant. To his credit, al-Jawharī tried to prove this as well, but it was in this third 

proof that he made what Rosenfeld characterized as a “crude logical error” †. 

                                                 
* As mentioned in an earlier footnote, Lobachevski proves in TP 21 that this can be done in neutral 
geometry. 
† Rosenfeld, p. 49. 
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 Before moving on to Saccheri, it is worth mentioning that Legendre actually 

discovered two different proofs that the angle sum cannot exceed π, of which the siphon 

argument was the second*. Finally, one may find the siphon construction, though used to 

different effect, in Euclid’s proof of the exterior angle theorem (Elements I.16). 

Presumably, the close attention that Legendre paid to Euclid while preparing his own 

Éléments gave him the idea for his siphon argument. 
 
 
Saccheri 
“It is manifest to all geometers that the hypothesis of the right angle alone is true.” – Saccheri †

 

Of all the attempts to prove the parallel postulate, the most heroic - if ultimately Quixotic 

- was the glorious effort of Gerolamo Saccheri (1667-1733). He was a Jesuit priest, a 

professor of mathematics and philosophy at the University of Pavia, and most 

significantly for us, he was the author of Euclides ab Omni Naevo Vindicatus (Euclid 

Freed of Every Flaw), which he published in the last year of his life. 

 In accordance with long-standing custom among postulate provers, Saccheri 

commences his book with a eulogy for Euclid’s Elements and a concomitant 

acknowledgment of the few minor imperfections of that masterpiece:  
 

 No one who has learned mathematics can fail to be aware of the 
extraordinary merit of Euclid’s Elements. I call as expert witnesses Archimedes, 
Apollonius, Theodosius, and the almost innumerable other writers on 
mathematics up to the present who make use of Euclid’s Elements as a long 
established and unshakable foundation. But this great prestige of the Elements 
has not prevented many ancient as well as modern geometers, including many of 
the most distinguished, from claiming that they have found certain blemishes in 
this beautiful work, which cannot be too highly praised. Three such blemishes 
have been cited, which I now give.‡

 
Not surprisingly, the first and most significant blemish in Saccheri’s list is the existence 

of the parallel postulate as such; he devotes the entire first part of his book to removing 

this first blemish, by proving the postulate as a theorem. (The other blemishes concern 

definitions in the theory of proportions, which need not concern us here.)  
                                                 
* A translation of the first proof, somewhat lengthier than the siphon argument, but clever in its own right, 
is in Laubenbacher & Pengelley, pp. 27-28. A “retelling” of this first proof is in Bonola, pp. 55-56. 
† Saccheri, p. 61. 
‡ Saccheri, p. 245. 
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 Saccheri’s purported proof of the postulate was surely the longest ever penned. 

Covering over 100 pages, it comprises 39 propositions, 5 lemmas, 23 corollaries, and 19 

scholia. Its great length was largely a product of Saccheri’s unusual strategy. The point of 

departure for his work is a simple figure, which one constructs as follows: from the 

endpoints of a line segment AB, erect perpendiculars AC and BD of the same length, and 

join their endpoints. The resulting figure is known today as a “Saccheri quadrilateral”. 

Saccheri proves that its remote angles (those at C and D) must be equal to one another. 

He also proves that all Saccheri quadrilaterals throughout the plane must exhibit a certain 

uniformity: if one has right remote angles, then all will; if one has obtuse remote angles, 

then all will; and if one has acute remote angles, then all will. He calls these possibilities 

the hypothesis of the right angle (HRA), hypothesis of the obtuse angle (HOA), and 

hypothesis of the acute angle (HAA) respectively. 

 The parallel postulate is equivalent to the HRA. Thus, to prove it, Saccheri sought 

to demonstrate that the HOA and HAA both lead to logical absurdities. Initially, his plan 

appears feasible; he successfully explodes the HOA in his 14th proposition and celebrates 

this first victory in zesty Latin* before commencing “a lengthy battle against the 

hypothesis of the acute angle, which alone opposes the truth…”†. He thus assumes the 

HAA, fully intending to drive it toward its own destruction as well. This attempt led him 

through a lengthy sequence of deductions; his increasingly strange results seemed to 

contradict experience without actually contradicting logic. Recognizing that this was 

insufficient for his purposes, Saccheri had no choice but to plunge still deeper into the 

world of the HAA in quest of logical absurdity. 

 Saccheri’s desperate quest was doomed to fail: with hindsight, we know that the 

HAA does not lead to a contradiction. The strange propositions that Saccheri established 

under his HAA fever-dream were not, as he had fancied, mere hallucinatory stepping-

stones that would lead him to a logical contradiction, but rather, honest theorems of 

imaginary geometry, which Lobachevski would rediscover a century later. Saccheri 

beheld a new world, but failed to recognize it. 
 

                                                 
* “Hypothesis anguli obtusi est absolute falsa, quia se ipsam destruit.” 
   (“The hypothesis of the obtuse angle is absolutely false, because it destroys itself.”) Saccheri, p.61. 
† ibid. p.13. 
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 Indeed, he finally deluded himself into claiming victory over the HAA. The 

ostensible contradiction that prompted this was so patently bogus that Saccheri, whose 

logical acumen was otherwise profound, must have accepted it out of sheer mental 

exhaustion. One cannot help wishing that he had lived a little longer to reconsider his 

overhasty conclusion. Though he lost his battle with the HAA, he became, in waging it, 

the first person in history to make sustained, if unwitting, contact with non-Euclidean 

geometry.  
 
 The Saccheri-Legendre theorem was called Legendre’s first theorem until the 

early 20th century*. Although Saccheri’s Euclides ab Omni Naevo Vindicatus seems to 

have captured the interest of mathematicians at the time of its publication in 1733†, it had 

long since sunk into oblivion by Legendre’s day. It was rediscovered in 1889 by Eugenio 

Beltrami, who introduced it to a generation of mathematicians able to appreciate 

Saccheri’s unsuspecting incursion into the world of non-Euclidean geometry‡. Within the 

pages of Saccheri’s treatise, these late 19th-century mathematicians discovered a proof of 

“Legendre’s first theorem” that antedated Legendre’s own by the better part of a century. 

 Saccheri’s proof is as follows. In his 15th proposition, he demonstrates that HAA, 

HRA, and HOA, lead respectively to systems in which a triangle’s angle sum is always 

less than π, always equal to π, or always greater than π. Combining this with his 

destruction of the HOA, Saccheri establishes the theorem that now bears his (hyphenated) 

name. 
 
 
 
 
Euclid’s Second Postulate 
  
Euclid’s second postulate (“To produce a finite straight line continuously in a straight 

line” in Heath’s translation) is generally taken as an assertion that the plane is 

                                                 
* E.g. Hilbert p. 35. Writing in 1906, Bonola (p.56) notes, “This theorem is usually, but mistakenly, called 
Legendre’s First Theorem.” 
† Coolidge, p. 70.  Coolidge bases this claim upon a 1903 article (written in Italian) by Corrado Segre on 
the influence of Saccheri upon subsequent writers concerned with the parallel postulate. 
‡ There is some irony in the fact that Beltrami, who revived the long-lost work and name of Saccheri, also 
demonstrated that imaginary geometry (the HAA) is as consistent as Euclidean geometry (the HRA), thus 
proving definitively that Saccheri’s quest was hopeless.  
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unbounded; line segments can be extended indefinitely. The proof of the Saccheri-

Legendre theorem depends crucially upon this fact, since, in carrying out the siphon 

construction, we require the ability to extend a segment to twice its length. In spherical 

geometry, where Euclid’s second postulate does not hold (great circles, the “lines” of a 

sphere, have finite length, thus limiting the amount by which a segment can be extended), 

our proof of the Saccheri-Legendre theorem is no longer valid. This should not be 

surprising, as the sum of any spherical triangle’s angles is, in fact, always greater than π. 
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Theory of Parallels 20 
 

If the sum of the three angles in one rectilinear triangle is equal to two right 
angles, the same is true for every other triangle. 
 

All for One and One for All 
 
 This proposition, like the previous one, played an important role in Legendre’s 

purported proofs of the parallel postulate. It is sometimes called Legendre’s second 

theorem, but a pleasantly literary alternative, The Three Musketeers Theorem*, has 

gained favor in recent years. Whatever its name, Legendre was not the first to prove it. 

Saccheri preceded him once again. Nonetheless, Legendre’s proof, which Lobachevski 

largely follows, is particularly elegant. The enormous popularity of Legendre’s Éléments 

was due, in no small measure, to his artful proofs, which seem even to invite names: we 

have seen his “siphon construction” in TP 19, and we will now examine his “domino 

proof” of the Three Musketeers Theorem, as retold by Lobachevski.  
 
 
If a Triangle with Angle Sum π Exists, 
Then a Right Triangle with Angle Sum π Exists. 
 

 If we suppose that the sum of the three 
angles in triangle ABC is equal to π, then at 
least two of its angles, A and C, must be acute. 
From the third vertex, B, drop a perpendicular 
p to the opposite side, AC. This will split the 
triangle ABC into two right triangles. In each 
of these, the angle sum will also be π: neither 
angle sum can exceed π (TP 19), and the fact that the right triangles 
comprise triangle ABC ensures that neither angle sum is less than π.  

B

A C
D

p

q

 
 

                                                 
* Interestingly, Alexandre Dumas père, author of The Three Musketeers, has a curious connection to the 
history of mathematics. He was present at the banquet of French revolutionaries at which the great 
algebraist Evariste Galois apparently declared his intention, while standing on a table with a drawn dagger, 
to kill the king. Moreover, in his memoirs, Dumas names Pescheux d'Herbinville as the man who killed the 
twenty-year-old Galois in a duel. Dumas’ writings provide the only evidence pointing to d'Herbinville; 
whether Dumas correctly identified Galois’ killer is still a matter of debate. See the article by Tony 
Rothman listed in the bibliography.  
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 Since angles A and C are acute, the foot of the perpendicular will land in the 

interior of segment AC*.  Hence, the perpendicular splits ABC into a pair of right 

triangles. We shall verify that each right triangle has angle sum π by proving a little 

lemma, which gives a slightly more general result. 
 
Claim 1. Given a triangle with angle sum π, if we join one of its vertices to a point on the 
opposite side, both of the resulting subtriangles have angle sum π as well. 
Proof. Suppose that angle sum( ABC) = π. Join B to a point D on the 
opposite side to produce two subtriangles, ADB and CDB. If we add 
up all six angles of the subtriangles, we clearly obtain all three angles 
of the original triangle, plus a pair of supplementary angles at D. 

A

B

C
D

  
         That is,  

angle sum( ADB) + angle sum( CDB) = angle sum( ABC) + π = 2π. 
 

By TP 19, neither term on the left hand side can exceed π. Hence, the equality can hold only if 
both terms equal π. That is, both subtriangles have angle sum π, as claimed.   
 

 Thus, the existence of one arbitrary triangle with angle sum π implies the 

existence of a right triangle with angle sum π. The chain of dominoes has begun to fall.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

                                                 
 
* Proof: If it fell outside the segment, say closer to A than to C, then BDA would have a right angle at D 
and an obtuse angle at A, contradicting TP 19, the Saccheri-Legendre Theorem. 
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If a Right Triangle with Angle Sum π Exists, 
Then Arbitrarily Large Right Triangles of Angle Sum π Exist. 
 
 In this way, we obtain a right triangle whose arms are p and q; 
from this we can obtain a quadrilateral whose opposite sides are equal, 
and whose adjacent sides are perpendicular. By repeated application of 
this quadrilateral, we can construct another with sides np and q, and 
eventually a quadrilateral EFGH, whose adjacent sides are 
perpendicular, and in which EF = np, EH = mq, HG = np, and FG = mq, 
where m and n can be any whole numbers. The diagonal FH of such a 
quadrilateral divides it into two congruent right triangles, FEH and 

FGH, each of which has angle sum π. 

p

q

p

q

p

q

p

p

p

q

p

p

q

p

q q q

q

p

F G

E H

 
 From a right triangle whose angle sum is π, Lobachevski (following Legendre) 

produces a rectangular brick. Using copies of the brick, he builds arbitrarily large 

rectangular walls. Drawing a diagonal of such a wall yields an arbitrarily large right 

triangle with angle sum π. We now explain why this works. 

 Since triangle CDB has angle sum π, its two acute angles are complementary. 

Joining two copies at their hypotenuses therefore yields our first p × q rectangular brick, a 

“quadrilateral whose opposite sides are equal, and whose adjacent sides are 

perpendicular”*. 

                                                 
* Strictly speaking, “joining triangles” is not a well-defined operation. To be more precise, we can construct 
a rectangle BDCE from triangle BDC by choosing a point E such that CBE = DCB (Euclid I.23) and 
BE = DC (Euclid I.2). By the SAS criterion (Euclid I.4), we have BDC ≅ CEB. Hence, EC = BD. Since 
BE = DC by construction, the opposite sides of quadrilateral BDCE are equal. Moreover, DBE = DBC + 

CBE = DBC + BCD = π/2. Similarly, DCE = π/2. Since the remaining two angles of BDCE are 
obviously right angles, we have also confirmed that all pairs of adjacent sides in the quadrilateral are 
perpendicular.  
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 Stacking such bricks n high and m across, we obtain an np × mq rectangular wall. 

With a diagonal, we split it into a pair of right triangles. If we add the angle sums of these 

triangles together, it is clear that we will obtain 2π, since this is the angle sum of the 

rectangle they comprise. 

 Hence, if either triangle’s angle sum falls short of π, the other’s must exceed π to 

make up the difference, which would contradict the Saccheri-Legendre Theorem (TP 19). 

Thus neither triangle’s angle sum is less than π. Since neither angle sum can be greater 

than π either (TP 19 again), both angle sums must equal π. 

 

 Thus, given just one triangle (possibly a tiny one) with angle sum π, we can 

construct arbitrarily large right triangles with angle sum π. Specifically, we can construct 

them to have arms of lengths np and mq, for any whole numbers m and n whatsoever. 

Given any specified length, we can therefore construct a right triangle of angle sum π, 

whose arms exceed that length. 
   
 
If Arbitrarily Large Right Triangles of Angle Sum π Exist, 
Then Every Right Triangle has Angle Sum π. 
 

 The numbers m and n can always be chosen so large that any 
given right triangle JKL can be enclosed within a right triangle JMN, 
whose arms are NJ = np and MJ = mq, when one 
brings their right angles into coincidence. Drawing 
the line LM yields a sequence of right triangles in 
which each successive pair shares a common side. 

N L J

M

K

 The triangle JMN arises as the union of the 
triangles NML and JML. The angle sum exceeds 
π in neither of these; it must, therefore, equal π in 
each case in order to make the composite triangle’s 
angle sum equal to π. Similarly, the triangle JML 
consists of the two triangles KLM and JKL, from 
which it follows that the angle sum of JKL must 
equal π. 
 

 Given any right triangle JKL, we can construct, by the technique described in 

the previous section, a right triangle JMN whose angle sum is π, and whose arms are 

longer than those of JKL. When their right angles coincide, it is obvious that JMN 
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will enclose the given triangle JKL. (One can give a Hilbert-style proof of this fact, but 

I will omit this here.) Lobachevski alludes to a “sequence of right triangles”: JMN, 

JML, JKL. Applying Claim 1 to each successive pair of triangles in the sequence 

brings us to the desired conclusion. 

 Since JMN has angle sum π, its subtriangle JML has angle sum π as well. 

 Since JML has angle sum π, its subtriangle JKL does also. 

  

 Thus far, we have shown that the existence of just one triangle with angle sum π 

implies that every right triangle has angle sum π. Only one more domino remains to fall. 
  
 
If Every Right Triangle has Angle Sum π, 
Then Every Triangle has Angle Sum π. 
 

 In general, this must be true of every triangle since each triangle 
can be cut into two right triangles. Consequently, only two hypotheses 
are admissible: the sum of the three angles either equals π for all 
rectilinear triangles, or is less than π for all rectilinear triangles. 
 

  Let T be an arbitrary triangle. We dissect it into two right triangles, T 1 and T2, by 
dropping a perpendicular from the appropriate vertex. From the figure, we see that  
 

angle sum(T) = angle sum(T 1) + angle sum(T 2) - π. 

 
T T1

T2

If all right triangles have angle sum π, it follows that 

 

angle sum(T) = π + π - π = π. 

 

Thus, T has angle sum π as claimed. This completes the domino proof of the Three 

Musketeers Theorem. To recapitulate, when we assume that one triangle has angle sum π, 

a chain of deductions leads us inexorably to the conclusion that all triangles have angle 

sum π. This has an important consequence for imaginary geometry. 
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Claim 2. In imaginary geometry, the angle sum of every triangle is strictly less than π. 
Proof. Since the parallel postulate is false in imaginary geometry, it harbors at least one triangle 
whose angle sum is not π. (TP 19 notes, Claim 1). Thus, by the Three Musketeers Theorem, no 
triangles can have angle sum π in imaginary geometry. Thus, the angle sum of every triangle in 
imaginary geometry is strictly less than π (by the Saccheri-Legendre Theorem).    
 
 We have reached the end of Lobachevski’s TP 20, but much remains to be 

discussed. Our demonstration that every triangle in imaginary geometry has angle sum 

less than π immediately spawns questions. Foremost among them: do all imaginary 

triangles possess the same angle sum? If so, what is it? If not, can we discover a law that 

describes their variation? Johann Heinrich Lambert was the first to answer these 

questions, and it is to his work that we turn next. 
 
 
Lambert 
“Lambert may be compared in a sense with Moses, for he saw more of the promised land of the new 
geometry than anyone before him, and knew that he had not proved it self-contradictory, but…” 
         - Jeremy Gray*

             

The far-reaching intellectual achievements of Johann Heinrich Lambert (1728 – 1777) 

span the disciplines of mathematics, physics, astronomy, and philosophy. His was among 

the greatest of 18th-century scientific minds. Immanuel Kant drafted a dedication of his 

own Critique of Pure Reason to Lambert, but by the time Kant’s masterpiece was ready 

to publish, Lambert had died. Some of his better known mathematical accomplishments 

include proofs that π and e are irrational numbers, the introduction of the hyperbolic 

functions, and significant work in mathematical cartography. 

 The vexed subject of the parallel postulate attracted Lambert’s attention. He left 

one important work on this topic, his Theorie der Parallel-Linien (written in 1766, but 

published posthumously in 1786, by Johann Bernoulli III). Although Lambert never 

explicitly mentions Saccheri, he was probably familiar with his work; he does explicitly 

refer to a 1763 dissertation of G.S. Klügel, which summarized and criticized various 

proofs of the parallel postulate, including Saccheri’s Euclid Freed from Every Flaw. 

 Lambert’s own contribution to the “pre-history” of non-Euclidean geometry 

proceeds along lines very similar to those that Saccheri had followed 33 years earlier. He 

                                                 
* Fauvel & Gray, p. 509. 
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considers a quadrilateral with three right angles (now often called a “Lambert 

quadrilateral”), and establishes the following neutral result about its fourth angle: if it is 

right, obtuse, or acute, then the fourth angle of every Lambert quadrilateral will be right, 

obtuse, or acute, respectively. These three possibilities, which Lambert calls the first, 

second, and third hypotheses, are entirely equivalent to Saccheri’s HRA, HOA, and 

HAA. Like Saccheri, Lambert sets out to destroy the second and third hypotheses. The 

second falls easily, but the third (the HAA) remains stubbornly resistant, prompting a 

long excursion into a strange geometric landscape. Lambert followed the path into 

imaginary geometry even farther than Saccheri did, thus anticipating several theorems of 

Lobachevski and Bolyai.  

 In the pages that follow, we shall find occasion to mention several of Lambert’s 

results. Of interest here is the fact that different triangles in imaginary geometry can have 

different angle sums. Saccheri never explicitly mentions this fact, but in section 81 of 

Lambert’s Theorie der Parallellinien, one finds a demonstration that under the “third 

hypothesis” (equivalently, in imaginary geometry) if one triangle is inscribed in another, 

then the larger triangle will have a smaller angle sum. A synopsis of his proof follows*. 
 

Claim 3. In imaginary geometry, if ABC is inscribed in XYZ, 
then angle sum( XYZ) < angle sum( ABC). 
Proof.  The inscribed triangle splits XYZ into four sub-
triangles: ABC, ACY, BXC, and ZBA. Let the angle 
sums of these triangles be π-α, π-β, π-γ, and π-δ respectively. 
The figure shows that XYZ’s angle sum can be found by 
adding up the four angle sums of the sub-triangles and 
subtracting 3π. (The 3π accounts for the three straight angles 
at A, B, and C, which are composed of angles of the sub-
triangles that do not figure into XYZ’s angle sum.) That is, 

Z A Y

C

X

B

angle sum( XYZ) = [(π - α) + (π - β) + (π - γ) + (π - δ) - 3π] = π - (α + β + γ + δ), 
which is less than π - α, the angle sum of the inscribed triangle. (It is also less then the angle sum 
of any of the other three sub-triangles, for that matter.)      
 
                                                 
* For an English translation of Lambert’s work on area and angle sum, see Fauvel & Gray,  pp. 518-520. 
The complete German text of Lambert’s Theorie der Parallellinien is in Engel & Stäckel, pg. 152-207. As 
of this writing, this text can be accessed online through the World Digital Mathematics Library 
(http://www.wdml.org/). 
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 Lambert generalized this result, arguing that for any two triangles, the one with 

greater area will always have a smaller angle sum. In his sketchy justification of this 

claim, Lambert suggests that variations on the proof of Claim 3 will allow us to 

demonstrate the truth of the inequality for any given pair of triangles*. He then made this 

result more precise, arguing that a triangle’s angle defect (the amount by which its angle 

sum falls short of π) is in fact directly proportional to its area. Gauss crafted a beautiful 

proof of this theorem; I shall describe it in the notes to TP 33. For now, I shall content 

myself with one small step in this direction. Like area, angle defect turns out to be an 

additive quantity, in the sense indicated in the following claim. 
 
 
Claim 4. If we split a triangle into two subtriangles by joining a vertex to a point on the opposite 
side, then the angle defects of the subtriangles add up to the angle defect of the original triangle.  

A

CB D

� �

�� ��

��	�

Proof. Let ABC be the original triangle, with subtriangles ABD and ACD, as in the figure. If 
we label angles as in the figure, then the defects of the three triangles are: 
 
 angle defect( ABD) = π - [α1 + β + (π - δ)]. 
 angle defect( ADC) = π - [α2 + δ + γ]. 
 angle defect( ABC) = π - [α1 + α2 + β + γ]. 
 
A simple calculation shows that the sum of the first two defects on this list is equal to the third, as 
claimed.            
 
 This additivity implies that in imaginary geometry (where angle defect is always 

positive), the original triangle’s defect will exceed either subtriangle’s defect. An easy 

corollary, which we will use shortly, follows.    

 
Corollary. In imaginary geometry, if a chord drawn in a triangle splits the triangle into a 
subtriangle and a quadrilateral, then the original triangle’s angle defect is greater than the 
subtriangle’s defect. 

                                                 
* “I shall not prove this theorem completely here,” he writes, “…rather I shall give only so much of the 
proof as will enable the rest of it to be understood overall.” Lambert’s claim is true, but some subtle 
complications do arise when one tries to vary the proof of Claim 3 to handle cases in which the triangle of 
smaller area does not fit inside the triangle of larger area. 
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Proof. Let ABC be the original triangle, DE the chord, and ADE the subtriangle. Draw line 
DC. Appealing to Claim 4 twice, we obtain 
 
  angle defect( ABC) > angle defect( ADC) 
             > angle defect( ADE).   
 
Thus, the original triangle’s defect exceeds that of its subtriangle, as claimed.   
 

 While pursuing his “third hypothesis”, Lambert 

obtained many further bewildering results, but unlike 

Saccheri, he never succumbed to the illusion that he had 

found a logical contradiction amongst them. Presumably 

dissatisfied with the inconclusive nature of his studies, 

he never published his “incomplete proof of the parallel 

postulate” in his lifetime. In his cool, dispassionate view of the third hypothesis, he 

stands in marked contrast to his great predecessor Saccheri, who attacked the HAA as if it 

were his personal enemy. 

B C

E

A

D

 
 
Similarity and the Parallel Postulate: Wallis 
“In time, those Unconscionable Maps no longer satisfied, and the Cartographers Guilds struck a map of the 
Empire whose size was that of the Empire, and which coincided point for point with it…” 
      - Jorge Luis Borges, “On Exactitude in Science”.*

 

Lambert’s results have a remarkable consequence: since increasing the size of a triangle 

decreases its angle sum, it follows that in imaginary geometry, similar, non-congruent 

triangles cannot exist. Dilating a figure invariably distorts its angles, so in a world 

governed by imaginary geometry, photography would be an inherently surrealist art, as 

Marvin Greenberg has aptly noted†. The familiar AAA-similarity criterion for Euclidean 

triangles (Euclid VI.4) disappears; in imaginary geometry, AAA is a congruence 

criterion. 
 
 
 

                                                 
* Borges, Collected Fictions, p. 325. 
† Greenberg, p. 151. 
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Claim 5. In imaginary geometry, AAA is a congruence criterion. 
Proof. Let ABC and A′B′C′ be triangles whose corresponding angles are equal. 
 Suppose, by way of contradiction, that the triangles are not congruent. 
 Then none of their corresponding sides are equal; for if they had a pair of equal 
corresponding sides, the triangles would be congruent by the ASA-criterion, contrary to 
hypothesis. Consequently, one triangle contains (at least) two sides longer than those that 
correspond to them on the other triangle. Suppose then that AB > A′B′ and AC > A′C′. Let B′′ and 
C′′ be points on AB and AC respectively such that AB′′ = A′B′ and AC′′ = A′C′. 

 Since A′B′C′ ≅ AB′′C′′ (SAS), we have B′ = B′′ and C′ = C′′. 
 The corollary to Claim 4 tells us that ( B + C) < ( B′′ + C′′). 
 Combining these last two facts yields ( B + C) < ( B′ + C′). 
 On the other hand, all corresponding angles of ABC and A′B′C′ are equal,  
so ( B + C) = ( B′ + C′). 
 We have reached a contradiction. Hence, ABC  ≅ A′B′C′, as claimed.   
 
 
 In a lecture given July 11, 1663 at Oxford University, John Wallis demonstrated 

that the existence of similar, non-congruent figures is logically equivalent to the parallel 

postulate. Wallis’ critical examination of the postulate appears to have been the first by a 

European since ancient times. He was inspired by an Arabic work on parallels, which had 

been published in Rome in 1594, and attributed to the 13th century mathematician, Nasir 

Eddin al-Tusi. It has since been demonstrated that it was actually written after al-Tusi’s 

death in 1274. Rosenfeld considers it “very likely” that it was written by al-Tusi’s son, 

Sadr al-Din.  

 Wallis stated that it would be reasonable to assume that “to every figure there is 

always a similar one of arbitrary size”; since Euclid’s 3rd postulate asserts the existence of 

circles of arbitrary size, “it is as practicable to make this assumption for an arbitrary 

figure as for circles.”* Although an appealing justification, this is somewhat misleading, 

since the existence of arbitrarily large circles does not imply that similar circles of 

arbitrary size exist. In fact, the omni-similarity of Euclidean circles (which ensures that 

the ratio of circumference to diameter is constant†, thus justifying the usual definition of 

                                                 
* Fauvel and Gray, pp. 510-511. 
†For a proof of this oft-stated, but rarely demonstrated theorem, see Moise, pp. 265-268. 
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π) is not a consequence of Euclid’s third postulate, but of his parallel postulate. Wallis, 

however, avoids circular arguments. Unlike many of his successors (such as Legendre), 

he never claimed to have derived the parallel postulate from Euclid’s first four; he merely 

showed that it was equivalent to his own proposed postulate, which, he argued, was a 

somewhat less offensive alternative. A sketch of Wallis’ equivalence proof follows. 
 
 
Claim 6. Given Euclid’s first four postulates, the parallel postulate holds if and only if Wallis’ 
Postulate (to every figure there is always a similar one of arbitrary size) holds. 
 

Proof. ⇒) Euclid VI.25 

 ⇐) Suppose that Wallis’ postulate 

holds. Let m and n be lines intersected by 

a third line, l, in such a way that the sum 

of the interior angles that m and n make 

on one side of l is less than π. 

 L

m

et M and N be the intersections 

d n,

In fact, it can be shown that Wallis’ postulate (and hence the parallel postulate) 

M

N

P
Q

of l with m and n respectively. Let m′ be 

the line through N making the same angle with l as m does, and let X be a point on m, as 

in the figure. Slide m along l towards N, maintaining its inclination toward l, until it 

coincides with m′. By the time it completes this journey, the point X will have passed to 

the other side of line n. Consequently, X must have crossed n at some point Q during its 

passage. Of course, when X and Q were coincident, the sliding line was also intersecting l 

at some point. Call this point P. By Wallis’ postulate, there is a point O such that  

MNO ∼ PNQ. Since O must clearly lie on both of the lines m an  these lines do 

intersect. Thus, the parallel postulate holds, as claimed.    
 

m�

n

l

�
X

O

 

 

holds if and only if there exists a single pair of similar, non-congruent triangles. In 1824, 

Pierre Simon de Laplace, author of the five-volume Mécanique Céleste, reiterated Wallis’ 

idea, that a postulate asserting the existence of similar figures is more natural than 

Euclid’s postulate.  
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  …the notion of space includes a special property, self-evident, without 
which the properties of parallels cannot be rigorously established. The idea of a 
bounded region, e.g., the circle, contains nothing which depends on its absolute 
magnitude. But if we imagine its radius to diminish, we are brought without fail 
to the diminution in the same ratio of its circumference and sides of all the 
inscribed figures. This proportionality appears to me a more natural postulate 
than that of Euclid, and it is worthy of note that it is discovered afresh in the 
results of the theory of universal gravitation.*

 

The reservations that most mathematicians felt regarding the parallel postulate were not 

logical, but aesthetic; their objections had little to do with the truth of the parallel 

postulate – they knew it was true – but much to do with its position in the structure of the 

Elements. It ought to be a theorem, they insisted, not an axiom. While the desired 

solution to this aesthetic dilemma was to deduce it from the first four postulates, a 

second-rate alternative was to replace Euclid’s fifth postulate, as Wallis or Laplace 

suggested, with a less objectionable equivalent. Of all the proposed “self-evident” 

alternatives, the most disarmingly simple must be the one that Alexis Claude Clairaut 

(1713 – 1765) adopted in his Éléments de Géométrie: there exists a rectangle. 
 
 
Clairaut’s Postulate 
 
Claim 7. Given Euclid’s first four postulates, the parallel postulate holds if and only if a 
rectangle exists.  
 
Proof. ⇒) Euclid I.46 (where Euclid constructs a square, a special case of a rectangle.) 
 ⇐) If a rectangle exists, let a diagonal split it into two triangles. The angle sums of these 
triangles add up to 2π (the angle sum of the rectangle). Since 
neither angle sum can exceed π (by TP 19), each triangle’s angle 
sum must be exactly π. By the Three Musketeers theorem (TP 20), 
all triangles must therefore have angle sums equal to π, a 
statement we have seen is equivalent to the parallel postulate.   
 
 It is interesting to speculate how the history of non-Euclidean geometry might 

have unfolded had Euclid assumed the existence of a rectangle rather than his parallel 

postulate. Would succeeding generations have found Clairaut’s postulate a “blot on 

geometry” (as Henry Saville referred to the parallel postulate in 1621)? Could the mere 

                                                 
* Quoted in Bonola, p. 54. 
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assumption that a rectangle exists have provoked Saccheri’s struggle to “free Euclid from 

every flaw”?  

 Yes, it could have, and probably would have. Although Clairaut’s postulate seems 

to have much in common with Euclid’s third postulate (asserting the existence of circles), 

closer inspection reveals a fundamental difference. All of Euclid’s geometry is built from 

line segments and circles; the third postulate merely asserts that we have access to the 

latter. Certainly, as geometric aesthetes, we should never tolerate the naïve assumption 

that other figures exist; we should prove their existence rigorously by constructing them 

from preexisting material. In particular, if a rectangle exists, we should be able to 

construct it from four line segments. Euclid constructs every other figure he uses, so why 

should a rectangle be any different? Such thoughts would surely have bothered geometers 

had Euclid based his theory of parallels upon Clairaut’s postulate. Similar thoughts would 

have bred discontent with any equivalent form of the parallel postulate. 
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Theory of Parallels 21 
 
From a given point, one can always draw a straight line that meets a given 
line at an arbitrarily small angle. 
 
 

 The salient feature of this little result is its neutrality; it is valid in both Euclidean 

and imaginary geometry. Twice, in the notes following TP 19, I committed the venial sin 

of using this result without having proved it first, referring the reader to the present 

proposition for its demonstration. I am not, however, guilty of the mortal sin of circular 

argument; Lobachevski’s proof of TP 21 does not require the intervening proposition,  

TP 20, and thus it could have been given directly after TP 19, prior to the proofs in which 

I used it. 
 
 
 From the given 
point A, drop the 
perpendicular AB to the 
given line BC; choose an 
arbitrary point D on BC; 
draw the line AD; make 
DE = AD, and draw AE. 
If we let α = ADB in the 
right triangle ABD, 
then the angle AED in 
the isosceles triangle ADE must be less than or equal to α/2 (TP 8 & 
19) *. Continuing in this manner, one eventually obtains an angle AEB 
that is smaller than any given angle. 

A

�

B D E C

 
 
 TP 8 (or Euclid I.5, the pons asinorum) implies that that the base angles AED 

and DAE of the isosceles triangle ADE are equal; let β be their common measure. 

Since this triangle’s remaining angle is π - α, TP 19 (the Saccheri-Legendre theorem) 

gives (π - α) + β + β ≤ π. Hence, β ≤ α/2, as claimed. 

 By repeating this construction, allowing E to play the role of D, we find a point F 

such that AFD ≤ α/4. With each subsequent iteration, we produce an angle whose 
                                                 
* I have corrected an apparent misprint occurring in Lobachevski’s text and perpetuated in Halsted’s 1891 
translation of TP. In these sources, Lobachevski cites TP 20 at this point, rather than TP 19. This makes 
little sense; TP 20 relates the angle sum of one triangle to the angle sums of all triangles – an issue having 
scarcely anything to do with the present proposition’s modest concerns.  
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measure is less than half the previous one. Repeating this sufficiently many times, we can 

clearly construct an angle smaller than any specified positive angle given in advance. The 

point E that occurs in Lobachevski’s final sentence is, of course, generally distinct from 

the E defined earlier in the proposition. In geometric writings of this period, the same 

symbol was sometimes used to represent distinct points that played a similar role in an 

argument. 
 
 Interestingly, Bolyai also makes use of this proposition, which looks so much like 

an ad hoc lemma. He notes the result at the conclusion of §1 in his Appendix, directly 

after defining parallelism. 
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Theory of Parallels 22 
 
If two perpendiculars to the same straight line are parallel to one another, 
then the sum of the three angles in all rectilinear triangles is π. 
 
 
Common Perpendiculars 
 

 A theorem of neutral geometry (I.28) guarantees that two lines with a common 

perpendicular (i.e. two lines perpendicular to a third) will never meet one another. Thus, 

in Euclidean geometry, lines with a common perpendicular are parallel to one another. 

 In imaginary geometry, however, non-intersection does not suffice to establish 

parallelism (see TP 16). In fact, the present proposition demonstrates that in imaginary 

geometry, lines with a common perpendicular are not parallel to one another. (Were they 

parallel, all triangles would have angle sum π, contradicting the result proved in Claim 2 

of the TP 20 notes.)  

 Accordingly, when we invoke TP 22 in the future, we shall do so in the following 

equivalent form: in imaginary geometry, parallel lines cannot have a common 

perpendicular. (That is, given two parallels, there cannot be a third line perpendicular to 

each of them.) 
 
 
Proof on the Rack 
 
 Let the lines AB and CD 
(Fig. 9) be parallel to one 
another and perpendicular to 
AC. From A, draw lines AE 
and AF to points E and F 
chosen anywhere on the line 
CD such that FC > EC. If the 
sum of the three angles equals 
π - α in the right triangle 

ACE and π - β in triangle 
AEF, then it must equal π - α - β in triangle ACF, where α and β 

cannot be negative. Further, if we let a = BAF and b = AFC, then  
α + β = a - b. 
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 Lobachevski assumes that two parallels AB and CD have a common 

perpendicular, AC. Proceeding from this assumption, he will produce a triangle with 

angle sum π; this will imply that all triangles have angle sum π (TP 20), which, in turn, 

will imply that the parallel postulate holds (TP 19 notes, Claim 1). Having accomplished 

this, he will have shown that parallels can have a common perpendicular only in 

Euclidean geometry. 

 His strategy for finding a triangle with angle sum π is worthy of the Spanish 

Inquisition. He examines two closely related triangles, ACE and AEF, and while the 

first can do nothing but watch, he contorts the shape of the second until the first breaks 

down and confesses that its own angle sum is π. 

 Lobachevski denotes their angle sums: π - α and π - β. He will ultimately show 

that α = 0. 

 To establish an exploitable relationship between the angle sums of the two 

triangles, Lobachevski turns to ACF, the larger triangle that they comprise. He 

computes its angle sum in two different ways. 

 First, he computes it indirectly, in terms of the angle sums of its constituent sub-

triangles. If we denote the respective angle sums of ACE and AEF by π - α and π - β, 

then a glance at the figure indicates a method for finding ACF’s angle sum: add the 

angle sums of its two sub-triangles and subtract π to offset their contributions at E. Thus, 

by our first computation, ACF’s angle sum is (π - α) + (π - β) - π = (π - α – β). 

 Second, he computes it directly, in terms of its own angles. These have measures 

b, π/2, and (π/2) – a, so by our second computation, ACF’s angle sum is (π + b – a). 

 Equating the two expressions for ACF’s angle sum, we find that  

(α + β) = (a – b), as claimed. 

 Having established this relationship, Lobachevski can now put AEF on the rack.    
 
 
End of the Proof: Confession 
 
By rotating the line AF away from the perpendicular AC, one can make 
the angle a between AF and the parallel AB as small as one wishes; one 
reduces the angle b by the same means. It follows that the magnitudes of 
the angles α and β can be none other than α = 0 and β = 0. 
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 Here, Lobachevski lets F slide down ray CD towards infinity. As this point 

moves, ACE remains unaffected, but ray AF rotates about A, causing ACE (and hence 

ACF) to be stretched. We shall now consider some limiting behavior of different parts 

of the figure as F slides to infinity. 

 Naturally, the limiting position towards which ray AF rotates is the first ray 

through A that does not cut CD: that is, AF approaches the unique parallel to CD passing 

through A. By hypothesis, this parallel is AB; hence, the angle between AF and AB 

approaches 0. That is, a → 0 as F goes to infinity. 

 Moreover, TP 21 immediately tells us that b → 0 as F goes to infinity. 

 Consequently, it follows that (a – b) → 0 as F goes to infinity. 
 
 This is enough: ACE will now confess. 

 Since  α ≤ (α + β) = (a - b), which vanishes as F goes to infinity, it follows that α 

can be made smaller than any positive quantity. Thus, since it cannot be negative (TP 19), 

α must be zero. That is, ACE’s angle sum is (π - α) = (π - 0) = π, as claimed. 

 This being the case, all triangles have angle sum π, by the Three Musketeers 

Theorem (TP 20). The proof is over, but Lobachevski has a few more words to add about 

his unfolding work as a whole. 
 
 
Recapitulation and Proclamation 
 
 From what we have seen thus far, it follows either that the sum of 
the three angles in all rectilinear triangles is π, while the angle of 
parallelism ∏(p) = π/2 for all lines p, or that the angle sum is less than π 
for all triangles, while ∏(p) < π/2 for all lines p. The first hypothesis 
serves as the foundation of the ordinary geometry and plane 
trigonometry. 
 The second hypothesis can also be admitted without leading to a 
single contradiction, establishing a new geometric science, which I have 
named Imaginary Geometry, which I intend to expound here as far as the 
derivation of the equations relating the sides and angles of rectilinear 
and spherical triangles.  
 
 
 We have now seen ten statements equivalent to the parallel postulate. Gathering 

them together, we state a theorem that we have already proved in piecemeal fashion. 
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Theorem. Given Euclid’s first four postulates, the following are equivalent: 
 
 1. Euclid’s parallel postulate. 
 2. Playfair’s axiom.     (See TP 16 Notes, Claim 1) 
 3. All triangles have angle sum π.    (See TP 19 Notes, Claim 1) 
 4. One triangle has angle sum π.    (See TP 20) 
 5. The angle of parallelism is π/2 for all lengths.  (See TP 16 Notes, Claim 1) 
 6. The angle of parallelism is π/2 for one length.  (See TP 22)*

 7. Similar, non-congruent figures exist.   (See TP 20 Notes, Claim 6) 
 8. A rectangle exists.      (See TP 20 Notes, Claim 7) 
 9. Legendre’s assumption.    (See TP 19 Notes, Claim 2) 
 10. Two parallels have a common perpendicular.  (See TP 22). 
 

Euclid could have made any of these assumptions his fifth postulate, and deduced the 

same body of results that comprise the Elements. There are, of course, still other 

equivalent statements, but we shall not dwell upon them here; it is time to bid farewell to 

the parallel postulate altogether. 
   
 Heretofore, Lobachevski has developed only neutral theorems. A rigorous 

demonstration of the parallel postulate would instantly reduce them to an eccentric 

sequence of trivialities with unnecessarily difficult proofs, but it would not divest them of 

their validity. Henceforth, however, the safety net of neutrality will be absent: a proof of 

the parallel postulate would render everything that follows in Lobachevski’s work not 

merely trivial, but actually false. It is at this point that the Lobachevskian heresy begins. 

No longer content to avoid the parallel postulate, he shall openly deny it and develop the 

consequences. In doing so, he must forego rectangles and similar triangles, accept that the 

angle of parallelism is acute for every length, accept that the sum of the angles in every 

triangle falls short of 180°, and, on a personal level, accept the scorn and condescending 

pity of his contemporaries. 

 Lobachevski derived his heterodox faith in the logical consistency of imaginary 

geometry largely from the fact that he was able to develop a consistent set of 

trigonometric formulae under the assumption that the parallel postulate was false. Since 

                                                 
* If such a length exists, then by TP 22, all triangles have angle sum π, hence the parallel postulate holds. 
The converse is obvious. 
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Euclidean trigonometry is built upon consequences of the parallel postulate*, the reader 

may appreciate what a difficult and remarkable achievement this was. Naturally, he had 

no choice but to found non-Euclidean trigonometry upon a different basis altogether. The 

geometric creativity he displays along the way is breathtaking, as we shall witness in the 

latter portions of the Theory of Parallels. The resulting trigonometric formulae make the 

analytic exploration of imaginary geometry possible, quickly yielding further results that 

testify, if not to the consistency of the new geometry, then at least to its beauty. 

                                                 
* Namely, it is built upon the theory of similar triangles, without which one cannot define the trigonometric 
functions as side-ratios. 
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Theory of Parallels 23 
 
For any given angle α , there is a line p such that ∏(p) = α. 
 
 Let AB and AC be two 
straight lines forming an 
acute angle α at their point 
of intersection A. From an 
arbitrary point B′ on AB, 
drop a perpendicular B′A′ to 
AC. Make A′A′′ = AA′, and 
erect a perpendicular A′′B′′ 
upon A′′; repeat this 
construction until reaching 
a perpendicular CD that 
fails to meet AB. This must 
occur, for if the sum of the 
three angles equals π-a in 
triangle AA′B′, then it 
equals π-2a in triangle 

AB′A′′, and is less than π-2a in AA′′B′′ (TP 20); if the construction 
could be repeated indefinitely, the sum would eventually become 
negative, thereby demonstrating the impossibility of the perpetual 
construction of such triangles. 
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 Beginning with the initial segment AA′, the repeated construction consists of 

doubling the length of the segment and erecting a perpendicular at its new endpoint. In 

Euclidean geometry, each perpendicular would meet AB at an angle of (π/2 – α), 

producing an endless sequence of similar right triangles. In imaginary geometry, this 

cannot happen, as there are no similar triangles. After Lambert’s results on area and angle 

defect (discussed in the notes to TP 20) we should not be surprised to learn that each 

successive perpendicular meets AB at a smaller angle than does its predecessor. However, 

Lobachevski asserts something stranger still: the repeated construction will eventually 

produce a perpendicular that actually fails to intersect AB. 

 His remarkably simple proof relies upon the additivity of defect. Because of this 

additivity, the defect of each successive right triangle must be at least twice that of its 

predecessor. (Proof: By Claim 4 of the TP 20 notes, defect( AA′′B′′) > defect( AA′′B′) = 

[defect( AA′B′) + defect( A′′A′B′)] = 2defect( AA′B′), where the last equality holds 
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because A′′A′B′ ≅ AA′B′ by SAS.) Therefore, if the construction could be continued 

forever, yielding a new right triangle at each step, then we could repeat it sufficiently 

many times to make the defect of the resulting triangle exceed π. This is obviously 

impossible, so the process must eventually cease to yield triangles. That is, the 

perpendiculars erected past a certain point must fail to meet the line AB.  
 
 
 The perpendicular CD itself might have the property that all other 
perpendiculars closer to A cut AB. At any rate, there is a perpendicular 
FG at the transition from the cutting-perpendiculars to the non-cutting-
perpendiculars that does have this property. Draw any line FH making 
an acute angle with FG and lying on the same side of it as point A. From 
any point H of FH, drop a perpendicular HK to AC; its extension must 
intersect AB at some point; say, at B. In this way, the construction yields 
a triangle AKB, into which the line FH enters and must, consequently, 
meet the hypotenuse AB at some point M. Since the angle GFH is 
arbitrary and can be chosen as small as one wishes, FG is parallel to AB, 
and AF = p. (TP 16 and 18). 
 
 
 Lobachevski’s assertion that the boundary-perpendicular FG exists should remind 

the reader of a similar assertion concerning parallels in TP 16. Lobachevski takes its 

existence for granted, but we can rigorously prove its existence by appealing to properties 

of the real numbers, as follows. Each point on ray AC has a nonnegative real number 

associated with it (its distance from A), and vice versa. Consider the set of reals that 

correspond to points whose perpendiculars cut AB. Since, as we have seen, the 

perpendiculars eventually cease to cut AB, this set of real numbers is bounded above. 

Hence, it has a least upper bound. This least upper bound corresponds to a point on AC, 

and it is not hard to show that the perpendicular erected there is the boundary-

perpendicular FG that we desire. 

  The rest of Lobachevski’s argument in this paragraph is straightforward. He 

requires, but does not cite, TP 2 and TP 3 to secure the existence of M. We know that  

FG || AB, because these lines satisfy the criteria in the definition of parallelism (TP 16): 

they do not meet, but every ray FH that enters GFA does meet AB. Thus, by the 

symmetry of parallelism (TP 18), it follows that AB || FG. Hence, α is the angle of 

parallelism for the line segment AF. Letting p be the length of AF, we write ∏(p) = α. 
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Since α was an arbitrary acute angle, this demonstrates that every acute angle occurs as 

an angle of parallelism for some length, as was to be shown. 
 
 
Further Notes on the ∏-Function. 
 
 It is easy to see that with the decrease of p, the angle α increases, 
approaching the value π/2 for p=0; with the increase of p, the angle α 
decreases, approaching ever nearer to zero for p=∞. 
 
 Here, we prove a few basic facts about the ∏-function. 
 
Claim 1. ∏ is a decreasing function. (That is, if q < p, then ∏(q) > ∏(p).) 
Proof. Let AF be a line segment of length p; let FG ⊥ AF, and let AB || FG, as in the figure. By 
definition, BAF = ∏(p). As was demonstrated 
above, any perpendicular erected in the interior of 
the line segment AF will intersect AB. In particular, 
if we erect a perpendicular upon the point S such 
that AS = q, it will meet AB at some point T. We saw 
in TP 16 that all lines emanating from point A fall 
into two classes with respect to the line ST: the class 
of cutting-lines, and the class of non-cutting-lines. 
Since line AT, which makes an angle of ∏(p) with 
AS, is a cutting-line, we know that the boundary-line 
separating the two classes (i.e. the parallel to ST 
through A) makes a greater angle with AS than ∏(p). That is, ∏(q) > ∏(p), as claimed.   
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 This verifies that lengthening a line segment shrinks its angle of parallelism, 

while diminishing a segment increases its associated angle. Since every acute angle 

occurs as an angle of parallelism, we know that we may force the angle of parallelism as 

close to the Euclidean value of π/2 as we wish by taking a sufficiently small line 

segment. Similarly, with a sufficiently long segment, the angle of parallelism can be 

brought as close to 0 as we wish. This verifies the limiting behavior noted by 

Lobachevski. 
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Corollary. ∏ is a continuous function. 
Sketch of Proof. ∏ is decreasing on its domain (0,∞) and assumes all values in its range (0, π/2). 
(For a proof that continuity follows from these conditions, see any real analysis text, for example 
Bressoud, p.100)           
  
 
Extending the ∏-Function’s Domain 
 
 Since we are completely free to choose the angle that shall be 
assigned to the symbol ∏(p) when p is a negative number, we shall adopt 
the convention that ∏(p) + ∏(-p) = π, an equation which gives the symbol 
a meaning for all values of p, positive as well as negative, and for p=0. 
 
 Since the definition of ∏(p) (TP 16) presumes that p is a length, the domain of ∏ 

is initially restricted to positive values of p. However, nothing prevents us from assigning 

a meaning to ∏(p) when p is a negative number. Lobachevski defines it to be a shorthand 

notation for the supplement of an angle of parallelism. (for example, if ∏(p) = 77°, then 

∏(-p) = 103°.) This will prove convenient in the later propositions of the Theory of 

Parallels. (We will not see this notation until TP 34.) 
 
 Lobachevski’s extension changes ∏’s domain from the positive reals to all real 

numbers, and its range from (0,π/2) to (0,π). It preserves the continuity of ∏. In 

particular, since π = ∏(0) + ∏(-0) = 2∏(0), we have ∏(0) = π/2, just as ∏’s limiting 

behavior at 0 would have us expect. 
 
 Although our quantitative understanding of 

the ∏-function is still dim, we are beginning to 

obtain a qualitative image of its behavior. A rough, 

tentative sketch of the ∏-function’s graph, based on 

the limited information we possess would depict a 

monotone decreasing function that is bounded above and below by a pair of asymptotes 

separated from one another by a distance of π. Thus, it would bear some resemblance to 

the graph of y = -arctan(x) + π/2.  
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Intrinsic Measurements 
 
In both Euclidean and imaginary geometry, we have an intrinsic unit of angle 

measurement: the right angle. Euclid’s fourth postulate asserts that all right angles are 

equal, and his 11th proposition explicitly describes how to construct a right angle of your 

very own. This being the case, there is no need to keep a distinguished right angle in a 

pressurized chamber in the Bureau of Standards; right angles are built into the very fabric 

of geometry. 

 In contrast, Euclidean geometry has no intrinsic unit of length. We can relate our 

various, conventional units of length to one another – one mile equals 5280 feet, for 

example – but we cannot construct any of them directly from the axioms.  

 Astonishingly, imaginary geometry does admit intrinsic measures of length. TP 

23 associates each acute angle with a unique length, and vice-versa. This intertwining of 

length (size) with angle (shape) makes it easy to parlay intrinsic measures of the latter 

into intrinsic measures of the former; we can define our standard unit of length to be, for 

example, the unique length whose angle of parallelism is π/4. Since the angle π/4, half of 

a right angle, is a concept intrinsic to geometry, the unique length associated with it (an 

imaginary geometry) is also an intrinsic measure. 

 Lambert was the first to notice the possibility of measuring lengths intrinsically in 

imaginary geometry. His reaction to this prospect is best conveyed by his own words. 
 

 This consequence is somewhat surprising, which inclines one to want the 
third hypothesis to be true! However, this advantage notwithstanding, I still do 
not want it, because innumerable other inconveniences would thereby come 
about. Trigonometric tables would have to be infinitely extended; the similarity 
and proportionality of figures would entirely lapse; no figure could be presented 
except in its absolute size; Astronomy would be an evil task; etc. 
 But these are argumenta ab amore et invidia ducta*, which Geometry, 
like all the sciences, must leave entirely on one side. I therefore return to the 
third hypothesis…†

 
 The particular choice of unit is a mere detail; the fact that we can choose an 

absolute unit is the great surprise. Whether we could actually behold such a unit is a 

question of a different nature. If our universe is described by imaginary geometry, then 

determining the size of an absolute unit of length might be impossible in practice. 
                                                 
* Arguments drawn from love and hate.  
† Fauvel & Gray, p. 518. 
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Compared to the vastness of interstellar space, any distance with which we have any 

experience is essentially infinitesimal. Since the angle of parallelism of every terrestrial 

length looks like π/2, finding a line segment whose angle of parallelism deviates 

perceptibly from this value might require us to examine segments whose lengths exceed 

the diameter of our galaxy. This is worth keeping in mind when looking at the figures in 

Lobachevski’s text; although they fill but a few square inches on the page, they might 

represent geometric configurations occurring only on an astronomical scale.  

 Accordingly, Ferdinand Karl Schweikart (1780-1859) referred to the new 

geometry as Astral Geometry in a tantalizing fragment he sent to Gauss in 1818. 
 
 
Schweikart 
 
Schweikart attended mathematics lectures while studying law at Marburg in his late 

teens. Although law became his profession, he maintained a strong interest in 

mathematics, and in 1807, Schweikart published Die Theorie der Parallellinien nebst 

dem Vorschlage ihrer Verbannung aus der Geometrie (“The Theory of Parallel Lines 

Including a Proposal for its Banishment from Geometry”). Despite its promising title, the 

book does not proceed in Lobachevskian fashion; it simply develops Euclid’s theory of 

parallels along lines that are slightly different from, but ultimately equivalent to, Euclid’s 

own. It was Schweikart’s only published mathematical work. Had it been his only 

contribution to geometry, his name would have been lost to history long ago. 

 By 1818, Schweikart’s ideas about geometry had changed radically. Our primary 

piece of documentary evidence attesting to them is a brief note that he sent to Gauss 

through a mutual acquaintance, Christian Ludwig Gerling, an astronomer and a former 

student of Gauss. This note reads, in its entirety, as follows*: 
 
 
 
 
 
 
 
 
                                                 
* This translation is taken from Bonola, p.76. Schweikart’s original German version is reproduced in Gauss, 
pp. 180-181. 
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Marburg, December 1818 
 
 There are two kinds of geometry – a geometry in the strict sense – the 
Euclidean; and an astral geometry. 
 Triangles in the latter have the property that the sum of their three angles is not 
equal to two right angles. 
 This being assumed, we can prove rigorously: 
 
 a)  that the sum of the three angles of the triangle is less than two right angles; 
 b)  that the sum becomes ever less, the greater the area of the triangle; 
 c)  that the altitude of an isosceles right-angled triangle continually grows, as the 
sides increase, but it can never become greater than a certain length, which I call the 
Constant. 
 
 Squares have, therefore, the following form: 
 

 
 
 If this Constant were for us the Radius of the Earth, (so that every line drawn in 
the universe from one fixed star to another, distant 90° from the first, would be a tangent 
to the surface of the earth), it would be infinitely great in comparison with the spaces 
which occur in daily life. 
 The Euclidean geometry holds only on the assumption that the Constant is 
infinite. Only in this case is it true that the three angles of every triangle are equal to two 
right angles: and this can easily be proved, as soon as we admit that the Constant is 
infinite. 
         
 Schweikart. 

 
 
 Schweikart’s surprising insight may have stemmed from the fact that he read 

Lambert’s work on parallels, which he mentions in his own book of 1807. Schweikart’s 

first two statements about astral geometry, (a) and (b), were known to Lambert, but the 

third (c) is original. It is unclear just how much further Schweikart penetrated into non-
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Euclidean geometry than Lambert. Be that as it may, there is no question that he took an 

important psychological step forward from his predecessors. 

 Schweikart’s assertion that there are two geometries is striking; his seems to be 

the first written statement to this effect. Certainly, it indicates that Schweikart had a 

vastly different conception of mathematics than did Saccheri. The contrast between these 

two is particularly apt since we might reasonably consider Schweikart to be Saccheri’s 

geometrical grandson: Saccheri seems to have inspired Lambert’s work, which in turn 

inspired Schweikart. 

 Saccheri never doubted that Euclidean geometry was the only geometry. Indeed, 

his conviction was so strong that after dozens of pages of brilliant, closely argued 

reasoning, it drove him to avert his eyes and permit a logically suspect argument to enter 

his work for purely political reasons: it purported to “prove” that which his conviction 

told him must be true. Lambert, Age of Reason scientist as he was, was better able to 

divorce his convictions from his investigations (exemplified by his comments on 

argumenta ab amore et invidia ducta quoted above.) He never fooled himself into 

believing that he had found a contradiction, but as a result, he apparently considered his 

researches disappointingly inconclusive, and hence not worth publishing. Schweikart’s 

simple but profound step was to acknowledge the strange theorems unearthed by his 

predecessors as aspects of an alternate, logically viable geometry. His suggestion that 

these theorems might actually apply to the physical universe is remarkable.  

 Schweikart’s Constant is an intrinsic unit of length, built into the fabric of astral 

geometry. In fact, it is another characterization of the length whose angle of parallelism is 

π/4*. In a March 1819 letter to Gerling, Gauss expressed his pleasure at Schweikart’s 

memorandum and offered some characteristic Gaussian praise. (“It could almost have 

been written by myself.”) He entreated Gerling to congratulate Schweikart, adding that, 

“I have extended the Astral Geometry so far that I can fully solve all its problems as soon 

as the constant C is given.” As an example, Gauss mentioned that the maximum area of a 

triangle in the new geometry is precisely 2 2π [log(1 2)]C + . 
                                                 
* Sketch of Proof: Let XYZ be an isosceles triangle with a right angle at X. The altitude XW bisects the 
right angle, so WXZ = π/4. Thus, since ray XZ cuts WZ, we know that ∏(XW) < π/4. If C represents the 
length with angle of parallelism π/4, it follows that the length of the altitude XW is less than C. Hence, the 
least upper bound of all possible altitudes - Schweikart’s Constant - is less than or equal to C. In fact, since 
right isosceles triangles with altitudes arbitrarily close to C exist (this is easy to demonstrate), Schweikart’s 
constant must be equal to C, as claimed. 
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 Although Schweikart never published an account of astral geometry, he had one 

more role to play in the subject’s history; he encouraged his nephew, Franz Adolph 

Taurinus (1794-1874) to study the subject, bringing another important figure into the 

story of pre-Lobachevski non-Euclidean geometry. We shall have more to say about 

Taurinus’ work later, but two facts pertinent to the present discussion of absolute 

measures are worth mentioning here. 

 Taurinus believed that the new geometry was logically consistent, but unlike his 

uncle, he never believed that it might be applicable to reality. His objections stemmed 

from the fact that non-Euclidean geometry admitted an absolute measure of length. 

 Taurinus’ studies led him into a correspondence with Gauss. In a letter to 

Taurinus dated November 8, 1824, Gauss wrote that: 
 

 All my efforts to discover a contradiction, an inconsistency, in this non-
Euclidean geometry, have been without success, and the one thing in it which is 
opposed to our conceptions is that, if it were true, there must exist in space a 
linear magnitude, determined for itself (but unknown to us). But it seems to me 
that we know, despite the say-nothing word-wisdom of the metaphysicians, too 
little, or too nearly nothing at all, about the true nature of space, to consider as 
absolutely impossible that which appears to us unnatural. If this non-Euclidean 
geometry were true, and it were possible to compare that constant with such 
magnitudes as we encounter in our measurements on the earth and in the 
heavens, it could then be determined a posteriori. Consequently in jest I have 
sometimes expressed the wish that the Euclidean geometry were not true, since 
then we would have a priori an absolute standard of measure.*

 
 He had expressed a similar sentiment as early as 1816, in a letter to Gerling: 
 

 It seems paradoxical but there could be a constant straight line given as if 
a priori, but I do not find in this any contradiction. In fact, it would be desirable 
that Euclidean geometry were not true, for we would then have a universal 
measure a priori. One could use the side of an equilateral triangle with angle = 
59°59′59′′,9999 as a unit of length.†

                                                 
* Wolfe, p. 47. 
† Rosenfeld, p. 215. 
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Theory of Parallels 24 
 
The farther parallel lines are extended in the direction of their parallelism, 
the more they approach one another. 
 
  
 To prove this proposition, Lobachevski shows that if CG || AB, then G is closer to 

AB than C is. This is easy to miss on a first reading, since an auxiliary construction 

dominates the proof; Lobachevski does not even mention the parallel CG until the 

penultimate sentence of his proof.  
 
 
 Upon the line AB, erect two 
perpendiculars AC = BD, and join 
their endpoints C and D with a 
straight line. The resulting 
quadrilateral CABD will have 
right angles at A and B, but acute 
angles at C and D (TP 22*). These 
acute angles are equal to one 
another; one can easily convince 
oneself of this by imagining laying 
the quadrilateral upon itself in 
such a way that the line BD lies 
upon AC, and AC lies upon BD. Bisect AB. From the midpoint E, erect 
the line EF perpendicular to AB; it will be perpendicular to CD as well, 
since the quadrilaterals CAEF and FEBD coincide when one is laid on 
top of the other in such a way that FE remains in the same place. 
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 Once we know that angles ACD and BDC are equal, their acuteness follows 

easily: were they obtuse, then CABD’s angle sum would exceed 2π, with the result that at 

least one of the two triangles formed by drawing the diagonal AD would violate the 

Saccheri-Legendre theorem (TP 19); were they right, then CABD would be a rectangle – 

an impossible figure in imaginary geometry (TP 20 Notes, Claim 7). 

                                                 
* This refers to Lobachevski’s declaration at the end TP 22 that he would work in imaginary geometry from 
that point forward. Had he carried out this construction earlier, he would not have been able to deduce that 
the angles at C and D were acute; in neutral geometry, they could be either acute or right. 
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 Lobachevski uses superposition to demonstrate that ACD = BDC and that  

EF ⊥ CD. Although open to Hilbertian criticism, such demonstrations are not lacking in 

value; at the very least, they strongly suggest the truth of the statements they purport to 

prove*. Those who prefer iron-clan proofs that ACD = BDC and EF ⊥ CD can find 

them in the opening pages of Saccheri’s Euclides Vindicatus, to which we now turn.  
 
 
A Sample of Saccheri 
 
 The quadrilateral CABD that Lobachevski constructs in TP 24 is an example of 

what is now called a Saccheri quadrilateral. (As discussed in the notes to TP 19, a 

Saccheri quadrilateral is formed by erecting equal perpendiculars upon a line segment’s 

extremities, and joining their endpoints.) I have reproduced Saccheri’s first two 

propositions below; these serve not only to demonstrate Saccheri’s style, but also to 

supplement Lobachevski’s superposition arguments with additional proofs of a style to 

which no one can object. 
 
 

Proposition I 
 
If two equal lines AC, BD, form equal angles with the line AB: I say that the 
angles at CD will equal one another. 
 

A B

DC
Proof. Join AD, CB. Then consider 
the triangles CAB, DBA.  It follows 
(Euclid I.4 [SAS-criterion]) that the 
sides CB, AD will be equal. Then 
consider the triangles ACD, BDC. It 
follows (Euclid I.8 [SSS-criterion]) 
that the angles ACD, BDC will be 
equal. Q.E.D. 
 

 
 
 
 
 
 

                                                 
*Here is an even quicker intuitive proof: by construction, CABD is symmetric about the perpendicular 
bisector of AB. Hence, this bisector must be perpendicular to CD (lest it break the symmetry), and the 
angles at C and D must be equal. 
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Proposition II 
 

Retaining the same quadrilateral ABCD, bisect the sides AB, CD at the points M 
and H. I say the angles at MH will be right. 
 
Proof. Join AH, BH, and likewise, 
CM, DM. Since the angles at A and B 
in this quadrilateral are presumed 
equal, and (by the preceding 
proposition) the angles at C and D are 
equal as well, it follows from Euclid 
I.4 (noting the equality of the sides) 
that in the triangles CAM and DBM, 
the sides CM and DM are equal; 
similarly, in triangles ACH and BDH, 
the sides AH and BH are equal. Consequently, by comparing first the triangles 
CHM and DHM, and then the triangles AMH and BMH, it follows (Euclid I.8) 
that we have equal, and therefore right, angles at the points M and H.  
                 Q.E.D. *

A B

DC H

M

 
Lobachevski’s claim that ACD = BDC follows directly from Saccheri’s first 

s, Saccheri places no restriction on the base 

rra, Omar Khayyam, and the Politics of Naming 
ion of the past…” 

accheri’s first two propositions were actually established long before Saccheri. The first 

                                                

 

proposition, while his claim that AB’s perpendicular bisector meets CD at right angles 

follows from Saccheri’s second proposition.  

 Note that in these first two proposition

angles, other than their equality. Beginning in his third proposition, he restricts his 

attention to the quadrilaterals now named after him: those in which the base angles are 

both right angles. 
  
  
Thabit ibn Qu
“The fact is that every writer creates his own precursors. His work modifies our concept
      - Jorge Luis Borges, “Kafka and his Precursors”.†

 
S

dates back at least to Thabit ibn Qurra (836 – 901), and both propositions appear in the 

work of Omar Khayyam (1045-1130). Under assumptions equivalent to the parallel 

postulate, both men proved that Saccheri quadrilaterals must be rectangles, and 

subsequently deduced the postulate from this fact. Like Saccheri, Khayyam established 

the HRA by proving the HOA and HAA untenable. This fact has led some writers 

 
* Saccheri, pp. 18-21. 
† Borges, Labyrinths, p. 201. 
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(including Rosenfeld) to rechristen the relevant figure the Khayyam-Saccheri 

quadrilateral. 

 Lest accusations of Eurocentrism rain down upon me, I hasten to defend my 

retention of the traditional Khayaam-free designation. The quadrilateral is not important 

per se; rather, it is important because it acted as a window upon non-Euclidean geometry 

for an age that never suspected that a geometry other than Euclid’s might exist*. In 

Saccheri’s work, the window remained open for over thirty propositions, allowing him 

ample time to observe and describe the world he hoped to dispel. Although Khayyam did 

see the window, he opened and shut it in the very same proposition. If we sense 

something special in Khayyam’s use of the quadrilateral today, it is only because we 

know the much more profound use to which Saccheri would put the same figure 700 

years later. 

 Readers interested in the work of Khayyam and ibn Qurra on the parallel 

postulate can find detailed descriptions and extracts of it in Rosenfeld’s book†. 
  
 
Consequently, the line CD cannot 
be parallel with AB. On the 
contrary, the line from point C 
that is parallel to AB, which we 
shall call CG, must incline toward 
AB (TP 16), cutting from the 
perpendicular BD a part BG < CA. 
Since C is an arbitrary point of the 
line CG, it follows that the farther 
CG is extended, the nearer it 
approaches AB. 

A E B

D

G

FC

 
 
 We may partition the set of rays through C into two classes: those that cut AB, and 

those that do not cut AB (TP 16). The boundary between the two classes is, of course, the 

unique parallel to AB that passes through C. Into which category does CD fall? Since it 

shares a common perpendicular with AB, it can be neither a cutting ray (TP 4), nor the 

parallel (TP 22). Hence, it is an ordinary undistinguished non-cutting ray. Accordingly, if 

we call the parallel CG, it follows that CG must enter angle ACD. Naturally, it will 
                                                 
* Microsoft Word’s grammar check objects to the phrase “a geometry,” so perhaps this age is still with us.  
† Rosenfeld pp. 49-56 (ibn Qurra), pp. 64-71 (Khayyam). 
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meet BD at some point G. (Proof: CG cuts AD by the crossbar theorem applied to ACD; 

it then cuts BD by Pasch’s axiom on ADB.) Since BG < BD = AC, the point G is closer 

to AB than the point C is, which was to be shown. 

