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In the 1820’s, Nikolai Ivanovich Lobachevski discovered and began to explore the
world’s first non-Euclidean geometry. This crucial development in the history of
mathematics was not recognized as such in his own lifetime. When his work finally
found a sympathetic audience in the late 19™ century, it was reinterpreted in the light of
various intermediate developments (particularly Riemann’s conception of geometry),
which were foreign to Lobachevski’s own way of thinking about the subject.

Because our modern understanding of his work derives from these reinterpretations,
many of Lobachevski’s most striking ideas have been forgotten. To recover them, I have
produced an “illuminated” version of Lobachevski’s most accessible work, Geometrische
Untersuchungen zur Theorie der Parallellinien (Geometric Investigations on the Theory
of Parallels), a book that he published in 1840. I have produced a new English version of
this work, together with extensive mathematical, historical, and philosophical
commentary. The commentary expands and explains Lobachevski’s often cryptic
statements and proofs, while linking the individual propositions of his treatise to the
related work of his predecessors (including Gerolamo Saccheri, J.H. Lambert, and A.M.
Legendre), his contemporaries (including Janos Bolyai and Karl Friedrich Gauss), and his
followers (including Eugenio Beltrami, Henri Poincaré¢, and David Hilbert). This
dissertation supplies the contemporary reader with all of the tools necessary to unlock
Lobachevski’s rich, beautiful, but generally inaccessible world.
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Introduction

Through the ostensibly infallible process of logical deduction, Euclid of Alexandria (ca.
300 B.C.) derived a colossal body of geometric facts from a bare minimum of genetic
material: five postulates — five simple geometric assumptions that he listed at the
beginning of his masterpiece, the Elements. That Euclid could produce hundreds of
unintuitive theorems from five patently obvious assumptions about space, and, still more
impressively, that he could do so in a manner that precluded doubt, sufficed to establish
the Elements as mankind’s greatest monument to the power of rational organized thought.
As a logically impeccable, tightly wrought description of space itself, the Elements
offered humanity a unique anchor of definite knowledge, guaranteed to remain eternally
secure amidst the perpetual flux of existence — a rock of certainty, whose truth, by its

very nature, was unquestionable.

This universal, even transcendent, aspect of the Elements has profoundly impressed
Euclid’s readers for over two millennia. In contrast to all explicitly advertised sources of
transcendent knowledge, Euclid never cites a single authority and he never asks his
readers to trust his own ineffably mystical wisdom. Instead, we, his readers, need not
accept anything on faith; we are free and even encouraged to remain skeptical
throughout. Should one doubt the validity of the Pythagorean Theorem (Elements 1.47),
for example, one need not defer to the reputation of “the great Pythagoras”. Instead, one
may satisfy oneself in the manner of Thomas Hobbes, whose first experience with Euclid

was described by John Aubrey, in his Brief Lives, in the following words.

He was 40 years old before he looked on Geometry;, which happened
accidentally. Being in a Gentleman’s library, Euclid’s Elements lay open, and
‘twas the 47 E. Libri . He read the Proposition. By G --, says he, (he would now
and then sweare an emphaticall Oath by way of emphasis) this is impossible! So
he reads the Demonstration of it, which referred him back to such a Proposition,

which proposition he read. That referred him back to another, which he also



read. Et sic deincips and so on that at last he was demonstratively convinced of

that truth. This made him in love with Geometry.

The Elements was an educational staple until the early twentieth century. So long as
reading it remained a common experience among the educated, Euclid’s name was
synonymous with demonstrable truth”. It is not an exaggeration to assert that Euclid was
the envy of both philosophy and theology. In his Meditations, Descartes went so far as to
base his certainty that God exists on his certainty that Euclid’s 32" proposition is true.
This was but a single instance out of many in which theology has tried to prop itself up
against the rock of mathematics. Euclid's Elements, for all its austerity, appeals to a deep-
seated human desire for certainty. This being the case, any individual with the
impertinence to challenge Euclid’s authority was certain to inspire reactions of both

incredulity and scorn.

But how exactly can one challenge Euclid’s authority? Euclid asks us to accept nothing
more than five postulates, and all else follows from pure logic. Therefore, if there is
anything to challenge in the Elements, it can only be in the postulates themselves. The
first four seem almost too simple to question. Informally, they describe the geometer's
tools: a straightedge, a compass, and a consistent means for measuring angles. The fifth

postulate, however, is of a rather different character:

That, if a straight line falling on two straight lines make the interior angles on
the same side less than two right angles, the two straight lines, if produced
indefinitely, meet on that side on which are the angles less than the two right

angles.

" At the very least, the demonstrations in the Elements were acknowledged as the strongest possible sort of
which the rational mind is capable. As the great Laurence Sterne writes in The Life and Opinions of
Tristram Shandy (Book IV, Ch. XXVII), “It is curious to observe the triumph of slight incidents over the
mind: — What incredible weight they have in forming and governing our opinions, both of men and things
— that trifles, light as air, shall waft a belief into the soul, and plant it so immovably within it — that Euclid’s
demonstrations, could they brought to batter it in breach, should not all have power to overthrow it.”
(Sterne, p. 221.)



This is Euclid's famous parallel postulate, so called because it forms the basis for his
theory of parallels, which, in turn, forms the basis for nearly everything else in geometry.
Modern geometry texts almost invariably replace this postulate with an alternative, to
which it is logically equivalent: given a line and a point not on it, there is exactly one line
that passes through the point and does not intersect the line. Particularly when expressed
in this alternate form, the parallel postulate does strike most as “self-evident”, and thus
beyond question for any sane individual. It would seem, therefore, that Euclid has no
significant weaknesses; his geometry is the geometry — impregnable, inevitable, and

eternal.

The timeless, almost icy, perfection that characterizes Euclid’s work made it not only a
logical masterpiece, but an artistic one as well. In this latter aspect, commentators often
singled out the parallel postulate as the unique aesthetic flaw in the Elements. The
problem was that the parallel postulate seemed out of place: it read suspiciously like a
theorem — something that Euclid should have proved from his earlier postulates, instead
of adjoining it to their ranks. This structural incongruity - a postulate that “should be” a
theorem - disturbed many mathematicians from antiquity to the 19th century. We may
safely presume that Euclid tried and failed to prove the postulate as a theorem. We know
that Euclid’s followers and admirers also tried to do as much, hoping to perfect their
master’s work by polishing away this one small but irritating blemish. Many believed that

they had succeeded.

Records of flawed “proofs” rarely survive, as there generally seems no reason to preserve
them, so the astonishing number of alleged proofs of the parallel postulate that have come
down to us should serve to indicate just how much attention was given to this problem.
Proclus, a 5™-century neo-Platonic philosopher, who wrote an extensive commentary on
the first book of the Elements, describes two attempts: one by Posidonius (2™ century
B.C.), the other by Ptolemy (the 2“d-century A.D author of the Almagest, the Bible of
geocentric astronomy). Both arguments, Proclus points out, are inadmissible because they

contain subtle flaws. After detailing these flaws, Proclus proceeded to give his own proof,



thus settling the matter for once and all — or so he thought. Proclus’ proof, for all his

critical acumen, was just as faulty as those he had criticized.

We have flawed proofs by Aghanis (5" century) and Simplicius (6"-century), two
Byzantine scholars. Many others by medieval Islamic mathematicians have survived,
including attempts by al-Jawhari and Thabit ibn Qurra in the 9" century, al-Haytham and
Omar Khayyam in the 11" and Nasir-Eddin al-Tusi in the 13™. There are even a few
specimens from medieval Europe, such as those concieved by Vitello in the 13" century
and Levi ben Gerson in the 14™. A veritable horde of later Europeans left purported
proofs of the postulate (to cite just a few examples: Christopher Clavius in 1574, Pietro
Antonio Cataldi in 1604, Giovanni Alfonso Borelli in 1658, Gerolamo Saccheri in 1733,
Louis Bertrand in 1788, and Adrien Marie Legendre, who published many attempts
between 1794 and 1832). Indeed, in 1763, G.S. Kliigel wrote a dissertation examining no
less than twenty-eight unsound “proofs” of the postulate. Interestingly, most would-be
postulate provers followed Proclus in explicitly criticizing one or more of their

predecessors’ attempts before giving their own flawed “proof to end all proofs”.”

Adhering to long-standing custom, Nikolai Ivanovich Lobachevski (1792 — 1856) began
many of his own works on the subject by criticizing the alleged proofs of his immediate
predecessor, Legendre. However, instead of forging the chain’s next link, Lobachevski
suggested that the chain be discarded altogether. He insisted that the parallel postulate
cannot be proved from Euclid’s first four postulates. In this sense, Lobachevski was a
great defender of Euclid: he felt that Euclid was fully justified in assuming the parallel

postulate as such; indeed, he believed that Euclid had no other way to obtain it.

In another sense, Lobachevski believed that Euclid was wholly unjustified in assuming
the parallel postulate, for we cannot be certain that it accurately describes the behavior of
lines in physical space. Euclidean tradition declares that it does, but the universe is not

obliged to respect humanity’s traditional beliefs about space, even those codified by its

" For detailed descriptions of many alleged proofs of the postulate, consult Rosenfeld (Chapter 2) or Bonola
(Chapters 1 and 2).



great authority, Euclid of Alexandria. Lobachevski considered the validity of the parallel

postulate an empirical question, to be settled, if possible, by astronomical measurements.

Unorthodoxy quickly led to heresy: proceeding from the assumption that the parallel
postulate does not hold, Lobachevski began to develop a new geometry, which he called
imaginary geometry”, whose results contradicted Euclid’s own. He first described this
strange new world on February 24, 1826, in a lecture at the University of Kazan. His first
written publication on the subject dates from 1829. Several others followed, and after a
decade of failed attempts to convince his fellow Russians of the significance of his work,
he published accounts of it in French (in 1837) and German (in 1840), hoping to attract
attention in Western Europe. He found none. By the time that he wrote Pangeometry
(1855), he was blind (he had to dictate the book), exhausted, and embittered. He died the

following year. '

In fact, although Lobachevski never knew it, his work did find one sympathetic reader in
his lifetime: Karl Friedrich Gauss (1777-1855), often classed with Isaac Newton and
Archimedes as one of the three greatest mathematicians who have ever lived. Gauss
shared Lobachevski’s convictions regarding the possibility of an alternate geometry, in
which the parallel postulate does not hold. He reached these conclusions earlier than
Lobachevski, but abstained, very deliberately, from publishing his opinions or
investigations. Fearing that his ideas would embroil him in controversy, the very thought
of which Gauss abhorred, he confided them only to a select few of his correspondents,
most of them astronomers. When Gauss read an unfavorable review of Lobachevski’s
Theory of Parallels, he dismissed the opinions of the reviewer, hastened to acquire a copy

of the work, and had the rare pleasure of reading the words of a kindred, but more

" By the end of his life, he preferred the name pangeometry, for reasons that will become clear by the end
of The Theory of Parallels. Other common adjectives for Lobachevski’s geometry are non-Euclidean (used
by Gauss), hyperbolic (introduced by Felix Klein), and Lobachevskian (used by Russians).

T His French paper of 1837, Géométrie Imaginaire, appeared in August Crelle’s famous journal, Journal
fiir die Riene und Angewandte Mathematik (Vol. 17, pp. 295-320). His German publication of 1840 was
The Theory of Parallels; its full title is Geometrische Untersuchungen zur Theorie der Parallelinien
(Geometric Investigations on the Theory of Parallels). Lobachevski wrote two versions of Pangeometry,
one in French and one in Russian.



courageous, spirit. Gauss was impressed; he even sought out and read Lobachevski’s
early publications in Russian. To H.C. Schumacher, he wrote in 1846, “I have not found
anything in Lobachevski’s work that is new to me, but the development is made in a
different way from the way I had started and, to be sure, masterfully done by

Lobachevski in the pure spirit of geometry.”

True to his intent, Gauss’ radical thoughts remained well-hidden during his lifetime, but
within a decade of his death, the publication of his correspondence drew the attention of
the mathematical world to non-Euclidean geometry. Though the notion that there could
be two geometries did indeed generate controversy, the fact that Gauss himself endorsed
it was enough to convince several mathematicians to track down the works of the
unknown Russian whom Gauss had praised so highly. Unfortunately, Lobachevski
reaped no benefit from this interest; he was already dead by that time, as was the equally
obscure Hungarian mathematician, Janos Bolyai (1802-1860), whose related work also

met with high praise in Gauss’ correspondence.

Bolyai had discovered and developed non-Euclidean geometry independently of both
Lobachevski and Gauss. He published an account of the subject in 1832, but it had
essentially no hope of finding an audience: it appeared as an appendix to a two-volume
geometry text, written by his father, Farkas Bolyai, in Latin. Farkas Bolyai, who had
known Gauss in college, sent his old friend a copy of his son’s revolutionary studies.
Gauss’ reply — that all this was already known to him — so discouraged the young Janos,
that he never published again, and even ceased communicating with his father, convinced
that he had allowed Gauss to steal and take credit for his own discoveries. Father and son
were eventually reconciled, but Bolyai was doubly disheartened some years later to learn
that his own Appendix could not even claim the honor of being the first published account
of non-Euclidean geometry: Lobachevski’s earliest Russian paper antedated it by several

years.

As mathematicians began to re-examine the work of Lobachevski and Bolyai, translating

it into various languages, extending it, and grappling with the philosophical problems that



it raised, they changed the very form of the subject in order to assimilate it into
mainstream mathematics. By 1900, non-Euclidean geometry remained a source of
wonder, but it had ceased to be a controversial subject among mathematicians, who were
now describing it in terms of differential geometry, projective geometry, or Euclidean
“models” of the non-Euclidean plane. These developments and interpretations helped
mathematicians domesticate the somewhat nightmarish creatures that Lobachevski and
Bolyai had loosed upon geometry. Much was gained, but something of great
psychological importance was also lost in the process. The tidy forms into which the
subject had been pressed scarcely resembled the majestic full-blooded animal that

Lobachevski and Bolyai had each beheld, alone, in the deep dark wild wood.

Today, in 2007, the vigorous beast is almost never seen in its original habitat. Just as we
give toy dinosaurs and soft plushy lions to children, we give harmless non-Euclidean
toys, such as the popular Poincaré disc model, to mathematics majors. We take advanced
students to the zoo of differential geometry and while we are there, we pause — briefly, of
course — to point out a captive specimen of hyperbolic geometry, sullenly pacing behind

bars of constant negative curvature.

If we are to understand the meaning of non-Euclidean geometry — to understand why it
wrought such important changes in mathematics - we must first recapture the initial
fascination and even the horror that mathematicians felt when confronted with the work
of Lobachevski and Bolyai. This, however, is difficult. The advent of non-Euclidean
geometry changed the mathematical landscape so profoundly that the pioneering works
themselves were obscured in the chaos of shifting tectonic plates and falling debris.
Mathematical practices of the early 19" century are not the same as those of the early
21%. The gap of nearly two centuries generally precludes the possibility of a sensitive
reading of Lobachevski’s works by a modern reader. This dissertation is an attempt to
rectify the situation, by supplying the contemporary reader with all of the tools necessary

to unlock this rich, beautiful, but generally inaccessible world. But where does one start?



Gauss left us nothing to work with. Bolyai’s Appendix is out of the question; his writing
is often terse to the point of incomprehensibility. Lobachevski is far clearer, but he too
makes heavy demands on his readers. Perhaps we should read his earliest works? In
1844, Gauss described them (in a letter to C.L. Gerling) as “a confused forest through
which it is difficult to find a passage and perspective, without having first gotten

2

acquainted with all the trees individually.” At the other chronological extreme,
Lobachevski’s final work, Pangeometry, is inappropriate for beginners since it merely
summarizes the elementary parts of the subject, referring the reader to The Theory of
Parallels, his German book of 1840, for proofs. Pangeometry does make a logical second
book to read, but the book that it leans upon, The Theory of Parallels, remains the best

point of ingress for the modern mathematician.

Accordingly, the following pages contain a new English version of The Theory of
Parallels, together with mathematical, historical, and philosophical commentary, which
will expand and explain Lobachevski’s often cryptic statements (which even his
contemporaries failed to grasp), and link his individual propositions to the related work of
his predecessors, contemporaries, and followers. Resituated in its proper historical
context, Lobachevski's work should once again reveal itself as an exciting, profound, and

revolutionary mathematical document.

Regarding the format, I have broken each of Lobachevski’s propositions into pieces,
providing commentary between them. I have set Lobachevski’s words in a distinctive
font (Bookman Old Style) and color (brown) to distinguish them from my own. For the
benefit of readers who would like to compare my somewhat free rendering of
Lobachevski’s German with the original, I have included, as an appendix, the original
text, retyped in Roman (rather than Fraktur) characters by the indefatigable Karel
Stroethoff.



Theory of Parallels —
Lobachevski’'s Introduction.

In geometry, I have identified several imperfections, which I hold
responsible for the fact that this science, apart from its translation into
analysis, has taken no step forward from the state in which it came to us
from Euclid. I consider the following to be among these imperfections:
vagueness in the basic notions of geometric magnitudes, obscurity in the
method and manner of representing the measurements of such
magnitudes, and finally, the crucial gap in the theory of parallels. Until
now, all mathematicians’ efforts to fill this gap have been fruitless.
Legendre’s labors in this area have contributed nothing. He was forced to
abandon the one rigorous road, turn down a side path, and seek
sanctuary in extraneous propositions, taking pains to present them — in
fallacious arguments — as necessary axioms.

I published my first essay on the foundations of geometry in the
“Kazan Messenger” in the year 1829. Hoping to provide an essentially
complete theory, I then undertook an exposition of the subject in its
entirety, publishing my work in installments in the “Scholarly Journal of
the University of Kazan” in the years 1836, 1837, and 1838, under the
title, “New Principles of Geometry, with a Complete Theory of Parallels”.
Perhaps it was the extent of this work that discouraged my countrymen
from attending to its subject, which had ceased to be fashionable since
Legendre. Be that as it may, I maintain that the theory of parallels
should not forfeit its claim to the attentions of geometers. Therefore, I
intend here to expound the essence of my investigations, noting in
advance that, contrary to Legendre’s opinion, all other imperfections,
such as the definition of the straight line, will prove themselves quite
foreign here and without any real influence on the theory of parallels.

Legendre
“I have read M. Legendre’s book. Ach! It is beautiful! You shall find in it no flaw!”
- Herr Niemand, in Euclid and his Modern Rivals".

In 1794, when Lobachevski was an infant, Adrien Marie Legendre published his
famous Eléments de Géométrie, a textbook that attempted to improve Euclid’s
presentation of geometry by simplifying the proofs in Euclid’s Elements, and reordering
its propositions. In subsequent editions and translations, Legendre’s text became a 19"

century educational staple. Its admirers were legion; they taught and learned from it in

" Carroll, p. 54.



locations throughout Europe, the antebellum United States, and even in Lobachevski’s
remote Russian city of Kazan. Legendre died in 1833, but his textbook remained
immensely popular for the duration of the 19™ century. In the epigraph for this section,
Herr Niemand waxes enthusiastic over the 14" edition of Legendre’s Eléments, published
in 1860".

Legendre never doubted that the parallel postulate was a logical consequence of
Euclid’s first four axioms. Indeed, he claimed to have discovered several proofs of the
postulate - all flawed, of course. New editions of his textbook often featured new proofs
of the postulate, not because Legendre recognized that the proof in the previous edition
was invalid, but rather, because he feared that the old proof had been too complex for
beginners to follow. I have reproduced one of his “proofs” in the notes to TP 19. His
argument is ingenious, but contains a very subtle flaw, as you shall see. Each of his
proofs contains a hidden circular argument of the same variety: he implicitly assumes the
truth of a property equivalent to the parallel postulate. Legendre’s little loops of logic are
the “side paths” to which Lobachevski refers above. In the introduction to his New
Principles of Geometry (1835-8), Lobachevski describes and criticizes some of
Legendre’s attempts on the postulate .

Near the end of his life, Legendre summarized his work on the parallel postulate
in his memoir, Reflections on the Different Ways of Proving the Theory of Parallels or
the Theorem on the Sum of the Three Angles of the Triangle. In it, he laments the inherent

" In fact, Charles Dodgson (a.k.a. Lewis Carroll) published Euclid and his Modern Rivals in the year 1879.
Despite the lapse of 85 years since its original publication, Dodgson (in the guise of his character, Minos)
clearly preferred Legendre’s book to all the other “modern rivals” of Euclid. He describes the book and its
proofs as “beautiful”, “admirable”, and “a model of elegance”, but worries that it may be too difficult for
beginners. When one reflects that today’s (2007) elementary mathematics courses are never taught from
books published in 1922, one can appreciate the special nature of Legendre’s text.

" In the same place, he criticized a popular “proof” due to the Swiss mathematician Louis Bertrand in 1778.
Bertrand’s reductio ad absurdum argument involved dubious comparisons of infinite areas, a technique that
Legendre also used in one of his proofs. Areas, along with lengths and volumes, are the “geometric
magnitudes” to which Lobachevski alludes; he criticizes Bertrand and others for applying techniques that
hold for finite figures to infinite figures, for which they may no longer be valid. A description of Bertrand’s
proof is in Rosenfeld (p. 102). In modified form, this proof resurfaced in Crelle’s Journal in 1834 (the
same journal that published a paper by Lobachevski in 1837!), and as late as 1913, an article in The
Mathematical Gazette (Vol. 7, p. 136) would claim, “Bertrand of Geneva proved the parallel-axiom finally
and completely.”
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difficulty of proving the postulate, and suggests reasons why it had resisted proof for so

long.

Without doubt, one must attribute to the imperfection of common language and to
the difficulty of giving a good definition of the straight line the little success
which geometers have had until now when they have wanted to deduce this
theorem.”

Lobachevski responds to this in the last sentence of his introductory remarks above. The
logical reasons for the parallel postulate’s necessity are not, as Legendre suggests they
are, deep. Rather, they are nonexistent. In the pages that follow, Lobachevski will
dispense with the parallel postulate, accept its negation, and defiantly proceed to develop

geometry anew.

" Laubenbacher & Pengelly, p. 26.
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Theory of Parallels —
Preliminary theorems (1 - 15)

Mathematical terms cannot be defined ex nihilo. The words that one uses in any given
definition require further definitions of their own; these secondary definitions necessitate
tertiary definitions; these in turn require still others. To escape infinite regress, geometers
must leave a handful of so-called primitive terms undefined. These primitive terms
represent the basic building blocks from which the first defined terms may be
constructed. From there, one may build upward indefinitely; all subsequent development
will be grounded upon the primitive terms, and circular definitions will be avoided.

Only in the late 19th-century was such clarity achieved in the foundations of
geometry. Euclid never identifies his primitive terms and several of his early definitions
founder in ambiguity. His vague definition of a straight line, “a line which lies evenly
with the points on itself”" is useless from a logical standpoint: since Euclid does not tell
us what “lying evenly” means, we have no way of deciding whether a given curve is
straight or not. Euclid has given us a description rather than a genuine definition of a line,
and as such, he has given us something that is worthless in a strict logical development of
geometry.

Mathematics encompasses more than logic, however'. The very fact that Euclid
attempts to describe a line has philosophical significance. It suggests that, for Euclid,
straight lines are “out there”, capable of description. It implicitly asserts that straight
lines exist independently of the mathematicians who study them. For one who accepts this
Platonic concept of geometry, the logical gaps in The Elements are so superficial as to
scarcely merit mention. For example, Euclid does not bother to justify the obvious fact
that if a straight line enters a triangle through one of its vertices, then it must exit through
the opposite side. Nevertheless, he frequently uses this fact in his proofs; he knows that
the line must exit through the opposite side. Of course, we know it as well, but how do
we know it? Where is this mysterious Platonic realm and how do our minds gain access

to it? Might our intuitions about it be mistaken?