 Thus, parallel lines draw ever closer to one another in their direction of 

parallelism, as claimed. 
 
 
 It is not yet clear whether parallel lines approach one another asymptotically, or 

whether the distance between parallels always remains greater than some finite positive 

value. This question will be settled in TP 33. 
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Theory of Parallels 25 
 
Two straight lines parallel to a third line are parallel to one another. 
 
 
Transitivity of Parallelism 
 
Whereas the classical definition of parallelism is transitive only in the presence of the 

parallel postulate (see “A Deeper Definition” in the notes to TP 16), Lobachevski proves 

here that his new notion of parallelism is transitive in imaginary geometry as well.  

 His proof falls into two parts: first, he establishes transitivity in the plane; then, he 

does the same in space. The latter part, his first foray into three-dimensional imaginary 

geometry, initiates a sequence of results in solid geometry (culminating in TP 28). His 

desire to place these three-dimensional results together is responsible for this relatively 

late proof of transitivity: he could have presented it after TP 20*.  
 
 
First Case: Transitivity in the Plane 
 
 We shall first assume that the three lines AB, CD, and EF lie in 
one plane. 
 
 Given three lines in a plane, two of which are parallel to the third, one of the three 

must lie between the other two†. We shall call it the “middle line”; the 

others we shall call “outer lines”. Lobachevski’s proof of transitivity 

in the plane is broken into two subcases. In the first subcase, the “third 

line” (the one to which the others are parallel) is an outer line; in the second subcase, it is 

the middle line. 

middle line

 Euclid himself demonstrated the transitivity of parallelism in Euclidean geometry 

(Elements, I.30, XI.9), so Lobachevski needs only to establish transitivity in imaginary 

                                                 
* Lobachevski’s two references to TP 22 in the proof of TP 25 are not to the proposition itself. Rather, they 
refer to the remark made after the proof of that proposition, that the angle of parallelism is either always 
acute or always right. Lobachevski could have noted this dichotomy earlier (after TP 20), but, for 
presumably dramatic purposes, he reserved it for the remarks immediately preceding his announcement in 
TP 22 of the “new geometric science, which I have named Imaginary geometry.” 
†This can be proved rigorously from Hilbert’s axioms.  Note that the lines must be parallel in the same 
direction. 
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geometry. Accordingly, any angle of parallelism that occurs in his proof will be acute. 

Both subcases are easy to follow, and require no illumination on my part. 
  
 If one of the outer lines, say AB, and the middle line, CD, are 
parallel to the remaining outer line, EF, then AB
to one another. To prove this, drop a 
perpendicular AE from any point A of AB to EF; 
it will intersect CD at some point C (TP 5

 and CD will be parallel 

                                                

*), and 
the angle DCE will be acute (TP 22). Drop a 
perpendicular AG from A to CD; its foot G must 
fall on the side of C that forms an acute angle 
with AC (TP 9). Every line AH drawn from A into 
angle BAC must cut EF, the parallel to AB, at 
some point H, regardless of how small the angle 

BAH is taken. Consequently, the line CD, 
which enters the triangle AEH, must cut the 
line AH at some point K, since it is impossible for it to leave the triangle 
through EH. When AH is drawn from A into the angle CAG, it must cut 
the extension of CD between C and G in the triangle CAG. From the 
preceding argument, it follows that AB and CD are parallel (TP 16 and 
18). 

G

C
E

H

B D F

K

A

 If, on the other hand, the two outer lines, 
AB and EF, are both parallel to the middle line 
CD, then every line AK drawn from A into the 
angle BAE will cut the line CD at some point 
K, regardless of how small the angle BAK is 
taken. Draw a line joining C to an arbitrary 
point L on the extension of AK. The line CL 
must cut EF at some point M, producing the 
triangle MCE. Since the extension of the line 
AL into the triangle MCE can cut neither AC 
nor CM a second time, it must cut EF at some 
point H. Hence, AB and EF are mutually 
parallel. 

A C

E

B D F

K

L

M

 
 
 Having established transitivity in plane, Lobachevski turns to space. As is its 

wont, the third dimension requires an entirely new proof. Adapting the two-dimensional 

proof is, unfortunately, impossible, since we cannot distinguish “outer” and “middle” 

lines in space; what looks like the middle line from one perspective will not from another. 

 
*Lobachevski’s original text cites TP 3 here. I presume this was an editorial mistake.  

 92



Before describing Lobachevski’s proof of the spatial case, I must devote a few 

preliminary words to three-dimensional geometry. 
 
 
Solid Geometry 
 
The axioms of plane geometry were not designed to bear the weight of an extra 

dimension, so we must give some attention to the foundations when we move from the 

plane to space. In particular, we must secure some basic information about the behavior 

of planes in space, since Euclid’s axioms tell us nothing about them. There are two ways 

to go about doing this. 

 The first way begins by formulating a precise definition of a plane. From the 

familiar axioms of plane geometry, one must then prove that any object satisfying the 

official definition of a plane actually behaves in a manner befitting of the name “plane”. 

For example, one must prove, among other things, that there exists a unique plane 

passing through any three non-collinear points in space. 

 Euclid attempted this procedure in Book XI of the Elements, but was not 

successful. His definition of a plane (“that surface which lines evenly with the straight 

lines on itself”) is every bit as vague as his definition of a line. Unfortunately, the 

consequences of a non-defining definition are more serious in Book XI than they are in 

Book I. Euclid’s attempted definition of a line is certainly an aesthetic failure -- a 

superfluous utterance that mars an otherwise streamlined presentation. Yet however ugly 

it may be, it does no damage to the logical development of geometry, because Euclid 

never actually refers to it. Rather, he bases all his theorems about lines and rectilinear 

figures upon his axioms, which describe the properties of lines, and thus define them 

implicitly. Alas, since Euclid’s axioms do not describe the properties of planes, his 

development of solid geometry is condemned to an awkward and illogical beginning. As 

Thomas Heath, the translator and editor of the standard English edition of the Elements, 

acknowledges, “There is no doubt that the proofs of the first three propositions [in book 

XI] are unsatisfactory owing to the fact that Euclid is not able to make any use of his 

definition of a plane for the purpose of these proofs, and they really depend upon truths 

which can only be assumed as axiomatic.”*

                                                 
* Euclid, Vol. 3, p.272.  
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 Euclid regains his usual composure in his fourth proposition, but his failure to 

provide an even moderately satisfactory foundation for solid geometry suggests that 

defining the term plane may not be the best strategy for moving from two to three 

dimensions. Given Euclid’s failure, it is surprising to learn that his strategy is actually 

feasible (using a different definition than his, of course)! Carrying it to fruition, however, 

is delicate and difficult work, which would take us far afield. The most expedient path, 

which I shall follow here, is simply to accept plane as an undefined term, like point and 

line, and adopt a few extra axioms that describe the behavior of planes in space. 

 

 These “plane axioms” are: 

  

 1) If P and Q are points in a plane, then the entire line PQ lies in the plane.  

 2) Any three non-collinear points determine a unique plane. 

 3) Distinct planes either intersect in a line or do not meet at all.  

  

 These axioms appear, in slightly different form, in Hilbert’s Foundations of 

Geometry, and correspond (roughly) to the first three propositions that appear in Book XI 

of Euclid’s Elements. As I mentioned in the notes to TP 16, it is not my intention here to 

pursue a logically impeccable basis for geometry in the manner of Hilbert, but I would 

like to point out a notable feature of Hilbert’s axioms for solid geometry: the jump from 

two to three dimensions does not necessitate any additional “betweenness” axioms. The 

spatial analogue of Pasch’s axiom, for example, may be proved as a theorem from its 

two-dimensional counterpart and the plane axioms. 
 
 Because of the second plane axiom, we may employ the notation “plane ABC”, 

without ambiguity, for the plane through three non-collinear points A, B, and C. If we 

wish to emphasize that some other point, say, D, also lies on plane ABC, we may refer to 

it as plane ABCD. In situations where it is clearly understood that we are referring to a 

plane, we may simply write ABC instead of plane ABC. 

 Lobachevski’s definition of parallelism easily extends to space: two lines in space 

are said to be parallel if they are coplanar and parallel in their common plane. Given 

any line AB in space, and any point P∉AB, it is easy to see that there is a unique line 
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through P that is parallel to AB: if PQ || AB, then PQ and AB are coplanar, so any parallel 

PQ to AB must lie in plane ABP; by TP 16, there is one and only one such line.   
 
 
Lobachevski’s Lemma 
 
   Having disposed of these preliminaries, we turn to Lobachevski’s proof of the 

transitivity of parallelism in space. He begins with a lemma: suppose that AB || CD; if a 

plane containing AB intersects a plane containing CD, then their line of intersection will 

be parallel to both AB and CD.    
 
 
 Suppose now that two 
parallels, AB and CD, lie in two 
planes whose line of intersection 
is EF. From an arbitrarily 
chosen point E of EF, drop a 
perpendicular EA to one of the 
parallels, say to AB. From the 
foot of this perpendicular, A, 
drop a new perpendicular, AC, 
to CD, the other parallel. Draw 
the line EC joining E and C, the endpoints of this perpendicular 
construction. The angle BAC must be acute (TP 22), so the foot G of a 
perpendicular CG dropped from C to AB will fall on that side of AC in 
which the lines AB and CD are parallel. The line EC, together with any 
line EH that enters angle AEF (regardless of how slightly EH deviates 
from EF), determines a plane. This plane must cut the plane of the 
parallels AB and CD along some line CK. This line cuts AB somewhere – 
namely, at the very point L common to all three planes, through which 
the line EH necessarily passes as well. Thus, EF is parallel to AB. We can 
establish the parallelism of EF and CD similarly. 

A

E

C

L

D
F

B

K

H

 
 
 I have taken the liberty of changing the names of some of the points in this 

passage: the points I have called H, K, and L are all called H in Lobachevski’s original. 

 Even after this change of notation, Lobachevski’s proof remains awkward. To 

begin with, his sentence about line CG is irrelevant, a distraction that contributes nothing 

to the proof. (Accordingly, I have left CG off the figure, as its presence would add 

nothing but clutter.) Next, Lobachevski’s immediate goal, to show that EF || AB, entails 
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two steps: a proof that these lines do not meet, and a proof that any ray entering FEA 

must cut AB. He carries out the second step, but neglects the first entirely. Here is a more 

complete, and hopefully cleaner, version of his proof. 
 
Claim 1. (Lobachevski’s Lemma) Suppose that AB || CD; if a plane containing AB intersects a 
plane containing CD, then their line of intersection, EF, will be parallel to both AB and CD. 
Proof. Draw the line segments EA, EC, and AC. 
 We shall prove that EF || AB. That is, we shall prove that these lines do not intersect, and 
that any ray entering FEA must cut AB. We shall do these one at a time.  
 First, suppose by way of 
contradiction that AB and EF meet. Let X be 
their point of intersection. Since X∈AB and 
AB lies on plane ABCD, it follows that X 
also lies on this plane. Since X, C, and D all 
lie on this plane, planes XCD and ABCD 
must be identical (by the second plane 
axiom). Similarly, X∈EF implies that planes 
XCD and EFCD are identical. Hence, planes ABCD and EFCD must be identical. This being the 
case, points A,B,C,D,E,F are coplanar. This, however, cannot be. (Proof: The intersecting planes 
in the statement of the lemma are clearly ABEF and CDEF. If A,B,C,D,E,F were coplanar, then 
these planes would be identical, in which case they would not  intersect in a line, contrary to 
hypothesis.) This contradiction shows that AB and EF do not intersect. 
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 Next, we shall show that any ray entering FEA must cut AB. To this end, let ray EH 
enter FEA. The lines EH and EC determine a plane: ECH. Because this plane cuts plane ABCD 
at C, it must intersect ABCD in some line through C (by the third plane axiom). Call it CK. Since 
CK enters DCA it must cut AB (because, by hypothesis, CD || AB). Let L be the intersection of 
CK and AB. 

 Since L∈CK and CK lies on plane ECH, it follows that L lies on plane ECH. 
 Since L∈AB and AB lies on plane ABEF, it follows that L lies on plane ABEF. 
 Thus, L lies on the intersection of planes ECH and ABEF. That is, L∈EH. Having shown 
that ray EH cuts AB (at L), we conclude that EF || AB, as claimed. 
 A similar argument shows that EF || CD. 
 Hence, EF is parallel to both AB and CD, which was to be shown.   
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Transitivity at Last 
 
 Therefore, a line EF is parallel to one of a pair of parallels, AB and 
CD, if and only if EF is the intersection of two planes, each containing 
one of the parallels, AB and CD. Thus, two lines are parallel to one 
another if they are parallel to a third line, even if the lines do not all lie in 
one plane. This last sentence could also be expressed thus: the lines in 
which three planes intersect must all be parallel to one another if the 
parallelism of two of the lines is established. 
 
 In the first sentence of this passage, Lobachevski asserts the equivalence of two 

statements, but he does not actually bother to prove their equivalence. Clearly, the latter 

statement implies the former (by Lobachevski’s lemma), but he gives no hint as to why 

the converse holds. I shall remedy this situation by proving a related theorem – 

fundamental in its own right - that will immediately establish Lobachevski’s unproved 

claim, and with it, the transitivity of parallelism in space.  
 
 
Claim 2. If two lines are parallel to a third, then the two lines must be coplanar. 
Proof. Suppose AB and CD are both parallel to EF. We shall show that AB and CD are coplanar. 
 The three points A,B,and C determine a plane. Since the planes ABC and EFCD share 
point C, they must intersect in a line. 
Call it CK. By Lobachevski’s Lemma 
(Claim 1), the intersection of plane 
ABCK (which passes through AB) and 
plane EFCDK (which passes through 
EF) must be parallel to both AB and 
EF. That is, CK || AB and CK || EF. 

 CK is therefore a ray that lies 
in plane EFCDK, passes through C, 
and is parallel to EF. Since CD also meets this description, the uniqueness of parallels implies 
that CK = CD. 
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 Since AB and CK were coplanar by construction, we conclude that AB and CD are 
coplanar, as claimed.           
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Corollary (Lobachevski’s unproved claim). Suppose that AB || CD. If EF is parallel to one of 
these lines, then EF is the intersection of a plane containing AB and a plane containing CD. 
Proof. Suppose, without loss of generality, that EF || AB. Since EF and CD are both parallel to 
AB, we know that the lines EF and CD must be coplanar (Claim 2). Their common plane EFCD 
contains CD; its intersection with plane ABEF (which contains AB) is EF.    
 
Claim 3 (Transitivity at last). Parallelism is transitive in three-dimensional space. 
Proof.  Suppose that AB || CD and AB || EF. By the preceding corollary, EF is the intersection of 
a plane containing AB and a plane containing CD. Thus, by Lobachevski’s lemma (Claim 1), it 
follows that EF || CD. Hence, parallelism is transitive in space, as claimed.    
 
 
 Finally, Lobachevski observes that if three planes are arranged in such a way that 

two of their three lines of intersection are 

parallel, then all three must be parallel to one 

another. This follows directly from 

Lobachevski’s lemma. The figure that it 

suggests – an infinite triangular prism whose three edges are mutually parallel – will play 

an important role in much that follows. We shall meet it again in TP 28. 
 
 
Bolyai’s Proof 
 
Bolyai demonstrates the transitivity of parallelism in §7 of his Appendix. His incisive 

proof of the transitivity of parallelism in space makes Lobachevski’s proof look 

laboriously cobbled by comparison. Bolyai not only confirms the truth of the theorem, 

but also renders it intuitive. His use of motion is elegant, but it leaves his proof open to 

criticism of insufficient rigor. I shall retell Bolyai’s proof in my own words, retaining his 

notation for the benefit of those readers who wish to compare it to Bolyai’s terse original 

text.  
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Theorem. Let BN, CP, and AM be lines that do not all lie in the same plane. If BN and CP are 
both parallel to AM, then BN and CP are parallel to one another. 
 
Proof. Let D be any point on AM. Rotate plane BCD about BC so that D 
moves along ray AM. This makes line BD rotate toward BN (in plane AMBN), 
and CD rotate toward CP (in plane AMCP). When plane BCD separates from 
AM, the cutting-lines BD and CD will cease to cut AM; at that moment, they 
will coincide with BN and CP, the unique parallels to AM through B and C 
respectively. Since BN and CP both lie on the rotating plane at the same 
moment, these lines must be coplanar. Thus, we have demonstrated that if two 
lines are parallel to a third line, the two must be coplanar. 
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 Next, we shall show that BN and CP are not merely coplanar, but 
parallel. Let BR be the unique parallel to CP through B; we shall show BR = BN. 
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 Since BR and AM are both parallel to CP, the lines BR and AM must be 

coplanar, by the result we just established. Thus, BR lies in plane BAM, which is 
identical to plane BNAM. Of course, BR also lies in plane BRCP, which is 
identical to BNCP. (BN and CP are coplanar, so the plane BNCP exists; it 
coincides with BRCP by the second plane axiom.) Thus, BR is the intersection of 
planes BNAM and BNCP. That is, BR = BN. Hence, BN || CP, as claimed.   
 

  

Lobachevski, Bolyai, and Gauss all proved the transitivity of parallelism in the 
 
 

plane by examining two cases: when the “third line” lies between the other two, and 

when it does not. Gauss left no proof of the transitivity of parallelism in three 

dimensions. 
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Theory of Parallels 26 
 
Antipodal spherical triangles have equal areas. 
 
By antipodal triangles, I mean those triangles that are formed on 
opposite sides of a sphere when three planes through its center intersect 
it. It follows that antipodal triangles have their sides and angles in 
reverse order. 
 
 

As Lobachevski notes in TP 12, a plane passed through a sphere produces a circle of 

intersection on the sphere’s surface. The closer the plane comes to the sphere’s center, the 

larger the circle of intersection will be; if it passes through the center itself, the resulting 

intersection is a great circle. On a globe, for example, lines of longitude and the equator 

are all examples of great circles, while the Tropic of Capricorn is not. 

 Diametrically opposed (antipodal) points on a sphere can be joined by many great 

circles; the North and South poles of the globe, for example, are connected by all lines of 

longitude. In contrast, any two non-antipodal points can be joined by one and only one 

great circle: the great circle lying in the unique plane determined by the sphere’s center 

and the two non-antipodal points. The two points split “their” great circle into a pair of 

arcs, the shorter of which we shall call, conveniently if ungrammatically, the great circle 

arc that joins the points. 

 A spherical triangle consists of three points on 

a sphere and the great circle arcs that join them to one 

another. If A, B, and C are points on a sphere, and A′, 

B′, and C′ are the points diametrically opposed to 

them, then the spherical triangles ABC and A′B′C′ 

are said to be antipodal triangles. This unambiguous 

definition is both neater than, and equivalent to, 

Lobachevski’s somewhat vague description of 

“triangles formed on opposite sides...”, and thus is 

preferable to it on logical grounds. 

A

B

C

A�

B�

C�

 If, as in the figure, the vertices A, B, and C of a spherical triangle occur in 

counterclockwise order (when viewed from the perspective of a bug standing within the 

triangle on the surface of the sphere), the corresponding vertices A′, B′, and C′ of its 
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antipodal triangle will clearly occur in clockwise order (and vice versa). Obvious though 

this may be from the figure, one must define orientation to prove this formally. To do so 

would entail a lengthy digression that would gain us nothing but rigor. Since no new 

insight is to be won, and since we shall not need to discuss orientation ever again after 

this proposition, I shall not belabor this point. 

 Continuing therefore in the intuitive spirit of Lobachevski’s treatment of 

orientation, we distinguish two different types of geometric congruence. Congruent 

figures on the same surface (plane or sphere) are said to be directly congruent if one of 

them can be slid along the surface until it coincides point for point with its mate. If this 

cannot be done, the congruent figures are oppositely congruent. Oppositely congruent 

figures (examples in the plane include alternate footprints, or the letter K and its mirror 

image) can be made to coincide by lifting one figure out of the surface, turning it over, 

and returning it to the surface in its reversed state. 

 When Euclid compared the areas or volumes of figures, he relied on a handful of 

unspoken assumptions about how area behaves. One such assumption was that congruent 

figures have equal area. Consequently, a proof that antipodal triangles are congruent 

(which we shall demonstrate shortly) would have satisfied Euclid that antipodal triangles 

have the same area. Note, however, that antipodal triangles are, in general, oppositely 

congruent, due to their mutually reversed orientations. Unlike Euclid, Lobachevski was 

unwilling to assume that oppositely congruent figures have the same area, preferring to 

prove this fact from the more modest assumption that directly congruent figures have 

equal area. He does not prove this explicitly in the Theory of Parallels, but the idea for 

such a proof is implicit in the present proposition’s demonstration. In order to understand 

it, we shall first need to understand Lobachevski’s simple criterion for deciding when two 

figures have the same area. 
 
 
 Lobachevski explains this criterion in the proposition’s last line (which ought to 

have been the first line): “I adopt the following postulate: two figures on a surface are 

equal in area when they can be formed by joining or detaching equal parts.” Keeping in 

mind that Lobachevski’s “equal parts” are our “directly congruent 

figures,” we can understand the postulate by looking at a couple of 

pictures. The two figures at right are not congruent, but according 
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to Lobachevski, they have equal area, since they are formed from directly congruent 

pieces. In our second picture, we see two trapezoids; these are 

directly congruent to one another, and thus have the same area. 

After removing a triangle from the left trapezoid and then 

removing a directly congruent copy of it from the right trapezoid, Lobachevski’s 

postulate tells us that the resulting “holey trapezoids” also have the same area as one 

another. Lobachevski’s postulate is natural for any reasonable notion of area; Euclid 

makes the same assumptions (albeit implicitly) in the Elements, except in a stronger 

form, allowing himself the luxury of letting the “equal parts” be either directly or 

oppositely congruent to one another. We shall return to this theme after proving that 

antipodal triangles are congruent.  
   
 
 The corresponding sides of antipodal triangles ABC and A′B ′C ′ 
are equal: AB = A′B ′, BC = B′C′, CA = C′A′. The corresponding angles are 
also equal: those at A, B, and C equal those at A′, B′, and C′ respectively.  
 
 
 Before we can prove that the corresponding angles of antipodal triangles are 

equal, we must be clear about how to measure the angles in a spherical triangle. In 

general, we define the measure of the angle at which two curves intersect to be the 

measure of the angle between their tangent lines at their point of intersection. However, 

when we restrict our attention to measuring the angles between great circles on a sphere, 

there is an alternate, equivalent method that is often more convenient: the measure of the 

angle between two great circles is equal to the measure of the angle of intersection 

between the planes in which the circles lie. We shall soon prove that these two methods 

of measurement yield the same result, but first, we must first describe how one actually 

measures the angle between two intersecting planes. 
 
 
 
 
 
 
 
 
 

 102



A Dihedral Digression 
 
 The angle formed by two planes at their line of intersection is called a dihedral 

angle. We measure such an angle as follows. From an arbitrary point of a dihedral 

angle’s “hinge” (the line in which the two planes meet), erect two 

perpendiculars, one in each plane. These perpendiculars are called lines of 

slope for the dihedral angle. We define the dihedral angle’s measure to be 

the measure of the plane angle between its lines of slope. To dispel what 

appears to be an ambiguity in this definition, we must prove that the angle 

between a dihedral angle’s lines of slope does not depend upon the point from which they 

emanate. The standard proof of this fact, which one may find in any old textbook on solid 

geometry, relies upon the parallel postulate, and thus is insufficient for our purposes. The 

following proof, however, is neutral, and therefore acceptable. I have taken it from 

D.M.Y. Sommerville’s text (originally published in 1914), The Elements of Non-

Euclidean Geometry.  
 
Claim 1. In a dihedral angle, the measure of the plane angle between the lines of slope is 
independent of the point from which they emanate. (i.e. the measure of a dihedral angle is well-
defined.) 
 

�
�

A

A�

P

P�

B�

B

V

U

Proof. Let α and β be two planes forming a 
dihedral angle, and let P and P′ be arbitrary 
points on their line of intersection. Draw lines 
of slope PA and P′A′ in α such that PA = P′A′, 
and lines of slope PB and P′B′ in β such that 
PB = P′B′. To establish the claim, we must 
show that APB = A′P′B′. To do so, we shall 
prove that APB ≅ A′P′B′. 

 Let U be the point of intersection of PA′ and P′A. 
 Note that PU = P′U. (Proof: AP′P ≅ A′PP′ by SAS, so AP′P = A′PP′. These equal 
angles are both in PUP′, so this triangle is isosceles, by Euclid I.6. That is, PU = P′U.) 
 Next, if we let V be the intersection of PB′ and P′B, and apply the same argument to plane 
β that we just used in plane α, we will find that PV = P′V. 
 We therefore know that PUV ≅ P′UV, by SSS. Hence, UPV = UP′V. 
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 Thus, P′AB ≅ PA′B′ by SAS. (PA′ = P′A since APB ≅ A′P′B′, as was shown above. 
Similarly, P′B = PB′.) 
 Hence, AB = A′B′, from which it follows that APB ≅ A′P′B′, by SSS. 
 Thus, APB = A′P′B′, which was to be shown.      
 
 
We can now verify our earlier claim that angles between great circles can be measured 

with dihedral angles. 
 
Claim 2. The measure of the angle between two great circles equals the measure of the dihedral 
angle between the planes in which the great circles lie. 
 
Proof. On a sphere with center O, let BAC be the angle formed at A by two great circle arcs, AB 
and AC. By definition, the measure of the spherical angle 

BAC equals the measure of the angle between the 
tangent lines to arcs AB and AC at A. These tangent lines 
lie in the planes OAB and OAC, which form a dihedral 
angle with hinge OA. Since the tangents to the great circles 
are perpendicular to radius OA, they constitute lines of 
slope for the dihedral angle. Thus, the angle between the 
tangent lines measures not only the spherical angle BAC, 
but also the dihedral angle. Since these last two angles are 
therefore equal, we may measure one with the other. That is, the angle between the great circles 
has the same measure as the dihedral angle formed by the planes in which the circles lie.  
 

A

B

C

O

 

Antipodal Triangles are Congruent 
s, that there are men on the other side of the earth where 

 a plane, vertical angles are equal to one another. Applying this familiar result to the 

following simple proof. 

                                                

“But in regard to the story of the antipodes, that i
the sun rises when it sets for us, who plant their footprints opposite ours, there is no logical ground for 
believing this.” 
   - St. Augustine, The City of God Against the Pagans (Book XVI, Ch. 9).*

 
In

definition of dihedral angle measure, we can easily deduce that vertical dihedral angles 

are equal to one another. This fact, which Lobachevski notes in TP 6, will be used in the 

 
* Augustine, p. 92. 
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Claim 3. Antipodal triangles are congruent. 

 triangles on a 
phere with center O. 

edral angle, which measures the 

′, whose center is O,  
gles, AOB and A′OB′. Similarly, 

        

e points A, B, and C. Drop a 
erpendicular to it from the center of the 

l 
ponding isosceles triangles 

taching equal parts.  

 
Proof. Let ABC and A′B′C′ be antipodal
s
 The planes containing the great circles ABA′B′ and 
ACA′C′ form a dih
spherical angle A; its vertical angle measures A′. Since 
these vertical dihedral angles are equal, the spherical 
angles they measure are equal. That is, A = A′. 
Similarly, B = B′ and C = C′. 
 In any circle, equal central angles subtend equal 
arcs. Thus, in the great circle ABA′B

A

B

C
A�

B�

C� O

the arcs AB and A′B′ must be equal,
since they are subtended by the vertical (and hence equal) an
AC = A′C′ and BC = B′C′. 

 Since all corresponding parts of the antipodal triangles are equal, the triangles are 
congruent (TP 15).  
 
 
 Consider the plane passing through 
th
p
sphere, and extend this perpendicular in 
both directions; it will pierce the antipodal 
triangles in antipodal points, D and D′. 
The distances from D to the points A, B, 
and C, as measured along great circles of 
the sphere, must be equal, not only to one 
another (TP 12), but also to the distances 
D′A′, D′B ′, and D′C′ on the antipodal 
triangle (TP 6). From this, it follows that 
the three isosceles triangles that surround D
triangle ABC are congruent to the corres
surrounding D′ and comprising A′B ′C′. 
 As a basis for determining when two figures on a surface are equal, 
I adopt the following postulate: two figures on a surface are equal in area 
when they can be formed by joining or de

A

B

C
A�

B�

C�

 and comprise the spherica

 
 

O

D

D�
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 We have now seen that antipodal triangles are oppositely congruent. Essentially, 

is is possible, consider the analogous situation in the 

 

rcumcenters do not lie within the triangles, we must adjust the 

                                                

Lobachevski would admit that antipodal triangles T and T ′  have the same area only after 

demonstrating that T can always be sliced into pieces, from which the antipodal triangle 

T ′  can subsequently be rebuilt, without having to turn any of the pieces over in the 

slicing and rebuilding process. 

 To understand why th

Euclidean plane. The figure at right depicts oppositely 

congruent triangles; like any such pair, they are mirror images 

of one another. I have split each of them into three isosceles 

subtriangles by joining their vertices to their circumcenters*. It 

is clear that by detaching the pieces of the left triangle from o

around the plane, and rejoining them, we can build a second copy of the right triangle 

from the pieces of the left triangle, without having to turn any of them over. Hence, the 

two triangles must have the same area (by Lobachevski’s postulate). This elegant 

argument proceeds from the fact that isosceles triangles are directly congruent to their 

mirror images; they do not change their appearance if we turn them over. Thus, by 

breaking an arbitrary triangle into “nice” (i.e. isosceles) subtriangles, we can parlay a 

desirable property that occurs on a small scale (isosceles triangles have the same area as 

their mirror images) to a desirable large-scale property (all triangles have the same area 

as their mirror images).   

 Note that if the ci

ne another, sliding them

above argument slightly. If the circumcenters lie upon the triangles, the adjustment is 

trivial – the triangles simply split into two isosceles subtriangles each, instead of three. If 

the circumcenters lie outside the triangles, a change of perspective will fix the argument: 

we view each triangle as the result of joining two isosceles triangles and subsequently 

detaching a third from their union. (For example, in the 

figure at right, we obtain ABC by joining AOB to 

BOC and detaching AOC). Thus, Lobachevski’s 

postulate for the equality of area, discussed above, implies A

B

C C�

O O�

A�

B�

 
* For every triangle in the Euclidean plane, there is a unique circle that circumscribes it (Euclid IV.5). This 
circle is the triangle’s circumcircle; its center is the triangle’s circumcenter. I shall discuss this in further 
detail in the notes to TP 29, starting on p. 122.  
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the equality of area for these triangles. 

  Of course, Lobachevski’s oppositely congruent triangles lie not in the Euclidean 

ircumstantial Circumcircles 

han.*

specifically described the proof that triangles have the same area as their mirror images 

avily upon our ability to circumscribe circles 

                                                

plane, but on the surface of a sphere in three-dimensional imaginary space. However, the 

ideas underlying his spherical proof are identical to those I have outlined in the preceding 

paragraphs. Consequently, I shall not discuss the mechanics of his proof in further detail. 

Rather, I wish to point out a curious phenomenon regarding circumcircles that will be 

important in later propositions. 
 
 
C
“Weave a circle round him thrice, 

ad...”   And close your eyes with holy dre
 - Samuel Taylor Coleridge, Kubla K
 
I 

as taking place within the Euclidean plane because the ability to construct a triangle’s 

circumcircle (Euclid IV.5) depends upon the parallel postulate! Indeed, the statement, “a 

circle may be circumscribed about any triangle” is equivalent to the parallel postulate. 

We shall prove this surprising fact in TP 29, and unfold its remarkable geometric 

consequences in subsequent propositions. 

 As the proof of TP 26 depends he

about arbitrary triangles, it is interesting to note the sources of our ability to do so in 

different geometric settings. In Euclidean geometry, the relevant source is the parallel 

postulate. In contrast, the fact that the intersection of a sphere and a plane is a circle is the 

key in spherical geometry: the vertices of any spherical triangle determine a plane, whose 

intersection with the sphere is the triangle’s circumcircle. 

 
* The Norton Anthology of Poetry, p. 615. 
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Theory of Parallels 27 
 
A trihedral angle equals half the sum of its dihedral angles minus a right 
angle. 
 
 
Measuring Solid Angles 
 

A solid angle is dihedral if it is bounded by two planes meeting at a line; trihedral if it is 

bounded by three planes at a point. Thus, a tetrahedron contains four trihedral angles, one 

at each vertex, and six dihedral angles, one at each edge. TP 27 relates the measure of a 

trihedral angle to the measures of the three dihedral angles at its edges. We know how to 

measure dihedral angles (see the TP 26 notes), but how does one measure a trihedral 

angle? We must answer this question before we can understand the statement of TP 27, 

much less prove it.  

 We tend to associate angle measurement with rotation. The measure of an 

ordinary angle in the plane, for example, indicates the amount of rotation required to 

bring one of its arms into coincidence with the other. Similarly, the measure of a dihedral 

angle indicates the amount of rotation required to bring one of its faces into coincidence 

with the other. The link between angle measure and rotation, however, ceases to exist 

when we work with trihedral angles (or more generally, when we work with polyhedral 

angles, formed by three or more planes meeting a point). Fortunately, we can articulate a 

general definition of polyhedral angle that agrees with our existing measures, but that is 

not based on rotation. 

 To motivate this definition, let us examine an alternate, protractor-free method for 

measuring ordinary angles in the plane. We begin by assigning a numerical value to the 

"full angle" (a 360° rotation). Any positive value (including 360) is permissible, but I 

shall set the full angle’s value at 2π, so as to agree with Lobachevski. Then, to define the 

measure θ of an arbitrary angle in the plane, we proceed as follows. We draw an arbitrary 

circle (of circumference C) about the angle’s vertex, and let s be the arc length of that 

part of it contained between the angle’s arms. Clearly, the ratio s:C = θ:2π holds. 

Rewriting this as an equivalent formula, we obtain our definition of angle measure:  θ = 

(s/C)2π. That is, we define the measure of the angle to be 2π times the ratio of the 

subtended circular arc to the whole circle. 
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 Naturally, making this definition fully rigorous would require a proof that the 

ratio s:C is independent of the particular circle that we draw about the angle’s vertex. 

This independence is essentially a consequence of the symmetry of circles together with 

the homogeneity of the plane (inasmuch as the plane “looks the same” in every 

direction*), but a proof requires some work. Since my concern, however, is with the 

fruits, rather than the roots, of this definition, I shall take this objection as met, and 

proceed to generalize the definition so it that it covers solid angles (i.e. dihedral and 

polyhedral angles) as well. 

 Let 2π be the numerical value of the “full solid angle”. We define the measure φ 

of an arbitrary solid angle as follows. We draw a sphere about its vertex (or in the case of 

a dihedral angle, about any point on its hinge). The angle will subtend a certain figure on 

the sphere (it will be a “lune” in the case of a dihedral angle, a spherical triangle in the 

case of a trihedral angle, etc.). This figure will cover a certain fraction of the sphere’s 

surface. Multiply this fraction by 2π. We define the result to be the solid angle’s measure. 

 For example, consider the dihedral angle formed by two perpendicular planes. 

When we center a sphere about a point on its hinge, the resulting subtended figure will 

comprise half of a hemisphere; that is, it will comprise ¼ of the entire sphere. Thus, the 

measure of the dihedral angle between the two perpendicular planes will be, according to 

our new definition, ¼(2π) = π/2, as expected. 

 One final note: Lobachevski follows a geometric tradition in which a genuine 

angle delimits a convex region of the plane (or space). Thus, the measure of every 

genuine angle (plane or solid) lies between 0 and π. This geometric convention, as 

opposed to the analytic convention, measures angles unambiguously. Angle measures 

will, moreover, lies strictly between 0 and π: a “flat angle” of measure 0 or π would not 

be considered a proper angle at all, since it would be a ray, a straight line, a half-plane, or 

a plane. 

 Now that we know what trihedral angles are, and how to measure them, we are 

almost capable of understanding the statement of TP 27. All that remains is to mention 

that for any trihedral angle, “its” dihedral angles are those formed at its three edges by the 

planes that meet at its vertex. The statement of TP 27 should now be comprehensible. Let 

us – at last – examine its proof. 
                                                 
* Some prefer to use a separate term, isotropy, for this property of looking the same in every direction. 
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The Size of Spherical Figures 
 
Let ABC be a spherical triangle, each of 
whose sides is less than half a great circle. 
Let A, B, and C denote the measures of its 
angles. Extending side AB to a great circle 
divides the sphere into two equal 
hemispheres. In the one containing ABC, 
extend the triangle's other two sides through 
C, denoting their second intersections with 
the great circle by A′ and B′. In this way, the 
hemisphere is split into four triangles: ABC, 

ACB′, B′CA′, and A′CB, whose sizes we 
shall denote by P, X, Y, and Z respectively. 
 
 Since the statement of TP 27 is concerned with trihedral angles, we naturally 

expect Lobachevski to begin his proof by specifying one. This is indeed what he does, 

although a reader today may not recognize it in the passage above. Nevertheless, 

Lobachevski is working with an arbitrary trihedral angle: he calls its vertex D; he calls 

the three planes that meet there ABD, ACD, and BCD. This naming, however, has 

occurred behind the curtain, as it were. When it rises, we, the audience, find Lobachevski 

in medias res, having already brought his trihedral angle out, named it parts, and placed a 

sphere about its vertex. We find him considering the figure that the trihedral angle 

subtends upon the sphere - a spherical triangle. Moreover, since his geometric convention 

for angles dictates that any genuine trihedral angle delimits a convex region of space, the 

spherical triangle’s sides will each take up less than half of a great circle. 

 Now that we have recognized that Lobachevski’s spherical triangle is the figure 

subtended by an arbitrary trihedral angle upon a sphere centered and its vertex, we can 

return to his words to see what he is trying to tell us about it. By extending its sides, he 

divides one hemisphere into four spherical triangles. He then refers to the “sizes” (die 

Größe) of these triangles. He defines (implicitly) the size of a spherical figure to be the 

measure of the central solid angle that subtends it. Thus, the full sphere’s size is 2π (since 

this is the measure of the full solid angle), a hemisphere’s size is π, and in general, if a 

figure takes up a certain fraction of the sphere’s surface, its size is 2π times that fraction. 

Size is therefore directly proportional to area. The following simple lemma about the size 

of a spherical lune will prove helpful shortly. 
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Lemma. The size of a spherical lune (a figure bounded by two 
distinct arcs that span the same pair of antipodal points) equals 
the measure of the angle at which its two arcs meet. (See the 
figure) 

 
Proof.  If θ is the angle between the arcs, then the lune clearly 
covers θ/2π of the sphere's total surface. Hence, its size is 
(θ/2π)(2π) = θ, as claimed.  
 
 
 
Clearly, P+X=B, and P+Z=A.  Moreover, since the size Y of the spherical 
triangle B′CA′ equals that of its antipodal triangle ABC′ [TP 26], it 
follows that P+Y=C. Therefore, since P+X+Y+Z = π, we conclude that  
P = ½(A+B+C - π). 
 
 
 This swift, elegant proof amounts to little 

more than a threefold application of the lemma. The 

lemma gives P+X = B and P+Z = A. Since antipodal 

triangles are congruent (TP 26 notes, Claim 3), they 

cover the same fraction of the sphere’s surface, and 

thus have the same size. Hence, the lemma gives 

P+Y = C. 

 Summing the left and right-hand sides of the 

three equations yields 

2P + (P+X+Y+Z) = A+B+C. 

 

A glance at the figure reveals that the expression in parentheses represents the size of one 

hemisphere: π. Making this substitution and solving for P yields P = ½ (A+B+C - π). 

 

By Claim 2 in the TP 26 notes, A, B, and C measure not only the angles of  spherical 

triangle ABC, but also the dihedral angles between the three planes that comprise the 

trihedral angle at D. Thus, we have proved the theorem. 
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TP 27 Rephrased as a Theorem about Spherical Triangles 
 
Every trihedral angle that we shall meet in The Theory of Parallels will have its vertex at 

a sphere’s center. Happily, we can rephrase TP 27 in a form specifically suited to this 

circumstance, since we may easily relate the trihedral angle and its three dihedral angles 

to features of the triangle it subtends upon the sphere’s surface. 

 First, the trihedral angle’s measure equals the size of the spherical triangle. 

 Next, since the dihedral angles measure as the spherical triangle’s angles (TP 26 

Notes, Claim 2), we may replace the sum of the dihedral angles equals by the angle sum 

of the spherical triangle. 

 After making these two replacements, Lobachevski’s statement of TP 27 

(“A trihedral angle equals half the sum of its dihedral angles minus a right 

angle”) becomes the following statement about spherical triangles: 

 

Size = ½ (Angle Sum) - π/2. 

Or equivalently, 

Size = ½(Angle Sum - π). 

 

Finally, if we call the quantity in parentheses the angular excess of the spherical 

triangle (the amount by which its angle sum exceeds π), we obtain our desired 

relationship, which we express formally in the following restatement. 
 
 
Claim 1 (TP 27 Rephrased). In any spherical triangle, the following relation holds: 
 

Size = ½ (Angular Excess). 
 

From this reformulation of TP 27, an important consequence follows. 

 
Claim 2. In both Euclidean and imaginary geometry, every spherical triangle has angle sum 
greater than π. 
Proof.  Since a spherical triangle’s size is a positive number, the preceding equation implies that 
its angular excess must also be positive. (Note that the equation holds in both geometries since  
TP 27 is a neutral result.) Thus, its angle sum must exceed π, as claimed.    
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A Theorem So Nice, He Proved It Twice 
 
It is also possible to reach this conclusion by another method, based 
directly upon the postulate on equivalence of areas given above [TP 26]. 
 

 Curiously, Lobachevski gave two proofs of TP 27. His first proof, which we have 

just seen, resembles a sleight of hand magic trick; he diverts our attention from ABC 

with three auxiliary triangles, and craftily extracts his formula while our eyes are 

elsewhere. If his first proof is magical, his second is economical. It requires less 

machinery, as it eschews theorem TP 26 altogether. Moreover, the first proof produces 

quite a bit of “waste” (the three auxiliary triangles); the second produces none: by 

repeatedly remolding the same material, it produces the theorem’s conclusion from its 

premise in a strikingly direct fashion.  

 Like the first, the second proof begins with the spherical triangle ABC that an 

arbitrary trihedral angle subtends. Lobachevski will show that the triangle’s size (and 

hence the trihedral angle's measure) is equal to half its angular excess. To accomplish 

this, he cuts the triangle into pieces, and rearranges them to form a spherical Saccheri 

quadrilateral. He then dissects the quadrilateral as well, and from its pieces, he constructs 

a spherical lune, whose size can be shown to equal half the original triangle’s angular 

excess. By Lobachevski’s postulate on equality of areas (introduced in TP 26), the size of 

the original triangle must also equal half the original triangle’s angular excess. Q.E.D. 

 Naturally, the devil is in the details. 

 Efficient though the second proof is, one cannot help but wonder why 

Lobachevski felt the need to include it. Despite its theoretical simplicity of means, it 

contains details that cry out for verifications of their own (only some of which 

Lobachevski provides), making it considerably longer than the first proof, at least on the 

printed page. Since it can be omitted without damaging the logical flow of the Theory of 

Parallels, I have confined my illumination to a mere partition of the proof into bite-sized 

pieces, for the sake of those readers who do wish to work through its details for 

themselves. 

 

 Here is the first chunk, in which Lobachevski shows how to construct a spherical 

Saccheri quadrilateral with the same area as the given spherical triangle. The construction 
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is a familiar one, normally used (in the Euclidean plane) to prove that a triangle’s area is 

half the product of its base and height. The three cases that Lobachevski considers here 

(H falls either within segment DE, upon one of the segment’s endpoints, or outside the 

segment) arise in the Euclidean context as well.   
 
 
 In the spherical triangle ABC, bisect the sides AB and BC, and 
draw the great circle through D and E, their midpoints. Drop 
perpendiculars AF, BH, and CG upon this circle from A, B, and C.  
 If H, the foot of the perpendicular dropped from 
B, falls between D and E, then the resulting right 
triangles BDH and AFD will be congruent, as will 

BHE and EGC (TP 6 & 15). From this, it follows 
that the area of triangle ABC equals that of the 
quadrilateral AFGC. 

 If H coincides with E, only two equal right 
triangles will be produced, AFD and BDE. 
Interchanging them establishes the equality of area 
of triangle ABC and quadrilateral AFGC. 
  

 Finally, if H falls outside triangle ABC, the 
perpendicular CG must enter the triangle. We may then 
pass from triangle ABC to quadrilateral AFGC by adding 
triangle FAD ≅ DBH and then taking away triangle 

CGE ≅ EBH. 
 
 
 In the next passage, Lobachevski establishes another property of the Saccheri 

quadrilateral: each of its remote angles equals half of the original triangle’s angle sum. 
 
 
 Since the diagonal arcs AG and CF of the spherical quadrilateral 
AFGC are equal to one another (TP 15), the triangles FAC and ACG 
are congruent to one another (TP 15), whence the angles FAC and 

ACG are equal to one another. Hence, in all the preceding cases, the 
sum of the three angles in the spherical triangle equals that of the two 
equal, non-right angles in the quadrilateral. 
 Therefore, given any spherical triangle whose angle sum is S, there 
is a quadrilateral with two right angles of the same area, each of whose 
other two angles equals S/2. 
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 Next, he rearranges the Saccheri quadrilateral into a spherical lune. 
 
 
 Let ABCD be such a 
quadrilateral, whose equal sides AB 
and DC are perpendicular to BC, 
and whose angles at A and D each 
equal S/2. Extend its sides AD and 
BC until they meet at E; extend AD 
beyond E to F, so that EF = ED, and 
then drop a perpendicular FG upon 
the extension of BC. Bisect the arc 
BG, and join its midpoint H to A and 
F with great circle arcs. 
 
 

 Finally, Lobachevski shows that the lune’s size is half of the original triangle’s 

angular excess, completing his second proof.  
 
 
 The congruence of the triangles EFG and DCE (TP 15) implies 
that FG = DC = AB. The right triangles ABH and HGF are also 
congruent, since their corresponding arms are equal. From this it follows 
that the arcs AH and AF belong to the same great circle. Thus, the arc 
AHF is half a great circle, as is the arc ADEF. Since  

HFE = HAD = S/2 – BAH = S/2 – HFG = S/2 - HFE – EFG  
= S/2 – HAD - π + S/2, we conclude that HFE = ½(S - π). Equivalently, 
we have shown that ½(S - π) is the size of the spherical lune AHFDA, 
which in turn equals the size of the quadrilateral ABCD; this last equality 
is easy to see, since we may pass from one to the other by first adding 
the triangles EFG and BAH, and then removing triangles that are 
congruent to them: DCE and HFG. 
 Therefore, ½(S - π) is the size both of the quadrilateral ABCD, and 
of the spherical triangle, whose angle sum is S. 
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Theory of Parallels 28 
 

If three planes intersect one another along parallel lines, the sum of the 
three resulting dihedral angles is equal to two right angles. 
 

The Prism Theorem 
 
This portentous result, which Jeremy Gray has named the prism theorem, says that if the 

edges of an infinitely long triangular prism are parallel to one another, then the three 

dihedral angles at those edges will add up to π. What makes this theorem remarkable is 

its neutrality. Its independence from the parallel postulate is surprising when one 

considers its resemblance to another theorem, Euclid I.32 (the sum of the angles in a 

triangle add up to π), which is actually equivalent to the postulate.   

 The prism theorem occupies a distinguished place in the structure of the Theory of 

Parallels. Thinking of the work as a drama in four acts, we might say that the first takes 

place in the plane, introduces the players and their concerns (Does the parallel postulate 

hold? What if it doesn’t?), and ends halfway through TP 25. In the brief second act  

(TP 25-28), the setting shifts to three-dimensional space. The relevance of this shift is not 

immediately clear, but the dramatic entry of the prism theorem, just before the curtain 

falls for intermission, suggests that there is a hidden link between the first two acts after 

all. Act three (TP 29-34) slowly reveals this connection, and culminates with the 

construction of a surface called the horosphere. At the act’s climax, the prism theorem 

returns to demonstrate that the horosphere, a surface in imaginary space, is endowed with 

an intrinsically Euclidean geometry. The consequences of this discovery unfold in act 

four (TP 35 – 37), in which, among other things, Lobachevski finally derives the 

trigonometric formulae of imaginary geometry that he promised us at the end of TP 22.  

 With a new sense of its importance, we now turn to Lobachevski’s proof of the 

prism theorem. 
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Suppose that three planes intersect 
one another along three parallel 
lines, AA′, BB′, and CC′ (TP 25). Let 
X, Y, and Z denote the dihedral 
angles they form at AA′, BB′, and 
CC′, respectively. Take random 
points A, B, and C, one from each 
line, and construct the plane 
passing through them. Construct a 
second plane containing the line AC 
and some point D of BB′. Let the dihedral angle that this plane makes 
with the plane containing the parallel lines AA′ and CC′ be denoted by w.   
 
 
 Lobachevski’s reference to TP 25 is simply a reminder that parallelism is 

transitive, so that he does not have to specify which edge is parallel to which. They are all 

parallel to one another. In terms of the names that Lobachevski gave to the dihedral 

angles, to prove the prism theorem is to prove that X + Y + Z = π. 
 
 To obtain information about the prism’s dihedral angles, Lobachevski introduces 

two auxiliary constructions. The first, plane ACD, brings three interrelated trihedral 

angles into play. (Their vertices are at A, C and D.) This will allow him to use TP 27 to 

extract dihedral information from trihedral sources. In order to get what he needs from 

these trihedral angles, he introduces his second auxiliary construction: he puts a sphere 

about each of the trihedral angles’ vertices. These will allow him to convert questions 

about trihedral angles into questions about the spherical triangles that they subtend. Thus, 

Lobachevski’s overall strategy is to deduce information about the prism’s dihedral angles 

by studying certain spherical triangles. 
 
 
The First Sphere 
 
 Draw a sphere centered at A; the points 
in which the lines AC, AD, and AA′ intersect it 
determine a spherical triangle, whose size we 
shall denote by α, and whose sides we shall 
denote p, q, and r.  If q and r are those sides 
whose opposite angles have measures w  and 
X respectively, then the angle opposite side p 
must have measure π+2α–w –X.  (TP 27) 
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  In the passage above, he constructs the first of these spherical triangles; he calls 

s side

f a spherical triangle is equal in measure 

 the d

ining angle, we can use the reformulation of TP 27 (TP 27 

α = ½ [X + w+ (the triangle’s 3rd angle) - π]. 

 

hus, after rearranging this equation, we find that the third angle’s measure is π+2α-w-X. 

 

it s p, q, and r, and he denotes its size by α. 

 Recall that the angle between two sides o

to ihedral angle between the planes that contain them (TP 26 Notes, Claim 2). This 

allows us to find two of the angles of the spherical triangle. The planes containing sides 

p, q, and r are AA′BB′, AA′CC′, and ACD, respectively. Hence, it follows that the angle 

between p and q is X (since this is the dihedral angle between planes AA′BB′ and 

AA′CC′), and that the angle between p and r is w (since this is the dihedral angle between 

planes AA′CC′, and ACD). 

 To obtain the rema

Notes, Claim 1), which tells us that the triangle’s size equals half of its angular excess. 

Expressed in symbols, this yields  

 

T

 Lobachevski now turns to the second and third spheres, centered at C and D. 
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The Other Spheres 
 diverse, direct 

.” 
.*

imilarly, the intersections of CA, CD, and CC′ with a sphere centered at 

This is the same argument, mutatis mutandis, given for the first sphere. 
ssentially 

milar

Finally, the intersections of DA, DB, and DC with a sphere 
d n, lie 

The angle between sides l and m has the same measure as the dihedral angle 

 l and n is π - (π+2α-w-X) = w+X-2α. 

Now that we have all three angles, the reformulation of TP 27 (TP 27 Notes, 

laim 1

δ = ½ [Y + (w+Z-2β) + (w+X-2α) - π] = ½(X + Y + Z - π) – (α + β – w ) . 
 

                                                

“The other spheres, in ways
  the diverse powers they possess, so that 

ms  these forces can bear fruit, attain their ai
 - Dante Alighieri, Paradiso II, 118-120
   
 
S
C determine a spherical triangle of size β, whose sides are denoted by p ′, 
q ′, and r ′, and whose angles are: w  opposite q ′, Z opposite r ′, and thus, 
π+2β-w – Z opposite p ′. 
 
 
 
 The third sphere, centered at D, requires a slightly different, but e

si  line of reasoning. 
 
 
 
centered at D determine a spherical triangle, whose sides, l, m, an
opposite its angles, w +Z-2β, w +X-2α, and Y, respectively. Its size, 
consequently, must be δ = ½(X+Y+Z-π) – (α + β -w ) . 
 
 

 

between planes AA′BB′ and BB′CC′. Thus, the measure of the angle between l and m is Y. 

 The angle between sides m and n has the same measure as the dihedral angle 

between planes BCD and ACD. This dihedral angle, in turn, is the supplement of the 

dihedral angle that measures the angle between r′ and q′. Since this last has measure 

π+2β-w-Z, its supplement’s measure is π - (π+2β-w-Z) = w+Z-2β. Consequently, the 

measure of the angle between m and n is w+Z-2β. 

 Similarly, the measure of the angle between

 

 

C ) immediately yields the size, δ, of the spherical triangle:   

 

 
 

* Alighieri, p. 19. 
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Rotating the Auxiliary Plane 

If w decreases toward zero, then α and β will vanish as well, so 
at (α

Lobachevski’s argument is more obscure here than it ought to be; I shall present 

π. Since a rearrangement of the terms in the 

|2(α + β – w + δ)|  2(|α| + |β| + |w| + |δ|)  2(4· ε/8) = ε. 

 

ince the absolute value of the constant quantity 2(α + β – w + δ) is smaller than any 

d demonstrate that the quantities α, β, w, and δ 

 
 
th  + β – w ) can be made less than any given number. Since sides l 
and m of triangle δ will also vanish (TP 21), we can, by taking w 
sufficiently small, place as many copies of δ as we wish, end to end, 
along the great circle containing m, without completely covering the 
hemisphere with triangles in the process. Hence, δ vanishes together 
with w. From this, we conclude that we must have X + Y + Z = π. 
 
 

 

what I hope is a clearer version of the same. 

 We want to prove that X + Y + Z = 

expression for δ that we found above reveals that X + Y + Z = π + 2(α + β – w + δ), we 

can do this by proving that 2(α + β – w + δ) = 0. Let point D travel down ray BB′. As it 

moves, the quantities α, β, w, and δ will all vary. On the other hand, the quantity  

2(α + β – w + δ) will not vary, since it equals X + Y + Z - π, an expression whose value 

is clearly unaffected by the location of D. The heart of the proof, which we shall examine 

in a moment, is to show that as D recedes, the quantities α, β, w, and δ all approach zero. 

Once we establish this, the proof will be essentially complete; given any positive number 

ε, we simply take D far enough away to ensure that α, β, w, and δ will all be less than ε/8, 

thus guaranteeing that 

 

S

positive number ε, the constant (α + β – w + δ) must, in fact, be zero, as claimed. Thus, X 

+ Y + Z = π, proving the prism theorem.  

 Let us now attend to the details, an

all vanish as D → ∞. 
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Claim 1. As D → ∞, w → 0. 

and CD rotate about A and C respectively, while plane ACD 

laim 2. As D → ∞, α and β → 0. 
riangle, whose size is α. As D → ∞, two of its vertices remain 

laim 3. As D → ∞, δ → 0. 
 distance, the sphere centered about it comes along for the ride; the 

Having disposed of these details, we have proved the prism theorem. The 

Proof. As D recedes, lines AD 
rotates about AC, causing w to decrease. The limiting position of AD must be AA′, the unique 
parallel to BB′ through A. (i.e. the first position at which the rotating line fails to cut BB′.) 
Similarly, CD approaches CC′. Consequently, the rotating plane ACD has plane AA′CC′ as its 
limiting position. Hence, w approaches zero, as claimed.      
 

C
Proof. Consider the first spherical t
fixed. These two vertices lie on the great circle in which plane AA′CC′  intersects the sphere. 
Since the third vertex lies on plane ACD, which rotates toward AA′CC′, its limiting position as D 
→ ∞ is also point on this great circle. Thus, in the limit, all three vertices lie on the same great 
circle, and therefore form a degenerate spherical triangle of area zero. Hence, α approaches zero 
as D → ∞. For similar reasons, β approaches zero as well.     
 

C
Proof. As D recedes into the
sphere itself does not change its shape, but the triangle upon it does. Since ADB and BDC 
both approach zero as D → ∞ (TP 21), the lengths of the arcs they subtend (l and m) also 
approach zero. Since two sides of the triangle vanish, the third side must vanish with them. 
Hence, the triangle’s area (and hence its size) approaches zero as D → ∞.    
 
 
 

picturesque justification for the vanishing of δ in Lobachevski’s final sentences amounts 

to the following: for any natural number N, we can push D sufficiently far away to 

guarantee that its spherical triangle will be so small that we can paste N non-overlapping 

copies of it on the sphere’s surface without completely covering it. Since N copies won’t 

cover the sphere’s surface, δ must be less than 1/N. Hence, for any positive real number ε, 

we can choose a whole number N such that 1/N < ε and then push D sufficiently far away 

to guarantee that δ < 1/N < ε.  In other words, as D goes to ∞, δ goes to zero. 
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Theory of Parallels 29 
 
In a rectilinear triangle, the three perpendicular bisectors of the sides meet 
either in a single point, or not at all. 
 

Non-concurrent Perpendicular Bisectors  
“Sit down, the two of you, there before me,” said Neary, “and do not despair. Remember there is no 
triangle, however obtuse, but the circumference of some circle passes through its wretched vertices.”  
      - Samuel Beckett, Murphy*

 
 In Euclidean geometry, every triangle’s perpendicular bisectors are concurrent. In 

fact, they meet at the triangle’s circumcenter (Elements IV.5). In contrast, it is easy to 

construct a triangle in imaginary geometry with non-concurrent perpendicular bisectors. 
 
 Suppose that AB || CD. From G, an arbitrary point that lies between the parallels, drop 
perpendiculars GE and GH, as shown in the figure. 
Double the lengths of these segments, extending them 
to F and I, respectively. Notice that F, G, and I cannot 
be collinear: if they were, then the line upon which they 
lie would be a common perpendicular for the parallels, 
which is impossible in imaginary geometry (TP 22). 
Consequently, these points form the vertices of a 
triangle, FGI. Since two of the perpendicular bisectors 
of this triangle are parallel to one another, the three bisectors obviously cannot meet at a point. 
  
 Such triangles may seem mere curiosities, but they will play major roles in TP 31. 

 In TP 29, Lobachevski proves that if two of a triangle’s perpendicular bisectors 

meet, then all three will be concurrent. The point of concurrence - if it exists - will be the 

center of a circle that passes through the triangle’s vertices. 
 
 
 
 
 
 
 
 
 
                                                 
* Beckett, p. 213. 
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The Proof 
 
Suppose that two of triangle ABC’s 
perpendicular bisectors, say, those erected at 
the midpoints E & F of AB and BC 
respectively, intersect at some point, D, 
which lies within the triangle. Draw the lines 
DA, DB, and DC, and observe that the 
congruence of the triangles ADE and BDE 
(TP 10) implies that AD = BD. For similar 
reasons, we have BD = CD, whence it follows 
that triangle ADC is isosceles. Consequently, 
the perpendicular dropped from D to AC 
must fall upon AC’s midpoint, G. 
 

This reasoning remains 
valid when D, the point 
of intersection of the 
two perpendiculars ED 
and FD, lies outside 
the triangle, or when it 
lies upon side AC. 

 
Thus, if two of the three perpendiculars fail to intersect one another, 
then neither of them will intersect the third. 
 
  
Notes on the Proof 
 
 In the first two cases (when D lies either within or without the triangle), the 

perpendicular dropped from D to AC splits ADC into a pair of subtriangles, DAG and 

DCG, whose congruence by RASS (TP 10) implies that AG = CG. Since G is the 

midpoint of AC, GD must be the perpendicular bisector of AC. In other words, the 

perpendicular bisectors ED, FD, and GD all meet at D, as claimed. The third case (when 

D lies on the side of the triangle) is simpler still: the perpendicular bisectors of AB and 

BC meet at the third side’s midpoint. 

 Finally, it is easy to see that the point of concurrence D (when it exists) is 

ABC’s circumcenter. Since AD = BD = CD, as Lobachevski indicates in his proof, the 

unique circle centered at D that passes through A must also pass through B and C. 
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Circumcircles, the Parallel Postulate, and Bolyai the Elder 
 
We now add one more item to our list of statements equivalent to the parallel postulate. 
 
Claim. The parallel postulate holds if and only if every triangle has a circumcircle. 
 
Proof.   ⇒) Euclid IV.5. 
   ⇐) Suppose that every triangle has a circumcircle. Let l be a line and P∉ l be a point. 
Drop the perpendicular PQ to l, and let m be the perpendicular erected upon PQ at P. By Euclid 
I.28, m does not intersect l. We will now show that all 
other lines through P must intersect l. Let n be such a 
line. Let A be an arbitrary point between P and Q. Extend 
PQ through Q to B so that AQ = QB. Drop the 
perpendicular AR to n, and extend it through R to C so 
that RC = AR. Since A, B, and C are noncollinear, they 
comprise of vertices of a triangle. Thus, by hypothesis, 
there exists a circle passing through them. By Euclid III.1 (a neutral theorem), the perpendicular 
bisectors of any two chords of a circle will meet at the circle’s center. Consequently, n (the 
perpendicular bisector of chord AC) will meet l (the perpendicular bisector of chord AB), which 
was to be shown.   
 

Farkas Bolyai (1775 – 1856), the father of János, discovered the preceding proof. He 

devoted much thought to the parallel postulate, but the following excerpts* from letters to 

János suggest that his studies in this area may have had a less than salubrious effect upon 

his mind. 
 

You must not attempt this approach to parallels. I know this way to its very end. I 
have traversed this bottomless night, which extinguished all light and joy of my 
life. I entreat you, leave the science of parallels alone...I thought I would sacrifice 
myself for the sake of truth. I was ready to become a martyr who would remove 
the flaw from geometry and return it purified to mankind. I accomplished 
monstrous, enormous labors; my creations are far better than those of others and 
yet I have not achieved complete satisfaction...I turned back when I saw that no 
man can reach the bottom of the night. I turned back unconsoled, pitying myself 
and all mankind. Learn from my example: I wanted to know about parallels, I 
remain ignorant; this has taken all the flowers of my life and all my time from 
me. 
 

                                                 
* I have taken the first from Gray, János Bolyai (p.51), and the second from Rosenfeld (p. 108). 
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You should fear it like a sensual passion; it will deprive you of health, leisure and 
peace – it will destroy all joy in your life. These gloomy shadows can swallow up 
a thousand Newtonian towers and never will there be light on earth; never will 
the unhappy human race reach absolute truth – not even in geometry. 

 
Fortunately, János persisted in his researches, despite his father’s wishes. 
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Theory of Parallels 30 
 
In a rectilinear triangle, if two of the perpendicular bisectors of the sides 
are parallel, then all three of them will be parallel to one another. 
 

 This proposition continues the story of its predecessor. In imaginary geometry, 

certain triangles lack circumcircles, since their perpendicular bisectors fail to meet. In  

TP 29, we saw that if two of the perpendicular bisectors of a triangle’s sides intersect one 

another, then all three bisectors must be concurrent. But what happens if no two bisectors 

meet? In TP 30, Lobachevski gives a partial answer: if two bisectors are not only non-

intersecting, but also parallel to one another, then the third bisector will be parallel to 

them as well.  
  
 His proof falls into two cases: one in which the two given parallels lie on opposite 

sides of the third perpendicular bisector, and one in which they lie on the same side of it.   
 
 
The First Case 
 
 In triangle ABC, erect perpendiculars DE, FG, and HK from D, F, 
and H, the midpoints of the sides. (See the figure.) 
 We first consider the case in which 
DE and FG are parallel, and the third 
perpendicular, HK, lies between them. Let 
L and M be the points in which the 
parallels DE and FG cut the line AB.  Draw 
an arbitrary line entering angle BLE 
through L. Regardless of how small an 
angle it makes with LE, this line must cut 
FG (TP 16); let G be the point of 
intersection.  The perpendicular HK enters 
triangle LGM, but because it cannot interse
through LG at some point P. From this it follows that HK must be 
parallel to DE (TP 16 & 18) and FG (TP 18 & 25). 
 

ct MG (TP 29), it must exit 

In this first case, we suppose that two of the perpendicular bisectors are parallel 

E || 

 
 

(D FG) and lie on opposite sides of the remaining perpendicular bisector (HK). 

Lobachevski’s straightforward proof that HK || DE and HK || FG makes use of 
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parallelism’s symmetry and transitivity (TP 16, 18, 25): he shows that DE || HK, at which 

point symmetry gives HK || DE, whence transitivity yields HK || FG.  
 
 The second case proves surprisingly stubborn. Before proving it, Lobachevski 

pauses to record a few formulae, whose purpose will become clear shortly. 
 
 
Lobachevski’s Observations: Three Formulae 
 
 
 In the case just considered, if we let the 
sides BC = 2a, AC = 2b, AB = 2c, and denote the 
angles opposite them by A, B, C, we can easily 
show that  
 
A = ∏(b) - ∏(c)     B = ∏(a) - ∏(c)     C = ∏(a) + ∏(b) 
 
by drawing lines AA′, BB′, CC′, from points A, B, 
C, parallel to HK – and therefore parallel to DE 
and FG as well (TP 23 & 25). 
 
 
 “The case just considered” refers to the circumstance in which all three 

perpendicular bisectors are parallel to one another. In this scenario, one can verify the 

three formulae simply by looking at the figure. For instance, B = FBH = FBB′ - 

HBB′ = ∏(a) - ∏(c). 

 In fact, the validity of each individual formula is equivalent to the parallelism of a 

particular pair of bisectors. For example, our derivation of the formula B = ∏(a) - ∏(c) 

depends only upon the fact that HK || FG. Conversely, if B = ∏(a) - ∏(c) is known to 

hold, we can prove that HK || FG.*

 In this manner, one can show that:   

  

 A = ∏(b) -  ∏(c)   ⇔   HK || DE. 

 B = ∏(a) -  ∏(c)   ⇔   HK || FG. 

 C = ∏(a) + ∏(b)   ⇔   DE || FG.  

                                                 
* Proof: BB′ || HK by definition, so B′BH = ∏(c). Thus, we can rewrite B = [∏(a) - ∏(c)] in the alternate 
form B = [∏(a) - B′BH]. Solving for ∏(a), we obtain ∏(a) = [B + B′BH] = B′BF, which implies that 
BB′ || FG. Thus, HK || FG by transitivity.  
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The Second Case 
 
 Next, consider the case in which HK and FG are parallel. Since DE 
cannot cut the other two perpendiculars (TP 29), it either is parallel to 
them, or intersects AA′. 
 

 In the second case, we suppose that two of the bisectors are parallel (HK || FG) 

and lie on the same side of the remaining perpendicular bisector (DE). We must show 

that the remaining bisector is parallel to the first two. To do so, it will suffice to show that 

DE || HK: for if we can establish this, then the transitivity of parallelism will imply that 

FG || HK. Lobachevski’s proves that DE || HK by a reductio ad absurdum argument. 

 First, DE cannot cut HK: the intersection of two 

bisectors would force all three bisectors to be 

concurrent (TP 29). In particular, HK and FG would 

intersect one another, contradicting the fact that they are 

parallels. 

 Thus, DE is either parallel or ultraparallel to HK. 

  If DE is ultraparallel to HK, it must, according to Lobachevski, intersect AA′ 

laim 1. If FG || HK, but DE is not parallel to HK, then DE intersects line AA′. 
arallel to HK, by 

allel. If they were, then we 

(which is defined as the line drawn through A parallel to HK). Lobachevski offers no 

proof of this fact, presumably because he felt that the proof was obvious. What “obvious” 

proof did Lobachevski see in his mind’s eye? The most plausible candidate that I can 

think of (that uses only ideas we have developed thusfar) is the following.  
 
C
Proof.  DE and AA′ are not parallel. For, if they were, then DE would be p
transitivity, contrary to hypothesis. 
 DE and AA′ are not ultrapar
could rotate AA′ slightly about A to obtain a line AQ that enters 

A′AH, but does not cut DE. Because AQ enters A′AH, it 
would cut HK at some point X, since AA′ || HK. Since DE 
enters AXH through side AH, it would have to exit through 
one of the triangle’s remaining sides, which, however, is 
impossible: by the very definition of AQ, line DE cannot 
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intersect AQ = AX; moreover, by TP 29, if DE were to cut its fellow perpendicular bisector  
HX K, the parallels FG and HK would meet, which is absurd.  
 Since DE and AA′ are neither parallel nor ultraparallel, they

 = H
 must intersect, as claimed.  

Unfortunately, this proof contains a logical gap: it rests upon the unproved 

sump

 Geometric Band-Aid 

ost Facto Lemma. In the preceding proof, DE crosses segment AH. 

GFH + KHF = ( GFB + BFH) + ( KHB + BKF) = (π/2 + BFH) + (π/2 + BKF) > π. 

hus, the parallelism of HK and FG implies that they exit through the same side, as claimed.  
t is, 

E mus

DE cannot exit through BF. 

e to cross FG first (since 

 

 

as tion that DE must cross segment AH. Plausible though this sounds, it is hardly 

obvious given the unintuitive nature of imaginary geometry. The following lemma will 

repair this hole. Readers willing to take it on faith may wish to skip it for now, so as not 

to lose the thread of Lobachevski’s argument. 
 
  
A
 
P
Proof.  First, we shall prove that, in their direction of 
parallelism, HK and FG must exit triangle ABC through the 
same side. Clearly, two rays HK and FG cannot be parallel if 

GFH + KHF  ≥  π. Yet, if HK and FG were to exit the 
triangle through distinct sides, it would follow that 
 

 
T
 Next, note that by Pasch’s axiom, DE must exit ABC through either AB or CB. Tha
D t leave through one of the following: AH, HB, BF, or FC. We shall now demonstrate that 
the last three possibilities are not feasible. 
 
 
 To intersect BF, it would hav
FG must exit through AB, the side through which HK leaves), 
contradicting the fact that no two of the perpendicular 
bisectors can meet (TP 29). 
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 DE cannot exit through HB. 
icular bisectors can meet, DE could only cross HB if the 

DE cannot exit through FC. 
the following simple facts. First, we may characterize the 

 leave through FC through some point X, then ray KH (the extension of HK 

Suppose that DE leaves through FC at X, and ray KH exits the triangle through AD. Then 

 Next, suppose that DE leaves through FC at some 
int X

Having exhausted all other alternatives, we may finally conclude that DE exits the 
triangle through AH.    

 Since no two of the perpend
extension of HK backwards through H were to leave the triangle through AD. Were that to 
happen, DE would lie between the parallels FG and HK, which is not the configuration with 
which the second case of Lobachevski’s proof is concerned. 
 

 
 To prove this, we shall use 
perpendicular bisector of a segment RS as the set of points that are equidistant from R and S. 
Second, the bisector separates the rest of the plane into two parts, the part containing point R, and 
the part containing point S. We shall call these parts the R-side and S-side of the plane, 
respectively. Points in the R-side may be characterized as those closer to R than to S; a similar 
inequality holds for points lying in the S-side of the plane. These facts are easy to prove in neutral 
geometry. I will omit the proofs here so that the length of this argument remains within 
reasonable bounds. 
 If DE could

backwards through H) would have to leave the triangle through either AD or XF (so that no two 
of the perpendicular bisectors would meet one another). We shall explode each hypothesis in turn. 
 
 
XB < XA (since X lies in the B-side of the plane, as partitioned 
by HK, the perpendicular bisector of AB), but XA = XC 
(because X lies on DE, the perpendicular bisector of AC), so 
XB < XC. The opposite inequality, XC < XB, would also hold 
(since X lies on the C-side of the plane, as partitioned by FG, 
the perpendicular bisector of CB). This contradiction 
demonstrates the impossibility of this configuration.  
  

po , and ray KH exits the triangle through XF at some 
point Y. An argument similar to the preceding one shows that 
YA < YC < YB = YA. That is, YA < YA, a contradiction. 
 Thus, DE cannot exit through FC, as claimed. 
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The Second Case Resumed 

ap, we return to the 

cond case. Recall that we are trying to prove that DE 

 para

 the rest of his proof to a 

 This will destroy the possibility that DE 

ght b

o assume this latter possibility is to assume that C > ∏(a) + ∏(b). 

rying to 

destroy) would imply that C > ∏(a) + ∏(b). We can prove this as follows. 

roof. Recall that CC′ is parallel to HK and FG, by definition. 
′CD) = (∏(a) + C′CD). 

 > ∏(b).  

  

 
 Having filled in the logical g

se

is llel to HK. We have shown that DE cannot cut 

HK, so it is either parallel or ultraparallel to HK. We 

shall prove the former hypothesis by destroying the 

latter. To this end, we have demonstrated that if DE is 

ultraparallel to HK, then DE must intersect AA′ (the line 

through A drawn parallel to HK and FG). 

 On the other hand, Lobachevski will devote

demonstration that DE and AA′ cannot meet.

mi e ultraparallel to HK. 

 His first step is to secure an inequality.  
 

T
 

 That is, to assume that DE intersects AA′ (the hypothesis Lobachevski is t

 
Claim 2. If DE and AA′ meet, then C > ∏(a) + ∏(b). 
P
 From the figure, we see that C = ( FCC′ + C
 Thus, to prove the claim amounts to proving that C′CD
 If C′CD = ∏(b), then DE || CC′ || AA′, which 
is absurd: intersecting lines cannot be parallel. If 

C′CD < ∏(b), then CC′ cuts DE. Thus, ray DE 
intersects both AA′ and CC′, which is impossible: it 

emanates from a point lying between these two parallel 
lines, and thus may cut only one of them. (To meet the 
second line, it would have to recross the first, in 
violation of TP 2.)  Thus, we must have C′CD > ∏(b).  
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If this is the case, we can decrease the magnitude 
f this angle to ∏(a) + ∏(b) by rotating line AC to a 
ew position CQ (see the figure). The angle at B is 

here 2c′ is the length of BQ. From this it follows 
that c′ >c (TP

out C, Lobachevski transforms ABC into QBC, a new triangle 

ith a strategically constructed angle: BCQ = ∏(a) + ∏(b). Since Q and C lie on 

HK || FG.    

cent to this angle must 

 

 

o
n
thereby increased. That is, in terms of the formula 
proved above,  
 

∏(a) - ∏(c′) > ∏(a) - ∏(c), 
 
w

 23). 
 
 

 Rotating AC ab

w

opposite sides of AB, we have QBC > ABC. That is, the angle at B in the new triangle 

is larger than it was in the old triangle. In his quest for a contradiction, Lobachevski 

expresses the two angles at B in terms of the side lengths. Here, he will finally use the 

formulae that he described between the two cases of his proof. 
 
Observation. ABC = ∏(a) - ∏(c). 
Proof. As noted above (“Lobachevski’s Observations”), this formula holds because 
 

QBC = ∏(a) - ∏(c′).  Claim 3. 
Proof. Since angle C in QBC equals ∏(a) + ∏(b), the 
perpendicular bisectors of the sides adja
be parallel to one another, as noted above. Both of these 
parallel bisectors must leave the triangle through side QB. (See 
the proof of the “post-facto lemma” above.) If M is the 
midpoint of QB, we can prove that one of the bisectors must 
leave through QM, and the other through MB as follows. 
 Suppose, by way of contradiction, that both leave 
through the same half of QB (say MB). Then we would have 
MQ < MC (since M would lie on the A-side of the plane as

partitioned by the perpendicular bisector of QC). Similarly, 
MC < MB. Thus, we have MQ < MB, which contradicts the 
fact that M is the midpoint of QB. 
 Hence, M lies between the two parallel bisectors. Consequently

proof, the perpendicular bisector of QB must be parallel to the other two bisectors. Since all three
, by the first case of the 
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perpendicular bisectors of QBC are parallel to one another, all three of Lobachevski’s formulae 

∏(a) - ∏(c′) > ∏(a) - ∏(c), 

ies that ∏(c′) < ∏(c). Since ∏ is a decreasing function (TP 23 Notes,  

Claim 1), it follows that c′ > c.

BQ must be greater than the angle at 
tly, AB > BQ (TP 9); that is, c > c′. 

 and 

easure. In 

ABQ, it is clear that BAQ < θ < AQB. Thus, QB < AB 

E either intersects AA′ or is parallel to the 

Infinity 

By adopting the convention that parallel lines meet at a “point at infinity” in their 

ism, we can unify the statements of Lobachevski’s 29th and 30th 

hold in this triangle. In particular, the angle at B will be ∏(a) - ∏(c′), as claimed.  
 
 Since QBC > ABC, the expressions from the preceding Observation and Claim 

tell us that 

 

which impl

 And yet... 
 

On the other hand, since the angles at A and Q in triangle ACQ are 
equal, the angle at Q in triangle A

 in the same triangle. ConsequenA
 
 
 Because ACQ is isosceles, the base angles CAQ

CQA are equal (Euclid I.5). Let θ be their common m

(Euclid I.19). That is, 2c′ < 2c, or c > c′. We have arrived at a 

contradiction, having demonstrated that c is simultaneously less 

than and greater than c′. 
 
 This contradiction followed from the assumption that DE intersects AA′. Early in 

the second case, Lobachevski proved that D

other perpendicular bisectors. Having disposed of the former possibility, we conclude 

that the latter must be true. This concludes the second case, and with it, at last, the proof 

of TP 30. 
 
 
Points at 
 
 

direction of parallel

propositions as follows: if two perpendicular bisectors of a rectilinear triangle meet at a 

point (possibly at infinity), then the third must pass through the same point as well.  
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 If a triangle’s perpendicular bisectors meet at a point at infinity, might the triangle 

have a circumcircle in some extended sense? A circle whose center is at infinity? What 

rve neither straight nor 

can we say about the nature of such a figure, if anything at all? In the early 17th-century, 

Johannes Kepler professed that a circle whose center is at infinity is a straight line. Our 

hypothetical infinite circumcircle, however, cannot be straight, for the simple reason that 

no straight line can pass through all three of a triangle’s vertices. 

 In the next two propositions, we shall make the acquaintance of the curve that 

plays the role of circumcircle in this situation: the horocycle, a cu

circular, but enjoying both line-like properties and circle-like properties. 
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Theory of Parallels 31 
 
We define a horocycle to be a plane curve with the 
property that the perpendicular bisectors of its chords 
are all parallel to one another. 
 
 
Horocycles  
 
 It is often convenient to think of a horocycle as a “circle of infinite radius”, or “a 

circle whose center is at infinity”, but this will not suffice as a formal definition. 

Although one typically defines a circle as the locus of points at a fixed distance from a 

given point, Lobachevski used an alternate, equivalent definition of a circle as the basis 

for his definition of the horocycle. Namely, a circle is “a closed 

curve in the plane with the property that the perpendicular 

bisectors of its chords are all concurrent,” and its center is the 

point of concurrence. (Circles clearly possess this property, and 

one may prove that any closed plane curve exhibiting it is 

circular.) Since a horocycle’s center is supposed to be “at 

infinity”, it ought to be a curve whose chords’ perpendicular bisectors meet there. 

Worded more rigorously, it ought to be a plane curve whose chords’ perpendicular 

bisectors are all parallel. This is precisely how Lobachevski defines it. 

 One fussy detail remains. The topological clause in the alternate definition of a 

circle (a circle must be closed) is designed to prevent mere circular arcs from satisfying 

the definition. For horocycles, the filter of closure is too fine; it would keep out not only 

horocyclic arcs, but full horocycles as well, since even they are not closed curves, as we 

shall see shortly. Lobachevski, in a minor oversight, fails to supply an appropriate filter, 

but we can easily remedy this by declaring that no horocycle can be a proper subset of 

another.  
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Generating a Horocycle 
  

In accordance with this definition, we may imagine 
generating a horocycle as follows: from a point A on a 
given line AB, draw various chords AC of length 2a, where 
∏(a) = CAB. The endpoints of such chords will lie on the 
horocycle, whose points we may thus determine one by 
one. 
 
 
 We can define a unicorn, but this does not imply that such creatures actually exist. 

Having defined horocycles, Lobachevski hastens to exhibit one. His process for 

generating a horocycle is, I believe, easier to understand in the following dynamic 

reinterpretation. 

 Given a ray AB, which we shall call the axis of the 

horocycle, erect a perpendicular ray from A, and let it slowly 

rotate toward AB, so that the angle that it makes with AB 

decreases from π/2 to 0. Let C be a moving point, initially 

coincident with A, which moves down the rotating ray as it turns. 

The following rule governs the motion of C: if θ is the angle that 

the rotating ray makes with AB, and a is the length such that ∏(a) 

= θ (such a length exists for every θ by TP 23), then C will be at 

a distance of 2a from A. Thus, AC → ∞ as θ → 0 (TP23). The moving point C will trace 

out half of a horocycle; we shall prove that it actually satisfies the definition in a moment. 

The horocycle’s other half, the mirror image of the first, can be obtained by carrying out 

the same procedure, but beginning with the other ray emanating from A and 

perpendicular to AB. 

 

 Next, we shall verify that the curve traced out by C satisfies the horocycle’s 

definition.  
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 The perpendicular bisector DE of a 
chord AC will be parallel to the line AB, 
which we shall call the axis of the 
horocycle. Since the perpendicular 
bisector FG of any chord AH will be 
parallel to AB, the perpendicular bisector 
KL of any chord CH will be parallel to AB 
as well, regardless of the points C and H 
on the horocycle between which the 
chord is drawn (TP 30). For that reason, 
we shall not distinguish AB alone, but 
shall instead call all such perpendiculars 
axes of the horocycle. 
 

 These, Lobachevski’s concluding words for TP 31, fail to do justice to the 

properties of the curve that he has just brought to light. In these notes, we shall explore its 

properties in greater depth than Lobachevski does, so that we might obtain more insight 

into its nature. But first, let us carefully verify that the curve he has generated is indeed a 

horocycle. 
 
Claim 1. The curve traced out by C is indeed a horocycle. 
Proof. We must show that the perpendicular bisectors of all the curve’s chords are parallel to one 
another. Thanks to the transitivity of parallelism, it suffices to show that they are all parallel to 
AB. By the curve’s construction, it is clear that the perpendicular bisector of any chord AC that 
joins A to any other point on the curve will be parallel to AB. Any chord CH that joins two points 
on the curve, neither of which is A, should be thought of as one side of the triangle ACH; since 
the perpendicular bisectors of the other two sides (AC and AH) are parallel to AB, the 
perpendicular bisector of CH must also be parallel to it, by TP 30. Hence, the curve traced out by 
C satisfies Lobachevski’s definition of a horocycle, and thus lies within some complete horocycle 
H. If we can prove that H lies within the curve traced out by C, we will be able to conclude that 
the curve traced out by C is identical to H. We do this now. 

 The perpendicular bisectors of chords of H are, by the definition of a horocycle, parallel 
to one another. Since some of them are known to be parallel to AB 
(namely, those bisecting chords that join points on the curve traced 
out by C), the transitivity of parallelism implies that all bisectors of 
H’s chords are parallel to AB. In particular, if P is an arbitrary point 
on H, then MM′, the perpendicular bisector of AP, will be parallel to 
AB, making BAM = ∏(AM). It follows that P lies on our curve: 
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when the rotating ray makes the angle ∏(AM) with axis AB during the curve’s generation, the 
curve acquires P, since it is the point on the ray at a distance of 2(AM) from A. Hence, every point 
of the horocycle H lies within the curve traced out by C. Having shown that the two curves are 
identical, we conclude that the curve traced out by C is a horocycle, as claimed.  
 

 Thus, horocycles exist; we may generate one at will simply by choosing a ray as 

an axis and following the procedure described above.  

 Euclid’s construction of an equilateral triangle (Euclid I.1) proves that triangles 

exist, but it is obviously insufficient for constructing all triangles; equilaterals constitute 

but one species of the larger triangle genus. In contrast, we can prove that Lobachevski’s 

generation of a horocycle is comprehensive: we can obtain every horocycle this way. 

That is, we can demonstrate that every horocycle H has an axis AB – a ray that yields H 

when we carry out Lobachevski’s generation process upon it. 
 
 
Every Horocycle has an Axis 
 
Claim 2. Every horocycle has an axis. 
Proof. To be more specific, we shall show that any ray that emanates from a point on a horocycle 
and is parallel to all perpendicular bisectors of the horocycle’s chords is necessarily an axis of 
that horocycle. 
 To this end, let H be a horocycle, and let A, C, and D 
be arbitrary points upon it. By definition of a horocycle, the 
perpendicular bisectors of AC, AD, and CD (and all other 
chords, for that matter) are parallel to one another. Let AB be 
the ray that emanates from A and is parallel to these bisectors. 
In fact, the perpendicular bisector of every chord of H will be 
parallel to AB, by definition of a horocycle, together with the 
transitivity of parallelism. 

 Let K be the horocycle whose axis is AB. We shall show that H = K. 
 Let E be an arbitrary point of H. Since MM′ || AB (where MM′ is the perpendicular 
bisector of AE), we have BAM = ∏(AM). Now, when the rotating ray that generates K makes 
angle ∏(AM) with AB, K acquires the point on that ray which lies at distance 2(AM) from A; that 
is, K acquires point E. Hence, E lies on K, so H ⊆ K. By definition, one horocycle cannot be a 
proper subset of another, so H = K. Thus, since AB is an axis for K, AB is also an axis for H.   
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 Having proved the non-self-evident truth that all horocycles are created equal, we 

turn to the properties with which they are endowed. The proposition just established 

immediately yields two that are very striking.  
 
 
Many Axes, Much Symmetry 
 
Claim 3. Every horocycle has infinitely many axes – one through each of its points. 
Proof. In the preceding claim, point A was entirely arbitrary. Since the axis that 
we constructed emanated from A, we could just as easily have constructed an 
axis emanating from any other point of H.      
 
Claim 4. Horocycles possess a tremendous amount of symmetry: a horocycle is symmetric about 
each of its axes. 
Proof. Clearly, the process of generating a horocycle yields a curve that is symmetric about its 
generating axis. Every horocycle has an axis (Claim 2), and thus every horocycle has a line of 
reflective symmetry. Since Claim 3 tells us that horocycles have infinitely many axes, they also 
have infinitely many lines of symmetry.        
 

 If we think of a horocycle as a circle of infinite radius, then its axes play the role 

of diameters. Thus, for example, Claim 4 is analogous to the fact that circles are 

symmetric about all of their diameters. Of course, horocycles are not entirely circle-like. 

Circles come in a variety of sizes, but the same is not true of horocycles, as we now 

show. 
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If You’ve Seen One, You’ve Seem Them All 
 
Claim 5. All horocycles are congruent. 

Proof. Imagine the plane as a piece of paper upon which 
two horocycles, H and K, are drawn. Introduce polar 
coordinates by drawing a polar grid on an overhead 
transparency and laying it upon the plane, making its polar 
axis (the ray θ = 0) coincide with an axis of H. 
Lobachevski’s method for generating horocycles endows 
H with the polar equation θ = ∏(r/2). Of course, by 
repositioning the transparency, we can supply K with this 

equation just as easily. Since H and K have the same equation up to an isometric (distance 
preserving) change of coordinates, they must be congruent. (Our change of coordinates is 
isometric since it merely involves laying down the polar grid, the object that defines the distances 
in our equation, in two distinct places.)        
  

 We are used to such uniformity among points and lines, the basic elements of 

geometry, but to find this sameness among horocycles is quite remarkable. 
 

 The “thought experiment” with the polar grid has a second notable consequence. 

If, instead of moving the polar axis from an axis of H to an axis of K, we move it to a 

second axis of H, then the polar equation of H will remain the same (although the 

coordinates of its individual points will obviously change). To appreciate the significance 

of this fact, first note that we may think of a curve’s equation as a map of its features, 

where each solution of the equation tells us the precise location of one of the curve’s 

points. For example, if its equation has the solution (20, 30), we may interpret this as the 

instruction: “Go to the origin, look down the polar axis, turn 30° counterclockwise, and 

walk forward 20 units. You’ll find a point of the curve there.” Of course, one must know 

where the origin and polar axis are to use these directions. However, since a horocycle’s 

equation remains the same no matter which of its point we chose as the origin, we do not 

have to know where the origin is to use such directions; once we know the equation, any 

starting point will do. Thus, horocycles are not only congruent to one another, but each 

individual horocycle is homogenous: it “looks the same” from the perspective of any 

point upon it.  
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Further Attributes of Horocycles 
 
 Because horocycles have polar equations, θ = ∏(r/2), which are governed by the 

continuous function ∏ (see notes to TP 23), we know that horocycles are continuous 

curves. 

 We have already shown that imaginary geometry admits trios of points that are 

neither collinear nor concyclic: the vertices of any triangle whose perpendicular bisectors 

do not meet. We may harvest such trios with ease from a horocycle; take any three of its 

points, and you will have one.  
 
Claim 6. If A, B, and C are distinct points on a horocycle, they are not collinear.  
Proof. If they were collinear, then the line upon which they lie would be a 
common perpendicular to two parallel lines (the perpendicular bisectors of AB 
and BC, which are parallel to one another by the definition of a horocycle), 
contradicting TP 22 (parallels never share a common perpendicular in 
imaginary geometry.)           

 
Claim 7. If A, B, and C are distinct points on a horocycle, they are not concyclic. 
Proof. A circle passing through all three of them would be the circumcircle of triangle ABC, 
whose center would necessarily be point at which the triangle’s perpendicular bisectors meet. By 
definition of the horocycle, there is no such point, and thus, no such circle.    
 

 All axes of a horocycle are parallel to one another, but we shall now prove 

something stronger: every line parallel to an axis of a horocycle is an axis itself. (Properly 

speaking, every such line contains an axis, since we defined an axis to be a ray. However, 

we shall often abuse the terminology by using the word “axis” to refer to the line 

containing the ray. The context will always make it clear whether the ray or the line is 

meant.) 
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Lemma. If H is a horocycle with an axis AB, then every line parallel to AB intersects H. 
Proof. Suppose there is a line MN, parallel to AB, which 
does not intersect H. Because MN and AB draw closer to 
one another in their direction of parallelism (TP 24), 
there is a point E on AB (perhaps light-years from A) that 
is closer to line MN than it is to point A. That is, if EG is 
the perpendicular dropped from E to MN, then we will 
have EA > EG. 

 Consider the circle with center E and radius EA. 
Define two points on it as follows: let J be the point where
point on it diametrically opposed to A. By construction, J and K lie on opposite sides of H. 
Hence, the circular arc joining them intersects H at some point P. Since the circle is symmetric 
about its diameter AK, the reflection of P in AK lies on it. Moreover, since H is symmetric about 
its axis AK, the reflection of P in AK lies upon H as well. Thus, we have three points, A,P,and P′, 
the last being the reflected image of P in AK, at which H and the circle meet. This, however, is 
impossible, since no three points of a horocycle can be concyclic.  
 Thus, H in

 ray EG intersects it, and let K be the 

tersects every line parallel to AB, as claimed.       

laim 8. If H is a horocycle with an axis AB, then every line parallel to AB is an axis of H. 
 a ray 

orollary. If H is a horocycle with an axis AB, then the complete set of its axes is the family of 

As a result of this corollary, every horocycle is associated with a particular pencil 

 
C
Proof. We have just seen that every line parallel to AB cuts H. Thus, any such line contains
that emanates from a point on H and is parallel to AB (and hence is parallel to all the 
perpendicular bisectors of H’s chords). We have already showed that a ray with these 
characteristics must be an axis of H. (See the proof of Claim 2 above)      
 

C
all lines parallel to AB. 
 

 

of parallels, another name for the set of all lines parallel to a given line in a given 

direction. We may formalize the notion of “points at infinity” by declaring that two lines 

“meet at a point at infinity” precisely when they belong to the same pencil of parallels. 

With this understanding, we may say that each horocycle is associated, via its axes, with 

a particular point at infinity. We shall call this point the center of the horocycle. Thus, 

intuitively, the center of a horocycle is a point at infinity where its axes meet, while 
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formally, the center is not a point at all, but rather the set of the axes themselves. This 

convention allows us to prove the following analog of Euclid’s third postulate.  
 
Claim 9. Given an ordinary point A and a point at infinity, there exists a horocycle passing 
through A, whose center is the given point at infinity.  
Proof. We must show that there exists a horocycle through A, whose axes are the lines of a 
particular pencil of parallels. Among these parallels, a unique one passes through A. Let H be the 
horocycle generated by it. By Claim 8, its axes must be the lines of the pencil. Thus, H is a 
horocycle through A whose center is the given point at infinity.      
 
 
Tangents to Horocycles 
 
 Although it is difficult to define a tangent line to an arbitrary curve without 

recourse to the language of calculus, certain specific curves possess unmistakable 

“natural” tangents. For example, the tangent to a circle at any of its points is the unique 

line passing through it that does not cut the circle a second time. Of course, this line 

satisfies the calculus definition of tangency as well, but one should not suppose that such 

“natural tangents” to circles and other conics, which have been known for thousands of 

years, were somehow illegitimate until they were formally sanctioned by calculus. On the 

contrary, these tangents lend the calculus definition some of its own authority; if the 

calculus definition did not agree with the classical definitions in the special cases for 

which tangents were already known, mathematicians never would have accepted it. 

 Since horocycles are related to circles, it is not surprising that they too possess 

natural tangents, which we can identify without calculus. Given any point A on a 

horocycle, we will show that there is a unique line passing through it that satisfies the 

following property: every point of the horocycle (other than A) lies on one side of it. 

Naturally, we will define this distinguished line to be the horocycle’s tangent line at A. 

Just as a circle’s tangents are perpendicular to its radii, a horocycle’s tangents are 

perpendicular to its axes, as we shall now demonstrate. 
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Claim 10. If AB is an axis of a horocycle, then the line erected perpendicular to it at A is the 
tangent line to the horocycle at A. (That is, it is the unique line through A such that every other 
point of the horocycle lies to one side of it.)  
 
Proof.  Let AB be an axis of a horocycle, H. Draw AT ⊥ AB. 
 First, we shall show that every point of H lies to one side of line AT. 
 Let X∈H

It remains to show that no other line through A has this 
operty

viously, AB does not satisfy the property. 
i.e. l is neither AT nor AB.) Any such line 

, and let M be the midpoint of AX. The perpendicular 
bisector of AX is parallel to AB, so XAB = MAB = ∏(MA) < π/2, 
since the angle of parallelism of any length is acute. Because the side of 
AT in which B lies consists of the set of points P making PAB < π/2, 
the fact XAB < π/2 implies that X lies on this side on AT. Since X was 
an arbitrarily chosen point of H, the entire horocycle H lies on this side 
of AT, with the exception of A, where the horocycle touches the line. 
 

pr . 
 Ob
 Suppose that l is any other line through A. (

must contain points on both sides of line AT. Assume, without loss of generality, that it contains a 
point Y in the interior of BAT. Since BAY is an acute angle, there is a length p such that  
∏( p) = BAY (TP 23). Let Z be the point on ray AY such that AZ = 2p. Lobachevski’s method for 
generating the unique horocycle with axis AB guarantees that point Z lies on this horocycle. That 
is, Z∈H

g shown that AT is the only line that satisfies the property, we are justified in 

orollary. A horocycle cuts its axes perpendicularly. 
cle itself at a given point is 

. It follows that l cannot satisfy the required property, for it contains two distinct points of 
H: A and Z.   
 Havin
calling it the tangent line.         
 
C
Proof. The angle between an axis of a horocycle and the horocy
defined to be the angle between the axis and the tangent to the horocycle at their point of 
intersection. By Claim 10, the axis and the tangent are perpendicular to one another. Thus, the 
axis and horocycle meet at right angles, as claimed.       
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Euclidean Horocycles? 

obachevski modeled his definition of a horocycle on a defining property of circles, but 

laim 11. In Euclidean geometry, horocycles are straight lines. 

irst proposition in the Elements that 

ABC  = MBB′ + NBB′ =  π/2 + π/2 = π. 
 

hus, A, B, and C are collinear. Since the three points were arbitrary, the horocycle must be a 

We shall summarize the line-like and circle-like properties of horocycles in the notes to 

 
L

if we seek the curves that satisfy this definition in Euclidean geometry, we will find 

ordinary straight lines. That is, in the presence of the parallel postulate, horocycles and 

straight lines are one and the same. 
 
C
Proof. In Euclidean geometry, lines clearly satisfy the 
horocycle definition. Conversely, given a curve that 
satisfies it, let, A,B, and C be three points on it. Let MM′ 
and NN′ be the respective perpendicular bisectors of AB 
and BC. Draw BB′ parallel to them. We are working in 
Euclidean geometry, so we may invoke Euclid I.29 (the f
depends upon the parallel postulate): when a transversal cuts a pair of parallels, the interior angles 
on each side of the transversal sum to π. Applying this to the parallels MM′ and BB′ (with 
transversal MB), and again to the parallels BB′ and NN′ (with transversal BN), we find that  
 

T
straight line, as claimed.          
 

TP 32. Before turning to this proposition, we shall consider an equivalent definition of 

the horocycle given by Bolyai, and a related idea of Gauss. 
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Bolyai’s L-Curve. 
man than Lobachevski, but his work is a little repellent at first owing to the 

oolidge’s assessment on the relative “neatness” of the work of Lobachevski and Bolyai 

otes CAB = ACD.” 

fold

given a generating ray AM, which 

 12. Bolyai’s L-curves are horocycles. 
e shall show that the perpendicular bisectors of its 

Case 1

“Bolyai is a much neater work
adoption of a strange symbolism of his own invention.”  - J.L. Coolidge*

 
C

is debatable, but the latter is undeniably a faster workman than the former. In §11 of his 

Appendix, four pages after his definition of parallelism, Bolyai introduces a curve named 

L, and a surface with the equally descriptive name F. These, in Lobachevski’s 

terminology, turn out to be the horocycle and horosphere, respectively. (We shall meet 

the horosphere in TP 34.) To explain Bolyai’s definition of the L-curve, we must first 

explain some of his “strange symbolism”.  

 According to Bolyai, “AB  CD den

Un ing this definition, we see that Bolyai writes AB  CD 

when the rays AB and CD are equally inclined toward the line 

segment AC. When the rays are equally inclined toward AC and 

parallel to one another, Bolyai writes AB |||  CD. 

 Bolyai defines an L-curve by listing its points: 

he, like Lobachevski, calls an axis, Bolyai declares that A is a point on L, as is the 

endpoint B of any ray BN such that BN |||  AM. 
 

Claim
Proof.  Let L be an L-curve, with axis AM. W
chords are all parallel to AM. This will require two cases. 
 
 : Consider a chord AB, joining A to an arbitrary point B on L. Let PQ be its 

X, then let Y∈BN be such that 

                                                

perpendicular bisector. If BN is the ray such that BN |||  AM, the equal angles NBA and MAB 
clearly must be acute for BN and AM to be parallel. To prove that PQ || AM, we shall demonstrate 
that the alternatives lead to contradictions. 
 PQ cannot cut AM: if it did, say at 

BY = AX. Then PAX ≅ PBY by SAS, so BPY = APX = π/2. That is, 
PY and PX are both perpendicular to BA. Since there is only one line 
perpendicular to a given line at a given point, we must have PY = PX, 
which is absurd. Thus, PQ cannot cut AM.  By symmetry, PQ cannot cut BN either. 

 
* Coolidge, p. 72. 
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 PQ cannot be ultraparallel to AM: if it was, then we could rotate AM slightly toward PQ 

ed. 

Case 2

without causing these initially non-intersecting lines to intersect. Let us try. If we rotate AM 
toward PQ (and hence toward BN), AM will cut BN at some point X, since AM || BN.  Ray PQ 
enters ABX through side AB, and therefore exits through another 
side (Pasch’s axiom). We have already shown that PQ cannot cut 
BN (= BX), so PQ must exit through AX, the rotated line. Hence, 
any rotation of AM toward PQ forces an intersection of these lines, 
so they cannot be ultraparallel. 
 Therefore, PQ || AM, as claim

 
 : Consider a chord BC of L, neither endpoint of which 

 A. If 

There is no need to consider a second sub-case in which A, B, and C are collinear, for 

e 

RQP = RQB + BQP = (π - CQR) + BQP = (π - BQP) + BQP = π. 
 

ence, R, P, and Q are collinear. Since BPQ = CRQ = π/2, line PR is a common 

Having shown that the perpendicular bisectors of all chords of an 
-curve

is A, B, and C are noncollinear, we can form the triangle ABC. 
Since the perpendicular bisectors of the sides AB and AC are parallel 
to AM (case 1), TP 30 implies that the perpendicular bisector of BC 
must also be parallel to AM, as was to be shown. 
 

 
such a configuration cannot occur, as we shall now demonstrate. 
 Suppose, by way of contradiction, that A, B, and C ar
collinear (see the figure). Let BN and CO be the rays such that BN 
|||  AM and CO |||  AM. Then NBA = MAC = OCA. Bisect 
BC at Q, and drop a perpendicular QR to CO. Extend ray BN 
backwards through B to P so that BP = CR. Since CQR ≅ BQP 
(by SAS), we have CQR = BQP. It follows that 
 

H
perpendicular for CO and PN, which is impossible since these lines are parallel (TP 22).  
 
 
L  are parallel to one another, we conclude that every L-curve is 
contained within a horocycle. It remains only to show that every L-curve is 
a complete horocycle. To this end, let L be an L-curve with axis AM, and 
let H be a horocycle in which is contained. We must show that every point 
of H is also a point of L. Let X∈H, and let XX′ be the axis of H through X. 
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To prove that X∈L, we must demonstrate that XX′ |||  AM. These lines are clearly parallel, since 
they are both axes of the horocycle (in our two cases above, we proved that the axis of an L-curve 
is an axis of the horocycle within which the L-curve lies), so it remains only to show that they are 
equally inclined toward the chord AX. The perpendicular bisector YY′ of this chord is, by 
definition of a horocycle, parallel to the rest of the horocycle’s axes. Thus, AM || YY′ || XX′. 
Hence, X′XA = ∏(XY) = ∏(YA) = MAX. That is, XX′ and AM are equally inclined toward AX, 
so XX′ |||  AM, as was to be shown.         
 

 The converse proposition is essentially a repetition of the last paragraph of the 

recedi

laim 13. Lobachevski’s horocycles are L-curves. 
cycle, and let AM 

.  

auss’ Corresponding Points 

 a brief unpublished note on parallels*, Gauss nearly defined the horocycle. Given two 

                                                

p ng proof. 
 
C
Proof. (See the preceding figure.) Let H be a horo
be one of its axes. We must show that if X is any point on H, then 
XN |||  AM for some ray XX′. Let XX′ be the axis of H emanating 
from X. As axes of the horocycle, XX′ and AM are parallel. To show 
that they are equally inclined toward AX, let YY′ be the perpendicular 
bisector of AB. By definition of a horocycle, YY′ is parallel to the 
axes XX′ and AM. If we let d = AC = AB, then it is clear that 
Thus, XX′ |||  AM, as claimed. Hence, H lies within an L-curve, L. That is, H lies within a 
horocycle L (since we have just proved that L-curves are horocycles). Since one horocycle cannot 
contain another as a proper subset, we have H = L. That is, H is an L-curve, as claimed.   
 

X′XY = ∏(d) = MAY

 
G
 
In

parallel lines AA′ and BB′, Gauss defined A and B to be corresponding points when AB is 

equally inclined toward AA′ and BB′. Since A and B “correspond” precisely when AA′ |||  

BB′, it is easy to reformulate Bolyai’s definition of the horocycle using Gauss’ 

terminology. Given a pencil of parallel lines (i.e. the family of all lines parallel to a given 

line), let us  amplify Gauss’ definition slightly and say that two points correspond with 

respect to the pencil if the line that joins them is equally inclined toward the lines of the 

pencil passing through them. Furthermore, let us adopt the convention that every point 

 
* Gauss, p. 207. 
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corresponds with itself. We may now define a horocycle as the set of all points that 

correspond to some point A with respect to some pencil of parallels. 

 This definition is more concise than either Lobachevski’s or Bolyai’s, but we 

In an oft-quoted letter of March 6, 1832 to Farkas Bolyai, Gauss wrote of János’ 

ould seem then that Gauss was fully aware of the horocycle’s importance in 

                                                

should not be too hasty in praising Gauss for creating it. It is certainly implicit in his 

definition of corresponding points, but Gauss never actually wrote it down; he merely 

defined corresponding points and listed three facts about them without proofs. 

 

 

Appendix, “to praise it would amount to praising myself: for the entire contents of the 

work, the path which your son has taken, the results to which he is led, coincide almost 

exactly with my own meditations which have occupied my mind for from thirty to thirty-

five years. On this account I find myself surprised to the extreme.”* After proceeding to 

offer what János would bitterly describe, twenty years later, as “pious wishes and 

complaints about the lack of adequate civilization,”† Gauss went on to suggest that 

Bolyai replace the “naked symbols” in his work, such as L and F, with descriptive names 

such as paracycle and parasphere respectively - names that he, Gauss, had thought of 

long ago.  

 It w

the new geometry, but the credence that we should give Gauss’ claims for priority has 

long been a matter of debate, exacerbated by the fragmentary nature of the evidence. A 

recent (2004) overview of this vexed question can be found in Jeremy Gray’s appendix to 

G.W. Dunnington’s biography of Gauss‡. Had Gauss already followed the tortuous path 

from corresponding points to non-Euclidean trigonometry (via horocycle and horosphere) 

before reading Bolyai’s work? Perhaps so. On the other hand, the path is neither easy to 

find nor easy to traverse, and even the great Gauss might have passed it by without 

exploring it thoroughly§. 

 
* Gauss, pp. 220-221. Reb Hastrev has written a poem (unpublished) that includes the apposite verses, 
“And what of János Bolyai, who/ With penetrating logic drew/ Conclusions of profound degree/ ‘Praise 
him?’ Gauss cried, ‘I’ll first praise me!’ ” 
† Greenberg, p. 142. 
‡ Dunnington, pp. 461-467. 
§The one note he left on non-Euclidean trigonometry was written after he had read both Bolyai and 
Lobachevski. Significantly, this note was discovered inside of his copy of Lobachevski’s Theory of 
Parallels. (Dunnington, p.186.) 
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 Gauss’ writings mention corresponding points in only one other place – near the 

end of a terse list of nine items* under the heading, “Parallelismus”. The first five 

encompass the definition of, and basic statements about, parallels. The sixth reads: “What 

corresponding points on two parallel lines are.” The seventh and eighth items assert 

properties of corresponding points, and the final cryptic entry reads: “Trope ist die L”. 

Paul Stäckel, who compiled Gauss’ unpublished notes, seems to have interpolated Gauss’ 

probable meaning in brackets for their publication in Gauss’ complete works, where the 

ninth item on the list appears as, “9. Trope ist die L[inie, die von correspondirenden 

Punkten gebildet wird, wenn man alle Parallelen zu einer Geraden betrachtet.]” (“Trope 

is the L[ine formed by corresponding points...]) Stäckel suggests that Gauss compiled the 

list in 1831, prompting Bonola to observe, “It is interesting to notice that Gauss, even at 

this date, seems to have anticipated the importance of the Horocycle. The definition of 

Corresponding Points and the statement of their properties is evidently meant to form an 

introduction to the discussion of the properties of this curve, to which he seems to have 

given the name Trope.” † I propose a simpler explanation: Gauss drew up this undated list 

after reading Bolyai’s work in 1832. In this case, die L would simply refer to Bolyai’s L-

curve, with no interpolation needed. Moreover, it seems more probable that Gauss would 

have switched his allegiance from Paracycle to Trope at some point after his letter to 

Bolyai rather than just before it, since that letter indicates that Bolyai’s L had been known 

privately to Gauss as the paracycle for many years (“vor langer Zeit”). 

                                                 
* Gauss, pp. 208-209. 
† Bonola, p. 74, footnote. 
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Theory of Parallels 32 
 

A circle of increasing radius merges into a horocycle. 
 

When Lobachevski introduced the horocycle in TP 31 with the words, “Grenzlinie 

(Oricycle) nennen wir...” (We shall define a boundary-line (horocycle)...), he offered two 

names for it: the now familiar “horocycle”, with its suggestions of circle-like properties, 

and Grenzlinie, meaning “boundary-line” or “limiting curve”. In his final exposition of 

the subject, Pangeometrie (1855), he combined the circle and limit imagery into a single 

French name, cercle limite*. 

 “Horocycle” has become the standard term, and I have taken the translator’s 

liberty of making exclusive use of it, despite the fact that Lobachevski favors Grenzlinie 

in the German original. Regardless of which name one ultimately settles on, it remains 

important to understand why the alternatives are reasonable. Explaining the sense in 

which the horocycle is a “limiting curve” or “limit circle” was, in fact, Lobachevski’s 

sole purpose for including TP 32 in the present work; its inclusion was not strictly 

necessary from a logical standpoint, as TP 32 is never used in any subsequent 

proposition. 

 Since Lobachevski takes no pains to explain what he means by his phrase “a 

circle of increasing radius merges into a horocycle,” I shall devote a few words to the 

intuitive meaning of this statement before examining its proof. 
 
 
The Intuitive Picture 
 
   Let AC be a ray in Euclidean geometry, and l the 

perpendicular to it that passes through A. Let any point E 

on the ray determine a circle with center E and radius EA. 

As E slides down the ray, its corresponding circle grows. 

Imagine standing at a fixed spot on ray AC, perhaps a few 

                                                 
* Actually, the two images are already combined in “horocycle”, though few would recognize it. Most 
English words with the hor- prefix, such as “horoscope” or “horology”, derive from the Latin hora, 
meaning “hour”, “season”, or “time”. A few, however, such as horizon, come from the Greek horos, 
meaning “boundary.” Lobachevski’s “horocycle” belongs to this category. 
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feet away from A, and looking at line l. Let E be a point between yourself and A. This 

point slides toward you; its corresponding circle grows larger. At first, you are outside of 

the circle and can witness the whole shape growing in front of you, but it soon overtakes 

you. You find yourself within its circumference. The point E passes under your feet and 

continues to recede down ray AC. Most of the circle is now behind your back, and hence 

out of your field of vision. Time passes, and the arc of the circle that remains in sight as 

you look towards l becomes ever flatter. Eventually, you cannot distinguish it from l. 

Curious, you walk toward l to look closer. You find that at points near A, the circle is 

indistinguishable from l, as far as human eyesight can discern. Is this the case all over l, 

or just near A? You walk along l, as if walking up the beach, to investigate. Eventually, 

you reach a point at which you can discern a space between the still-growing circle and 

the line, but on closer examination, you find that the gap is shrinking; after a few 

minutes, it shrinks away to imperceptibility. You walk further along l to find a spot where 

the circle has yet to catch up with the line. You find one, but here too the gap vanishes as 

the circle’s radius increases. No matter how far you walk up l, the circle eventually 

becomes indistinguishable from it. In this sense, the circle of increasing radius in 

Euclidean geometry “merges into” line l.  

 A bit more precisely, but still picturesquely, we can describe this merging 

situation as follows: if we walk along l for a while, stop at an arbitrary point B, and then 

turn 90° to look straight away from l toward the growing circle, then the point F at which 

the increasing circle intersects our line of sight will approach B as the radius of the circle 

increases. 

 Given the same scenario in imaginary geometry, the circle of increasing radius 

will not merge into l. Instead, TP 32 tells us that the circle will merge into the horocycle 

H whose axis is AC. Lobachevski’s proof is essentially a verification of the property 

described in the preceding paragraph, substituting H for l. That is, he proves TP 32 by 

verifying the following: If B is an arbitrary point on H, and F is the point at which the 

line erected perpendicular to H at B meets the growing circle, then F → B as the circle’s 

radius increases. Of course, the line erected perpendicular to H at B is none other than the 

axis of H passing through B (see TP 31 Notes, Claim 10). 

 Before examining Lobachevski’s proof in detail, we make the following 

important observation: Regardless of how large the circle grows, it will never touch the 
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horocycle at any point other than A. (Proof: If the two curves could share another point X, 

then they would have a common chord, the line segment AX. Consider the perpendicular 

bisector of such a chord. It would be parallel to axis AC, by definition of a horocycle. On 

the other hand, Euclid III.1 implies that it would cut AC at the center of the circle. 

Contradiction.)  

 We turn now to the details of Lobachevski’s proof. 

    
 
The Proof 
  
Let AB be a chord of the horocycle. From 
its endpoints, A and B, draw the two axes 
AC and BD; these will necessarily make 
equal angles, BAC = ABD = α, with the 
chord AB (TP 31). From either axis, say 
AC, select an arbitrary point E to be the 
center of a circle. Draw an arc of this circle 
extending from A to F, the point at which it 
intersects BD. The circle’s radius EF will 
make angle AFE = β on one side of the 
chord of the circle, AF; on the other side, it 
will make angle EFD = γ with the axis BD.  
 
 
 These opening sentences merely set the scene that we have already described. In 

particular, axis BD is the perpendicular to the horocycle erected at B. The equality  

BAC = ABD follows from the fact that any two axes of a horocycle H are equally 

inclined toward the chord joining the points at which they intersect H. (Recall that this 

property is part of Bolyai’s very definition of the horocycle.)  
 
 
It follows that the angle BAF between the horocycle’s chord and the 
circle’s chord is BAF = α - β < β + γ – α . From this, it follows that α – β < 
½ γ. 
 
 To establish TP 32, Lobachevski must show that F → B (where F is defined as 

the intersection of the growing circle and the axis BD) as the circle’s radius increases. 

Showing that F → B is clearly equivalent to showing that BAF → 0. Lobachevski 

establishes this latter limit. His first step in this direction is to show that BAF < ½ γ. He 

 153



will then finish the proof by demonstrating that γ → 0 as the circle grows. We may 

establish his preliminary inequality as follows: 
 
 BAF = BAE - FAE = α - FAE 

        = α - AFE (Euclid I.5 on isosceles triangle AFE.) 

        = α – β. 

 Then, since the sum of the angles in ABF is less than π, we have 

 

BAF + AFB + ABF < π. 

 That is,  

(α – β) + (π - β – γ) + α < π. 

 Equivalently,  

(α – β) < π - (π - β – γ) – α. 

 That is, 

(α – β) < γ – (α – β), 

 from which it follows that 

(α – β) < ½ γ, as claimed. 

 

 Having secured the inequality BAF < ½ γ, it remains for Lobachevski to show 

that γ → 0 as the circle grows. He addresses this point next. 
   
 
Now, angle γ will decrease if we move F toward B along axis BF while 
holding the center E fixed (TP 21). Moreover, γ will decrease to zero if we 
move the center E down axis AC while holding F fixed (TP 21, 22). 
 
 
 As the circle grows, point E and point F both move. In turn, their motions alter γ, 

the measure of EFD. Lobachevski’s argument that γ vanishes as the circle becomes 

infinitely large is somewhat objectionable: although the two variables (the locations of E 

and F) are not independent of one another, he analyzes them as though they were. We can 

fix this as follows.  
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 Suppose that, before it begins to grow, the circle is initially centered at E′ and 

initially intersects BD at F′, as shown in 

the figure. Then, as the circle grows, its 

moving center E slides down ray E′C 

while F slides up ray F′B. The motion of 

F makes it clear that AEF will always 

be less than AEF′. Since the latter 

angle vanishes as the circle becomes 

infinitely large (by TP 21), it follows that 

the former angle must do the same. Fina

shall show that γ, the measure of EFD, is always less than the vanishing quantity 

AEF, and hence must itself vanish. 

lly, to conclude this part of the argument, we 

 
Lemma. γ < AEF.  
Proof. We shall show that the alternatives lead to contradictions. 
 First, suppose γ = AEF. Bisect EF at M. By dropping 
perpendiculars MP and MQ to BD and AC respectively, we 
produce congruent triangles FMP ≅ EMQ (by AAS). Hence, 

FMP = EMQ. Let θ be the common measure of these 
angles. Then PME, the supplement of FMP, is π-θ, so that 

PMQ = PME + EMQ = (π - θ) + θ = π. That is, P, M, and 
Q are collinear. Consequently, line PQ is a common 
perpendicular to the parallels BD and AC, which is impossible 
by TP 22. Hence, AEF ≠  γ. 

 Next, suppose that γ > AEF. Draw FG such that 
EFG = AEF. Because FD || AC, line FG must cut AC 

(TP 16) at some point H. Then the exterior angle AEF of 
EFH is equal to EFH, one of its remote interior angles, 

contradicting Euclid I.16. Hence, AEF is not less than γ. 

 Having exhausted the alternatives, we conclude that 
γ < AEF, as claimed.          ■ 
 
Thus, we have demonstrated that γ vanishes as the circle becomes infinitely large. 
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As γ vanishes, so does α – β, the angle between AB and AF. 
Consequently, the distance from point B of the horocycle to point F of the 
circle vanishes as well. 
 
 

 We have already seen that (α – β) < ½ γ. Hence, the growth of the circle causes  

(α – β) to vanish along with γ. That is, BAF vanishes as the circle grows. Since only one 

arm of this angle, AF, moves in response to the circle’s growth, it must approach the 

other arm, AB, if the angle is to vanish. Thus, F → B, as claimed, and the circle of 

increasing radius merges into the horocycle in the sense described above.  
 
 
For this reason, one may also call the horocycle a circle of infinite radius. 
 
 

 The circle approaches the horocycle (its “limiting curve”) as its radius increases 

toward infinity. Thus, by indulging in the traditional “abuse of language” associated with 

limiting behavior, we may say that when the circle’s radius actually is infinite, the circle 

actually is the horocycle. That is, we may view the horocycle as a “circle of infinite 

radius”. 
 
 
 
Circle-like Properties of the Horocycle: A Summary. 
 
Here are five of the most vital facts supporting the interpretation of a horocycle as a circle 

whose center is a point at infinity, and whose “diameters” are its axes. 

 

1. “A circle of increasing radius merges into a horocycle” 

    (TP 32) 

 

2. The perpendicular bisectors of a horocycle’s chords all “meet at a point at infinity”. 

That is, they are parallel to one another. Circles share this property, except that the 

bisectors meet at an ordinary point, not at infinity. 

    (TP 31, Lobachevski’s definition of a horocycle)   

 

 156



3. A horocycle is symmetric about its axes, just as a circle is symmetric about its 

diameters. 

    (TP 31 notes, Claim 4) 

 

4. A horocycle is orthogonal to its axes, just as a circle is orthogonal to its diameters. 

    (TP 31 notes, Claim 10, Corollary) 

 

5. A horocycle is determined by a point at infinity (its center) and one ordinary point (a 

point on its “circumference”), just as a circle is determined by its center and one point on 

its circumference. 

    (TP 31 notes, Claim 9) 

 

 

Two Line-like Properties  
 

Two attributes of horocycles, however, mark them as peculiarly line-like. 

 

1. All horocycles are congruent to one another. 

2. In the presence of the parallel postulate, a horocycle is a straight line. 

 

 Because Euclid constructs all of the geometric figures in The Elements with 

straightedge and compass, the tension in his work derives, in one sense, from the 

seemingly contrary natures of lines and circles - the very exemplars of perfect 

straightness and uniform curvature. One wonders what he would have thought of a curve 

in which those natures intertwine. 
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Theory of Parallels 33 
 
Let AA′ =BB′ = x be segments of two lines that are parallel in 
the direction from A to A′. If these parallels are axes of two 
horocycles, whose arcs AB = s and A′B′ = s′ they delimit, then 
the equation s′=se –x holds, where e is some number 
independent of the arcs s, s′, and of the line segment x, the 
distance between the arcs s′ and s. 
 

 To simplify the somewhat confusing statement of TP 33, we shall introduce some 

new terminology. 
 

Preliminaries: Concentric Horocycles 
   ‘It’s time for definition,’ he said. 
   ‘Then follow my lead,’ I replied. ‘We’ll see if we can reach a satisfactory explanation somehow or other.’ 
         - Plato, Republic, 474c 
 

Recall that a horocycle is determined by two data: a point upon it, and its 

center (intuitively, the center is a point at infinity; formally, it is a pencil 

of parallels – the set of the horocycle’s axes.) Naturally, concentric 

horocycles are defined to be horocycles sharing the same center. In other 

words, two horocycles are concentric if and only if their sets of axes are 

identical.  

 We define the distance between two concentric horocycles to be the length of any 

axis cut off between them; this length does not depend upon the particular axis that we 

choose to measure, as we now demonstrate.  
 
Claim 1. The distance between two concentric horocycles is a well-defined concept, inasmuch as 
it does not depend upon the axis we choose to measure. 
Proof.  Let AA′ and BB′ be segments of axes cut off by 
the same pair of concentric horocycles, as in the figure. 
 We must prove that they have the same length. 
 Every horocycle satisfies the definition of 
Bolyai’s L-curve (TP 31 notes, Claim 13); that is, every 
horocycle has the property that any two of its axes are 
equally inclined toward the chord joining their 
endpoints. 
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 Consequently, B′BA = A′AB and AA′B′ = BB′A′. 
 Erect a perpendicular to AB at its midpoint M. 
 Let N be the perpendicular’s intersection with A′B′. 
 Draw AN and BN. 
 We immediately have NAM ≅ NBM (by SAS). 
 From this, it follows that NA = NB and NAM = NBM.  
 Subtracting equals from equals, we have ( B′BA - NBM) = ( A′AB - NAM). 
 That is, A′AN = B′BN. 
 Consequently, A′AN ≅ B′BN (by AAS). 
 Hence, AA′ = BB′, as claimed.        
 

 TP 33 is a theorem about concentric horocycles. Once we recognize this, we can 

reformulate the statement of the theorem as follows. 
 
TP 33 (Rephrased). Consider two concentric horocycles and two of their 
common axes, AA′ and BB′. If x is the distance between the horocycles, while 
s and s′ are the lengths of their arcs which lie between the axes, as shown in 
the figure, then the three lengths s, s′, and x will be related by the formula 

s′ = se-x, 
where e is a constant whose numerical value is determined by the unit with 
which we measure length: by a suitable choice of unit, we can endow e with 
any value (greater than 1) that we please. (Lobachevski eventually chooses 
the unit of length so that the value of e is the base of the natural logarithm.) 
  

 The most curious feature of this formula is the constant e, whose numerical value 

depends upon the size of our measuring stick. Such constants are unknown in Euclidean 

geometry, but they are actually quite common in spherical geometry. Consider, for 

example, how a spherical triangle’s area and angular excess are related. If our unit is one-

fifth of the sphere’s radius, then the radius is 5 units long, and the area of a spherical 

triangle is given by A = 25 × excess. In contrast, if we take the sphere’s diameter as our 

unit of length, then the radius is ½ a unit long, and the area of a spherical triangle is given 

by A = ¼ × excess. In general, we have A = r2 × excess, where r is a constant whose 

numerical value is determined by the unit with which we measure length. Similarly, the 
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spherical Pythagorean theorem is cos(c/r) = cos(a/r)cos(b/r), where r’s numerical value 

(the length of the sphere’s radius) depends upon our unit of measurement. 

 The existence of a constant whose numerical value is determined by the unit of 

length is therefore not without precedent. However, the comfort afforded by this apparent 

similarity to the tangible world of spherical geometry begins to wear thin when we reflect 

upon a crucial difference: spherical geometry’s ubiquitous r has a natural interpretation as 

the sphere’s radius, but the indeterminate constant of imaginary geometry has no clear 

geometric significance. 

  This unsettling aspect of imaginary geometry may have actually been responsible 

for the lengthy delay in the publication of János Bolyai’s work. On November 3, 1823, he 

wrote to his father, Farkas Bolyai, that he had “created a new and different world out of 

nothing”. In his response, Farkas urged his son to publish his results quickly, arguing that 

“since all scientific striving is only a great war and one does not know when it will be 

replaced by peace, one must win, if possible; for here, preeminence comes to him who is 

first.” His words proved prophetic. When János visited his father in February 1825 to 

discuss his “new world”, hoping that his father would help him get it into print, he was 

disappointed to find, in the words of Jeremy Gray, that “he was unable to convince him, 

worried as he was about an arbitrary constant that entered the formulae his son had 

found.”* Consequently, Bolyai’s work was not published until 1832. During the delay, 

Lobachevski became (in 1829) the first man to publish an account of non-Euclidean 

geometry.  
 
 
A Missing Lemma 
 
We shall need the following plausible result, which Lobachevski assumes without proof.  
 
Claim 2. (“Equal Division Lemma”) Let H and K be concentric 
horocycles. If P0, P1, ... , Pn are equally spaced points on H (so that the 
horocyclic arcs P0P1, P1P2, ... , Pn-1Pn all have the same length), then the 
axes passing through them meet K in points Q0, Q1, ... , Qn, which are 
equally spaced as well. 
 
                                                 
* Gray, János Bolyai. pp. 52-53. 
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Proof.  The symmetry of horocycles about their axes has the following consequence: 
 

For any distinct points A, B, and C of a horocycle, the arcs AC and CB have the same 
length if and only if A and B are swapped by reflection in the axis passing through C. 
 

 We will use this fact to prove our lemma. 
 To begin, we shall show that arcQ0Q1 = arcQ1Q2.  
 By hypothesis, arcP0P1 = arcP1P2. 
 Thus, P0 and P2 are swapped by a reflection in axis P1Q1. 
 Hence, the image of line P0Q0 under this reflection is a line passing through P2. 
 Moreover, since reflection preserves parallelism, the image of P0Q0 must be parallel to 
the image of P1Q1, which is P1Q1 itself. Thus, the reflected image of P0Q0 is a line passing 
through P2 which is parallel to P1Q1. The only such line is P2Q2. Hence, the axes P0Q0 and P2Q2 
are swapped by the reflection. 
 Consequently, points Q0 and Q2 are swapped by the reflection in axis P1Q1. 
 Hence, arcQ0Q1 = arcQ1Q2. 
 Repeating the argument but reflecting in axis P2Q2 shows that arcQ1Q2 = arcQ2Q3. 
 Thus, arcQ0Q1 = arcQ1Q2 = arcQ2Q3. 
 Continuing in this fashion, we obtain arcQ0Q1 = arcQ1Q2 = arcQ2Q3 =  = arcQn-1Qn. 
That is, the points Q0, Q1, ... , Qn are equally spaced along horocycle K, as claimed.    
 
 
Overview of the Proof of TP 33 
 
Before diving into the details of the proof, we shall examine the broad outline of the 

argument, which essentially falls into two steps. 
  
 Step 1 (Definition and arc-invariance of the shrinking factor) 
 
 To project an arc of a horocycle onto an interior concentric 

horocycle, we simply “slide it” down the axes common to the two 

curves. (For example, in the figure at right, arc AB of H projects 

onto arc A′B′ of K.) Accordingly, given a pair of concentric 

horocycles, any arc of the exterior one (such as AB in the figure) 

determines two arclengths: its own (which we shall call s), and the 

arclength of its projection onto the interior horocycle (which we shall call s′). 
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 Individually, the numerical values of s and s′ depend upon the unit of 

measurement, but their ratio (say, s/s′, the bigger to the smaller) does not; it is a pure, 

dimensionless number*. In fact, this ratio is unaffected even by our choice of the arc (AB) 

with which we determine s and s′. In other words, if I select a tiny arc on the outer 

horocycle and divide its length by the length of its projection, I will obtain the same value 

that you will, even if you select an enormous arc for the same procedure. Demonstrating 

this arc-invariance will be the first step of TP 33’s proof.†

 I shall call s/s′, the invariant ratio of arclengths, the expansion factor associated 

with the two concentric horocycles. For, given an arc of the inner horocycle, when we 

multiply its length by the expansion factor, we will obtain the length of its projection onto 

the outer horocycle. Similarly, I shall call s′/s, the reciprocal ratio, the shrinking factor 

associated with the two concentric horocycles. 
 
 
 Step 2 (The shrinking factor varies exponentially with the distance between the 
horocycles) 
 
 The expansion/shrinking factor clearly does depend upon the distance between the 

horocycles. If they are barely separated from one another, then projections will cause 

minimal shrinking or expanding. Because the axes of concentric horocycles draw ever 

closer to one another in the direction of their parallelism (TP 24), distantly separated 

horocycles will have more pronounced expansion/shrinking factors.  

 Since the shrinking factor is a function of the distance between the concentric 

horocycles with which it is associated, we may write s′/s = f(x), for some function f, 

where x represents the distance between the two concentric horocycles (as measured by 

some fixed unit of length). Equivalently, s′ = s·f(x), where f(x) is the shrinking factor 

associated with concentric horocycles separated by distance x. Note that this is very close 

to Lobachevski’s formula, s′ = se-x. Thus, the second step in the proof will be to show that 

f(x) is an exponential function. That is, the shrinking factor varies exponentially with the 

distance between concentric horocycles. We shall do this by demonstrating that f(x) 

                                                 
* For example, if I use inches, I might find s = 18 and s′ = 9, while you, using feet, would find s = 1.5 and 
s′ = 0.75. Although we would disagree on the numerical values of s and s′, we would agree that s/s′ = 2. 
† Since this type of arc-invariance obviously holds when we carry out the same procedure on concentric 
circles, we should not be too surprised to meet it in the context of horocycles, which we think of, after all, 
as circles of infinite radius. 
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satisfies a functional equation whose only solutions are exponential functions. This 

functional equation is well known, but I will record it here as a lemma before examining 

Lobachevski’s proof. 
 
 
A Functional Equation 
 
Claim 3. If f is a continuous function such that f(x + y) = f(x)f(y) for all positive reals x and y, and 
f(0) = 1*, then f(x) = ax, where a = f(1) 
 
Proof. Let a = f(1). For any natural number n, we have 
 f( n) = f(1 + 1 +  + 1) = f(1) f(1)  f(1) =  [ f(1)]n = an ,   
 Thus, for any natural numbers n and m, we have an = f(n) = f(n/m +  + n/m) = f(n/m)m, 
 Hence, f(n/m) =  an / m. That is, f(x) = ax for all rational values of x. 
Since the rationals are dense in the positive reals, f ’s continuity guarantees that f(x) = ax for all 
positive real values of x.          
   
 
The Proof: Step 1 
 
Suppose that n and m are whole numbers such that s:s′ = n:m. Draw a 
third axis CC′ between AA′ and BB′. Let t = AC and t′=A′C′ be the lengths 
of the arcs that it cuts from AB and A′B′ respectively. Assuming that  
t:s = p:q for some whole numbers p and q, we have 
 

s = (n/m)s′    and    t = (p/q)s. 
 
If we divide s into nq equal parts by axes, any one such 
part will fit exactly mq  times into s′ and exactly np times 
into t. At the same time, the axes dividing s into nq equal 
parts divide s′ into nq equal parts as well. From this it 
follows that 

t′/t = s′/s. 
 
Consequently, as soon as the distance x between the horocycles is given, 
the ratio of t to t′ is determined; this ratio remains the same, no matter 
where we draw CC′ between AA′ and BB′. 
 

                                                 
* In fact, f(0) ≠ 0 will suffice for this proof, but we will use this lemma only in cases where f(0) = 1. 
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 As described in the “overview”, the arc AB determines the 

arclengths s and s′. We must show that the ratio s′: s, the shrinking 

factor, is independent of the arc AB. To this end, we take a second arc 

at random (Lobachevski uses AC *), denote its arclength by t, and 

denote the length of the arc it determines on the second horocycle by 

t′. We must prove that t′: t = s′: s. 

 Lobachevski’s argument implicitly involves four cases. He 

explicitly proves the first case, in which s is commensurable with both s′ and t, but trusts 

his readers to supply the details of the remaining three cases (in which s is 

incommensurable with s′, incommensurable with t, or incommensurable with both s′ and 

t.) In fact, Lobachevski’s argument is more involved than necessary. Whether s is 

commensurable with t is an important distinction; whether s is commensurable with s′ is 

irrelevant, as I shall now demonstrate, by proving that t′: t = s′: s in only two cases: 

 
 
Case 1 (s and t are commensurable)
 
 In this case, there are whole numbers p and q such that s = qu and t = pu. 

 Divide AB into q equal arcs of length u, the first p of which 

divide AC evenly. By the equal division lemma (Claim 2), the axes 

passing through the points of division cut A′B′ into q equal arcs, the 

first p of which divide A′C′ evenly. Denoting the common length of 

these arcs by u′, we have that s′ = A′B′ = qu′, and t′ = A′C′ = pu′. 

 Therefore,  t′: t = pu′: pu = u′: u = qu′: qu =  s′: s. 

 That is, t′: t = s′: s, as claimed. 
 

 

 

 

                                                 
* Admittedly, only one endpoint of AC is random, but once we prove that the ratio is the same for arcs with 
one endpoint in common, we can easily extend this to a completely random arc as follows: let GH be any 
arc whatsoever. The ratio is the same for AB and AH, since they have A in common; similarly, the ratio is 
equal for AH and GH, since they have H in common. Thus, the ratio is identical for AB and the random arc 
GH.   
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Case 2 (s and t are incommensurable)
 
 Divide AC into n equal arcs. Let u = t/n denote their length. 
Begin at A and measure off arcs of length u along AB until we 
reach a point X (before B) such that the arc XB has length less than 
u = t/n. Since u measures both AC and AX, these arcs are 
commensurable, and so, by Case 1, we have A′C′ : AC = A′X′ : AX. 
 Now, when n → ∞, we have that (u = t/n) → 0. 
 Thus, X → B, so that A′X′ : AX → A′B′ : AB. On the other 
hand, A′X′ : AX is always equal to A′C′ : AC, which is a constant, so 
we must have A′X′ : AX → A′C′ : AC. 
 These two expressions for the same limit must be equal, so 
we have 

A′B′ : AB = A′C′ : AC. 
 

 That is, t′: t = s′: s, as claimed. 
 
 Thus, we have shown that t′: t = s′: s in any case. That is, the shrinking factor is 

arc-independent, as claimed. This completes this first step of the proof. As discussed in 

the overview, this implies that s′ = s·f(x) for some function f(x), which represents the 

shrinking factor as a function of the distance between two concentric horocycles. 
 
  
The Proof: Step 2 (A se-xy Formula)  
 

From this, it follows that if we write s = es′ when x = 1, then s′=se –x for 
every value of x. 
 

 When Lobachevski writes s = es′ when x = 1, he is effectively defining the 

symbol e as the expansion factor for concentric horocycles separated by one unit of 

distance. (It may be helpful to think of e as shorthand for “expansion” in this context.) It 

is crucial to understand that e, at this point in the argument, has nothing to do with the 

base of the natural logarithm.  

 Thinking of e as an expansion factor reveals why its numerical value depends 

upon our unit of length. If our unit of length is the millimeter, then e is the expansion 

factor between nearly coincident horocycles. Clearly, it will be very close to 1 in this 

case. On the other hand, if we use the light-year as our unit of length, then e may be 

considerably larger than 1. We shall return to the numerical value of e shortly. First, let 
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us prove that f(x), the shrinking factor for concentric horocycles separated by distance x, 

is an exponential function. 
 