" Euclid’s “line” is our “curve”.
* But compare Bertrand Russell: “The subject of formal logic, which has now at last shown itself to be
identical with mathematics...” (Russell, Mysticism and Logic, p. 72.)
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We can wage long battles over such questions, but it is much more comfortable
for mathematicians to retreat to philosophical positions that are easier to defend than
Platonism. Behind the bunkers of formal axiomatic development, we can generally
remain safe from philosophers’ attacks. There are several ways to reconstruct the formal
foundations of geometry, making them nearly unassailable. In his book Foundations of
Geometry, originally published in 1900, David Hilbert based the entire subject upon five
primitive terms: point, line, contain, between, and congruent. Hilbertian formalism denies
that lines (or any other undefined concepts) inhabit a reality that one can contemplate
outside the context of rigorous deduction. Consequently, his definitions are not intended
to describe ideal objects, but rather to endow empty words with precise mathematical
meanings. Euclid was content to leave certain fundamental notions on an intuitive basis,
such as the simple statement about lines and triangles mentioned in previous paragraph,
but for Hilbert, the geometric atheist, such a procedure is anathema; truth is synonymous
with proof. To use theorems that one cannot prove is to abandon mathematics for

theology* .

A Rough Start: TP 1-5.

“...the beginning...was without form, and void.” - Genesis 1:1-2.

Much of the defensive work that went into shoring up the foundations of
geometry was inspired by the shock caused by Lobachevski’s non-Euclidean geometry
when it became known in the late 19" century. The existence of a second geometry raises
the disturbing possibility that our basic intuitions about geometry might be fallible, after
all. This foundational work, however, came after Lobachevski’s death, so we should not
expect to see its like in The Theory of Parallels. Indeed, following Euclid’s tradition of
doubtful preliminaries, Lobachevski begins his book with five confused “theorems”, four
of which should certainly be demoted to the status of descriptions (or axioms), as they do
not admit proof on the basis of Euclid’s axioms. Even the one genuine theorem in the

group (TP 4) is superfluous: it is just a special case of TP 7.

" Compare Blaise Pascal’s dictum: “Reason is the slow and tortuous method by which those who do not
know the truth discover it.”
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Lest my reader become fatigued by a multitude of theorems whose proofs
present no difficulties, I shall list here in the preface only those that will
actually be required later.

1) A straight line covers itself in all its positions. By this, I mean that a
straight line will not change its position during a rotation of a plane
containing it if the line passes through two fixed points in the plane.

In TP 1, Lobachevski begins with an assertion suspiciously similar to Euclid’s
definition of a straight line. Unlike Euclid, he seems to recognize its weakness, and tries
to clarify it with his second sentence. He does not succeed. He is apparently claiming that
straight lines are the fixed-point-sets of spatial rotations. To prove that this is so, we
would have to demonstrate that the set of fixed points under such a rotation satisfies the
definition of a straight line. Since Euclid’s definition is clearly useless for this task (How
does one demonstrate that a set of points “lie evenly with themselves?”), and
Lobachevski proposes no alternate definition, we must conclude that TP 1 cannot be
proved rigorously.

Just as Euclid never subsequently refers to his vague definition of a straight line,
Lobachevski never refers to TP 1 elsewhere in the Theory of Parallels. What are we to
make of this inauspicious beginning? Why does Lobachevski begin his treatise with a
vague statement, labeled as a theorem yet incapable of proof, to which he never
subsequently refers? That this inscrutable pronouncement heads a list of theorems
specifically designated as vital for the sequel and amenable to easy proof makes it

stranger still.

I believe that we must read TP 1 as I have suggested that we read Euclid’s
definition of a straight line: as an implicit assertion that straight lines have an intrinsic
“nature”, reflected in our experience of straightness (or approximate straightness) in the
natural world. Thus, the implicit role of this proposition is to rule out certain “unnatural”
behaviors of straight lines, such as self-intersection. A curve in the plane that loops back
and intersects itself obviously does not correspond to our intuition of straightness.
Considered as logical tools, Euclid’s definition of straightness and Lobachevski’s TP 1
are undoubtedly problematic, if not altogether meaningless. If any value can be ascribed

to them, it must be historical rather than mathematical. Each, if nothing else, hints at an
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underlying Platonist philosophy of mathematics in their respective author. This indication
of a Platonist strain in Lobachevski’s work helps explain why his investigations into the

foundations of geometry took such a different path than those undertaken by Hilbert.
2) Two straight lines cannot intersect one another in two points.

Two lines intersecting one another in two points would violate Euclid’s first

postulate, which states that a unique line may be drawn through any two points .

3) By extending both sides of a straight line sufficiently far, it will break
out of any bounded region. In particular, it will separate a bounded plane
region into two parts.

These exemplify the types of intuitive statements that Euclid and Lobachevski use
without axiomatic justification. Naturally, Hilbert’s foundations allow one to prove them,
but only after devoting a good deal of labor to defining terms and establishing a host of

preliminary lemmas.
In The Theory of Parallels, Lobachevski uses TP 3 as follows. When a line enters

a bounded figure, such as a triangle, TP 3 simply guarantees that the line, if extended far
enough, will eventually come out again.

We shall discuss this again in TP 17, when Lobachevski first invokes TP 3.

4) Two straight lines perpendicular to a third will never O
intersect one another, regardless of how far they are u
extended.

TP 4 is just a special case of TP 7.

5) When a straight lines passes from one side to the other of a second
straight line, the lines always intersect.

" Euclid explicitly postulates only the existence of a line through any two points, but his failure to mention
uniqueness seems to have been an oversight, since he makes specific use of its uniqueness several times (in
his proof of 1.4, for example). Many editions of the Elements alter the wording of the first postulate to make
the uniqueness of the line explicit.
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Here, Lobachevski posits the continuity of straight lines: they lack holes through
which one might thread a second line. Euclid assumes this as obvious. We shall do the

same and proceed onward.

Neutral Results in Plane Geometry: TP 6 — 10.
“...from those propositions of Euclid’s first Book that precede the twenty-ninth, wherein begins the use of
the disputed postulate...”

- Gerolamo Saccheri, Euclides Vindicatus.

The dubious beginning is over. From now on, Lobachevski will deal only with genuine
theorems. The important point to observe in these preliminary theorems is that they are
neutral results: their truth does not depend on Euclid’s parallel postulate. Since Euclid
delayed his own first use of the parallel postulate until his 29" proposition, Lobachevski

is free to use the first propositions 1.1 — 1.28 of the Elements.

6) Vertical angles, those for which the sides of one angle are the
extensions of the other, are equal. This is true regardless of whether the
vertical angles lie in the plane or on the surface of a sphere.

Euclid’s simple proof of this result (Elements, 1.15), works on the sphere as well

as on the plane.

7) Two straight lines cannot intersect if a third line cuts them at equal
angles.

That is, if two lines are equally inclined toward a third, then
the first two lines will never meet. Euclid proves this in 1.28. Since
he defines parallels as lines in the same plane that do not intersect
one another, Euclid would describe the two lines in this proposition
as being parallel. Lobachevski does not use this terminology here; he
simply says that the two lines do not intersect one another. We shall see the reason for
this in TP 16, where Lobachevski proposes a new definition of the word parallel, which

these two lines will not satisty.
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As mentioned above, TP 4 is a special case of TP 7, when the two lines each meet

the third at right angles.

8) In a rectilinear triangle, equal sides lie opposite equal angles, and
conversely.

This is the famous pons asinorum (the base angles of an isosceles triangle are

equal) and its converse. For proofs, see Euclid (Elements, 1.5 and 1.6).

9) In rectilinear triangles, greater sides and angles lie opposite one
another. In a right triangle, the hypotenuse is greater than either leg, and
the two angles adjacent to it are acute.

This all follows from propositions 1.17- 1.19 in the Elements.

Euclid proves that in any triangle, the greater of two sides will have the larger
opposite angle (I.19), and conversely, the greater of two angles will have the larger
opposite side (I.18).

Because Euclid shows that any two angles in a rectilinear triangle sum to less than
two right angles (I.17), it follows that in any right triangle’s right angle will be the largest
of all of its angles. Consequently, the side opposite the right angle - the hypotenuse -
must be the right triangle’s largest side (I.18).

10) Rectilinear triangles are congruent if they have a side and two angles
equal, two sides and their included angle equal, two sides and the angle
that lies opposite the greatest side equal, or three sides equal.

This list of triangle congruence criteria includes the familiar four, SAS (Elements,
1.4), SSS (1.8), ASA (1.26), and AAS (1.26). In general, ASS is not a valid criterion,
although it does imply congruence when the angle lies opposite the larger of the two
sides. In The Theory of Parallels, Lobachevski requires only one sub-case of this
criterion: the case in which the angle is right (and thus lies opposite the hypotenuse, the
largest side). Since Euclid does not prove this “RASS criterion” (right angle — side —

side), I shall provide one to justify Lobachevski’s later use of it.
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Claim. (RASS) If two right triangles have a leg equal and their hypotenuses equal, then the
triangles are congruent.

Proof. Let AABC and AA'B'C’' be the right triangles (with right angles at C and ('),
where AC = A'C'and AB = A'B'.

Extend BC to D so that CD = B'C". A D

Then AADC = AA'B'C' by SAS (Elements, 1.4). ka"'

Hence, AD = A'B'= AB, so AABD is isosceles. C' o

Thus, the base angles at B and D are equal (L.5). B m y
ooy B

Consequently, AABC = AADC by AAS (1.26).
Having shown that AABC and AA'B'C' are both congruent to AADC, we conclude that

they are congruent to one another, as claimed. L]

Note that the preceding proof does not make use of the parallel postulate. Hence, RASS

is a congruence criterion in neutral geometry.

Neutral Results in Solid Geometry: TP 11 — 15.

“In my hurry I overlooked solid geometry, which should come next, because it’s so absurdly undeveloped.”
- Socrates, in Plato’s Republic (528d)

In several later propositions (TP 26, 27, 34, 35), Lobachevski calls upon a handful of
basic neutral theorems of solid geometry, which he has collected in the present section.
The reader need not worry about them until reaching those portions of The Theory of
Parallels that take place in three-dimensional space, at which time he can refer back to

this section as needed.

11) If a straight line is perpendicular to two intersecting lines, but does not
lie in their common plane, then it is perpendicular to all straight lines in
their common plane that pass through their point of intersection.

This is one of Euclid’s first theorems of solid

geometry (Elements, X1.4). We say that a line in space is

perpendicular to a given plane if it is perpendicular to all
lines in the plane that pass through the point at which it

pierces the plane. Since there are infinitely many such lines,

verifying that a line is perpendicular to a plane could be difficult in practice were it not
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for the present theorem. It tells us that once we know that a certain line in space is
perpendicular to two lines in a given plane, we may conclude that the line is
perpendicular to the plane.

An examination of Euclid’s proof shows that this is a neutral result.

12) The intersection of a sphere with a plane is a circle.

13) If a straight line is perpendicular to the intersection of two
perpendicular planes and lies in one of them, then it is perpendicular to the
other plane.

I shall prove these two neutral theorems, neither of which appears in Euclid’s
Elements, in reverse order.

To understand TP 13, we must first recall that the angle formed by two planes at
their line of intersection is called a dihedral angle. We measure a dihedral angle as
follows. From an arbitrary point of its “hinge” (the line in which the two planes meet), we
erect two perpendiculars, one in each plane. We call these perpendiculars lines of slope
for the dihedral angle, and we define the dihedral angle’s measure to be equal to the
measure of the plane angle between the lines of slope. Naturally, we must show that the
measure of dihedral angle is a well-defined concept. That is, we must show that it yields
the same value no matter which point of the hinge from which we draw the lines of slope.
I have given a neutral proof of this fact in the notes to TP 26

TP 13 concerns perpendicular planes: planes meeting at a dihedral angle of w/2.

Claim 1 (TP 13). Given a pair of perpendicular planes, if a line lying in one of them makes a
right angle with the hinge between them, then that line is perpendicular to the other plane.
Proof. Let a and S be perpendicular planes.
Let 4 be their hinge, their line of intersection.
Let / be a line in o such that / L 4.
We must show that / L .
Let X be the point at which / and /4 meet. h S
Let m be the line in £ that passes through X and is
perpendicular to 4.

" See the subsection, “A Dihedral Digression”, in the TP 26 notes. The proof that the dihedral angle is well
defined does not depend on any intermediary work, so the interested reader may examine it immediately.
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Since / and m are lines of slope for the dihedral angle between the perpendicular planes,
the definition of dihedral angle measure tells us that the plane angle between / and m is n/2. That
is, / L m. Moreover, we already know that / 1 4. Hence, / is perpendicular to two lines in plane f,

from which it follows that / is perpendicular to plane 5 (by TP 11). n

In future propositions, Lobachevski will often drop a perpendicular from a point
to a plane, or erect a perpendicular from a point on a plane. These basic procedures are
legitimate in neutral geometry, but the relevant constructions in Euclid’s Elements
(XI.11, 12) involve the parallel postulate. Consequently, we are obliged to legitimize
their use in the present context by “neutralizing” Euclid’s proofs. That is, we must assure
ourselves that we can drop or erect perpendiculars without using the parallel postulate in

the process.

Claim 2 (Euclid X1.11 - neutralized).
Given a plane and a point not on it, we may drop a perpendicular from the point to the plane.
Proof. Let 4 be the point, and let BC be a random line in the given plane.

In plane ABC, drop a perpendicular AD from 4 to BC.

In the given plane, erect DE perpendicular to BC at D.

In plane AED, drop a perpendicular AF from A4 to ED.

We shall show that AF is perpendicular to the given plane.

In the given plane, erect GH perpendicular to ED at F.

Line BC is perpendicular to plane AFD (TP 11).

Thus, the given plane is perpendicular to

plane AFD. (Proof: Erect lines of slope from D, a

point on the hinge between the two planes. Since the

line of slope in the given plane, DB, is perpendicular
to the other plane, it is a fortiori perpendicular to the line of slope in it. Since the lines of slope
are perpendicular, the dihedral angle between the planes is 7/2, so the planes are perpendicular, as
claimed.)
Since GF lies in one of the perpendicular planes (the given plane), and is perpendicular to
the hinge between them, it must be perpendicular to the other plane, AFD, by TP 13 (Claim 1).
Thus, AF is perpendicular to GF and DF, both of which lie in the given plane.
Hence, AF is perpendicular to the given plane (Euclid XI1.4 / TP 11), as claimed. =
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Claim 3 (Euclid X1.12 - neutralized)
Given a plane and a point on it, we may erect a perpendicular from the point to the plane.
Proof. Let 4 be the given point on the given plane.
Let B be a random point not on the plane.
Drop a perpendicular BC from B to the plane (by Claim 2).
Plane ABC is perpendicular to the given plane.
(Draw lines of slope from C, on point on the hinge
between the two planes. Since BC, which is the line of
slope in plane ABC, is perpendicular to the given plane, it

is a fortiori perpendicular to the line of slope that lies in

it. Since these lines of slope meet at right angles, the

dihedral angle between the planes is /2, so the planes are
perpendicular, as claimed.)
In plane ABC, erect a perpendicular AD to line AC at point 4.

By TP 13, AD is a line perpendicular to the given plane, which was to be constructed. m

Now that we know that we may drop or erect perpendicular as we please in solid

neutral geometry, we shall return to TP 12, which we have yet to prove.

Claim 4 (TP 12). The intersection of a sphere and plane is a circle.

Proof. To prove that the intersection is a circle, we must show that it consists of all points in the
plane that lie at some fixed distance from a particular center. If the cutting plane happens to pass
through the sphere’s center O, then it is easy to see that the intersection can be characterized as
the set of points in the cutting plane whose distance from O is equal to the radius of the sphere.
That is, the intersection is a circle, as claimed.

If the cutting plane
does not contain O, we
proceed as follows.

Drop a perpendicular
OC to the plane (Claim 2).

Let P and Q be
arbitrary points of the

intersection.
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We know that LOCP = £LOCQ = 7/2, since OC is perpendicular to the plane. We also
know that OP = OQ, since P and Q lie on the sphere. Thus, AOCP = AOCQ, by RASS (TP 10).
From this it follows that CP = CQ. That is, all points of the intersection are equidistant from C.
Calling this common distance », we have shown that all points of the sphere-plane intersection lie
on the circle of radius » whose center is C. It remains only to establish the converse — that every
point on this circle is a point of the sphere-plane intersection.

To this end, let X be any point of the circle (and hence of the plane). Then CX = CP =r,
so AOCX = AOCP by SAS. Hence, OX = OP, which means that X lies on the sphere. That is, X is
part of the sphere-plane intersection. Consequently, the sphere-plane intersection and the circle

are identical, as claimed. [

14) In a spherical triangle, equal angles lie opposite equal sides, and
conversely.

On a sphere, any two non-antipodal points can be joined by a unique great circle.
The two points split “their” great circle into a pair of arcs. We form a spherical triangle
as follows: pick three points on a sphere (no two of which are antipodal), and connect
each pair by the shorter of the two great circle arcs that join them.

TP 14 is the spherical analog for Euclid’s 5™ and 6™ propositions (or TP 8, for
that matter).

Euclid’s proofs for these theorems are in fact valid on the sphere, although we
must be careful: at one point in his proof of 1.5, he uses his ond postulate (a line segment
can be extended indefinitely), which does not hold on the sphere. Luckily, when Euclid
extends the side of a triangle in this proof, it does not matter how small the extension is.
Hence, we can accommodate the extension on the sphere: we always have a little room to
extend the sides of a spherical triangle, since they are always strictly less than half the

circumference of a great circle.

15) Spherical triangles are congruent if they have two sides and their
included angle equal, or one side and its adjacent angles equal.

Although Lobachevski mentions only SAS and ASA here, he uses AAS as well in

his proof of TP 27. This is not a problem since spherical triangles (when defined as in the
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notes to TP 14) admit all the congruence criteria that hold for plane triangles, plus one

additional one: AAA.

Explanations and proofs shall accompany the theorems from now on.

The preliminary material is over. We now begin The Theory of Parallels proper.
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Theory of Parallels 16

In a plane, all lines that emanate from a point can be partitioned
into two classes with respect to a given line in the same plane; namely,
those that cut the given line and those that do not cut it.

The boundary-line separating the classes from one another shall
be called a parallel to the given line.

Lobachevski commences his Theory of Parallels by redefining parallelism. This
is no mere preliminary matter, but a bold decision to alter a definition that had stood
largely unquestioned since ancient times. For a first-time reader, accustomed to the
simplicity of Euclid’s definition of parallels (coplanar non-intersecting lines),
Lobachevski’s replacement will no doubt seem mysterious, if not presumptuous. What
exactly does it mean? Is it permissible to redefine a familiar term? What is wrong with
the classical definition? Why does Lobachevski not simply contrive a new name for his
“boundary-line” relation instead of appropriating the term “parallelism”?

We shall answer all of these questions shortly. For now, let us read Lobachevski’s
description of the geometric configuration that inspired his definition: a configuration

directly related to Euclid’s parallel postulate.

From point A (see H K
the figure), drop the
perpendicular AD to the D’
line BC, and erect the
perpendicular AE upon it. o8
Now, either all of the lines
entering the right angle
£LEAD through A will, like K
AF in the figure, cut DC,
or some of these lines will B D r C
not cut DC, resembling
the perpendicular AE in this respect. The uncertainty as to whether the
perpendicular AE is the only line that fails to cut DC requires us to
suppose it possible that there are still other lines, such as AG, which do
not cut, no matter how far they are extended.

T o ™=
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Radical Caution

Consider the various rays that one can draw from point 4. Let us call such a ray a
“cutting ray” if it intersects ray DC; a “non-cutting ray” if it does not. Since Euclid 1.28
(a neutral theorem) implies that AE is a non-cutting ray, it follows that all rays entering
£D'AE are non-cutting as well. (Proof: To cut DC, such a ray would have to cross AE a
second time, which is impossible by TP 2.) Of the rays entering £ DAE, it is clear that
some will cut DC. Will all of them cut DC?

Euclid’s parallel postulate asserts that they will.

Yet suppose we ignore the postulate for a moment, and consider the question
afresh, in all innocence of geometric tradition. If we choose point X such that LDAX =
89.99999999°, the human eye cannot distinguish AX from AE. Thus, the evidence of our
senses suggests that these two rays will behave similarly: that is, 4X “ought” to be a non-
cutting ray, like its indistinguishable twin, AE.

“Nonsense!” cries a naysayer, “AX is obviously a cutting ray. Its approach toward
DC is so slow that their intersection might not occur in this galaxy, but nonetheless, it is
approaching it, so the rays will eventually meet.”

So it may seem, but is it prudent to presume knowledge of how lines behave over
distances so vast that they dwarf all human experience?

Perhaps it is, at least in certain cases. Is this such a case?

The point here is not that one side is right or wrong, but rather that there is room
for debate. Since a decisive argument would entail proving (or disproving) the parallel
postulate, the debate must continue unresolved ad infinitum, until one side, in
exasperation, ends it at last by formally adopting their own opinion as an article of faith
(a postulate), thus rendering further debate impossible . This was Euclid’s course. Lest I

be misunderstood, let me emphasize that Euclid’s assumption of the parallel postulate

" Cf. Bertrand Russell’s description of his first encounter with Euclid at age eleven: “I had been told that
Euclid proved things, and was much disappointed that he started with axioms. At first I refused to accept
them unless my brother could offer me some reason for doing so, but he said: ‘If you don’t accept them we
cannot go on’, and as I wished to go on, I reluctantly admitted them pro tem.” (Russell, Autobiography, p.
38.)
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should not be taken as a sign of argumentative weakness. Considering the number of
mathematicians throughout two millennia who believed that the parallel postulate could
be proved, Euclid’s insightful recognition that it must be assumed stands as testimony to
his genius. The late 19™-century proof that Euclid’s fifth postulate is not a logical
consequence of his first four vindicated not only Lobachevski, but Euclid as well.

Lobachevski exercised radical caution and restraint with respect to the parallel
postulate. He acknowledged that we do not know whether it holds in physical space; he
suggested that we may never know, expect perhaps through the analysis of future
astronomical measurements; and consequently, since there is room for debate, he
believed that we should not presume the answer. Euclid might, after all, have been
wrong. Instead, we should examine both possibilities, thus preparing ourselves for either
eventuality, should we ever learn the truth.

Accordingly, Lobachevski asks us to consider the possibility that a ray may exist,
which enters < DAE but fails to intersect DC. By tracing the consequences that would
follow, he developed the first non-Euclidean geometry. We begin this long journey with a
simple observation. If there is one such ray, then there will be infinitely many: for if AG
is a non-cutting ray, all rays entering £EAG must also fail to cut DC. We are thus
confronted with a picture of two segregated groups of rays. Lobachevski will describe
this picture next, but rather than cutting (or non-cutting) rays, he refers to cutting (or non-

cutting) /ines. These are simply the lines that contain the rays in question.

At the transition from the cutting lines such as AF to the non-cutting
lines such as AG, one necessarily encounters a parallel to DC. That is,
one will encounter a boundary line AH with the property that all the lines
on one side of it, such as AG, do not cut DC, while all the lines on the
other side of it, such as AF, do cut DC.

There will be one ray that acts as the boundary between those that cut and those

that do not. The boundary ray is a non-cutting ray*, but in contrast to the other non-

" Proof: Suppose, by way of contradiction, that the boundary-ray AH is a cutting ray. Then it cuts DC at
some point X. Choose any point Ke DC to the right of X, and draw the line AK. Since AK lies above the

boundary-line AH, it must be a non-cutting ray, by definition of the boundary-line. However, by its very
construction, we know that 4K cuts DC at K. Contradiction.
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cutting rays, this one admits no “wiggle room”: if we rotate the boundary ray about A4
towards ray DC, then regardless of how minuscule the rotation, it will always intersect

DC, since every ray below the boundary is, by definition, a cutting ray.

According to Lobachevski’s definition, the boundary ray is parallel to DC. (More
accurately, he defines the line containing the boundary ray to be parallel to DC.) We shall

now examine his definition, and consider his reasons for adopting it.

A Deeper Definition

Let AB and CD be two coplanar lines. Euclid calls them parallel if and only if they do not

meet. Lobachevski, however, insists that parallels satisfy a second condition as well.

Lobachevski’s Definition of Parallelism

If AH and DC are coplanar lines, then AH is parallel to DC
(in symbols, AH || DC) if:

1) The lines do not meet, and

2) There is no “wiggle room”.

(That is, every ray AX that enters L HAD intersects DC.)

Important Note: 4H || DC is not equivalent to H4 || CD. In
the former case, line DC is cut by all rays entering £ HAD. In the
latter, the same line is cut by all rays entering £LAHC. It is not
hard to show that if one of these conditions holds, the other

necessarily fails.

This definition takes some time to digest, and it invariably raises questions, some of
which Lobachevski does not answer until TP 25, some of which he does not even address
at all. I shall anticipate some of these questions, provide their answers, and indicate

where Lobachevski gives his own answers.
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1. Lobachevski’s words in TP 16 suggest that D should be the foot of a perpendicular
dropped from A to the second line. Why is this not part of the definition?

I have deliberately omitted it because it is distracting and irrelevant. It is easy to

show that if AH || DC, then AH || XC for any choice of X on the second line, DC.

2. Parallelism is a relation between two lines, but point A seems to play a very special
role in Lobachevski’s definition. This poses a problem: if AH || DC, and P AH, we
should expect that PH || DC, since PH and AH are just different names for the same line.

Is this actually the case?

Yes, it is. (The proofis in TP 17.)
3. Parallelism should be symmetric: AH || DC should imply DC || AH. This is obvious
under Euclid’s old definition of parallelism. Is it still true under Lobachevski’s new
definition?

Yes, it is. (The proof'is in TP 18.)

4. Parallelism should be transitive: if two lines are parallel to a third, then they should

also be parallel to each other. Does this follow from Lobachevski’s definition?

Yes, it does. (The proofis in TP 25.)
5. Lobachevski is supposed to be addressing problems in geometry that have plagued
mathematicians for millennia; by redefining a key term, isn’t he actually avoiding the old

problems, rather than confronting them?

No, he is not; Lobachevski’s definition is a generalization of Euclid’s own. That
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is, in the presence of the parallel postulate, the two definitions are logically equivalent .
Therefore, a traditional geometer, one content to accept the parallel postulate, can raise
no logical objections to Lobachevski’s definition. One may complain that it is unwieldy
or uneconomical, but so long as we retain the parallel postulate, it is just a different way
of saying the same thing; using it is as harmless as doing geometry in Spanish rather than

English: the words have changed, but the theorems and problems remain the same.

6. In that case, why bother with a new definition? After all, Euclid’s is easier to

understand.

For one who does not wish to question the parallel postulate, there is no need to
bother. But for one who adopts Lobachevski’s more cautious stance, the new definition
will prove itself considerably more robust. In the presence of the parallel postulate, the
two definitions are equivalent, but in the wider context of neutral geometry (where we
assume only the first four postulates), Euclid’s definition reveals its weakness: it is not
transitive. For example, Euclid would say that AE and AG (in Lobachevski’s figure) are
both parallel to DC, but he would have to admit that they are not parallel to one another
since they meet at A. In contrast, Lobachevski’s definition of parallelism retains its
transitive, even in the absence of the parallel postulate. (See TP 25.)

To recapitulate - in Euclidean geometry, the two definitions are interchangeable;
in the larger context of neutral geometry, Lobachevski’s definition is superior. It is
therefore a deeper definition: it incorporates the old definition as a special case, while
successfully extending the notion of parallelism to a broader setting. We may consider
ourselves fully justified in using it. One last question, a subtle one, which I have hitherto

sidestepped, remains.

7. Must a parallel exist in Lobachevski’s figure? In other words, must there be a “last”
non-cutting line? Or might the non-cutting lines resemble the positive real numbers,

being bounded below, but without a least member?

" Proof: Since lines satisfying Lobachevski’s definition do not intersect, they obviously satisfy Euclid’s
definition. Conversely, if AH and DC satisfy Euclid’s definition, then L{HAD + £CDA = 180° (by Euclid
1.29); this being the case, the parallel postulate itself rules out the possibility of “wiggle room”, so we may
conclude that AH and DC satisfy Lobachevski’s definition as well.
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We can secure the existence of our parallel as follows.

Every ray AX entering the angle £ EAD corresponds to a real number between 0
and /2 (the radian measure of the angle £XAD) and conversely. The set of real numbers
corresponding to the cutting rays is bounded above by /2, since this number corresponds
to AE, a ray known to be non-cutting. Any bounded set of reals has a least upper bound,
and the ray corresponding to this least upper bound is easily seen to be the boundary

between the cutting and non-cutting lines. Thus, the parallel exists.

Homogeneity and the Angle of Parallelism A
The angle {HAD between the parallel AH and w

the perpendicular AD is called the angle of Pp

parallelism; we shall denote it here by [I(p), H

where p = AD.
p D C

Given any line segment, if we draw two rays from its endpoints such that the first
ray is perpendicular to the segment and the second ray is parallel to the first, then the

13

angle between the second ray and the segment is the segment’s “angle of parallelism”.
Like Euclid, Lobachevski implicitly assumes the homogeneity of space. That is,
he assumes that empty space “looks the same” from every point, and from every
direction”. The plane has no crinkles or other irregularities. An important consequence of
this assumption is that if we take two line segments of the same length to distinct
locations, and then carry out the same set of constructions upon each of them, the
homogeneity of space ensures that the resulting figures are congruent to one another.
Consequently, line segments of the same length will have the same angle of

parallelism, which explains why Lobachevski expresses the angle of parallelism as a

function of length, p.

" Obvious expressions of homogeneity in Euclid’s Elements include the fourth postulate (“all right angles
are equal”) and the use of superposition in the proofs of 1.4 and 1.8 (the SAS and SSS congruence criteria).
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The Path to Imaginary Geometry

If [I(p) is a right angle, then the extension AE" of AE will be parallel
to the extension DB of the line DC. Observing the four right angles
formed at point A by the perpendiculars AE, AD, and their extensions
AE" and AD’, we note that any line emanating from A has the property
that either it or its extension lies in one of the two right angles facing BC.
Consequently, with the exception of the parallel EE', all lines through A
will cut the line BC when sufficiently extended.

Using the ideas in this passage, we can easily demonstrate an important theorem.

Claim 1. The parallel postulate holds if and only if [ [(p) = n/2 for all lengths p.

Proof. =) If the postulate holds, then [[(p) is obviously a right angle for all lengths p.
<) If [1(p) = n/2 for all lengths p, then Lobachevski’s C

words in the preceding passage tell us the following: if / is any G

line and P any point not on it, then there is exactly one line

A B
through P that does not intersect I. This statement, commonly /

known as Playfair’s axiom, implies the parallel postulate, as we shall now demonstrate.

Suppose that two lines, 4B and CD, cut by a transversal EF, as in the figure, such that
AFEB + LEFD < 180°. Draw the unique line GH through E that makes K FEH + LEFD = 180°.
By Euclid 1.28, GH will not intersect CD. By Playfair’s axiom, every other line through E will

intersect CD. In particular, EB will intersect CD. Hence, the parallel postulate holds, as claimed. m

We have suspended judgment on the parallel postulate, but we are approaching a
fork in the road, where we choose one path or the other. On one path, [I(p) is always a
right angle; on the other, it must sometimes be acute (In fact, we shall see that it will
always be acute on the second path). Lobachevski’s policy of radical caution in geometry
dictates that we must explore both paths; after all, either one could turn out to be the
geometry of physical space. For over 2000 years, Euclid’s parallel postulate had acted as
a barricade, directing all traffic toward the first path, which leads to Euclidean geometry
(which Lobachevski called the ordinary geometry). In contrast, the second road leads to
unexplored territory. Since no one had ever mapped it out (apart from some brief

sketches made by unwitting trespassers, such as Saccheri and Lambert), Lobachevski
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devoted his own energies to the task. This second road leads to what he called imaginary

geometry, a term that he will first use at the end of TP 22.

Parallelism has Direction in Imaginary Geometry

If [I(p) < m/2, then the line AK, which lies on the other side of AD
and makes the same angle <DAK = [[(p) with it, will be parallel to the

extension DB of the line DC. Hence, under this hypothesis we must
distinguish directions of parallelism.

This follows from homogeneity of the plane.

Let AD be the perpendicular dropped from a point 4 to a line /. In general, there
will be a line AH that is parallel to / “towards the right” and a second line AK parallel to /
“towards the left”. If [[(AD) is a right angle, then these two parallels will coincide, but if
the angle of parallelism is acute, then the parallels will be distinct.

The existence of a second parallel might seem to contradict my claim that
Lobachevski’s definition of parallelism is transitive: there are now two lines parallel to /,
and they cannot possibly be parallel to one another, since they intersect at 4. This
problem vanishes if we associate a direction with parallelism, in which case transitivity
means that two lines are parallel to a third in the same direction will be parallel to one
another in the same direction. Consequently, the failure of 4K and AH to be parallel is not
a violation of transitivity after all: these two lines are parallel to / in opposite directions. It
is for this reason that Lobachevski is careful to distinguish that while AH is parallel to DC
(i.e. AH is parallel to the line / in the direction indicated by the ray DC), AK is parallel to
DB (i.e. AK is parallel to the line / in the opposite direction as indicated by the ray DB).
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Lobachevski’s Summary

Among the other lines
that enter either of the two H’ K
right angles facing BC,
those lying between the D
parallels (i.e. those within
the angle {HAK = 2[[(p) FE
belong to the class of
cutting-lines. On the other
hand, those that lie K
between either of the
parallels and EE' (i.e. those B D F C
within either of the two
angles {EAH = =n/2 - [l(p)
or LE'AK = n/2 - [](p)) belong, like AG, to the class of non-cutting lines.

Similarly, on the other side of the line EE’, the extensions AH™ and
AK" of AH and AK are parallel to BC; the others are cutting-lines if they
lie in the angle {K'AH', but are non-cutting lines if they lie in either of
the angles AK'AH" or {H AE".

Consequently, under the presupposition that [[(p) = n/2, lines can
only be cutting-lines or parallels. However, if one assumes that
[I(p) < n/2, then one must admit two parallels, one on each side.
Furthermore, among the remaining lines, one must distinguish between
those that cut and those that do not cut. Under either assumption, the
distinguishing mark of parallelism is that the line becomes a cutting line
when subjected to the smallest deviation toward the side where the
parallel lies. Thus, if AH is parallel to DC, then regardless of how small
the angle {HAF may be, the line AF will cut DC.

T o ™=

Having demonstrated that an

CUTTING LINES

acute angle of parallelism implies a
pair of parallels through the point
A, Lobachevski concludes TP 16 by NON-CUTTING 2" NON-CUTTING
reiterating the behavior of the non-

parallel lines through A4, and K

CUTTING LINES

D C

summarizing the results he has

B
obtained so far. In particular, he

draws attention to the fact that when the angle of parallelism is acute, the lines passing

through A fall into three classes. Namely, those intersecting BC, those parallel to BC, and
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those that neither intersect BC nor are parallel to it. Lines of the third type, which do not
exist in Euclidean geometry, are sometimes called ultraparallels or hyperparallels by

%
modern authors .

Problematic Pictures

In geometry, a triangle’s sides are supposed to be perfectly straight, and devoid of
thickness. Triangles drawn with pen and paper can approximate this perfection, but they
cannot actually attain it. In practice, this disturbs no one, for we recognize that our
pictures are simply representations that assist our reasoning about the real triangles (those
inhabiting Plato’s world of ideal forms, as it were).

However, imaginary geometry poses additional problems of representation, which
do trouble beginners. In TP 23, we shall see that imaginary geometry admits line
segments with arbitrarily small angles of parallelism. Suppose that we wish to depict a
segment whose angle of parallelism is 30°, together with rays emanating from its
endpoints, the first of which is perpendicular to the segment, the second of which is
parallel to the first. If we draw this in such a way as to represent the angles accurately, we
will immediately run into a dilemma: the rays, which ought to be parallel, will clearly
meet.

One compromise is to draw the rays very short, so that their intersection will not
actually be depicted on the page. Unfortunately, if we adopt this strategy, we must
constantly remind ourselves, “these lines are supposed to represent parallels, even though
they don’t look parallel at all in the figure.”

A second possible compromise, one that I often employ, preserves the appearance
of non-intersection by sacrificing the appearance of straightness. That is, we draw the
second ray as a curve asymptotic to the first ray. This forces us to bear in mind, “this is a
representation of a straight line, although it doesn’t look straight on the page.” Moreover,
if we represent one line by a curve and the other by a straight segment (in an attempt to

minimize our infelicities), our representation of the plane will immediately appear to

" A potentially misleading designation. The prefixes “ultra” and “hyper” refer in this context only to the
fact that such lines lie “above” the parallels. Words like hypersensitive or ultraconservative might lead one
to suspect that ultraparallels possess all the ordinary characteristics of parallels and then some. This is not
the case. To cite one obvious example, ‘ultraparallelism’ is not a transitive relation.
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have a favored direction — a direction in which “straight lines look straight”. Thus, our
plane’s representation will not look homogeneous, despite the fact that it is homogenous
in reality. We must constantly remember, “there is nothing special about this direction,
despite the drawing.”

The moral of the story is that in imaginary geometry, the relationship between a
geometric figure and its representation on the page is more complex than it is Euclidean
geometry. Provided one keeps this in mind, one quickly becomes accustomed to distorted
representations, and learns to read them comfortably. Do not let such representations
mislead you into thinking that parallels are not straight in imaginary geometry, or that the
plane is not homogenous. The one sacred relation that we shall always depict accurately
is intersection (or lack thereof): lines that do (or do not) intersect one another will
faithfully appear that way on the page. It is to preserve this appearance that we sacrifice
others.

A skeptic might claim, “These very problems of representation indicate that
imaginary geometry is utter nonsense: they arise precisely because the parallel postulate
actually does hold in the physical universe, the space which also includes our paper and
pencils!” This is a thought-provoking claim, but imaginary geometry cannot be disposed
of so easily. We shall soon learn (in TP 23) that although imaginary space is homogenous
(it looks the same at every point), it looks very different at different scales. On a tiny
scale, it resembles Euclidean geometry, and serious deviations become noticeable only on
a large, possibly astronomical, scale. Since similar figures do not exist in imaginary
geometry (see the notes to TP 20), accurate scaled down drawings are impossible. Thus,
if a line segment with a 30° angle of parallelism is several light-years long, then even if
our universe is governed by imaginary geometry, we have no way to depict it accurately
as a three-inch drawing. We would need a piece of paper that would cover much of the

galaxy.
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A Digression on Rigor in Geometry

In the section that I labeled, “The Path to Imaginary Geometry”, we examined a
passage in which Lobachevski considers a pair of perpendicular lines that cross at A.
These lines (which I shall call the horizontal and vertical axes) naturally divide the plane
into four quadrants. Lobachevski asserts that any line through A4 necessarily enters one of
the two lower quadrants below the horizontal axis. This seems so obvious as to render
commentary unnecessary, but I wish to dwell upon it for a moment since it will serve
well to illustrate a profound philosophical shift that overtook the discipline of
mathematics within fifty years of Lobachevski’s death.

For Lobachevski’s assertion to be false, a line would have lie entirely above the
horizontal axis, touching it once at 4, but never actually cutting through to the other side.
In other words, the line would have to be tangent to the horizontal axis. Both Euclid and
Lobachevski would have considered this situation (two straight lines, tangent to one
another at a point) so obviously absurd that a proof of its impossibility would be
superfluous. David Hilbert, in contrast, might have proposed a smug inversion: the only
thing obvious about Lobachevski’s assertion is that if either he or Euclid had tried to
prove it rigorously, they would have found the task impossible*.

Both attitudes are reasonable, according their own philosophies.

Let us begin with Hilbert’s criticism. Hilbert might point out that if the
foundations upon which Euclid based geometry seem capable of supporting such majestic
mathematics as the Pythagorean Theorem and the theory of regular polyhedra, it is only
because they have been unconsciously wedded to intuitive yet logically unjustified ideas
about how lines ought to behave. When examined in the hypercritical mindset that
demands rigorous demonstrations of even the most obvious assertions, one finds that the
Elements, the book venerated for millennia as the pinnacle of human reasoning, is in fact
riddled with logical lacunae. Infamously, one discovers that these gaps begin in the very
first proposition, and continue to accumulate throughout the thirteen books. Viewed in

this harsh unforgiving light, Euclid’s masterwork resembles a stately yet dangerous old

" I am using Hilbert’s name here to represent the work of all those mathematicians who worked on the
foundations of geometry in the late 19™ and early 20" centuries.

36



mansion whose architecture suggests eternal soundness even as its unseen foundations
threaten to crumble away.

To prove Lobachevski’s assertion that any line passing through 4 must actually
cut through the horizontal axis, one must construct a purely logical argument, every
statement of which is grounded in the axioms (no appeals to pictures or intuition!),
demonstrating that on any line through A4, there exists a pair of points separated by the
horizontal axis. That is, one must be able to distinguish between the two regions of the
plane lying to either side of a line.

Hilbert can accomplish this with the “betweenness” axioms~ that he built into his
foundations of geometry. “Betweenness” is one of Hilbert’s undefined concepts, and his
axioms concerning this relation (for example, “if 4 and C are two points on a line, there
exists at least one other point B on the line that lies between 4 and C.”) yield theorems
capable of distinguishing between the two regions into which a line divides a plane; the
interior and exterior of a triangle; and other fundamental concepts that Euclid leaves
entirely to intuition. Since these axioms have no Euclidean analogue (Robin Hartshorne
has accordingly called them “the most striking innovation in this set”"), any attempt to
prove a statement about passing from one region to the other in Euclid’s system is
doomed to failure. Hilbert’s criticism would seem therefore to be valid.

This raises an intriguing question. When Lobachevski made assertions such as the
one singled out above, didn’t he realize that he was relying upon instinct rather than
logic? One would think that he, of all people, would have been acutely sensitive to such
issues; his work in non-Euclidean geometry is itself a profound and extended meditation
upon an axiom.

In fact, Lobachevski contemplated foundational issues deeply and broadly. In his
largest work, New Principles of Geometry with a Complete Theory of Parallels (1835-8),
for example, he endeavored to base all of geometry on the topological concepts of
touching and cutting. In this vein, he proposed that solid bodies, rather than points, are
the true fundamental geometric entities; surfaces, for example, should be understood in

terms of solids, of which they are abstractions; curves arise as sections of surfaces and so

" These derive from the work of Moritz Pasch, whose Vorlesungen iiber neuere Geometrie (1882) was the
first major work devoted to reinforcing the foundations of geometry.
T Hartshorne, pg. 65.
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forth. Leibniz, incidentally, was of the same opinion. Both Hilbert and Lobachevski
devoted much attention to foundations, but motivated by distinct philosophies, they

followed quite different paths of inquiry.

For Lobachevski, and Lobachevski’s age, geometry was still the study of forms
occurring in the physical universe, or abstractions thereof. According to this view, the
axioms of geometry must be basic self-evident truths. In turn, theorems deduced from
these axioms reveal aspects of physical reality not directly evident to the senses, yet
irrefutable all the same, since they derive wholly from immaculate sources — a set of self-
evident axioms and the pure methods of logical deduction. Naturally, when one conceives
of geometry this way, the proper choice of axioms is crucial. An axiom asserting a
statement contrary to the true nature of space would seriously compromise geometry’s
accuracy as physical description.

Euclid’s parallel postulate, Lobachevski suspected, might be such an axiom. As
discussed earlier, one cannot verify it in a physical setting. Imagine two drawings: one of
a transversal cutting a pair of lines so that the angles it makes with them on one side add
up to 179.999999°, the other drawing depicting the same situation except that the angles
add up to 180°. The human eye cannot distinguish such small differences. We can prove
(via the first four of Euclid’s postulates) that the lines in the second drawing will never
meet. If the lines of the first drawing, indistinguishable from those of the second,
somehow manage to intersect, this should come as a great surprise to us, as an instance of
physical reality contradicting the evidence of the senses. Such surprises can be delightful
when deduced as theorems, but as axioms, they are dubious indeed.

Lobachevski never claimed that the parallel postulate does not hold in reality,
only that we do not know for certain whether it does. The difficulty stems from the fact
that the parallel postulate makes assertions about intersections that occur at indefinite,
possibly unfathomable distances. Even with eyesight sufficiently sharp to distinguish
between the two drawings in the thought experiment above and even to observe the lines
in the first drawing coming closer together, we would remain unable to verify an eventual
intersection, which, if it does occur, might happen millions of light-years away. Bound as

we are to an insubstantially small portion of the universe, such large-scale phenomena
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defeat our powers of observation, and therefore we must exercise caution in making
statements about them.

By way of contrast, let us reconsider the assertion that intersecting lines must
actually cross one another. This statement concerns only the small-scale, local behavior
of lines in the immediate vicinity of a specific point. Indefinite distances are not involved.
Our physical experience with straight lines, whether drawn by hand or occurring in
nature, leaves us with no doubt that this assertion is true. Consequently, Lobachevski’s
omission of a proof is, according to his philosophy, of trifling significance. Had someone
specifically questioned him about this, he almost certainly would have acknowledged the
existence of a gap in the structure of his argument. He would have been justified all the
same in dismissing this gap as innocuous and his questioner as pedantic. Lines, in
Lobachevski’s mind, were forms with definite intrinsic properties. If the axioms of
geometry failed to capture those properties, the fault lay with the axioms. An obvious fact

that eludes proof remains a fact nonetheless.

While Lobachevski’s work drew inspiration from the relationship of mathematics
to the natural world, a major impetus for rebuilding the foundations in the years around
1900 was Lobachevski’s own discovery, non-Euclidean geometry. Mathematicians were
forced to proceed with unusual care while learning or developing this new subject,
exercising caution not to inadvertently use a theorem that relied upon the parallel
postulate. With their critical attention heightened out of necessity, many mathematicians
began to pay more attention to the little holes in the foundations that they had previously
ignored, and they noted with some alarm the existence of more holes than they had
suspected. The efforts to repair, if not rebuild, the foundations began shortly thereafter.
The mathematicians who led these efforts emphasized that, if geometry is to be a truly
deductive science, one must be able to trace any geometric theorem back to the axioms
using logic alone. Intuition may be useful as a guide, but it may never substitute for logic.
Physical reality might suggest the axioms, but once they are decided upon, appeals to
physical forms are inadmissible in a rigorous proof. Hilbert insisted that the lines of
geometry have no platonic existence, and thus have no intrinsic properties other than

those with which the axioms endowed them.
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Consequently, many of Lobachevski’s arguments cannot stand up to Hilbertian
criticism. This does not render them invalid. Indeed, not one of his theorems collapses
under the strain of the newly imposed rigor, even if their proofs can be improved by
erecting them over Hilbert’s new airtight foundations. For this reason (coupled with the
fact that geometric proofs that leave nothing to the imagination tend to be quite long and
somewhat repellent), I shall not dwell overmuch upon Hilbert’s foundations in these

pages except where they convey extra insight into Lobachevski’s mathematics.

Violets in Spring
“...many things have an epoch in which they are found at the same time in several places, just as violets
appear on every side in spring.”

- Farkas Bolyai.

Lobachevski, Gauss, and Bolyai independently redefined parallelism essentially
the same way, at approximately the same time. Gauss confided few of his ideas on non-
Euclidean geometry to paper, and made none of them public, but two brief memoranda
containing his definition of parallels along with a few relevant theorems (including a
proof of the transitivity of parallelism) were found among his personal papers after his
death in 1855. These were published posthumously in his complete works .

Bolyai defines parallelism in the first sentence of §1 of his Appendix. More
accurately, Bolyai defines the relation that Lobachevski and Gauss call “parallelism”;
surprisingly, he does not actually use the word himself. His definition reads, “If a ray AM
is not cut by a ray BN, situated in the same plane, but is cut by every ray BP in the angle
AABN, this is designated by BN ||| AM.”" This definition, which is clearly equivalent to
(and, it must be admitted, stated more concisely than) Lobachevski’s, was apparently first
suggested to Bolyai by Carl Szasz, a friend from his years (1817-22) at the Royal College

for Engineers in Vienna, with whom Bolyai had frequently discussed geometry.jt

" Gauss, pp. 202-209. A detailed exposition (in English) of Gauss’ notes on the definition of parallelism can
be found in Bonola, pp. 67-75.

¥ Halsted inserts the phrase, “we will call ray BN parallel to ray AM” into his translation; it does not occur
in Bolyai’s original Latin.

' Gray, Janos Bolyai, p. 50.
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Theory of Parallels 17

A straight line retains the distinguishing mark of parallelism at all its
points.

In TP 17, Lobachevski proves that his new sense of parallelism* is well defined.

Recall that 4B || CD only if AB admits no wiggle room about 4. (i.e. 4B must
exhibit the “mark of parallelism” at 4.) Since 4 has no particular significance among the
infinitely many points on line 4B, its conspicuous presence in the definition of
parallelism is disconcerting. To set our minds at ease, Lobachevski demonstrates that 4’s
ostensibly special role is an illusion: he proves that if the line exhibits the mark of
parallelism (lack of wiggle room) at any one of its points, then it will exhibit the mark at

all of its points. Therefore, parallelism does not depend upon any particular point.