Claim 4. Consider two concentric horocycles separated by a distance of x. If s and s′ are 
corresponding arcs on the horocycles (s on the outer, s′ on the inner), then s′ = se-x, where e is the 
expansion factor for concentric horocycles separated by a unit distance. (The numerical value of e 
depends on the unit of length.) 
 
Proof. The figure at right shows at a glance that f(x + y) = f(x)f(y). 
The outer and inner horocycles are separated by x+ y, so an arc of 
length 1 on the outer projects to an arc of length f(x+ y) on the 
inner. Alternatively, the outer arc projects to an arc of length f(x) on 
the middle horocycle, which in turn projects to an arc on the inner 
horocycle of length f(x)f(y). If we equate the two expressions for 
the innermost horocyclic arc, we obtain f(x + y) = f(x)f(y), so by 
Claim 3, f(x) = f(1)x. 
 Since f(1) is the shrinking factor between concentric horocycles separated by one unit, it 
is the reciprocal of e, the expansion factor between such horocycles. That is f(1) = e-1.  
Hence, f(x) = (e-1)x = e-x. Since s′ = sf(x), as we saw in Step 1 above, it follows that s′ = se-x, as 
claimed.            
 
Corollary. Parallel lines are asymptotic (i.e. the distance between them not only decreases, but 
decreases to zero in their direction of parallelism.) 
 
Proof. Regardless of the unit of length, we know that e > 1 since e is an expansion factor. 
 Hence, the formula s′ = se-x implies that s′→ 0 as x → ∞.     
 

It remains only to clarify the meaning of Lobachevski’s e and relate it to the base of the 

natural logarithm. 
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A Unit of Length 
 
We may choose the unit of length with which we measure x as we see fit. 
In fact, because e is an undetermined number subject only to the 
condition e >1, we may, for the sake of computational ease, choose the 
unit of length so that the number e  will be the base of the natural 
logarithm. 
 In addition, since s′ = 0 when x = ∞, we observe that, in the 
direction of parallelism, the distance between two parallels not only 
decreases (TP 24), but ultimately vanishes. Thus, parallel lines have the 
character of asymptotes. 
 
 

 We have tacitly assumed that we have a unit of length with which to measure x, s, 

and s′, but we have never bothered to describe it in any detail. Above, we saw that the 

choice of unit determines the numerical value of the expansion factor, e. Lobachevski 

proposes that we reverse this process and let a number determine our unit of length.  

 Specifically, we may define our unit of length as follows. Let H be a fixed 

horocycle, and let K be a second horocycle superimposed on top of it. Move K away 

from H so that the horocycles remain concentric as the distance between them increases. 

The expansion factor associated with the horocycles is initially 1 (when they are 

coincident), but it increases as they separate. In fact, because the axes are asymptotic in 

their direction of parallelism, the expansion factor increases without bound as the 

distance between the horocycles increases. Hence, at some point, the expansion factor 

will be precisely the base of the natural logarithm (2.71828...). At this moment, we stop 

moving K and take the distance separating the two horocycles to be our unit of length. 

 With this carefully constructed unit of length, the expansion factor e in the 

formula s′ = se-x is in fact the base of the natural logarithm. 
 
 
Notation Variation 
 
Lobachevski’s use of e to represent an indeterminate constant is regrettable. Once we 

decide to arrange matters so that the e in s′ = se-x is the familiar logarithmic base, we are 

apt to forget that we could have endowed it with any other value (greater than 1, of 

course) by choosing a different unit of length. 
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 Lobachevski could have avoided this potential confusion by calling his expansion 

factor e1/k, letting e retain its usual meaning and allowing the parameter k to take any 

positive value. This works because as k varies over the positive reals, e1/k assumes all 

values greater than 1, as the expansion factor should. This convention is neater, since it 

relates the unit length to the value of the parameter k, rather than to the numerical value 

of e.  Viewed from this perspective, the formula in this proposition becomes, in its most 

general form, 

s′ = se-x / k. 

 

Adopting Lobachevski’s choice of unit length is equivalent to setting k = 1. If we retain 

the parameter k instead of fixing its value at 1, we may express subsequent equations in 

more general terms. In future propositions, I shall include footnotes that indicate the form 

that Lobachevski’s equations would take if he had retained the parameter. The extra 

generality manifests itself only in trivial changes in formulae; no new ideas are involved. 

On the other hand, seeing the more general forms reinforces the analogy with spherical 

geometry, whose formulae involve a parameter, r, whose value depends upon the unit of 

length. 
 
 
Asymptotic Triangles 
“One of the most elegant passages in the literature on hyperbolic geometry since the time of Lobachevsky 
is the proof by Liebmann that the area of a triangle remains finite when all its sides are infinite.” 
         - H.S.M. Coxeter*

 
The convention that parallel lines meet one another at an 

ideal point at infinity seems particularly apt in light of the 

asymptotic nature of parallels. It also justifies the notion of 

an “asymptotic triangle”: a triangle with at least one vertex 

at infinity, where two of its sides (two infinitely long, 

parallel sides) meet one another. Such triangles are called 

singly, doubly, or triply asymptotic, according to the number 

of its vertices they have at infinity. 

 

                                                 
* Coxeter, Introduction to Geometry, p. 295. 
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 We name ordinary triangles by listing their vertices 

(such as ABC); by denoting ideal vertices with capital 

omegas (Ω, Ω′, Ω′′, etc.), we can name asymptotic triangles 

in the same way. (See the figures.) 

 I shall indicate a few properties of asymptotic triangles, 

which we will need in order to understand a remarkable proof by 

Gauss that the area of an ordinary triangle in imaginary geometry 

is directly proportional its angle defect. None of this material is 

needed to understand the remainder of The Theory of Parallels; I 

have included it simply because it is too elegant to ignore. 

Accordingly, some of the arguments that I present below are left 

deliberately sketchy, lest the details obscure the large ideas in 

this digression.  
 
Claim 5. Given two rays AB and AC emanating from A, there exists a unique line which is 
parallel to AB in one direction and to AC in the other. 
Proof. Let d be the unique length such that ∏(d) = ½ BAC (such a d 
exists, by TP 23). Let D be the point on the angle bisector of BAC such 
that AD = d. Draw the line l through D which is perpendicular to AD. By 
construction, l will be parallel to AB on one side, and to AC on the other. 
Thus, a line of the sort that we desire exists. If m is another such line, then 
the transitivity of parallelism implies that l and m are parallel to one 
another in both directions, which is impossible (TP 24). Hence, l is the unique line parallel to AB 
in one direction, and AC in the other.          
 

 If we think of the rays AB and AC in the preceding lemma as each “pointing to” a 

distinct point at infinity, we may interpret the lemma as an extension of Euclid’s first 

postulate: there is unique line joining any two points at infinity. Note that this line is 

perfectly ordinary; there is no need to postulate a “line at infinity”, as we do in projective 

geometry. 
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Claim 6. The area of any singly asymptotic triangle is finite.  
Proof (sketch). Let ABΩ be a singly asymptotic triangle. 
Embed it in a doubly asymptotic triangle by extending its finite 
side AB to the ray AB, and drawing the unique line that is 
parallel to AB in one direction and parallel to AΩ in the other (claim 5). Letting Ω′ denote the 
ideal vertex where this line “meets” AB, we have constructed a doubly asymptotic triangle 

AΩΩ′. Let B′ be the point on ray AΩ such that AB′ = AB. From B and B′, drop perpendiculars 
BC and B′C′ to ΩΩ′. Like any bounded figure, the pentagon ABCC′B′ has a finite area. By a 
dissection argument, one can show that the singly asymptotic triangle ABΩ has the same area as 
the pentagon. I shall omit the details of this argument*, and merely present the “picture” of the 
proof (above) discovered by Heinrich Liebmann. 

           ♦ 
 
Corollary 1.  The area of any doubly asymptotic triangle is finite. 
Proof. By dropping a perpendicular from the ordinary (non-ideal) vertex of a 
doubly asymptotic triangle to its opposite side, we decompose it into two 
singly asymptotic triangles, each of which has finite area. The sum of their 
areas is the area of the doubly asymptotic triangle.    

 
Corollary 2. The area of any triply asymptotic triangle is finite. 
Proof. Choose a point on a side of a triply asymptotic triangle. From the 
point, draw a line parallel to the remaining sides. This decomposes the 
triply asymptotic triangle into two doubly asymptotic triangles. Its area is 
the sum of their areas, and so, by Corollary 1, is finite.    
 
                                                 
* They may be found in Coxeter, pp. 295-6. 
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 We typically describe an ordinary triangle by six data: the measures of its three 

tic triangles have two infinite sides and an ideal vertex, and thus 

e datum: the angle at 

s sole

re congruent by AAA (all angles are 0°).  

 

sympt

auss’ Proof: Area and Defect are Proportional 
pare an appropriate reception for the 

- János Bolyai (1851), writing about Gauss’ response to the Appendix in 1832.   

auss’ 1832 letter to Farkas Bolyai concerning János’ Appendix is perhaps best known 

                                                

angles, and the lengths of its three sides. However, each triangle congruence criterion 

requires the agreement of only three of these data (SAS, SSS, ASA, AAS, or AAA in 

imaginary geometry). 

 Singly asympto

can vary in only three of the six data: the two ordinary angles, and their included side. 

Any two of these three will suffice to determine a singly asymptotic triangle up to 

congruence. Intuitively, this is because any two asymptotic triangles have equal 0° angles 

at their ideal vertices. If, in addition, they agree on two other data (AA or AS), we then 

have AAA or AAS, which implies that the triangles are congruent. 

 Similarly, a doubly asymptotic triangle can vary in only on

it  non-ideal vertex. Any pair of doubly asymptotic triangles with equal angles will 

be congruent: they automatically agree on two 0° angles, so the equality of their 

remaining angles yields congruence by AAA. 

 Finally, all triply asymptotic triangles a

 This last fact is quite remarkable: like points, lines, and horocycles, any two triply

a otic triangles are identical save for their location in the plane. Combined with 

Corollary 2, this tells us that all triply asymptotic triangles have the same finite area. 
 
 
G
“... instead of expressing his great joy and interest, and trying to pre
good cause, avoiding all these, he rested content with pious wishes and complaints about the lack of 
adequate civilization.” 
   *

 
G

for its infamous line, “to praise it would be to praise myself.”† Considerably less well 

known is the beautiful proof Gauss sketched in this letter of the fact that the area of a 

triangle in imaginary geometry is directly proportional to its angle defect. The proof 

 
* Greenberg, p. 142. 
† Gauss does offer some relatively selfless praise to Bolyai in his letter (“I...am overjoyed that it happens to 
be the son of my old friend who outstrips me in such a remarkable way.”), but one cannot help wishing that 
he had told him instead what he confided to his friend Gerling, “I consider this young geometer Bolyai to 
be a genius of the highest order.” (Gauss, p.220)  
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sketched in his letter is essentially a list of seven steps, culminating in the desired result*. 

I have amplified Gauss’ argument in the proposition below, following a simple lemma. 
 
Claim 7. If a continuous function f is additive (i.e. if f(x+y) = f(x) + f(y)), then f(x) = kx for some 
real number k.  
Proof.  Let k = f(1). 
 Case 1 (x is a natural number, n)  
f(n) = f(1 + 1 +  + 1) = f(1) + f(1) +  f(1) = k + k+  + k = kn. 
 Case 2 (x is a positive unit fraction, 1/n)  
k = f(1) = f(1/n + 1/n  + 1/n) = f(1/n) + f(1/n) +  + f(1/n) = n f(1/n). 
Hence, f(1/n) = k/n. 
 Case 3 (x is a positive rational number, m/n) 
f(m/n) = f(1/n +  + 1/n) = f(1/n) +   + f(1/n) = m·f(1/n) = m(k/n) = k(m/n). 
 Case 4 (x = 0) 
f(0) = f(0 + 0) = f(0) + f(0). 
Subtracting f(0) from each side yields f(0) = 0 = k0. 
 Case 5 (x is a negative rational number, -m/n) 
0 = f(0) = f(-m/n + m/n) = f(-m/n) + f(m/n). 
Hence, f(-m/n) = - f(m/n) = -k(m/n) = k(-m/n), as claimed. 
 We have now shown that f(x) = kx holds for all rational values of x in the domain of f. As 
a result, it must also hold for irrational values of x as well, by the continuity of f.   
 
 
Claim 8. In imaginary geometry, any triangle’s area is directly proportional to its angle defect. 
Proof.  Let t be the finite area common to all triply asymptotic triangles. 
 The area of a doubly asymptotic triangle is a function of its sole 
non-zero angle, since this angle determines the triangle up to congruence. 
In this proof, it will be more convenient to express this area as a function 
of the supplement of this angle. Thus, if φ is the external angle of a doubly 
asymptotic triangle, we shall denote the triangle’s area by f(φ). Note the 
extreme case f(π) = t. (If the external angle is π, then the internal angle is 
0, in which case the triangle is triply asymptotic, and consequently has area t.) 

 
 

                                                 
* Gauss, pp. 220-223. 
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 We shall now show that f is an additive function. First, we establish additivity in two 
special cases.   
 

Case 1 The figure at left shows that 
f(φ) + f(π - φ) = t, for any φ ≤ π.   (1) 
  
Case 2 The figure at right shows that 

ded φ + ψ ≤ π.      (2) 

produce the right figure, we begin with a doubly asymptotic triangle AΩΩ′ with angle  
 + ψ at A. Draw ray AΩ′′ from A, forming angle π - φ with AΩ. Then  

 can now establish additivity in general*: 

Substituting (φ + ψ) for φ in (1) gives              t = f(φ + ψ) + f(π - φ – ψ). 

aim 7) 
 

tend its sides to three ideal points, Ω, 
′, and

t = A + f(α) + f(β) + f(γ). 

                                                

f(φ) + f(ψ) + f(π - φ – ψ) = t,  
provi

 
(To 
φ
Ω′′AΩ′ = 2π - [(π - φ) + (φ + ψ)] = π - ψ. Finally, Claim 5 allows us to draw the sides ΩΩ′′ and 

Ω′Ω′′ of the triply asymptotic triangle ΩΩ′Ω′′.) 
 
 By combining these two special cases, we

 
 If φ + ψ ≤ π, then (2) gives                               t = f(φ) + f(ψ) + f(π - φ – ψ). 
 
 Equating these two expressions for t yields      f(φ) + f(ψ) = f(φ + ψ). 
 
 Since f is additive, we know that f(x) = kx for some real number k. (Cl
 
 Now, given any triangle with angles α, β, γ, 
and area A, we ex
Ω  Ω′′, and let these points be the vertices of a 
triply asymptotic triangle. (Use Claim 5 to draw its 
sides.) Having embedded our triangle in a triply 
asymptotic triangle†, we express the area of the latter 
in two ways, and obtain the equation 

 
* That is, we can establish that f(φ) + f(ψ) = f(φ + ψ), for all va
π. This last condition reflects the geometric definition of the function f: its argument is a triangle’s external 
angle, and hence must lie between 0 and π. 

 
 

lues of φ and ψ, whose sum does not exceed 

† This construction shows, incidentally, that no triangle in imaginary geometry can have an area that
exceeds t. Thus, the statement, “there exist triangles of arbitrarily large area” is equivalent to the parallel
postulate. 
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 Since t = f(π), we may rewrite this as 
f . 

 k(π - α - β – γ). 
 

 d rectly p aimed.    

One consequence of this relationship between area and angle defect is that 

iangles in imaginary geometry cannot exceed a certain maximum possible area. (Proof: 

rea is

rom this I should almost conclude that the third hypothesis would occur in the case of an imaginary 

t knew that if his “third hypothesis” were true, then all triangles would 

xhibit angle defect, and their defects would be proportional to their areas. In the notes to 

 

   (3) 
 

                                 

(π) = A + f(α) + f(β) + f(γ)
 Because f(x) = kx, this becomes    

kπ = A+ kα + kβ + kγ. 
 Equivalently,            A =

 Therefore, A is i roportional to defect, as cl
 
 
 

tr

A  proportional to defect, and defect can never exceed π, so a triangle’s area can 

never exceed πk, where k is the constant of proportionality.) Interestingly, it can be 

shown that circles do assume arbitrarily large areas in imaginary geometry; consequently, 

imaginary geometry contains certain circles so large that no triangle can contain them. 
 
 
Lambert’s Sphere of Imaginary Radius 
“F
sphere.”  - Lambert*

 

By 1766, Lamber

e

TP 20, we have already seen some of the thoughts that led him to this conclusion. Faced 

with this result, and its jarring corollary that triangles’ areas are bounded by a finite 

constant, Lambert avoided the tempting trap of believing that he had found a 

contradiction in his third hypothesis. Rather, he made the cryptic comment quoted above, 

which seems to suggest that the third hypothesis might describe the geometry of a 

“sphere of imaginary radius”, whatever that might be. 

 Presumably, he was struck by the close relationship between the proportion that 

he had just deduced, which we may express in the form

 
     A = k(π - α - β - γ), 

                
* Rosenfeld, p. 101. 
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where k is an unknown constant, and α, β, γ are the angles of a triangle, and the classical 

 

here r is the radius of the sphere. To make geometric sense, the radius r must be a 

out 

formula from spherical geometry relating a spherical triangle’s angular excess to its area 

     A = r2(α + β+ γ - π),    (4) 
 
w

positive number. However, if we work naively and algebraically, without worrying ab

geometric meaning, we might notice that if we let r be the imaginary number  

k i = k 1−  (for some positive real number k), then formula (4) will be transformed 

into formula (3). 

ceding algebraic “coincidence” hints tantalizingly at a possible connection 

between spherica

 The pre

l geometry and imaginary geometry (glimpsed appropriately enough, 

with the help of imaginary numbers!), but the precise nature of such a relationship, if it 

indeed exists, remains obscure. We shall return to Lambert’s vision of a sphere of 

imaginary radius at the very end of The Theory of Parallels, after Lobachevski’s 

development of imaginary trigonometry. 

 175



Theory of Parallels 34 
 
We define a horosphere to be the surface generated by revolving a 
horocycle about one of its axes, which, together with all the remaining axes 
of the horocycle, will be an axis of the horosphere. 
 

 Just as we can produce a sphere by revolving a 

circle about one of its diameters*, we produce a 

horosphere by revolving a horocycle about one of its 

axes. We shall call this axis the horosphere’s axis of 

rotation. 

 As the generating horocycle revolves about the 

axis of rotation, each of its axes traces out a trumpet-

like cylinder in space. We define all the rays that lie 

upon these cylinders as the horosphere’s axes. (i.e. its “other” axes, besides its axis of 

revolution). Clearly, every axis of the horosphere lies on some line in space, parallel to 

the horosphere’s axis of rotation; conversely, any line in space that is parallel to the axis 

of rotation contains one of the horosphere’s axes. Thus, there is a natural correspondence 

between a horosphere’s axes and the pencil of lines parallel to its axis of rotation. 

 Because of this correspondence, it is tempting to abuse the term “axis”; we will 

generally use it in its strict sense, to refer to the ray whose endpoint lies on the relevant 

horocycle or horosphere, but sometimes we will yield to the temptation and use it in a 

looser sense, to refer to the line containing that ray. The context will always make it clear 

which meaning is meant. 

 In TP 34, Lobachevski introduces the horosphere and proves the remarkable fact 

that its intrinsic geometry is Euclidean. His proof contains many sticky details, its basic 

idea, which follows, is simple. Just as an ordinary sphere has its own intrinsic “lines” 

(great circles), so a horosphere has its own “lines” (horocycles). Just as spherical 

geometry concerns points, “lines”, and circles on a sphere, so “horospherical geometry” 

concerns points, “lines”, and circles on a horosphere. Lobachevski will show that the 

points, lines, and circles of horospherical geometry obey all five of Euclid’s postulates – 

                                                 
* In fact, this is essentially how Euclid defines a sphere in Book XI of the Elements. 
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including the parallel postulate - and therefore obey every theorem of Euclidean 

geometry. This is the sense in which the horosphere’s geometry is intrinsically Euclidean. 

 The bulk of TP 34 is devoted to showing that Euclid’s first postulate (through any 

two points there is a unique line) holds on the horosphere. As we shall see, we have 

already done (in TP 28) most of the work that is needed to secure the parallel postulate. 

Before undertaking a detailed examination of Lobachevski’s proof, we shall establish 

some preliminary propositions, which will help us to gain a better feel for the horosphere. 
 
 
Preliminary Propositions  
  
 We shall often refer to a horosphere by its axis of rotation, as in, the horosphere 

with axis of rotation AA′. To justify this convention, we must prove that each ray AA′ 

determines a horosphere unambiguously. That is, we must prove that ray AA′ is the axis 

of rotation for only one horosphere. 
 
Claim 1. A horosphere is uniquely determined by its axis of rotation. 
Proof. Let AA′ be a ray. By definition, any horosphere with axis of 
rotation AA′ is the result of revolving a horocycle, one of whose axes is 
AA′, about AA′. We must show that all such horocycles generate the same 
horosphere. 

 To this end, let H and K be any two such horocycles. Because each has AA′ as an axis, 
each lies in a plane containing AA′. That is, the planes upon which H and K lie intersect at line 
AA′. Consequently, we may rotate either plane about AA′ to bring it into coincidence with the 
other. Because H and K are symmetric about AA′ (TP 31 Notes, Claim 4), and congruent to one 
another (TP 31 Notes, Claim 5), this rotation will also bring H and K into coincidence. Since 
each horocycle lies in the other’s orbit, they will trace out the same horosphere, which we shall 
call the horosphere with axis of rotation AA′.  
 
 

 Those horocycles that lie on the surface of a horosphere will be of particular 

interest to us. In the geometry of the horosphere, they play the roles of straight lines, as 

great circles do in spherical geometry. To avoid frequent repetition of the awkward 

phrase, “horocycle lying on the surface of the horosphere,” I shall call such horocycles 

surface horocycles.  
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Claim 2. Given any point on a horosphere, a unique surface horocycle passes through it and the 
endpoint of the axis of rotation. (Moreover, the axes of this surface horocycle are axes of the 
horosphere.) 
Proof. Let B be an arbitrary point on the horosphere with axis of rotation AA′. 
 The existence of a surface horocycle through A and B is clear: since 
B lies on the horosphere, it must have been “hit” by the revolving horocycle 
(which always passes through A) that traced the horosphere out. Moreover, 
the axes of such a surface horocycle are clearly axes of the horosphere, by 
definition of the latter. 

 Uniqueness is also simple. The plane containing a surface horocycle through A and B 
must contain ray AA′ and point B. Consequently, the only plane that can contain a surface 
horocycle through A and B is plane AA′B. We know that there is a unique horocycle in plane AA′B 
passing through B, whose “center” is the pencil of parallels that includes AA′. (TP 31 Notes, 
Claim 9). Hence, there is a unique surface horocycle through A and B, as claimed.  
 

Claim 3. The intersection of a horosphere and any plane containing its axis of rotation is a 
surface horocycle, whose axes are axes of the horosphere. 
Proof. Since a horosphere is a surface of revolution, its intersections with any two planes 
containing its axis of rotation will be congruent: we may bring these intersections into 
coincidence with one another via a rotation about the axis. Since the horocycle that generates the 
horosphere obviously arises as such an intersection, it follows that all such intersections must be 
horocycles. The axes of these horocycles are axes of the horosphere, by definition.  
 

Claim 4. If the axis of rotation of a horosphere also is the axis of some horocycle,* then the 
horocycle lies on the surface of the horosphere. (i.e. it is a surface horocycle.)  
Proof. Let AA′ be the horosphere’s axis of rotation, H the given horocycle, and T the plane in 
which H lies. 
 Thus, H is the unique horocycle in plane T which passes through A, and whose “center” 
is the pencil of parallels containing AA′. Since the intersection of T and the horosphere is a 
surface horocycle (Claim 3), which obviously also lies in plane T, passes through A, and has AA′ 
for an axis, this surface horocycle is identical to H, since H is the unique horocycle satisfying 
these conditions. Thus, the given horocycle H is a surface horocycle, as claimed.   
 
                                                 
* Here, we are being strict, thinking of axes not as lines, but rays, whose endpoints lie on their associated 
horocycle/horosphere. 
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 Recall Gauss’ definition of corresponding points with 

respect to a pencil of parallels: A and B are said to be 

corresponding points with respect to a particular pencil of parallel 

lines if the rays of the pencil that emanate from A and B are 

equally inclined to the line segment AB. The definition of 

corresponding points remains the same in three (or even n) dimensions, and provides the 

appropriate language for the following alternate characterization of the horosphere.  

 

 A horosphere is the surface consisting of all points in space that correspond to the 

endpoint of a given ray, with respect to the pencil of lines parallel to that ray. 

  

 The simple proposition that follows will demonstrate that this alternate 

characterization, which is essentially how Bolyai defined the horosphere in his Appendix, 

is equivalent to Lobachevski’s definition.  
 
 
Claim 5. Each point B in space lies on the horosphere with axis of rotation AA′ if and only if B 
corresponds to A, with respect to the horosphere’s axes. 
Proof. ⇒) If B is an arbitrary point on the horosphere, then there is a surface horocycle through 
B and A (Claim 2), whose axes are axes of the horosphere. Since any two points of a horocycle 
correspond with respect to its axes (by Bolyai’s definition of the horocycle), B and A correspond 
with respect to the axes of the horosphere. 

 ⇐) If B corresponds to A, then B lies on the unique horocycle in plane BAA′ that passes 
through A and has axis AA′. By Claim 4, this is a surface horocycle. Thus, B lies on this 
horosphere.            
 
 

 To recapitulate, any ray AA′ determines a unique horosphere, which we may 

characterize in two equivalent ways: 

 1. The surface of revolution (about AA′) generated by any horocycle having ray 

AA′ as an axis. 

 2. The surface consisting of all points corresponding to A, with respect to the 

pencil of parallels to AA′. 
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Towards the Homogeneity of the Horosphere 
 
 In the notes to TP 31, we demonstrated that there is nothing special about a 

horocycle’s generating axis. In fact, any axis of a horocycle can be viewed as its 

generator, since horocycles, like circles and straight lines, are homogenous curves: they 

“look the same” from all of their points. Much of TP 34 is devoted to establishing that the 

horosphere, like a sphere or plane, is a homogenous surface. This is important in its own 

right, and it will help us prove that Euclid’s first postulate holds in horospherical 

geometry. Here too, the key is to show that a horosphere’s axis of rotation is no more 

distinguished than are any of its other axes. 

 Homogeneity is not a surprising property for a “sphere of infinite radius” to 

possess, but it does take a fair amount of work to establish it rigorously. Lobachevski will 

ultimately secure the homogeneity of the horosphere from the following related result: 

every point on a horosphere corresponds to every other point upon it, with respect to the 

horosphere’s axes. Or, as he states it:
 
 
Any chord joining two points of the horosphere will be equally inclined to 
the axes that pass through its endpoints, regardless of which two points 
are taken. 
 
 

It will take several pages to establish this claim. Once we prove it, we will need but a few 

short steps to deduce the homogeneity of the horosphere. Let us now examine 

Lobachevski’s lengthy proof.
 
 
The Long Proof of Homogeneity 
 
Let A, B, and C be three points on the horosphere, where AA′ is the axis 
of rotation and BB′ and CC′ are any other axes. The chords AB and AC 
will be equally inclined toward the axes passing through their endpoints; 
that is, A′AB = B′BA and A′AC = C′CA (TP 31). The axes BB′ and CC′ 
drawn through the endpoints of the third chord BC are, like those of the 
other chords, parallel and coplanar with one another (TP 25). 
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 Lobachevski establishes the setting on the horosphere 

with axis of rotation AA′. Upon this surface, he chooses two 

arbitrary points, B and C. His goal here, and for the next 

several pages, is to show that B and C correspond to one 

another with respect to the horosphere’s axes. To begin, he 

notes that each of these points corresponds to A. (This follows 

from Claim 5.)  

 Since AA′ and BB′ are axes of a horocycle (Claim 2), we have AA′ || BB′. 

Similarly, AA′ || CC′. Hence, BB′ || CC′ by the transitivity of parallelism. Obviously, BB′ 

and CC′ are coplanar, since coplanarity is part of the definition of parallelism. 

 The proof thus far suggests an infinite prism (of the sort 

described in TP 28) within the horosphere, built upon triangle 

ABC; the prism’s three infinitely long edges, AA′, BB′, and CC′, 

are parallel to one another.* To simplify subsequent figures in this 

proof, I shall typically draw the prism alone, as in the figure at 

right. Although I will be omitting the horosphere in the figures, 

the reader should remember that A, B, and C are points on a 

horosphere, whose axis of rotation is AA′.   
  
 
The perpendicular DD′ erected from the midpoint D of chord AB in the 
plane of the two parallels AA′, BB′ must be parallel to the three axes AA′, 
BB′, CC′ (TP 31, 25). Similarly, the perpendicular bisector EE′ of chord 
AC in the plane of parallels AA′, CC′ will be parallel to the three axes AA′, 
BB′, CC′, as well as the perpendicular bisector DD′. 
 
 
 
 
 

                                                 
* If the surface horocycles joining A to B and A to C happen to be identical, then points B and C obviously 
correspond to one another, since they lie on the same surface horocycle. Since the following lengthy 
argument, which is designed to prove that correspondence,  is unnecessary in this “degenerate case”, we 
shall take the trivial proof for this case for granted, and assume hereafter that A, B, and C do not all lie on a 
single surface horocycle. The degenerate case, moreover, would result in a two-dimensional “degenerate 
prism.” By disposing of this case separately, we may safely assume that our prism is a genuine three-
dimensional object. 
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 In the two faces of the prism meeting at AA′, 

Lobachevski constructs DD′ and EE′, the perpendicular 

bisectors of AB and AC, respectively.  

 Because AB and AC are chords not only of the 

horosphere, but also of surface horocycles (Claim 2), their 

perpendicular bisectors must be parallel to the axes passing 

through their endpoints (Lobachevski’s definition of the 

horocycle in TP 31). Thus, DD′ || AA′, CC′ and EE′ || AA′, BB′. Since DD′ and EE′ are 

both parallel to AA′, they are parallel to one another (TP 25). 

 Hence, the five lines, AA′, BB′, CC′, DD′, and EE′, are all parallel. Lobachevski’s 

strategy for showing that B and C correspond to one another is to add yet another line to 

this list: the perpendicular bisector of chord BC, drawn in the remaining face of the 

prism. Once we establish that this bisector is parallel to BB′ and CC′, the desired 

correspondence of B and C will follow easily. However, we shall need to approach the 

prism’s third face in a different manner than the one that we just used for the first two; for 

here, Claim 2 does not apply, so we do not have the luxury of knowing that B and C lie 

on a surface horocycle.  
 
 
Denote the angle between the plane of the parallels 
AA′, BB′ and the plane in which triangle ABC lies by 
∏(a), where a may be positive, negative, or zero. If a is 
positive, draw DF =a in the plane of triangle ABC, 
into the triangle, perpendicular to chord AB at its 
midpoint D; if a is negative, draw DF = a outside the 
triangle on the other side of chord AB; if a = 0, let 
point F coincide with D. 
 
 

 Lobachevski lets ∏(a) denote the dihedral angle 

that the prism’s face AA′BB′ makes with triangle 

ABC. This dihedral angle could have any measure 

between 0 and π. Recalling the graph of function ∏ 

from the notes to TP 23 (at right), we see that 
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 a > 0  ⇔ the dihedral angle ∏(a) is acute. 

a = 0  ⇔ the dihedral angle ∏(a) is right. 

   a < 0  ⇔ the dihedral angle ∏(a) is obtuse. 

 

Whatever the dihedral angle may be, we will have some real number a associated with it. 

Let DF be a line segment of length |a| that lies upon the perpendicular bisector of AB (in 

the plane of ABC). For each nonzero value of a, there are two possible locations for F, 

one on each side of AB. We shall put F on the side of AB that contains the triangle if  

a > 0, and on the other side if a < 0. 

 Although this not clear now, we shall see later that F turns out to be the 

circumcenter of ABC.*  
 
 
All cases give rise to two congruent right triangles, AFD and DFB, 
whence FA = FB. From F, erect FF′ perpendicular to the plane of triangle 

ABC. 
 
 
 The case in which F = D (when a = 0) does not 

yield a genuine pair of congruent triangles, but it still 

exhibits the relationship FA = FB, which is the important 

feature across all three cases. Although FF′ is defined as 

the perpendicular erected from plane ABC at point F, the 

definition of F in terms of a will allow us to prove that FF′ 

is parallel to the five other rays in our picture, a task to 

which we now turn our attention. 
 
 
Because D′DF = ∏(a) and DF = a, FF′ must be parallel to DD′; the plane 
containing these lines is perpendicular to the plane of triangle ABC. 
 
 

                                                 
* Of course, if A, B, and C all happen to all lie on a surface horocycle, then ABC cannot have a 
circumcenter in the ordinary sense (TP 31 notes, Claim 7). Such a configuration, however, corresponds to 
the degenerate case mentioned in the previous footnote, which we have already disposed of; thus, it is 
irrelevant here. 
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 Assuming for the moment that DD′ and FF′ are 

coplanar (we shall prove this shortly), our earlier 

constructions guarantee that they must be parallel to 

one another. Indeed, the blueprint for their construction 

was the very picture of parallels developed in TP 16, 

where Lobachevski introduced the angle of parallelism. 

We have only to verify that F′FD = π/2, and that 

FDD′ = ∏(a). 

 The first equality holds because FF′ is perpendicular to plane ABC, and hence to 

line FD, which lies in that plane. The second holds because ∏(a), the measure of the 

dihedral angle between planes AA′BB′ and ABC, is defined to be equal to the plane angle 

between any two lines of slope that meet on the dihedral angle’s hinge*. DF and DD′ are 

such lines of slope, so FDD′ = ∏(a). 

 It remains to verify that DD′ and FF′ are actually coplanar. In doing so, we will 

need the following useful lemma from solid neutral geometry. 
 
Claim 6 (Perpendicular plane criterion). Given two planes, if one of them contains a line that is 
perpendicular to the other, then the two planes are perpendicular. 
Proof. Let T and S be the planes. Suppose that WX, a line in T, is 
perpendicular to plane S, which it intersects at point X. Let XY be the 
intersection of the two planes. Draw XZ perpendicular to XY in plane S. 
We must show that the dihedral angle between the planes is π/2. 

 Since XZ and XW are lines of slope for this dihedral angle, its measure is equal to WXZ. 
Since WX is perpendicular to plane S, it must be perpendicular to XZ, which lies in S. Thus, 

WXZ = π/2. That is, the planes are perpendicular to one another, as claimed.    
 

 With the help of this lemma, we return to our promised proof that lines DD′ and 

FF′ are coplanar.  
 
 
 
 
 
                                                 
* See the section, “A Dihedral Digression” in the notes to TP 26 (pp. 103 – 104). 
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Claim 7. The lines DD′ and FF′ are coplanar. 
Proof. Let Γ be the unique plane that contains DF and is perpendicular to plane ABC. 
 We shall show that Γ contains both DD′ and FF′. 
 First, we show that plane D′DF satisfies the two conditions that uniquely determine Γ. 
 Since BD is perpendicular to two lines, DF and DD′, that lie in D′DF, TP 11 implies that 
BD is perpendicular to D′DF. Thus, since BD is contained in ABC, Claim 6 tells us that D′DF is 
perpendicular to ABC. Since it contains DF as well, D′DF must be Γ. Thus, DD′ lies in plane Γ. 
 Similarly, plane FF′D contains DF, and it is perpendicular to ABC, since it contains FF′, 
which is perpendicular to ABC, by construction. Hence, FF′D must be Γ. Thus, FF′ lies in Γ.    
 

 Having filled this hole, we now know that DD′ and FF′ are indeed parallel, as 

claimed. Moreover, the plane containing them is perpendicular to plane ABC.  
 
 
Moreover, FF′ is parallel to EE′; the plane containing them is also 
perpendicular to the plane of triangle ABC. 
 
 
 Having shown that FF′ is parallel to DD′, the 

transitivity of parallelism ushers FF′ into our growing list 

of parallels: we now know that AA′, BB′, CC′, DD′, EE′, 

and FF′ are all parallel to one another. 

 Since FF′ and EE′ are parallel, they are necessarily 

coplanar. Because it contains FF′, plane EE′FF′ is, like 

plane DD′FF′, perpendicular to plane ABC, by the 

perpendicular plane criterion.  
 
 
Next, draw EK perpendicular to EF in the plane containing the parallels 
EE′ and FF′.  It will be perpendicular to the plane of triangle ABC (TP 
13), and hence to the line AE lying in this plane. Consequently, AE, being 
perpendicular to EK and EE′, must be perpendicular to FE as well (TP 
11). The triangles AEF and CEF are congruent, since they each have a 
right angle, and their corresponding sides about their right angles are 
equal. Therefore, 

FA = FC = FB. 
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 Here, Lobachevski shows that F is equidistant from the vertices of ABC. 

 He begins by showing that EA ⊥ FE. 

 According to TP 13, when two planes are 

perpendicular to one another, any line that lies in one 

of them and is perpendicular to their intersection will 

be perpendicular to the other plane. Thus, having just 

shown that planes EE′FF′ and ABC are 

perpendicular, we know that EK, which lies in plane 

EE′FF′, is perpendicular to plane ABC. (Incidentally, 

to verify that EK is distinct from EE′, note that 

FEE′ = ∏(EF) < π/2, whereas FEK = π/2.) In particular, EK ⊥ EA, since EA lies in 

ABC. Thus, EA ⊥ EK and EA ⊥ EE′ (by definition of EE′), whence TP 11 implies that EA 

is perpendicular to the plane which contains EK and EE′. Namely, plane EE′F. Thus, in 

particular, EA ⊥ FE, as claimed. 

 From this, the congruence AEF ≅ CEF follows, by SAS. 

 Hence, FA = FC. 

 Combining this with the fact that FA = FB (Lobachevski noted this earlier in the 

proof), we conclude that FA = FB = FC. That is, F is the circumcenter of ABC. 
 
 
In isosceles triangle BFC, a perpendicular dropped from vertex F to the 
base BC will fall upon its midpoint G.  
 

 Let G be the foot of the perpendicular. To see that G is 

the midpoint of BC, simply note that CGF ≅ BGF (by 

RASS - see the notes to TP 10). Consequently, CG = BG. That 

is, G is the midpoint of BC, as claimed.  
 

The plane containing FG and FF′ will be perpendicular to the plane of 
triangle ABC, and will cut the plane containing the parallels BB′, CC′ 
along a line that is parallel to them, GG′. (TP 25). 
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 Since plane FGF′ contains a line, FF′, which is 

perpendicular to plane ABC, these two planes are 

perpendicular to one another, by the perpendicular plane 

criterion (Claim 6). Because planes FGF′ and BB′CC′ 

share at least one point, G, their intersection must be a 

line through that point (TP 25 notes: plane axiom 2). 

Each plane contains one member of a pair of parallels 

(FF′ || BB′), so their line of intersection, which we shall 

call GG′, will also be parallel to the members of this pair 

(TP 25 Notes, Claim 1: “Lobachevski’s Lemma”). 

 Thus, the seven lines AA′, BB′, CC′, DD′, EE′, FF′, and GG′ are all parallel. 
 
 
Since CG is perpendicular to FG, and thus to GG′ as well [TP 13], it 
follows that C′CG = B′BG (TP 23). 
 
 

 Since planes FGF′ and ABC are perpendicular, we 

may apply TP 13 to them: CG lies in plane ABC and is 

perpendicular to the line at which these planes meet, so by 

TP 13, line CG must be perpendicular to plane FGF′. In 

particular, CG is perpendicular to GG′, since it lies in FGF′. 

 Since CGG′ is a right angle and CC′ || GG′, we 

have C′CG = ∏(CG), by the definition of the angle of 

parallelism. Similarly, B′BG = ∏(BG). Finally, because 

equal lengths (CG and BG) have equal angles of 

parallelism, it follows that C′CG = ∏(CG) = ∏(BG) = B′BG. That is, B and C 

correspond to one another with respect to the horosphere’s axes. 

 Thus, after much work, Lobachevski has finally established that any two points on 

a horosphere correspond with respect to its axes. We may now finally demonstrate the 

homogeneity of the horosphere. 
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From this, it follows that any axis of the horosphere may be considered 
its axis of rotation. 
 
 

 The definition of a horosphere suggests that each horocycle has one particularly 

distinguished axis, the axis of rotation, which is more fundamental than the others. We 

have been striving, throughout this long subsection (“The Long Proof of Homogeneity”), 

to build the tools to debunk this false impression. Finally, we can complete the task. 
 
Claim. The horosphere is a homogenous surface.  
Proof. Consider the horosphere with axis of rotation AA′. We know that AA′ determines the 
horosphere (Claim 1).  
 Let BB′ be an arbitrary axis (other than AA′). We want to prove that BB′ also determines 
the horosphere. 
 We know that BB′ determines some horosphere – the horosphere whose axis of rotation is 
BB′. We will prove that this second horosphere is identical to the horosphere with which we 
started (i.e. the horosphere determined by AA′).
 The axes of the two horospheres lie in the same pencil of parallels, since AA′ and BB′, 
their respective axes of rotation, belong to the same pencil of parallels. Consequently, two points 
in space correspond to one another with respect to the axes of the first horosphere if and only if 
they correspond to one another with respect to the axes of the second horosphere. Therefore, we 
will save space below by simply writing that two particular points correspond, without bothering 
to name the axes with respect to which they correspond; such points correspond to one another 
with respect to the axes of both horospheres simultaneously. 

 Since B lies on the first horosphere, we know that every point on the first horosphere 
corresponds to B. Thus, the first horocycle is contained within the second, since the latter is the 
surface consisting of all points that correspond to B (Claim 5). But since all horospheres are 
congruent to one another*, the first horosphere can be contained within the second only if the two 
are identical. Thus, we have only one horosphere after all, which may be determined either by 
AA′ or by BB′. Accordingly, we may consider either of these axes to be the axis of rotation for 
this horocycle. Indeed, since BB′ was an arbitrary axis of the horosphere, we may consider any of 
its axes to be the axis of rotation. 

                                                 
* Because all horocycles are congruent and symmetric about each of their axes, the surface produced by 
rotating any horocycle one of its axes will always “look the same.” That is, all horospheres are congruent. 
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 Since every axis can be considered the axis of rotation, the horosphere “looks the same” 
from each of its axes, regardless of which point it emanates from. Equivalently, it looks the same 
from each of its points, and thus is homogenous, as claimed.     
 

 Thus, like a sphere or plane, the horosphere offers the same vista to any beholder 

who stands upon its surface, regardless of the point upon which he stands. 
 
  
Slices of the Horosphere    
  

We shall refer to any plane containing an axis of a horosphere as a 
principal plane.  The intersection of the principal plane with the 
horosphere is a horocycle; for any other cutting plane, the intersection is 
a circle. 
 

 Here, Lobachevski considers the appearance of all possible cross-sections of a 

horosphere. The crucial distinction is whether the cutting plane is a principal plane (i.e. a 

plane that contains an axis of the horosphere) or not.  
 
Claim 8. The intersection of a horosphere and a principal plane is a surface horocycle. 
Proof. In Claim 3, we showed that the intersection of a horosphere and a plane containing its 
axis of rotation is a surface horocycle. Since we now know that every axis of a horosphere is an 
axis of rotation, it immediately follows that the intersection of horosphere and any principal plane 
is a surface horocycle, as claimed.         

 
Claim 9. The intersection of a horosphere and a non-principal plane is a circle. 
Proof. Let A, B, C be points in the intersection of a horosphere and a non-principal plane. Let 
AA′, BB′, and CC′ be the axes emanating from them. Regarding AA′ as the horosphere’s axis of 
rotation, we may follow the elaborate constructions of Lobachevski’s proof that B and C are 
corresponding points, and preserve his notation as we proceed. In producing the “prism” upon 
triangle ABC, we obtain an axis FF′ that emanates from the circumcenter of ABC, and is 
perpendicular to the cutting plane ABC. 

 When any surface of revolution is cut by a plane perpendicular to its axis of symmetry, 
the resulting intersection is clearly a circle*. This is precisely the situation we have here: since the 
                                                 
* In fact, it is a circle in two senses. It is the set of points in plane ABC equidistant (as measured in the 
plane) from F; it is also the set of points on the horosphere equidistant (as measured along the surface) 
from the point where FF′ intersects the horosphere. 
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cutting plane ABC is perpendicular to FF′, which we shall think of as the horosphere’s axis of 
rotation, it must cut the horosphere in a circle, as claimed.     
 
 A plane section of an ordinary sphere is always a circle, and when the cutting 

plane contains one of the sphere’s diameters, the intersection will be the largest possible 

circle on the sphere’s surface, a great circle. We have now seen that these phenomena 

continue to hold on the sphere of infinite radius, the horosphere. A plane section of a 

horosphere is always a circle; when the cutting plane contains a “diameter”, this circle 

will be as large as the surface of the horosphere allows: it will be a circle of infinite 

radius – a horocycle. Thus, surface horocycles are to a horosphere as great circles are to 

an ordinary sphere. 
 
 
Geometry on the Horosphere 
 

 This analogy brings us to the conclusion of TP 34, where Lobachevski extends 

spherical geometry to spheres of infinite radius – in imaginary space. Just as the “lines” 

of spherical geometry are the largest circles on the sphere’s surface, Lobachevski takes 

the “lines” of the horosphere to be the its largest circles, the surface horocycles. As exotic 

and complicated as the prospect of “horospherical geometry” may seem, the reality is that 

much more startling. Horospherical geometry is Euclidean! 

 To establish this remarkable fact, we must verify that each of Euclid’s five 

postulates for plane geometry – including the parallel postulate - hold on the horosphere’s 

surface. From this it will follow that every logical consequence of those postulates (i.e. 

every theorem of Euclidean geometry and trigonometry) also holds on the horosphere. 
 
 
Any three principal planes that mutually cut one another will meet at 
angles whose sum is π (TP 28). We shall consider these the angles of a 
horospherical triangle, whose sides are the arcs of the horocycles in 
which the three principal planes intersect the horosphere. Accordingly, 
the relations that hold among the sides and angles of horospherical 
triangles are the very same that hold for rectilinear triangles in the 
ordinary geometry. 
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 Euclid’s first two postulates fail spectacularly in spherical geometry. Antipodal 

points are joined by infinitely many “lines”, and line segments can only be extended to 

the finite length of a great circle. Of course, this is to be expected. Euclid designed his 

postulates to capture essential aspects of the vast unbounded plane, not of the bounded 

world of the sphere. Yet this boundedness – the most vital difference between sphere and 

plane - disappears when the sphere’s radius becomes infinite, making the horosphere 

more plane-like than any sphere of finite radius. Indeed, by interpreting “lines” as 

“surface horocycles”, we may easily show that Euclid’s first two postulates hold on the 

horosphere. 
 
Claim 10. Through any two points on a horosphere, there is a unique line (i.e. a unique surface 
horocycle). 
Proof. Let P and Q be two points on a horosphere. Let PP′ and QQ′ be the horosphere’s axes 
passing through them. Since any axis of the horosphere may be considered its axis of rotation, we 
let PP′ play this role. Appealing to Claim 2, we conclude that there is a unique surface horocycle 
joining P and Q, as claimed.            

 
Claim 11. Any line segment (i.e. segment of a surface horocycle) on a horosphere may be 
extended indefinitely. 
Proof. This follows immediately from the fact that horocycles themselves are unbounded.  
 

 Euclid’s third postulate is the “compass postulate”: for any two points P and Q, 

there is a circle centered at P that passes through Q. On an arbitrary surface in space, a 

circle is defined as the set of points at some fixed distance (measured along the surface) 

from some fixed point. With this intrinsic definition of a circle, the third postulate 

automatically holds, in one very trivial sense, on every surface: there is always some set 

of points on the surface that satisfy the definition of the required circle, even if this 

“intrinsic circle” is not an circle in the ordinary sense. For example, the 

“intrinsic circle” on a cube’s surface, centered at the midpoint of one 

edge and passing through the center of an adjacent face, is not circular 

in the ordinary sense; it does not lie in a plane. 

 If this postulate is to have any teeth, it must be more than a mere tautology. Euclid 

implicitly makes some assumptions about his circles. In particular, he assumes that they 
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are closed, continuous curves. Naturally, we must verify such “hidden axioms” as well, if 

we want to be sure that all of Euclidean geometry holds on the horosphere. Fortunately, 

we need not tease out a list of hidden axioms: instead, we can show that the intrinsic 

circles of a horosphere (like the intrinsic circles of a finite sphere) are in fact ordinary 

circles that lie in a particular plane in space; as such, they will possess whatever 

properties with which Euclid unconsciously endowed them. Consequently, we need not 

fear that we have forgotten to verify a hidden axiom. 
 
 
Claim 12. For any points P and Q on a horosphere, there is a circle on the horosphere centered 
at P passing through Q. 
Proof. As discussed in the last paragraph, Euclid’s third postulate is, in one sense, trivially true. 
 Moreover, the horosphere’s intrinsic circles are ordinary 
planar circles as well, which we may demonstrate as follows. 
Consider an intrinsic circle with center P that passes through Q. 
Extend its radius PQ to a diameter QR. Let S be any other of its 
points. Since S obviously cannot lie on diameter QR, which is the unique surface horocycle 
through Q and R (Claim 10), the points Q, R, S must be “noncollinear” (i.e. no surface horocycle 
contains all three of them). It follows that plane QRS cannot be a principal plane: if it were, its 
intersection with the horosphere would be a surface horocycle (Claim 8) containing Q, R, and S. 
Since QRS is a non-principal plane, its intersection with the horosphere is a circle, in both the 
intrinsic and the ordinary planar senses (Claim 9). Thus, we do have a circle (in both senses) 
centered at P that passes through Q, as claimed.       
 
 
 In general, when two curves in space intersect, we define the measure of the angle 

between them to be the measure of the angle between their tangent lines. In the TP 26 

notes, we have seen an equivalent method for the special case of measuring angles 

between the “lines” (great circles) of a sphere. Namely, such an angle has the same 

measure as the dihedral angle between the planes upon which the great circles lie. We can 

extend this alternate method of measurement to the sphere of infinite radius. 
  
 
 
 

 192



Claim 13. The measure of the angle between two surface horocycles equals the measure of the 
dihedral angle between the planes in which the surface horocycles lie. 
Proof. Consider the angle BAC formed by arcs AB and AC 
of two surface horocycles. By definition, this angle is 
measured by the angle between tAB and tAC , the tangents drawn 
to the horocycles at point A. That is, BAC = (tAB , tAC). 
 The principal plane containing horocycle AB (and its 
tangent tAB) is AA′B, where AA′ is the axis of the horosphere 
passing through A. Similarly, AA′C is the principal plane 
containing the horocycle AC and its tangent, tAC. To measure the dihedral angle between these 
principal planes, we must measure the angle between lines of slope that meet at a point on their 
hinge, AA′ (see TP 26 notes: “A Dihedral Digression”). 
 Since horocycles, like circles, have the property that their axes are perpendicular to their 
tangent lines (TP 31 Notes, Claim 10), we have that AA′ ⊥ tAB and AA′ ⊥ tAC . Hence, these 
tangent lines are lines of slope in the planes AA′B and AA′C, respectively. Putting this all together, 
we have 
 
 BAC = (tAB , tAC) 
            = (angle between lines of slope) 
            = (dihedral angle between the principal planes), as was to be shown.  
   
 
 Lobachevski actually defines the angle measure between two surface horocycles 

in terms of the dihedral angle between their principal planes. Lemma 2 assures us that 

this is a perfectly natural definition, as it agrees with the usual definition in terms of 

tangent lines. 

 Regardless of which form of the definition one prefers, it guarantees that the 

geometry of the horosphere inherits Euclid’s fourth postulate (“all right angles are 

equal”) from the geometry of the ambient space in which the horosphere lives, neutral 

solid geometry. 
 
Claim 14. All right angles are equal on a horosphere. 
Proof. Angles on the horosphere are considered “right” if and only if the plane angles between 
their tangent lines are right. Since all right plane angles are equal by Euclid’s fourth postulate 
(which holds a neutral geometry), all right angles on the horosphere are equal.   
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 Since the first four postulates hold on the horosphere, every theorem of neutral 

plane geometry holds there. In particular, we know that in neutral geometry, the parallel 

postulate is equivalent to the statement that the angle sum of all triangles is π. Hence, if 

we can prove that all horospherical triangles have angle sum π, we will know that the 

parallel postulate, and hence, every theorem of Euclidean plane geometry and 

trigonometry, holds on the horosphere. 
 
 
 
Claim 15. The angle sum of every horospherical triangle is π. 
 
Proof. Let ABC be a horospherical triangle. Let AA′, BB′, CC′ 
be the axes emanating from its vertices. 
 Let α, β, and γ be the measures of angles A, B, and 

C, respectively. 
 By Claim 13, these angles have the same measure as 
certain dihedral angles: α equals the measure of the dihedral 
angle between planes BAA′ and CAA′ ; β equals the measure of 
the dihedral angle between planes ABB′ and CBB′ ; and γ equals 
the measure of the dihedral angle between planes ACC′ and BCC′. 

 Hence, α + β + γ, the sum of the three angles in the horospherical triangle, equals the sum 
of the three dihedral angles in the “prism” whose edges are the parallel lines, AA′, BB′, and CC′. 
By TP 28, this sum is π. Thus, every horospherical triangle has angle sum π, as claimed.   
 
 
 The horosphere thus emerges as an unexpected Euclidean oasis in the midst of 

imaginary space. Not surprisingly, Lobachevski adopts this strangely familiar terrain as a 

base camp from which to conduct further explorations of imaginary geometry. In 

particular, he will use the horosphere in the remaining propositions to develop imaginary 

trigonometry.  
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Taming Wild Geometries  
“In this spirit we have sought, to the extent of our ability, to convince ourselves of the results of 
Lobachevski’s doctrine; then, following the tradition of scientific research, we have tried to find a real 
substrate for this doctrine, rather than admit the necessity for a new order of entities and concepts.” 
         - Eugenio Beltrami*. 
 
Imagine the following hypothetical situation. Mathematicians study a system of 

geometric axioms, contrary to Euclid’s own. A series of bizarre theorems – logical 

consequences of these axioms – emerges: all lines in the plane intersect one another; the 

area of the entire plane is finite; and the angle sum of every triangle in the plane exceeds 

π. In the face of such uncomfortable strangeness, one mathematician (a relative of 

Saccheri?) discovers a spurious “contradiction” and dismisses the novel geometry as a 

delusion born of logically inconsistent axioms. However, this alleged refutation is soon 

exposed as wishful thinking, and the irritating geometry remains intact. Years later, 

another mathematician discovers that the counterintuitive results of this infidel geometry 

are not so disturbing after all; rather, they describe the intrinsic geometry of a surface in 

Euclidean space - the sphere (interpreting great circles as lines). The offending system, 

thus provided with “a real substrate”, loses its alien quality. It is accommodated within 

the larger context of Euclidean space, whose geometry remains the geometry of space, 

and everyone lives happily ever after. 

 Lobachevski’s TP 34 presents a parallel version of this fairy tale. Here, we must 

imagine the inhabitants of another planet, who are taught from a young age that 

imaginary geometry (which they simply call geometry) is the only possible geometry. 

Mathematicians in this universe are led to study a system of axioms that imply a host of 

counterintuitive results. For example, contrary to experience, one can prove that parallel 

lines in this bizarre geometry do not draw closer to one another in the direction of their 

parallelism. Indeed, parallelism does not even have a direction! After a period of great 

confusion, an explanation is discovered: these axioms describe the intrinsic geometry of a 

surface that lies in the traditional space of our fathers and our fathers’ fathers. Hence, this 

surface ultimately derives its strange (Euclidean) intrinsic geometry from the way that it 

curves within ordinary space. The Euclidean foe having been thus subdued and 

assimilated into a familiar picture, everyone lives happily ever after in insular bliss. 

                                                 
* Beltrami, p. 7. 
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 A civilization that studied and passed imaginary geometry down through the 

millennia as its sole geometric tradition would thus be able to explain Euclidean 

geometry away, and continue to maintain that imaginary geometry is only true geometry 

of space. But what of our own civilization? Can we save our Euclidean traditions from 

the non-Euclidean heresy by taming Lobachevski’s 

geometry – giving it a concrete interpretation as the 

intrinsic geometry of a surface in Euclidean space? 
 
 In 1868, Eugenio Beltrami came very close*. 

He proved that the intrinsic geometry of any surface of 

constant negative curvature in Euclidean space is a 

faithful model of a portion of Lobachevski’s imaginary 

plane. The so-called pseudosphere (illustrated at right), 

which resembles an infinitely long trumpet, is an 

example of such a surface. Given two points on this (or 

any) surface, the shortest curve on the surface that joins 

them is called a geodesic; in the context of the surface’s intrinsic geometry, such a 

geodesic is defined to be the “line” through those points†. 

 Upon the surface of the pseudosphere, we may fence off an area in which one can 

safely “play” imaginary geometry, as follows: let one of the lines running down the horn 

(starting from the rim, and going to infinity) represent a fence. Let the rim itself be a 

second fence. Imagine a race of tiny two-dimensional creatures who live on the surface, 

but are unable to burrow under it, fly away from it, or pass over its two fences. These 

creatures, if they were geometrically inclined, would find that the geometry of their world 

(whose lines are, naturally enough, its geodesics) is exactly like the geometry of the 

imaginary plane, with the obvious exceptions imposed by the fences: when drawing lines, 

for example, the creatures could not extend their line segments past the fences. 

Consequently, Euclid’s second postulate fails on the pseudosphere‡. 

                                                 
* An English translation of Beltrami’s paper is in Stillwell (pp. 7 – 34). 
† The “lines” of the sphere and horosphere (great circles and surface horocycles, respectively) are the 
geodesics of these surfaces.  
‡ The first fence wards off topological difficulties. With this fence in place, the pseudosphere is 
topologically equivalent to a portion of plane; without the fence, it is topologically equivalent to a cylinder. 
Beltrami circumvented this problem by working with the pseudosphere’s universal cover – a sort of 
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 Beltrami’s success in finding a “real substrate” for non-Euclidean geometry was 

therefore only partial. Nevertheless, this partial success was a crucial step in convincing 

mathematicians that imaginary geometry did somehow partake of “reality”, after all*. 

This was but one of Beltrami’s many achievements in imaginary geometry, where he 

played a vital role both as mathematician and as historian – it was he who rediscovered 

and brought attention to the long-forgotten work of his countryman, Gerolamo Saccheri.  

 Besides his surfaces of constant negative curvature, Beltrami developed still other 

models of imaginary geometry of a somewhat more radical nature, which reside not in 

Euclidean space, but rather in the Euclidean plane. Naturally, one must pay a price for the 

drastic compression that is required to force the entire imaginary plane into the Euclidean 

plane (and sometimes into a finite portion of Euclidean plane!). Namely, distances can no 

longer be measured in the ordinary way: one must use a special “ruler” to extract 

quantitative information from them. Beltrami rarely gets the credit that he deserves for 

these models, which are most commonly called the “Poincaré disc model”, the “Poincaré 

half-plane model”, and “the Klein disc model”, after Henri Poincaré and Felix Klein. 

 In 1901, Hilbert proved that no smooth surface in Euclidean space admits an 

intrinsic geometry that models the entire imaginary plane†. Consequently, the models of 

Beltrami are the best possible: if one insists upon embedding Lobachevski’s plane 

geometry into a familiar Euclidean space, then one must be content with either a partial 

embedding or a warped method of measurement. Beltrami’s partial success was in fact 

the best possible. Although the denizens of a non-Euclidean world can tame Euclidean 

geometry, the reverse is not quite true. Imaginary geometry refuses to be entirely 

domesticated.  
 

                                                                                                                                                 
abstract tissue wrapped infinitely many times about the surface – rather than working with the 
pseudosphere itself. This allows him to extend line segments past the first fence, but the fence at the rim 
remains an intractable problem. 
 
* Actually, this step should have occurred decades earlier. In 1840, Ferdinand Minding published a study of 
surfaces of constant negative curvature in Crelle’s Journal. In this paper, Minding derived the trigonometric 
formulae for geodesic triangles on such surfaces (Minding, pp. 323-327). These are identical to the 
trigonometric formulae for imaginary geometry, which Lobachevski had published three years earlier in the 
same journal (Lobachevskii, “Géométrie Imaginaire”), but no one seems to have connected these two 
pieces at the time. Beltrami, however, does make explicit reference to Minding in the course of his own 
work (Beltrami, p. 18). 
 
† Hilbert, pp. 191-199. 
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The Enigma of F.L. Wachter 
 
Early in 1817, a young mathematician named Friedrich Ludwig Wachter published a 

paper that purported to prove the parallel postulate. The crux of his flawed proof was an 

attempt to establish that every tetrahedron in space has a circumsphere (cf. Farkas 

Bolyai’s proof in the TP 29 Notes that parallel postulate would hold if every triangle in 

the plane had a circumcircle.) 

 In December 1816, Wachter wrote to Gauss, his former teacher, with whom he 

had recently discussed “anti-Euclidean geometry”. In his letter, Wachter claims that the 

surface towards which a sphere of increasing radius tends would support Euclidean 

geometry, even if the parallel postulate were false. Wachter offers no hint of a proof, and 

his words are far from clear, but they can be read as a remarkable, if hazy, anticipation of 

the horosphere. Opinions as the value we should attribute to Wachter’s work vary widely. 
 
 According to Harold Wolfe, 
 

Wachter lived only twenty-five years. His brief investigations held much 
promise and exhibited keen insight. Had he lived a few years longer he 
might have become the discoverer of Non-Euclidean Geometry. As it was, 
his influence was probably considerable. Just at the time when he and 
Gauss were discussing what they called Anti-Euclidean Geometry, the 
latter began to show signs of a change of viewpoint. *

 
 On the other hand, Jeremy Gray, in his appendix to Dunnington’s biography of 
Gauss, writes, 
 

The only hint we have that he [Gauss] explored the non-Euclidean three-
dimensional case is the remark by Wachter, but what Wachter said was 
not encouraging: “Now the inconvenience arises that the parts of this 
surface are merely symmetrical, not, as in the plane, congruent; or, that 
the radius on one side is infinite and on the other imaginary” and more of 
the same. This is a long way from saying, what enthusiasts for Gauss’s 
grasp of non-Euclidean geometry suggest, that this is the Lobachevskian 
horosphere, a surface in non-Euclidean three-dimensional space on which 
the induced geometry is Euclidean. †

 

                                                 
* Wolfe, p. 56. 
† Dunnington, p. 466. 
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 Whatever Wachter may have known or intuited, he had no time to develop his 

ideas. On the evening of April 3, 1817, he left his house to go for a walk, and never 

returned. Kurt Biermann has recently argued (based on letters that Wachter’s father wrote 

to Gauss) that the combined blows of a failed love affair and Gauss’ judgment on his 

attempted proof of the parallel postulate may have driven Wachter to despair and 

suicide.*  

                                                 
* Biermann, pp. 41-43. 
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Theory of Parallels 35 
  

Lobachevski now begins to develop imaginary trigonometry. As promised at the 

conclusion of TP 22, he will derive the formulae of imaginary trigonometry both in the 

plane and on the sphere. This project, the culmination of The Theory of Parallels, 

stretches out over three lengthy propositions. TP 35, the first of the three, is the most 

difficult proposition in the entire work and offers the most virtuosic display of 

Lobachevski’s genius. Within the pages of this proposition, Lobachevski establishes links 

between triangles in the plane, on the sphere, and on the horosphere. He completely 

elucidates the structure of imaginary spherical trigonometry and lays the foundations for 

imaginary plane trigonometry. The conclusion that he reaches in the former setting is 

striking – imaginary spherical trigonometry is identical to Euclidean spherical 

trigonometry. That is, Lobachevski proves that the entire subject of spherical 

trigonometry is part of neutral geometry.    

 As it is easy to get lost in the intricacies of Lobachevski’s arguments in this 

proposition, I have attempted to break it into smaller, more easily digestible pieces. 
 
 
 
Building a Prism / Finding its Dihedral Angles 
 

In what follows, we shall use an accented letter, e.g. x′, to denote the 
length of a line segment when its relation to the segment which is 
denoted by the same, but unaccented, letter is described by the equation 
∏(x )+ ∏(x′) = π/2. 
 
 Lobachevski introduces simple notation with complicated verbiage. It simply 

means that he shall denote the complement of angle ∏(x) by ∏(x′), and vice-versa. 
 
 
Let ABC be a rectilinear right triangle, where 
the hypotenuse is AB = c, the other sides are AC 
= b, BC = a, and the angles opposite them are 

BAC = ∏(α), ABC = ∏(β). At point A, erect the 
line AA′, perpendicular to the plane of triangle 

ABC; from B and C, draw BB′ and CC′ parallel 
to AA′. 
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 Atop ABC, an arbitrary rectilinear right triangle, Lobachevski constructs the by-

now familiar prism. I shall call AA′ the backbone of the prism to emphasize its special 

status in the prism’s design. Erecting it from vertex A rather than from B was a purely 

arbitrary choice, as there is nothing to distinguish these two vertices from each another. 

Lobachevski addresses this asymmetry later in the proposition by building a second 

prism, whose backbone emanates from B. 

 We shall prove an important fact about this prism that Lobachevski uses, but does 

not prove himself. 
 

Claim 1. Angle BCC′ is a right angle. 
Proof. Since the backbone AA′ is perpendicular to ABC by definition, the perpendicular plane 
criterion (TP 34 Notes, Claim 6) tells us that every plane containing AA′ is perpendicular to ABC. 
In particular, we know that plane AA′CC′ is perpendicular to ABC. We shall now use TP 13 on 
this pair of perpendicular planes. 

 Since line BC lies in one of them (ABC) and is perpendicular to the hinge that joins them 
(AC), TP 13 implies that BC must be perpendicular to the other plane in the pair (AA′CC′). Thus, 
BC is perpendicular to CC′, a fortiori. That is, BCC′ is a right angle, as claimed.   
 

 Finally, we note that because Lobachevski has chosen to denote the acute angles 

of ABC by ∏(α) and ∏(β) (rather than α and β), their complements will be ∏(α′) and 

∏(β′), respectively.  
 
 
The planes in which these parallels lie meet one another at the following 
dihedral angles: ∏(α) at AA′, a right angle at CC′ (TP 11 & 13), and 
therefore, ∏(α′)at BB′ (TP 28). 
 
 
We confirm that these dihedral angles are correct: 
 
Claim 2. The prism’s dihedral angles at AA′, CC′, BB′ have measures ∏(α), π/2, and  ∏(α′), 
respectively. 
Proof.  Line AA′ is the hinge between planes AA′BB′ and AA′CC′. Lines AC and AB are lines of 
slope (see TP 26 Notes: “A Dihedral Digression”), so the dihedral angle at AA′ is BAC = ∏(α), 
as claimed. 
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 Since BC  ⊥ AA′CC′ (see the proof of Claim 1), every plane that contains BC is 
perpendicular to AA′CC′ (by the perpendicular plane criterion). In particular, plane BB′CC′ is 
perpendicular to AA′CC′. In other words, the dihedral angle at CC′ is π/2, as claimed. 
 Finally, since the prism theorem (TP 28) tells us that the three dihedral angles sum to π, 
the dihedral angle at BB′ must be π - [(π/2) - ∏(α)] = π/2 - ∏(α) = ∏(α′), as claimed.   
 
 

Right Triangle Transformation #1: From Rectilinear to Spherical 
 
In this section, Lobachevski shows that each rectilinear right triangle gives rise to a 

spherical right triangle, whose sides and angles are determined by the sides and angles of 

the rectilinear triangle from whence it came.  
 
 
The points at which the lines BB′, 
BA, BC intersect a sphere centered 
at B determine a spherical triangle 

mnk, whose sides are mn = ∏(c), 
kn = ∏(β), mk = ∏(a), and whose 
opposite angles are, respectively, 
∏(b), ∏(α′), π/2. 
 
 
Implicitly, Lobachevski takes the sphere’s radius to be the unique value that endows 

every great circle arc with a length equal to the measure of the angle that it subtends at 

the sphere’s center*. Since we will be working with spheres of this particular size 

throughout this proposition, we shall refer them as simple spheres. 

 Since Lobachevski’s sphere is simple, is easy to verify the side lengths of 

spherical triangle mnk. 

 

mn = B′BA = ∏(c);    kn = ABC = ∏(β);    and mk = B′BC = ∏(a). 

                                                 
* Here is an intuitive justification for the existence of such a radius. In any circle of radius r, it is clear that a 
central angle θ cuts off an arc whose length, s, must be proportional to θ. That is, s = f(r)θ, for some 
function f. (In Euclidean geometry, we know that f(r) = r.) Since the circle’s circumference vanishes as its 
radius goes to 0, and becomes arbitrarily large as its radius goes to ∞, it follows that f(r)→0 as r→0, and 
f(r)→∞ as r→∞. Consequently, if we make the natural assumption that f varies continuously as a function 
of r, then we may conclude that there is some value of r for which f(r) = 1. Hence, in a circle with this 
radius, s = θ. By taking this radius as the radius for our sphere, we obtain the desired property that great 
circle arcs have lengths equal to the central angles they subtend.   
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  Next, we verify the angles in spherical triangle mnk. 

 The angle at vertex k (i.e. the angle opposite side mn) is measured by the dihedral 

angle between the planes containing its arms, kn and km (see TP 26 notes, Claim 2). This 

is, of course, the dihedral angle at BC, between planes ABC and BB′CC′. Since CC′ and 

CA are lines of slope for it, the measure of this dihedral angle is C′CA = ∏(b). Thus, 

the angle of spherical triangle at vertex k is ∏(b), as claimed. 

 Similarly, the angle at m (i.e. the angle opposite side kn) is equal to the dihedral 

angle of the prism at BB′. This dihedral angle is ∏(α′), as was shown above. 

 Finally, the angle at n (i.e. the angle opposite side mk) is equal to the dihedral 

angle between planes AA′BB′ and ABC, which is π/2: these are perpendicular planes by 

the perpendicular plane criterion, since the former plane contains a line (AA′) that is 

perpendicular to the latter plane. 
 
 
Bracket Notation for Right Triangles 
 
Suppose we have a right triangle whose legs are a and b, whose hypotenuse is c, and 

whose respective opposite angles are ∏(α), ∏(β), and π/2. If we look down at the plane 

in which the triangle lies, and read its side lengths, beginning with the hypotenuse, and 

proceeding counterclockwise around the triangle, we will say either “c-a-b” or “c-b-a”, 

depending upon the triangle’s orientation. A “c-a-b triangle” and a “c-b-a triangle” are, 

of course, congruent by the SSS criterion, but they are not directly congruent: before 

sliding them into coincidence, one would need to flip one of the triangles over. 

 In much of what follows, the orientations of triangles will be important, so we 

shall introduce notation that indicates not only the sides and angles of a right triangle, but 

its orientation as well. Specifically, 

 

 The “bracket notation” [a,b,c; ∏(α),∏(β)] denotes a right rectilinear triangle, 

whose legs are a, b, whose hypotenuse is c, whose opposite angles are ∏(α), ∏(β), and 

π/2, respectively, and whose sides appear (from above) in the counterclockwise order  

a-b-c. (Note that the hypotenuse is written last among the sides.) 
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 When the right triangle lies upon a simple sphere, we shall use braces instead of 

brackets, and we shall order the sides (still cyclic and counterclockwise, with hypotenuse 

last) as they appear from the center of the sphere upon which the triangle lies. 

 
 
Thus, the existence of a rectilinear triangle with sides  a, b, c  and 
opposite angles ∏(α), ∏(β), π/2 implies the existence of a spherical 
triangle with sides ∏(c), ∏(β), ∏(a) and opposite angles ∏(b), ∏(α′), π/2. 
 
 
 Translating this statement into bracket notation, we can summarize Lobachevski’s 

first triangle transformation as follows: 

 

[a,b,c; ∏(α),∏(β)] 

(a); ∏(b), ∏(α′)}.  

e can

→S)             [R1, R2, R3; R4, R5] → {∏(R3), R5, ∏(R1); ∏(R2), π/2 - R4}.  

or the sake of brevity, we shall refer to this transformation of a rectilinear right triangle 

few such rules, we shall combine them with blithe 

turns a rectilinear right triangle into a spherical right 

  ⇒ {∏(c), ∏(β), ∏

                                                    

W  rewrite this transformation in 

an equivalent form, which is easier to 

use when we wish to apply it to a 

triangle “in the wild.”  

 

(R

 

F

to a spherical right triangle as “the R→S transformation.” We shall derive several other 

such transformation rules shortly. 

 Once we have secured a 

algebraic abandon (see Claim 4, below) and derive a further transformation that can look 

mysterious if one has forgotten the geometric subtleties underlying the formal 

transformation rules. Lest this occur, I shall recapitulate the geometric aspect of the R→S 

transformation before moving on. 

 The R→S transformation 

triangle as follows. The given rectilinear triangle becomes the base for an infinite prism, 

while one of its vertices becomes the center of a simple sphere. Three edges of the prism 

 204



meet at this vertex; the points where they (or their extensions) pierce the sphere become 

the vertices of the resulting spherical triangle. More specifically, if we express the 

rectilinear triangle in bracket notation, then the R→S transformation requires us to erect 

the prism’s backbone at the vertex lying opposite the side that occupies the bracket’s first 

slot. (Similarly, the sphere will be centered at the vertex lying opposite the side that 

occupies the bracket’s second slot.) This particular detail – a manifestation of the 

asymmetry in the prism construction - is easy to overlook, but it will have an important 

consequence in Claim 4. 
 
 

Right Triangle Transformation #2: From Spherical to Rectilinear 

e 

 Lobachevski asserts that the R→S transformation is invertible, but leaves the 

onstruction. (S→R transformation) 

onsider a right (simple) spherical 

gle have length less than 

construct ABC in plane Bnk, which we shall refer to as “the equatorial plane.” 

 
onversely, the existence of such a spherical triangle implies thC

existence of such a rectilinear triangle. 
 
 

details to his reader. I shall carry these out, showing that a right spherical triangle mnk 

{∏(c), ∏(β), ∏(a); ∏(b), ∏(α′)} whose legs are both less than π/2 in length, implies the 

existence of a right rectilinear triangle ABC [a,b,c; ∏(α),∏(β)]. I shall do this in two 

steps: first, I shall describe how to “build” ABC; second, I shall prove that its bracket 

notation assumes the required form. 
 
C
 
C
triangle with bracket notation 
{∏(c), ∏(β), ∏(a); ∏(b), ∏(α′)}. 
Assume further that both legs of 
the trian

π/2. Call the triangle mnk, where 
n denotes the right angle, and k 
denotes the angle whose measure 
is ∏(b). 
 
We shall 
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Let B be the sphere’s center.  
Let C be the unique point on ray Bk such that BC = a.*

 in the equatorial plane. It will intersect ray Bn at some point†. Call 
o prove that it has the required bracket 

basic 

symmetry. Just as the R→S transformation “favors” one of a given rectilinear triangle’s 

laim 3

      
= b, B = ∏(β), and A = ∏(α). 

reat circle arc nk subtends a central angle that 

    
                                                

From C, erect a perpendicular
it A. We have now constructed ABC. It remains t
representation. We shall do this shortly.       ♦ 
 
 Note that this transformation has, like the R→S transformation, a 

a

two acute angles (by making it the site at which the prism’s backbone is erected), the 

S→R transformation favors one of the two legs of the right spherical triangle (by making 

its plane that in which the rectilinear triangle is constructed.) By favoring the other 

vertex/side in either of these transformations, we would obtain a completely different 

triangle. This asymmetry is something to keep in mind, as it will return later in the 

proposition. 

 We shall now demonstrate that our new transformation works as advertised. 
 
C . The S→R transformation just described accomplishes the following:  
 
{∏(c), ∏(β), ∏(a); ∏(b), ∏(α′)} ⇒ [a,b,c; ∏(α), ∏(β)]. 
 
Proof.  In ABC, we must show that BC = a, AB = c, AC 
 One side and one angle are easy to verify. 
 Side BC  has length a (by design). 
 Angle B has measure ∏(β) (because the g
is equal to its own length). 

 
* The assumption about the triangle’s legs implies that the hypotenuse ∏(a) must also be less than π/2. 
(Convince yourself of this by contemplating the figure until it becomes obvious that k must be nearer to m 
than to the North Pole.) Hence, a must be positive. Were ∏(a) greater than π/2, a would be negative, in 
which case we could not construct C and the argument would founder. This is why we assume that the legs 
are less than π/2. 
 
† Proof: By definition of angle of parallelism, a ray emanating from B will cut the perpendicular if and only 
if the angle that it makes with BC is less than ∏(a). In particular, ray Bn and the perpendicular will meet if 
and only if nBC < ∏(a). On right triangle mnk, ∏(β) is a leg, while ∏(a) is the hypotenuse, so we have 
that ∏(β) < ∏(a). Since the sphere is simple, nBC =  nk = ∏(β). That is, nBC = ∏(β) < ∏(a), so the ray 
and the perpendicular meet, as claimed. 
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 To verify the remaining three data requires more work. We begin by constructing a prism 
upon ABC as follows. Draw ray Bm, and rename it BB′. In plane BB′C, draw CC′ ⊥ BC. This 

 will be parallel to BB′, since C′CB = π/2, B′BC = ∏(a), and BC = a. Finally, draw AA′ line
parallel to BB′ and CC′, completing the prism. In fact, we can prove that AA′ is the backbone of 
this prism: that is, AA′ is perpendicular to plane ABC*. Once this is established, we can verify the 
three remaining data in ABC. 
 
 Side AB has length c. 
 Proof: Since AA′ || BB′, A′AB = π/2, and B′BA = ∏(c), this follows from the definition 

f angle of parallelism.  o
 
 Side AC has length b. 
 Proof: Since AA′ || CC′ and A′AC = π/2, the result will follow if we can show that 

C′CA = ∏(b). To this end, we measure the dihedral angle at BC in two different ways. First, 
ecause  as angle mkn in the spherical triangle (TP 26 Notes, Claim 2), 
s meas

b  it has the same measure
it ure is ∏(b). Second, because it has lines of slope CC′ and CA, its measure is also equal to 

C′CA. Consequently, C′CA = ∏(b), so AC = b, as claimed. 
 
  Angle BAC has measure ∏(α). 
  Proof: BAC has the same measure as the dihedral angle at AA′, since AB and AC are 

nes of slope. Thus, by the prism theorem (TP 28), we have 
le at BB′) – (dihedral angle at CC′). 

same measure as angle nmk in the 
spherical triangle. lane AA′CC′ (by 

perpendicular plane criterion). That 

′ ) 

                                                

li
BAC = π - (dihedral ang

 These last two dihedral angles are easy to determine. 
 The dihedral angle at BB′ is ∏(α′), since it has the 

 Since BB′CC′ contains a line, BC, which is perpendicular to p
TP 11 / Euclid XI.4), it follows that BB′CC′ ⊥ AA′CC′ (by the 
is, the dihedral angle at CC′ is π/2. 
 Hence,   BAC = π - (dihedral angle at BB′) – (dihedral angle at CC′) 
   = π - ∏(α′ ) - π/2 
   = π/2 - ∏(α

   = ∏(α), as claimed. 

 
* Proof: Spherical angle mnk = π/2 has the same measure as the dihedral angle between the planes AA′BB′ 
and ABC (TP 26 Notes, Claim 2). That is, AA′BB′ ⊥ ABC. Since a line in ABC (namely, BC) is 
perpendicular to plane AA′CC′ (TP 11 / Euclid XI.4), the perpendicular plane criterion implies that ABC ⊥ 
AA′CC′. Because planes AA′BB′ and AA′CC′ are both perpendicular to ABC, their line of intersection is also 
perpendicular to ABC (Euclid XI.19 – a neutral theorem). That is, AA′ ⊥ ABC, as claimed. 
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 Thus, we have verfied that the parts of ABC have the measurements that we claimed. 
∏(α′)} ⇒ [a,b,c; ∏(α),∏(β)], which was to be shown. 

n 

the transformation with completely general symbols in the five slots of the spherical 

↔S Transformations: 

ounts to discovering relations among the parts 

i’s generic triangle is  

ABC [a,b,c; ∏(α), ∏(β)]. Every right rectilinear triangle admits bracket notation of this 

herical 

 That is, {∏(c),∏(β),∏(a); ∏(b), 
 

 Since not every spherical right triangle that we meet will have its bracket notatio

already expressed in the form {∏(c),∏(β),∏(a); ∏(b), ∏(α′)}, it will be useful to rewrite 

triangle’s bracket notation:  
 

(S→R)                 {S1, S2, S3; S4, S5}⇒ [∏-1(S3), ∏-1(S4), ∏-1(S1); π/2 – S5, S2]. 
 
 
In Praise of R
Linked Generic Triangles Yield Two Trigonometries 
 
Developing trigonometry in the plane am

of a generic right rectilinear triangle. Lobachevsk

form, since every acute angle is the angle of parallelism for some length (TP 23). 

 The right spherical triangle, mnk {∏(c), ∏(β), ∏(a); ∏(b), ∏(α′)}, is almost, but 

not quite, generic. Because, as noted in the preceding construction, we have implicitly 

assumes that mnk’s legs are less than π/2, mnk is actually the generic right sp

triangle whose legs are less than π/2 in length. Nonetheless, this caveat is of minor 

importance, for once we have found the trigonometric relations for mnk, a simple 

argument will extend them to all right spherical triangles. Hence, we are justified in 

thinking of mnk as the generic right spherical triangle, and in thinking of the  

R↔S transformations as the links between generic right triangles in the plane and on the 

sphere. 
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 This link between the generic triangles ABC and mnk is an extraordinarily 

powerful tool. Because the parts of the two triangles are so closely related, every 

 Transformation #3: Reflection (Orientation Reversal) 

 a great 

ircle) yields a new triangle, which is congruent to the original, but with reversed 

; R5, R4],   
5, S4}.  

 last two 

s well. Geometrically, the two triangles in the O-transformation are mirror images of 

 

 triangle also implies the 
 sides a, α′, β and opposite 

∏(b′), ∏(c), π/2. 

s his fourth transformation by applying the first three 

ccessively to a given rectilinear triangle. That is, given a rectilinear triangle, he first 

converts it into a spherical triangle (using the R→S transformation), then changes the 

trigonometric relationship that we discover for spherical right triangles will immediately 

yield a dual version for rectilinear right triangles, and vice versa. By exploiting this 

duality, Lobachevski is able to develop trigonometry in the plane and on the sphere 

simultaneously. 
  
 

leRight Triang
 
Reflecting a rectilinear triangle in a line (or reflecting a spherical triangle in

c

orientation. We can capture this geometric operation with a particularly simple bracket 

transformation rule, which applies both to rectilinear and spherical right triangles. We 

shall call it the “O-transformation”, for orientation reversal. 
 
(O)            [R1, R2, R3; R4, R5] ⇔ [R2, R1, R3

               or      {S1, S2, S3; S4, S5} ⇔ {S2, S1, S3; S
 
That is, we swap the first two symbols within the brackets/braces, and swap the

a

one another; the existence of one obviously implies the existence of the other. 
 
 

ight Triangle Transformation #4: Lagniappe   R
 

Indeed, the existence of such a spherical
xiste ce of a second rectilinear triangle, withe n

angles 
 Hence, we may pass from  a, b, c , α , β to  b, a, c, β, α,  and to   
a, α′, β, b′, c,  as well. 
 
 

Lobachevski obtain 

su
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orientation of the resulting spherical triangle (O-transformation), and finally, turns the 

result back into a rectilinear triangle (S→R transformation). 

 One might guess that the first and third steps would cancel one another out, 

reducing this overall process to a roundabout application of the O-transformation. In fact, 

this is not the case at all. Instead, this composite transformation turns [a,b,c; ∏(α),∏(β)] 

to [a

)                 [a,b,c; ∏(α),∏(β)] ⇒ [a, α′, β; ∏(b′), ∏(c)]. 

α), ∏(β)] ⇒ {∏(c), ∏(β), ∏(a); ∏(b), ∏(α′)}.     (by R→S) 
(by O) 

           ⇒  [a, α′, β; ∏(b′), ∏(c)]   (by S→R)   

nigmatic geometrically. Why does it 

t me

linear triangle. At first glance, one might assume that this 

re this the case, then the L-transformation would amount 

-transformation. What happens in that last step? 

in , α′, β; ∏(b′), ∏(c)], which is clearly not a mere reflection of the original triangle. 

We shall call this process, which changes a rectilinear triangle into a second rectilinear 

triangle, the “L-transformation.” (L is for Lobachevski or Lagniappe.) 
 
Claim 4. (L-transformation) The existence of one rectilinear triangle immediately implies the 
existence of another: 
(L
 
Proof.      [a, b, c ; ∏(
    ⇒ {∏(β), ∏(c), ∏(a); ∏(α′), ∏(b)}    
 
 
 The L-transformation is easy 

to deduce algebraically, but remains 

e

no rely change the orientation of 

the original triangle? To better 

understand the question, consider the 

figure at right, which shows all but the 

last step of the L-transformation: we 

begin with 1, convert it to a spherical 

triangle, 2, and then apply the 

O-transformation to the result, 

yielding 3. To complete the 

L-transformation, we need 

only convert 3 back into a recti

will turn 3 into A′′BC, but we

to nothing more than the humble O
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 The answer lies in the asymmetry of the R↔S transformations. In the last step, if 

the S→R transformation had “favored” the leg of 3 that lies in plane ABC, then it would 

indeed turn 3 into A′′BC. However, it favors the other leg, with the result that we 

 

he four transformations that we have seen yield not only new triangles, but also new 

iangles are linked by a 

erical trigonometry. Applied to the L-transformation, 

f theorems about rectilinear triangles. To demonstrate 

use is the longer than either leg. 

P 9 to ABC yields a <  c. Applying the L-transformation to ABC yields a 
ading 

is as a statement about the parts of ABC, we obtain the following “bonus” dual theorem: 

 obtain results that 

obtain another rectilinear triangle altogether. 

 Finally, we note in passing that the L transformation is its own inverse. 
 
 

In Praise of the L-transformation: New Trigonometric Relations from Old
 
T

trigonometric relations. If two 

tr

transformation, then any relation 

among the parts of one triangle 

immediately yields a relation 

among the parts of the other 

triangle as well. Applied to the R↔

development of rectilinear and sph

this duality leads to a doubling o

this theorem doubling in an easily understood setting, we offer the following simple (and 

mathematically insignificant) example.  
 
 Example. 
 (TP 9) In any rectilinear right triangle, the hypoten

S transformations, this duality leads to a simultaneous 

 
 Applying T
second triangle, XYZ [a, α′, β; ∏(b′), ∏(c)]. Applying TP 9 to XYZ yields a <  β. Re-re
th
  
 (TP 9 – dualized) A leg of any rectilinear right triangle is shorter than that length whose 
angle of parallelism is  equal to the acute angle adjacent to that leg.   ♦ 

 
 The particular dualized theorem in this example is of little consequence, but the 

process by which we obtained it is not. Because we shall soon use it to
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are more significant, we shall recapitulate the technique, and state an algebraic shortcut 

apply the L-transformation to the triangle, interpret the trigonometric 

lationship on its image [a, α′, β; ∏(b′), ∏(c)], and finally, reinterpret the result as a 

 [a, α′, β; ∏(b′), ∏(c)]. 

ach ∏(β) with ∏(c). 
  

obachevski has already established links between right plane triangles and right 

otential 

 use the Euclidean trigonometry of horospherical triangles to discover trigonometric 

ls produce 
A = r and 

∏(α′), ∏(α), π/2. 

for carrying it out. 
 
 Given a trigonometric relationship that holds on our generic right rectilinear 

triangle ABC, we 

re

second relationship on the original triangle. 

 Formally, we obtain the second relationship by substituting the symbols that 

occupy corresponding bracket slots of the L-transformation, 

[a,b,c; ∏(α),∏(β)] ⇒

That is, we can dualize any trigonometric relation on ABC by replacing each b in the 

relation with an α′, each c with β, each ∏(α) with ∏(b′), and e

 

Right Triangle Transformation #5: From Rectilinear to Horospherical 
 
L

spherical triangles. Linking these to right horospherical triangles gives him the p

to

relationships that govern triangles (plane and spherical) in imaginary space. 
 

 If the horosphere through A with axis AA′ cuts BB′ and CC′ at B′′ 
and C′′, its intersections with the planes formed by the paralle
 horospherical triangle with sides B′′C′′ = p, C′′A = q, B′′a

opposite angles 
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 If we think of the plane in which ABC lies as a vast tabletop, and ABC itself as 

a triangle drawn upon it, then we may describe Lobachevski’s method for transforming 

ABC into a horospherical triangle as follows:  

 First, place a horosphere on the table; position it so that their point of contact is at 

the vertex A. Next, draw AA′ perpendicular to the table, and then draw rays BB′ and CC′ 

parallel to AA′. Finally, slide points B and C up their respective rays, like beads on 

strings, until they meet the horosphere; let B′′ and C′′ be the names of the points at which 

they meet the horosphere. We have thus “projected” the rectilinear triangle ABC onto 

the horosphere, producing the horospherical triangle AB′′C′′. 

 

CC′, respectively, which are ∏(α), 
(α′) and π/2, respectively, by Claim 2.   

p, q, and r relate to the measurements of the 

 how they relate to one another. 

   and    q = rcos∏(α). 

 Since we currently lack the means to describe the side lengths of AB′′C′′ entirely 

in terms of the sides and angles of ABC, Lobachevski simply calls them p, q, and r for 

now, as depicted in the figure above. 

 In contrast, the angles of the horospherical triangle are easy to determine.  
 
 
Claim 5.  Angle C′′AB′′ = ∏(α),  AB′′C′′ = ∏(α′), and B′′C′′A = π/2. 
Proof. Any angle of any horospherical 
triangle has the same measure as the 
dihedral angle between the planes in 

which its arms lie (TP 34 Notes, Lemma 
2). Thus the angle of the horospherical 
triangle at A, B′′, and C′′ are measured by
the prism’s dihedral angles at AA′, BB′, 
and 
∏
 
 

 Although we do not yet know how 

plane triangle ABC, we do at least know
 
 
Consequently (TP 34), 
 

p = rsin∏(α)
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 These follow directly from the formulae of Euclidean trigonometry, which hold 

n the horospherical triangle AB′′C′′. Writing  p and q in terms of r (and ∏(α), which is 

lso an

 the first four, 

nce we have not succeeded in expressing the sides of the image triangle (on the 

of the original triangle’s sides and angles, yet this 

ansformation represents our fi t will eventually lead us 

 the trigonometric formulae that we seek. 

 this polished diamond then yields four more 

igonometric relations. Collectively, I call the five relations “the five gems”. 

he trigonometric relations that hold in the absence 

f the parallel postulate, both in the plane and on the sphere. Extracting all of imaginary 

                                                

o

a  angle in ABC) effectively reduces our unknowns on the horospherical triangle 

by two-thirds. This triangle transformation may seem less satisfying than

si

horosphere) as functions 

tr rst step down the winding path tha

to
 
 
The Winding Path: An Overview 
 
 The path proceeds roughly as follows. Using the rectilinear-to-horospherical 

triangle transformation, we shall establish a bizarre-looking equation that expresses a 

relationship among a motley group of geometric quantities*. I call this the “diamond on 

the rough”, for by polishing this equation diligently, we will eventually produce our first 

trigonometric relationship. 

 Applying triangle transformations to

tr

Remarkably, these will generate all of t

o

trigonometry from them does take some work, however. Lobachevski begins this work by 

producing the formulae of imaginary spherical trigonometry. Astonishingly, these turn 

out to be identical to those that hold in Euclidean spherical trigonometry! This revelation 

that the formulae of spherical trigonometry are independent of the parallel postulate 

marks the end of TP 35. 

 In TP 36, Lobachevski will finally obtain an explicit formula for the angle of 

parallelism, which he will then uses in TP 37 to extract the formulae of imaginary plane 

trigonometry from the five gems. 

 
* Specifically, it specifies a relationship between various parts of the triangles, and parts of the prism itself, 
which are involved in the rectilinear-to-horospherical triangle transformation. Namely, one angle of the 
rectilinear triangle, the hypotenuse of the horospherical triangle, a line segment joining two of the triangles’ 
corresponding vertices, and finally, a horocyclic arc that is concentric to one of the horospherical triangle’s 
legs. This will become clear shortly! 
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 Now that we have some conception of what lies ahead, we begin the journey.  
 
Unfolding the Prism: Mining for the Diamond in the Rough 
  
 Along BB′, break the connection of the three principal planes, 
turning them out from one another so that they lie in a single plane. In 
this plane, the arcs  p, q, r unite into an arc of a single horocycle, which 
passes through A and has axis AA′. 

rotate face BB′AA′ about AA′ until it lies in ′ 

about CC′ until it lies in plane AA′CC′  

it out in a single plane, as depicted at right. It is  

fit together smoothly. We prove this now.  
 
 
Claim 6. When we unfold the prism, the arcs p, q
Proof. Let H be the unique horocycle of which q
 In the plane containing the flattened prism, there is a unique horocycle through A with 

 

That is, we slit the prism along one of its seams (BB′) and then unfold it, as follows: 

plane AA′CC′,  and then rotate face BB′CC

, as well. We have now unfolded the prism and laid

 easy to see that the three horocyclic arcs

, and r will all lie on a single horocycle. 
 is an arc. 

axis AA′. Its uniqueness implies that the horocyclic arcs q and r both lie upon it. In fact, this 
horocycle must be H, since it contains q. Hence, H contains both q and r. Similar considerations 
regarding the unique horocycle through C′′ with axis C′′C′ reveal that H contains both q and p. 
Hence, the arcs p, q, and r all lie on the single horocycle H.     
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Thus, the following lie on one side of AA′: a
rectilinear triangle, which is perpendicular to

 216

rcs p and q; side b of the 
 AA′ at A; axis CC′, which 

d is 
arallel to AA′. 

 It was 

’s new function, f(x). 

n a horocycle. Upon this tangent, measure out a segment of 

f(x). 

r horocycle 

pon which we carry out this operation is also irrelevant. Hence, f is well defined. 
 
 

emanates from the endpoint of b, then passes through C′′, the join of p 
and q, and is parallel to AA′; and the axis BB′, which emanates from the 
endpoint of a, then passes through B′′, the endpoint of arc p, and is 
parallel to AA′. On the other side of AA′ lie the following: side c, which is 
perpendicular to AA′ at point A, and axis BB′, which emanates from the 
endpoint of c, then passes through B′′, the endpoint of arc r, an
p
 
 
 This awkward passage simply describes the features of the unfolded prism.

presumably intended as a verbal substitute for the figure that should have accompanied 

the text but was in fact consigned (like all the other figures) to a set of plates at the back 

of the book. This practice was quite common in the 19th century as a means of keeping 

printing costs within reasonable bounds. 

 Lobachevski will now introduce some notation for an aspect of the unfolded 

prism, which will appear shortly as a term in the diamond in the rough. 
 
 

A New Function: f 
 
 The length of the line segment CC′′ depends upon b; we shall 
express this dependence by CC′′ = f(b). Accordingly, BB′′ = f(c).  
 
 
 The figure illustrates Lobachevski

 There are several equivalent ways to describe this 

function in words. Here is one. Draw a tangent line to a point 

o

length x, starting at the point of tangency. The distance from 

e segment’s endpoint to the horocycle is th

 Since horocycles are homogenous, the point from which we draw the tangent will 

ot affect the value of f(x). Since all horocycles are congruent, the particulan

u
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 C, has axis CC′, and 

st part, we can read these facts 

rectly

While following Lobachevski’s intricate arguments and marveling at his flights between 

re, and horosphere, it is easy to lose track of the fact that his underlying goal is 

 develop trigonometric relationships. As inding Path”), 

ese will ultimately derive from the “five gems”, a set of trigonometric equations that 

emse e diamond, however, will 

. 

 quantities a, b, c, α, and 

and angles of ABC and 

ht triangles. The diamond in the 

ugh exhibits a mixture of these desirable quantities with several unwanted quantities 

ch as t, r, and the f-function, which are only indirectly related to the triangles.  

initially, Lobachevski will find a way to scrape off the 

 If we draw the horocyclic arc  t  that begins at
ends at D, its intersection with axis BB′, then BD = f(a), so that 
 

BB′′ = BD + DB′′ = BD + CC′′. 
 

That is, 
f(c) = f(a) + f(b). 

 
 
 For the mo

di  from the figure. Note that DB′′ = CC′′ 

since both of these lengths represent the distance 

between the concentric horocycles of which p 

and t are arcs. (See TP 33 Notes, Claim 1.) The 

relationship f(c) = f(a) + f(b) will prove useful 

hortly. s
 
 
 

he Diamond in the Rough T
 

plane, sphe

to I discussed in above (“The W

th

th lves have a common source in a single “diamond”. Th

hardly be recognizable as such when we first meet it in the rough

 The trigonometric formulae that we seek must relate the

β, which occur (sometimes cloaked in the ∏-function) as sides 

mnk, our representative rectilinear and spherical rig

ro

su

Lackluster though it may seem 

unwanted bits, and polish what remains into pure sparkling trigonometry. 
  
 
 



Moreover, we see that (by TP 33)  
 

t = pef(b) = rsin∏(α)ef(b). 
 
 
Claim 7.  (Diamond in the Rough) t = rsin∏(α)ef (b).*

 
Proof.  Applying TP 33 to t and p yields  p = te-CC′′. 
 Equivalently,    t = peCC′′. 
 But CC′′ = f(b), so this becomes  t = pef (b). 
 Thus, since p = rsin∏(α), 
 (which we derived just after Claim 5), 
 we have that     t = rsin∏(α)e f (b),   which was to be shown.    

ough.  Bit by bit, Lobachevski will polish 

way its unwanted parts. First, anted horocyclic arcs t and r. 

hen he will polish off the f-function, revealing the diamond at last. The last bit of 

ediment, the ∏-function, can be removed after TP 36, with the help of the explicit 

th  proposition. 

he ne  particularly obtuse. I considered tampering 

ith hi d r them ore c mpreh o 

uch more text that the result would cease to be what Lobachevski actually wrote. Thus, 

                                                

 

 We now have our diamond in the r

a  he will scrape away the unw

T

s

formula for ∏(x) that Lobachevski derives in at
 
 
Seeking the Diamond Within 
(Part 1: Scraping Off the Horocyclic Arcs) 
 

T xt passage in Lobachevski’s text is

w s words to ren e  m o ensible, but to do so would require adding s

m

I have left it as is, with the promise of an explanation afterwards. 
 
 
 If we were to erect the perpendicular to triangle ABC ’s plane at 
B, instead of A, then the lines c and r would remain the same, while the 
arcs q and t would change to t and q, the straight lines a and b would 

 
* To derive this, we need the formula s′ = se-x from TP 33. Recall that a more general form of this equation 
is s′ = se-x/k, where k is some positive constant. (Lobachevski picks his unit of length so that k = 1). It is 
easy to see that if we use this general form of TP 33 in the proof of Claim 7, the diamond in the rough 
assumes its more general form: t = rsin∏(α)e f (b) / k.   
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change to b and a, and the angle ∏(α) would change to ∏(β). From this it 
llows that 

 
f(a). 

 
Thus, by substituting the value that we previously obtained for q, we find 

Before worrying about the details of erecting a perpendicular at B rather than A, 

sm’s backbone at A was a purely arbitrary choice. Had we erected the 

backbone from B, the resulting formula would have been slightly different. We shall 

determine the form that it would take in a m ent. As a means of doing so, we shall first 

lgebraists. 

To this end, consider th ll labels. We erect the prism’s 

ackbone from one of its two acute vertices (which we shall call the favored vertex) and 

 horospherical triangle and 

fo

q = rsin∏(β)e

that 
 

cos∏(α) = sin∏(β)ef(a). 
 
 

 

let us return to our “diamond in the rough”: t = rsin∏(α)ef (b). 

 We obtained this formula by constructing a prism on the right triangle ABC. 

Because this triangle has no special properties (other than a right angle at C), our decision 

to erect the pri

om

express our diamond-in-the-rough rhetorically, as though we were 16th century 

a

 e naked triangle, shorn of a

b

carry out the construction detailed above, thus obtaining a prism, a horospherical triangle, 

and an “extra” horocyclic arc, concentric to one side of the

passing through the vertex of the rectilinear triangle’s right angle.  

 The diamond in the rough, expressed rhetorically, would take the following form: 
 

'" "
sin

'

   
 
ectilinear

           ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
=⎜ ⎟ ⎜ ⎟ ⎜ ⎟    ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

length of the r
f triangle s leg t

fav
length of the extra length of the horospherical angle measure at

e
horocyclic arc triangle s hypotenuse the favored vertex

⎛
⎜
⎜  ⎝ ored vertex

 
 Having obtained our rhetorical formula, we restore the labels to our triangle, 

ABC. Now

hat touches the
⎞
⎟
⎟
⎠

, if we erect the prism upon it so that its backbone emanates from B rather 

an A,

only the following observation. 

th  we may apply this rhetorical formula to its parts to obtain another formula, related 

to our diamond in the rough. Of course, to carry this out, we must find the quantities on 

the second prism that occur in the rhetorical formula. This is a simple matter, requiring 
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Lemma. Let XYΩ and X′Y′Ω′ be two singly 
a tic right triangles, with right angles at X sympto

d X′. If their finite sides XY and X′Y′ have the 
same length, then the horocyclic arcs shown in the 
figure must also have the same length. 
Sketch of Proof. The asymptotic triangles are congruent. Thus, we may bring them into 

mma immediately implies that the “extra” horocyclic arc 

n the second 

hypotenuse of the 

q = rsin∏(β)ef (a). 

rt step to a semi-polished diamond. 

an

coincidence with one another. Superimposing X′Y′Ω′ upon XYΩ forces the horocyclic arcs to 
coincide, since there is only one horocycle through X with axis XX′.     

 

 With this lemma in mind, it is easy to discover the lengths of the parts on the 

second prism that we need for our rhetorical formula; we simply look at the two prisms 

side by side. For example, the le

o

prism (CE) has 

the same length as 

the arc AC′′ that 

lies on the first. 

That is, arc CE 

has length q. 

Similarly, the 

horospherical 

right triangle in the second prism must be r. Finally, we don’t need the lemma to tell us 

that the angle at the favored vertex B is ∏(β), nor that BC, the unique leg of ABC’s that 

touches B, has length

obtain 

 
From here, it is a sho
 
 

 a. Feeding all of this information into the rhetorical formula, we 
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Claim 8. (The Diamond, Still Rough, but Semi-Polished) cos∏(α) = sin∏(β)ef (a).*

Proof. We have just found that q = rsin∏(β)ef(a). 
 Moreover, we know that q = rcos∏(α). (We established this just after Claim 5.) 
 Equating the two expressions for q yields the semi-polished diamond: 
 

       cos∏(α) = sin∏(β)ef (a .             

This expression is a definite improvement over our original diamond in the rough. 

t r 

ion. The next procedure will be to remove 

ill allow us to express f(x) in terms of ∏(x). 

                                   sin (b) = sin∏(c)ef(a). 

 of one another and, 
oreover, f(b) = 0 and ∏(b) = π/2 when b = 0, it follows that for every a, 

(a). 

                                                

) 

      

 

The irrelevant horocyclic arcs and have been scoured away, bringing us one step 

closer to a comprehensible trigonometric relat

the function f.  
 
 

Seeking the Diamond Within 
(Part 2: Polishing Away the f-Function) 
 
Lobachevski has now detached two horocyclic arcs from the emerging diamond. He will 

remove the function f(x) next. To begin the process, he shows that the related function 

sin∏(x)ef (x) assumes the same value when x is a, b, or c. This unexpected invariant of 

ABC’s sides w
 
 

If we change α and β into b′ and c, then 
 

∏ 
Multiplying by ef(b) yields 

             sin∏(b)ef(b) = sin∏(c)ef(c). 
Consequently, it follows that 

             sin∏(a)ef(a) = sin∏(b)ef(b). 
 

Because the lengths a and b are independent
m
 

e-f(a) = sin∏
 
 

 
* More generally, this will be cos∏(α) = sin∏(β)e f (a) / k, where k is a positive constant. (See the previous 
footnote.) 
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 To establish this, we shall finally employ our triangle transformations. 
 

)], the following holds:  
sin∏(b) = sin∏(c)e . 

the technique described ab of Triangle Transformations”. 
pplying the L-transformation* to the semi-polished diamond yields 

cos∏(b′) = sin∏(c)e f(a). 
y defin

in∏(b) = sin∏( ef (a),    as  claimed.    

 We shall now obtain the in
 

Proof.  sin∏(b) = sin∏(c)ef (a) .  

      f (c) f(c) = f(a) + f(b); see “A New Function: f ”). 

∏(b)ef (b) = sin∏(c)ef (c). 
  (Appl he O-transformation) 

Comb he last two equations yields 

a) f(c  
 

We shall now determine the nature of our triangle invariant. If ABC is an 

de lengths a, b, and c, the invariant tells us that 

in∏(a r an  posit angle 

XBZ with legs x and b; applying the invariant to this triangle yields  

                                                

Claim 9. In an arbitrary right rectilinear triangle ABC [a,b,c; ∏(α),∏(β
f(a)

 
Proof.  In Claim 8, we obtained our semi-polished diamond, cos∏(α) = sin∏(β)ef (a). 
We shall use ove, in “The Power 
A

B ition, ∏(b′) is π/2 - ∏(b). Hence, cos∏(b′) = sin∏(b), which implies that 
    s c)
 

variant. 

Claim 10. In ABC, the following relation holds: 
sin∏(a)e f(a) = sin∏(b)ef(b) = sin∏(c)e f(c) †

 
(Claim 9) 

 sin∏(b)e f(b) = sin∏(c)e f(a) e f(b) (Multiplying both sides by e f(b) ) 
        = sin∏(c)ef (a) + f (b) 

                           = sin∏(c)e  (since 
 
 That is,  sin
 Hence,  sin∏(a)ef (a) = sin∏( f (c). c)e  ying t
 
 ining t
 
    s ∏ e in ( f(a) = sin∏(b)ef(b) = sin∏(c)e ).  

 

arbitrary rectilinear right triangle with si

s )ef (a) = sin∏(b)ef (b). Moreover, fo y ive number x, there is a right tri

 
* Recall that the L-transformation is as follows: [a,b,c; ∏(α),∏(β)] ⇒ [a, α′, β; ∏(b′), ∏(c)].  
† Had we retained the parameter k, this would take the form sin∏(a)e f(a) / k = sin∏(b)ef(b) / k = sin∏(c)e f(c) / k. 
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s )ein∏(x on sin∏(x)ef (x) is a constant function on the 

ositive real numbers. It therefore has nothing to do with triangles after all. Next, we 

 

(x)

equently, the constant value of sin∏(x)e f(x) 
ust be 1, as claimed.          

 sin∏(x).†

ms 

h all 

f imaginary trigonometry will eventually be born. 

 
herefore, 

sin∏(c) = sin∏(a)sin∏(b) 
sin∏(β) = cos∏(α)sin∏(a). 

os∏(β). 
 
  
                                                

f (x) = sin∏(b)ef (b). That is, the functi

p

shall show that it assumes the constant value 1. 

 
Claim 11. For all positive values of x, the following holds: sin∏(x)ef(x) = 1.*

Proof.  We have argued in the previous paragraph that sin∏(x)e f(x) is a constant function. To 
determine which constant value it assumes, we simply take a limit as x approaches 0 through the 
positive reals. 
 As x vanishes, ∏  approaches π/2 (see last lines of TP 23), so sin∏(x) approaches 1. 
Moreover, f(x) vanishes with x (as is obvious from the definition of f ), so e f(x) approaches 1.Thus, 
sin∏(x)ef (x) itself approaches 1 as x vanishes. Cons
m
 
Corollary.  For all positive values of x, the following identity holds: - f (x) =e 
 
 

The Five Ge
 
Having expressed f(x) in terms of ∏(x), Lobachevski can finally bring the diamond, our 

first new trigonometric relation, to light. A series of triangle transformations will then 

produce four more relations, completing the set of five gems, the matrix from whic

o
 

T

 
Moreover, by transforming the letters, these equations become 

 
 sin∏(α) = cos∏(β)sin∏(b) 
cos∏(b) = cos∏(c)cos∏(α) 

  cos∏(a) = cos∏(c)c

 
* Retaining the parameter, this would be sin∏(x)ef(x) / k  = 1 for all positive values of x.  
 
† If we retain the parameter, this takes the form e - f (x) / k  = sin∏(x) for all positive x.   
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 These five equations a  is the long-sought diamond 

itself. To expose it, we remov n equation that we obtained 

from the semi-polished diamond. The remain ms are then easy to obtain. 

Claim 12. (1st Gem)  In any rig (β)], the following holds:  

 that  sin∏(b) = sin∏(c)ef (a).   (Claim 9) 

laim 13. (2  Gem) In any right rectilinear triangle [a,b,c; ∏(α),∏(β)], the following holds: 
sin∏(β) = cos∏(α)sin∏(a). 

Proof. We know that sin∏(c) = sin (The 1st Gem) 
  sin∏( ) = sin∏( )sin (α′).  (By the L-transformation) 

(α′)) 
   

rd  In any right rectilinear triangle [ ∏( ∏( , the following holds: 

We know that  sin∏( ) = sin∏( )cos∏( ).  (The 2nd Gem) 
 

 15. (4 In an (α),  

 

 Hence,  sin∏(b′) = cos (By the L-transformation) 
is,  cos∏( ) = cos∏ )cos∏ ).  (Since ∏(x′) = π/2 - ∏(x))  

                                                

re easy to verify. The first gem

e the unsightly f-function from a

ing four ge
 

ht rectilinear triangle [a,b,c; ∏(α),∏
sin∏(c) = sin∏(a)sin∏(b).*

 
Proof. We know
 Hence,              sin∏(b) e - f (a)  = sin∏(c).              
              Thus,   sin∏(b)sin∏(a) = sin∏(c)  (Corollary to Claim 11).     
 

ndC

 

∏(a)sin∏(b).  
 Hence, β a ∏

 That is,   sin∏( ) = sin∏(a)sin(π/2 - ∏(α))   (By definition of ∏β
 Thus,   sin∏( ) = sin∏(a)cos∏( ).      β α
 
Claim 14. (3  Gem) a,b,c; α), β)]

sin∏( ) = cos∏( )sin∏( ). α β b
 

Proof.  β a α
 Hence,   sin∏( ) = cos∏ )sin∏ ).  (By the O-transformation) α (β (b
 
Claim th Gem) y right rectilinear triangle [a,b,c; ∏ ∏(β)], the following holds:

cos∏(b) = cos∏(c)cos∏(α). 

Proof. We know that sin∏(α) = cos∏( )sin∏(b).  (The 3rd Gem) β
∏(c)sin∏(α′).  

 That b (c (α
 

 
* Even had we chosen to retain the parameter k, it would not occur in the five gems, so long as they remain 
expressed in terms of the ∏-function. However, the ∏-function itself conceals a hidden parameter. Thus, 
when we polish the ∏’s away from the gems in TP 36 and express them ∏-free notation, we shall see that 
the five gems do involve a parameter (whose numerical value depends upon our unit of length) after all.   
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Claim 16. (5th Gem) In any right rectilinear triangle [ ∏(β)], the following holds: a,b,c; ∏(α),
cos∏(a) = cos∏(c)cos∏(β). 

Proof. We know that cos∏(b) = (The 4th Gem) 
 Hence,   cos∏(a) = cos∏(c)cos∏ ).  (By the O-transformation)  

he Gems’ Present Polish: 

 

We may interpret the five gems as a set of st ements about: 

ABC [a,b,c; ∏(α),∏(β)]. 

         or 

ngle, 

ms are still unsatisfying in 

eir present form. The first gem, for instance, concerns the sines of the angles of 

s cer nt

in the ro  a relation that deals directly with the sides of ABC 

ther than with their angles of parallelism. Similar problems exist in each of the five 

ments about imaginary rectilinear triangles. These 

In contrast, all five gems make satisfyingly direct statements about right spherical 

                                                

 
 cos∏(c)cos∏(α).  

(β
 
 
 
 
T
Sufficient for the Sphere, Not for the Plane.  

at

 

1) the generic rectilinear right triangle,  

 

2) the generic spherical right tria

 mnk {∏(c), ∏(β), ∏(a); ∏(b), ∏(α′)}*.   
 

 As statements about rectilinear triangles, the five ge

th

parallelism of the sides of ABC. This i tainly a vast improveme  over the diamond 

ugh, but we ultimately want

ra

gems when we interpret them as state

problems will be resolved only after further lapidarian activities in TP 36. 

 

triangles in imaginary space. For example, when applied to mnk, the first gem expresses 

a straightforward relationship between two sides and an angle. Lobachevski takes up this 

theme next.  

 

 
* More precisely, mnk is the generic right spherical triangle whose legs are less than π/2. (See “Right 

Triangle Transformation #2”.) 
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The Spherical Gems: Déjà vu. 
 
 In the spherical right triangle, if the sides ∏(c), ∏(β), ∏(a) and 
opposite angles ∏(b), ∏(α′)are renamed a, b, c, A, B, respectively, then 

eore

cos(B) = cos(b)sin(A) 
cos(A) = cos(a)sin(B) 

s(c) = cos(a)cos(b). 

 If we relabel the parts of re, and make the corresponding 

changes in the five gems, we obtain the following relations (the Spherical Gems), which 

hold on any imaginary spherical
 

(SG5)       cos(c) = cos(a)cos(b).   

ginary geometry and having 

ncomfortably relinquished the orth rise 

 encountered, deep in this dark wood, five formulae 

n schoolteachers. Unfortunately, but inevitably, the 

n Brown” revelation* is lost on most 21st century 

cal trigonometry in school, and therefore we do not 

the preceding equations will assume forms that are known as established 
th ms of the ordinary spherical trigonometry of right triangles. 
Namely, 

sin(a) = sin(c)sin(A) 
sin(b) = sin(c)sin(B) 

 co
 
From these equations, we may derive those for all spherical triangles in 
general. Consequently, the formulae of spherical trigonometry do not 
depend upon whether or not the sum of the three angles in a rectilinear 
triangle is equal to two right angles. 
 

mnk as indicated in figu

 right triangle, {a,b,c; A,B}. 

 
  (SG1)       sin(a) = sin(c)sin(A)      
  (SG2)       sin(b) = sin(c)sin(B)      
  (SG3)       cos(B) = cos(b)sin(A)    
  (SG4)       cos(A) = cos(a)sin(B)    
  
 
 
 These equations would have startled Lobachevski’s 19th-century audience. Having 

traversed for so long the increasingly alien pathways of ima

u odox Euclidean conception of space, their surp

must have been immense when they

that they had learned from their ow

full impact of this “Young Goodma

readers. We no longer study spheri

                                                 
* Nathaniel Hawthorne was in fact a contemporary of Lobachevski. He published “Young Goodman 
Brown” in 1835.  
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recognize the surprising truth before our eyes: the five equations above are basic 

formulae of Euclidean spherical trigonometry! 

 Thus, these five spherical trigonometric relations are neutral theorems; they hold 

in both Euclidean and imaginary space. Any further relations that we derive from them 

will also be neutral. Hence, when Lobachevski asserts that we can derive every spherical 

trigonometric relation from these five relations, this is equivalent to a claim that the entire 

subject of spherical trigonometry is neutral! That is, the formulae of spherical 

 the two spherical laws of cosines 

omain to all right 

herical triangles.  

laim 17. The spherical gems hold for all right spherical triangles whose legs are both greater 

e usual labeling , in which the legs a and b 
π/2. Complete the lune, as shown in the figure below, by extending the 

 meet again at C′, the point antipodal to C. Clearly, the angle at C′ is also 

ying the spherical gems to ABC′, we obtain the following equations: 
 

trigonometry are independent of the parallel postulate. 

 Lobachevski concludes TP 35 with this bold assertion; how do we verify it? How 

can we check that every spherical trigonometric relation derives from those given by the 

five spherical gems? First, we shall show that the gems hold on all right spherical 

triangles, not only those (like mnk) whose legs are less than π/2. Then we shall show 

that the gems imply that the spherical law of sines and

are neutral theorems. Finally, we shall argue that these three laws encompass all of 

spherical trigonometry: every spherical trigonometric relation is a consequence of them. 

Hence, if the three are neutral, all of spherical trigonometry is neutral.  
 
 
The Spherical Gems Hold on All Right Spherical Triangles 
 

The spherical gems, SG1 – SG5, hold on all right spherical triangle whose legs are less 

than π/2 in length. A clever trick or two will quickly extend their d

sp
 
C
than π/2. 
 
Proof.  Let ABC be a right spherical triangle with th *

are both greater than 
triangle’s legs until they
right, so ABC′ is a right spherical triangle with legs both less than π/2. 
 Appl

                                                 
* I.e. We shall denote the angles A, B, C, and the opposite sides a, b, c, respectively, with a right angle at C. 
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  sin(π - a) = sin(c)sin(π - A) 

me the 
 

ght spherical triangles with one leg greater than π/2, 

ith the usual 

 the lune, as 
 and hypotenuse 

ntil they meet again at B′, the point antipodal to B. We may 

ems hold on ABC, as claimed.        

s hold for all right spherical triangles which have at least one leg 

h C 
nd B 

elds 

easure on its equator, we have A = a. These equalities render each 

 

  sin(π - b) = sin(c)sin(π - B) 
  cos(π - B) = cos(π - b)sin(π - A) 
  cos(π - A) = cos(π - a)sin(π - B) 
  cos(c) = cos(π - a)cos(π - b) 
 
 Using the identities sin(π - x) = sin(x) and cos(π-x) = - cos(x), these equations beco

equations we wish to establish. Thus, the gems hold for ABC.    
 

Claim 18. The spherical gems hold for all ri
and one leg less than π/2. 
Proof. Let ABC be a right spherical triangle w
labeling, in which a > π/2 and b < π/2. Complete
shown in the figure, extending the long leg
u
now apply the gems to AB′C and use argument nearly 
identical to the preceding one to establish that the spherical 
g
 

Claim 19. The spherical gem
equal to π/2. 
Proof. If ABC is a right spherical triangle with the usual labe
and b = π/2, then A must be a “pole” for the great circle throug
and B, as depicted in the figure. Thus, A is equidistant from C a
(and all other points of its “equator”, the great circle through C and 
B), so c = b = π/2.Thus, the spherical pons asinorum (TP 14) yi
B = C = π/2. Since an angle at a pole subtends an arc with its same 

ling 

m
of the gems trivially true.          
  

 We have exhausted all cases. The five spherical gems h

triangles. 
 
 
 

old for all right spherical 
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The Spherical Law of Sines is a Neutral Theorem 
 
Claim 20. (Law of Sines) If ABC is an arbitrary
th wing relation ho

 spherical triangle with the usual labeling, then 
e follo lds, regardless of whether the parallel postulate holds: 

roof. If the parallel postulate holds, then so does all of Euclidean geometry and trigonometry, 
cluding the spherical law of sines. The interested reader may find a proof in older trigonometry 

ooks (written before 1950 or so), in spherical astronomy books, or in Stahl (pp. 172-3). 
If the parallel postulate does not hold, then we obtain the result from SG1, as follows. 

y), and let d = BD. Regardless of 
hether D falls within AC, or to either side of this segment, we find 

in(d) = sin(a)sin(C)    (applying SG1 to the right triangle BDC). 
 

quating these two expressions for sin(d) yields 

, yields, by symmetry, 
 

ombining the last two equations gives the spherical law of sines in imaginary

                                                

 
sin(A)/sin(a) = sin(B)/sin(b) = sin(C)/sin(c). 

 
P
in
b
 
Drop a perpendicular BD from B to AC (extended if necessar
w
 
sin(d) = sin(c)sin(A)    (applying SG1 to the right triangle ADB)*, 
s

E
 
      sin(c)sin(A) = sin(a)sin(C). 
Equivalently,     
    sin(A)/sin(a) = sin(C)/sin(c). 
 
Repeating the argument, but dropping the perpendicular from C to AB
 
    sin(A)/sin(a) = sin(B)/sin(b). 
 
C  geometry.   
 
 
 
 
 
 

 
* If D happens to fall directly upon A or C, this equation (and the one that follows) are trivially true. For 
example, if D = A, then d = c, and sin(A) = 1, so the fact that sin(d)=sin(c)sin(A) is obviously true. 
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The First Spherical Law of Cosines is a Neutral Theorem 
 

In our derivation of the first spherical law of cosines, we shall find the following lemma 

seful. 

emma. In a right spherical triangle with the usual labeling, the following relation holds, 

dependent of the parallel postulate: 

cos(B) = tan(a) / tan(c). 

ote the similarity to a familiar result of ordinary plane Euclidean trigonometry: cos(B) = a / c.) 

 [cos(c)/cos(a)][sin(a)/sin(c)] (by SG 5) 

1. (First Law of Cosines) In an arbitrary spherical triangle ABC with the usual 

cos(c) = c )cos(C). 

ngle,  is at C. In this case, 
= cos(a)cos(b). This is the spherical 

If ABC is not a right triangle, we drop a perpendicular BD from B to AC, as we did in 

 which D falls inside 
C, and the case in which D falls outside AC. 

 

ase 1

u
 
L

in

 
(N
 
Proof.    cos(B) = cos(b)sin(A)   (by SG 3) 

cos(b)[sin(a)/sin(c)]  (by SG 1)   = 
  =
  = tan(a) / tan(c)         
 
Claim 2
labeling, the following relation holds, independent of the parallel postulate: 
 

os(a)cos(b) + sin(a)sin(b
 
Proof.  If the parallel postulate holds, this is a classical result. 
 If not, we prove it as follows. 
 If ABC happens to be a right tria label it so that the right angle
cos(C) = 0, so the first law of cosines reduces to cos(c) 
Pythagorean Theorem, which we have already proved above. (It is SG5.)   
 
the proof of the spherical law of sines. Unfortunately, the law of cosines requires slightly 
different proofs (different in details, but the same in spirit) for the case in
A

C   (D lies within AC) 

(SG5 on ABD) 
           = [cos(a)/ cos(q)]cos(p)      (SG5 on BDC)  
         = [cos(a)/ cos(q)]cos(b - q) 

As in the figure, we let d = BD,  p = AD, and q = DC. 
Then, cos(c) = cos(d)cos(p)  
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         = [cos(a)/ cos(q)][cos(b)cos(q) + sin(b)sin(q)] (trig identity*) 
         = cos(a)cos(b) + sin(b)cos(a)tan(q) 
         = cos(a)cos(b) + sin(b)cos(a)[cos(C)tan(a)]  (by the Lemma, on BDC) 
         = cos(a)cos(b) + sin(a)sin(b)cos(C),   as claimed. 
 
Case 2 (D falls outside of AC) 
Label the parts of the triangle as shown in the figure. 

hen,    cos(c) = cos(b+r)cos(s)      (SG5 on ABD) 
s(r) - sin(b)sin(r)]cos(s)    (trig identity) 

os(r)] 
n BCD) 

s(a)[cos(π - C)tan(a)]   
 BCD) 

)cos(b) - sin(a)sin(b)cos(π - C) 
C), as claimed. 

 sphe al tria inary geometry.  

c)) 

ed to prove the first cosine law. 

arity of form that the two 

inating path, which will require a 

ic. 

ere, we may think of it as 

l hemispheres. Accordingly, we shall 

thest away from a particular 

                                                

T
   = [cos(b)co
   = [cos(b)cos(r) - sin(b)sin(r)][cos(a)/c
          (SG5 o
   = cos(a)cos(b) - sin(b)cos(a)tan(r) 
   = cos(a)cos(b) - sin(b)co
     (by the Lemma, on
   = cos(a
   = cos(a)cos(b) + sin(a)sin(b)cos(
 
Thus, the first spherical law of cosines holds for all ric ngles in imag
 
 
Polar Triangles 
 

We can establish the second law of cosines (cos(C) = -cos(A)cos(B) + sin(A)sin(B)cos(

with the same type of unedifying calculations that we us

However, this approach does little to explain the striking simil

laws exhibit. Accordingly, I shall follow a more illum

brief digression on “polar triangles”, a beautiful, elementary, and largely forgotten top

 First, some terminology. Given any great circle of a sph

an equator, which divides the sphere into two equa

refer to the two antipodal points on the sphere that lie fur

 
* The laws of sines and cosines are geometric theorems, so their forms will change in different geometric 
contexts. In contrast, trigonometric identities such as sin2x + cos2x = 1, or cos(x-y) = cos(x)cos(y) + 
sin(x)sin(y), are not geometric theorems. These are theorems about the trigonometric functions sin and cos. 
In other words, they are statements about numbers, rather than shapes, and consequently are independent of 
geometric context.  
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equator as its poles. Conversely, we may think of any point on the sphere as a pole, and 

. 

For each triangle ABC on a simple sphere*, there is a related triangle A′B′C′ 

 

A′B′C

the polar triangle of ABC. 

om a pole to any point on its equator is clearly π/2 (on a 

′. Since the distance 
tween A and A′ is already known to be less than π/2, point 

nd C are vertices of the polar triangle of A′B′C′. 
e of ABC is ABC, as claimed.   

ach such pair, th  

 either triangle is the supplement 

BC and A′B′C′ are a polar pair, 

way (side a opposite angle A, etc.), then  

                                                

speak of its equator

 

called its “polar triangle” (or sometimes its “dual triangle”). We shall describe its 

construction and a few of its most important properties. 
 
Construction (Polar Triangle). Side BC of ABC lies on an equator. Exactly one of its two 
poles lies in the same hemisphere as point A. (Equivalently, exactly one pole lies at a distance of
less than π/2 from A.) Call this pole A′. We define the points B′ and C′ analogously. We call 

′ the polar triangle of ABC. 
 
Claim 22. Given any spherical triangle, the polar triangle of its polar triangle will be identical to 
the original triangle. 
Proof.  Let A′B′C′ be 

 By definition of the polar triangle, B′ is a pole of 
equator AC, and C′ is a pole of equator AB. 
 The distance, as measured along a great circle arc, 
fr
simple sphere), so B′A = C′A = π/2. 
 Since B′ and C′ therefore lie at a distance of π/2 
from A, it follows that points B′ and C′ lie upon the equator 
of A. Equivalently, A is a pole of B′C

eb
A is a vertex of the polar triangle of A′B′C′. 
 Similarly, B a
 That is, the polar triangle of the polar triangl

 

Thus, polar triangles come in pairs. In e ere is a remarkable relationship

between their parts. Namely, each part (side or angle) of

of a related part of the other triangle. In particular, if A

each labeled in the usual 

 

 
* Recall that on a simple sphere, the length of any arc of a great circle equals the measure of the angle it 
subtends at the sphere’s center.  
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a + A′ = π,       b + B′ = π,      c + C′ = π,       A +  a′ = π,       B + b′ = π,       C + c′ = π . 

 

Before proving that these relationships hold, we need to establish a simple lemma. 

emma. On a simple sphere, any angle has the same 

 t
ull length” (i.e. the equator’s circumference) is 2π (by 

onality must be 1. That is, θ = l, as claimed.   

side or 
ngle) is the supplement of the part that lies opposite it

c,C′},{a′,A},{b′,B},{c′,C}.)  

containing BC, whose pole is A′. 

e equation DA′ + EC′ = A′C′ + ED 
(see the figure) yields π = b′ + ED. 
 Thus, since ED = B (by the Lemma), 
it follows that π = b′ + B. That is, B and b′ are 
supplementary, as claimed. 
 By symmetry, A and a′ must also be 
supplementary, as are C and c′. 
 

 
L
measure as the arc that it subtends on its vertex’s equator. 
Proof. A picture is worth a thousand words. In the picture at 
right, it is clear that angle θ and length l are directly 
proportional. Since the “full angle” at the pole is 2π, and he 
“f

definition of a simple sphere), the constant of 
proporti
 

Claim 23. Given a spherical triangle ABC and its polar triangle A′B′C′, each part (
a s correspondent on the other triangle. 
(That is, the following are supplementary pairs: {a,A′},{b,B′},{
 
Proof. First, we show that B and b′ are supplementary: 
 Extend the sides of B (if 
necessary) until they cut the great circle 
containing side b′. Let D and E be the 
points of intersection, as in the figure. 

y construction, D lies on the equator B

 Hence, arc DA′ = π/2. 
 Similarly, arc EC′ = π/2. 
 Substituting these values into 
th
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 We have demonstrated that the angles of a spherical triangle are supplementary to the 
sides opposite their corresponding angles 
(whose polar triangle is ABC, by Propo
B′ and b, as well as C′ and c. 
 This completes the proof

on the polar triangle. Applying this result to A′B′C′ 
sition 1) tells us that A′ and a are supplementary, as are 

 

w of Cosines is a Neutral Theorem 

rem, and thus we may use it in 

tacularly simple proof of the second spherical law 

rary spherical triangle ABC with the usual 

on holds, independent of the parallel postulate: 

n(B)cos(c). 

 Let ABC be a spherical triangle in either Euclidean or imaginary geometry. Let A′B′C′ 

 parts of A′B′C′ in terms of the parts of ABC, this becomes  

hat is,        -cos(C) = cos(A)cos(B) - sin(A)sin(B)cos(c). 

  

w demonstrated that the laws of sines and cosines are neutral theorems. It 

mains only to argue that all spherical trigonometric relations are consequences of these 

                                                

*.       
 
 

The Second Spherical La
 
The preceding result on polar triangles is a neutral theo

imaginary geometry. It affords a spec

of cosines. 

 

Claim 24. (Second Law of Cosines) In an arbit

labeling, the following relati

cos(C) = -cos(A)cos(B) + sin(A)si

 

Proof.

be its polar triangle. Applying the first law of cosines (Claim 21) to the polar triangle, we find 

cos(c′) = cos(a′)cos(b′) + sin(a′)sin(b′)cos(C′). 

Using Claim 23 to express the

cos(π - C ) = cos(π - A)cos(π - B) + sin(π - A)sin(π - B)cos(π - c). 

T

Equvalently,      cos(C) = -cos(A)cos(B) + sin(A)sin(B)cos(c).  
 
 

Spherical Trigonometry is a Neutral Subject 
 

We have no

re

 
* In this proof, I have assumed that D and E fall between A′ and C′ (i.e. that they actually lie on side A′C′ of 
the polar triangle). This need not happen. If it does not, then obvious adjustments in the proof can be made 
to salvage it. In the spirit of Euclid, I will refrain from explicitly proving these trivial variations. 
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theorems, and hence all f the parallel postulate. 

his amounts to little more than a review of high school geometry and trigonometry. 

re 

congruent. 

SS, 

SAS, ASA, AA triangle’s size 

s. For example, given 

in the y, com letely 

etermined. To find their numerical values in practice (i.e. to “solve the triangle”), one 

ust go beyond The Elements and turn to trigonometry. In its literal sense of triangle 

the congruence criteria. Its tools are 

etric relations”, equations that relate the various parts of triangles to one 

(SSS), we can use the law of cosines three times in succession to determine 

se. When two angles are known (ASA or AAS), we must use the second 

w of cosines to find third angle (Euclid I.32 does not hold on the sphere), and then 

 of spherical trigonometry is independent o

T
 
 One of the basic problems of geometry is to recognize when two triangles a

 In the Euclidean plane, this problem is solved by the congruence criteria (S

S), each of which specifies a trio of data sufficient to fix a 

and shape. Any such trio determines all six of the triangle’s part

three sides of a triangle, SSS guarantees us that its three angles are, or p

d

m

measurement, trigonometry is simply an adjunct to 

“trigonom

another. In fact, one can get by with only two relations in the Euclidean plane.  

  

 The laws of cosines and sines suffice to solve every problem of Euclidean plane 

trigonometry. 
 
 As a practical demonstration of this claim, note that if we know the three sides of 

the triangle 

its angles. Given two sides and their included angle (SAS), the law of cosines will yield 

the third side, reducing the problem to the already solved SSS case. When two angles are 

known (ASA or AAS), we can use Euclid I.32 (the angle sum of any triangle is π) to find 

third angle and then the law of sines to produce a second side, reducing the problem to 

SAS. Thus, the laws of cosines and sines do indeed completely encapsulate plane 

trigonometry. Similarly, 

  

 The two spherical laws of cosines and the spherical law of sines suffice to solve 

every problem of spherical trigonometry. 
 
 As in plane trigonometry, the (first) law of cosines suffices to solve a triangle in 

SSS or SAS ca

la
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apply the law of sines to find a second side, reducing the problem to SAS. Finally, we can 

handle AAA, which is a congruence criterion on the sphere, by using the second law of 

cosines three times in succession to determine the sides. Hence, the spherical law of sines 

and two spherical laws of cosines encapsulate Euclidean spherical trigonometry, as 

claimed. 

 Consequently, the neutrality of the spherical laws of sines and cosines guarantees 

the neutrality of spherical trigonometry. 
 
 

An Aside: Why the Spherical Gems Would 
Have Looked Familiar to 19th-Century Readers.  
 
As I mentioned earlier, readers raised with spherical trigonometry would recognize the 

ppropriate vertex. 

, they are simple: in a right triangle, the law of 

osines reduces to the Pythagorean Theorem, while the law of sines reduces to a compact 

se,   Tan = Opposite/Adjacent. 
 

heon of ten equations, each 

spherical interpretations of the five gems as old schoolfriends. SG5 is the spherical 

Pythagorean theorem. But what of the first four? To explain why these would have been 

familiar requires another return to high school mathematics. 

  Although in theory the laws of sines and cosines suffice to solve all trigonometric 

problems in the Euclidean plane, we often forgo them in practice in favor of the humbler 

formulae specific to right-triangle trigonometry. These are useful in practice because we 

may decompose any non-right triangle into two right triangles by a dropping an altitude 

from an a

 Right-triangle trigonometric relations are merely special cases of the laws of 

cosines and sines. In the Euclidean plane

c

set of rules often summarized by the equations 
 
Sin = Opposite/Hypotenuse,   Cos = Adjacent/Hypotenu

Many students learn these today with the mnemonic name SOH CAH TOA, the ancient 

god of plane trigonometry. 

  However, on the sphere, right triangle trigonometry is not quite so simple. There, 

SOH CAH TOA’s monotheistic rule is replaced by a pant
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governing a specific combination of parts of the right spherical triangle*. The five gems, 

in their spherical interpretation, are five of these ten equations that govern right triangle 

spherical trigonometry. 
 
 
A Quibble 
 

It is tempting to conclude that if we pluck a simple sphere out of Euclidean space and 

rust it into imaginary space, its trigonometric formulae remain unchanged. This is 

a  

 simple sphere agrees in both spaces. 

uld cease to be simple in its new context. However, the changes 

 the formulae are insignificant. Trigonometry on an imaginary sphere of radius r will 

 with trigonometry of some Euclidean sphere; namely, the sphere of radius 

 agreement with some Euclidean sphere is the important point. The 

                                                

th

lmost, but not quite correct. Because we have been working with a simple sphere

throughout this proposition, we should state what Lobachevski has proved more 

precisely: trigonometry on a

 A sphere is simple if and only if its great circles have circumference 2π. Thus, in 

Euclidean space, where C=2πr, a sphere is simple if and only if its radius is 1. However, 

in imaginary space, circumference is given by C = 2πsinh(r)†, so a sphere is simple if 

and only if its radius is sinh-1(1). Thus, a simple Euclidean sphere thrust into imaginary 

space (or vice versa) wo

in

always agree

inh(r). Thiss

differences between one Euclidean sphere and another are trivial.