Let AB be parallel to CD, with AC perpendicular to the latter. We
shall examine two points, one chosen arbitrarily from the line AB and
one chosen arbitrarily from its extension beyond the perpendicular.

Lobachevski’s proof requires two cases. Assuming that AB || CD, he first shows
that EB || CD, where E is an arbitrary point of ray 4B; he then shows that £'B || CD,

where E' is an arbitrarily point chosen from the rest of line 4B.

First Case (and Interlude with Pasch)

Let E be a point on that side
of the perpendicular in which AB is E
parallel to BC. From E, drop a i
perpendicular EK to CD, and draw
any line EF lying within the angle F
£BEK. Draw the line through the
points A and F. Its extension must
intersect CD (by TP 16) at some
point G. This produces a triangle
AACG, which is pierced by the line
EF. This line, by construction,
cannot intersect AC; nor can it intersect AG or EK a second time (TP 2).
Hence, it must meet CD at some point H (by TP 3).

C K H G D

" See the section, “A Deeper Definition” in the notes to TP 16 (pp. 27-30).
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The idea behind the first case is straightforward, although it may be worth noting
that the coup de grace - Lobachevski’s claim that EF’ must exit AACG through side CG,
is another example of an intuitively obvious statement that cannot be rigorously justified
on the basis of Euclid’s axioms. Hilbert would justify this claim by appealing to one of
his betweenness axioms, known today as Pasch’s axiom. Pasch’s axiom asserts that if a
line intersects one side of a triangle, but does not pass through any of its vertices, it will
intersect one (and only one) of the other sides as well .

Where Hilbert would call on Pasch’s axiom, Lobachevski invokes his own TP 3, a
very general “what-goes-in-must-come-out” theorem, applicable not only to lines
piercing triangles, but also to lines piercing any bounded region. It cannot be proved as a
theorem using Euclid’s foundations, and thus, strictly speaking, should be considered an
axiom in Lobachevski’s development of geometry.

Since TP 3 deals with arbitrary bounded regions, as opposed to mere triangles, it
may appear to be much stronger than Pasch’s axiom. However, in the specific case of
triangles, it is actually the weaker of the two, inasmuch as it provides no detail as to
where the line will exit the triangle. To demonstrate this weakness, we shall review the
last two steps of the proof above and compare how Hilbert and Lobachevski would
justify them. In doing so, we shall see that TP 3 is not quite powerful enough to establish
the intersection of EF and CD.

The steps are as follows: 1. Line EF enters triangle AACG, so it must exit the
triangle as well. 2. Since it cannot leave through either side AC or side 4G, it must pass
through CG. (Lobachevski’s comment that it cannot intersect EK a second time is true,
but superfluous as far as the proof is concerned.)

Both Hilbert and Lobachevski can justify step one with an axiom (Pasch’s axiom
or TP3 respectively).

As for step two, Hilbert has the upper hand. Since EF intersects side AG, Pasch’s
axiom asserts that it must cut either AC or CG on its way out of the triangle. Hilbert can
easily demonstrate that EF’ cannot intersect AC (although this takes a little work when

arguing from first principles), and may therefore conclude that it passes through CG as

"From this axiom and some very basic results, one can prove the related crossbar theorem: if a line enters
the interior of a triangle through one of its vertices, it must exit through the opposite side. Together,
Pasch’s axiom and the crossbar theorem guarantee that if a line enters the interior of the triangle, it must
also leave it.
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claimed. Lobachevski, on the other hand, runs into several problems. To cite just one
example, the possibility that EF might exit the triangle through AG (the same side
through which it entered) is not ruled out by TP 3, so Lobachevski must prove this. In an
attempt to do so, he invokes TP 2. This almost works, but a tiny hole remains in his
demonstration -- TP 2 does rule out the possibility that £F might leave AG via the same
point through which it entered. Absurd as this possibility sounds, Lobachevski lacks the
logical apparatus to expose it as such. If pressed, he might appeal to the enigmatic TP 1,
which, as we have argued in the notes to that proposition, amounts to an article of faith
that certain behavior, such as self-intersection, is “repugnant to the nature of a straight

line” and consequently, need not be considered at all.

Second Case

Now let E’' be a point on
the extension of AB, and drop
a perpendicular E'K’' to the
extension of the line CD.
Draw any line E'F' with the
angle {AE'F’ small enough to
cut AC at some point F". At
the same angle of inclination
towards AB, draw a line AF; '
its extension will intersect CD , , D
(by TP 16) at some point G. B ¢ ¢ G
This construction produces a triangle AAGC, which is pierced by the
extension of line E'F’. This line can neither cut AC a second time, nor can
it cut AG, since £BAG = 4(BE'G’ (by TP 7). Thus, it must meet CD at some
point G'.

The second case involves an argument similar to that used in the first, though
slightly more involved. We want to prove that E'B || CD, so according to our definition of
parallelism, we must show that all rays entering angle £ BE'C must intersect CD. All such
rays cut AC (apply the crossbar theorem, which mentioned in the last footnote, to
AAE'C), so when Lobachevski restricts his attention to those rays that cut AC, there is no

loss of generality.

43



Therefore, regardless of which points E and E’ the lines EF and E'F’
emanate from, and regardless of how little these lines deviate from AB,
they will always cut CD, the line to which AB is parallel.

By demonstrating that the mark of parallelism propagates throughout the entire
line once it appears at any one point, TP 17 confirms that parallelism is a relation strictly

between lines, without dependence upon an intermediary point.

Bolyai, Gauss, and What Might Have Been

As mentioned in the notes following TP 16, Bolyai’s definition of parallelism (§1 of his
Appendix) is expressed in the language of rays: If a ray CD is not cut by a ray AB, but is
cut by every ray AP in the angle £BAC, Bolyai defines 4B to be parallel to CD. In §2, he
proves that parallelism between rays depends only upon their directions, not their initial
points. This is, of course, analogous to Lobachevski’s TP 17, and Bolyai’s proof is
essentially identical to the proof we have just examined.

Gauss also works with rays. His proof is identical to Bolyai’s, although his
writing is considerably more lucid. Indeed, Gauss’ few surviving personal memoranda on
non-Euclidean geometry are notable for their clarity of exposition. He had intended to
compose, though probably never to publish, a full treatise on non-Euclidean geometry, as
a means of ensuring that an account of this subject would survive him. After reading
Bolyai’s Appendix, however, he considered himself released from this burden. The world
might be richer today had Gauss never read the works of Bolyai and Lobachevski. We
would possess not only a beautiful Gaussian treatise on non-Euclidean geometry, but

perhaps more geometric works of an undiscouraged Janos Bolyai as well.
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Theory of Parallels 18

Two parallel lines are always mutually parallel.

Lobachevski is going to show that parallelism is a symmetric relation: given
AB || CD, he will prove that CD || AB. To do so, he must verify that every ray CE
entering £ DCA intersects AB. Clever though his proof is, Lobachevski’s obscures his
geometric artistry under murky exposition. Accordingly, I shall follow his proof with an

alternate explanation of my own.

A
Let AC be perpendicular to CD, a

line to which AB is parallel. From C, draw
any line CE making an acute angle {ECD
with CD. From A, drop the perpendicular B
AF to CE. This produces a right triangle E
AACF, in which the hypotenuse AC is
greater than the side AF (TP 9).

If we make AG = AF and lay AF G L it
upon AG, the lines AB and FE will assume D
positions AK and GH in such a way that C K
£BAK = (FAC. Consequently, AK must intersect the line DC at some
point K (TP 16), giving rise to a triangle AAKC. The perpendicular GH
within this triangle must meet the line AK at some point L (TP 3).
Measured along AB from A, the distance AL determines the intersection
point of the lines AB and CE.

Therefore, CE will always intersect AB, regardless of how small the
angle {ECD may be. Hence, CD is parallel to AB (TP 16).

The lIdea Behind the Proof

The best way to understand Lobachevski’s proof is to imagine that we have two
identical (i.e. congruent) copies of the figure ABCDEF, the first drawn on an opaque
piece of paper, the second on a transparent sheet of plastic. To distinguish the two, we
shall put primes on the letters of the second copy. Lay the transparent sheet on top of the
opaque one so that the two figures coincide point for point, as in the first figure below.

Keeping the bottom sheet fixed, rotate the top one about 4 until A'F' lies on AC,
as in the second figure. By the definition of parallelism, 4'B" must cut CD, (4B || CD and
ray A'B' enters £BAC). Yet in order to cut CD, ray A'B" must first intersect C'E". That is,
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C'E' and A'B' are intersecting lines in figure A'B'C'D'E'F". Hence, the corresponding lines
on the congruent figure ABCDEF also intersect one another. Namely, CE intersects 4B,

which was to be shown.

A=A’
B=B’
E=F’
F=F’ ,
Cc=C’ D=D’

Last Thoughts on TP 18

If one insists on Hilbertian rigor, one must either produce a rigorous definition of
rotation and prove that this operation possesses all the properties that we expect of it”, or
one must abandon the ill-defined procedure of “laying upon,” and construct a proof more
rigorous, though inevitably less direct, than Lobachevski’s. Gauss’ memoirs contain a
proof along such lines; it is clever, meticulous, not particularly transparent, and involves
two cases. Bolyai, for his part, establishes the symmetry of parallelism in §5 of the
Appendix with a superposition argument, which depends, in turn, upon a pair of lemmas
(83 and §4). Of the three proofs, Gauss’ comes closest to Hilbert’s standards of rigor, but

Lobachevski’s is by far the most elegant.

" This can be done. See, for example, Ch. 9 of Greenberg.
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Theory of Parallels 19

In a rectilinear triangle, the sum of the three angles cannot exceed two
right angles.

Angle Sum and the Parallel Postulate

In proposition 1.32 of the Elements, Euclid demonstrates that the angle sum of
every triangle is m. It was well-known Lobachevski’s day that this theorem is logically
equivalent to the parallel postulate. In fact, the equivalence of the two statements was
such common knowledge that Lobachevski apparently felt no need to prove it, or even to

mention it explicitly, in The Theory of Parallels. It is not a hard equivalence to establish.

Claim 1. Given Euclid’s first four postulates, the parallel postulate holds if and only if the sum of

the angles in every triangle is m.

Proof. =) Euclid .32.

<) Assuming that every triangle has an angle sum of m, we shall prove that Playfair’s
axiom holds.

Let / be a line, and P be a

point not on it. From P, drop the

perpendicular PQ to [ and R’ R
construct R'R  through P
perpendicular to PQ. R'R does
not intersect /, by Euclid 1.28. We S

shall show that every other line [ u

through P does intersect /, and Q
thus establish Playfair’s axiom.

To this end, let m be any other line through P. Clearly, m enters either L QPR' or LQPR.
We will assume without loss of generality that the latter occurs. Let S be any point on the portion
of m lying within £ QPR. Let T be any point on / such that { QTP < £SPR."

" It sounds reasonable that there should be such a point, but this requires proof. Like the parallel postulate,
the statement that 7 exists is an assertion that something will happen at an indefinitely large distance. We
can prove that 7T exists; Lobachevski does this in TP 21. Skeptical readers may turn there immediately for a
proof, which employs none of the intervening results.
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By hypothesis, the right triangle APQT has angle sum ©t. Thus, L QTP is the complement
of LTPQ. Since £TPR is also the complement of £ TPQ, it follows that LTPR = L QTP < £SPR,
which implies that PS enters triangle APQT through vertex P. What goes in must come out, and
PS must intersect QT by the crossbar theorem. Hence, m intersects /, as claimed.

This establishes Playfair’s axiom, which, in turn, implies the parallel postulate (see the

proof of Claim 1 in the notes on TP 16). L]

This raises the question as to what, if anything, we may say about a triangle’s
angle sum without invoking the parallel postulate. Euclid provides a partial answer. In
Elements 1.17 (a neutral theorem), he demonstrates that any pair of angles in any triangle
sums to less than m. From this, we can easily obtain a neutral result on angle sum: the
angle sum of any triangle must be strictly less than (3/2)1".

Lobachevski sharpens the upper bound in TP 19, proving that in neutral geometry,
the angle sum can never exceed m. This is the sharpest possible bound on angle sum,
since we can actually attain the value © by assuming the parallel postulate along with the
neutral axioms.

The proof proceeds by reductio ad absurdum. We shall assume the existence of a
triangle with angle sum © + a, where a is some positive real number, and reason to a

contradiction.

The Siphon Construction

Suppose that the sum of the three angles in a triangle is n+a.
Bisect the smallest side BC at D, draw the line AD, make its
extension DE equal to AD, and
draw the straight line EC. In the
congruent triangles AADB and
ACDE (TP 16 and TP 10), we
have {ABD = (DCE and «£BAD D
= A(DEC. From this, it follows
that the sum of the three angles
in AACE must also be n+a. We
note additionally that {BAC, the A C

B E

" Proof: In an arbitrary triangle, label the largest angle o, the middle angle /8, and the smallest angle y. By
1.17, we know that f < 7 - a. We also know that y < w/2 (if not, then  + y >y + y > &, contrary to 1.17).
Thus, o + f +y<[a + (7 - @) + ©/2] = (3/2)m, as claimed.
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smallest angle of AABC (TP 9), has been split into two parts of the new
triangle AACE; namely, the angles K<EAC and {AEC.

From the original triangle, A4ABC, Lobachevski produces a second, AACE. The
construction acts a kind of siphoning process on the original triangle: it empties the
content of its two largest angles (those at B and C) into a single angle of AACE (the one
at C), and drains the content of its smallest angle ({BAC) into the two remaining angles
of AACE (those at 4 and E). The resulting triangle has the same angle sum (1 + o) as the
original triangle, but comprised of one conspicuously large angle and two very small
angles. In particular, AACE’s smallest angle must be less than or equal to (£BAC)/2.
(Proof: If not, then the sum of AACE’s two small angles would exceed £BAC,
contradicting the siphon construction, which dictates that their sum will equal £BAC.)

To recapitulate, the siphon construction produces a new triangle from an old one:
in doing so, it preserves the original’s angle sum, but reduces its smallest angle to less

than (or equal to) half of its original size.

The Siphon Iterated : The Proof Concluded

Continuing in this manner, always bisecting the side lying opposite
the smallest angle, we eventually obtain a triangle in which n+a is the
sum of the three angles, two of which are smaller than a/2 in absolute
magnitude. Since the third angle cannot exceed n, a must be either zero
or negative.

B E

We may streamline Lobachevski’s argument by invoking Euclid 1.17 as follows.

We began with AABC, a triangle whose smallest angle is {BCE. Applying the
siphon construction, we produced AACE, whose smallest angle is at most ({BCE)/2. If
we iterate the siphon n times, we will obtain a triangle whose smallest angle is at most

(£BCE)/2". We can force this value to be as small as we like by taking n sufficiently
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large. In particular, we can iterate the procedure until we produce a triangle whose
smallest angle is strictly less than a. Since the siphon preserves angle sum, this last
triangle will have the same angle sum as the first: © + a. Consequently, the sum of its two
remaining angles must exceed m, contradicting Euclid I.17. Having reached a
contradiction, we conclude that a triangle’s angle sum cannot exceed m in neutral
geometry, as claimed.

The theorem we have just examined is usually called the Saccheri-Legendre

theorem, for reasons we shall now explain.

Legendre
“It even seems to me that Legendre entered many times on the same path that I have succeeded in
traversing. But his prejudices in favor of the ideas generally received until then have, without doubt, always
led him to stop at conclusions which would not be admissible in the new theory.”
- Lobachevski®

The wonderful “siphon” proof was actually discovered by Legendre, for whom it
represented but one half of a much grander achievement. The siphon proof shows that the
angle sum of a triangle cannot exceed m. In several editions of his Eléments de
Géomeétrie, Legendre followed this proof with a disturbingly convincing demonstration
that the angle sum of a triangle cannot fall short of & either. Concluding that angle sum
must therefore equal nt, Legendre claimed that he had proved the parallel postulate.

Regarding Legendre’s faulty proof, Jeremy Gray has written, “In spotting the flaw
you will discover more about the alien nature of non-Euclidean geometry than by

following any texts.”” I agree, and accordingly reproduce Legendre’s proof (in the

translation from Laubenbacher & Pengelley) for the reader’s edification.

" Lobachevski, New Principles of Geometry, pp. 5-6.
¥ Gray, Ideas of Space, pg. 81.
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In any triangle, the sum of the three angles is equal to two right angles.

Having already proved that the sum of the three angles of the triangle
cannot exceed two right angles, it remains to prove that the same sum cannot be
smaller than two right angles.

Let ABC be the proposed triangle, and let, if possible, the sum of its
angles = 2P — Z, where P denotes a right angle, and Z is whatever quantity by
which one supposes the angle sum is less than two right angles.

Let A4 be the
smallest of the angles in
triangle ABC, on the
opposite side BC make the
angle BCD = ABC, and the
angle CBD = ACB; the
triangles BCD, ABC will
be equal, by having an ;
equal side BC adjacent to
two corresponding equal ;
angles. Through the point
D draw any straight line
EF that meets the two ——
extended sides of angle A F C A
in £ and F.

Because the sum of the angles of each of the triangles ABC, BCD is 2P —
Z, and that of each of the triangles £BD, DCF cannot exceed 2P, it follows that
the sum of the angles of the four triangles ABD, BCD, EBD, DCF does not
exceed 4P — 2Z + 4P, or 8P — 2Z. If from this sum one subtracts those of the
angles at B, C, D, which is 6P, because the sum of the angles formed that each of
the points B, C, D is 2P, the remainder will equal the sum of the areas of triangle
AEF:; therefore the sum of the angles of triangle AEF does not exceed 8P — 27 —
6P, or 2P — 2Z. Thus while it is necessary to add Z to this sum of the angles in
triangle ABC in order to make to right angles, it is necessary to add at least 2Z to
the sum of the angles of triangle AEF in order to likewise make two right angles.

By means of the triangle AEF one constructs in like manner a third
triangle, such that it will be necessary to add at least 4Z to the sum of its three
angles in order for the whole to equal two right angles; and by means of the third
one constructs similarly a fourth, to which it will be necessary to add at least 8Z
to the sum of its angles, in order for the whole to equal two right angles, and so
forth.

Now, no matter how small Z is in relation to the right angle P, the
sequence Z, 2Z, 4Z, 8Z, etc., in which the terms increase by a doubling ratio,
leads before long to a term equal to 2P or greater than 2P. One will consequently
then reach a triangle to which it will be necessary to add to the sum of its angles a
quantity equal to or greater than 2P, in order for the total sum to be just 2P. This
consequence is obviously absurd; therefore the hypothesis with which one started
cannot manage to continue to exist, that is, it is impossible that the sum of the
angles of triangle ABC is less than two right angles; it cannot be greater by virtue
of the preceding proposition; thus it is equal to two right angles.
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The flaw occurs early, when Legendre asks his reader to draw a straight line
through D meeting the two sides of the angle. This sounds innocent enough, but the
statement, “through any point in the interior of an angle, a line may be drawn intersecting
both rays of the angle” turns out to be logically equivalent to the parallel postulate. Thus,
Legendre’s argument begs the question, unconsciously assuming that which he claims to

prove.

Claim 2. Given Euclid’s first four postulates, the parallel postulate holds if and only if
“Legendre’s assertion” holds. (“Legendre’s assertion”: through any point in the interior of an

angle whose measure is less than 7, a line may be drawn intersecting both rays of the angle.)

Proof.

<) Legendre’s flawed proof demonstrates that “Legendre’s assertion” implies that the
sum of the angles in any triangle equals two right angles, which in turn, implies the parallel
postulate (by Claim 1).

=) Suppose the parallel postulate holds. Given an angle £LABC, we let @ be its measure,
and D be an arbitrary point in its interior. On ray BA,
choose any point E such that {DEB <t - 6 ~. Draw ¢
line ED. Since lines BC and ED meet BE at angles
whose sum is (£ABC + ADEB) < (0 + (n - 0)) = =,

the parallel postulate implies that these lines will

#
v

intersect one another. Thus, £D is a line through D - A
that cuts both rays of angle £ABC. Hence,

“Legendre’s assertion” holds. =

Interestingly, Legendre was not the first to base an alleged proof of the parallel
postulate on “Legendre’s assertion”. In the early 9" century, Abbas ibn Sa’id al-Jawhari
based his own flawed proof of the postulate upon “Legendre’s assertion”. Unlike
Legendre, al-JawharT provided a proof of this assertion, but this second proof relied upon
yet another statement equivalent to the parallel postulate: parallel lines are everywhere
equidistant. To his credit, al-Jawhari tried to prove this as well, but it was in this third

proof that he made what Rosenfeld characterized as a “crude logical error” .

" As mentioned in an earlier footnote, Lobachevski proves in TP 21 that this can be done in neutral
geometry.
T Rosenfeld, p. 49.
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Before moving on to Saccheri, it is worth mentioning that Legendre actually
discovered two different proofs that the angle sum cannot exceed m, of which the siphon
argument was the second . Finally, one may find the siphon construction, though used to
different effect, in Euclid’s proof of the exterior angle theorem (Elements 1.16).
Presumably, the close attention that Legendre paid to Euclid while preparing his own

Eléments gave him the idea for his siphon argument.

Saccheri
“It is manifest to all geometers that the hypothesis of the right angle alone is true.” — Saccheri '

Of all the attempts to prove the parallel postulate, the most heroic - if ultimately Quixotic
- was the glorious effort of Gerolamo Saccheri (1667-1733). He was a Jesuit priest, a
professor of mathematics and philosophy at the University of Pavia, and most
significantly for us, he was the author of Euclides ab Omni Naevo Vindicatus (Euclid
Freed of Every Flaw), which he published in the last year of his life.

In accordance with long-standing custom among postulate provers, Saccheri
commences his book with a eulogy for Euclid’s Elements and a concomitant
acknowledgment of the few minor imperfections of that masterpiece:

No one who has learned mathematics can fail to be aware of the
extraordinary merit of Euclid’s Elements. I call as expert witnesses Archimedes,
Apollonius, Theodosius, and the almost innumerable other writers on
mathematics up to the present who make use of Euclid’s Elements as a long
established and unshakable foundation. But this great prestige of the Elements
has not prevented many ancient as well as modern geometers, including many of
the most distinguished, from claiming that they have found certain blemishes in

this beautiful work, which cannot be too highly praised. Three such blemishes
have been cited, which I now give.i

Not surprisingly, the first and most significant blemish in Saccheri’s list is the existence
of the parallel postulate as such; he devotes the entire first part of his book to removing
this first blemish, by proving the postulate as a theorem. (The other blemishes concern

definitions in the theory of proportions, which need not concern us here.)

" A translation of the first proof, somewhat lengthier than the siphon argument, but clever in its own right,
is in Laubenbacher & Pengelley, pp. 27-28. A “retelling” of this first proof is in Bonola, pp. 55-56.

T Saccheri, p. 61.

' Saccheri, p. 245.
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Saccheri’s purported proof of the postulate was surely the longest ever penned.
Covering over 100 pages, it comprises 39 propositions, 5 lemmas, 23 corollaries, and 19
scholia. Its great length was largely a product of Saccheri’s unusual strategy. The point of
departure for his work is a simple figure, which one constructs as follows: from the
endpoints of a line segment AB, erect perpendiculars AC and BD of the same length, and
join their endpoints. The resulting figure is known today as a “Saccheri quadrilateral”.
Saccheri proves that its remote angles (those at C and D) must be equal to one another.
He also proves that all Saccheri quadrilaterals throughout the plane must exhibit a certain
uniformity: if one has right remote angles, then all will; if one has obtuse remote angles,
then all will; and if one has acute remote angles, then all will. He calls these possibilities
the hypothesis of the right angle (HRA), hypothesis of the obtuse angle (HOA), and
hypothesis of the acute angle (HAA) respectively.

The parallel postulate is equivalent to the HRA. Thus, to prove it, Saccheri sought
to demonstrate that the HOA and HAA both lead to logical absurdities. Initially, his plan
appears feasible; he successfully explodes the HOA in his 14 proposition and celebrates
this first victory in zesty Latin® before commencing “a lengthy battle against the
hypothesis of the acute angle, which alone opposes the truth...”". He thus assumes the
HAA, fully intending to drive it toward its own destruction as well. This attempt led him
through a lengthy sequence of deductions; his increasingly strange results seemed to
contradict experience without actually contradicting logic. Recognizing that this was
insufficient for his purposes, Saccheri had no choice but to plunge still deeper into the
world of the HAA in quest of logical absurdity.