 
* Each equation asserts the precise relationship between a particular trio of a right triangle’s five variable 
parts (its sides and non-right angles). There are ten equations precisely because there are ten ways to 
choose trios from amongst a set of five. There is, incidentally, a mnemonic device for recalling the ten 
equations, known as Napier’s Rule. 
 
† Lobachevski proves this elsewhere (in Pangeometry, for example), but not in The Theory of Parallels. 
Note that the formula for circumference implies that π loses its usual geometric meaning in imaginary 
geometry: the ratio of circumference to diameter is not a constant in this setting.  
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Theory of Parallels 36 
 

Having revealed the structure of spherical trigonometry, Lobachevski returns to the plane 

to settle some old business: twenty propositions after introducing it, he finally derives an 

explicit formula for the ∏-function. 

 Lobachevski begins by deriving a pair of relations among ABC’s parts.  
 

 
First Relation: ∏(b) = ∏(α) + ∏(c+β). 
 
We now return to the rectilinear right 
triangle ABC with sides a,b,c, and 
opposite angles ∏(α), ∏(β), π/2. Extend 
this triangle’s hypotenuse beyond B to a 
point D at which BD = β, and erect a 
perpendicular DD′ from BD. By 
construction, DD′ is parallel to BB′, the 
extension of side a beyond B. Finally, 
draw AA′ parallel to DD′; it will be 
parallel to CB′ as well (TP 25). 
 From this, we have A′AC = ∏(b) 
and A′AD = ∏(c  + β), from which it 
follows that 
 

∏(b) = ∏(α) + ∏(c  + β). 
 
  
 Lobachevski draws ray CB and two rays parallel to it: one emanating from A, the 

other perpendicular to the hypotenuse. Each is uniquely determined. 

 The derivation of the relation in this passage is self-explanatory, but it does 

depend upon the fact that ∏(b) > ∏(α). Lobachevski does not bother to prove this, since 

it is so easy to justify. Among the pencil of rays that emanate from A, each ray either cuts 

or does not cut CB. Since AA′ does not cut it, while AB does, we know that  

A′AC > BAC. That is, ∏(b) > ∏(α), as claimed. 
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Second Relation: ∏(c - β) = ∏(α) + ∏(b). 

The construction here is almost identical to the one above, except that we draw the rays 

c.*

 
Now let E be the point on ray BA for 

lar EE′ 
′, the 

a 

t 
 

o remaining cases (β = c and β > c) are straightforward, although 

obachevski makes what may erences to TP 23 the midst of 

stablishing them. In fact, these are not references to the theorem in TP 23 (“For any 

p such that ∏(p) = α.”), but to two facts about the  

-func

                                              

 

parallel to BC instead of CB. The derivation of the second equation is slightly messier, 

however, as it requires three separate cases, according to whether β is less than, equal to, 

or greater than c. He begins with β < 
 

 
which BE = β. Erect the perpendicu

 AB, and draw AA′′ parallel to it. BCto
extension of side a beyond C, will be 
third parallel. 
 If β < c , as in the figure, we see tha

CAA′′ = ∏(b) and EAA′′ = ∏(c - β), from
which it follows that 
 

∏(c - β) = ∏(α) + ∏(b). 
 
 In fact, this last equation remains 
valid even when β = c , or β > c. 
 
 

 The tw

L appear to be inappropriate ref

e

given angle α, there is a line 

∏ tion that Lobachevski first mentions in TP 23: ∏(0) = π/2, and ∏(-x) = π - ∏(x), 

by definition, for any x.  

 

 

 

 

 

 

   
aken the liberty of changing some of Lobachevski’s notation in the following passage. My E is 

tually a second point D in the manuscript, while my AA′′ is a second AA′. Using the same symbol to 
enote distinct objects that play similar roles was common practice in 19th-century mathematics. 

* I have t
ac
d
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 If β = c  (see the figure 
at left), the perpendicular AA′ 

 (TP 23). 
 c (see the figure 

at right), E falls beyond point 

hich 

 β) (TP 23). 

ns 

ith a little bachevski will now combine the two relations 

 TP 35 (cos∏(b) = cos∏(c)cos∏(α)). 

Combining the two equations yields 

erected upon AB is parallel 
to BC, and hence to CC′, 
from which it follows that 
∏(α) + ∏(b) = π/2. Moreover, 
∏(c - β) = π/2
 If β >

A. In this case, we have 
EAA′′ = ∏(c - β), from w

it follows that 
 

∏(α) + ∏(b) = π - ∏(β – c ) = ∏(c -
 
 
 
Combining the Relatio
 
W algebraic manipulation, Lo

into a new form, which is related to the 4th gem from
 
 
 
 

2∏(b) = ∏(c - β) + ∏(c  + β) 
2∏(α) = ∏(c - β) - ∏(c  + β), 

from which follows 
½ ½
½ ½

Π  Π  −  + Π  + 
=

Π  Π  −  − Π  + 
cos ( ) cos [ ( β) ( β)]
cos (α) cos [ ( β) ( β)]

b c c
c c

. 

 
 
Claim 1. In the generic right rectilinear triangle ABC, the following holds: 

            
cosΠ( ) cos [½Π( ) ½Π( )
cosΠ( ) cos [½Π( ) ½Π( )

]
]

  −  +  + 
=

  −  −  + 

b c β c β
α c β c β

   (1) 

roof. Subtracting the second relation from the first and solving for ∏(b) yields a “doubling 
rmula” for ∏(b):       2∏(b) = ∏(c - β) + ∏(c + β). 

Adding the corresponding sides of the two relations yields a “doubling formula” for ∏(α): 
         2∏(α) = ∏(c - β) - ∏(c + β). 

 
P
fo
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Hence,  
 cos∏(b) = cos(½ ·
               = cos(½ ∏ ling formula), 
and 

               = cos(½∏

Therefore, 

   

 2∏(b)) 
(c - β) + ½∏(c + β))     (by the first doub

 2∏(α))  cos∏(α) = cos(½ ·
(c - β) - ½∏(c + β))       (by the second doubling formula). 

cosΠ( ) cos [½Π( ) ½Π( )]
sΠ( ) cos [½Π( ) ½Π( )]co

  −  +  + 
=

  −  −  + 

b c β c β
α c β c β

,  as claimed.    

            
  
 

 Tangy Equation 

ski has yet to use any substantial results from imaginary 

eometry. This will now change.  

A
 
Thus far in TP 36, Lobachev

g
 
 
Using the substitution 

Π
= Π

Πcos (α)
 

cos ( ) cos ( )b c  (from TP 35) 

ieldsy
( - (Π Π⎞ ⎛ ⎞ ⎛=⎟ ⎜ ⎟ ⎜

( ) β)tan tanc c c
2⎠ ⎝ ⎠ ⎝2 2

Π +⎛ ⎞
⎜ ⎟
⎝ ⎠

2 β)tan . 

 

 The “substitutio s∏(α)). We shall 

erive the other equation in this passage with the help of some trigonometric gymnastics, 

nd the following oft-forgotten identity. 

 

n” is the fourth gem (cos∏(b) = cos∏(c)co

d

a
 

2 1 cosx x tan
2 1 cos x

−⎛ ⎞ = ⎜ ⎟ +⎝ ⎠
      (Half-angle identity ange

 

 for t nt) 
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Claim 2.  If c is the hypotenuse of a rectilinear right triangle in imaginary geometry, and ∏(β) the 
then the following relation holds. measure of one of its acute angles, 

  

      

2 Π( ) Π( ) Π( )
tan tan tan

2 2
− +

=⎛ ⎞ ⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎟ ⎜ 2

⎞
⎟

⎠ ⎝ ⎠ ⎝ ⎠
c c β c β

.  (2) 
⎝

 
2 Π( ) 1 cosΠ( )

Proof. tan
2 1⎝ ⎠ cosΠ( )

−
=

+
⎛ ⎞
⎜ ⎟

c c
c

      (half-angle identity for tangent) 

cosΠ( )
cosΠ( )= α     (4
cosΠ( )
cosΠ( )

−

+

b

b
α

1

1

th gem: TP 35 Notes, Claim 15)           

cos [½Π( ) ½Π( )]

½Π( )]
) ½Π( )]

1
  −  +  + 

 −  −  + 

−
c β

cos [½Π( ) ½Π( )]
cos [½Π( )
cos [½Π(

1

  −  −  + 
  −  +  + 
 

=
+

c β
c β c β
c

          
β c β

c c β

           (equation (1)) 

β

cos [½Π( ) ½Π( )] cos [½Π( ) ½Π( )]
( ) ½Π( )] cos [½Π( ) ½Π( )]

  −  −  + −   −  +  + 
 −  −  + +   −  +  + 

c β c β c β c β
ccos [½Π

=
 

          
β c β c β c β

 . 

          (algebra) 

all four cosines in this expression with the addition/subtraction formulas for 
cosine ( ± =

 If we expand 

cos( )A cos cos sin sin∓B  
 

A B A B ) and simplify the result, it ecomes b

2sin[½Π( )]sin[½Π( )]
]2cos[½Π( )]cos[½Π( )

 −  +
 −  +

c β c β
c c β

] tan[½Π( )] tan[½Π( )=  −  + c β c β . 
β

That is,  

      2 Π( ) Π( ) Π( )
tan tan tan

2 2
− +

=⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

c c
2⎜ ⎟

⎝ ⎠
β c β

, as claimed.    
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The Fundamental Formula 
“This is certainly one of the most remarkable formulas in all of mathematics, an
mathematicians know it.” 

d it is astonishing how few 

- Marvin Greenberg*

 

 to the equation that will finally reveal th  the 

-function: 

         

It is now but a short step e precise nature of

∏
Π( )    tan

2
xx e−⎛ ⎞ ) 

 
e are justified in referring to th of imaginary geometry 

since it yields an explicit expression for the all-pervasive angle of parallelism: 

=⎜ ⎟
⎝ ⎠

.    (3

W is as the fundamental formula 

1Π( ) 2 tan ( )xx e− − = . 
  
 

e angle ∏(β) at B may have any value between 0 and 
π/2, β itself can be any number between 0 and ∞. By considering the 
cases in which β = c, 2c, 3c, etc., we may deduce that for all positive 

r,†

 Because th

values of 
 

Π Π⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

( ) ( )tan tan
2 2

r c rc . 

 
If we alues x  and c , and assuview r as the ratio of two v me that  
ot(∏(c )/2) = ec, we find that for all values of x, whether positive or 
egative, 

 

c
n

−Π⎛ ⎞ =⎜ ⎟
⎝ ⎠

( )tan
2

xx e , 

 
 

(x ) = 0 when x = ∞. 
Since the unit with which we measure lengths may be chosen at 

ill, we may choose it so that e  is the base of the natural logarithm. 

 
 

where e  is an indeterminate constant, which is larger than 1, since 
∏
 
w
 

                                                 
nberg, p. 323. 

 I have r, Lobachevski uses the symbol n. Whatever one calls it, it stands for any positive real 
number. I have switched to r so as to conform with the convention of reserving n for natural numbers. 

*Gree
 
† Where
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 Lobachevski’s proof of the fundamental formula is sketchy and somewhat 

t an alternate proof, which is complete and transparent, based on 

e functional equation that we have already used to establish an exponential relationship 

ill return to Lobachevski’s method, and show how to expand his sketch into 

 full p of of  fun mental form . The reader m ich 

ethod of proof he prefers. 

unclear. I shall presen

th

in TP 33 (between corresponding arcs on concentric horocycles). At the end of the notes, 

however, I w

a ro  the da ula ay then decide for himself wh

m
 

Theorem. 
Π( )tan

2
xx e−⎛ ⎞ =⎜ ⎟

⎝ ⎠
 for any real value of x.*

Proof. If a right rectilinear triangle has hypotenuse c and an acute angle ∏(β), then we know 
that: 
 

          2 Π( ) Π( ) Π( )
tan tan tan

2 2 2
− +

=⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

c c β c β
.  (2) 

 
ote, however,N  that for any positive c and β, there is a right triangle with hypotenuse c and an 

angle ∏(β)†. Thus, (2) holds for any cular, if x and y are 
arbitrary positive reals, we may write 

 

 positive values of c and β. In parti

 

 2 Π( ) Π( ) Π( )
tan tan tan

2 2 2
− +⎛ ⎞ ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
x x y x y

,   (letting c = x and β = y in (2))  

and 
2 Π( ) Π( ) Π( )

tan tan tan
2 2

 
2⎜ ⎟

⎠ ⎝ ⎠
   

− +⎛ ⎞ ⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝

y y x y x
(letting c = y and β = x in (2)). 

 
ultiplying these, we obtain M

 

 2 2Π( ) Π( )
tan tan⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜2 2 ⎟
⎝ ⎠ ⎝ ⎠

x y

 
Π( ) Π( ) Π( ) Π( )

tan tan tan tan
− + − +

= ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟2 2 2 2⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

x y x y y x x y
 

                                                 
* If we retain the parameter k, the right-hand side of this expression becomes e-x / k, which is shown 
explicitly in this proof. 

AB be a segment of length c. Draw ray BB′ such that B′BA = ∏(β). Drop a perpendicular AC from A 
 
† Let 
to BB′. The resulting triangle, ABC, is the required one. 
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 2 Π( ) Π( ) Π( )
tan tan tan

2 2 2
+ − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
x y x y y x

 

 2 Π( ) Π( ) π Π( )
tan tan tan

2 2 2
+ − − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
x y x y x y

        (definition of ∏(-x)) 

 2 Π( ) Π( ) Π( )
tan tan

2 2 2
cot+ − −⎛ ⎞ ⎛ ⎞ ⎛ ⎞= ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
x y x y x y

 

 2 Π( )
tan

2
+⎛ ⎞= ⎜ ⎟

⎝ ⎠
x y

. 

 
Taking square roots yields 

Π( ) Π( )
tan

+⎛ ⎞ ⎛=⎜ ⎟ ⎜
Π( )

tan tan
2 2 2

⎞ ⎛ ⎞
⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
x y x y

. 

Thus, 2 Π( )⎛ ⎞( ) tan
2

= ⎜ ⎟
⎝ ⎠

x
f x  satisfies the functional equation f(x + y) = f(x)f(y). 

ence,  Claim  the notes to TP 33, we must have  
 
 H by  3 in
 

2 Π( )
tan ⎛ ⎞

2
=⎜ ⎟

⎝ ⎠
xx a , 

 
for all x ≥ 0, where a = f(1). In fact, the identity holds for all negative arguments as well: since 

 it follows that  ∏(-x) = π - ∏(x),

  
2 2

2

Π( ) π Π( )
tan tan

Π( )2 2
2

1 1 −

tan

− −⎛ ⎞ ⎛ ⎞= = = =⎜ ⎟ ⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎝ ⎠
⎜ ⎟
⎝ ⎠

x
x

x x
x

a
a

. 

2 Π( )
tan

2
⎛ ⎞ =⎜ ⎟
⎝ ⎠

xx a  holds for all real values of x.. Note that the numerical value of Thus, 

2 Π(1)
tan

2
= ⎛ ⎞

⎜ ⎟
⎝ ⎠

a  

 
on the unit of length, since, for example, ∏(1 millimeter) is not the same as  

(1 light-year). In fact, if we choose the unit of length judiciously, we may endow ∏(1) any 
value between 0 and π/2, and thus we may endow a with any value between 0 and 1. For each 
value a in this range, there is a unique k > 0 such that  e-1/ k = a. Hence, we may write 

depends up
∏

 
2 Π( )

tan
2

− ⎛ ⎞ =⎜ ⎟
⎝ ⎠

x kx e , 
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where k > 0 is a parameter whose numerical value depends upon the unit of length. Lobachevski 
selects his unit of length to be that which makes k = 1, and thus writes 
 

2 Π( )
tan

2
−⎛ ⎞ =⎜ ⎟

⎝ ⎠
xx e , 

as claimed.            
   

 

 
The “five gems” of TP 35 are remarkable inasmuch as they simultaneously describe 

metric relations o e. We found that 

ese five equations, 
  

    sin∏(c) = sin∏(a)sin∏(b) 

    sin∏(β) = cos∏(α ∏(a) 

∏ α ∏ β ∏ b

    cos∏(b) = cos∏(c)cos∏(α) 

    cos∏(a) = cos∏(c)cos∏(β) 

    

were immediately comprehensible as statements about the sides and angles of our generic 

spherical right triangle {∏(c), ∏(β), ∏(a); ∏(b), ∏(α′)}, and they led to a complete 

we have 

been unable to fully grasp the rectilinear interpretation of these equations, as they include 

the terms ∏(a), ∏(b), and ∏(c), none of which have simple interpretations as sides or 

angles on our generic rectilinear right triangle [a, b, c; ∏(α), ∏(β)]. 

Rather than applying the fundamental formula directly to the five gems, we shall 

produce some simple substitutions for sin∏(x), cos (x), and tan∏(x), and use these 

stead. 

 
 
 
The Rosetta Stone 

trigono n a spherical triangle and on a rectilinear triangl

th
  

)sin

    sin ( ) = os ( )sin ( )  c

understanding of spherical trigonometry in imaginary space. In contrast, thus far 

 However, now that we have an explicit formula for the ∏-function, we can polish 

it away from the five gems, yielding simple statements about the sides a, b, and c, instead 

of their angles of parallelism, in which we have little interest when trying to solve 

trigonometric problems. 

 

∏

in
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Claim 3. For all x, the following holds:
1

tanΠ( )
sinh

 = x
x

.

 

*

Proof. 
sin

tanΠ( )
2

2
 = 

⎜ ⎟
⎝ ⎠x

Π( )

Π( )cos 2
2

⎛ ⎞

⎛ ⎞
⎜ ⎟
⎝ ⎠

x

x
           (defn. of tangent) 

2sin
  

2 2cos sin
2 2

−⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

Π( ) Π( )cos
2 2

Π( ) Π( )
= 

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞

x x

x x
         (double angle formulae) 

 
2 ta

Π( )⎛ ⎞x

 
2

n
2
Π( )1 tan

2

= 
⎜ ⎟
⎝ ⎠

⎛ ⎞− ⎜ ⎟
⎝ ⎠

x
           (dividing top and bo 2 ∏  

  

ttom by cos ( (x)/2) )

2
2

1

−

−= 
−

x

x
e
e

  ula) 

  

          (the fundamental form

2
−= 

−x xe e
  bottom by ex)           (multiplying top and 

1  
sinh

= 
x

                       (defn. of sinh)     

 
 

Claim 4. For all x, the following holds: 
1

sinΠ( )
cosh

=x
x

.†

 
Proof.  cosh2(x) = 1 + sinh2(x)    (hyperbolic trig. identit

2

y) 

     

    = 1 + cot ∏(x)    (Claim 3) 
    = csc2∏(x)    (trig. identity) 
    = 1 / sin2∏(x)    (defn. of csc). 
 
 Solving for sin∏(x) yields the desired result.  

                                                 
* If we retain the parameter k, this becomes tan∏ ) = 1/sin x/k), as is easily seen by making the 
appropriate
†

(x h(
 changes in the proof.  

 With the parameter, sin∏(x) = 1/cosh(x/k). 
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cosΠ( ) tanhx x= .Claim 5. For all x, the following holds: *

cos∏(x) = sin∏(x) / tan∏(x) 
x))  laims 3 and 4) 

   = sinh(x) / cosh(x)  =  tanh(x).        
 

The Five Gems Revisited: the Planar Interpretation  
 

 With these three substitutions, we may read the five gems as simple statements 

ic rectilinear right triangle ple, the 

first gem is sin∏(c) = sin∏(a)sin∏(b). Applying the substitution in Claim 4 yields 
  

cosh(c) = cosh(a)cosh(b), 

thagorean theore  in he im

of any rectilinear right triangle in imaginary geometry. 

∏(β) = cos∏ inate ∏(α) or 

∏(β) from it, since these are angles in ABC. In contrast, we want a statement that 

 ∏(a). Consequently, we c (α) = 

cosh(a)sin∏(β).This will look neater if we use the customary symbols A and B for the 

f ∏(α) and ∏ ). Aft se ond g  becomes 

cosA = cosh(a)sin(B). 
 

ategies to the remaining equations, the five gems 

ssume their rectilinear interpretations (i.e. the Rectilinear Gems)†: 

(RG4)  tanh(b) = tanh(c) cos(A) 

tanh(

                                                

Proof.  
    = (1/cosh(x)) / (1/sinh( (C
 

 

about our gener ABC [a, b, c; ∏(α), ∏(β)]. For exam

 
which is the Py m  t aginary plane, since it relates the three sides 

 The second gem is sin (α)sin∏(a). We need not elim

involves a, not an eliminate sin∏(a) to obtain cos∏

angles, instead o (β er this cosmetic change, the c em

 

 After applying the same str

a

 

 (RG1)  cosh(c) = cosh(a) cosh(b) 

 (RG2)  cos(A) = cosh(a) sin(B) 

 (RG3)  cos(B) = cosh(b) sin(A)  

 

  (RG5)  a) = tanh(c) cos(B). 

 

e side lengths appearing in the rectilinear gems (a, b, c) would each be 
become cos(A)  = cosh(a/k )sin(B) .  

* With the parameter, cos∏(x) = tanh(x/k). 
† If the parameter k is retained, th
divided by k. Thus, for example, RG2 would 
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 Just as the relationships among the parts of a right spherical triangle are described 

y ten les (N  a ri  the imaginary plane 

re rela d by sines 

nd sines for imaginary plane trigonometry are, in fact, implicit in these five equations; 

em. In TP 37, Lobachevski 

ill make this explicit, deriving the fundamental trigonometric relationships of the 

agin

metric 

relations are so much easier to comprehend after this translation, I shall perform this 

utine task for him in the notes to TP 

e 

se the following substitutions: 

 

b ru apier’s rules), the parts of ght rectilinear triangle in

a te ten analogous rules. We have just found five of them. The laws of co

a

hence, all of imaginary plane trigonometry is implicit in th

w

im ary plane, thus fulfilling his promise at the end of TP 22. 

 Curiously, Lobachevski does not bother to translate the ∏(a), ∏(b), and ∏(c) 

terms into the language of hyperbolic functions of a, b, and c. Since the trigono

ro 37. For now, I conclude this section with a 

summary of the translation process for future reference. 
 
 

Translation Summary 
  
 To translate Lobachevski’s ∏-laden equations about a generic rectilinear triangle 

(with sides a, b, c, and opposite angles ∏(α), ∏(β), and ∏(γ)) into ∏-free equations about 

the generic rectilinear triangle (with sides a, b, c, and opposite angles A, B, and C), w

u

1 1sinΠ( )
cosh

x
x

= ,  cosΠ( ) tanhx x= , tanΠ( )
sinh

x
x

 = ,*

 

 ∏(α) = A, ∏(β) = B, ∏(γ) = C. 

 

 
 
 
 
 
 

                                                 
* Retaining the parameter k, these become tan∏(x) = 1/sinh(x/k), sin∏(x) = 1/cosh(x/k), and 
  cos∏(x) = tanh(x/k). 
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Appendix: 
Lobachevski’s Derivation of the Fundamental Formula 
 

Lobachevski’s derivation requires more work than the functional equation approach did. 

The key is to prove that the following identity holds for all positive real numbers c and r: 
 

            ( ) ( )
tan tan

2 2
Π Π

=⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

r c rc .    (4) 

 
 Lobachevski’s hint (to let β = c, 2c, 3c, etc. in equation (2)) suffices only to 

tablises h the identity when r is a natural number. We shall begin here, and then extend 

the result to all positive values of r.  
 

Claim 6. The identity 
( ) ( )

tan tan
2 2

Π Π
=⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

r c rc
 holds whenever r is a natural number (and c is 

any positive real) 
 
Proof. The identity obviously holds when r = 0 or 1. 

ows that it holds when r = 2. 
 = 2c in (2) yields 

 Setting β = c in (2) sh
 Setting β
 

 2 Π( ) Π( ) Π(3 )
tan tan tan

2 2 2
−

=⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

c c c
 

          
π Π( )

tan
 − 

= ⎛
⎜

Π(3 )
tan

2 2
⎞ ⎛ ⎞
⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
c c

 

                      
Π( ) Π(3 )

cot tan
2 2

= ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

c c
 . 

 
 Multiplying both sides of this equation b ∏(c)/2) establishes the identity when r = 3. 

 We can base a ro tio  on se to show that identity 

) holds when r is any natural number. I shall omit the details, which are completely 

raightforward.           

 

y tan(

utine induc n argument this last ca

(4

st
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Claim 7. The identity (4) holds whenever r = m/n, where m and n are natural numbers (and c is 
any positive real). 
 
Proof.  We know that 
 

 ( ) ( )Π Π⎛ ⎞ ⎛ ⎞m c mc
tan tan

2 2
=⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
  (Claim 6) 

          tan
2

=
⎜ ⎟
⎜ ⎟
⎝ ⎠

 (Algebra) 
Π

⎛ ⎞⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠⎜ ⎟

mn c
n

tan
2

Π
=

⎛ ⎞⎛ ⎞m
⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎜ ⎟
⎜ ⎟
⎝ ⎠

n
c

n . (Clai ⎛ ⎞          ⎜ ⎟
⎝ ⎠

c
n

 play the role of c) m 6: letting 
m

yields (4) when r = m / n.    

           

 
 Taking nth roots of both sides of this equation 
  

Corollary. The identity 
( ) ( )

tan tan
2 2

Π Π
=⎛ ⎞ ⎛

⎜ ⎟ ⎜
⎝ ⎠ ⎝

r c r ⎞
⎟
⎠

c
   (4) 

holds for all any positive numbers c and r. 
 

roof. or any  value of c, the two sides of the equation are continuous functions of r that 
agree on the positive rationals. Since the positive rationals are dense in the positive reals, the 

the identity holds for any positive real numbers 
 and r.                

           

 

P F  fixed

functions must agree on the positive reals. That is, 
c
 

 With the identity (4) established for all positive r and c, Lobachevski sets r = x/c 

(where x can be any positive real number), and thereby obtains that for any positive x, 
 

( ) ( )
tan tan

2 2
Π Π

=⎛ ⎞ ⎛
⎜ ⎟ ⎜
⎝ ⎠ ⎝

x
c c x ⎞

⎟
⎠

.   (5) 

e then selects his unit of measurement to be that which endows the expression 

n(∏(1)/2) with the numerical value e- 1. This choice of unit implies that  

 

 
H

ta
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1
1( )

tan
2

−Π⎛ ⎞ =  c c e , ⎜ ⎟
⎝ ⎠

setting x = 1 in (5). Consequently, (5) becomes 
 
which we can see by 
 

(( )
tan= )1( )

tan
2 2

− −Π Π⎛ ⎞ ⎛ ⎞ = =⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠

x
x

⎟
xcx c e , 

 
which is the fundamental formula.       ♦ 

e
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Theory of Parallels 37 
 

 this final proposition, Lobachevski develops the trigonometric formulae of the 

 any trigonometric 

equation with hyperbolic functions, Lobachevski chooses not to make these helpful 

translations. This lack, coupled with some awkward derivations and peculiar notation, 

conclusions of this section are actually quite simple and admit easy proofs. To emphasize 

this fact, I shall derive Lobachevski’s results in ∏-free notation and deviate from his 

unnecessarily convoluted proofs of the two laws of cosines. 
 
 

The Need for a New Rectilinear Relation 
 

 We can interpret the five gems as statements about right spherical triangles or 

right rectilinear triangles. In their spherical interpretation (see TP 35 notes), they specify 

the following trigonometric relationships: 
 
 A relation among the triangle’s three sides.    (SG 5) 

 A relation among the two acute angles and a leg.  (SG 3,4) 

 A relation among the hypotenuse, a leg, 
 and the acute angle they do not include.   (SG 1,2) 
 
In the notes to TP 35, we developed all of spherical trigonometry from these 

relationships. Naturally, as soon as we have equations that specify the same three 

relations for right rectilinear triangles, we will be able to develop all of plane 

trigonometry by an analogous procedure. 

 The five gems, in their rectilinear interpretation, fall just short of providing these 

three relationships. In particular, they specify the following (see TP 36 notes):   
  
 A relation among the triangle’s three sides.    (RG 1) 

 A relation among the two acute angles and a leg.  (RG 2,3) 

 A relation among the hypotenuse, a leg, 
 and their included angle.     (RG 4,5) 
 

In

imaginary plane. Although we can now replace the ∏-functions in

make his work in this section appear particularly opaque. This is unfortunate, since the 

 253



If we can use these to derive a relation among a right rectilinear triangle’s hypotenuse, 

g, and the acute angle they do not include, then our trigonometric toolbox will be 

sin∏(α) = cos∏(β)sin∏(b) 

 can obtain one of the others by 
pplying the second equation to side a rather than side b; we then 

deduce another by combining the equations already established. There 

 
in∏(α)tan∏(a)    (1) 

∏ ∏ ∏ (2) 

s (1). Using our translations from TP 36, 

e can

le

sufficiently powerful to develop all of trigonometry in the plane. It is easy to derive such 

a relation, but Lobachevski’s words make the process seem mysterious. The required 

relation is the one that he calls (1) in the passage below. 
 
 
The Need Satisfied    
 
Of the five equations above (TP 35), the following two 
 

sin∏(c) = sin∏(a)sin∏(b) 

 
suffice to generate the other three: we
a

will be no ambiguities of algebraic sign, since all angles here are acute. 
 Similarly, we obtain the two equations: 

    tan∏(c) = s
    cos (a) = cos (c)cos (β).   
 
 

 The crucial relationship in this passage i

w  rewrite this relation as 
sinh( )       sin( )
sinh( )

aA
c

= *.     (1′) 

 
(Compare this with the familiar relation from plane Euclidean geometry: sin(A) = a / c.)  
 
Claim 1. In the generic right rectilinear triangle [a, b, c ; A, B], equation (1′) holds. 

roof. 

2 2

G 3) 

                                              

P Since  
 sin2(A)  = 1- cos2(A) 
              = 1- cosh (a)sin (B)   (by RG 2 – see TP 36 notes) 

2 2  = 1- cosh (a)[1- cos (B)] 
  = 1- cosh2(a)[1- cosh2(b)sin2(A)]  (by R
  = 1- cosh (a) + cosh (a)cosh (b)sin (A) 2 2 2 2

   
 If we retain the parameter k, this equation becomes sin(A) = sinh(a / k) / sinh(c / k). *
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  = 1- cosh2(a) + cosh2(c)sin2(A)  (by RG 1) 
  = -sinh2(a) + cosh2(c)sin2(A), 
 
 a little algebra yields 

sinh2(a) = [cosh2(c) – 1]sin2(A). 
 That is,  

sinh2(a) = sinh2(c)sin2(A), 
 

from which equation (1′) follows.       

enuse, leg, and the non-

cluded acute angle. Lobachevski will now use this relation to derive the law of sines in 

the plane, in precisely the way gue (SG1) to derive the law 

f sines on the sphere.  

, B, C. 
If A and B are acute angles, then the 

p dropped from C will fall within 

n the side of B. This 
produces two right triangles. Applying 

B, is right or obtuse. Thus, for any 
ectili atsoever, we have 

  (3)  )ta ∏(b).

∏-free 

notation and expressed in a more general form, it becomes 

 
 

 We now have our relation among a right triangle’s hypot

in

 that we used its spherical analo

o
 

 
The Law of Sines for the Imaginary Plane 

..with t e law of sin.” – Romans 7:25  “. he mind I myself serve the law of God; but with the flesh th
 

We shall now consider an arbitrary rectilinear 
triangle with sides a,b,c  and opposite angles 
A
 
perpendicular 
the triangle and cut side c into two parts: x, on 
the side of A, and c – x, o

equation (1) to each yields 
 
  tan∏(a) = sin(B)tan∏( p). 
  tan∏(b) = sin(A)tan∏( p). 
 
These equations hold even if one of the 
angles, say 
r near triangle wh
 
   sin(A)tan∏(a) = sin(B n  
 
 
 Equation (3) is the law of sines for the imaginary plane. Translated into 
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          sin( )
sinh( )

A B
a b c

= =
sin( ) sin( )
sinh( ) sinh( )

C    (3′) 

the Eu e law of sines in this context 

by dropping a perpendicular and esulting right triangles. This is 

essed 

 terms of hyperbolic functions. 
 

heore

 
As on the sphere or in clidean plane, we can prove th

 working with the two r

precisely what Lobachevski does in his proof above. Here is the same proof, re-expr

in

T m 1. (Law of Sines) In any rectilinear triangle ABC in the imaginary plane with the 
usual labeling*,   

sin( ) sin( ) sin( )A B C
= =

sinh( ) sinh( ) sinh( )a b c

. Drop an altitude from C, and label the parts of the 
 D of the 

sult, obtaining 

 
 

  

he First Law of Cosines for the Imaginary Plane 

is 

mewhat clumsy, but when we clear away the brambles, we find that his proof conforms 

 obtain two right triangles, applies known 

                                              

†. 

 
Proof
triangle as in the figures. Regardless of where the foot
perpendicular falls, we apply (1′) to the two right triangles that 
re
   sin(A) = sinh(p) / sinh(b),    
       and   sin(B) = sinh(p) / sinh(a).‡

 
Solving both equations for sinh(p) and equating the results, we 
obtain sin(A)/sinh(a) = sin(B)/sinh(b). Repeating the argument,
but dropping the perpendicular from A, we find that
sin(C)/sinh(c) = sin(B)/sinh(b). Equating the two expressions 

r sin(B)/sinh(b) produces the law of sines.  fo     
 
 

T
 
Lobachevski’s derivation of the law of cosines is long-winded and his exposition of it 

so

to the expected mold: he drops an altitude to

   
.e. ang

 k), for the positive parameter k. 
e. For example, if D = A, 

then p = b, and sin(A) = 1, so the fact that sin(p )=sin(b)sin(A) is obviously true. 

* I les A, B, C lie opposite sides a, b, c.  
† More generally, sin(A)/sinh(a / k) = sin(B)/sinh(b / k) = sin(C)/sinh(c /
‡ If D happens to fall directly upon A or B, these two equations are trivially tru



trigonometric formulae to them, and combines the results to produce the law of cosines. 

reakin  his convolut  proo  pieces and commenting on

 reinforce the misconception that the law of cosines is difficult to establish. Thus, after 

tion (2) to a triangle with acu  angles at A and B yields 

cos∏(x )= cos(A)cos∏(b
cos∏(c – x )= cos(B)cos∏(a). 

his case, the first 
d is trivially true. When  

lying equation (2) still yields the first equation; in place of 
(π–B)cos∏(a), which, however, is 

 – c)= – cos
os(π–B) =  –cos(B). Finally, if A is right or obtuse, we must use c – x and 
 , instead of x  and c – x,  so that the two equations will hold in this case 

e, we observe that 

B g ed f into  each part would only serve 

to

presenting his argument whole, I shall follow it with an alternate, much cleaner 

derivation, which is essentially identical to the proof of the spherical law of cosines, or 

for that matter, the proof of the Euclidean law of cosines that appears in most high-school 

textbooks.  
 
  
Applying equa te
 

) 

 
These equations hold even when one of the angle
obtuse. 
 For instance, when B = π/2, we have x  = c; in t
equation reduces to equation (2) and the secon
B > π/2, app

s A or B is right or 

the second, it yields cos∏(x – c)= cos
identical to the second, since cos∏(x ∏(c – x)  (TP 23), and 
c
x
also. 
 To eliminate x from the two equations abov
  

    

Π

Π
Π

⎡ ⎤−⎛ ⎞− ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦−  = 
⎡ ⎤−⎛ ⎞+ ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

2

2
(c )1 tan

cos (c ) 2

(c )1 tan
2

x
 

x

x

    
−−

=
2 2c1 xe

 −+ 2 2c1 xe
Π Π

Π Π

⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞− ⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦=
⎡ ⎤ ⎡ ⎤⎛ ⎞ ⎛ ⎞+

    

⎜ ⎟ ⎜ ⎟⎢ ⎥ ⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦ ⎣ ⎦

2 2

2 2

(c) ( )1 tan cot
2 2

(c) ( )1 tan cot
2 2

x

x
 

Π Π−                                                
1 Π Π

=
s

− cos (c)cos ( )x
co (c) cos ( )x . 
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 If we substitute the expressions for cos∏(x )and cos∏(c – x ) into 
this, it becomes 

Π ΠΠ
Π Π

−
=

−
cos (c) cos(A)cos (b)cos (a)cos(B)

1 cos(A)cos (b)cos (c)
, 

from which it follows that 
 

Π ΠΠ
Π Π

+
=

+
cos (a)cos(B) cos (b)cos(A)cos (c)

1 cos (a)cos (b)cos(A)cos(B)
,*

and finally, 
 
(4)    [ ] [ ][ ]Π Π Π Π Π= − −sin (c) 1 cos(B)cos (c)cos (a) 1 cos(A)cos (b)cos (c) . 2

 
Similarly, we also have 

 
[ ] [ ][ ]Π Π Π Π= − −2sin (a) 1 cos(C)cos (a)cos (b) 1 cos(B)cos (c)cos (a)  Π

 [ ] [ ][ ]Π Π Π Π= − − Π(b) 1 cos(A)cos (b)cos (c) 1 cos(C)cos (a)cos (b) . 2sin
 
From these three equations, we find that 
 

[ ] [ ]
[ ]

[ ]Π Π
Π Π

Π
= −

2 2
2

2

sin (b) sin (c)
1 cos(A)cos (b)cos (c)

sin (a)
. 

 
From this it follows, without ambiguity of sign, that 
 

Π ΠΠ Π(5)            
Π

 =
sin (b)sin (c)cos(A)cos (b)cos (c)+ 1. 

 Such is Lobachevski’s s (5). Here is a simpler 

approach, in which I have rewritten the law in ∏-free notation. 

 
 

 

                                                

sin (a)

 proof for the law of cosine

 
 

 

 
 

 
hevski’s original, the positions of this equation and the preceding one are reversed: presumably 

this was a printer’s error, which was perpetuated in Halsted’s 1891 translation. 
* In Lobac
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T m 2. (First Law of Cosines) In any rectilinear triangle ABC in the imaginary plane w
the usual labeling, 

heore ith 

 
ht triangle, label it so that the right angle is at C. In this case, 

s(C) = 0, so the first law of cosines reduces to cos(c) = cos(a)cos(b). This is the Pythagorean 
Theorem for the ima G1.)   

 is not a right  B to AC. We will 
oofs (different in details, but the same in spirit) for the case in which D 

cosh( ) cosh( ) cosh( ) sinh( )sinh( ) cos( )c a b a b C= − *  

ginary plane, which we have already proved in TP 36. (It is R
triangle, we drop a perpendicular BD from

ide AC, and the case in which D falls outside AC. 

.

Proof. If ABC happens to be a rig
co

 If ABC
equire slightly different prr

falls ins
 
Case 1  (D lies within AC) 
As in the figure, we let d = BD,  p = AD, and q = C. 
Then, 
cosh(

           = [cosh(a)/ cosh(q)]cosh(p)     (RG1 on BDC) 

       = [cosh(a)/ cosh(q)][cosh(b)cosh(q) - sinh(b)sinh(q)]  
         = cosh(a
         = cosh(a)cosh(b

       = cosh(a)cosh(b) - sinh(a)sinh(b)cos(C),   as claimed. 

ase 2

 D

 = cosh(d)cosh(p)   (RG1 on ABD) 

)cosh(b) - sinh(b)cosh(a)tanh(q) 
) - cosh(a)sinh(b)[tanh(a)cos(C)] (RG3 on BDC) 

c)
  
         = [cosh(a)/ cosh(q)]cosh(b - q) 
  

  
 
C  (D falls outside of AC) 

 parts o

hen, 

) 
BCD) 

= cosh(a)cosh(b) + sinh(b)cosh(a)tanh(r) 
= cosh(a)cosh(b) + sinh(b)cosh(a)[cos(π - C)tanh(a)] (RG4 on BCD) 
= cosh(a)cosh(b) + sinh(a)sinh(b)cos(π - C) 
= cosh(a)cosh(b) + sin(a)sin(b)cos(C),    as claimed. 

Thus, the first law of cosines holds for all rectilinear triangles in imaginary geometry.   
 
                                                

Label the f the triangle as shown in the figure at right. 
 
T
cosh(c) = cosh(b+r)cosh(s)         (RG1 on ABD) 
             = [cosh(b)cosh(r) + sinh(b)sinh(r)]cosh(s)            (trig identity

= [cosh(b)cosh(r) + sinh(b)sinh(r)][cosh(a)/cosh(r)] (RG1 on  
 
 
 
 

 
* More generally, cosh(c / k) = cosh(a / k)cosh(b / k) - sinh(a / k)sinh(b / k)cos(C), for the positive 
parameter k.  
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The Second La ne
 

w of Cosines for the Imaginary Pla  

ike spherical geometry, plane imaginary geometry admits AAA-congruence, and 

evski’s 

ion for sin∏(c) follows from an alternate form of (3): 

L

therefore admits a second law of cosines for determining a side when given all three 

angles. On the sphere, we obtained the second cosine law from the first by calling on the 

theory of polar triangles. Unfortunately, that is not an option in the plane.  Lobach

proof is unnecessarily tortuous, so once again, I shall follow it with a simpler argument 

rather than detailing its twists and turns point by point.   
 
 
The following express
 

Π Π Π(c)  
sin(A)sin (c)= tan (a)cos . 

n  (5), we obtain 

sin(C)
 
If we substitute this expressio  into equation
 

ΠΠ =
cos (a)sin(C)cos (c)

Π +sin(A)sin (b) cos( Π ΠA)sin(C)cos (a)cos (b)
. 

 s ∏(c) into equation (4), we obtain 
 
If we ubstitute this expression for cos
 

ΠΠ
Π

    
cos (b)(6)    cot(A)sin(C)sin (b)+cos(C)

By eliminating sin∏(b) with the help of equation (3), we find that 
 

=
cos (a)

. 

 
 

Π Πcos ) co )s )sin (a). 
Πcos (b) sin(B)

= −
(a s(Acos(C) 1 in(C

n th ua  
 
O e other hand, permuting the letters in eq tion (6) yields 
 

Π Π=
cos (a) cot(B)sin(C)sin (a) cos(C). 

Πcos (b)
+

(7)    

 
By combining the last two equations, we obtain 

 

Πsin (a)
 

+ =
sin(B)sin(C)cos(A) cos(B)cos(C) . 
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 Here is a simpler approach to the second law of cosines, which I have rewritten in 

(B) / cosh(c) = sin(A)sin(B). By the 
ythagorean theorem (RG1), this is equivalent to cos(A)cos(B) / cosh(a)cosh(b) = sin(A)sin(B). 

 
iangle, the second law of cosines is equ vially true statement.   

 If ABC is not a r AC. We will 
quire slightly different proofs (different in details, but the same in spirit) for the case in which D 

Case 1

∏-free notation. 
 

Theorem 3. (Second Law of Cosines) In any rectilinear triangle ABC in the imaginary plane 
with the usual labeling, 
 

cos( ) sin( )sin( ) cosh( ) cos( ) cos( )C A B c A B= − *. 
 

Proof. If ABC happens to be a right triangle, label it so that the right angle is at C. In this case, 
os(C) = 0, so the second law of cosines reduces to cos(A)cosc

P
By RG 2 & 3, this is equivalent to sin(A)sin(B) = sin(A)sin(B), or 1 = 1. Thus, for any right
tr ivalent to a tri

ight triangle, we drop a perpendicular D from B to B
re
falls inside AC, and the case in which D falls outside AC. 
 

  (D fal
With the labels indicated in

ls within AC) 
 the figure, we have 

B1 )cos(B)] 
) – cosh(d)sin(B )cos(B) 

osh(c)  – co      

 cos(C) = cosh(d)sin(BB

1

 = cosh(d)[sin

2)   (RG2 on BDC) 
= cosh(d)sin(B - B )  

) - sin(B1(B)cos(
B)cos(B

B B

 = cosh(d)sin( 1 1

= cosh(d)sin(B)cosh(p)sin(A)  – cos(A)cos(B)  (RG2 on BDA) 

 = sin(A)sin(B)c s(A)cos(B) 
 

ase 2

 
 = cosh(d)sin(B)[cosh(c)/cosh(d)]sin(A) – cos(A)cos(B) (RG1 on BDA) 

C   (D falls outside of AC) 

os(C) = – cos(π – C) 
 = – cosh(s)sin(B

= – cosh(s)sin(β  

 = sin(B)cos(β)cosh(s) – sin(β)cosh(s)cos( ) 
 = sin(B)cos(β

                                                

Label the parts of the triangle as shown in the figure, where β = ABD. Then, 
 c

′)      (RG2 on CDB) 
 – B)  

 – cos(A)cos(B) 

 
 = – cosh(s)[sin(β)cos(B) – cos(β)sin(B)] 

B
)cosh(s)

 
n the parameter k > 0, this becomes cos(C) = sin(A)sin(B)cosh(c / k)  – cos(A)cos(B). * Or, if we retai
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  (RG2 on ADB) 
= sin(B)co s(β)[cosh(c) / cosh(b+ r)] – cos(A)cos(B) (RG1 on ADB) 

 = [cos(β) / cosh(b+ r)]sin(B)cosh(c) – cos(A)cos(B) 

hus, the first law of cosines holds for all rectilinear triangles in imaginary geometry.   
 
 

 = sin(A)sin(B)cosh(c) – cos(A)cos(B)   (RG2 on ADB)   
   
T

Recapitulation of Trigonometric Formulae 
 
Thus, the four equations that describe how the sides a,b,c and the angles 
A,B,C are interrelated in rectilinear triangles are [eqns. (3), (5), (6), (7)]: 
    

Π = Π⎧
⎪ Π Π⎪ Π Π   =

Π⎪
⎪  ⎨ Π   

sin (b)sin (c)cos(A)cos (b)cos (c)+
sin (a)

( )

1

8

sin(A)tan (a) sin(B)tan (b)

Π
  ⎪ Π

+ =
Π

cos (b)cot(A)sin(C)sin (b)+cos(C)=
cos (a)

sin(B)sin(C)C)
sin (a)

 

lations collected in (8) are, respectively, the 

nd law of cosines. To understand why 

nsi . 

 angles), any 

ticular, 

etermine the fourth datum. There are four distinct types of sets of four data: three sides 

gles and a side (second law of cosines), two 

 

ed relation in (8) is of this last type, and 

 co teness*. Its theoretical importance is minimal, 

y suffice to solve any “solvable” triangle. 

⎪
⎪
⎪
⎩
cos(A) cos(B)cos(

  
 
 The first, second, and fourth of the re

law of sines, the first law of cosines, and the seco

the remaining, unnamed equation is in their company, co der the following

 Any trigonometric relation necessarily involves four data (sides or

three of which determine the entire triangle up to congruence and thus, in par

d

and an angle (first law of cosines), three an

sides and their opposite angles (law of sines), or two sides and two angles, only one of

which lies opposite an involved side. The unnam

is included only for the sake of mple

since the laws of sines and cosines alread

                                                 
* To derive an analogous relation in Euclidean plane trigonometry, begin with the Euclidean law of cosines 
(c2 = a2+b2 - 2abcosC ), and use the substitution  c = asinC /sinA  (law of sines) to obtain an equation 

des.  involving two sides (a, b) and two angles (A, C), only one of which (A) lies opposite one of the two si
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Lobachevski derived this relation as an intermediate result in his proof of the second law 

elation here, 

,  

llowing holds: 

       

of cosines. For the sake of completeness, I will give a proof of this r

expressed in ∏-free notation. 
 

Claim 2. In any rectilinear triangle ABC in the imaginary plane with the usual labeling  the

fo
cot( ) sin( ) tanh( )

cos( )
cosh( )b

 
tanh( )

A C b
C

a
+ = . 

  C a (law of sines) 

               

Proof. This relation is an algebraic consequence of the laws of sines and cosines. In particular, 
we know that 
 

 sin( ) sinh( ) sin( ) sinh( )A c=     

 
cosh( ) cosh( ) cosh( )

sin( )
b c a

A
−

=
⎛ ⎞
⎜ ⎟  (1

sinh( ) cos( )b A⎝ ⎠
ines) 

              

st law of cos

 
cosh( ) cosh( ) cosh( )b c a−

=
⎛ ⎞ . 

by

tan( )
sinh( )

A
b⎜ ⎟

⎝ ⎠

 
 sides  cot(A)/sinh(a)cosh(b) yields Multiplying both

 
cot sin cosh( ) cosh( ) cosh( )

       
cosh( ) sinh( ) sinh( ) cosh( )b a b b

= . 

                      

A C b c a−

( )cosh( ) cosh( ) cosh( ) sinh( ) sinh( ) cos( ) cosh( )
sinh( ) sinh( ) cosh( )

b a b a b C a
a b b

− −
=  

         (1st law of cosines) 

              
cosh( ) cosh( ) cosh( )

cos( )
sinh( ) sinh( ) sinh( ) sinh( ) cosh( )

a b a
C

a b a b b
= − − .   (algebra) 

 
Adding cos(C) to both sides, and putting the resulting right-hand side over a common 
denominator gives us 
 

  
2cot( ) sin( ) cosh( ) cosh ( ) cosh( )

cos( )
cosh( ) sinh( ) sinh( ) cosh( )

A C a b a
C

−
+ =  

b a b b

                        
( )2cosh( ) cosh ( ) 1

sinh( ) sinh( ) cosh( )

a b

a b b

−
=  

2cosh( ) sinh ( )
sinh( ) sinh( ) cosh( )

a b
a b b

=  
tanh( )
tanh( )

b
a

= .     
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 To supplement Lobachevski’s summary, here are the key trigonometric formulae 

for rectilinear triangles in imaginary geometry, expressed in ∏-free notation. 
 

= =
sin( ) sin( ) sin( )A  Law of sines  
sinh( ) sinh( ) sinh( )

B C

  First law of nes 

a b c
 

 
 cosi = −cosh( ) cosh( )cosh( ) sinh( )sinh( )cos( )c a b a b C  

 
  Second law of cosines = −cos( ) sin( )sin( )cosh( ) cos( )cos( )C A B c A B . 

 
 

Approximations 
 

ourselves with the following approximations (TP 36): 

cot∏(a) = a, 
sin∏(a) = 

When the sides a,b,c of the triangle are very small, we may content 

 

21
21 − a , 
, 

here  same approximations hold fo sides b and c also. 

 

etry to investigate what 

 by 

approximating cot∏(x), sin∏(x), and cos∏(x) with simple functions whose accuracies 

approach perfection as x approaches zero. 

 TP 36 give cot∏(x) = sinh(x). Developing the right-hand side as a 
Taylor series and dropping higher order terms (which become increasingly insignificant 

mpared to the leading term, as x → 0) yields 

                     

cos∏(a) = a
 
w  the r 
 

 Lobachevski will soon use the formulae of trigonom

imaginary geometry looks like on the “infinitesimal” scale. He begins this process

 
 
Claim 3. For infinitesimal values of x, the following equation holds: cot∏(x) = x.*

roof. Our translations fromP

co

                            
(x x → 0. All other references to infinitesimals below s ld be int d as 

shorthand for statements about limiting behavior. 
* That is, cot∏ )/x → 1 as hou erprete
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3 5

cot ( ) sinh( )
3! 5!
x x

x x x xΠ = = + + + ≈ , 

for small values of x. Thus, cot∏(x) = x for infinitesimally small values of x, as claimed.  

orolla . For infinitesimal values of x, the following equation holds: ta ∏(x) = 1/x.   

 

laim 4. For infinitesimal values of  the following equation holds: sin∏(x) = 1 - (x2/2). 

Proof. We know that 

 

C ry n

C x,

2 4 2

2! 4! 2

1 1 1
cosh 1 1

sinΠ( )
x x xx

= ≈x =
+ + + +

. 

 
eveloping this last expression as a geometric series, and dropping higher order terms yields D

 

2

2 4 6 21
sinΠ( ) 1 1

x

2 2 4 8 21 x

x x x
x ≈ = − + − + ≈ − , 

x, as claimed.   

Claim 5. For infinitesimal values of x  holds: cos∏(x) = x. 

Proof. For infinitesimal values of x, we essions that we have found in Claims 

+
 

r small x. Thus, sin∏(x) = 1- (x2/2) for infinitesimally small values of fo
 

, the followin ong equati

 may use the expr

3 & 14 to write 1
2 3

cos ( ) cot ( ) sin ( ) 1
2 2
x x

x x x x xΠ = Π Π = − = − ≈
⎛ ⎞
⎜ ⎟
⎝ ⎠

.x  

nfinitesimal Imaginary Geometry = Euclidean Geometry  

 relations that 

ler and smaller triangles (i.e. triangles that fit 

in smaller and smaller discs). In fact, we can guarantee that the difference between the 

exact and approximate values will be arbitrarily small if we restrict our attention to 

That is, cos∏(x) = x for infinitesimal values of x, as claimed.      

 
  

Under the Microscope: 
I
 

 By substituting these approximations into the four trigonometric

Lobachevski summarizes in (8), we will obtain approximate relations, which becoming 

increasingly accurate when applied to smal

sufficiently tiny triangles. To avoid repeating precise but verbose statements about 
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limiting behavior, we shall use the evocative if vague shorthand of describing our 

approximations as exact relations on infinitesimal triangles (i.e. triangles that fit in a disc 

or such small triangles, the equations (8) become 

)
asin(A + C) = bsinA 

cosA + cos(B + C) = 0. 
 

 
A + B + C = π. 

 
Therefore, imaginary geometry passes over into ordinary geometry when 

y 

approximations into (8). The first two relations show that at a sufficiently 

small scale, the law of sines and the first law of cosines for imaginary geometry is 

indistinguishable from their Euclidean counterparts. 
 

l triangle ABC in im inary 

aginary geometry satisfy the imaginary law of sines:  
ay use the substitution 

mal version,  
sin(A)/a = sin(B)/b, which is the ordinary Euclidean law of sines.*     

o
 

f infinitesimal diameter).  

 
F
 

bsinA = asinB 
2 2 2 2a b c bc cos(A= + −   

The first two of these equations are used in ordinary geometry; the last 
wo equations lead, with help from the first, to the conclusion t

the sides of a rectilinear triangle are very small. 
 
 

 We can establish the four trigonometric relations for infinitesimal triangles b

substituting our 

Claim 6. The Euclidean law of sines holds for any infinitesima ag
geometry. 
Proof. All triangles in im
sin( )tan ( ) = sin( )tan ( ). Because the triangle is infinitesimal, we m

n∏(x) = 1/x from Claim 3 (corollary), and rewrite this in its infinitesi
A ∏ a B ∏ b

ta

 
 

                                                 
* If we wanted to avoid Lobachevski’s ∏-function altogether, we could have used the ∏-free formulation 
of the imaginary law of sines, sin(A)/sinh(a) = sin(B)/sinh(b). Since sinh(x) ≈ x for small x, we immediately 
have that sin(A)/a = sin(B)/b for infinitesimal triangles. The next few claims could be handled the same 

2way, using sinh(x) ≈ x and cosh(x) ≈ 1 + (x /2). 
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Claim 7. The Euclidean law of cosines holds for any infinitesimal triangle ABC in imaginary 
geometry. 
Proof. For any triangle in imaginary geometry, the first law of cosines (the 2nd equation in (8)) 

olds. For an infinitesimal triangle, we may use the substitutions given by Claims 4 & 5 to rewrite 
is cosine law as 

h
th

( )( )
( )

2 2

1 1b c− −
2

21 a

2 2cos( ) 1bc A + = . 

Or, after an algebraic massage,
 

22 cos( )b c a bc A+ = . 

op 
 sides of the 

resulting equation by 2, we obtain the in of the first law of cosines, 
 

hich is the Euclidean law of cosines, as claimed.      

 

any triangle in imaginary geometry, the 3rd equation in (8) holds. For an infinitesimal 

−

 

2 2 2 2 22 2 4 cos( ) 2b c bc A a+ − +
 
At a sufficiently small scale, we may neglect terms of order 3 or higher; accordingly, we dr
b2c2 (order 4) and 2a2bc cos(A) (order 3). After dropping them and dividing both

finitesimal version 

2 2 2 2 cos( )a b c bc A= + − , 
 

w
 

 The two remaining trigonometric relations for infinitesimal triangles in imaginary 

geometry do not correspond to named relations of Euclidean trigonometry, but when 

combined, they yield a still greater prize: the angle sum of an infinitesimal triangle in 

imaginary geometry is π.*

Claim 8. For any infinitesimal triangle ABC in imaginary geometry, asin(A+C) = bsin(A). 
Proof. For 
triangle, we may use the substitutions given by Claims 4 & 5 to rewrite this relation as 
 

( )2

2cot( ) sin( ) 1 cos( )b bA C C
a

− + = . 

 
At a sufficiently small scale, we may choose to neglect terms of order 2 or higher. Dropping b2/2 
nd multiplying both sides of the resulting equation by asin(A) yields 

                                                

a

 
* Again, this infinitesimal language is just shorthand; a more accurate statement would be that, in imaginary 

e obviously cannot invoke that theorem here. 

geometry, the angle sum of a triangle approaches π as the size of the triangle decreases. In fact, this result 
follows immediately from Gauss’ observation that angle defect and area are directly proportional in 
imaginary geometry (see the notes to TP 33), but since Lobachevski himself never mentions this 
proportionality within The Theory of Parallels, h
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( )cos( ) sin( ) cos( ) sin( ) sin( )a A C C A b A+ = . Finally, a trigonometric identity lets us rewrite this 
as sin(a A + =) sin( )C b A , which was to be shown.       

angle in imaginary geometry, the second law of cosines (4th equation in (8)) 
holds. For an infinitesimal triangle, we may use the substitutions given by Claims 4 & 5 to rewrite 
the second cosine law as 

 
Claim 9. For any infinitesimal triangle ABC in imaginary geometry, cos(A) + cos(B + C) = 0. 
Proof. For any tri

( )2

2

sin( ) sin( )
cos( ) cos( ) cos( )

1 a

B C
B C+ =

−
. 

 
ropping the higher order term a2/2 and rearranging the resulting equation yields 

A

D
 

[ ]cos( ) cos( ) cos( ) sin( ) sin( ) 0A B C B C+ − = . 
 
That is, cos( ) cos( ) 0A B C+ + = , as claimed.        

Claim 10. In imaginary geometry, every infinitesimal triangle ABC has angle sum π. 

0 = sin(B)cos(B) - sin(B)cos(B) 

   (trigonometric identity) 
   = sin(A + B + C), 

e the 

 

 Because Euclid’s parallel postulate is equivalent to the statement that triangles 

have angle sum π (see end of TP 22), the preceding result indicates that imaginary 

 

Proof. Since 
 
    = [bsin(A)/a]cos(B) - sin(B)cos(B)   (by Claim 6: infinitesimal law of sines) 
    = [bsin(A)/a]cos(B) + sin(B)cos(A + C) (by Claim 9, with the letters permuted) 
    = sin(A + C)cos(B) + sin(B)cos(A + C) (by Claim 8) 
    = sin((A + C) + B) 
 
 
it follows that (A + B + C), the angle sum of ABC, must be an integral multiple of π. Sinc
angle sum is obviously positive, and cannot exceed π (by the Saccheri-Legendre Theorem:  

P 19), it must be π, as claimed.        T
 

geometry becomes Euclidean at the infinitesimal scale. In other words, if one restricts 

one’s attention to smaller and smaller portions of the imaginary plane, the phenomena 

that one observes will look increasingly Euclidean. Hence, Euclidean geometry is a 

limiting case of imaginary geometry.  
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Denouement  

In the scholarly journal of the University of Kazan, I have 
ublished several investigations into the measurements of curves, plane 

y 

Theory of Parallels might seek out his earlier Russian papers lie several layers of 

frustration and pathos. Let us work our way backwards through some of them, beginning 

with an event (or more accurately, non-event) that still lay in the future when 

 In the sixteen years of life that remained to Lobachevski, the mathematical 

ommunity of Europe was to ignore or misunderstand The Theory of Parallels; no one 

anted more of his work. Even if he had found some sympathetic readers in Germany, 

France, or elsewhere in Europe, it is unlikely that they would have been able to secure, let 

oetians” that Gauss so feared, but also a language 

 had l 

ntrast evski. Ostrogradski did 

pres ively in 

rench her fashionable nor obliging, resented the suggestion that a 

ussian intellectual must abandon his native tongue to reach a receptive audience. “The 

One wonders how enlightened Russian mathematicians actually were at the time. 

 
 
p
figures, surfaces, and solids, as well as the application of imaginar
geometry to analysis. 
 
 Beneath the surface of Lobachevski’s innocent suggestion that readers of The 

Lobachevski wrote these hopeful words. 

c

w

alone read, his Russian publications*. Thus, in order to find readers, he had to contend 

not only with the “howls of the B

barrier. 

 The one Russian mathematician who Europe’s ear in 1840 was Mikhai

Ostrogradski, who makes an illuminating co  with Lobach

im sive work in a fashionable area of mathematics, of which he wrote exclus

F . Lobachevski, neit

R

language of a people,” he argued, “is the testimony of its education, a true indicator of the 

degree of its enlightenment...”†. 

 

A Russian review of Lobachevski’s first publication on imaginary geometry, On the 

Principles of Geometry (1829-30), suggests the howling Boetians whom Gauss feared so 

much. The review accused Lobachevski of “simpleminded ignorance” and declared that a 

                                                 
* The exception is Gauss, whose love of languages rivaled his feeling for mathematics: he knew some 
Russian, and after reading The Theory of Parallels, he sought out and read Lobachevski’s earlier Russian 

orks. 

p.478. 

w
 
† Vucinich, 
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more appropriate title for his work would have been, “A Satire on Geometry” *. 

arallels (1835-8). His desired audience failed to materialize. Eventually, he gave in and 

the imaginary geometry might be possible. As 

hich

 
 

Undeterred, Lobachevski continued to publish his work on non-Euclidean geometry 

solely in Russian: Imaginary Geometry (1835), The Applications of Imaginary Geometry 

to Some Integrals (1836), and New Principles of Geometry, with a Complete Theory of 

P

wrote accounts of his work in German and French. By the time Lobachevski wrote The 

Theory of Parallels, he had already spent over a decade trying to publicize his work, in 

vain. His doomed efforts would continue for another fifteen years, ending only his death 

in 1856. 
 
 In his early Russian papers, Lobachevski did indeed solve some mensuration 

problems in imaginary geometry, computing, for example, the circumference and area of 

a circle and the surface areas and volumes of spheres and tetrahedra. He was then able to 

evaluate some intractable definite integrals by interpreting them as magnitudes in 

imaginary geometry. Although he does not address these issues in The Theory of 

Parallels, he published another account of them in his final work, Pangéométrie (1855). 
 
 

The Geometry of the Universe 
 
“What Vesalius was to Galen, what Copernicus was to Ptolemy, that was Lobachevsky to Euclid. There is, 
indeed, a somewhat instructive parallel between the last two cases. ... Each of them has brought about a 
revolution in scientific ideas so great that it can only be compared with that wrought by the other. ...they are 
changes in the conception of the Cosmos.” 
        –William Kingdon Clifford†

 
 In and of themselves, the equations (8) already constitute sufficient 
grounds for believing that 
a result, we have no means other than astronomical observations with 
w  to judge the accuracy that follows from calculations in the 
ordinary geometry. Its accuracy is very far-reaching, as I have 
demonstrated in one of my investigations; for example, in all angles who 
sides we are capable of measuring, the sum of the three angles does not 
differ from π by so much as a hundredth of a second. 

                                                 
* Rosenfeld, p. 209. The review was anonymous, but evidence suggests that Ostrogradski may have been 

sponsible for it, either as author or instigator.   
 298. 

re
† Clifford, pp. 297 –
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 When Saccheri entered the counterintuitive world of imaginary geometry in the 

early eighteenth century, he anticipated a contradiction at every turn. He never did find 

one, but, undermined by his own fervent desire to do so, he eventually deluded himself 

into thinking that he had*. 

 In contrast, when Lobachevski described the same world a century later, he was 

convinced that the new geometry was at least as solid as Euclid’s geometry, if not more 

so: its accuracy as a description of the physical universe might even surpass Euclid’s. His 

plane trigonometric formulae (8) support this conviction. Since these equations imply that 

Euclidean geometry is a limiting case of imaginary geometry, the fact that the world 

looks Euclidean” need not indicate that it actually is Euclidean. If the universe were 

. 

ight this analogy have swayed him into sympathy with Lobachevski’s views? Saccheri 

ed the vast size of the solar system†, but lacked any 

ysical 

“

very large – so large that even our telescopes could perceive only an infinitesimal portion 

of it – then physical space would appear Euclidean to us, even if imaginary geometry 

actually governs it. 

 What might Saccheri have thought of such an argument? He might well have 

thought of his countryman Galileo, who, only a few decades before Saccheri’s birth, 

argued that the Earth is in constant motion despite the fact that it appears to be at rest

M

and his contemporaries comprehend

conception of the distances to the “fixed stars.” They would have agreed that Italy is 

infinitesimal compared to the universe’s size, but might still have maintained that the 

Earth’s orbit encompasses a non-infinitesimal, though still small, portion of the universe. 

Thus, Saccheri might have maintained that if imaginary geometry governed the ph

universe in the large, then astronomical measurements should reveal this fact. They do 

not. Ergo, Euclides vindicatus est. 

                                                 
* According to Prékopa (p. 25), Imre Tóth has proposed that Saccheri’s dubious “contradiction” was 
inserted because he feared the Inquisition. This is a fascinating thesis, even if Saccheri does seem a bit late 
for the Inquisition, but since Tóth’s book, God and Geometry, is written in H

ng more about it. The language barrier strikes again. 
ungarian, I have no way of 

672, Cassini had calculated that the Earth’s distance to the sun was approximately 87 million miles. 
This was still short of the true value (of approximately 93 million miles), but it was a vast improvement 
over Ptolemy’s estimate (approximately 4 million miles). Because Kepler’s third law (1619) establishes the 

learni
 
† In 1

relative distances of all of the known planets to the sun, Casini’s measurement also measured the distances 
from the sun of of every other known planet. 
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 By the time that Lobachevski published The Theory of Parallels, astronomers had 

discovered a very different picture of the universe. In 1780, William Herschel discovered 

Uranus, the first new planet found since antiquity. His later discovery of binary stars, 

orbiting one another, disposed of the last vestige of the Ptolemaic system, the “fixed 

 all the stars we see and the very Milky Way 

cheri: large enough to suggest that all of our 

measurements – even astronomical measurements – might amount to infinitesimal 

distances with respect to it. In such a world, it was reasonable to conjecture that nature’s 

crystalline sphere” upon which the stars all lie. Finally, his observations and calculations 

led him to the first estimate of our galaxy’s diameter: 9000 light years. This enormous 

distance is in fact less than a tenth of the true value, but it represented a colossal step 

forward in humanity’s understanding of just how big the universe truly is. Objections that 

might have been reasonable for Saccheri had become insupportable in the light of 

Herschel’s discoveries. The conception of an overwhelmingly vast universe was, 

naturally, manifest in Laplace’s masterpiece Méchanique Céleste (1799-1825). In his first 

published account of imaginary geometry, Lobachevski refers to 
 

...the view expressed by Laplace, that
belong to merely one isolated cluster of heavenly bodies, similar to those that we 
perceive as faint shimmering spots in Orion.... *

 
The lesson that Lobachevski draws from this is significant, 
 

Nature itself reveals distances to us compared with which even the distance from 
Earth to the fixed stars disappears to insignificance. †

 
The first reasonably accurate measurement of a stellar distance came in 1838, when 

Friedrich Bessel showed that the distance from Earth to 61 Cygni, a faint “nearby” star, is 

over 270,000 times the distance from Earth to the sun. 