Saccheri’s desperate quest was doomed to fail: with hindsight, we know that the
HAA does not lead to a contradiction. The strange propositions that Saccheri established
under his HAA fever-dream were not, as he had fancied, mere hallucinatory stepping-
stones that would lead him to a logical contradiction, but rather, honest theorems of
imaginary geometry, which Lobachevski would rediscover a century later. Saccheri

beheld a new world, but failed to recognize it.

" “Hypothesis anguli obtusi est absolute falsa, quia se ipsam destruit.”

(“The hypothesis of the obtuse angle is absolutely false, because it destroys itself.”) Saccheri, p.61.
T g,

ibid. p.13.
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Indeed, he finally deluded himself into claiming victory over the HAA. The
ostensible contradiction that prompted this was so patently bogus that Saccheri, whose
logical acumen was otherwise profound, must have accepted it out of sheer mental
exhaustion. One cannot help wishing that he had lived a little longer to reconsider his
overhasty conclusion. Though he lost his battle with the HAA, he became, in waging it,
the first person in history to make sustained, if unwitting, contact with non-Euclidean

geometry.

The Saccheri-Legendre theorem was called Legendre’s first theorem until the
early 20" century . Although Saccheri’s Euclides ab Omni Naevo Vindicatus seems to
have captured the interest of mathematicians at the time of its publication in 1733, it had
long since sunk into oblivion by Legendre’s day. It was rediscovered in 1889 by Eugenio
Beltrami, who introduced it to a generation of mathematicians able to appreciate
Saccheri’s unsuspecting incursion into the world of non-Euclidean geometry*. Within the
pages of Saccheri’s treatise, these late 19th-century mathematicians discovered a proof of
“Legendre’s first theorem” that antedated Legendre’s own by the better part of a century.

Saccheri’s proof is as follows. In his 15™ proposition, he demonstrates that HAA,
HRA, and HOA, lead respectively to systems in which a triangle’s angle sum is always
less than m, always equal to m, or always greater than m. Combining this with his
destruction of the HOA, Saccheri establishes the theorem that now bears his (hyphenated)

name.

Euclid’s Second Postulate

Euclid’s second postulate (“To produce a finite straight line continuously in a straight

line” in Heath’s translation) is generally taken as an assertion that the plane is

" E.g. Hilbert p. 35. Writing in 1906, Bonola (p.56) notes, “This theorem is usually, but mistakenly, called
Legendre’s First Theorem.”

T Coolidge, p. 70. Coolidge bases this claim upon a 1903 article (written in Italian) by Corrado Segre on
the influence of Saccheri upon subsequent writers concerned with the parallel postulate.

! There is some irony in the fact that Beltrami, who revived the long-lost work and name of Saccheri, also
demonstrated that imaginary geometry (the HAA) is as consistent as Euclidean geometry (the HRA), thus
proving definitively that Saccheri’s quest was hopeless.
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unbounded; line segments can be extended indefinitely. The proof of the Saccheri-
Legendre theorem depends crucially upon this fact, since, in carrying out the siphon
construction, we require the ability to extend a segment to twice its length. In spherical
geometry, where Euclid’s second postulate does not hold (great circles, the “lines” of a
sphere, have finite length, thus limiting the amount by which a segment can be extended),
our proof of the Saccheri-Legendre theorem is no longer valid. This should not be

surprising, as the sum of any spherical triangle’s angles is, in fact, always greater than m.
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Theory of Parallels 20

If the sum of the three angles in one rectilinear triangle is equal to two right
angles, the same is true for every other triangle.

All for One and One for All

This proposition, like the previous one, played an important role in Legendre’s
purported proofs of the parallel postulate. It is sometimes called Legendre’s second
theorem, but a pleasantly literary alternative, The Three Musketeers Theorem', has
gained favor in recent years. Whatever its name, Legendre was not the first to prove it.
Saccheri preceded him once again. Nonetheless, Legendre’s proof, which Lobachevski
largely follows, is particularly elegant. The enormous popularity of Legendre’s Eléments
was due, in no small measure, to his artful proofs, which seem even to invite names: we
have seen his “siphon construction” in TP 19, and we will now examine his “domino

proof” of the Three Musketeers Theorem, as retold by Lobachevski.

If a Triangle with Angle Sum = Exists,
Then a Right Triangle with Angle Sum & EXists.

If we suppose that the sum of the three

angles in triangle AABC is equal to =, then at B

least two of its angles, A and C, must be acute.

From the third vertex, B, drop a perpendicular P

p to the opposite side, AC. This will split the

triangle AABC into two right triangles. In each A ¢ D C

of these, the angle sum will also be n: neither
angle sum can exceed n (TP 19), and the fact that the right triangles
comprise triangle AABC ensures that neither angle sum is less than .

" Interestingly, Alexandre Dumas pére, author of The Three Musketeers, has a curious connection to the
history of mathematics. He was present at the banquet of French revolutionaries at which the great
algebraist Evariste Galois apparently declared his intention, while standing on a table with a drawn dagger,
to kill the king. Moreover, in his memoirs, Dumas names Pescheux d'Herbinville as the man who killed the
twenty-year-old Galois in a duel. Dumas’ writings provide the only evidence pointing to d'Herbinville;
whether Dumas correctly identified Galois’ killer is still a matter of debate. See the article by Tony
Rothman listed in the bibliography.
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Since angles 4 and C are acute, the foot of the perpendicular will land in the
interior of segment 4C™. Hence, the perpendicular splits AABC into a pair of right
triangles. We shall verify that each right triangle has angle sum n by proving a little

lemma, which gives a slightly more general result.

Claim 1. Given a triangle with angle sum 7, if we join one of its vertices to a point on the
opposite side, both of the resulting subtriangles have angle sum & as well.

Proof. Suppose that angle sum(AABC) = n. Join B to a point D on the

opposite side to produce two subtriangles, AADB and ACDB. If we add
up all six angles of the subtriangles, we clearly obtain all three angles A C

of the original triangle, plus a pair of supplementary angles at D.

That is,
angle sum(AADB) + angle sum(ACDB) = angle sum(AABC) + n =2m.

By TP 19, neither term on the left hand side can exceed m. Hence, the equality can hold only if

both terms equal m. That is, both subtriangles have angle sum =, as claimed. ]

Thus, the existence of one arbitrary triangle with angle sum m implies the

existence of a right triangle with angle sum n. The chain of dominoes has begun to fall.

" Proof: If it fell outside the segment, say closer to 4 than to C, then ABDA would have a right angle at D
and an obtuse angle at 4, contradicting TP 19, the Saccheri-Legendre Theorem.
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If a Right Triangle with Angle Sum = EXists,
Then Arbitrarily Large Right Triangles of Angle Sum = EXxist.

In this way, we obtain a right triangle whose arms are p and q;
from this we can obtain a quadrilateral whose opposite sides are equal,
and whose adjacent sides are perpendicular. By repeated application of
this quadrilateral, we can construct another with sides np and q, and
eventually a quadrilateral EFGH, whose adjacent sides are
perpendicular, and in which EF = np, EH = mq, HG = np, and FG = mq,
where m and n can be any whole numbers. The diagonal FH of such a
quadrilateral divides it into two congruent right triangles, AFEH and
AFGH, each of which has angle sum .

E H

P Pl /P

a
q Fqggqgq 9G

From a right triangle whose angle sum is n, Lobachevski (following Legendre)
produces a rectangular brick. Using copies of the brick, he builds arbitrarily large
rectangular walls. Drawing a diagonal of such a wall yields an arbitrarily large right
triangle with angle sum . We now explain why this works.

Since triangle ACDB has angle sum m, its two acute angles are complementary.
Joining two copies at their hypotenuses therefore yields our first p x g rectangular brick, a
“quadrilateral whose opposite sides are equal, and whose adjacent sides are

perpendicular””.

" Strictly speaking, “joining triangles” is not a well-defined operation. To be more precise, we can construct
a rectangle BDCE from triangle ABDC by choosing a point £ such that L{CBE = £DCB (Euclid 1.23) and
BE = DC (Euclid 1.2). By the SAS criterion (Euclid 1.4), we have ABDC = ACEB. Hence, EC = BD. Since
BE = DC by construction, the opposite sides of quadrilateral BDCE are equal. Moreover, £ DBE = £{DBC +
ACBE = ADBC + ABCD = n/2. Similarly, {DCE = =/2. Since the remaining two angles of BDCE are
obviously right angles, we have also confirmed that all pairs of adjacent sides in the quadrilateral are
perpendicular.

59



Stacking such bricks n high and m across, we obtain an np x mq rectangular wall.
With a diagonal, we split it into a pair of right triangles. If we add the angle sums of these
triangles together, it is clear that we will obtain 27, since this is the angle sum of the
rectangle they comprise.

Hence, if either triangle’s angle sum falls short of =, the other’s must exceed & to
make up the difference, which would contradict the Saccheri-Legendre Theorem (TP 19).
Thus neither triangle’s angle sum is less than m. Since neither angle sum can be greater

than &t either (TP 19 again), both angle sums must equal 7.

Thus, given just one triangle (possibly a tiny one) with angle sum ©, we can
construct arbitrarily large right triangles with angle sum 7. Specifically, we can construct
them to have arms of lengths np and mgq, for any whole numbers m and n whatsoever.
Given any specified length, we can therefore construct a right triangle of angle sum m,

whose arms exceed that length.

If Arbitrarily Large Right Triangles of Angle Sum = Exist,
Then Every Right Triangle has Angle Sum .

The numbers m and n can always be chosen so large that any
given right triangle AJKL can be enclosed within a right triangle AJMN,
whose arms are NJ = np and MJ = mq, when one
brings their right angles into coincidence. Drawing
the line LM yields a sequence of right triangles in M
which each successive pair shares a common side. g

The triangle AJMN arises as the union of the
triangles ANML and AJML. The angle sum exceeds
7 in neither of these; it must, therefore, equal n in
each case in order to make the composite triangle’s P
angle sum equal to n. Similarly, the triangle AJML N L J
consists of the two triangles AKLM and AJKL, from
which it follows that the angle sum of AJKL must
equal m.

Given any right triangle AJKL, we can construct, by the technique described in
the previous section, a right triangle AJMN whose angle sum is 7, and whose arms are

longer than those of AJKL. When their right angles coincide, it is obvious that AJMN

60



will enclose the given triangle AJKL. (One can give a Hilbert-style proof of this fact, but
I will omit this here.) Lobachevski alludes to a “sequence of right triangles”: AJMN,
AJML, AJKL. Applying Claim 1 to each successive pair of triangles in the sequence
brings us to the desired conclusion.
Since AJMN has angle sum m, its subtriangle AJML has angle sum « as well.
Since AJML has angle sum m, its subtriangle AJKL does also.

Thus far, we have shown that the existence of just one triangle with angle sum ©

implies that every right triangle has angle sum 7. Only one more domino remains to fall.

If Every Right Triangle has Angle Sum ,
Then Every Triangle has Angle Sum .

In general, this must be true of every triangle since each triangle
can be cut into two right triangles. Consequently, only two hypotheses
are admissible: the sum of the three angles either equals n for all
rectilinear triangles, or is less than = for all rectilinear triangles.

Let T be an arbitrary triangle. We dissect it into two right triangles, 7'} and 7, by
dropping a perpendicular from the appropriate vertex. From the figure, we see that

angle sum(T) = angle sum(T ) + angle sum(T>) - .

If all right triangles have angle sum T, it follows that T T

angle sum(T)=mn+ 1 - T =T.

Thus, T has angle sum w as claimed. This completes the domino proof of the Three
Musketeers Theorem. To recapitulate, when we assume that one triangle has angle sum ,
a chain of deductions leads us inexorably to the conclusion that a// triangles have angle

sum 7. This has an important consequence for imaginary geometry.
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Claim 2. In imaginary geometry, the angle sum of every triangle is strictly less than .

Proof. Since the parallel postulate is false in imaginary geometry, it harbors at least one triangle
whose angle sum is not w. (TP 19 notes, Claim 1). Thus, by the Three Musketeers Theorem, no
triangles can have angle sum w in imaginary geometry. Thus, the angle sum of every triangle in

imaginary geometry is strictly less than 7 (by the Saccheri-Legendre Theorem). "

We have reached the end of Lobachevski’s TP 20, but much remains to be
discussed. Our demonstration that every triangle in imaginary geometry has angle sum
less than m immediately spawns questions. Foremost among them: do all imaginary
triangles possess the same angle sum? If so, what is it? If not, can we discover a law that
describes their variation? Johann Heinrich Lambert was the first to answer these

questions, and it is to his work that we turn next.

Lambert
“Lambert may be compared in a sense with Moses, for he saw more of the promised land of the new
geometry than anyone before him, and knew that he had not proved it self-contradictory, but...”

- Jeremy Gray "

The far-reaching intellectual achievements of Johann Heinrich Lambert (1728 — 1777)
span the disciplines of mathematics, physics, astronomy, and philosophy. His was among
the greatest of 18"-century scientific minds. Immanuel Kant drafted a dedication of his
own Critique of Pure Reason to Lambert, but by the time Kant’s masterpiece was ready
to publish, Lambert had died. Some of his better known mathematical accomplishments
include proofs that m and e are irrational numbers, the introduction of the hyperbolic
functions, and significant work in mathematical cartography.

The vexed subject of the parallel postulate attracted Lambert’s attention. He left
one important work on this topic, his Theorie der Parallel-Linien (written in 1766, but
published posthumously in 1786, by Johann Bernoulli III). Although Lambert never
explicitly mentions Saccheri, he was probably familiar with his work; he does explicitly
refer to a 1763 dissertation of G.S. Kliigel, which summarized and criticized various
proofs of the parallel postulate, including Saccheri’s Euclid Freed from Every Flaw.

Lambert’s own contribution to the “pre-history” of non-Euclidean geometry

proceeds along lines very similar to those that Saccheri had followed 33 years earlier. He

" Fauvel & Gray, p. 509.

62



considers a quadrilateral with three right angles (now often called a “Lambert
quadrilateral”), and establishes the following neutral result about its fourth angle: if it is
right, obtuse, or acute, then the fourth angle of every Lambert quadrilateral will be right,
obtuse, or acute, respectively. These three possibilities, which Lambert calls the first,
second, and third hypotheses, are entirely equivalent to Saccheri’s HRA, HOA, and
HAA. Like Saccheri, Lambert sets out to destroy the second and third hypotheses. The
second falls easily, but the third (the HAA) remains stubbornly resistant, prompting a
long excursion into a strange geometric landscape. Lambert followed the path into
imaginary geometry even farther than Saccheri did, thus anticipating several theorems of
Lobachevski and Bolyai.

In the pages that follow, we shall find occasion to mention several of Lambert’s
results. Of interest here is the fact that different triangles in imaginary geometry can have
different angle sums. Saccheri never explicitly mentions this fact, but in section 81 of
Lambert’s Theorie der Parallellinien, one finds a demonstration that under the “third
hypothesis” (equivalently, in imaginary geometry) if one triangle is inscribed in another,

then the larger triangle will have a smaller angle sum. A synopsis of his proof follows .

Claim 3. In imaginary geometry, if AABC is inscribed in AXYZ,
then angle sum(AXYZ) < angle sum(AABC).

Proof. The inscribed triangle splits AXYZ into four sub- <
triangles: AABC, ANACY, ABXC, and AZBA. Let the angle
sums of these triangles be n-a, n-f, m-y, and n-0 respectively.
The figure shows that AXYZ’s angle sum can be found by
adding up the four angle sums of the sub-triangles and

subtracting 37. (The 3m accounts for the three straight angles

at 4, B, and C, which are composed of angles of the sub-
triangles that do not figure into AXYZ’s angle sum.) That is,
angle sum(AXYZ)=[(n- o) +(n-f) +(n-y)+(n-0)-3n]=mn-(atf+y+09),
which is less than 7 - a, the angle sum of the inscribed triangle. (It is also less then the angle sum

of any of the other three sub-triangles, for that matter.) n

" For an English translation of Lambert’s work on area and angle sum, see Fauvel & Gray, pp. 518-520.
The complete German text of Lambert’s Theorie der Parallellinien is in Engel & Stickel, pg. 152-207. As
of this writing, this text can be accessed online through the World Digital Mathematics Library
(http://www.wdml.org/).

63



Lambert generalized this result, arguing that for any two triangles, the one with
greater area will always have a smaller angle sum. In his sketchy justification of this
claim, Lambert suggests that variations on the proof of Claim 3 will allow us to
demonstrate the truth of the inequality for any given pair of triangles . He then made this
result more precise, arguing that a triangle’s angle defect (the amount by which its angle
sum falls short of m) is in fact directly proportional to its area. Gauss crafted a beautiful
proof of this theorem; I shall describe it in the notes to TP 33. For now, I shall content
myself with one small step in this direction. Like area, angle defect turns out to be an

additive quantity, in the sense indicated in the following claim.

Claim 4. If we split a triangle into two subtriangles by joining a vertex to a point on the opposite
side, then the angle defects of the subtriangles add up to the angle defect of the original triangle.
Proof. Let AABC be the original triangle, with subtriangles A4ABD and AACD, as in the figure. If

we label angles as in the figure, then the defects of the three triangles are: A
o,
angle defect(AABD) =1 - [a + f + (7 - 9)]. i
angle defect(AADC) =7 - [op + J + y]. ; "
angle defect( AABC)=m - [o; + o, + B + y]. §] =88 N
B ' C
D

A simple calculation shows that the sum of the first two defects on this list is equal to the third, as

claimed. n

This additivity implies that in imaginary geometry (where angle defect is always
positive), the original triangle’s defect will exceed either subtriangle’s defect. An easy

corollary, which we will use shortly, follows.

Corollary. In imaginary geometry, if a chord drawn in a triangle splits the triangle into a
subtriangle and a quadrilateral, then the original triangle’s angle defect is greater than the

subtriangle’s defect.

" “I shall not prove this theorem completely here,” he writes, “...rather I shall give only so much of the
proof as will enable the rest of it to be understood overall.” Lambert’s claim is true, but some subtle
complications do arise when one tries to vary the proof of Claim 3 to handle cases in which the triangle of
smaller area does not fit inside the triangle of larger area.
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Proof. Let AABC be the original triangle, DE the chord, and AADE the subtriangle. Draw line
DC. Appealing to Claim 4 twice, we obtain

angle defect(AABC) > angle defect( AADC)
> angle defect( ANADE).

Thus, the original triangle’s defect exceeds that of its subtriangle, as claimed. L]

While pursuing his “third hypothesis”, Lambert A
obtained many further bewildering results, but unlike
Saccheri, he never succumbed to the illusion that he had
found a logical contradiction amongst them. Presumably

dissatisfied with the inconclusive nature of his studies,

he never published his “incomplete proof of the parallel C
postulate” in his lifetime. In his cool, dispassionate view of the third hypothesis, he
stands in marked contrast to his great predecessor Saccheri, who attacked the HAA as if it

were his personal enemy.

Similarity and the Parallel Postulate: Wallis
“In time, those Unconscionable Maps no longer satisfied, and the Cartographers Guilds struck a map of the
Empire whose size was that of the Empire, and which coincided point for point with it...”

- Jorge Luis Borges, “On Exactitude in Science”.”

Lambert’s results have a remarkable consequence: since increasing the size of a triangle
decreases its angle sum, it follows that in imaginary geometry, similar, non-congruent
triangles cannot exist. Dilating a figure invariably distorts its angles, so in a world
governed by imaginary geometry, photography would be an inherently surrealist art, as
Marvin Greenberg has aptly noted’. The familiar AAA-similarity criterion for Euclidean
triangles (Euclid VI.4) disappears; in imaginary geometry, AAA is a congruence

criterion.

: Borges, Collected Fictions, p. 325.
T Greenberg, p. 151.
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Claim 5. In imaginary geometry, AAA is a congruence criterion.
Proof. Let AABC and AA'B'C’ be triangles whose corresponding angles are equal.

Suppose, by way of contradiction, that the triangles are not congruent.

Then none of their corresponding sides are equal; for if they had a pair of equal
corresponding sides, the triangles would be congruent by the ASA-criterion, contrary to
hypothesis. Consequently, one triangle contains (at least) two sides longer than those that
correspond to them on the other triangle. Suppose then that AB > A'B"and AC > A'C". Let B" and
C" be points on AB and AC respectively such that AB” = A'B"and AC" = A'C".

Since AA'B'C'= AAB"C" (SAS), we have LB'= AB" and LC'= £C".

The corollary to Claim 4 tells us that (B + £C) < ({B"+ £C").

Combining these last two facts yields (4B + £C) < (£B'+ £C").

On the other hand, all corresponding angles of AABC and AA'B'C' are equal,
s0 ({B+ £LC)=(4LB'+ LC").

We have reached a contradiction. Hence, AABC = AA'B'C’, as claimed. n

In a lecture given July 11, 1663 at Oxford University, John Wallis demonstrated
that the existence of similar, non-congruent figures is logically equivalent to the parallel
postulate. Wallis’ critical examination of the postulate appears to have been the first by a
European since ancient times. He was inspired by an Arabic work on parallels, which had
been published in Rome in 1594, and attributed to the 13t century mathematician, Nasir
Eddin al-Tusi. It has since been demonstrated that it was actually written after al-Tusi’s
death in 1274. Rosenfeld considers it “very likely” that it was written by al-Tusi’s son,
Sadr al-Din.

Wallis stated that it would be reasonable to assume that “to every figure there is
always a similar one of arbitrary size”; since Euclid’s 3™ postulate asserts the existence of
circles of arbitrary size, “it is as practicable to make this assumption for an arbitrary
figure as for circles.”” Although an appealing justification, this is somewhat misleading,
since the existence of arbitrarily large circles does not imply that similar circles of
arbitrary size exist. In fact, the omni-similarity of Euclidean circles (which ensures that

the ratio of circumference to diameter is constant’, thus justifying the usual definition of

" Fauvel and Gray, pp. 510-511.
For a proof of this oft-stated, but rarely demonstrated theorem, see Moise, pp. 265-268.
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7) is not a consequence of Euclid’s third postulate, but of his parallel postulate. Wallis,
however, avoids circular arguments. Unlike many of his successors (such as Legendre),
he never claimed to have derived the parallel postulate from Euclid’s first four; he merely
showed that it was equivalent to his own proposed postulate, which, he argued, was a

somewhat less offensive alternative. A sketch of Wallis’ equivalence proof follows.

Claim 6. Given Euclid’s first four postulates, the parallel postulate holds if and only if Wallis’
Postulate (to every figure there is always a similar one of arbitrary size) holds.

Proof. =) Euclid VI.25

<) Suppose that Wallis’ postulate
holds. Let m and n be lines intersected by M -
a third line, /, in such a way that the sum N \‘\
of the interior angles that m and n make Tk

on one side of / is less than .

Let M and N be the intersections el -

of / with m and n respectively. Let m' be

the line through N making the same angle with / as m does, and let X be a point on m, as
in the figure. Slide m along / towards N, maintaining its inclination toward /, until it
coincides with m'. By the time it completes this journey, the point X will have passed to
the other side of line n. Consequently, X must have crossed n at some point Q during its
passage. Of course, when X and Q were coincident, the sliding line was also intersecting /
at some point. Call this point P. By Wallis’ postulate, there is a point O such that
AMNO ~ APNQ. Since O must clearly lie on both of the lines m and n, these lines do

intersect. Thus, the parallel postulate holds, as claimed. =

In fact, it can be shown that Wallis’ postulate (and hence the parallel postulate)
holds if and only if there exists a single pair of similar, non-congruent triangles. In 1824,
Pierre Simon de Laplace, author of the five-volume Mécanique Céleste, reiterated Wallis’
idea, that a postulate asserting the existence of similar figures is more natural than

Euclid’s postulate.
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...the notion of space includes a special property, self-evident, without
which the properties of parallels cannot be rigorously established. The idea of a
bounded region, e.g., the circle, contains nothing which depends on its absolute
magnitude. But if we imagine its radius to diminish, we are brought without fail
to the diminution in the same ratio of its circumference and sides of all the
inscribed figures. This proportionality appears to me a more natural postulate
than that of Euclid, and it is worthy of note that it is discovered afresh in the
results of the theory of universal gravitation.”

The reservations that most mathematicians felt regarding the parallel postulate were not
logical, but aesthetic; their objections had little to do with the truth of the parallel
postulate — they knew it was true — but much to do with its position in the structure of the
Elements. It ought to be a theorem, they insisted, not an axiom. While the desired
solution to this aesthetic dilemma was to deduce it from the first four postulates, a
second-rate alternative was to replace Euclid’s fifth postulate, as Wallis or Laplace
suggested, with a less objectionable equivalent. Of all the proposed “self-evident”
alternatives, the most disarmingly simple must be the one that Alexis Claude Clairaut

(1713 — 1765) adopted in his Eléments de Géométrie: there exists a rectangle.

Clairaut’s Postulate

Claim 7. Given Euclid’s first four postulates, the parallel postulate holds if and only if a
rectangle exists.

Proof. =) Euclid .46 (where Euclid constructs a square, a special case of a rectangle.)
<) If a rectangle exists, let a diagonal split it into two triangles. The angle sums of these

triangles add up to 27n (the angle sum of the rectangle). Since

neither angle sum can exceed n (by TP 19), each triangle’s angle
sum must be exactly ©. By the Three Musketeers theorem (TP 20),

all triangles must therefore have angle sums equal to m, a

statement we have seen is equivalent to the parallel postulate. =

It is interesting to speculate how the history of non-Euclidean geometry might
have unfolded had Euclid assumed the existence of a rectangle rather than his parallel
postulate. Would succeeding generations have found Clairaut’s postulate a “blot on

geometry” (as Henry Saville referred to the parallel postulate in 1621)? Could the mere

" Quoted in Bonola, p. 54.
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assumption that a rectangle exists have provoked Saccheri’s struggle to “free Euclid from
every flaw”?

Yes, it could have, and probably would have. Although Clairaut’s postulate seems
to have much in common with Euclid’s third postulate (asserting the existence of circles),
closer inspection reveals a fundamental difference. All of Euclid’s geometry is built from
line segments and circles; the third postulate merely asserts that we have access to the
latter. Certainly, as geometric aesthetes, we should never tolerate the naive assumption
that other figures exist; we should prove their existence rigorously by constructing them
from preexisting material. In particular, if a rectangle exists, we should be able to
construct it from four line segments. Euclid constructs every other figure he uses, so why
should a rectangle be any different? Such thoughts would surely have bothered geometers
had Euclid based his theory of parallels upon Clairaut’s postulate. Similar thoughts would

have bred discontent with any equivalent form of the parallel postulate.
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Theory of Parallels 21

From a given point, one can always draw a straight line that meets a given
line at an arbitrarily small angle.

The salient feature of this little result is its neutrality; it is valid in both Euclidean
and imaginary geometry. Twice, in the notes following TP 19, I committed the venial sin
of using this result without having proved it first, referring the reader to the present
proposition for its demonstration. I am not, however, guilty of the mortal sin of circular
argument; Lobachevski’s proof of TP 21 does not require the intervening proposition,
TP 20, and thus it could have been given directly after TP 19, prior to the proofs in which

T used it.

From the given A
point A, drop the
perpendicular AB to the
given line BC; choose an
arbitrary point D on BC;
draw the line AD; make
DE = AD, and draw AE.
If we let a = LADB in the
right triangle AABD, O |
then the angle AED in B D E C
the isosceles triangle AADE must be less than or equal to a/2 (TP 8 &
19) *. Continuing in this manner, one eventually obtains an angle KAEB
that is smaller than any given angle.

TP 8 (or Euclid 1.5, the pons asinorum) implies that that the base angles LAED
and £DAE of the isosceles triangle AADE are equal; let § be their common measure.
Since this triangle’s remaining angle is m - a, TP 19 (the Saccheri-Legendre theorem)
gives (n - a) + f + f < 7. Hence, f < 0/2, as claimed.

By repeating this construction, allowing E to play the role of D, we find a point F/

such that LAFD < a/4. With each subsequent iteration, we produce an angle whose

" I have corrected an apparent misprint occurring in Lobachevski’s text and perpetuated in Halsted’s 1891
translation of 7P. In these sources, Lobachevski cites TP 20 at this point, rather than TP 19. This makes
little sense; TP 20 relates the angle sum of one triangle to the angle sums of all triangles — an issue having
scarcely anything to do with the present proposition’s modest concerns.
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measure is less than half the previous one. Repeating this sufficiently many times, we can
clearly construct an angle smaller than any specified positive angle given in advance. The
point £ that occurs in Lobachevski’s final sentence is, of course, generally distinct from
the £ defined earlier in the proposition. In geometric writings of this period, the same
symbol was sometimes used to represent distinct points that played a similar role in an

argument.

Interestingly, Bolyai also makes use of this proposition, which looks so much like
an ad hoc lemma. He notes the result at the conclusion of §1 in his Appendix, directly

after defining parallelism.
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Theory of Parallels 22

If two perpendiculars to the same straight line are parallel to one another,
then the sum of the three angles in all rectilinear triangles is 7.

Common Perpendiculars

A theorem of neutral geometry (I.28) guarantees that two lines with a common
perpendicular (i.e. two lines perpendicular to a third) will never meet one another. Thus,
in Euclidean geometry, lines with a common perpendicular are parallel to one another.

In imaginary geometry, however, non-intersection does not suffice to establish
parallelism (see TP 16). In fact, the present proposition demonstrates that in imaginary
geometry, lines with a common perpendicular are not parallel to one another. (Were they
parallel, all triangles would have angle sum &, contradicting the result proved in Claim 2
of the TP 20 notes.)

Accordingly, when we invoke TP 22 in the future, we shall do so in the following
equivalent form: in imaginary geometry, parallel lines cannot have a common
perpendicular. (That is, given two parallels, there cannot be a third line perpendicular to
each of them.)

Proof on the Rack

Let the lines AB and CD A B
(Fig. 9) be parallel to one
another and perpendicular to
AC. From A, draw lines AE
and AF to points E and F
chosen anywhere on the line
CD such that FC > EC. If the
sum of the three angles equals
n - a in the right triangle Ll
AACE and © - B in triangle C E F D
AAEF, then it must equal © - a - B in triangle AACF, where a and 3
cannot be negative. Further, if we let a = 4{BAF and b = {AFC, then
at+pB=a-b.
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Lobachevski assumes that two parallels 4B and CD have a common
perpendicular, AC. Proceeding from this assumption, he will produce a triangle with
angle sum m; this will imply that @/l triangles have angle sum nt (TP 20), which, in turn,
will imply that the parallel postulate holds (TP 19 notes, Claim 1). Having accomplished
this, he will have shown that parallels can have a common perpendicular only in
Euclidean geometry.

His strategy for finding a triangle with angle sum & is worthy of the Spanish
Inquisition. He examines two closely related triangles, AACE and AAEF, and while the
first can do nothing but watch, he contorts the shape of the second until the first breaks
down and confesses that its own angle sum is 7.

Lobachevski denotes their angle sums: © - a and © - . He will ultimately show
that o = 0.

To establish an exploitable relationship between the angle sums of the two
triangles, Lobachevski turns to AACF, the larger triangle that they comprise. He
computes its angle sum in two different ways.

First, he computes it indirectly, in terms of the angle sums of its constituent sub-
triangles. If we denote the respective angle sums of AACE and AAEF by mt - o and 7 - 3,
then a glance at the figure indicates a method for finding AACF’s angle sum: add the
angle sums of its two sub-triangles and subtract 7 to offset their contributions at E. Thus,
by our first computation, AACF’s angle sumis (n - a) + (- f) -n=(n - a — ).

Second, he computes it directly, in terms of its own angles. These have measures
b, m/2, and (n/2) — a, so by our second computation, AACF’s angle sum is (1t + b — a).

Equating the two expressions for AACF’s angle sum, we find that
(a + p) = (a—b), as claimed.

Having established this relationship, Lobachevski can now put AAEF on the rack.

End of the Proof: Confession

By rotating the line AF away from the perpendicular AC, one can make
the angle a between AF and the parallel AB as small as one wishes; one
reduces the angle b by the same means. It follows that the magnitudes of
the angles a and B can be none other than a = 0 and 3 = 0.
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Here, Lobachevski lets F slide down ray CD towards infinity. As this point
moves, AACE remains unaffected, but ray AF rotates about 4, causing AACE (and hence
AACF) to be stretched. We shall now consider some limiting behavior of different parts
of the figure as F slides to infinity.

Naturally, the limiting position towards which ray AF rotates is the first ray
through A that does not cut CD: that is, AF approaches the unique parallel to CD passing
through 4. By hypothesis, this parallel is AB; hence, the angle between AF and AB
approaches 0. That is, @ — 0 as F goes to infinity.

Moreover, TP 21 immediately tells us that 5 — 0 as F goes to infinity.

Consequently, it follows that (a — b) — 0 as F goes to infinity.

This is enough: AACE will now confess.

Since a < (a + ) = (a - b), which vanishes as F' goes to infinity, it follows that a
can be made smaller than any positive quantity. Thus, since it cannot be negative (TP 19),
o must be zero. That is, AACE’s angle sum is (7 - a) = (7 - 0) = 7, as claimed.

This being the case, all triangles have angle sum m, by the Three Musketeers
Theorem (TP 20). The proof is over, but Lobachevski has a few more words to add about

his unfolding work as a whole.

Recapitulation and Proclamation

From what we have seen thus far, it follows either that the sum of
the three angles in all rectilinear triangles is =, while the angle of
parallelism [[(p) = n/2 for all lines p, or that the angle sum is less than =
for all triangles, while [[(p) < n/2 for all lines p. The first hypothesis
serves as the foundation of the ordinary geometry and plane
trigonometry.

The second hypothesis can also be admitted without leading to a
single contradiction, establishing a new geometric science, which I have
named Imaginary Geometry, which I intend to expound here as far as the
derivation of the equations relating the sides and angles of rectilinear
and spherical triangles.

We have now seen ten statements equivalent to the parallel postulate. Gathering

them together, we state a theorem that we have already proved in piecemeal fashion.
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Theorem. Given Euclid’s first four postulates, the following are equivalent:

1. Euclid’s parallel postulate.

2. Playfair’s axiom. (See TP 16 Notes, Claim 1)
3. All triangles have angle sum 7. (See TP 19 Notes, Claim 1)
4. One triangle has angle sum 7. (See TP 20)

5. The angle of parallelism is 7/2 for all lengths. (See TP 16 Notes, Claim 1)
6. The angle of parallelism is 7/2 for one length. (See TP 22)"

7. Similar, non-congruent figures exist. (See TP 20 Notes, Claim 6)
8. A rectangle exists. (See TP 20 Notes, Claim 7)
9. Legendre’s assumption. (See TP 19 Notes, Claim 2)
10. Two parallels have a common perpendicular. (See TP 22).

Euclid could have made any of these assumptions his fifth postulate, and deduced the
same body of results that comprise the Elements. There are, of course, still other
equivalent statements, but we shall not dwell upon them here; it is time to bid farewell to

the parallel postulate altogether.

Heretofore, Lobachevski has developed only neutral theorems. A rigorous
demonstration of the parallel postulate would instantly reduce them to an eccentric
sequence of trivialities with unnecessarily difficult proofs, but it would not divest them of
their validity. Henceforth, however, the safety net of neutrality will be absent: a proof of
the parallel postulate would render everything that follows in Lobachevski’s work not
merely trivial, but actually false. It is at this point that the Lobachevskian heresy begins.
No longer content to avoid the parallel postulate, he shall openly deny it and develop the
consequences. In doing so, he must forego rectangles and similar triangles, accept that the
angle of parallelism is acute for every length, accept that the sum of the angles in every
triangle falls short of 180°, and, on a personal level, accept the scorn and condescending
pity of his contemporaries.

Lobachevski derived his heterodox faith in the logical consistency of imaginary
geometry largely from the fact that he was able to develop a consistent set of

trigonometric formulae under the assumption that the parallel postulate was false. Since

" If such a length exists, then by TP 22, all triangles have angle sum 7, hence the parallel postulate holds.
The converse is obvious.
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Euclidean trigonometry is built upon consequences of the parallel postulate, the reader
may appreciate what a difficult and remarkable achievement this was. Naturally, he had
no choice but to found non-Euclidean trigonometry upon a different basis altogether. The
geometric creativity he displays along the way is breathtaking, as we shall witness in the
latter portions of the Theory of Parallels. The resulting trigonometric formulae make the
analytic exploration of imaginary geometry possible, quickly yielding further results that

testify, if not to the consistency of the new geometry, then at least to its beauty.

" Namely, it is built upon the theory of similar triangles, without which one cannot define the trigonometric
functions as side-ratios.
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Theory of Parallels 23
For any given angle a, there is a line p such that[I(p) = a.

Let AB and AC be two B G D
straight lines forming an
acute angle a at their point
of intersection A. From an
arbitrary point B’ on AB, M
drop a perpendicular B'A’ to
AC. Make A'A" = AA', and
erect a perpendicular A"B"

upon A"; repeat this B”
construction until reaching H
a perpendicular CD that B’

fails to meet AB. This must

occur, for if the sum of the

three angles equals n-a in A _~a
triangle AAA'B', then it Al A" K F C
equals m-2a in triangle

AAB'A", and is less than n-2a in AAA"B” (TP 20); if the construction
could be repeated indefinitely, the sum would eventually become
negative, thereby demonstrating the impossibility of the perpetual
construction of such triangles.

Beginning with the initial segment 4AA4’, the repeated construction consists of
doubling the length of the segment and erecting a perpendicular at its new endpoint. In
Euclidean geometry, each perpendicular would meet 4B at an angle of (/2 — a),
producing an endless sequence of similar right triangles. In imaginary geometry, this
cannot happen, as there are no similar triangles. After Lambert’s results on area and angle
defect (discussed in the notes to TP 20) we should not be surprised to learn that each
successive perpendicular meets 4B at a smaller angle than does its predecessor. However,
Lobachevski asserts something stranger still: the repeated construction will eventually
produce a perpendicular that actually fails to intersect AB.

His remarkably simple proof relies upon the additivity of defect. Because of this
additivity, the defect of each successive right triangle must be at least twice that of its
predecessor. (Proof: By Claim 4 of the TP 20 notes, defect(AAA"B") > defect( NAA"B") =
[defect( AAA'B") + defect(NA"A'B")] = 2defect(ANAA'B'), where the last equality holds
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because A4"A'B' = NAA'B' by SAS.) Therefore, if the construction could be continued
forever, yielding a new right triangle at each step, then we could repeat it sufficiently
many times to make the defect of the resulting triangle exceed m. This is obviously
impossible, so the process must eventually cease to yield triangles. That is, the

perpendiculars erected past a certain point must fail to meet the line AB.

The perpendicular CD itself might have the property that all other
perpendiculars closer to A cut AB. At any rate, there is a perpendicular
FG at the transition from the cutting-perpendiculars to the non-cutting-
perpendiculars that does have this property. Draw any line FH making
an acute angle with FG and lying on the same side of it as point A. From
any point H of FH, drop a perpendicular HK to AC; its extension must
intersect AB at some point; say, at B. In this way, the construction yields
a triangle AAKB, into which the line FH enters and must, consequently,
meet the hypotenuse AB at some point M. Since the angle {GFH is
arbitrary and can be chosen as small as one wishes, FG is parallel to AB,
and AF = p. (TP 16 and 18).

Lobachevski’s assertion that the boundary-perpendicular F'G exists should remind
the reader of a similar assertion concerning parallels in TP 16. Lobachevski takes its
existence for granted, but we can rigorously prove its existence by appealing to properties
of the real numbers, as follows. Each point on ray AC has a nonnegative real number
associated with it (its distance from A4), and vice versa. Consider the set of reals that
correspond to points whose perpendiculars cut AB. Since, as we have seen, the
perpendiculars eventually cease to cut 4B, this set of real numbers is bounded above.
Hence, it has a least upper bound. This least upper bound corresponds to a point on AC,
and it is not hard to show that the perpendicular erected there is the boundary-
perpendicular F'G that we desire.

The rest of Lobachevski’s argument in this paragraph is straightforward. He
requires, but does not cite, TP 2 and TP 3 to secure the existence of M. We know that
FG || AB, because these lines satisfy the criteria in the definition of parallelism (TP 16):
they do not meet, but every ray FH that enters £GFA does meet AB. Thus, by the
symmetry of parallelism (TP 18), it follows that AB || FG. Hence, a is the angle of
parallelism for the line segment AF. Letting p be the length of AF, we write [[(p) = a.
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Since o was an arbitrary acute angle, this demonstrates that every acute angle occurs as

an angle of parallelism for some length, as was to be shown.

Further Notes on the J[-Function.

It is easy to see that with the decrease of p, the angle a increases,
approaching the value n/2 for p=0; with the increase of p, the angle a
decreases, approaching ever nearer to zero for p=c.

Here, we prove a few basic facts about the [ [-function.

Claim 1. [] is a decreasing function. (That is, if g < p, then [1(g) > I1(p).)

Proof. Let AF be a line segment of length p; let FG L AF, and let AB || FG, as in the figure. By
definition, <BAF = [l(p). As was demonstrated B G
above, any perpendicular erected in the interior of
the line segment AF will intersect 4B. In particular,
if we erect a perpendicular upon the point S such
that AS = ¢, it will meet 4B at some point 7. We saw
in TP 16 that all lines emanating from point 4 fall
into two classes with respect to the line ST the class
of cutting-lines, and the class of non-cutting-lines.

Since line AT, which makes an angle of [[(p) with A_"¢

q S F

AS, is a cutting-line, we know that the boundary-line
P —H

x

separating the two classes (i.e. the parallel to ST
through 4) makes a greater angle with A4S than [[(p). That is, [1(¢) > [1(p), as claimed. =

This verifies that lengthening a line segment shrinks its angle of parallelism,
while diminishing a segment increases its associated angle. Since every acute angle
occurs as an angle of parallelism, we know that we may force the angle of parallelism as
close to the Euclidean value of m/2 as we wish by taking a sufficiently small line
segment. Similarly, with a sufficiently long segment, the angle of parallelism can be
brought as close to 0 as we wish. This verifies the limiting behavior noted by

Lobachevski.
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Corollary. [ 1 is a continuous function.

Sketch of Proof. [] is decreasing on its domain (0,00) and assumes all values in its range (0, 7/2).
(For a proof that continuity follows from these conditions, see any real analysis text, for example
Bressoud, p.100) m

Extending the []-Function’s Domain

Since we are completely free to choose the angle that shall be
assigned to the symbol [[(p) when p is a negative number, we shall adopt
the convention that [[(p) + [I(-p) = 7, an equation which gives the symbol
a meaning for all values of p, positive as well as negative, and for p=0.

Since the definition of [I(p) (TP 16) presumes that p is a length, the domain of []
is initially restricted to positive values of p. However, nothing prevents us from assigning
a meaning to [[(p) when p is a negative number. Lobachevski defines it to be a shorthand
notation for the supplement of an angle of parallelism. (for example, if [[(p) = 77°, then
[1(-p) = 103°.) This will prove convenient in the later propositions of the Theory of
Parallels. (We will not see this notation until TP 34.)

Lobachevski’s extension changes [’s domain from the positive reals to all real
numbers, and its range from (0,m/2) to (0,m). It preserves the continuity of [][. In
particular, since © = [1(0) + [1(-0) = 2[1(0), we have [[(0) = n/2, just as [I’s limiting

behavior at 0 would have us expect.

Although our quantitative understanding of
the [[-function is still dim, we are beginning to
obtain a qualitative image of its behavior. A rough,

tentative sketch of the [[-function’s graph, based on

the limited information we possess would depict a
monotone decreasing function that is bounded above and below by a pair of asymptotes
separated from one another by a distance of m. Thus, it would bear some resemblance to

the graph of y = -arctan(x) + n/2.
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Intrinsic Measurements

In both Euclidean and imaginary geometry, we have an intrinsic unit of angle
measurement: the right angle. Euclid’s fourth postulate asserts that all right angles are
equal, and his 11" proposition explicitly describes how to construct a right angle of your
very own. This being the case, there is no need to keep a distinguished right angle in a
pressurized chamber in the Bureau of Standards; right angles are built into the very fabric
of geometry.

In contrast, Euclidean geometry has no intrinsic unit of length. We can relate our
various, conventional units of length to one another — one mile equals 5280 feet, for
example — but we cannot construct any of them directly from the axioms.

Astonishingly, imaginary geometry does admit intrinsic measures of length. TP
23 associates each acute angle with a unique length, and vice-versa. This intertwining of
length (size) with angle (shape) makes it easy to parlay intrinsic measures of the latter
into intrinsic measures of the former; we can define our standard unit of length to be, for
example, the unique length whose angle of parallelism is n/4. Since the angle n/4, half of
a right angle, is a concept intrinsic to geometry, the unique length associated with it (an
imaginary geometry) is also an intrinsic measure.

Lambert was the first to notice the possibility of measuring lengths intrinsically in
imaginary geometry. His reaction to this prospect is best conveyed by his own words.

This consequence is somewhat surprising, which inclines one to want the

third hypothesis to be true! However, this advantage notwithstanding, [ still do

not want it, because innumerable other inconveniences would thereby come

about. Trigonometric tables would have to be infinitely extended; the similarity

and proportionality of figures would entirely lapse; no figure could be presented

except in its absolute size; Astronomy would be an evil task; efc.

But these are argumenta ab amore et invidia ducta , which Geometry,

like all the sciences, must leave entirely on one side. I therefore return to the
third hypothesis..."

The particular choice of unit is a mere detail; the fact that we can choose an
absolute unit is the great surprise. Whether we could actually behold such a unit is a
question of a different nature. If our universe is described by imaginary geometry, then

determining the size of an absolute unit of length might be impossible in practice.

" Arguments drawn from love and hate.
T Fauvel & Gray, p. 518.
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Compared to the vastness of interstellar space, any distance with which we have any
experience is essentially infinitesimal. Since the angle of parallelism of every terrestrial
length looks like w/2, finding a line segment whose angle of parallelism deviates
perceptibly from this value might require us to examine segments whose lengths exceed
the diameter of our galaxy. This is worth keeping in mind when looking at the figures in
Lobachevski’s text; although they fill but a few square inches on the page, they might
represent geometric configurations occurring only on an astronomical scale.

Accordingly, Ferdinand Karl Schweikart (1780-1859) referred to the new

geometry as Astral Geometry in a tantalizing fragment he sent to Gauss in 1818.

Schweikart

Schweikart attended mathematics lectures while studying law at Marburg in his late
teens. Although law became his profession, he maintained a strong interest in
mathematics, and in 1807, Schweikart published Die Theorie der Parallellinien nebst
dem Vorschlage ihrer Verbannung aus der Geometrie (“The Theory of Parallel Lines
Including a Proposal for its Banishment from Geometry”). Despite its promising title, the
book does not proceed in Lobachevskian fashion; it simply develops Euclid’s theory of
parallels along lines that are slightly different from, but ultimately equivalent to, Euclid’s
own. It was Schweikart’s only published mathematical work. Had it been his only
contribution to geometry, his name would have been lost to history long ago.

By 1818, Schweikart’s ideas about geometry had changed radically. Our primary
piece of documentary evidence attesting to them is a brief note that he sent to Gauss
through a mutual acquaintance, Christian Ludwig Gerling, an astronomer and a former

student of Gauss. This note reads, in its entirety, as follows "

" This translation is taken from Bonola, p.76. Schweikart’s original German version is reproduced in Gauss,
pp. 180-181.
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Marburg, December 1818

There are two kinds of geometry — a geometry in the strict sense — the
Euclidean; and an astral geometry.

Triangles in the latter have the property that the sum of their three angles is not
equal to two right angles.

This being assumed, we can prove rigorously:

a) that the sum of the three angles of the triangle is less than two right angles;

b) that the sum becomes ever less, the greater the area of the triangle;

c) that the altitude of an isosceles right-angled triangle continually grows, as the
sides increase, but it can never become greater than a certain length, which I call the
Constant.

Squares have, therefore, the following form:

If this Constant were for us the Radius of the Earth, (so that every line drawn in
the universe from one fixed star to another, distant 90° from the first, would be a tangent
to the surface of the earth), it would be infinitely great in comparison with the spaces
which occur in daily life.