 The universe had become, in men’s minds, much larger during the century that 

separates Lobachevski from Sac

large-scale geometry might be non-Euclidean. Its Euclidean appearance might be an 

illusion born of the fact that we make all our measurements from an insignificant corner 

of the cosmos. 

                                                 
* Lobatschefskij, Zwei geometrische Abhandlungen, p. 24. 

ibid., p. 24. † 
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 Once we acknowledge the possibility that the geometry of the universe might be 

non-Euclidean, it is natural to want to test this hypothesis. Accordingly, Lobachevski 

analyzed astronomical records in an attempt to detect angle defect in an enormous 

triangle whose vertices lay at the Earth, the Sun, and Sirius, the brightest star in the night 

sky. An erroneous measurement of Sirius’s parallax compromised his calculation, but in 

any case, he concluded that the defect must be (significantly) less than a hundredth of a 

second. Since we would expect this much experimental error even if Euclidean geometry 

were known to hold, this was not evidence in favor of imaginary geometry. Nor, of 

course, was this evidence in favor of Euclidean geometry. Instead, this calculation simply 

indicated that if the geometry of the universe is imaginary, we are too tiny to discern the 

discrepancy from Euclidean geometry*.   
 
 

From 
 

the four equations (8) of plane 
ometry if we substitute 

the Imaginary Plane to the Sphere in the Blink of an i. 
  
Finally, it is worth observing that  

geometry become valid formulae of spherical ge
−a 1, −b 1, −c 1 for the sides a,b,c ; these substitutions will change 

 

sin∏(a)  to  1 , 
cosa

cos∏(a)  to  −1tana , 

tan∏(a)  to  
−

1
1sina

, 

 
and similarly for sides b and c. Hence, these substitutions change 
equations (8) into the following: 
      

=sinAsinb sinBsina  
= +cosa cosbcosc sinbsinccos A  

+ =cot AsinC cosCcosb sinbcota  
= −cos A cosasinBsinC cosBcosC . 

 
 

                                                 
* For more information on Lobachevski’s views on the relation between his geometry and the physical 
world, see Daniels. 
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 Lobachevski’s last words in The Theory of Parallels hint at a blood relationship 

between the imaginary plane and the sphere. If we multiply all side lengths by i, we can 

magically transform the formulae of imaginary trigonometry into the formulae of 

spherical trigonometry. This is easy to see if we write the imaginary laws of cosines and 

sines in terms of hyperbolic functions. 
 For example, the first imaginary law of cosines is 
 

cosh(c) = cosh(a)cosh(b) + sinh(a)sinh(b)cos(C). 
 

If we multiply all the side lengths that appear in this equation by i, it becomes 
 

cosh(ci) = cosh(ai)cosh(bi) + sin(ai)sin(bi)cos(C). 

Since cosh(xi) = cos(x) and sinh(xi) = isin(
 

x), we can rewrite this as 

cos(c) = cos(a)cos(b) - sin(a)sin(b)cos(C), 

t spherical law of cosines. 

is 

process is reversible: multiplying the sides of a general spherical triangle by i will 

transform the spherical trigonom th o sponding imaginary laws. (This 

works because cos(xi) = cosh(x) and sin(xi) = -isin(

 The relation between  igonometry is perhaps most 

manifest if we retain their resp s k nd r hen we express them in this 

more general form, we can transform one law into the other simply by multiplying the 

arameter by i. For example, with their parameters expressed, the two laws of sines 

 

 
which is the firs

 The same operation clearly transforms the imaginary law of sines and second law 

in  alogous trigonometric formulae for the sphere. Note that thof cos es into the an

e c

x).) 

spherical 

 a

etric laws into rre

imaginary and tr

ective parameter . W

p

appear as follows: 
            Imaginary        Spherical
 

Laws of Sines sin( ) sin( ) sin( )

sinh sinh

A B C
b c
k k

= =
⎛ ⎞ ⎛ ⎞

⎟ ⎜ ⎟ ⎜ ⎟
⎠ ⎝ ⎠ ⎝ ⎠

  
sinh

a
k

⎛ ⎞
⎜
⎝

sin(

sin

)A sin( ) sin( )

sin sin

B C

r r

= =
⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

, 

here k and r are positive parameters whose numerical values depend on the unit of 

measurement used in each context. It is clear that multiplying the parameter by i in either 

i.)  

a a a
r

⎛
⎜
⎝

⎞
⎟
⎠

 

w

case will transform the law into its counterpart in the other geometry. (Recall that i-1 = -
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This seems to verify Lambert’s hunch that a non-Euclidean geometry could make sense 

on a “sphere of imaginary radius”. 
   
 

The Consistency of Imaginary Geometry 

obatch le to settle it.” 
       -Morris Kline*

 
“Finally, it is not true that Lobachevsky’s works do n t contain a proof of the consistency of his geometry. 

 consistency 

“Lobačevskiĭ’s argume ane geometry.”  
        - B.A. Rosenfeld‡

nt as Euclidean geometry, 
obatschewsky pointed out which lead to the familiar 

formulae for a spherical tria . Any inconsistency in the 
new geometry could be ‘translated’ into an inconsiste y in spherical geometry (which is part of Euclidean 

t, the independence of Euclid’s postulate V was finally 
  - H.S.M. Coxeter§

roof and what does not. (It is also 

odels of the imaginary plane definitively established imaginary 

eometry’s consistency. ki’s 

trated that if a contradiction ise in imaginary geometry, a 

corresponding contradiction would also arise in Euclidean geometry. Hence, unless one is 

repared to doubt the consistency of Euclidean geometry (which no one does), one has 

 
“L evsky and Bolyai had considered this problem but had not been ab
 

o
Objectively, they do. The reduction of hyperbolic trigonometry to spherical is no less of a

roof of Lobachevsky’s plane geometry than the Beltrami model.” - V. Ya. Perminov†p
 

nts do not represent a finished proof of the consistency of his pl

 
n order to show that his ‘imaginary’ geometry or ‘pangeometry’ is as consiste“I

L  that it is all based on his formulae for a triangle, 
ngle when the sides a, b, c are replaced by ia, ib, ic

nc
geometry). Thus, after two thousand years of doub
established.”      
 
“Lobachevsky... pondered over the problem all his life, but could not find a conclusive solution; this fell to 
the lot of future generations.”       - V. Kagan**

 
 
 This selection of quotations should serve as a corrective to the notion that 

mathematicians always agree as to what constitutes a p

notable for exhibiting four distinct transliterations of Lobachevski’s name, none of which 

agrees with my own.)  

 Lobachevski was convinced that contradictions would never appear in imaginary 

geometry, but few others shared his faith until compelled to do so by Beltrami and 

Poincaré, whose m

g  These models, created more than a decade after Lobachevs

death, demons were to ar

p

                                                 
* Kline, p. 914. 
† Perminov, p. 19. 
‡ Rosenfeld, p. 228. 
§ Coxeter, Non-Euclidean Geometry, p. 10. 
** Kagan, p. 60. 
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no right to question the consistency of imaginary geometry. Accordingly, we say that 

imaginary geometry is at least as consistent as Euclidean geometry.  

the relative consistency of a set of axioms by showing that any 

iction arising from them implies a contradiction in another (presumed consistent) 

chnique. For example, one can use it to 

ystem, which 

t as 

imself. In his 

 in 

 

then such contradiction can only hide in the very equations [i.e. the 
trigonometric equations]. We note, however, that these equations become 

 Proving 

contrad

area of mathematics has become a standard te

show that Euclidean geometry is at least as consistent as the real number s

itself is at least as consistent as the rational number system, which, in turn, is at leas

consistent as the system of the natural numbers. The first to pioneer this technique, even 

if the attempt was not quite successful, seems to have been Lobachevski h

New Principles of Geometry (which was published in installments between 1835-8,

Russian), he wrote, 
 

We have found equations which represent the dependence of the angles and sides 
of a triangle [i.e. the laws of cosines and sines]. When, finally, we have given 
general expressions for elements of lines, areas and volumes of solids, all else in 
the Geometry is a matter of analytics, where calculations must necessarily agree 
with each other, and we cannot discover anything new that is not included in
these first equations... . Thus, if one now needs to assume that some contradiction 
will force us subsequently to refute principles that we accepted in this geometry, 

equations of spherical Trigonometry as soon as, instead of the sides a, b, and c, 
we put a 1− , b 1− , and c 1− ... therefore, ordinary Geometry, Trigonometry and 
the new Geometry will always agree among themselves.*

 
 In this passage, Lobachevski seems to glimpse the future of geometry. To begin 

with, he hints at a remarkable synthesis of geometry and analysis: once the basic 

trigonometric relations are known, one can find expressions for the line, area, and volume 

elements (ds, dA, dV), and from thence, he suggests, one can answer (in principle) any 

geometric question. Thirty years after Lobachevski wrote these words, Bernhard 

Riemann gave a celebrated lecture in which he described how all of geometry is implicit 

in the Pythagorean theorem (a particular trigonometric relationship) and how different 

geometries ultimately stem from distinct versions of this theorem. Here, Lobachevski 

argues that because his trigonometric equations encompass all of imaginary geometry, 

any contradiction in imaginary geometry must be implicit within them. Such a 

 intimates, is impossible: we can “translate” every statement of c eontradiction, h
                                                 
* Rosenfeld, p. 223. 
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imaginary trigonometry into a corresponding statement of spherical trigonometry, so a 

contradiction in one context implies a contradiction in the other. Because there are no 

ses this objection in Géométrie Imaginaire (1837), his first non-

ussian The 

Theory  angle 

sum is ns. In 

Géomé s the 

trigono us, in 

the pr dded 

“Lobac metry. 

Conseq iction 

nywhere in the imaginary geometry, regardless of whether it lurks in the higher or lower 

“lines”! Hence, our translation mechanism may break down at this point. We might find 

contradictions in spherical trigonometry, there can be none in imaginary trigonometry, 

and therefore, there can be no contradictions in imaginary geometry. Q.E.D. 

 This is a remarkable strategy for securing the consistency of his geometry, but it 

has a few flaws in its execution. First, even if we accept his claim that the higher parts of 

imaginary geometry are all consequences of the laws of cosines and sines, we still must 

worry about the logical status of these trigonometric equations. Even if no contradictions 

can arise from them, the possibility remains that the lower parts of imaginary geometry 

(i.e. the chain of theorems leading up to the trigonometric equations) may harbor one. 

Lobachevski addres

R  publication. In its pages, he develops imaginary geometry backwards. In 

 of Parallels, he begins with the neutral axioms, assumes a new axiom (the

 always less than π), and proceeds to deduce the trigonometric equatio

trie Imaginaire, however, he begins with the neutral axioms, assume

metric equations, and deduces that the angle sum is always less than π. Th

esence of the neutral axioms, the existence of angle defect (the a

hevskian axiom”) is equivalent to the formulae of imaginary trigono

uently, Lobachevski would seem to be justified in his claim that a contrad

a

regions, would manifest itself in his trigonometric equations. 

 Even if we grant this, a fatal problem remains in his “translation” mechanism 

between imaginary and spherical geometries. Suppose that we wish to translate the proof 

of a theorem in imaginary geometry into its spherical analogue. We must translate each 

step of the proof in turn. Those that are algebraic consequences of the trigonometric 

equations will translate smoothly, but when a step in the proof calls upon the neutral 

axioms or the theorems derived from them, trouble may appear. Suppose, for example, 

that one step involves a triangle in the imaginary plane and applies the neutral axioms to 

its sides, which are, of course, three lines in the plane. For the translation to work, we 

would need to apply the same neutral axioms to the sides of a spherical triangle, which 

are three great circles on the sphere. The neutral axioms, however, do not hold for such 
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an ad hoc method to circumvent any given problem, but we cannot declare the 

consistency of imaginary geometry to be fully established until we have a translation 

mechanism that is guaranteed to function perfectly in every instance.  

 Although Lobachevski’s method falls short of being a full proof of consistency, it 

nonetheless provides compelling evidence that imaginary geometry is at least as 

consistent as Euclidean geometry. Incidentally, The Theory of Parallels does (implicitly) 

contain a proof of the converse statement: any contradiction in Euclidean geometry 

would also manifest itself as a contradiction in the geometry of the horosphere, which in 

turn is a part of imaginary space. Hence, Euclidean geometry is at least as consistent as 

imaginary geometry. Combined with the famous converse of Beltrami and Poincaré, this 

result tells us that the two geometries stand or fall together. Astonishing though this fact 

seemed to the first mathematicians who recognized it, it would have come as no surprise 

to Lobachevski, who saw the two geometries not as separate warring entities, but as 

aspects of the same pangeometry, of which Euclid had investigated only the special case 

in which the angle of parallelism is fixed at π/2. By imposing his parallel postulate, 

Euclid had set the rest of pangeometry off limits. Lobachevski simply posed himself the 

task of charting the unexplored regions. 
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äftigte
ich

m
ich

h
ierau

f
m

it
ein

er
A

b
fassu

n
g

d
ieser

W
issen

sch
aft

im
G

an
zen

,
u
n
d

p
u
b
licirte

d
iese

m
ein

e
A

rb
eit

in
ein

zeln
en

T
h
ei-

len
in

d
en

”G
eleh

rten
G

esch
riften

d
er

U
n
iver-

sität
K

asan
”

fü
r

d
as

J
ah

r
1836,

1837,
1838

u
n
ter

d
em

T
itel:

”N
eu

e
A

n
fan

gsgrü
n
d
e

d
er

G
eom

etrie,
m

it
ein

er
vollstän

d
igen

T
h
eorie

d
er

P
arallelen

.”
D

er
U

m
fan

g
d
ieser

A
rb

eit
h
in

-
d
ert

v
ielleich

t
m

ein
e

L
an

d
sleu

te
ein

em
solch

en
G

egen
stan

d
e

zu
folgen

,
w

elch
er

n
ach

L
egen

d
re

sein
In

teresse
verloren

h
at.

Ich
b
in

jed
o
ch

d
er

A
n
sich

t,
d
aß

d
ie

T
h
eorie

d
er

P
arallelen

n
ich

t
ih

re
A

n
sp

rü
ch

e
au

f
d
ie

A
u
fm

erk
sam

keit
d
er

G
eom

eter
verlieren

d
u
rfte,

u
n
d

d
esh

alb
b
e-

ab
sich

tige
ich

h
ier

d
as

W
esen

tlich
e

m
ein

er
U

n
-

tersu
ch

u
n
gen

d
arzu

legen
,
in

d
em

ich
vorau

s
b
e-

m
erke,

d
aß

d
er

M
ein

u
n
g

L
egen

d
re’s

zu
w

id
er

alle
ü
b
rigen

U
n
vollkom

m
en

h
eiten

,
z.

B
.
d
ie

D
e-

5

fi
n
ition

d
er

gerad
en

L
in

ie,
sich

h
ier

frem
d
artig

u
n
d

oh
n
e

allen
eigen

tlich
en

E
in

slu
ß

au
f

d
ie

T
h
eorie

d
er

P
arallelen

zeigen
.

U
m

m
ein

e
L
eser

n
ich

t
zu

erm
ü
d
en

d
u
rch

d
ie

M
en

ge
solch

er
S
ätze,

d
eren

B
ew

eise
kein

e
S
ch

w
ierigkeiten

d
arb

eiten
,

geh
e

ich
h
ier

n
u
r

d
iejen

igen
im

V
orau

s
an

,
d
eren

K
en

n
tn

iß
fü

r
d
as

folgen
d
e

n
öth

ig
ist.

1)
E

in
e

g
e
ra

d
e

L
in

ie
d
e
c
k
t

sic
h

se
lb

st
in

a
lle

n
L

a
g
e
n
.

H
ieru

n
ter

versteh
e

ich
,

d
aß

b
ei

d
er

D
reh

u
n
g

d
er

F
läch

e
d
ie

gerad
e

L
in

ie
ih

ren
O

rt
n
ich

t
verän

d
ert,

w
en

n
sie

d
u
rch

zw
ei

u
n
gew

eglich
e

P
u
n
k
te

in
d
er

F
läch

e
geh

t.
2)

Z
w

ei
gerad

e
L
in

ien
k
ön

n
en

sich
n
ich

t
in

zw
ei

P
u
n
k
ten

sch
n
eid

en
.

3)
E

in
e

gerad
e

L
in

ie,
au

f
b
eid

e
S
eiten

gen
u
gsam

verlän
gert,

m
u
ß

ü
b
er

jed
e

G
ren

ze
h
in

au
sgeh

en
,

u
n
d

th
eilt

au
f

solch
e

W
eise

ein
e

b
egran

zte
E

b
en

e
in

zw
ei

T
h
eile.

4)
Z
w

ei
gerad

e
L
in

ien
,

d
ie

au
f

ein
u
n
d

d
erselb

en
d
ritten

sen
k
rech

t
sin

d
,
sch

n
eid

en
sich

n
ie,

w
ie

w
eit

sie
au

ch
im

m
er

verlän
gert

w
erd

en
.

5)
E

in
e

gerad
e

L
in

ie
sch

n
eid

et
jed

erzeit
ein

e
an

d
ere

gerad
e,

w
en

n
sie

von
ein

er
S
eite

d
er-

selb
en

au
f
d
ie

an
d
er

S
eite

ü
b
ergeh

t.
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6)
S
ch

eitelw
in

kel,
b
ei

d
en

en
d
ie

S
eiten

d
es

ein
en

d
ie

V
erlän

geru
n
gen

d
er

S
eiten

d
es

an
-

d
eren

sin
d
,

sin
d

gleich
.

D
ies

gilt
von

eb
en

en
gerad

lin
igen

W
in

keln
u
n
ter

sich
,

so
w

ie
von

eb
en

en
F
läch

en
w

in
keln

.
7)

Z
w

ei
G

erad
e

L
in

ien
k
ön

n
en

sich
n
ich

t
sch

n
eid

en
,

w
en

n
ein

e
d
ritte

sie
u
n
ter

gleich
en

W
in

keln
sch

n
eid

et.
8)

Im
gerad

lin
igen

D
reiecke

liegen
gleich

e
S
eiten

gleich
en

W
in

keln
gegen

ü
b
er,

u
n
d

u
m

-
gekeh

rt.
9)

Im
gerad

lin
igen

D
reiecke

liegt
d
er

grö-
ßeren

S
eite

au
ch

ein
größerer

W
in

kel
gegen

-
ü
b
er.

Im
rech

tw
in

k
ligen

D
reiecke

ist
d
ie

H
y
-

p
oth

en
u
se

größer
als

jed
e

C
ath

ete
u
n
d

d
ie

an
ih

r
an

liegen
d
en

W
in

kel
sin

d
sp

itz.
10)

G
erad

lin
ige

D
reiecke

sin
d

con
gru

en
t,

w
en

n
b
ei

ih
n
en

ein
e

S
eite

u
n
d

zw
ei

W
in

kel
gleich

,
o
d
er

zw
ei

S
eiten

u
n
d

d
er

zw
isch

en
lie-

gen
d
e

W
in

kel
gleich

,
o
d
er

w
en

n
zw

ei
S
eiten

u
n
d

d
er

W
in

kel,
w

elch
er

d
er

größten
S
eite

ge-
gen

ü
b
er

liegt,
gleich

,
o
d
er

w
en

n
d
rei

S
eiten

gleich
sin

d
.

11)
E

in
e

gerad
e

L
in

ie,
w

elch
e

p
erp

en
d
icu

lär
au

f
zw

ei
an

d
eren

gerad
en

L
in

ien
steh

t,
d
ie

sich

7

m
it

ih
r

n
ich

t
in

ein
er

E
b
en

e
b
efi

n
d
en

,
ist

sen
k
-

rech
t
au

f
allen

gerad
en

L
in

ien
,
w

elch
e

d
u
rch

d
en

gem
ein

sch
aftlich

en
D

u
rch

sch
n
ittsp

u
n
k
t

in
d
er

E
b
en

e
d
erb

eid
en

letztern
gezogen

w
erd

en
k
ön

n
en

.
12)

D
er

D
u
rch

sch
n
itt

ein
er

K
u
gel

m
it

ein
er

E
b
en

e
ist

ein
K

reis.
13)

E
in

e
gerad

e
L
in

ie,
d
ie

p
erp

en
d
icu

lär
au

f
d
em

D
u
rch

sch
n
itt

zw
eier

E
b
en

en
ist,

u
n
d

in
ein

er
d
er

b
eid

en
sch

n
eid

en
d
en

E
b
en

en
liegt,

ist
sen

k
rech

t
au

f
d
er

an
d
ern

E
b
en

e.
14)

In
ein

em
sp

h
ärisch

en
D

reiecke
liegen

gleich
en

S
eiten

gleich
e

W
in

kel
gegen

ü
b
er,

u
n
d

u
m

gekeh
rt.

15)
S
p
h
ärisch

e
D

reiecke
sin

d
con

gru
en

t,
w

en
n

zw
ei

S
eiten

u
n
d

d
er

ein
gesch

lossen
e

W
in

-
kel

gleich
,

ob
er

ein
e

S
eite

u
n
d

d
ie

an
liegen

d
en

W
in

kel
gleich

sin
d
.

V
on

h
ier

folgen
d
ie

ü
b
rigen

S
ätze

m
it

ih
ren

E
rläu

teru
n
gen

u
n
d

B
ew

eisen
.

16)
A

lle
gerad

en
L
in

ien
,

w
elch

e
in

ein
er

E
b
en

e
von

ein
em

P
u
n
k
te

au
slau

fen
,

k
ön

n
en

m
it

B
ezu

g
au

f
ein

e
gegeb

en
e

gerad
e

L
in

ie
in

d
erselb

en
E

b
en

e
in

zw
ei

k
lassen

geth
eilt

w
er-

d
en

,
u
n
d

zw
ar

in
sc

h
n
e
id

e
n
d
e

u
n
d

n
ic

h
t

sc
h
n
e
id

e
n
d
e.

D
ie

G
re

n
z
lin

ie
d
er

ein
en
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u
n
d

an
d
eren

K
lasse

jen
er

L
in

ien
w

ird
d
er

g
e
-

g
e
b
e
n
e
n

L
in

ie
p
a
ra

lle
l
gen

an
n
t.

E
s

sei
vom

P
u
n
k
te

A
(F

ig.
1.)

au
f

d
ie

L
in

ie
B

C
d
er

P
erp

en
d
ikel

A
D

gefällt,
au

f
w

elch
em

w
ied

er
A

E
sen

k
rech

t
errich

tet
sein

soll.
Im

rech
ten

W
in

kel
E

A
D

w
erd

en
en

tw
ed

er
alle

gerad
en

L
in

ien
,

w
elch

e
vom

P
u
n
k
te

A
au

sge-
h
en

,
d
ie

L
in

ie
D

C
treff

en
,

w
ie

z.
B

.
A

F
,

o
d
er

ein
ige

d
erselb

en
w

erd
en

,
äh

n
lich

d
em

P
erp

en
-

d
ikel

A
E

,
d
ie

L
in

ie
D

C
n
ich

t
treff

en
.

In
d
er

U
n
gew

ißh
eit,

ob
d
er

P
erp

en
d
ikel

A
E

d
ie

ein
-

zige
L
in

ie
sei,

w
elch

e
m

it
D

C
n
ich

t
zu

sam
m

en
-

triff
t,

w
ollen

w
ir

an
n
eh

m
en

,
es

sei
m

öglich
,

d
aß

es
n
o
ch

an
d
ere

L
in

ien
,

z.
B

.
A

G
gäb

e,
w

elch
e

D
C

n
ich

t
sch

n
eid

en
,

w
ie

w
eit

m
an

sie
au

ch
verlän

gern
m

ag.
B

ei
d
em

U
eb

ergan
ge

von
d
en

sch
n
eid

en
d
en

L
in

ien
A

F
zu

d
en

n
ich

t
sch

n
eid

en
d
en

A
G

,
m

u
ß

m
an

au
f
ein

e
L
in

ie
A

H
treff

en
,

p
arallel

m
it

D
C

,
ein

e
G

ren
zlin

ie,
au

f
d
eren

ein
er

S
eite

all
L
in

ien
A

G
d
ie

D
C

n
ich

t
treff

en
,

w
äh

ren
d

au
f

d
er

an
d
ern

S
eite

jed
e

gerad
e

L
in

ie
A

F
d
ie

L
in

ie
D

C
sch

n
eid

et.
D

er
W

in
kel

H
A

D
zw

isch
en

d
er

P
arallele

H
A

u
n
d

d
em

P
erp

en
d
ikel

A
D

h
eißt

P
a
ra

lle
l

W
in

k
e
l

(W
in

kel
d
es

P
arallelism

u
s),

d
iesen

w
erd

en

9

w
ir

h
ier

d
u
rch

Π
(p)

b
ezeich

n
en

fü
r

A
D

=
p.

W
en

n
Π

(p)
ein

rech
ter

W
in

kel
ist,

so
w

ird
d
ie

V
erlän

geru
n
g

A
E

′
d
es

P
erp

en
d
ikels

A
E

eb
en

-
falls

p
arallelsein

d
er

V
erlän

geru
n
g

D
B

d
er

L
in

ie
D

C
;

w
ozu

w
ir

n
o
ch

b
em

erken
,

d
aß

in
B

ezieh
u
n
g

au
f

d
ie

v
ier

rech
ten

W
in

kel,
w

elch
e

am
P

u
n
k
te

A
d
u
rch

d
ie

P
erp

en
d
ikel

A
E

u
n
d

A
D

,
u
n
d

ih
ren

V
erlän

geru
n
gen

A
E

′
u
n
d

A
D

′

geb
ild

et
w

erd
en

,
jed

e
gerad

e
L
in

ie,
w

elch
e

vom
P

u
n
k
te

A
au

sgeh
t,

en
tw

ed
er

selb
st,

o
d
er

d
o
ch

w
en

igsten
s

m
it

ih
rer

V
erlän

geru
n
g,

in
ein

em
d
er

zw
ei

rech
ten

W
in

keln
liegt,

w
elch

e
n
ach

B
C

h
in

gekeh
rt

sin
d
,

so
d
aß

au
ßer

d
en

P
arallelen

E
E

′
alle

ü
b
rigen

,
w

en
n

sie
n
ach

b
eid

en
S
eiten

h
in

reich
en

d
verlän

gert
w

erd
en

,
d
ie

L
in

ie
B

C
sch

n
eid

en
m

ü
ssen

.
W

en
n

Π
(p)

<
1/

2
π

so
w

ird
au

f
d
er

an
d
ern

S
eite

von
A

D
u
n
ter

d
em

selb
en

W
in

kel
D

A
K

=
Π

(p)
n
o
ch

ein
e

L
in

ie
A

K
liegen

,
p
ar-

allel
m

it
d
er

V
erlän

geru
n
g

D
B

d
er

L
in

ie
D

C
,

so
d
aß

b
ei

d
ieser

A
n
n
ah

m
e

w
ir

n
o
ch

ein
e

S
e
ite

d
e
s

P
a
ra

lle
lism

u
s

u
n
tersch

eid
en

m
ü
ssen

.
A

lle
ü
b
rigen

L
in

ien
o
d
er

V
erlän

geru
n
gen

d
er-

selb
en

,
in

n
erh

alb
d
er

b
eid

en
n
ach

B
C

zu
gew

en
-

d
eten

rech
ten

W
in

kel,
geh

ören
zu

d
en

sch
n
eid

en
-
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d
en

,
w

en
n

sie
in

n
erh

alb
d
es

W
in

kels
H

A
K

=
2

Π
(p)

zw
isch

en
d
en

P
arallelen

liegen
;

sie
ge-

h
ören

d
agegen

zu
d
en

n
ich

t
sch

n
eid

en
d
en

A
G

,
w

en
n

sie
au

f
d
er

an
d
eren

S
eite

d
er

P
arallelen

A
H

u
n
d

A
K

,
in

d
er

O
eff

n
u
n
g

d
er

zw
ei

W
in

kel
E

A
H

=
1/

2
π
−

Π
(p),

E
′A

K
=

1/
2
π
−

Π
(p)

zw
isch

en
d
en

P
arallelen

u
n
d

d
er

au
f

A
D

p
erp

en
d
ik

u
lären

E
E

′
liegen

.
A

u
f

d
er

an
d
eren

S
eite

d
es

P
erp

en
d
ikels

E
E

′
w

erd
en

au
f
äh

n
lich

e
W

eise
d
ie

V
erlän

geru
n
gen

A
H

′
u
n
d

A
K

′
d
er

P
arallelen

A
H

u
n
d

A
K

eb
en

falls
p
arallel

m
it

B
C

sein
;

d
ie

ü
b
rigen

L
in

ien
geh

ören
im

W
in

kel
K

′A
H

′
zu

d
en

sch
n
eid

en
d
en

,
in

d
en

W
in

keln
K

′A
E

,
H

′A
E

′ab
er

zu
d
en

n
ich

tsch
n
ei-

d
en

d
en

.
D

em
n
ach

k
ön

n
en

b
ei

d
er

V
orau

ssetzu
n
g

Π
(p)

=
1/

2
π

d
ie

L
in

ien
n
u
r

sch
n
eid

en
d
e

o
d
er

p
arallele

sein
;
n
im

m
t

m
an

jed
o
ch

an
,
d
aß

Π
(p)

<
1/

2
π
,

so
m

u
ß

m
an

zw
ei

P
arallelen

zu
lassen

,
ein

e
au

f
d
er

ein
en

u
n
d

ein
e

au
f

d
er

an
d
ern

S
eite

;
au

ßerd
em

m
u
ß

m
an

d
ie

ü
b
rigen

L
in

ien
u
n
tersch

eid
en

in
n
ich

tsch
n
eid

en
d
e

u
n
d

sch
n
ei-

d
en

d
e.

B
ei

b
eid

en
V
orau

ssetzu
n
gen

d
ien

t
als

M
erk

m
al

d
es

P
arallelism

u
s,

d
aß

d
ie

L
in

ie
ein

e
sch

n
eid

en
d
e

w
ird

,
b
ei

d
er

k
lein

sten
A

b
w

eich
u
n
g

11

n
ach

d
er

S
eite

h
in

,
w

o
d
ie

P
arallel

liegt,
so

d
aß

w
en

n
A

H
p
arallel

D
C

,
jed

e
L
in

ie
A

F
d
ie

D
C

sch
n
eid

et,
w

ie
k
lein

au
ch

im
m

er
d
er

W
in

kel
H

A
F

sein
m

ag.
17)

E
in

e
g
e
ra

d
e

L
in

ie
b
e
h
ä
lt

d
a
s

K
e
n
n
z
e
ic

h
e
n

d
a
s

P
a
ra
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ü
b
er

liegt,
m

u
ß

m
an

en
d
lich

zu
ein

em
D

reiecke
ge-

lan
gen

,
in

w
elch

em
d
ie

S
u
m

m
e

d
er

d
rei

W
in

-
kel

π
+

α
ist,

w
orin

sich
ab

er
zw

ei
W

in
kel

b
e-

fi
n
d
en

,
d
eren

jed
er,

sein
er

ab
solu

ten
G

röße
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u
n
ter

sich
u
n
d

p
erp

en
d
ik

u
lär

au
f

A
C

.
M

an
zieh

e
au

s
A

d
ie

L
in

ien
A

E
u
n
d

A
F

n
ach

d
en

P
u
n
k
ten

E
u
n
d

F
,

w
elch

e
au

f
d
er

L
in

ie
C

D
in

b
elieb

igen
E

n
tfern

u
n
gen

F
C

>
E

C
vom

P
u
n
k
te

C
an

gen
om

m
en

sin
d
.

G
e-

setzt
es

sei
im

rech
tw

in
k
ligen

D
reiecke

A
C

E
d
ie

S
u
m

m
e

d
er

d
rei

W
in

kel
gleich

π
−

α
,

im
D

reiecke
A

E
F

gleich
π
−

β
,

so
w

ird
sie

im
D

reiecke
A

C
F

gleich
π
−

α
−

β
sein

m
ü
s-

sen
,
w

o
α

u
n
d

β
n
ich

t
n
egativ

sein
k
ön

n
en

.
E

s
sei

fern
er

d
er

W
in

kel
B

A
F

=
a
,

A
F

C
=

b,
so

ist
α

+
β

=
a
−

b
;

in
d
em

m
an

n
u
n

d
ie

L
in

ie
A

F
sich

vom
P
erp

en
d
ikel

A
C

en
tfer-

n
en

läßt,
kan

n
m

an
d
en

W
in

kel
a

zw
isch

en
A

F
u
n
d

d
er

P
arallele

A
B

so
k
lein

m
a-

ch
en

als
m

an
n
u
r

w
ill,

eb
en

so
kan

n
m

an
d
en

W
in

kel
b

verm
in

d
ern

,
folglich

k
ön

n
en

d
ie

zw
ei

W
in

kel
α

u
n
d

β
kein

e
an

d
ere

G
röße

h
a-

b
en

als
α

=
0

u
n
d

β
=

0.
D

em
n
ach

ist
in

allen
gerad

lin
igen

D
reiecken

d
ie

S
u
m

m
e

d
er

d
rei

W
in

kel
en

tw
ed

er
π

u
n
d

zu
-

gleich
au

ch
d
er

P
arallel

W
in

kel
Π

(p)
−

1/
2
π

fü
r

jed
e

L
in

ie
p,

o
d
er

fü
r

alle
D

reiecke
ist

d
iese

S
u
m

m
e

<
π

u
n
d

zu
gleich

au
ch

Π
(p)

<
1/

2
π
.

D
ie

erste
V
orau

ssetzu
n
g

d
ien

t
als

G
ru

n
d
-

lage
d
er

g
e
w

ö
h
n
lic

h
e
n

G
e
o
m

e
trie

u
n
d

d
er

19

e
b
e
n
e
n

T
rig

o
n
o
m

e
trie.

D
ie

zw
eite

V
or-

au
ssetzu

n
g

kan
n

eb
en

falls
zu

gelassen
w

erd
en

,
oh

n
e

au
f

irgen
d

ein
en

W
id

ersp
ru

ch
in

d
en

R
e-

su
ltaten

zu
fü

h
ren

,
u
n
d

b
egrü

n
d
et

ein
e

n
eu

e
geom

etrisch
e

L
eh

re,
w

elch
e

ich
d
en

N
am

en
:

Im
a
g
in

ä
re

G
e
o
m

e
trie”

gegeb
en

h
ab

e,
u
n
d

w
elch

e
ich

h
ier

d
arzu

stellen
b
eab

sich
tige,

b
is

zu
r

E
n
tw

ickelu
n
g

d
er

G
leich

u
n
gen

zw
isch

en
d
en

S
eiten

u
n
d

W
in

keln
d
er

gerad
lin

igen
u
n
d

sp
h
ärisch

e
D

reiecke.
23)

F
ü
r

je
d
e
n

g
e
g
e
b
e
n
e

W
in

k
e
l

α
k
a
n
n

m
a
n

e
in

e
L

in
ie

p
fin

d
e
n
,

so
d
a
ß

Π
(p

)
=

α
.

E
s
seien

A
B

u
n
d

A
C

(F
ig.

10.)
zw

ei
gerad

en
L
in

ien
,

w
elch

e
am

D
u
rch

sch
n
ittsp

u
n
k
te

A
d
en

sp
itzen

W
in

kel
α

b
ild

en
;

m
an

n
eh

m
e

au
f

A
B

w
illk

ü
h
rlich

ein
en

P
u
n
k
t
B

′,
au

s
d
iesem

P
u
n
k
te

fälle
m

an
B

′A
′sen

k
rech

t
au

f
A

C
,
m

ach
e
A
′A

′′
=

A
A
′,

errich
te

in
A
′′

d
ie

sen
k
rech

te
A
′′B

′′,
u
n
d

fah
re

so
fort

b
is

m
an

zu
ein

em
P
erp

en
d
ikel

C
D

gelan
gt,

w
elch

e
m

it
A

B
n
ich

t
m

eh
r

zu
sam

m
en

-
triff

t.
D

ies
m

u
ß

n
oth

w
en

d
ig

statt
fi
n
d
en

,
d
en

n
w

en
n

im
D

reiecke
A

A
′B

′
d
ie

S
u
m

m
e

aller
d
rei

W
in

kel
gleich

π
−

a
ist,

so
w

ird
d
ie

im
D

reiecke
A

B
′A

′′gleich
π−

2a
,
im

D
reiecke

A
A
′′B

′′k
lein

er
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als
π
−

2a
(20.

S
atz.)

sein
,
u
n
d

so
fort,

b
is

sie
en

d
lich

n
egativ

w
ird

u
n
d

d
ad

u
rch

d
ie

U
n
m

ög-
lich

keit
d
er

D
reieck

b
ild

u
n
g

zeigt.
D

ie
S
en

k
-

rech
te

C
D

kan
n

d
ieselb

e
sein

,
von

w
elch

er
au

s
n
äh

er
zu

m
P

u
n
k
te

A
alle

ü
b
rigen

A
B

sch
n
ei-

d
en

;
w

en
igsten

s
m

u
ß

b
ei

d
em

U
eb

ergan
ge

von
d
en

ein
en

sch
n
eid

en
d
en

zu
d
en

n
ich

t
sch

n
eid

en
-

d
en

ein
solch

er
P
erp

en
d
ikel

F
G

ex
istiren

.
M

an
zieh

e
jetzt

au
s

d
em

P
u
n
k
te

F
d
ie

L
in

ie
F

H
,

d
ie

m
it

F
G

d
en

sp
itzen

W
in

kel
H

F
G

b
ild

et,
u
n
d

zw
ar

n
ach

d
er

S
eite

h
in

,
w

o
d
er

P
u
n
k
t

A
liegt.

V
on

irgen
d

ein
em

P
u
n
k
te

H
d
er

L
in

ie
F

H
fälle

m
an

au
f

A
C

d
en

P
erp

en
d
ikel

H
K

,
d
essen

V
erlän

geru
n
g

folglich
A

B
irgen

d
-

w
o

in
B

sch
n
eid

en
m

u
ß,

u
n
d

d
ergestalt

ein
D

reieck
A

K
B

b
ild

et,
in

w
elch

es
d
ie

V
erlän

ge-
ru

n
g

d
er

L
in

ie
F

H
ein

tritt,
u
n
d

d
ah

er
irgen

d
-

w
o

in
M

d
ie

H
y
p
oth

en
u
se

A
B

treff
en

m
u
ß.

D
a

d
er

W
in

kel
G

F
H

w
illk

ü
h
rlich

ist
u
n
d

so
k
lein

an
gen

om
m

en
w

erd
en

kan
n
,

als
m

an
w

ill,
so

ist
F

G
m

it
A

B
p
arallel

u
n
d

A
F

=
p.

(16.
u
n
d

18.
S
atz.)

M
an

sieh
t

leich
t

ein
,

d
aß

m
it

d
er

V
erm

in
-

d
eru

n
g

von
p

d
er

W
in

kel
α

w
äch

st;
in

d
em

er
sich

fü
r

p
=

0
d
em

W
erth

e
1/

2
π

n
äh

ert
;

m
it

21

d
er

Z
u
n
ah

m
e

von
p

verm
in

d
ert

sich
d
er

W
in

kel
α
,

in
d
em

er
sich

im
m

er
m

eh
r

d
er

N
u
ll

n
äh

ert
fü

r
p

=
∞

.
D

a
es

gan
z

b
elieb

ig
ist,

w
elch

en
W

in
kel

m
an

u
n
ter

d
em

Z
eich

en
Π

(p)
versteh

en
w

ill,
w

en
n

d
ie

L
in

ie
p

d
u
rch

ein
e

n
egativ

Z
ah

l
au

sged
rü

ck
t

w
ird

,
so

w
ollen

w
ir

Π
(p)

+
Π

(−
p)

=
π

an
n
eh

m
en

,
ein

e
G

leich
u
n
g,

w
elch

e
fü

r
alle

W
erth

e
von

p,
p
ositive

sow
oh

l
als

n
egative,

u
n
d

fü
r

p
=

0,
gelten

soll.
24)

J
e

w
e
ite

r
P

a
ra

lle
l

L
in

ie
n

a
u
f

d
e
r

S
e
ite

ih
re

s
P

a
ra

lle
lism

u
s

v
e
rlä

n
-

g
e
rt

w
e
rd

e
n
,

d
e
sto

m
e
h
r

n
ä
h
e
rn

sie
sic

h
e
in

a
n
d
e
r.

E
s

seien
au

f
d
ie

L
in

ie
A

B
(F

ig.
11.)

zw
ei

P
erp

en
d
ikel

A
C

=
B

D
errich

tet,
u
n
d

ih
re

E
n
d
-

p
u
n
k
te

C
u
n
d

D
d
u
rch

ein
e

gerad
e

L
in

ie
ver-

b
u
n
d
en

,
so

w
ird

d
as

V
iereck

C
A

B
D

b
ei

A
u
n
d

B
zw

ei
rech

te,
b
ei

C
u
n
d

D
ab

er
zw

ei
sp

itze
W

in
kel

h
ab

en
(22.

S
atz),

w
elch

e
ein

an
d
er

gleich
sin

d
,

w
ie

m
an

sich
leich

t
ü
b
erzeu

gen
kan

n
,

in
-

d
em

m
an

sich
d
as

V
iereck

au
f
sich

selb
st

gelegt
d
en

k
t,

so
d
aß

d
ie

L
in

ie
B

D
au

f
A

C
u
n
d

A
C

au
f

B
D

fällt.
M

an
h
alb

ire
A

B
u
n
d

errich
te

im
H

alb
iru

n
gsp

u
n
k
te

E
d
ie

L
in

ie
E

F
sen

k
-
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rech
t

au
f

A
B

,
w

elch
e

zu
gleich

au
ch

sen
k
rech

t
au

f
C

D
sein

m
u
ß,

w
eil

d
ie

V
ierecke

C
A

E
F

u
n
d

F
E

B
D

ein
an

d
er

d
ecken

,
w

en
n

m
an

sie
so

au
f

ein
an

d
er

legt,
d
aß

d
ie

L
in

ie
F

E
in

d
ersel-

b
en

L
age

b
leib

t.
D

em
n
ach

kan
n

d
ie

L
in

ie
C

D
n
ich

t
p
arallel

m
it

A
B

sein
,

son
d
ern

d
ie

P
aral-

lele
d
er

letztern
fü

r
d
en

P
u
n
k
t

C
,
n
äm

lich
C

G
,

m
u
ß

sich
au

f
d
ie

S
eite

von
A

B
h
in

n
eigen

(16.
S
atz),

u
n
d

sch
n
eid

et
vom

P
erp

en
d
ikel

B
D

ein
en

T
h
eil

B
G

<
C

A
ab

.
D

a
d
er

P
u
n
k
t

C
in

d
er

L
in

ie
C

G
w

illk
ü
h
rlich

ist,
so

folgt,
d
aß

C
G

sich
d
er

A
B

u
m

so
m

eh
r

n
äh

ert,
je

w
eiter

sie
verlän

gert
w

ird
.

25)
Z

w
e
i

g
e
ra

d
e

L
in

ie
n
,

d
ie

e
in

e
r

d
ritte

n
p
a
ra

lle
l

sin
d
,

sin
d

a
u
f

p
a
ra

l-
le

l
u
n
te

r
sic

h
.

W
ir

w
ollen

zu
n
äch

st
an

n
eh

m
en

,
d
aß

d
ie

d
rei

L
in

ien
A

B
,

C
D

,
E

F
,

(F
ig.

12.)
in

ein
er

E
b
en

e
liegen

.
W

en
n

zw
ei

d
erselb

en
,

d
er

O
rd

-
n
u
n
g

n
ach

A
B

u
n
d

C
D

;
p
arallel

m
it

d
er

äu
-

ßersten
E

F
sin

d
,

so
sin

d
au

ch
A

B
u
n
d

C
D

p
arallel

u
n
ter

sich
.

U
m

d
ies

d
arzu

th
u
n
,

fälle
m

an
au

s
irgen

d
ein

em
P

u
n
k
te

A
d
er

äu
ßer-

sten
L
in

ie
A

B
au

f
d
ie

an
d
er

äu
ßerste

F
E

d
en

P
erp

en
d
ikel

A
E

,
w

elch
er

d
ie

m
ittlere

L
in

ie
C

D

23

in
irgen

d
ein

em
P

u
n
k
te

C
sch

n
eid

en
w

ird
(3.

S
atz)

u
n
ter

ein
em

W
in

kel
D

C
E

<
1/

2
π

au
f

d
er

S
eite

d
er

m
it

C
D

p
arallelen

E
F

.
(22.

S
atz.)

E
in

P
erp

en
d
ikel

A
G

au
s

d
em

selb
en

P
u
n
k
te

A
au

f
C

D
gefällt,

m
u
ß

in
n
erh

alb
d
er

O
eff

n
u
n
g

d
es

sp
itzen

W
in

kels
A

C
G

fallen
(9.

S
atz),

jed
e

an
d
ere

L
in

ie
A

H
au

s
A

in
n
erh

alb
d
es

W
in

kels
B

A
C

gezogen
,
m

u
ß

d
ie

m
it

A
B

p
aral-

lele
E

F
irgen

d
w

o
in

H
sh

cn
eid

en
,

w
ie

k
lein

au
ch

im
m

er
d
er

W
in

kel
B

A
H

sein
m

ag,
folglich

w
ird

C
D

im
D

reiecke
A

E
H

d
ie

L
in

ie
A

H
irgen

d
w

o
in

K
sch

n
eid

en
,

d
a

es
u
n
m

ög-
lich

ist,
d
aß

sie
m

it
E

F
zu

sam
m

en
treff

e.
W

en
n

A
H

vom
P

u
n
k
te

A
in

n
erh

alb
d
es

W
in

kels
C

A
G

au
sgin

ge,
so

w
ü
rd

e
sie

d
ie

V
erlän

geru
n
g

von
C

D
zw

isch
en

d
en

P
u
n
k
ten

C
u
n
d

G
im

D
reiecke

C
A

G
sch

n
eid

en
m

ü
ssen

.
H

ierau
s
folgt,

d
aß

A
B

u
n
d

C
D

p
arallel

sin
d
.

(16.
u
n
d

18.
S
atz)

W
erd

en
d
ie

b
eid

en
äu

ßern
L
in

ien
A

B
u
n
d

E
F

p
arallel

d
er

m
ittleren

C
D

an
gen

om
-

m
en

,
so

w
ird

jed
e

L
in

ie
A

K
au

s
d
em

P
u
n
k
te

A
in

n
erh

alb
d
es

W
in

kels
B

A
E

gezogen
,

d
ie

L
in

ie
C

D
irgen

d
w

o
im

P
u
n
k
te

K
sch

n
eid

en
,

w
ie

k
lein

au
ch

im
m

er
d
er

W
in

kel
B

A
K

sein
m

ag.
A

u
f

d
er

V
erlän

geru
n
g

von
A

K
n
eh

m
e
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m
an

b
elieb

ig
ein

em
P

u
n
k
t

L
u
n
d

verb
in

d
e

ih
n

m
it

C
d
u
rch

d
ie

L
in

ie
C

L
,

w
elch

e
E

F
irgen

d
-

w
o
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M

sch
n
eid

en
m

u
ß,

w
o
d
u
rch
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D

reieck
M

C
E
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.
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V
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n
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er

L
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ie
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L
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n
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F
irgen

d
w

o
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H
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,
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d
A

B
u
n
d

E
F
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p
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E

s
m
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P
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ig.
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b
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D
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b
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P
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n
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E
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m
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P
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p
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E
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b
eid
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B
.
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f
A

B
,
h
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f
au
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A

,
d
em

F
u
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u
n
k
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d
er
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k
rech
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E

A
,
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m

an
ein

en
n
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en
P
erp

en
d
ikel

A
C

au
f

d
ie

an
d
ere

P
arallele

C
D

u
n
d

verein
ige

d
ie

E
n
d
p
u
n
k
te

E
u
n
d

C
d
er

b
eid

en
P
erp

en
d
ikel

d
u
rch

d
ie

L
in

ie
E

C
.

D
er

W
in

kel
B

A
C

m
u
ß

ein
sp

itzer
sein

(22.
S
atz),

folglich
fällt

ein
P
erp

en
d
ikel

C
G

,
au

s
C

au
f

A
B

gefällt,
in

d
en

P
u
n
k
t

G
au

f
d
ieselb

e
S
eite

von
C

A
,

au
f

w
elch

er
d
ie

L
in

ien
A

B
u
n
d

C
D

als
p
arallel

b
etrach

tet
w

erd
en

.
J
ed

e
L
in

ie
E

H
,

w
ie

w
en

ig
sie

au
ch

im
m

er
von

E
F

ab
w

eich
en

25

m
ag,

geh
ört

m
it

d
er

L
in

ie
E

C
ein

er
E

b
en

e
an

,
w

elch
e

d
ie

E
b
en

e
d
er

zw
ei

P
arallelen

A
B

u
n
d

C
D

län
gs

irgen
d

ein
er

L
in

ie
C

H
sch

n
ei-

d
en

m
u
ß.

D
iese

letztere
L
in

ie
sch

n
eid

et
A

B
irgen

d
w

o
u
n
d

zw
ar

in
d
em

selb
en

P
u
n
k
te

H
,

d
er

allen
d
rei

E
b
en

en
gem

ein
ist,

d
u
rch

w
el-

ch
en

n
oth

w
en

d
ig

au
ch

d
ie

L
in

ie
E

H
geh

t
;

folglich
ist

E
F

p
arallel

m
it

A
B

.
A

u
f

äh
n
lich

e
W

eise
läßt

sich
d
er

P
arallelism

u
s

von
E

F
u
n
d

C
D

zeigen
.

D
ie

V
orau

ssetzu
n
g,

d
aß

ein
e

L
in

ie
E

F
p
a-

rallel
sei,

m
it

ein
er

von
zw

ei
an

d
ern

u
n
ter

sich
p
arallelen

A
B

u
n
d

C
D

,
h
eißt

d
em

n
ach

n
ich

ts
an

d
ers

als
E

F
als

d
en

D
u
rch

sch
n
itt

solch
er

E
b
en

en
b
etrach

ten
,

in
w

elch
en

zw
ei

P
arallelen

A
B

,
C

D
liegen

.
D

em
n
ach

sin
d

zw
ei

L
in

ien
p
arallel

u
n
ter

sich
,

w
en

n
sie

p
arallel

ein
u
n
d

d
erselb

en
d
ritten

sin
d
,
ob

gleich
sie

in
versch

ie-
d
en

en
E

b
en

en
liegen

.
D

er
letzte

S
atz

kan
n

au
ch

so
au

sgesp
ro

ch
en

w
erd

en
:

D
re

i
E

b
e
n
e
n

sc
h
n
e
id

e
n

sic
h

in
L

in
ie

n
,

w
e
lc

h
e

a
lle

p
a-

ra
lle

l
u
n
te

r
sic

h
sin

d
,

so
b
a
ld

d
e
r

P
a-

ra
lle

lism
u
s

v
o
n

z
w

e
ie

n
d
e
rse

lb
e
n

v
o
r-

a
u
sg

e
se

tz
t

w
ird

.
26)

E
in

a
n
d
e
r

g
e
g
e
n
ü
b
e
r

ste
h
e
n
d
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D
re

ie
c
k
e

a
u
f

d
e
r

K
u
g
e
lo

b
e
rflä

c
h
e

h
a
b
e
n

g
le

ic
h
e
n

F
lä

c
h
e
n
in

h
a
lt.

U
n
ter

gegen
ü
b
ersteh

en
d
en

D
reiecke

w
erd

en
h
ier

solch
e
verstan

d
en

,d
ie

geb
ild

et
w

erd
en

d
u
rch

d
ie

D
u
rch

sch
n
itte

d
er

K
u
gelfl

äch
e

m
it

E
b
en

en
au

f
b
eid

en
S
eiten

d
es

C
en

tru
m

s
;

in
solch

en
D

reiecken
h
ab

en
d
ah

er
d
ie

S
eiten

u
n
d

W
in

kel
ein

e
en

tgegen
gesetzte

R
ich

tu
n
g.

In
d
en

ein
an

d
er

gegen
ü
b
ersteh

en
d
en

D
rei-

ecken
A

B
C

u
n
d

A
′B

′C
′

(F
ig.

14.,
w

o
ein

es
d
erselb

en
als

u
m

gekeh
rt

d
argestellt

an
gefeh

ren
w

erd
en

m
u
ß,)

sin
d

d
ie

S
eiten

A
B

=
A
′B

′,
B

C
=

B
′C

′,
C

A
=

C
′A

′
u
n
d

d
ie

en
tsp

rech
en

-
d
en

W
in

kel
an

d
en

P
u
n
k
ten

A
,

B
,

C
sin

d
eb

en
falls

gleich
d
en

en
im

an
d
ern

D
reiecke

an
d
en

P
u
n
k
ten

A
′,

B
′,

C
′.

D
u
rch

d
ie

3
P

u
n
k
te

A
,
B

,
C

d
en

ke
m

an
sich

ein
e

E
b
en

e
gelegt

u
n
d

au
f

d
ieselb

e
au

s
d
em

M
ittelp

u
n
k
te

d
er

K
u
gel

ein
en

P
erp

en
d
ikel

gefällt,
d
essen

V
erlän

-
geru

n
gen

n
ach

b
eid

en
S
eiten

h
in

d
ie

b
eid

en
ein

an
d
er

gegen
ü
b
ersteh

en
d
en

D
reiecke

in
d
en

P
u
n
k
ten

D
u
n
d

D
′
d
er

K
u
gelob

erfl
äch

e
sch

n
ei-

d
en

w
erd

en
.

D
ie

A
b
stän

d
e

d
es

P
u
n
k
tes

D
von

d
en

P
u
n
k
ten

A
,

B
,

C
,

au
f

d
e

S
p
h
äre

in
B

ögen
d
es

größten
K

reises,
m

ü
ssen

gleich

27

sein
(12.

S
atz),

sow
oh

l
u
n
ter

sich
,

als
au

ch
m

it
d
en

A
b
stän

d
en

D
′A

′,
D

′B
′,

D
′C

′,
au

f
d
em

an
d
ern

D
reiecke

(6.
S
atz.),

folglich
sin

d
d
ie

gleich
sch

en
k
ligen

D
reiecke

u
m

u
m

d
en

P
u
n
k
ten

D
u
n
d

D
′

in
b
eid

en
sp

h
ärisch

en
D

reiecken
A

B
C

u
n
d

A
′B

′C
′
con

gru
en

t.
U

m
ü
b
er

d
ie

G
leich

h
eit

zw
eier

O
b
erfl

äch
en

ü
b
erh

au
p
t

zu
u
rth

eilen
,

n
eh

m
e

ich
folgen

d
en

S
atz

als
G

ru
n
d
lage

an
:

Z
w

e
i

O
b
e
rflä

c
h
e
n

sin
d

g
le

ic
h
,

w
e
n
n

si
d
u
rc

h
Z

u
sa

m
m

e
n
-

fü
g
u
n
g

o
d
e
r

T
re

n
n
u
n
g

g
le

ic
h
e
r

T
h
e
ile

e
n
tste

h
e
n
.

27)
E

in
d
re

ise
itig

e
r

K
ö
rp

e
rw

in
k
e
l

ist
g
le

ic
h

d
e
r

h
a
lb

e
n

S
u
m

m
e

d
e
r

F
lä

-
c
h
e
n
w

in
k
e
l
w

e
n
ig

e
r

e
in

e
m

R
e
c
h
te

n
.

Im
sp

h
ärisch

en
D

reiecke
A

B
C

(F
ig.

15.),
w

o
jed

e
S
eite

<
π
,

b
ezeich

n
e

m
an

d
ie

W
in

kel
m

it
A

,
B

,
C

,
verlän

gere
d
ie

S
eite

A
B

,
d
aß

ein
gan

zer
K

reis
A

B
A
′B

′A
en

tsteh
t,

w
elch

er
d
ie

S
p
h
äre

in
zw

ei
gleich

e
T

h
eile

th
eilt.

In
d
erjen

igen
H

älfte,
in

w
elch

er
sich

d
as

D
reieck

A
B

C
b
efi

n
d
et,

verlän
gere

m
an

n
o
ch

d
ie

an
d
e-

ren
b
eid

en
S
eiten

d
u
rch

ih
ren

gem
ein

sch
aftli-

ch
en

D
u
rch

sch
n
ittsp

u
n
k
t

C
,

b
is

sie
d
en

K
reis

in
A
′

u
n
d

B
′

treff
en

.
D

ergestalt
w

ird
d
ie
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h
alb

e
S
p
h
äre

in
v
ier

D
reiecke

A
B

C
,

A
C

B
′,

B
′C

A
′,

A
′C

B
geth

eilt,
d
eren

größen
P

,
X

,
Y

,
Z

sein
m

ögen
.

E
s

leu
ch

tet
ein

,
d
aß

h
ier

P
+

X
=

B

P
+

Z
=

A

D
ie

G
röße

d
es

sp
h
ärisch

en
D

reieck
s

Y
ist

gleich
d
er

d
es

ih
m

gegen
ü
b
ersteh

en
d
en

D
reieck

s
A

B
C

′,
d
essen

S
eite

A
B

gem
ein

ist
m

it
d
em

D
reiecke

P
u
n
d

d
essen

d
ritter

W
in

kel
C

′
am

E
n
d
p
u
n
k
te

d
es

D
u
rch

m
essers

d
er

S
p
h
äre

liegt,
d
er

von
C

d
u
rch

d
as

C
en

tru
m

D
d
er

S
p
h
äre

geh
t.

(26.
S
atz.)

H
ierau

s
folgt,

d
aß

P
+

Y
=

C
u
n
d

w
eil

P
+

X
+

Y
+

Z
=

π
,

so
h
at

m
an

au
ch

:

P
=

1/
2

(A
+

B
+

C
−

π
)
.

Z
u

d
em

selb
en

S
ch

lu
sse

kan
n

m
an

n
o
ch

au
f

an
d
er

W
eise

gelan
gen

,
in

d
em

m
an

sich
allein

au
f

d
en

S
atz

stü
tzt,

w
elch

er
ob

en
ü
b
er

d
ie

G
leich

h
eit

d
er

F
läch

en
an

gefü
h
rt

w
u
rd

e.
(26.

S
atz.)

Im
sp

h
ärisch

en
D

reiecke
A

B
C

(F
ig.

16.)
h
alb

ire
m

an
d
ie

S
eiten

A
B

u
n
d

B
C

u
n
d

d
u
rch

d
ie

H
alb

iru
n
gsp

u
n
k
te

D
u
n
d

E
lege

m
an

ein
en

größten
K

reis,
au

f
d
iesen

fälle
m

an
au

s
A

,
B

,
C

d
ie

P
erp

en
d
ikel

A
F

,
B

H
u
n
d

C
G

.
W

en
n

29

d
er

P
erp

en
d
ikel

au
s

B
in

H
zw

isch
en

D
u
n
d

E
fällt,

so
w

ird
d
as

en
steh

en
d
e

D
reieck

B
D

H
gleich

A
F

D
,

u
n
d

B
H

E
gleich

E
G

C
sein

(6.
u
n
d

15.
S
atz.),

w
orau

s
folgt,

d
aß

d
ie

O
b
er-

fl
äch

e
d
es

D
reieck

s
A

B
C

gleich
d
es

d
es

V
ier-

eck
s

A
F

G
C

(26.
S
atz.).

W
en

n
d
er

P
u
n
k
t

H
m

it
d
em

M
ittelp

u
n
k
te

E
d
er

S
eite

B
C

zu
sam

m
en

fällt
(F

ig.
17.),

so
w

erd
en

n
u
r

zw
ei

gleich
e

rech
tw

in
k
lige

D
reiecke

A
F

D
u
n
d

B
D

E
en

tsteh
en

,
d
u
rch

d
eren

V
erw

ech
selu

n
g

m
an

d
ie

G
leich

h
eit

d
er

O
b
erfl

äch
en

d
es

D
reieck

s
A

B
C

u
n
d

V
iereck

s
A

F
E

C
n
ach

w
eist.

W
en

n
en

d
lich

d
er

P
u
n
k
t

H
au

ßerh
alb

d
es

D
reieck

s
A

B
C

fällt,
(F

ig.
18)

d
er

P
erp

en
d
ikel

C
G

folglich
d
u
rch

d
as

D
reieck

geh
t,

so
w

ird
m

an
vom

D
reiecke

A
B

C
zu

m
V

iereck
A

F
G

C
ü
b
er-

geh
en

,
in

d
em

m
an

d
as

D
reieck

F
A

D
=

D
B

H
h
in

zu
fü

gt,
u
n
d

h
ierau

f
d
as

D
reieck

C
G

E
=

E
B

H
h
in

w
egn

im
m

t.
D

en
k
t

m
an

sich
im

sp
h
ä-

risch
en

V
ierecke

A
F

G
C

d
u
rch

d
ie

P
u
n
k
te

A
u
n
d

G
,

so
w

ie
d
u
rch

F
u
n
d

C
größte

K
reise

gelegt,
so

sin
d

d
ie

B
ögen

d
erselb

en
zw

isch
en

A
G

u
n
d

F
C

ein
an

d
er

gleich
,
(15.

S
atz)

m
ith

in
au

ch
d
ie

D
reiecke

F
A

C
u
n
d

A
C

G
con

gru
en

t
(15.

S
atz.)

u
n
d

d
er

W
in

kel
F

A
C

gleich
d
em

W
in

kel
A

C
G

.
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H
ierau

s
folgt,

d
aß

in
allen

vorh
ergeh

en
d
en

F
ällen

d
ie

S
u
m

m
e

aller
d
rei

W
in

kel
d
es

sp
h
ä-

risch
en

D
reieck

s
gleich

ist
d
er

S
u
m

m
e

d
er

b
ei-

d
en

gleich
en

W
in

kel
im

V
ierecke,

m
it

A
u
ssch

lu
ß

d
er

b
eid

en
rech

ten
.

D
em

n
ach

kan
n

m
an

fü
r

jed
es

sp
h
ärisch

e
D

reieck
,
in

w
elch

em
d
ie

S
u
m

m
e

d
er

d
rei

W
in

kel
S

ist,
ein

V
iereck

m
it

gleich
er

O
b
erfl

äch
e

fi
n
d
en

,
in

w
elch

em
zw

ei
rech

te
W

in
-

kel
u
n
d

zw
ei

gleich
e

p
erp

en
d
icu

läre
S
eiten

sin
d
,

u
n
d

w
o

d
ie

b
eid

en
an

d
ern

W
in

kel
jed

er
1/

2
S

ist.
E

s
sei

jetzt
A

B
C

D
(F

ig.
19.)

d
as

sp
h
ä-

risch
e

V
iereck

,
w

o
d
ie

S
eiten

A
B

=
D

C
sen

k
-

rech
t

au
f

A
B

u
n
d

d
ie

W
in

kel
b
ei

A
u
n
d

D
jed

er
1/

2
S

.
M

an
verlän

gere
d
ie

S
eiten

A
D

u
n
d

B
C

b
is

sie
sich

in
E

sch
n
eid

en
,

u
n
d

w
ei-

ter
jen

seits
E

,
m

ach
e

D
E

=
E

F
u
n
d

fälle
au

f
d
ie

V
erlän

geru
n
g

von
B

C
d
en

P
erp

en
d
ikel

F
G

.
D

en
gan

zen
B

ogen
B

G
h
alb

ire
m

an
u
n
d

verb
in

d
e

d
en

H
alb

iru
n
gsp

u
n
k
t

H
d
u
rch

B
ögen

d
es

größten
K

reises
m

it
A

u
n
d

F
.

D
ie

D
reiecke

E
F

G
u
n
d

D
C

E
sin

d
con

gru
en

t
(15.

S
atz.),

m
ith

in
ist

F
G

=
D

C
=

A
B

.
D

ie
D

reiecke
A

B
H

u
n
d

H
G

F
sin

d
eb

en
falls

con
-

gru
en

t,
w

eil
sie

rech
tw

in
k
lig

sin
d

u
n
d

gleich
e

C
ath

eten
h
ab

en
,

folglich
geh

ören
A

H
u
n
d

A
F

31

zu
ein

em
K

reise,
d
er

B
ogen

A
H

F
ist

gleich
π
,

A
D

E
F

eb
en

falls
=

π
,

d
er

W
in

kel
H

A
D

=
H

F
E

=
1/

2
S
−

B
A

H
=

1/
2
S
−

H
F

G
=

1/
2
S
−

H
F

E
−

E
F

G
=

1/
2
S
−

H
A

D
−

π
+

1/
2
S

,
folglich

:
W

in
kel

H
F

E
=

1/
2

(S
−

π
),

o
d
er

w
as

d
asselb

e
ist:

gleich
d
er

G
röße

d
es

A
u
ssch

n
itts

A
H

F
D

A
,

w
elch

e
w

ied
eru

m
d
em

D
reiecke

A
B

C
D

gleich
ist,

w
ie

m
an

leich
t

sieh
t,

w
en

n
m

an
von

d
em

ein
en

zu
m

an
d
ern

ü
b
ergeh

t,
in

d
em

m
an

zu
erst

d
as

D
reieck

E
F

G
u
n
d

alsd
an

n
B

A
H

h
in

zu
fü

gt,
u
n
d

d
arau

f
d
ie

ih
n
en

gleich
en

D
reiecke

D
C

E
u
n
d

H
F

G
w

egn
im

m
t.

D
em

n
ach

ist
1/

2
(S

−
π
)

d
ie

G
röße

d
es

V
iereck

s
A

B
C

D
u
n
d

zu
gleich

au
ch

d
ie

d
es

sp
h
ärisch

en
D

reieck
s,

in
w

elch
em

d
ie

S
u
m

m
e

d
er

d
rei

W
in

kel
gleich

S
.

28)
W

e
n
n

d
re

i
E

b
e
n
e
n

sic
h

in
p
a
ra

l-
le

le
n

L
in

ie
n

sc
h
n
e
id

e
n
,

so
ist

d
ie

S
u
m

m
e

d
e
r

d
re

i
F

lä
c
h
e
n
w

in
k
e
l

g
le

ic
h

z
w

e
ie

n
R

e
c
h
te

n
.

E
s
seien

A
A
′,B

B
′,C

C
′,(F

ig.20.)
d
rei

d
u
rch

d
ie

D
u
rch

sch
n
itte

von
E

b
en

en
geb

ild
ete

P
aral-

lellin
ien

.
(25.

S
atz.)

M
an

n
eh

m
e

au
f

ih
n
en

w
illk

ü
h
rlich

d
rei

P
u
n
k
te

A
,

B
,

C
,

u
n
d

d
en

ke
sich

d
u
rch

d
iese

ein
e

E
b
en

e
gelegt,

w
elch

e
folg-
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lich
d
ie

E
b
en

en
d
er

P
arallelen

län
gs

d
en

ge-
rad

en
L
in

ien
A

B
,
A

C
u
n
d

B
C

sch
n
eid

en
w

ird
.