The Euclidean geometry holds only on the assumption that the Constant is
infinite. Only in this case is it true that the three angles of every triangle are equal to two
right angles: and this can easily be proved, as soon as we admit that the Constant is

infinite.

Schweikart.

Schweikart’s surprising insight may have stemmed from the fact that he read
Lambert’s work on parallels, which he mentions in his own book of 1807. Schweikart’s
first two statements about astral geometry, (a) and (b), were known to Lambert, but the

third (c) is original. It is unclear just how much further Schweikart penetrated into non-
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Euclidean geometry than Lambert. Be that as it may, there is no question that he took an
important psychological step forward from his predecessors.

Schweikart’s assertion that there are two geometries is striking; his seems to be
the first written statement to this effect. Certainly, it indicates that Schweikart had a
vastly different conception of mathematics than did Saccheri. The contrast between these
two is particularly apt since we might reasonably consider Schweikart to be Saccheri’s
geometrical grandson: Saccheri seems to have inspired Lambert’s work, which in turn
inspired Schweikart.

Saccheri never doubted that Euclidean geometry was the only geometry. Indeed,
his conviction was so strong that after dozens of pages of brilliant, closely argued
reasoning, it drove him to avert his eyes and permit a logically suspect argument to enter
his work for purely political reasons: it purported to “prove” that which his conviction
told him must be true. Lambert, Age of Reason scientist as he was, was better able to
divorce his convictions from his investigations (exemplified by his comments on
argumenta ab amore et invidia ducta quoted above.) He never fooled himself into
believing that he had found a contradiction, but as a result, he apparently considered his
researches disappointingly inconclusive, and hence not worth publishing. Schweikart’s
simple but profound step was to acknowledge the strange theorems unearthed by his
predecessors as aspects of an alternate, logically viable geometry. His suggestion that
these theorems might actually apply to the physical universe is remarkable.

Schweikart’s Constant is an intrinsic unit of length, built into the fabric of astral
geometry. In fact, it is another characterization of the length whose angle of parallelism is
n/4". In a March 1819 letter to Gerling, Gauss expressed his pleasure at Schweikart’s
memorandum and offered some characteristic Gaussian praise. (“It could almost have
been written by myself.”) He entreated Gerling to congratulate Schweikart, adding that,
“I have extended the Astral Geometry so far that I can fully solve all its problems as soon
as the constant C is given.” As an example, Gauss mentioned that the maximum area of a

triangle in the new geometry is precisely nC> / [log(1+ V2 )7

" Sketch of Proof: Let AXYZ be an isosceles triangle with a right angle at X. The altitude X bisects the
right angle, so L WXZ = n/4. Thus, since ray XZ cuts WZ, we know that [[(XW) < n/4. If C represents the
length with angle of parallelism ©/4, it follows that the length of the altitude X is less than C. Hence, the
least upper bound of all possible altitudes - Schweikart’s Constant - is less than or equal to C. In fact, since
right isosceles triangles with altitudes arbitrarily close to C exist (this is easy to demonstrate), Schweikart’s
constant must be equal to C, as claimed.
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Although Schweikart never published an account of astral geometry, he had one
more role to play in the subject’s history; he encouraged his nephew, Franz Adolph
Taurinus (1794-1874) to study the subject, bringing another important figure into the
story of pre-Lobachevski non-Euclidean geometry. We shall have more to say about
Taurinus’ work later, but two facts pertinent to the present discussion of absolute
measures are worth mentioning here.

Taurinus believed that the new geometry was logically consistent, but unlike his
uncle, he never believed that it might be applicable to reality. His objections stemmed
from the fact that non-Euclidean geometry admitted an absolute measure of length.

Taurinus’ studies led him into a correspondence with Gauss. In a letter to

Taurinus dated November &, 1824, Gauss wrote that:

All my efforts to discover a contradiction, an inconsistency, in this non-
Euclidean geometry, have been without success, and the one thing in it which is
opposed to our conceptions is that, if it were true, there must exist in space a
linear magnitude, determined for itself (but unknown to us). But it seems to me
that we know, despite the say-nothing word-wisdom of the metaphysicians, too
little, or too nearly nothing at all, about the true nature of space, to consider as
absolutely impossible that which appears to us unnatural. If this non-Euclidean
geometry were true, and it were possible to compare that constant with such
magnitudes as we encounter in our measurements on the earth and in the
heavens, it could then be determined a posteriori. Consequently in jest I have
sometimes expressed the wish that the Euclidean geometry were not true, since
then we would have a priori an absolute standard of measure.”

He had expressed a similar sentiment as early as 1816, in a letter to Gerling:

It seems paradoxical but there could be a constant straight line given as if
a priori, but I do not find in this any contradiction. In fact, it would be desirable
that Euclidean geometry were not true, for we would then have a universal
measure a priori. One could use the side of an equilateral triangle with angle =
59°59'59".9999 as a unit of length.

" Wolfe, p. 47.
T Rosenfeld, p. 215.
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Theory of Parallels 24

The farther parallel lines are extended in the direction of their parallelism,
the more they approach one another.

To prove this proposition, Lobachevski shows that if CG || AB, then G is closer to
AB than C is. This is easy to miss on a first reading, since an auxiliary construction
dominates the proof; Lobachevski does not even mention the parallel CG until the

penultimate sentence of his proof.

Upon the line AB, erect two
perpendiculars AC = BD, and join
their endpoints C and D with a
straight line. The resulting
quadrilateral CABD will have T
right angles at A and B, but acute G
angles at C and D (TP 227). These
acute angles are equal to one
another; one can easily convince
oneself of this by imagining laying L] o B
the quadrilateral upon itself in A E B
such a way that the line BD lies
upon AC, and AC lies upon BD. Bisect AB. From the midpoint E, erect
the line EF perpendicular to AB; it will be perpendicular to CD as well,
since the quadrilaterals CAEF and FEBD coincide when one is laid on
top of the other in such a way that FE remains in the same place.

Once we know that angles LACD and £BDC are equal, their acuteness follows
easily: were they obtuse, then CABD’s angle sum would exceed 2w, with the result that at
least one of the two triangles formed by drawing the diagonal AD would violate the
Saccheri-Legendre theorem (TP 19); were they right, then CABD would be a rectangle —
an impossible figure in imaginary geometry (TP 20 Notes, Claim 7).

" This refers to Lobachevski’s declaration at the end TP 22 that he would work in imaginary geometry from
that point forward. Had he carried out this construction earlier, he would not have been able to deduce that
the angles at C and D were acute; in neutral geometry, they could be either acute or right.
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Lobachevski uses superposition to demonstrate that £ACD = £BDC and that
EF 1L CD. Although open to Hilbertian criticism, such demonstrations are not lacking in
value; at the very least, they strongly suggest the truth of the statements they purport to
prove . Those who prefer iron-clan proofs that LACD = £BDC and EF L CD can find

them in the opening pages of Saccheri’s Euclides Vindicatus, to which we now turn.

A Sample of Saccheri

The quadrilateral CABD that Lobachevski constructs in TP 24 is an example of
what is now called a Saccheri quadrilateral. (As discussed in the notes to TP 19, a
Saccheri quadrilateral is formed by erecting equal perpendiculars upon a line segment’s
extremities, and joining their endpoints.) I have reproduced Saccheri’s first two
propositions below; these serve not only to demonstrate Saccheri’s style, but also to
supplement Lobachevski’s superposition arguments with additional proofs of a style to

which no one can object.

Proposition |

If two equal lines AC, BD, form equal angles with the line AB: I say that the
angles at CD will equal one another.

C D

Proof. Join AD, CB. Then consider
the triangles CAB, DBA. It follows
(Euclid 1.4 [SAS-criterion]) that the
sides CB, AD will be equal. Then
consider the triangles ACD, BDC. It
follows (Euclid 1.8 [SSS-criterion])
that the angles ACD, BDC will be
equal. Q.E.D. A B

"Here is an even quicker intuitive proof: by construction, CABD is symmetric about the perpendicular
bisector of 4B. Hence, this bisector must be perpendicular to CD (lest it break the symmetry), and the
angles at C and D must be equal.
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Proposition 11

Retaining the same quadrilateral ABCD, bisect the sides AB, CD at the points M
and H. I say the angles at MH will be right.

Proof. Join AH, BH, and likewise, C H D
CM, DM. Since the angles at 4 and B
in this quadrilateral are presumed
equal, and (by the preceding
proposition) the angles at C and D are
equal as well, it follows from Euclid
[.4 (noting the equality of the sides)
that in the triangles CAM and DBM,
the sides CM and DM are equal; A B
similarly, in triangles ACH and BDH, M
the sides AH and BH are equal. Consequently, by comparing first the triangles
CHM and DHM, and then the triangles AMH and BMH, it follows (Euclid 1.8)
that we have equal, and therefore right, angles at the points M and H. .

Q.E.D.

Lobachevski’s claim that LACD = £BDC follows directly from Saccheri’s first
proposition, while his claim that 4B’s perpendicular bisector meets CD at right angles
follows from Saccheri’s second proposition.

Note that in these first two propositions, Saccheri places no restriction on the base
angles, other than their equality. Beginning in his third proposition, he restricts his
attention to the quadrilaterals now named after him: those in which the base angles are

both right angles.

Thabit ibn Qurra, Omar Khayyam, and the Politics of Naming

“The fact is that every writer creates his own precursors. His work modifies our conception of the past...”
- Jorge Luis Borges, “Kafka and his Precursors”."

Saccheri’s first two propositions were actually established long before Saccheri. The first
dates back at least to Thabit ibn Qurra (836 — 901), and both propositions appear in the
work of Omar Khayyam (1045-1130). Under assumptions equivalent to the parallel
postulate, both men proved that Saccheri quadrilaterals must be rectangles, and
subsequently deduced the postulate from this fact. Like Saccheri, Khayyam established
the HRA by proving the HOA and HAA untenable. This fact has led some writers

" Saccheri, pp. 18-21.
" Borges, Labyrinths, p. 201.
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(including Rosenfeld) to rechristen the relevant figure the Khayyam-Saccheri
quadrilateral.

Lest accusations of Eurocentrism rain down upon me, I hasten to defend my
retention of the traditional Khayaam-free designation. The quadrilateral is not important
per se; rather, it is important because it acted as a window upon non-Euclidean geometry
for an age that never suspected that a geometry other than Euclid’s might exist’. In
Saccheri’s work, the window remained open for over thirty propositions, allowing him
ample time to observe and describe the world he hoped to dispel. Although Khayyam did
see the window, he opened and shut it in the very same proposition. If we sense
something special in Khayyam’s use of the quadrilateral today, it is only because we
know the much more profound use to which Saccheri would put the same figure 700
years later.

Readers interested in the work of Khayyam and ibn Qurra on the parallel

postulate can find detailed descriptions and extracts of it in Rosenfeld’s book .

Consequently, the line CD cannot
be parallel with AB. On the .
contrary, the line from point C
that is parallel to AB, which we | G
shall call CG, must incline toward
AB (TP 16), cutting from the
perpendicular BD a part BG < CA.
Since C is an arbitrary point of the
line CG, it follows that the farther
CG is extended, the nearer it
approaches AB.

We may partition the set of rays through C into two classes: those that cut AB, and
those that do not cut AB (TP 16). The boundary between the two classes is, of course, the
unique parallel to AB that passes through C. Into which category does CD fall? Since it
shares a common perpendicular with 4B, it can be neither a cutting ray (TP 4), nor the
parallel (TP 22). Hence, it is an ordinary undistinguished non-cutting ray. Accordingly, if
we call the parallel CG, it follows that CG must enter angle £4CD. Naturally, it will

" Microsoft Word’s grammar check objects to the phrase “a geometry,” so perhaps this age is still with us.
T Rosenfeld pp. 49-56 (ibn Qurra), pp. 64-71 (Khayyam).
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meet BD at some point G. (Proof: CG cuts AD by the crossbar theorem applied to AACD,;
it then cuts BD by Pasch’s axiom on AADB.) Since BG < BD = AC, the point G is closer
to AB than the point C is, which was to be shown.

Thus, parallel lines draw ever closer to one another in their direction of

parallelism, as claimed.

It is not yet clear whether parallel lines approach one another asymptotically, or
whether the distance between parallels always remains greater than some finite positive

value. This question will be settled in TP 33.
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Theory of Parallels 25

Two straight lines parallel to a third line are parallel to one another.

Transitivity of Parallelism

Whereas the classical definition of parallelism is transitive only in the presence of the
parallel postulate (see “A Deeper Definition” in the notes to TP 16), Lobachevski proves
here that his new notion of parallelism is transitive in imaginary geometry as well.

His proof falls into two parts: first, he establishes transitivity in the plane; then, he
does the same in space. The latter part, his first foray into three-dimensional imaginary
geometry, initiates a sequence of results in solid geometry (culminating in TP 28). His
desire to place these three-dimensional results together is responsible for this relatively

late proof of transitivity: he could have presented it after TP 20"

First Case: Transitivity in the Plane

We shall first assume that the three lines AB, CD, and EF lie in
one plane.

Given three lines in a plane, two of which are parallel to the third, one of the three
must lie between the other two'. We shall call it the “middle line’’; the —_—
others we shall call “outer lines”. Lobachevski’s proof of transitivity =~ middleline
in the plane is broken into two subcases. In the first subcase, the “third _—
line” (the one to which the others are parallel) is an outer line; in the second subcase, it is
the middle line.

Euclid himself demonstrated the transitivity of parallelism in Euclidean geometry

(Elements, 1.30, X1.9), so Lobachevski needs only to establish transitivity in imaginary

" Lobachevski’s two references to TP 22 in the proof of TP 25 are not to the proposition itself. Rather, they
refer to the remark made after the proof of that proposition, that the angle of parallelism is either always
acute or always right. Lobachevski could have noted this dichotomy earlier (after TP 20), but, for
presumably dramatic purposes, he reserved it for the remarks immediately preceding his announcement in
TP 22 of the “new geometric science, which I have named Imaginary geometry.”

"This can be proved rigorously from Hilbert’s axioms. Note that the lines must be parallel in the same

direction.
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geometry. Accordingly, any angle of parallelism that occurs in his proof will be acute.

Both subcases are easy to follow, and require no illumination on my part.

If one of the outer lines, say AB, and the middle line, CD, are
parallel to the remaining outer line, EF, then AB and CD will be parallel
to one another. To prove this, drop a
perpendicular AE from any point A of AB to EF; B D F
it will intersect CD at some point C (TP 5%), and
the angle «DCE will be acute (TP 22). Drop a H
perpendicular AG from A to CD; its foot G must
fall on the side of C that forms an acute angle

with AC (TP 9). Every line AH drawn from A into K

angle «BAC must cut EF, the parallel to AB, at E
some point H, regardless of how small the angle A C

£BAH is taken. Consequently, the line CD, G

which enters the triangle AAEH, must cut the
line AH at some point K, since it is impossible for it to leave the triangle
through EH. When AH is drawn from A into the angle £CAG, it must cut
the extension of CD between C and G in the triangle ACAG. From the
preceding argument, it follows that AB and CD are parallel (TP 16 and
18).

If, on the other hand, the two outer lines,
AB and EF, are both parallel to the middle line
CD, then every line AK drawn from A into the B D F
angle 4BAE will cut the line CD at some point
K, regardless of how small the angle {BAK is M
taken. Draw a line joining C to an arbitrary
point L on the extension of AK. The line CL L
must cut EF at some point M, producing the
triangle AMCE. Since the extension of the line
AL into the triangle AMCE can cut neither AC
nor CM a second time, it must cut EF at some
point H. Hence, AB and EF are mutually
parallel.

Having established transitivity in plane, Lobachevski turns to space. As is its
wont, the third dimension requires an entirely new proof. Adapting the two-dimensional
proof is, unfortunately, impossible, since we cannot distinguish “outer” and “middle”

lines in space; what looks like the middle line from one perspective will not from another.

“Lobachevski’s original text cites TP 3 here. I presume this was an editorial mistake.
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Before describing Lobachevski’s proof of the spatial case, I must devote a few

preliminary words to three-dimensional geometry.

Solid Geometry

The axioms of plane geometry were not designed to bear the weight of an extra
dimension, so we must give some attention to the foundations when we move from the
plane to space. In particular, we must secure some basic information about the behavior
of planes in space, since Euclid’s axioms tell us nothing about them. There are two ways
to go about doing this.

The first way begins by formulating a precise definition of a plane. From the
familiar axioms of plane geometry, one must then prove that any object satisfying the
official definition of a plane actually behaves in a manner befitting of the name “plane”.
For example, one must prove, among other things, that there exists a unique plane
passing through any three non-collinear points in space.

Euclid attempted this procedure in Book XI of the Elements, but was not
successful. His definition of a plane (“that surface which lines evenly with the straight
lines on itself”) is every bit as vague as his definition of a line. Unfortunately, the
consequences of a non-defining definition are more serious in Book XI than they are in
Book 1. Euclid’s attempted definition of a line is certainly an aesthetic failure -- a
superfluous utterance that mars an otherwise streamlined presentation. Yet however ugly
it may be, it does no damage to the logical development of geometry, because Euclid
never actually refers to it. Rather, he bases all his theorems about lines and rectilinear
figures upon his axioms, which describe the properties of lines, and thus define them
implicitly. Alas, since Euclid’s axioms do not describe the properties of planes, his
development of solid geometry is condemned to an awkward and illogical beginning. As
Thomas Heath, the translator and editor of the standard English edition of the Elements,
acknowledges, “There is no doubt that the proofs of the first three propositions [in book
XI] are unsatisfactory owing to the fact that Euclid is not able to make any use of his
definition of a plane for the purpose of these proofs, and they really depend upon truths

. . . *
which can only be assumed as axiomatic.”

" Euclid, Vol. 3, p.272.
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Euclid regains his usual composure in his fourth proposition, but his failure to
provide an even moderately satisfactory foundation for solid geometry suggests that
defining the term plane may not be the best strategy for moving from two to three
dimensions. Given Euclid’s failure, it is surprising to learn that his strategy is actually
feasible (using a different definition than his, of course)! Carrying it to fruition, however,
is delicate and difficult work, which would take us far afield. The most expedient path,
which I shall follow here, is simply to accept plane as an undefined term, like point and

line, and adopt a few extra axioms that describe the behavior of planes in space.

These “plane axioms” are:

1) If P and Q are points in a plane, then the entire line PQ lies in the plane.
2) Any three non-collinear points determine a unique plane.

3) Distinct planes either intersect in a line or do not meet at all.

These axioms appear, in slightly different form, in Hilbert’s Foundations of
Geometry, and correspond (roughly) to the first three propositions that appear in Book XI
of Euclid’s Elements. As I mentioned in the notes to TP 16, it is not my intention here to
pursue a logically impeccable basis for geometry in the manner of Hilbert, but I would
like to point out a notable feature of Hilbert’s axioms for solid geometry: the jump from
two to three dimensions does not necessitate any additional “betweenness” axioms. The
spatial analogue of Pasch’s axiom, for example, may be proved as a theorem from its

two-dimensional counterpart and the plane axioms.

Because of the second plane axiom, we may employ the notation “plane ABC”,
without ambiguity, for the plane through three non-collinear points 4, B, and C. If we
wish to emphasize that some other point, say, D, also lies on plane 4BC, we may refer to
it as plane ABCD. In situations where it is clearly understood that we are referring to a
plane, we may simply write ABC instead of plane ABC.

Lobachevski’s definition of parallelism easily extends to space: two lines in space
are said to be parallel if they are coplanar and parallel in their common plane. Given

any line AB in space, and any point P¢AB, it is easy to see that there is a unique line
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through P that is parallel to AB: if PQ || AB, then PQ and 4B are coplanar, so any parallel
PQ to AB must lie in plane ABP; by TP 16, there is one and only one such line.

Lobachevski’s Lemma

Having disposed of these preliminaries, we turn to Lobachevski’s proof of the
transitivity of parallelism in space. He begins with a lemma: suppose that AB || CD; if a
plane containing AB intersects a plane containing CD, then their line of intersection will
be parallel to both AB and CD.

Suppose now that two
parallels, AB and CD, lie in two
planes whose line of intersection
is EF. From an arbitrarily
chosen point E of EF, drop a
perpendicular EA to one of the
parallels, say to AB. From the
foot of this perpendicular, A,
drop a new perpendicular, AC,
to CD, the other parallel. Draw
the line EC joining E and C, the endpoints of this perpendicular
construction. The angle {BAC must be acute (TP 22), so the foot G of a
perpendicular CG dropped from C to AB will fall on that side of AC in
which the lines AB and CD are parallel. The line EC, together with any
line EH that enters angle {AEF (regardless of how slightly EH deviates
from EF), determines a plane. This plane must cut the plane of the
parallels AB and CD along some line CK. This line cuts AB somewhere —
namely, at the very point L common to all three planes, through which
the line EH necessarily passes as well. Thus, EF is parallel to AB. We can
establish the parallelism of EF and CD similarly.

I have taken the liberty of changing the names of some of the points in this
passage: the points I have called H, K, and L are all called H in Lobachevski’s original.

Even after this change of notation, Lobachevski’s proof remains awkward. To
begin with, his sentence about line CG is irrelevant, a distraction that contributes nothing
to the proof. (Accordingly, I have left CG off the figure, as its presence would add
nothing but clutter.) Next, Lobachevski’s immediate goal, to show that EF || 4B, entails
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two steps: a proof that these lines do not meet, and a proof that any ray entering £FEA
must cut 4B. He carries out the second step, but neglects the first entirely. Here is a more

complete, and hopefully cleaner, version of his proof.

Claim 1. (Lobachevski’s Lemma) Suppose that AB || CD; if a plane containing AB intersects a
plane containing CD, then their line of intersection, EF, will be parallel to both AB and CD.
Proof. Draw the line segments EA, EC, and AC.

We shall prove that EF || AB. That is, we shall prove that these lines do not intersect, and
that any ray entering £ FEA must cut AB. We shall do these one at a time.

First, suppose by way of
contradiction that AB and EF meet. Let X be

their point of intersection. Since XeAB and
AB lies on plane ABCD, it follows that X
also lies on this plane. Since X, C, and D all
lie on this plane, planes XCD and ABCD

must be identical (by the second plane

axiom). Similarly, Xe EF implies that planes
XCD and EFCD are identical. Hence, planes ABCD and EFCD must be identical. This being the
case, points 4,B,C,D,E,F are coplanar. This, however, cannot be. (Proof: The intersecting planes
in the statement of the lemma are clearly ABEF and CDEF'. If 4,B,C,D,E,F were coplanar, then
these planes would be identical, in which case they would not intersect in a line, contrary to
hypothesis.) This contradiction shows that 4B and EF do not intersect.

Next, we shall show that any ray entering £ FEA must cut 4B. To this end, let ray EH
enter L FEA. The lines EH and EC determine a plane: ECH. Because this plane cuts plane ABCD
at C, it must intersect ABCD in some line through C (by the third plane axiom). Call it CK. Since
CK enters £DCA it must cut AB (because, by hypothesis, CD || AB). Let L be the intersection of
CK and 4B.

Since Le CK and CK lies on plane ECH, it follows that L lies on plane ECH.

Since LeAB and 4B lies on plane ABEF, it follows that L lies on plane ABEF.

Thus, L lies on the intersection of planes ECH and ABEF. That is, Le EH. Having shown
that ray EH cuts AB (at L), we conclude that EF || AB, as claimed.

A similar argument shows that EF || CD.

Hence, EF is parallel to both AB and CD, which was to be shown. n
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Transitivity at Last

Therefore, a line EF is parallel to one of a pair of parallels, AB and
CD, if and only if EF is the intersection of two planes, each containing
one of the parallels, AB and CD. Thus, two lines are parallel to one
another if they are parallel to a third line, even if the lines do not all lie in
one plane. This last sentence could also be expressed thus: the lines in
which three planes intersect must all be parallel to one another if the
parallelism of two of the lines is established.

In the first sentence of this passage, Lobachevski asserts the equivalence of two
statements, but he does not actually bother to prove their equivalence. Clearly, the latter
statement implies the former (by Lobachevski’s lemma), but he gives no hint as to why
the converse holds. I shall remedy this situation by proving a related theorem —
fundamental in its own right - that will immediately establish Lobachevski’s unproved

claim, and with it, the transitivity of parallelism in space.

Claim 2. If two lines are parallel to a third, then the two lines must be coplanar.