F
ern

er
lege

m
an

d
u
rch

d
ie

L
in

ie
A

C
u
n
d

ir-
gen

d
ein

en
P

u
n
k
t

D
au

f
d
er

L
in

ie
B

B
′,

n
o
ch

ein
e

E
b
en

e,
d
eren

D
u
rch

sch
n
itte

m
it

d
en

zw
ei

E
b
en

en
d
er

P
arallelen

1
A

A
′
u
n
d

B
B

′,
C

C
′
u
n
d

B
B

′,
d
ie

b
eid

en
L
in

ien
A

D
u
n
d

D
C

er-
zeu

gt,
u
n
d

d
eren

N
eigu

n
g

zu
r

d
ritten

E
b
en

e
d
er

P
arallelen

A
A
′

u
n
d

C
C

′
w

ir
d
u
rch

w
b
e-

zeich
n
en

w
ollen

.
D

ie
W

in
kel

zw
isch

en
d
en

d
rei

E
b
en

en
,

in
w

elch
en

d
ie

P
arallelen

liegen
,

sol-
len

d
u
rch

X
,

Y
,

Z
,

b
ezeich

n
et

w
erd

en
,

in
B

e-
zieh

u
n
g

au
f

d
ie

L
in

ien
A

A
′,

B
B

′
u
n
d

C
C

′;
en

d
lich

seien
d
ie

L
in

ear
W

in
kel

B
D

C
=

a
,

A
D

C
=

b,
A

D
B

=
c.

U
m

A
als

M
ittelp

u
n
k
t

d
en

ke
m

an
sich

ein
e

K
u
gelfl

äch
e

b
esch

rie-
b
en

,
au

f
w

elch
er

d
ie

D
u
rch

sch
n
itte

d
er

G
erad

en
A

C
,

A
D

,
A

A
′,

m
it

d
erselb

en
ein

sp
h
ärisch

es
D

reieck
b
estim

m
en

.
m

it
d
en

S
eiten

p,
q

u
n
d

r,
d
essen

G
röße

α
sein

m
ag,

u
n
d

w
o

d
ie

W
in

-
kel:

w
d
er

S
eite

q,
X

d
er

seite
r,

u
n
d

folg-
lich

π
+

2a
−

w
−

X
d
er

S
eite

p
gegen

-
ü
b
er

liegt,
(27.

S
atz.).

A
u
f

gleich
e

W
eise

sch
n
eid

en
C

A
,

C
D

,
C

C
′
ein

e
K

u
gelob

erfl
äch

e
u
m

d
en

M
ittelp

u
n
k
t

C
,

u
n
d

b
estim

m
en

ein

1O
bvious

m
isprint:

prim
e

is
printed

in
w

rong
posi-

tion,
and

the
first

parallel
line

is
referred

to
as

A
A

′ .
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D
reieck

von
d
er

G
röße

β
,

m
it

d
en

S
eiten

p
′,

q
′,

r
′

u
n
d

d
en

W
in

keln
:

w
gegen

ü
b
er

q
′,

Z
gegen

ü
b
er

r
′,

u
n
d

folglich
π

+
2β
−

w
−

Z
gegen

ü
b
er

p
′.

E
n
d
lich

w
ird

d
u
rch

d
ie

D
u
rch

-
sch

n
itte

ein
er

K
u
gelfl

äch
e

u
m

D
m

it
d
en

L
in

ien
D

A
,D

B
,D

C
ein

sp
h
ärisch

es
D

reieck
b
estim

m
t,

d
essen

S
eiten

l,
m

,
n

u
n
d

d
ie

ih
n
en

gegen
ü
b
er-

liegen
d
en

W
in

kel
w

+
Z
−

2β
,

w
+

X
−

2α
,

u
n
d

Y
sin

d
,

d
essen

G
röße

folglich
δ

=
1/

2
(X

+
Y

+
Z
−

π
)
−

α
−

β
+

w
.

M
it

d
er

A
b
n
ah

m
e

von
w

verm
in

d
ert

sich
au

ch
d
ie

G
röße

d
er

D
reiecke

α
u
n
d

β
,

d
ergestalt,

d
aß

α
+

β
−

w
k
lein

er
gem

ach
t

w
erd

en
kan

n
als

jed
e

gegeb
en

e
Z
ah

l.
Im

D
reiecke

δ
k
ön

n
en

d
ie

S
eiten

l
u
n
d

m
eb

en
falls

b
is

zu
m

V
er-

sch
w

in
d
en

verk
lein

ert
w

erd
en

,
(21.

S
atz.)

folg-
lich

kan
n

d
as

D
reieck

δ
m

it
ein

er
sein

er
S
ei-

ten
l

o
d
er

m
au

f
ein

en
größten

K
reis

d
er

S
p
h
äre

so
oft

gelegt
w

erd
en

,
als

m
an

n
u
r

w
ill,

oh
n
e

d
aß

d
ad

u
rch

d
ie

H
älfte

d
er

S
p
h
äre

au
sgefü

llt
w

ü
rd

e,
m

ith
in

versch
w

in
d
et

δ
zu

-
gleich

m
it

w
;

w
orau

s
folgt,

d
aß

n
oth

w
en

d
ig

X
+

Y
+

Z
=

π
sein

m
u
ß.

29)
Im

g
e
ra

d
lin

ig
e
n

D
re

ie
c
k
e

tre
f-

fe
n

sic
h

d
ie

P
e
rp

e
n
d
ik

e
l,

w
e
lc

h
e

in
d
e
r
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M
itte

d
e
r

S
e
ite

n
e
rric

h
te

t
sin

d
,

e
n
t-

w
e
d
e
r

n
ic

h
t,

o
d
e
r

sie
sc

h
n
e
id

e
n

sic
h

a
lle

d
re

i
in

e
in

e
m

P
u
n
k
te.

V
orau

sgesetzt
in

d
em

D
reiecke

A
B

C
(F

ig.
21.)

sch
n
itten

sich
d
ie

b
eid

en
P
erp

en
d
ikel

E
D

u
n
d

D
F

,
w

elch
e

au
f

d
en

S
eiten

A
B

u
n
d

B
C

in
d
eren

M
ittelp

u
n
k
ten

E
u
n
d

F
errich

tet
sin

d
,

im
P

u
n
k
te

D
,
so

zieh
e

m
an

in
n
erh

alb
d
er

W
in

-
kel

d
es

D
reieck

s
d
ie

L
in

ien
D

A
,
D

B
,
D

C
.

In
d
en

con
gru

en
ten

D
reiecken

A
D

E
u
n
d

B
D

E
(10.

S
atz.)

ist
A

D
=

B
D

,
eb

en
so

folgt
au

ch
,

d
aß

B
D

=
C

D
;

d
as

D
reieck

A
D

C
ist

m
ith

in
gleich

sch
en

k
lig,

folglich
fällt

d
er

P
erp

en
-

d
ikel

vom
S
ch

eitel
D

au
f

d
ie

G
ru

n
d
lin

ie
A

C
gefällt,

in
d
en

M
ittelp

u
n
k
t

d
er

letztern
G

.
D

er
B

ew
eis

b
leib

t
u
n
verän

d
ert

au
ch

in
d
em

F
alle,

w
en

n
d
er

D
u
rch

sch
n
ittsp

u
n
k
t

D
d
er

b
ei-

d
en

S
en

k
rech

ten
E

D
u
n
d

F
D

in
d
ie

L
in

ie
A

C
selb

st,
o
d
er

au
ßerh

alb
d
es

D
reieck

s
fällt.

Im
F
alle

m
an

also
an

n
im

m
t,

d
aß

zw
ei

jen
er

P
erp

en
d
ikelsich

n
ich

sch
n
eid

en
,
kan

n
au

ch
d
er

d
ritte

n
ich

t
m

it
ih

n
en

zu
sam

m
en

treff
en

.
30)

D
ie

P
e
rp

e
n
d
ik

e
l,

w
e
lc

h
e

a
u
f

d
e
n

S
e
ite

n
e
in

e
s

g
e
ra

d
lin

ig
e
n

D
re

ie
c
k
s

in
ih

re
r

M
itte

e
rric

h
te

t
sin

d
,

m
ü
sse

n
a
lle

35

d
re

i
u
n
te

r
sic

h
p
a
ra

lle
l

se
in

,
so

b
a
ld

a
ls

d
e
r

P
a
ra

lle
lism

u
s

v
o
n

z
w

e
ie

n
d
e
rse

l
b
e
n

v
o
ra

u
sg

e
se

tz
t

w
ird

.
E

s
seien

in
d
em

D
reiecke

A
B

C
(F

ig.
22.)

d
ie

L
in

ien
D

E
,

F
G

,
H

K
sen

k
rech

t
au

f
d
en

S
eiten

errich
tet,

in
ih

ren
M

ittelp
u
n
k
ten

D
,

F
,

H
.

W
ir

w
ollen

zu
v
örd

erst
an

n
eh

m
en

,
d
aß

d
ie

b
eid

en
P
erp

en
d
ikel

D
E

u
n
d

F
G

p
arallel

seien
,

w
elch

e
d
ie

L
in

ie
A

B
in

L
u
n
d

M
sch

n
eid

en
w

erd
en

,
u
n
d

d
aß

sich
d
er

P
erp

en
d
ikel

H
K

zw
i-

sch
en

ih
n
en

b
efi

n
d
e.

In
n
erh

alb
d
es

W
in

kels
B

L
E

zieh
e

m
an

au
s

d
em

P
u
n
k
te

L
b
elieb

ig
d
ie

gerad
e

L
in

ie
L

G
,

w
elch

e
F

G
irgen

d
w

o
in

G
sch

n
eid

en
m

u
ß,

w
ie

k
lein

au
ch

im
m

er
d
er

A
b
w

eich
u
n
gsw

in
kel

G
L

E
sein

m
ag.

(16.
S
atz.)

D
a

im
D

reiecke
L

G
M

d
er

P
erp

en
d
ikel

H
K

n
ich

t
m

it
M

G
zu

sam
m

en
treff

en
kan

n
,(29.S

atz),
so

m
u
ß

er
also

L
G

irgen
d
w

o
in

P
sch

n
eid

en
,

w
orau

s
folgt,

d
aß

H
K

p
arallel

m
it

D
E

(16.
S
atz.)

u
n
d

M
G

(18.
u
n
d

15.
S
atz)

sein
m

u
ß.

S
etzt

m
an

d
ie

S
eite

B
C

=
2a

,
A

C
=

2b,
A

B
=

2c
u
n
d

b
ezeich

n
et

d
ie

d
iesen

S
eiten

ge-
gen

ü
b
ersteh

en
d
en

W
in

kel
d
u
rch

A
,

B
,

C
,

so
ist

in
d
em

so
eb

en
b
etrach

teten
F
alle

A
=

Π
(b)−

Π
(c)
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B
=

Π
(a

)−
Π

(c)

C
=

Π
(a

)
+

Π
(b)

w
ie

m
an

sich
leich

t
ü
b
erzeu

gt
m

it
H

ü
lfe

d
er

L
in

ien
A

A
′,

B
B

′,
C

C
′,

w
elch

e
au

s
d
en

P
u
n
k
-

ten
A

,
B

,
C

p
arallel

m
it

d
em

P
erp

en
d
ikel

H
K

u
n
d

folglich
m

it
d
en

b
eid

en
an

d
ern

P
er-

p
en

d
ikeln

D
E

u
n
d

F
G

gezogen
sin

d
(23.

u
n
d

25.
S
atz.).

E
s

seien
jetzt

d
ie

b
eid

en
P
erp

en
d
ikel

H
K

u
n
d

F
G

p
arallel,

so
kan

n
d
er

d
ritte

D
E

sie
n
ich

t
sch

n
eid

en
(29.

S
atz.),

m
ith

in
ist

er
en

t-
w

ed
er

p
arallel

m
it

ih
n
en

,
o
d
er

er
sch

n
eid

et
A

A
′.

D
ie

letzte
A

n
n
ah

m
e

h
eißt

n
ich

ts
an

d
eres,

als
d
aß

d
er

W
in

kel
C

>
Π

(a
)
+

Π
(b).

V
erm

in
d
ert

m
an

d
iesen

W
in

kel,
so

d
aß

er
gleich

Π
(a

)+
Π

(b)
w

ird
,

in
d
em

m
an

d
ergestalt

d
er

L
in

ie
A

C
d
ie

n
eu

e
L
age

C
Q

gieb
t,

(F
ig.

23.)
u
n
d

b
e-

zeich
n
et

m
an

d
ie

G
röße

d
er

d
ritten

S
eite

B
Q

d
u
rch

2c ′,
so

m
u
ß

d
er

W
in

kel
C

B
Q

am
P

u
n
k
te

B
,
w

elch
er

vergrößert
w

u
rd

e,
n
ach

d
em

w
as

ob
en

b
ew

iesen
ist,

gleich
Π

(a
)
−

Π
(c ′)

>
Π

(a
)
−

Π
(c)

sein
,

w
orau

s
folgt

c ′
>

c
(23.

S
atz.)

Im
D

reiecke
A

C
Q

fi
n
d

jed
o
ch

d
ie

W
in

kel
b
ei

A
u
n
d

Q
gleich

,
m

ith
in

m
u
ß

im
D

reiecke
A

B
Q

d
er

W
in

kel
b
ei

Q
grö-

37

ßer
sein

als
d
er

am
P

u
n
k
te

A
,

folglich
ist

A
B

>
B

Q
(9.

S
atz.)

;
d
as

h
eißt

es
ist

c
>

c ′.
31)

G
re

n
z
lin

ie
(O

ric
y
c
le

)
n
e
n
n
e
n

w
ir

d
ie

je
n

ig
e

in
e
in

e
r

E
b
e
n
e

lie
g
e
n
d
e

k
ru

m
m

e
L

in
ie,

fü
r

w
e
lc

h
e

a
ll

P
e
rp

e
n
-

d
ik

e
l

a
u
f

d
e
n

M
itte

lp
u
n
k
te

n
d
e
r

S
e
h
-

n
e
n

e
rric

h
te

t
u
n
d
e
r

sic
h

p
a
ra

lle
l
sin

d
.

In
U

eb
erein

stim
m

u
n
g

m
it

d
ieser

D
efi

n
ition

kan
n

m
an

n
sich

d
ie

E
rzeu

gu
n
g

d
er

G
ren

zlin
ie

vorstellen
,
w

en
n

m
an

zu
ein

er
gegeb

en
en

L
in

ie
A

B
(F

ig.
24)

au
s

ein
em

in
ih

r
gegeb

en
en

P
u
n
k
te

A
u
n
ter

versch
ied

en
en

W
in

keln
C

A
B

=
Π

(a
)

S
eh

n
en

A
C

=
2a

zieh
t
;

d
as

E
n
d
e

C
ein

er
solch

es
S
eh

n
e

w
ird

au
f

d
er

G
ren

z-
lin

ie
liegen

,
d
eren

P
u
n
k
te

m
an

so
allm

äh
lich

b
estim

m
en

kan
n
.

D
er

P
erp

en
d
ikel

D
E

au
f

d
er

S
eh

n
e

A
C

in
d
eren

M
itte

D
errich

tet,
w

ird
p
arallel

m
it

d
er

L
in

ie
A

B
sein

,
w

elch
e

w
ir

A
x
e

d
e
r

G
re

n
z
lin

ie
n
en

n
en

w
erd

en
.

A
u
f

gleich
e

W
eise

w
ird

au
ch

jed
er

P
erp

en
d
i-

kel
F

G
im

M
ittelp

u
n
k
te

irgen
d

ein
er

S
eh

n
e

A
H

errich
tet,

p
arallel

m
it

A
B

sein
,

folglich
m

u
ß

d
iese

E
igen

sch
aft

au
ch

jed
em

P
erp

en
d
ikel

K
L

ü
b
erh

au
p
t

an
geh

ören
,

w
elch

er
im

M
ittel-

p
u
n
k
te

K
irgen

d
ein

er
S
eh

n
e

C
H

errich
tet

ist,
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zw
isch

en
w

elch
en

P
u
n
k
ten

C
u
n
d

H
,

au
f

d
er

G
ren

zlin
ie

d
iese

au
ch

gezogen
sein

m
ag.

(30.
S
atz.)

D
ergleich

en
P
erp

en
d
ikel

m
ü
ssen

d
ah

er
eb

en
falls

oh
n
e

U
n
tersch

eid
u
n
g

von
A

B
A

x
e
n

d
e
r

G
re

n
z
lin

ie
gen

an
n
t

w
erd

en
.

32)
E

in
K

re
is,

d
e
sse

n
H

a
lb

m
e
sse

r
w

ä
c
h
st,

g
e
h
t

in
d
ie

G
re

n
z
lin

ie
ü
b
e
r.

E
s

sei
A

B
(F

ig.
25)

ein
e

S
eh

n
e

d
er

G
ren

z-
lin

ie,
m

an
zieh

e
au

s
d
en

E
n
d
p
u
n
k
ten

A
u
n
d

B
d
er

S
eh

n
e

zw
ei

A
x
en

A
C

u
n
d

B
D

,
w

elch
e

folglich
m

it
d
er

S
eh

n
e

zw
ei

gleich
e

W
in

kel
B

A
C

=
A

B
D

=
α

b
ild

en
w

erd
en

,
(31.

S
atz.)

A
u
f

ein
er

d
ieser

A
x
en

A
C

,
n
eh

m
e

m
an

irgen
d
w

o
d
en

P
u
n
k
t

E
als

M
ittelp

u
n
k
t

ein
es

K
reises

an
,
u
n
d

zieh
e

d
en

K
reisb

ogen
A

F
vom

A
n
fan

gsp
u
n
k
t

A
d
er

A
x
e

A
C

b
is

zu
sein

em
D

u
rch

sch
n
ittsp

u
n
k
te

F
m

it
d
er

an
d
ern

A
x
e
B

D
.

D
er

d
em

P
u
n
k
te

F
en

tsp
rech

en
d
e

H
alb

m
esser

F
E

d
es

K
reises

w
ird

au
f

d
er

ein
en

S
eite

m
it

d
er

S
eh

n
e

A
F

ein
en

W
in

kel
A

F
E

=
β

u
n
d

au
f

d
er

an
d
ern

S
eite

m
it

d
er

A
x
e

B
D

d
en

W
in

kel
E

F
D

=
γ

b
ild

en
.

E
s

ergieb
t

sich
,

d
aß

d
er

W
in

kel
zw

isch
en

d
en

b
eid

en
S
eh

n
en

B
A

F
=

α
−

β
<

β
+

γ
−

α
(22.

S
atz.),

w
orau

s
folgt:

α
−

β
<

1/
2
γ
.

D
a

n
u
n

ab
er

d
er

W
in

-

39

kel
γ

sich
b
is

zu
N

u
ll

verm
in

d
ert,

sow
oh

l
in

F
olge

ein
er

B
ew

egu
n
g

d
es

M
ittelp

u
n
k
ts

E
in

d
er

R
ich

tu
n
g

A
C

,
w

en
n

F
verän

d
ert

b
leib

t
(21.

S
atz.),

als
au

ch
in

F
olge

ein
er

A
n
n
äh

e-
ru

n
g

von
F

an
B

au
f

d
er

A
x
e

B
F

,
w

en
n

d
er

M
ittelp

u
n
k
t
E

in
sein

er
L
age

b
leib

t
(22.

S
atz.),

so
folgt,

d
aß

m
it

ein
er

solch
en

V
erm

in
d
eru

n
g

d
es

W
in

kels
γ

au
ch

d
er

W
in

kel
α
−

β
,

o
d
er

d
ie

gegen
seitige

N
eigu

n
g

d
er

zw
ei

S
eh

n
en

A
B

u
n
d

A
F

,
u
n
d

m
ith

in
au

ch
d
er

A
b
stan

d
d
es

P
u
n
k
tes

B
au

f
d
er

G
ren

zlin
ie

vom
P

u
n
k
te

F
au

f
d
em

K
reise,

versch
w

in
d
et.

D
em

n
ach

kan
n

m
an

au
ch

d
ie

G
ren

zlin
ie

e
in

e
n

K
re

is
m

it
u
n
e
n
d
lic

h
g
ro

ß
e
m

H
a
lb

m
e
sse

r
n
e
n
n
e
n
.

33)
E

s
seien

A
A
′

=
B

B
′

=
x

(F
ig.

26.)
zw

ei
n
ach

d
er

S
eite

von
A

zu
A
′

h
in

p
arallele

L
in

ien
,
d
eren

P
arallelen

d
en

zw
ei

G
ren

z-B
ögen

,
(B

ögen
au

f
zw

ei
G

ren
zlin

ien
),

A
B

=
s,

A
′B

′

=
s
′,

als
A

x
en

d
ien

en
,
so

ist

s
′
=

se −
x

w
o

e
u
n
ab

h
än

gig
ist

von
d
en

B
ögen

s,s
′u

n
d

von
G

erad
en

x
,
d
em

A
b
stan

d
e

d
es

B
ogen

s
s
′
von

s.
U

m
d
ies

zu
b
ew

eisen
,

n
eh

m
e

m
an

an
,

d
aß

d
as

V
erh

ältn
iß

d
es

B
ogen

s
s

zu
s
′

gleich
sei

d
em

V
erh

ältn
isse

d
er

b
eid

en
gan

zen
Z
ah

len
n
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u
n
d

m
.

Z
w

itsch
en

d
en

b
eid

en
A

x
en

A
A
′,

B
B

′

zieh
e

m
an

n
o
ch

ein
e

d
ritten

A
x
e

C
C

′,
w

elch
e

d
ergestalt

von
d
em

B
ogen

A
B

ein
en

T
h
eil

A
C

=
t

u
n
d

vom
n

d
em

B
ogen

A
′B

′
au

f
d
er-

selb
en

S
eite

ein
en

T
h
eil

A
′C

′
=

t ′
ab

sch
n
ei-

d
et.

E
s

sei
d
as

V
erh

ältn
iß

d
es

t
zu

s
gleich

d
em

d
er

b
eid

en
gan

zer
Z
ah

len
p

u
n
d

q,
so

d
aß

s
=

nm
s
′,

t
=

pq
s.

M
an

th
eile

jetzt
s

d
u
rch

A
x
en

in
n
q

glei-
ch

er
T

h
eile,

so
w

erd
en

solch
er

T
h
eile

m
q

au
f

s
′

u
n
d

n
p

au
f

t
sein

.
In

zw
isch

en
en

tsp
rech

en
d
iese

gleich
e

T
h
eile

au
f

s
u
n
d

t
eb

en
falls

glei-
ch

en
T

h
eilen

au
f
s
′
u
n
d

t ′,
folglich

h
at

m
an

t ′t
=

s
′s
.

W
o

d
em

n
ach

au
ch

im
m

er
d
ie

b
eid

en
B

ögen
t

u
n
d

t ′
zw

isch
en

d
en

zw
ei

A
x
en

A
A
′

u
n
d

B
B

′

gen
om

m
en

sein
m

ögen
,
stets

b
leib

t
d
as

V
erh

ält-
n
iß

von
t

zu
t ′

d
asselb

e,
so

lan
ge

d
er

A
b
stan

d
x

zw
isch

en
ih

n
en

e
d
erselb

e
b
leib

t.
W

en
n

m
an

d
ah

er
fü

r
x

=
1,

s
=

es
′

setzt,
so

m
u
ß

fü
r

jed
es

x
:

s
′
=

se −
x

sein
.

41

D
a

e
ein

e
u
n
b
ekan

n
te

Z
ah

l
u
n
d

n
u
r

d
er

B
ed

in
gu

n
g

e
>

1
u
n
terw

orfen
ist,

fern
er

d
ie

E
in

h
eit

d
er

L
in

ie
fü

r
x

b
elieb

ig
an

gen
om

m
en

w
erd

en
kan

n
,

so
kan

n
m

an
d
ieselb

e
zu

r
V
er-

ein
fach

u
n
g

d
er

R
ech

n
u
n
g

so
w

äh
len

,
d
aß

u
n
ter

e
d
ie

B
asis

d
er

N
ep

er’sch
en

L
ogarith

m
en

zu
versteh

en
ist.

M
an

kan
n

h
ier

n
o
ch

b
em

erken
,

d
aß

s
′
=

0
fü

r
x

=
∞

,
m

ith
in

verm
in

d
ert

sich
n
ich

t
n
u
r

d
er

A
b
stan

d
zw

isch
en

zw
ei

P
arallelen

(24.
S
atz.),

son
d
ern

b
ei

d
er

V
erlän

geru
n
g

d
er

P
a-

rallelen
n
ach

d
er

S
eite

d
es

P
arallelism

u
s

h
in

versch
w

in
d
et

serselb
e

zu
letzt

gan
z.

P
arallel-L

i-
n
ien

h
ab

en
also

d
en

C
h
aracter

d
er

A
sy

m
p
toten

.
34)

G
re

n
z
flä

c
h
e

(O
risp

h
ä
re)

w
ird

d
ie

-
je

n
ig

e
O

b
erfl

äch
e
gen

an
n
t,w

elch
e
en

steh
t
d
u
rch

d
ie

U
m

d
reh

u
n
g

d
er

G
ren

zlin
ie

u
m

ein
e

ih
rer

A
x
en

,
d
ie

zu
gleich

m
it

allen
ü
b
rigen

A
x
en

d
er

G
ren

zlin
ien

au
ch

A
x
e

d
er

G
ren

zfl
äch

e
sein

w
ird

.
E

in
e

S
e
h
n
e

ist
g
e
g
e
n

so
lc

h
e

d
u
rc

h
ih

re
E

n
d
p
u
n
k
te

g
e
z
o
g
e
n
e

A
x
e
n

u
n
te

r
g
le

ic
h
e
n

W
in

k
e
ln

g
e
n
e
ig

t,
w

o
a
u
c
h

im
-

m
e
r

d
ie

se
z
w

e
i

E
n
d
p
u
n
k
te

a
u
f

d
e
r

G
re

n
z
flä

c
h
e

g
e
n
o
m

m
e
n

w
e
rd

e
n

m
ö
g
e
n
.

E
s

seien
A

,
B

,
C

,
(F

ig.
27.)

d
rei

P
u
n
k
te
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au
f
d
er

G
ren

zob
erfl

äch
e,

A
A
′
d
ie

D
reh

u
n
gsax

e,
B

B
′

u
n
d

C
C

′
zw

ei
an

d
ere

A
x
en

,
folglich

A
B

u
n
d

A
C

S
eh

n
en

,
gegen

w
elch

e
d
ie

A
x
en

u
n
ter

gleich
en

W
in

keln
A
′A

B
=

B
′B

A
,

A
′A

C
=

C
′C

A
(31.

S
atz.)

gen
eigt

sin
d

;
zw

ei
A

x
en

B
B

′,
C

C
′

d
u
rch

d
ie

E
n
d
p
u
n
k
te

d
er

d
ritten

S
eh

n
e

B
C

gezogen
,

sin
d

eb
en

falls
p
arallel

u
n
d

liegen
in

ein
er

E
b
en

e
(25.

S
atz).

E
in

P
erp

en
d
i-

kel
D

D
′,

in
d
er

M
itte

D
d
er

S
eh

n
e

A
B

u
n
d

d
er

E
b
en

e
d
er

b
eid

e
P
arallelen

A
A
′,

B
B

′
errich

tet,
m

u
ß

p
arallel

m
it

d
en

d
rei

A
x
en

A
A
′

B
B

′

C
C

′
sein

,
(23.

u
n
d

25
S
atz.)

;
ein

eb
en

solch
er

P
erp

en
d
ikel

E
E

′
au

f
d
er

S
eh

n
e

A
C

in
d
er

E
b
en

e
d
er

P
arallelen

A
A
′,

C
C

′
w

ird
p
arallel

m
it

d
en

d
rei

A
x
en

A
A
′,

B
B

′,
C

C
′

u
n
d

d
em

P
erp

en
d
ikel

D
D

′
sein

.
E

s
w

erd
e

jetzt
d
er

W
in

-
kel

zw
isch

en
d
er

E
b
en

e.
in

w
elch

er
d
ie

P
aral-

lelen
A

A
′

u
n
d

B
B

′
liegen

.
u
n
d

zw
isch

en
d
er

E
b
en

e
d
es

D
reieck

s
A

B
C

d
u
rch

Π
(a

)
b
ezeich

-
n
et,

w
o

a
p
ositiv

,
n
egativ

o
d
er

N
u
ll

sein
kan

n
.

Ist
a

p
ositiv

,
so

errich
te

m
an

F
D

=
a

in
n
er-h

alb
d
es

D
reieck

s
A

B
C

,
u
n
d

in
d
er

E
b
en

e
d
esselb

en
,
sen

k
rech

t
au

f
d
er

S
eh

n
e

A
B

in
d
eren

M
ittelp

u
n
k
te

D
;

w
äre

a
ein

e
n
egative

Z
ah

l,
so

m
u
ß

F
D

=
a

au
ßerh

alb
d
es

D
reieck

s
au

f

43

d
er

an
d
ern

S
eite

d
er

S
eh

n
e

A
B

gezogen
w

er-
d
en

;
w

en
n

a
=

0,
so

fällt
d
er

P
u
n
k
t

F
m

it
D

zu
sam

m
en

.
In

allen
F
ällen

en
tsteh

en
zw

ei
rech

tw
in

k
lige

con
gru

en
te

D
reiecke

A
F

D
u
n
d

D
F

B
,

folglich
ist

F
A

=
F

B
.

M
an

errich
te

jetzt
in

F
d
ie

L
in

ie
F

F
′sen

k
rech

t
au

f
d
ie

E
b
en

e
d
es

D
reieck

s
A

B
C

.
D

a
d
er

W
in

kel
D

′D
F

=
Π

(a
),

D
F

=
a
,

so
ist

F
F

′
p
arallel

m
it

D
D

′
u
n
d

d
er

L
in

ie
E

E
′,

m
it

w
elch

er
sie

au
ch

in
ein

er
E

b
en

e
liegt,

d
ie

sen
k
rech

t
au

f
d
er

E
b
en

e
d
es

D
reieck

s
A

B
C

ist.
D

en
k
t

m
an

sich
jetzt

in
d
er

E
b
en

e
d
er

P
aral-

lelen
E

E
′,

F
F

′,
au

f
E

F
d
en

P
erp

en
d
ikel

E
K

gefällt,
so

w
ird

d
ieser

au
ch

sen
k
rech

t
sein

,
au

f
d
er

E
b
en

e
d
es

D
reieck

s
A

B
C

(13.
S
atz.)

u
n
d

au
f

d
er

in
d
ieser

E
b
en

e
liegen

d
en

L
in

ie
A

E
(11.

S
atz.),

u
n
d

d
em

n
ach

m
u
ß

A
E

,
d
ie

p
erp

en
d
icu

lär
au

f
E

K
u
n
d

E
E

′
ist,

au
ch

zu
-

gleich
sen

k
rech

t
au

f
F

E
sein

.
(11.

S
atz.)

D
ie

D
reiecke

A
E

F
u
n
d

F
E

C
sin

d
con

gru
en

t,
d
a

sie
rech

tw
in

k
lig

sin
d

u
n
d

gleich
e

C
ath

eten
h
a-

b
en

,
m

ith
in

ist
A

F
=

F
C

=
F

B
.

E
in

P
er-

p
en

d
ikel

au
s

d
es

S
p
itze

F
d
es

gleich
sch

en
k
ligen

D
reieck

s
B

F
C

au
f

d
ie

G
ru

n
d
lin

ie
B

C
gefällt,

geh
t

d
u
rch

d
eren

M
ittelp

u
n
k
t

G
;

ein
e

E
b
en

e
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d
u
rch

d
iesen

P
erp

en
d
ikel

F
G

u
n
d

d
ie

L
in

ie
F

F
′

gelegt,
m

u
ß

sen
k
rech

t
sein

au
f

d
ie

E
b
en

e
d
es

D
reieck

s
A

B
C

u
n
d

sch
n
eid

et
d
ie

E
b
en

e
d
er

P
a-

rallelen
B

B
′,

C
C

′
lan

gs
d
er

L
in

ie
G

G
′,

d
ie

eb
en

falls
p
arallel

m
it

B
B

′
u
n
d

C
C

′
ist

(25.
S
atz.);

d
an

n
u
n

C
G

sen
k
rech

t
au

f
F

G
,

u
n
d

m
ith

in
zu

gleich
au

ch
au

f
G

G
′,

so
ist

folglich
d
er

W
in

kel
C

′C
G

=
B

′B
G

.
(23.

S
atz.)

H
ierau

s
folgt,

d
aß

fü
r

d
ie

G
ren

zfl
äch

e
jed

e
d
er

A
x
en

als
D

reh
u
n
gsax

e
b
etrach

tet
w

erd
en

kan
n
.

H
a
u
p
te

b
e
n
e

w
erd

en
w

ir
jed

e
E

b
en

e
n
en

-
n
en

,
w

elch
e

d
u
rch

ein
e

A
x
e

d
er

G
ren

zfl
äch

e
gelegt

ist.
D

em
n
ach

sch
n
eid

et
jed

e
H

a
u
p
t-

e
b
e
n
e

d
ie

G
ren

zfl
äch

e
in

d
er

G
ren

zlin
ie,

w
äh

-
ren

d
fü

r
ein

e
an

d
ere

L
age

d
er

sch
n
eid

en
d
en

E
b
en

e
d
ieser

D
u
rch

sch
n
itt

ein
K

reis
ist.

D
rei

H
au

p
tfl

äch
en

,
d
ie

sich
w

ech
selseitig

sch
n
eid

en
,

b
ild

en
u
n
ter

ein
an

d
er

W
in

kel,
d
eren

S
u
m

m
e

π
is

(28.
S
atz.)

D
iese

W
in

kel
w

erd
en

w
ir

als
W

in
kel

im
G

ren
zd

reiecke
b
etrach

ten
,
d
essen

S
eiten

B
ögen

d
er

G
ren

zlin
ie

sin
d
,

w
elch

e
au

f
d
er

G
ren

zfl
äch

e
d
u
rch

d
ie

D
u
rch

sch
n
itte

m
it

d
en

d
rei

H
au

p
tfl

äch
en

en
tsteh

en
.

D
en

G
ren

zd
rei-

ecken
kom

m
t

folglich
d
ieselb

e
A

b
h
än

gigkeit
d
er

45

W
in

kel
u
n
d

S
eiten

u
n
ter

sich
zu

,
w

elch
e

in
d
er

gew
öh

n
lich

en
G

eom
etrie

fu
r

d
ie

gerad
lin

igen
D

reiecke
b
ew

iesen
w

erd
en

.
35)

In
d
er

F
olge

w
erd

en
w

ir
d
ie

G
röße

ein
er

L
in

ie
d
u
rch

en
in

en
B

u
ch

stab
en

m
it

b
eige-

setztem
A

ccen
t,

z.
B

.
x
′,

b
ezeich

n
en

,
u
m

an
zu

-
d
eu

ten
,

d
aßd

ieselb
e

zu
d
er

ein
er

an
d
ere

L
in

ie,
w

elch
e

d
u
rch

d
en

selb
en

B
u
ch

stab
en

oh
n
e

A
ccen

t
x

d
argestellt

w
ird

,
ein

e
B

ezieh
u
n
g

h
ab

e,
d
ie

d
u
rch

d
ie

G
leich

u
n
g

Π
(x

)
+

Π
(x

′)
=

1/
2
π

gegeb
en

ist.
E

s
sei

jetzt
A

B
C

(F
ig.

28)
ein

gerad
lin

i-
ges

rech
tw

in
k
liges

D
reieck

,
w

o
d
ie

H
y
p
oth

en
u
se

A
B

=
c,

d
ie

C
ath

eten
A

C
=

b,
B

C
=

a
u
n
d

d
ie

ih
n
en

gegen
ü
b
erliegen

d
en

W
in

kel
B

A
C

=
Π

(α
),

A
B

C
=

Π
(β

)
sin

d
.

Im
P

u
n
k
te

A
errich

te
m

an
d
ie

L
in

ie
A

A
′
sen

k
rech

t
au

f
d
ie

eb
en

e
d
es

D
reieck

s
A

B
C

,
u
n
d

au
s

d
en

P
u
n
k
ten

B
u
n
d

C
zieh

e
m

an
B

B
′

u
n
d

C
C

′
p
arallel

m
it

A
A
′.

D
ie

E
b
en

en
,

in
w

elch
en

d
iese

d
rei

P
arallelen

liegen
,

b
ild

en
u
n
ter

sich
d
ie

W
in

kel:
Π

(α
)

an
A

A
′,

ein
en

rech
ten

an
C

C
′
(11.

u
n
d

13.
S
atz.),

folglich
Π

(α
′)

b
ei

B
B

′
(28.

S
atz.).
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D
ie

D
u
rch

sch
n
itte

d
er

L
in

ien
B

A
,

B
C

,
B

B
′

m
it

ein
er

K
u
gelob

erfl
äch

e,
u
m

d
er

P
u
n
k
t

B
als

M
ittelp

u
n
k
t

b
esch

rieb
en

,
b
estim

m
en

ein
sp

h
ärish

ces
D

reieck
m

n
k
,

w
orin

d
ie

S
eite

m
n

=
Π

(c),
k
n

=
Π

(β
),

m
k

=
Π

(a
)

u
n
d

d
ie

ih
n
en

gegen
ü
b
erliegen

d
en

W
in

kel
Π

(b),
Π

(α
′),

1/
2
π
,

sin
d
.D
em

n
ach

m
u
ß

m
an

m
it

d
er

E
risten

s
ein

es
gerad

lin
igen

D
reieck

s
d
essen

S
eiten

a
,
b,

c,
u
n
d

d
ie

gegen
ü
b
erliegen

d
en

W
in

kelΠ
(α

),
Π

(β
),

1/
2
π

sin
d
,

au
ch

d
ie

ein
es

sp
h
ärisch

en
D

reieck
s

(F
ig.

29)
zu

laßen
,

m
it

d
en

S
eiten

Π
(c),

Π
(β

),
Π

(a
)

u
n
d

d
en

gegen
ü
b
erliegen

d
en

W
in

keln
Π

(b),
Π

(a
′),

1/
2
π
.

B
ei

d
iesen

b
eid

en
D

reiecken
b
ed

in
gt

ab
er

au
ch

u
m

gekeh
rt

d
ie

E
risten

s
d
es

sp
h
ärisch

en
D

reieck
s

w
ied

eru
m

d
ie

ein
es

gerad
lin

igen
,

w
el-

ch
es

folglich
au

ch
m

it
d
en

S
eiten

a
,

α
′,

β
,

u
n
d

d
en

en
ih

n
en

gen
en

ü
b
erliegen

d
en

W
in

keln
Π

(b ′),
Π

(c),
1/

2
π

sein
kan

n
.

D
em

n
ach

kan
n

m
an

von
a
,
b,

c,
α
,
β
,
ü
b
er-

geh
en

zu
b,a

,c,β
,α

u
n
d

au
ch

zu
a
,α

′,β
,b ′,c.

M
an

d
en

ke
sich

d
u
rch

d
en

P
u
n
k
t

A
′

(F
ig.

28)
m

it
A

A
′

als
A

x
e

ein
e

gren
zfl

äch
e

gelegt,
w

elch
e

d
ie

b
eid

en
an

d
ern

A
x
en

B
B

′,
C

C
′,

in

47

B
′′

u
n
d

C
′′

sch
n
eid

et,
u
n
d

d
eren

D
u
rch

sch
n
itte

m
it

d
en

E
b
en

e
d
er

P
arallelen

ein
G

ren
zd

reieck
b
ild

en
,

d
essen

S
eiten

B
′′C

′′
=

p,
C

′′A
=

q,
B

′′A
=

r
u
n
d

d
ie

ih
n
en

gen
en

ü
b
erliegen

d
en

W
in

kel
Π

(α
),

Π
(α

′),
1/

2
π

sin
d
,
u
n
d

w
o

folglich
(34.

S
atz.):

p
=

r
sin

Π
(α

),
q

=
r
cos

Π
(α

).

M
an

h
eb

e
jetzt

län
gs

d
er

L
in

ie
B

B
′

d
ie

V
erb

in
d
u
n
g

d
er

d
rei

H
au

p
tfl

äch
en

au
f

u
n
d

sch
lage

d
ieselb

en
as

ein
an

d
er,

d
aß

sie
m

it
allen

in
ih

n
en

b
efi

n
d
lich

en
L
in

ien
in

ein
e

E
b
en

e
zu

liegen
kom

m
en

,
w

o
folglich

d
ie

B
ögen

p,
q,

r
sich

zu
ein

em
ein

zigen
B

ogen
ein

er
G

ren
z-

lin
ie

verein
igen

w
erd

en
,

d
ie

d
u
rch

d
en

P
u
n
k
t

A
geh

t
u
n
d

A
A
′

zu
r

A
x
e

h
at,

d
ergestalt,

d
aß

au
f

d
er

ein
en

S
eite

liegen
w

erd
en

:
d
ie

B
ögen

q
u
n
d

p,
d
ie

S
eite

b
d
es

D
reieck

s,
d
ie

in
A

sen
k
rech

t
au

f
A

A
′

ist,
d
ie

A
x
e

C
C

′,
von

d
er

S
p
itze

von
b

p
arallel

m
it

A
A
′

u
n
d

d
u
rch

C
′′

d
em

V
erein

igu
n
gsp

u
n
k
te

von
p

u
n
d

q
geh

en
d
,

d
ie

S
eite

a
sen

k
rech

t
au

f
C

C
′

im
P

u
n
k
te

C
,

u
n
d

au
s
d
em

E
n
d
p
u
n
k
te

d
erselb

en
d
ie

A
x
e

B
B

′

p
arallel

m
it

A
A
′,

d
ie

d
u
rch

d
en

E
n
d
p
u
n
k
t

B
′′

d
es

B
ogen

s
p

geh
t.

A
u
f

d
er

an
d
ern

S
eite

von
A

A
′

w
erd

en
liegen

:
d
ie

S
eite

c
sen

k
rech

t
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au
f

A
A
′

im
P

u
n
k
te

A
,

u
n
d

d
ie

A
x
e

B
B

′
p
a-

rallel
A

A
′,

vom
E

n
d
p
u
n
k
te

von
b

au
s

d
u
rch

d
en

E
n
d
p
u
n
k
t

B
′′

d
es

B
ogen

s
r

geh
en

d
.

D
ie

G
röße

d
er

L
in

ie
C

C
′′

h
än

gt
von

b
ab

,
w

elch
e

A
b
h
än

gigkeit
w

ir
d
u
rch

C
C

′′
=

f
(b)

au
sd

rü
k
ken

w
ollen

.
A

u
f

gleich
e

W
eise

w
ird

B
B

′′
=

f
(c)

sein
.

W
h
en

m
an

C
C

′
als

A
x
e

n
eh

m
en

d
ein

e
n
eu

e
G

ren
zlin

ie
vom

P
u
n
k
te

C
au

s
b
is

zu
ih

rem
D

u
rch

sch
n
ittsp

u
n
k
te

D
m

it
d
er

A
x
e

B
B

′

b
e

sch
reib

t,
u
n
d

d
en

B
ogen

C
D

m
it

t
b
ezeich

-
n
et,

so
ist

B
D

=
f
(a

),
B

B
′′

=
B

D
+

D
B

′′
=

B
D

+
C

C
′′

folglich

f
(c)

=
f
(a

)
+

f
(b).

A
u
ßerd

em
b
em

erken
w

ir,
d
aß

(32.
S
atz.)

t
=

pe
f
(b)

=
r
sin

Π
(α

)
e

f
(b).

W
en

n
d
er

P
erp

en
d
ikel

au
f

d
ie

E
b
en

e
d
es

D
reieck

s
A

B
C

(F
ig.

28.)
an

statt
im

P
u
n
k
te

A
in

B
errich

tet
w

ord
en

w
äre,

so
w

ü
rd

en
d
ie

L
in

ien
c

u
n
d

r
d
ieselb

en
geb

lieb
en

sein
,

d
ie

B
ögen

q
u
n
d

t
w

ü
rd

en
sich

in
t

u
n
d

q,
d
ie

G
erad

en
a

u
n
d

b
in

b
u
n
d

a
u
n
d

d
er

W
in

kel
Π

(α
)

in
Π

(β
)

verän
d
ern

,
folglich

h
ätte

m
an

q
=

r
sin

Π
(β

)
e

f
(a

)

w
orau

s
folgt,

in
d
em

m
an

d
en

W
erth

von
q

su
b
stitu

irt

49

cos
Π

(α
)

=
sin

Π
(β

)
e

f
(a

)

u
n
d

in
d
em

m
an

α
u
n
d

β
in

b ′
u
n
d

c
ver-

än
d
ert:

sin
Π

(b)
=

sin
Π

(c)
e

f
(a

)

fern
er

d
u
rch

M
u
ltip

likation
m

it
e

f
(b)

sin
Π

(b)
e

f
(b)

=
sin

Π
(c)

e
f
(c)

H
ierau

s
folgt

au
ch

sin
Π

(a
)
e

f
(a

)
=

sin
Π

(b)
e

f
(b)

D
a

n
u
n

ab
er

d
ie

G
erad

en
a

u
n
d

b
von

ein
-

an
d
er

u
n
ab

h
än

gig
sin

d
,
u
n
d

au
serd

em
f
(b)

=
0,

Π
(b)

=
1/

2
π

fü
r

b
=

0,
so

ist
fü

r
jed

e
gerad

e
L
in

ie
a

e −
f
(a

)
=

sin
Π

(a
)

d
em

n
ach

:
sin

Π
(c)

=
sin

Π
(a

)
sin

Π
(b)

sin
Π

(β
)

=
cos

Π
(α

)
sin

Π
(a

)

H
ierau

s
erh

alt
m

an
n
o
ch

d
u
rch

V
erän

d
eru

n
g

d
er

B
u
ch

stab
en

:

sin
Π

(α
)

=
cos

Π
(β

)
sin

Π
(b)

cos
Π

(b)
=

cos
Π

(c)
cos

Π
(α

)

cos
Π

(a
)

=
cos

Π
(c)

cos
Π

(β
)

W
en

n
m

an
im

sp
h
ärisch

en
rech

tw
in

k
ligen

D
reiecke

(F
ig.

29.)
d
ie

S
eiten

Π
(c),

Π
(β

),
Π

(a
),

m
it

gegen
ü
b
erliegen

d
en

W
in

keln
Π

(b),
Π

(α
′)

d
u
rch

d
ie

B
u
ch

stab
en

a
,

b,
c,
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A
,

B
b
ezeich

n
et,

so
n
eh

m
en

d
ie

gefu
n
d
en

en
G

leich
u
n
gen

d
ie

F
orm

d
erjen

igen
an

,
w

elch
e

m
an

b
ekan

n
tlich

in
d
er

sp
h
ärisch

en
T
rigon

om
e-

trie
fü

r
rech

tw
in

k
lige

D
reiecke

b
ew

eist,
n
äm

lich
:

sin
a

=
sin

c
sin

A

sin
b

=
sin

c
sin

B

cos
A

=
cos

a
sin

B

cos
B

=
cos

b
sin

A

cos
c

=
cos

a
cos

b

von
w

elch
e

G
leich

u
n
gen

m
an

u
b
ergeh

en
kan

n
zu

d
en

en
fü

r
alle

sp
h
ärisch

e
D

reiecke
ü
b
erh

au
p
t.

D
em

n
ach

h
än

gt
d
ie

sp
h
ärisch

e
T
rigon

om
etrie

n
ich

t
d
avon

ab
,
ob

in
ein

em
gerad

lin
igen

D
rei-

ecke
d
ie

S
u
m

m
e

d
er

d
reiW

in
kelgleich

seizw
eien

R
ech

ten
o
d
er

n
ich

t.
36)

W
ir

w
ollen

jetzt
au

f’s
N

eu
e

d
as

rech
t-

w
in

k
lige

gerad
lin

ige
D

reieck
A

B
C

(F
ig.

31.)
b
etrach

ten
,

in
w

elch
em

d
ie

S
eiten

a
,

b,
c,

u
n
d

d
ie

gegen
ü
b
erliegen

d
e

W
in

kel
Π

(α
),

Π
(β

),
1/

2
π

sin
d
.

M
an

verlän
gere

d
ie

H
y
p
oth

en
u
se

c
ü
b
er

d
en

P
u
n
k
t

B
h
in

au
s,

u
n
d

m
ach

e
B

D
=

β
;

im
P

u
n
k
te

D
errich

te
m

an
au

f
B

D
d
ie

S
en

k
rech

te
D

D
′,

w
elch

e
folglich

p
arallel

sein
w

ird
m

it
B

B
′,

d
er

V
erlän

geru
n
g

d
er

S
eite

a
jen

seits
d
es

P
u
n
k
tes

B
.

A
u
s

d
em

P
u
n
k
te

A

51

zieh
e

m
an

n
o
ch

m
it

D
D

′
d
ie

P
arallele

A
A
′

w
elch

e
zu

gleich
au

ch
p
arallel

m
it

C
B

′
ist,

(25.
S
atz.)

d
esh

alb
ist

d
er

W
in

kel
A
′A

D
=

Π
(c

+
β
),

A
′A

C
=

Π
(b)

folglich

Π
(b)

=
Π

(α
)
+

Π
(c

+
β
).

W
en

n
m

an
β

von
B

au
s

au
f

d
ie

H
y
p
o-

th
en

u
se

c
trägt,

h
ierau

f
im

E
n
d
p
u
n
k
te

D
(F

ig.
32.)

in
n
erh

alb
d
es

D
reieck

s
au

f
A

B
d
ie

S
en

k
-

rech
te

D
D

′
errich

tet,
u
n
d

au
s

d
em

P
u
n
k
te

A
m

it
D

D
′

d
ie

P
arallele

A
A
′

zieh
t,

so
w

ird
B

C
m

it
ih

rer
V
erlän

geru
n
g

C
C

′
d
ie

d
ritte

P
aral-

lele
sein

;
alsd

an
n

ist:
W

in
kel

C
A

A
′

=
Π

(b),
D

A
A
′
=

Π
(c−

β
)

folglich

Π
(c−

β
)

=
Π

(α
)
+

Π
(b)

D
iese

letzte
G

leich
u
n
g

ist
au

ch
d
an

n
n
o
ch

gü
ltig,

w
en

n
c

=
β

o
d
er

c
<

β
.

W
en

n
c

=
β

(F
ig.

33.),
so

ist
d
er

P
erp

en
d
ikel

A
A
′

im
P

u
n
k
te

A
au

f
A

B
errich

tet
p
arallel

d
er

S
eite

B
C

=
a

m
it

ih
rer

V
erlän

geru
n
g

C
C

′,
folglich

ist
Π

(α
)

+
Π

(b)
=

1/
2
π
,

w
äh

ren
d

au
ch

Π
(c
−

β
)

=
1/

2
π
.

(23.
S
atz.)

W
en

n
c

<
β
,

so
fällt

d
as

E
n
d
e

von
β

jen
seits

d
es

P
u
n
k
tes

A
in

D
(F

ig.
34.)

au
f

d
ie

V
erlän

geru
n
g

d
er

H
y
p
oth

en
u
se

A
B

.
D

er
h
ier

au
f

A
D

errich
tete

P
erp

en
d
ikel

D
D

′
u
n
d

d
ie

ih
m

au
s

A
p
arallele
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L
in

ie
A

A
′

w
ird

eb
en

falls
p
arallel

d
er

S
eite

B
C

=
a

m
it

ih
rer

V
erlän

geru
n
g

C
C

′
sein

.
H

ier
ist

d
er

W
in

kel
D

A
A
′

=
Π

(β
−

c)
folg-

lich
Π

(α
)

+
Π

(b)
=

π
−

Π
(β
−

c)
=

Π
(c
−

β
)

(23.
S
atz.)

D
ie

V
erb

in
d
u
n
g

d
er

b
eid

en
G

efu
n
d
en

en
G

lei-
ch

u
n
gen

gieb
t:

2
Π

(b)
=

Π
(c−

β
)
+

Π
(c

+
β
)

2
Π

(α
)=

Π
(c−

β
)−

Π
(c

+
β
)

w
orau

s
folgt

cos
Π

(b)

cos
Π

(α
)

=
cos[ 1/

2
Π

(c−
β
)
+

1/
2
Π

(c
+

β
)]

cos[ 1/
2
Π

(c−
β
)−

1/
2
Π

(c
+

β
)]

S
u
b
stitu

irt
m

an
h
ier

d
en

W
erth

,
(35.

S
atz.)

cos
Π

(b)

cos
Π

(α
)

=
cos

Π
(c)

so
ergieb

t
sich

tan
2

1/
2
Π

(c)
=

tan
1/

2
Π

(c−
β
)
tan

1/
2
Π

(c
+

β
)

D
a

h
ier

β
ein

e
b
elieb

ige
Z
ah

l
ist,

w
eil

d
er

W
in

kel
Π

(β
)

an
d
er

ein
en

S
eite

an
c

b
elieb

ig
gen

om
m

en
w

erd
en

kan
n

zw
isch

en
d
en

G
ren

zen
0

u
n
d

1/
2
π
,

folglich
β

zw
isch

en
d
en

G
ren

zen
0

u
n
d
∞

,
so

w
ird

m
an

folgern
,

in
d
em

m
an

d
er

O
rd

n
u
n
g

n
ach

β
=

c,
2c,

3c
u
.

s.
w

.
setzt,

d
aß

fü
r

jed
e

p
ositive

Z
ah

l
n
:

tan
n

1/
2
Π

(c)
=

tan
1/

2
Π

(n
c)
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B
etrach

tet
m

an
n

als
d
as

V
erh

ältn
iß

zw
eier

L
in

ien
x

u
n
d

c
u
n
d

n
im

m
t

m
an

an
,
d
aß

cot
1/

2
Π

(c)
=

e
c

so
fi
n
d
et

m
an

fü
r

jed
e

L
in

ie
x

im
A

llgem
ei-

n
en

,
sie

sei
p
ositiv

o
d
er

n
egativ

,

tan
1/

2
Π

(x
)

=
e −

x

w
o

e
jed

e
b
elieb

ige
Z
ah

l
sein

kan
n
,

d
ie

größer
als

d
ie

E
in

h
eit

ist,
w

eil
Π

(x
)

=
0

fü
r

x
=
∞

.
D

a
d
ie

E
in

h
eit

w
o
d
u
rch

d
ie

L
in

ien
gem

es-
sen

w
erd

en
,

b
elieb

ig
ist,

so
kan

n
m

an
u
n
ter

e
au

ch
d
ie

B
asis

d
er

N
ep

er’sch
en

L
ogarith

m
en

versteh
en

.
37)

V
on

d
en

ob
en

(35.
S
atz.)

gefu
n
d
en

en
G

leich
u
n
gen

ist
es

h
in

reich
en

d
,

d
ie

zw
ei

fol-
gen

d
en

zu
ken

n
en

sin
Π

(c)
=

sin
Π

(a
)
sin

Π
(b)

sin
Π

(α
)

=
sin

Π
(b)

cos
Π

(β
)

in
d
em

m
an

d
ie

letzte
au

f
b
eid

e
C

ath
eten

a
u
n
d

b
b
ezieh

t,
u
m

au
s

ih
rer

V
erb

in
d
u
n
g

d
ie

ü
b
ri-

gen
zw

ei
(35.

S
atz.)

h
erzu

leiten
,

oh
n
e

Z
w

ei-
d
eu

tigkeit
d
er

algeb
raisch

en
Z
eich

en
,

d
a

h
ier

alle
W

in
kel

sp
itze

sin
d
.

A
u
f

äh
n
lich

e
W

eise
gelan

gt
m

an
zu

d
en

zw
ei

G
leich

u
n
gen

:

1.
tan

Π
(c)

=
sin

Π
(α

)
tan

Π
(a

)

2.
cos

Π
(a

)
=

cos
Π

(c)
cos

Π
(β

)
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W
ir

w
ollen

jetzt
ein

gerad
lin

iges
D

reieck
b
etrach

ten
,

d
essen

S
eiten

a
,

b,
c

(F
ig.

35.)
u
n
d

d
ie

ih
n
en

gegen
ü
b
erliegen

d
en

W
in

kel
A

,
B

,
C

sin
d
.

W
en

n
A

u
n
d

B
sp

itze
W

in
kel

sin
d
,

so
fällt

d
er

P
erp

en
d
ikel

p
au

s
d
er

S
p
itze

d
es

W
in

kels
C

in
n
erh

alb
d
es

D
reieck

s
u
n
d

th
eilt

d
ie

S
eite

c
in

zw
ei

T
h
eile,

u
n
d

zw
ar

in
d
en

T
h
eil

x
au

f
d
er

S
eite

d
es

W
in

kels
A

,
u
n
d

c−
x

au
f

d
er

S
eite

d
es

W
in

kels
B

.
D

ergestalt
en

tsteh
en

zw
ei

rech
tw

in
k
lige

D
reiecke,

fü
r

w
elch

e
m

an
d
u
rch

U
n
w

en
d
u
n
g

d
er

G
leich

u
n
g

1.,
erh

ält:

tan
Π

(a
)

=
sin

B
tan

Π
(p)

tan
Π

(b)
=

sin
A

tan
Π

(p)

w
elch

e
G

leich
u
n
gen

u
n
verän

d
ert

b
leib

en
,
w

en
n

au
ch

ein
er

d
er

W
in

kel,
z.

B
.

B
,

ein
rech

ter
(F

ig.
36.)

o
d
er

ein
stu

m
p
fer

(F
ig.

37.)
w

äre.
D

em
n
ach

h
at

m
an

allgem
ein

fü
r

jed
es

D
reieck

3.
sin

A
tan

Π
(a

)
=

sin
B

tan
Π

(b)

F
ü
r

ein
D

reieck
m

it
sp

itzen
W

in
keln

A
,

B
,

(F
ig.

35.)
h
at

m
an

au
ch

n
o
ch

(2.
G

leich
u
n
g)

cos
Π

(x
)

=
cos

A
cos

Π
(b)

cos
Π

(c−
x
)

=
cos

B
cos

Π
(a

)

w
elch

e
G

leich
u
n
gen

sich
au

ch
au

f
D

reiecke
b
e-

zieh
en

,
in

d
en

en
ein

er
d
er

W
in

kel
A

o
d
er

B

55

ein
rech

ter
o
d
er

stu
m

p
fer

ist.
Z
u
m

B
eisp

iel
fü

r
B

=
1/

2
π

(F
ig.

36.)
m

u
ß

x
=

c
gen

om
-

m
en

w
erd

en
,

d
ie

erste
G

leich
u
n
g

geh
t

d
an

n
in

d
iejen

ige
ü
b
er,

w
elch

e
w

ir
ob

en
gefu

n
d
en

h
a-

b
en

(2.
G

leich
u
n
g),

d
ie

an
d
ere

ab
er

w
ird

von
selb

st
erfü

llt.
F
ü
r

B
>

1/
2
π

(F
ig.

37.)
b
leib

t
d
ie

erste
G

leich
u
n
g

u
n
verän

d
ert,

statt
d
er

zw
ei-

ten
ab

er
m

u
ß

m
an

en
tsp

rech
en

d
sch

reib
en

:

cos
Π

(x
−

c)
=

cos(π
−

B
)
cos

Π
(a

)

es
ist

ab
er

cos
Π

(x
−

c)
=
−

cos
Π

(c
−

x
)

(23.
S
atz.),

u
n
d

au
ch

cos(π
−

B
)

=
−

cos
B

.
W

en
n

A
ein

rech
ter

o
d
er

stu
m

p
fer

W
in

kel
ist,

so
m

u
ß

statt
x

u
n
d

c
−

x
gesetzt

w
erd

en
c
−

x
u
n
d

x
,

u
m

d
iesen

F
all

au
f

d
en

frü
h
ern

zu
rü

ck
zu

fü
h
ren

.
U

m
x

au
s

b
eid

en
G

leich
u
n
gen

zu
elim

in
i-

ren
,
b
em

erken
w

ir,
d
aß

(36.
S
atz.)

cos
Π

(c−
x
)

=
1
−

tan
2

1/
2
Π

(c−
x
)

1
+

tan
2

1/
2
Π

(c−
x
)

=
1
−

e
2
x−

2
c

1
+

e
2
x−

2
c

=
1
−

tan
2

1/
2
Π

(c)
cot

2
1/

2
Π

(x
)

1
+

tan
2

1/
2
Π

(c)
cot

2
1/

2
Π

(x
)
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=
cos

Π
(c)−

cos
Π

(x
)

1
−

cos
Π

(c)
cos

Π
(x

)

S
u
b
stitu

irt
m

an
h
ier

d
en

A
u
sd

ru
ck

fü
r
cos

Π
(x

),
cos

Π
(c−

x
),

so
erh

ält
m

an
:

cos
Π

(c)
=

cos
Π

(a
)
cos

B
+

cos
Π

(b)
cos

A

1
+

cos
Π

(a
)
cos

Π
(b)

cos
A

cos
B

w
orau

s
folgt:

cos
Π

(a
)
cos

B
=

cos
Π

(c)−
cos

A
cos

Π
(b)

1
−

cos
A

cos
Π

(b)
cos

Π
(c)

u
n
d

en
tlich

sin
2
Π

(c)
=

[1
−

cos
B

cos
Π

(c)
cos

Π
(a

)]

×
[1
−

cos
A

cos
Π

(b)
cos

Π
(c)]

A
u
f
äh

n
lich

e
W

eise
m

u
ß

au
ch

sein
:

4.
sin

2
Π

(a
)

=
[1
−

cos
C

cos
Π

(a
)
cos

Π
(b)]

×
[1
−

cos
B

cos
Π

(c)
cos

Π
(a

)]

sin
2
Π

(b)
=

[1
−

cos
A

cos
Π

(b)
cos

Π
(c)]

×
[1
−

cos
C

cos
Π

(a
)
cos

Π
(b)]

A
u
s

d
iesen

d
rei

G
leich

u
n
gen

fi
n
d
et

m
an

n
o
ch

:

sin
2
Π

(b)
sin

2
Π

(c)

sin
2
Π

(a
)

=
[1
−

cos
A

cos
Π

(b)
cos

Π
(c)] 2

H
ierau

s
folgt

oh
n
e

Z
w

eid
eu

tigkeit
d
er

Z
eich

en
:

57

5.
cos

A
cos

Π
(b)

cos
Π

(c)

+
sin

Π
(b)

sin
Π

(c)

sin
Π

(a
)

=
1

S
u
b
stitu

irt
m

an
h
ier

d
en

W
erth

von
sin

Π
(c)

ü
b
erein

stim
m

en
d

m
et

d
er

G
leich

u
n
g

(3.)

sin
Π

(c)
=

sin
A

sin
C

tan
Π

(a
)
cos

Π
(c)

so
erh

ält
m

an

cos
Π

(c)

=
cos

Π
(a

)
sin

C

sin
A

sin
Π

(b)
+

cos
A

sin
C

cos
Π

(a
)
cos

Π
(b)

ab
er

in
d
em

m
an

d
iesen

A
u
sd

ru
ck

fü
r

cos
Π

(c)
in

d
ie

G
leich

u
n
g

(4)
su

b
stitu

irt:

6.
cot

A
sin

C
sin

Π
(b)

+
cos

C
=

cos
Π

(b)

cos
Π

(a
)

D
u
rch

E
lim

in
ation

von
sin

Π
(b)

m
it

H
ü
lfe

d
er

G
leich

u
n
g

(3)
kom

m
t:

cos
Π

(a
)

cos
Π

(b)
cos

C
=

1
−

cos
A

sin
B

sin
C

sin
Π

(a
)

In
zw

isch
en

gieb
t

d
ie

G
leich

u
n
g

(6)
d
u
rch

V
erän

d
eru

n
g

d
er

B
u
ch

stab
en

:
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cos
Π

(a
)

cos
Π

(b)
=

cot
B

sin
C

sin
Π

(a
)
+

cos
C

A
u
s

d
en

b
eid

en
letzten

G
leich

u
n
gen

folgt:

7.
cos

A
+

cos
B

cos
C

=
sin

B
sin

C

sin
Π

(a
)

A
lle

v
ier

G
leich

u
n
gen

fü
r

d
ie

A
b
h
än

gig-
keit

d
er

S
eiten

a
,

b,
c,

u
n
d

d
er

gegen
ü
b
er-

liegen
d
en

W
in

kel
A

,
B

,
C

,
im

gerad
lin

igen
D

reiecke
w

erd
en

d
em

n
ach

sein
[G

leich
(3),

(5),
(6),

(7)]:

8. 

sin
A

tan
Π

(a
)

=
sin

B
tan

Π
(b)

cos
A

cos
Π

(b)
cos

Π
(c)

+

sin
Π

(b)
sin

Π
(c)

sin
Π

(a
)

=
1

cot
A

sin
C

sin
Π

(b)
+

cos
C

=
cos

Π
(b)

cos
Π

(a
)

cos
A

+
cos

B
cos

C
=

sin
B

sin
C

sin
Π

(a
)

W
en

n
d
ie

S
eiten

a
,

b,
c

d
es

D
reieck

s
seh

r
k
lein

sin
d
,
so

kan
n

m
an

sich
b
egn

ü
gen

m
it

d
en

gen
äh

erten
B

estim
m

u
n
gen

.
(36.

S
atz.)
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cot
Π

(a
)

=
a

sin
Π

(a
)

=
1
−

1/
2
a

2

cos
Π

(a
)

=
a

u
n
d

au
f

äh
n
lich

e
W

eise
au

ch
fü

r
d
ie

an
d
eren

S
eiten

b
u
n
d

c.
D

ie
G

leich
u
n
gen

8.
geh

en
fü

r
solch

e
D

reiecke
u
n
d
er

in
folgen

d
e:

b
sin

A
=

a
sin

B

a
2

=
b
2
+

c
2−

2bc
cos

A

a
sin

(A
+

C
)

=
b
sin

A

cos
A

+
cos(B

+
C

)
=

0

V
on

d
iesen

G
leich

u
n
gen

sin
d

d
ie

b
eid

en
ersten

in
d
er

gew
öh

n
lich

en
G

eom
etrie

an
ge-

n
om

m
en

;
d
ie

b
eid

en
letzten

fü
h
ren

m
it

H
ü
lfe

d
er

ersten
zu

d
em

S
ch

lu
sse

A
+

B
+

C
=

π
.

D
em

n
ach

geh
t

d
ie

im
agin

äre
G

eom
etrie

in
d
ie

gew
öh

n
lich

e
ü
b
er,

w
en

n
m

an
vorau

ssetzt,
d
aß

d
ie

S
eiten

ein
es

gerad
lin

igen
D

reieck
s

seh
r

k
lein

sin
d
.U
eb

er
d
ie

A
u
sm

essu
n
g

d
er

k
ru

m
m

en
L
i-

n
ien

,
d
er

eb
en

en
F
igu

ren
,
d
er

O
b
erfl

äch
en

u
n
d

d
es

In
h
alts

d
er

K
örp

er,
so

w
ie

ü
b
er

d
ie

A
n
-

w
en

d
u
n
g

d
er

im
agin

ären
G

eom
trie

au
f

d
ie

A
n
aly

sis,
h
ab

e
ich

U
n
tersu

ch
u
n
gen

in
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60

d
en

,,G
eleh

rten
G

esch
riften

d
er

U
n
iversität

K
a-

san
”

veröff
en

tlich
t.

D
ie

G
leich

u
n
gen

(8.)
gew

äh
ren

fü
r
sich

selb
st

sch
on

ein
e

h
ireich

en
d
e

G
ru

n
d
lage,

u
m

d
ie

V
orau

ssetzu
n
g

d
er

im
agin

ären
G

eom
etrie

als
m

öglich
an

zu
seh

en
.

D
em

n
ach

gieb
t

es
kein

an
d
eres

M
ittel

als
d
ie

astron
om

isch
en

B
eob

ach
-

tu
n
gen

zu
H

ü
lfe

zu
n
eh

m
en

,
u
m

ü
b
er

d
ie

G
e-

n
au

igkeit
zu

u
rth

eilen
,

w
elch

e
d
en

B
erech

n
u
n
-

gen
d
er

gew
ön

lich
en

G
eom

etrie
zu

kom
m

en
.

D
iese

G
en

au
igkeit

erstreck
t
sich

,
w

ie
ich

in
ein

er
m

ein
er

A
b
h
an

d
elu

n
gen

gezeigt
h
ab

e,
seh

r
w

eit,
so

d
aß

z.
B

.
in

D
reiecken

,
d
eren

S
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