Proof. Suppose AB and CD are both parallel to EF. We shall show that 4B and CD are coplanar.
The three points 4,B,and C determine a plane. Since the planes ABC and EFCD share

point C, they must intersect in a line.

Call it CK. By Lobachevski’s Lemma A -B

(Claim 1), the intersection of plane /

ABCK (which passes through 4AB) and

plane EFCDK (which passes through

EF) must be parallel to both 4B and

EF.Thatis, CK || AB and CK || EF. E
CK is therefore a ray that lies

in plane EFCDK, passes through C,

and is parallel to EF. Since CD also meets this description, the uniqueness of parallels implies

that CK = CD.

C

Since 4B and CK were coplanar by construction, we conclude that AB and CD are

coplanar, as claimed. n
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Corollary (Lobachevski’s unproved claim). Suppose that AB || CD. If EF is parallel to one of
these lines, then EF is the intersection of a plane containing 4B and a plane containing CD.
Proof. Suppose, without loss of generality, that EF || AB. Since EF and CD are both parallel to
AB, we know that the lines EF and CD must be coplanar (Claim 2). Their common plane EFCD
contains CD; its intersection with plane ABEF (which contains AB) is EF. n

Claim 3 (Transitivity at last). Parallelism is transitive in three-dimensional space.
Proof. Suppose that 4B || CD and 4B || EF. By the preceding corollary, EF is the intersection of
a plane containing AB and a plane containing CD. Thus, by Lobachevski’s lemma (Claim 1), it

follows that EF' || CD. Hence, parallelism is transitive in space, as claimed. L]

Finally, Lobachevski observes that if three planes are arranged in such a way that
two of their three lines of intersection are
parallel, then all three must be parallel to one X
another. This follows directly from /[ b -cm-mmmmmmom o T ;-
Lobachevski’s lemma. The figure that it
suggests — an infinite triangular prism whose three edges are mutually parallel — will play

an important role in much that follows. We shall meet it again in TP 28.

Bolyai’s Proof

Bolyai demonstrates the transitivity of parallelism in §7 of his Appendix. His incisive
proof of the transitivity of parallelism in space makes Lobachevski’s proof look
laboriously cobbled by comparison. Bolyai not only confirms the truth of the theorem,
but also renders it intuitive. His use of motion is elegant, but it leaves his proof open to
criticism of insufficient rigor. I shall retell Bolyai’s proof in my own words, retaining his
notation for the benefit of those readers who wish to compare it to Bolyai’s terse original

text.
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Theorem. Let BN, CP, and AM be lines that do not all lie in the same plane. If BN and CP are
both parallel to AM, then BN and CP are parallel to one another.

Proof. Let D be any point on AM. Rotate plane BCD about BC so that D
moves along ray AM. This makes line BD rotate toward BN (in plane AMBN),
and CD rotate toward CP (in plane AMCP). When plane BCD separates from
AM, the cutting-lines BD and CD will cease to cut AM; at that moment, they
will coincide with BN and CP, the unique parallels to AM through B and C
respectively. Since BN and CP both lie on the rotating plane at the same

moment, these lines must be coplanar. Thus, we have demonstrated that if two
lines are parallel to a third line, the two must be coplanar.

Next, we shall show that BN and CP are not merely coplanar, but
parallel. Let BR be the unique parallel to CP through B; we shall show BR = BN.

Since BR and AM are both parallel to CP, the lines BR and AM must be
coplanar, by the result we just established. Thus, BR lies in plane BAM, which is
identical to plane BNAM. Of course, BR also lies in plane BRCP, which is
identical to BNCP. (BN and CP are coplanar, so the plane BNCP exists; it

coincides with BRCP by the second plane axiom.) Thus, BR is the intersection of C
planes BNAM and BNCP. That is, BR = BN. Hence, BN || CP, as claimed. [

Lobachevski, Bolyai, and Gauss all proved the transitivity of parallelism in the
plane by examining two cases: when the “third line” lies between the other two, and
when it does not. Gauss left no proof of the transitivity of parallelism in three

dimensions.
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Theory of Parallels 26
Antipodal spherical triangles have equal areas.

By antipodal triangles, I mean those triangles that are formed on
opposite sides of a sphere when three planes through its center intersect
it. It follows that antipodal triangles have their sides and angles in
reverse order.

As Lobachevski notes in TP 12, a plane passed through a sphere produces a circle of
intersection on the sphere’s surface. The closer the plane comes to the sphere’s center, the
larger the circle of intersection will be; if it passes through the center itself, the resulting
intersection is a great circle. On a globe, for example, lines of longitude and the equator
are all examples of great circles, while the Tropic of Capricorn is not.

Diametrically opposed (antipodal) points on a sphere can be joined by many great
circles; the North and South poles of the globe, for example, are connected by a// lines of
longitude. In contrast, any two non-antipodal points can be joined by one and only one
great circle: the great circle lying in the unique plane determined by the sphere’s center
and the two non-antipodal points. The two points split “their” great circle into a pair of
arcs, the shorter of which we shall call, conveniently if ungrammatically, the great circle
arc that joins the points.

A spherical triangle consists of three points on
a sphere and the great circle arcs that join them to one
another. If 4, B, and C are points on a sphere, and 4,
B', and C' are the points diametrically opposed to
them, then the spherical triangles AABC and AA'B'C’
are said to be antipodal triangles. This unambiguous
definition is both neater than, and equivalent to,

Lobachevski’s somewhat vague description of

b

“triangles formed on opposite sides...”, and thus is
preferable to it on logical grounds.

If, as in the figure, the vertices A, B, and C of a spherical triangle occur in
counterclockwise order (when viewed from the perspective of a bug standing within the

triangle on the surface of the sphere), the corresponding vertices 4’, B', and C' of its
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antipodal triangle will clearly occur in clockwise order (and vice versa). Obvious though
this may be from the figure, one must define orientation to prove this formally. To do so
would entail a lengthy digression that would gain us nothing but rigor. Since no new
insight is to be won, and since we shall not need to discuss orientation ever again after
this proposition, I shall not belabor this point.

Continuing therefore in the intuitive spirit of Lobachevski’s treatment of
orientation, we distinguish two different types of geometric congruence. Congruent
figures on the same surface (plane or sphere) are said to be directly congruent if one of
them can be slid along the surface until it coincides point for point with its mate. If this
cannot be done, the congruent figures are oppositely congruent. Oppositely congruent
figures (examples in the plane include alternate footprints, or the letter K and its mirror
image) can be made to coincide by lifting one figure out of the surface, turning it over,
and returning it to the surface in its reversed state.

When Euclid compared the areas or volumes of figures, he relied on a handful of
unspoken assumptions about how area behaves. One such assumption was that congruent
figures have equal area. Consequently, a proof that antipodal triangles are congruent
(which we shall demonstrate shortly) would have satisfied Euclid that antipodal triangles
have the same area. Note, however, that antipodal triangles are, in general, oppositely
congruent, due to their mutually reversed orientations. Unlike Euclid, Lobachevski was
unwilling to assume that oppositely congruent figures have the same area, preferring to
prove this fact from the more modest assumption that directly congruent figures have
equal area. He does not prove this explicitly in the Theory of Parallels, but the idea for
such a proof is implicit in the present proposition’s demonstration. In order to understand
it, we shall first need to understand Lobachevski’s simple criterion for deciding when two

figures have the same area.

Lobachevski explains this criterion in the proposition’s last line (which ought to
have been the first line): “I adopt the following postulate: two figures on a surface are

equal in area when they can be formed by joining or detaching equal parts.” Keeping in
mind that Lobachevski’s “equal parts” are our “directly congruent

figures,” we can understand the postulate by looking at a couple of k ﬁ
pictures. The two figures at right are not congruent, but according
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to Lobachevski, they have equal area, since they are formed from directly congruent
pieces. In our second picture, we see two trapezoids; these are
directly congruent to one another, and thus have the same area. N

4

removing a directly congruent copy of it from the right trapezoid, Lobachevski’s

After removing a triangle from the left trapezoid and then

postulate tells us that the resulting “holey trapezoids” also have the same area as one
another. Lobachevski’s postulate is natural for any reasonable notion of area; Euclid
makes the same assumptions (albeit implicitly) in the Elements, except in a stronger
form, allowing himself the luxury of letting the “equal parts” be either directly or
oppositely congruent to one another. We shall return to this theme after proving that

antipodal triangles are congruent.

The corresponding sides of antipodal triangles AABC and AA'B'C’
are equal: AB = A'B’, BC = B'C', CA = C'A'. The corresponding angles are
also equal: those at A, B, and C equal those at A’, B', and C' respectively.

Before we can prove that the corresponding angles of antipodal triangles are
equal, we must be clear about how to measure the angles in a spherical triangle. In
general, we define the measure of the angle at which two curves intersect to be the
measure of the angle between their tangent lines at their point of intersection. However,
when we restrict our attention to measuring the angles between great circles on a sphere,
there is an alternate, equivalent method that is often more convenient: the measure of the
angle between two great circles is equal to the measure of the angle of intersection
between the planes in which the circles lie. We shall soon prove that these two methods
of measurement yield the same result, but first, we must first describe how one actually

measures the angle between two intersecting planes.
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A Dihedral Digression

The angle formed by two planes at their line of intersection is called a dihedral
angle. We measure such an angle as follows. From an arbitrary point of a dihedral
angle’s “hinge” (the line in which the two planes meet), erect two —
perpendiculars, one in each plane. These perpendiculars are called lines of
slope for the dihedral angle. We define the dihedral angle’s measure to be N
the measure of the plane angle between its lines of slope. To dispel what
appears to be an ambiguity in this definition, we must prove that the angle
between a dihedral angle’s lines of slope does not depend upon the point from which they
emanate. The standard proof of this fact, which one may find in any old textbook on solid
geometry, relies upon the parallel postulate, and thus is insufficient for our purposes. The
following proof, however, is neutral, and therefore acceptable. I have taken it from

D.M.Y. Sommerville’s text (originally published in 1914), The Elements of Non-
Euclidean Geometry.

Claim 1. In a dihedral angle, the measure of the plane angle between the lines of slope is
independent of the point from which they emanate. (i.e. the measure of a dihedral angle is well-
defined.)

Proof. Let a and f be two planes forming a
dihedral angle, and let P and P' be arbitrary
points on their line of intersection. Draw lines
of slope P4 and P'A’ in a such that P4 = P'A’,
and lines of slope PB and P'B' in f such that
PB = P'B'. To establish the claim, we must
show that £APB = £A'P'B’. To do so, we shall
prove that AAPB = AA'P'B’.

Let U be the point of intersection of PA" and P'A.

Note that PU = P'U. (Proof: AAP'P = AA'PP’' by SAS, so £AP'P = £A'PP'. These equal
angles are both in APUP’, so this triangle is isosceles, by Euclid 1.6. That is, PU = P'U.)

Next, if we let V be the intersection of PB’ and P'B, and apply the same argument to plane
f that we just used in plane a, we will find that PV = P'V.
We therefore know that APUV = AP'UV, by SSS. Hence, LUPV = LUP'V.
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Thus, AP'AB = APA'B' by SAS. (PA' = P'A since AAPB = AA'P'B’, as was shown above.
Similarly, P'B = PB'.)

Hence, AB = A'B', from which it follows that AAPB = AA'P'B’, by SSS.

Thus, £LAPB =£A'P'B', which was to be shown. m

We can now verify our earlier claim that angles between great circles can be measured

with dihedral angles.

Claim 2. The measure of the angle between two great circles equals the measure of the dihedral

angle between the planes in which the great circles lie.

Proof. On a sphere with center O, let £BAC be the angle formed at 4 by two great circle arcs, AB
and AC. By definition, the measure of the spherical angle
ABAC equals the measure of the angle between the
tangent lines to arcs AB and AC at 4. These tangent lines
lie in the planes OA4B and OAC, which form a dihedral
angle with hinge OA4. Since the tangents to the great circles
are perpendicular to radius O4, they constitute lines of
slope for the dihedral angle. Thus, the angle between the

tangent lines measures not only the spherical angle £ BAC,

but also the dihedral angle. Since these last two angles are
therefore equal, we may measure one with the other. That is, the angle between the great circles

has the same measure as the dihedral angle formed by the planes in which the circles lie. =

Antipodal Triangles are Congruent
“But in regard to the story of the antipodes, that is, that there are men on the other side of the earth where
the sun rises when it sets for us, who plant their footprints opposite ours, there is no logical ground for
believing this.”

- St. Augustine, The City of God Against the Pagans (Book XVI, Ch. 9)."

In a plane, vertical angles are equal to one another. Applying this familiar result to the
definition of dihedral angle measure, we can easily deduce that vertical dihedral angles
are equal to one another. This fact, which Lobachevski notes in TP 6, will be used in the

following simple proof.

" Augustine, p. 92.
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Claim 3. Antipodal triangles are congruent.

Proof. Let AABC and AA'B'C’ be antipodal triangles on a
sphere with center O.

The planes containing the great circles ABA'B’ and
ACA'C' form a dihedral angle, which measures the
spherical angle £4; its vertical angle measures <£4’. Since
these vertical dihedral angles are equal, the spherical
angles they measure are equal. That is, £4 = AA"
Similarly, B = £B'and £C = £C".

In any circle, equal central angles subtend equal

arcs. Thus, in the great circle 4BA'B’, whose center is O, the arcs AB and 4A'B’' must be equal,
since they are subtended by the vertical (and hence equal) angles, £40B and £A'OB'. Similarly,
AC =A'C'and BC = B'C".

Since all corresponding parts of the antipodal triangles are equal, the triangles are

congruent (TP 15). n

Consider the plane passing through
the points A, B, and C. Drop a
perpendicular to it from the center of the
sphere, and extend this perpendicular in
both directions; it will pierce the antipodal
triangles in antipodal points, D and D'.
The distances from D to the points A, B,
and C, as measured along great circles of
the sphere, must be equal, not only to one
another (TP 12), but also to the distances
D'A’, D'B', and D'C' on the antipodal
triangle (TP 6). From this, it follows that
the three isosceles triangles that surround D and comprise the spherical
triangle AABC are congruent to the corresponding isosceles triangles
surrounding D' and comprising AA'B'C'.

As a basis for determining when two figures on a surface are equal,
I adopt the following postulate: two figures on a surface are equal in area
when they can be formed by joining or detaching equal parts.
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We have now seen that antipodal triangles are oppositely congruent. Essentially,
Lobachevski would admit that antipodal triangles 7" and 7’ have the same area only after
demonstrating that 7' can always be sliced into pieces, from which the antipodal triangle
T' can subsequently be rebuilt, without having to turn any of the pieces over in the
slicing and rebuilding process.

To understand why this is possible, consider the analogous situation in the
Euclidean plane. The figure at right depicts oppositely
congruent triangles; like any such pair, they are mirror images
of one another. I have split each of them into three isosceles
subtriangles by joining their vertices to their circumcenters . It
is clear that by detaching the pieces of the left triangle from one another, sliding them
around the plane, and rejoining them, we can build a second copy of the right triangle
from the pieces of the left triangle, without having to turn any of them over. Hence, the
two triangles must have the same area (by Lobachevski’s postulate). This elegant
argument proceeds from the fact that isosceles triangles are directly congruent to their
mirror images; they do not change their appearance if we turn them over. Thus, by
breaking an arbitrary triangle into “nice” (i.e. isosceles) subtriangles, we can parlay a
desirable property that occurs on a small scale (isosceles triangles have the same area as
their mirror images) to a desirable large-scale property (all triangles have the same area
as their mirror images).

Note that if the circumcenters do not lie within the triangles, we must adjust the
above argument slightly. If the circumcenters lie upon the triangles, the adjustment is
trivial — the triangles simply split into two isosceles subtriangles each, instead of three. If
the circumcenters lie outside the triangles, a change of perspective will fix the argument:

we view each triangle as the result of joining two isosceles triangles and subsequently

detaching a third from their union. (For example, in the C C'

figure at right, we obtain AABC by joining AAOB to B B’

ABOC and detaching AAOC). Thus, Lobachevski’s /
A A’

postulate for the equality of area, discussed above, implies

" For every triangle in the Euclidean plane, there is a unique circle that circumscribes it (Euclid IV.5). This
circle is the triangle’s circumcircle; its center is the triangle’s circumcenter. 1 shall discuss this in further
detail in the notes to TP 29, starting on p. 122.
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the equality of area for these triangles.

Of course, Lobachevski’s oppositely congruent triangles lie not in the Euclidean
plane, but on the surface of a sphere in three-dimensional imaginary space. However, the
ideas underlying his spherical proof are identical to those I have outlined in the preceding
paragraphs. Consequently, I shall not discuss the mechanics of his proof in further detail.
Rather, I wish to point out a curious phenomenon regarding circumcircles that will be

important in later propositions.

Circumstantial Circumcircles
“Weave a circle round him thrice,
And close your eyes with holy dread...”
- Samuel Taylor Coleridge, Kubla Khan."

I specifically described the proof that triangles have the same area as their mirror images
as taking place within the Euclidean plane because the ability to construct a triangle’s
circumcircle (Euclid IV.5) depends upon the parallel postulate! Indeed, the statement, “a
circle may be circumscribed about any triangle” is equivalent to the parallel postulate.
We shall prove this surprising fact in TP 29, and unfold its remarkable geometric
consequences in subsequent propositions.

As the proof of TP 26 depends heavily upon our ability to circumscribe circles
about arbitrary triangles, it is interesting to note the sources of our ability to do so in
different geometric settings. In Euclidean geometry, the relevant source is the parallel
postulate. In contrast, the fact that the intersection of a sphere and a plane is a circle is the
key in spherical geometry: the vertices of any spherical triangle determine a plane, whose

intersection with the sphere is the triangle’s circumcircle.

" The Norton Anthology of Poetry, p. 615.
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Theory of Parallels 27

A trihedral angle equals half the sum of its dihedral angles minus a right
angle.

Measuring Solid Angles

A solid angle is dihedral if it is bounded by two planes meeting at a line; trihedral if it is
bounded by three planes at a point. Thus, a tetrahedron contains four trihedral angles, one
at each vertex, and six dihedral angles, one at each edge. TP 27 relates the measure of a
trihedral angle to the measures of the three dihedral angles at its edges. We know how to
measure dihedral angles (see the TP 26 notes), but how does one measure a trihedral
angle? We must answer this question before we can understand the statement of TP 27,
much less prove it.

We tend to associate angle measurement with rotation. The measure of an
ordinary angle in the plane, for example, indicates the amount of rotation required to
bring one of its arms into coincidence with the other. Similarly, the measure of a dihedral
angle indicates the amount of rotation required to bring one of its faces into coincidence
with the other. The link between angle measure and rotation, however, ceases to exist
when we work with trihedral angles (or more generally, when we work with polyhedral
angles, formed by three or more planes meeting a point). Fortunately, we can articulate a
general definition of polyhedral angle that agrees with our existing measures, but that is
not based on rotation.

To motivate this definition, let us examine an alternate, protractor-free method for
measuring ordinary angles in the plane. We begin by assigning a numerical value to the
"full angle" (a 360° rotation). Any positive value (including 360) is permissible, but I
shall set the full angle’s value at 2w, so as to agree with Lobachevski. Then, to define the
measure 6 of an arbitrary angle in the plane, we proceed as follows. We draw an arbitrary
circle (of circumference C) about the angle’s vertex, and let s be the arc length of that
part of it contained between the angle’s arms. Clearly, the ratio s:C = 6:2n holds.
Rewriting this as an equivalent formula, we obtain our definition of angle measure: 6 =
(s/C)2m. That is, we define the measure of the angle to be 2m times the ratio of the

subtended circular arc to the whole circle.
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Naturally, making this definition fully rigorous would require a proof that the
ratio s:C is independent of the particular circle that we draw about the angle’s vertex.
This independence is essentially a consequence of the symmetry of circles together with
the homogeneity of the plane (inasmuch as the plane “looks the same” in every
direction’), but a proof requires some work. Since my concern, however, is with the
fruits, rather than the roots, of this definition, I shall take this objection as met, and
proceed to generalize the definition so it that it covers solid angles (i.e. dihedral and
polyhedral angles) as well.

Let 21t be the numerical value of the “full solid angle”. We define the measure ¢
of an arbitrary solid angle as follows. We draw a sphere about its vertex (or in the case of
a dihedral angle, about any point on its hinge). The angle will subtend a certain figure on
the sphere (it will be a “lune” in the case of a dihedral angle, a spherical triangle in the
case of a trihedral angle, etc.). This figure will cover a certain fraction of the sphere’s
surface. Multiply this fraction by 2n. We define the result to be the solid angle’s measure.

For example, consider the dihedral angle formed by two perpendicular planes.
When we center a sphere about a point on its hinge, the resulting subtended figure will
comprise half of a hemisphere; that is, it will comprise % of the entire sphere. Thus, the
measure of the dihedral angle between the two perpendicular planes will be, according to
our new definition, Y4(21) = n/2, as expected.

One final note: Lobachevski follows a geometric tradition in which a genuine
angle delimits a convex region of the plane (or space). Thus, the measure of every
genuine angle (plane or solid) lies between 0 and m. This geometric convention, as
opposed to the analytic convention, measures angles unambiguously. Angle measures
will, moreover, lies strictly between 0 and m: a “flat angle” of measure 0 or © would not
be considered a proper angle at all, since it would be a ray, a straight line, a half-plane, or
a plane.

Now that we know what trihedral angles are, and how to measure them, we are
almost capable of understanding the statement of TP 27. All that remains is to mention
that for any trihedral angle, “its” dihedral angles are those formed at its three edges by the
planes that meet at its vertex. The statement of TP 27 should now be comprehensible. Let

us — at last — examine its proof.

" Some prefer to use a separate term, isotropy, for this property of looking the same in every direction.
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The Size of Spherical Figures

Let AABC be a spherical triangle, each of c
whose sides is less than half a great circle. :
Let A, B, and C denote the measures of its
angles. Extending side AB to a great circle
divides the sphere into two equal
hemispheres. In the one containing AABC,
extend the triangle's other two sides through
C, denoting their second intersections with
the great circle by A" and B'. In this way, the
hemisphere is split into four triangles: AABC,
AACB', AB'CA’, and AA'CB, whose sizes we
shall denote by P, X, Y, and Z respectively.

Since the statement of TP 27 is concerned with trihedral angles, we naturally
expect Lobachevski to begin his proof by specifying one. This is indeed what he does,
although a reader today may not recognize it in the passage above. Nevertheless,
Lobachevski is working with an arbitrary trihedral angle: he calls its vertex D; he calls
the three planes that meet there ABD, ACD, and BCD. This naming, however, has
occurred behind the curtain, as it were. When it rises, we, the audience, find Lobachevski
in medias res, having already brought his trihedral angle out, named it parts, and placed a
sphere about its vertex. We find him considering the figure that the trihedral angle
subtends upon the sphere - a spherical triangle. Moreover, since his geometric convention
for angles dictates that any genuine trihedral angle delimits a convex region of space, the
spherical triangle’s sides will each take up less than half of a great circle.

Now that we have recognized that Lobachevski’s spherical triangle is the figure
subtended by an arbitrary trihedral angle upon a sphere centered and its vertex, we can
return to his words to see what he is trying to tell us about it. By extending its sides, he
divides one hemisphere into four spherical triangles. He then refers to the “sizes” (die
Grofie) of these triangles. He defines (implicitly) the size of a spherical figure to be the
measure of the central solid angle that subtends it. Thus, the full sphere’s size is 27 (since
this is the measure of the full solid angle), a hemisphere’s size is m, and in general, if a
figure takes up a certain fraction of the sphere’s surface, its size is 27 times that fraction.
Size is therefore directly proportional to area. The following simple lemma about the size

of a spherical lune will prove helpful shortly.
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Lemma. The size of a spherical lune (a figure bounded by two
distinct arcs that span the same pair of antipodal points) equals
the measure of the angle at which its two arcs meet. (See the

figure)

Proof. If @ is the angle between the arcs, then the lune clearly

covers 6/2n of the sphere's total surface. Hence, its size is
(62m)(2m) = 6, as claimed. m

Clearly, P+X=B, and P+Z=A. Moreover, since the size Y of the spherical
triangle AB'CA' equals that of its antipodal triangle AABC' [TP 26], it
follows that P+Y=C. Therefore, since P+X+Y+Z = &, we conclude that
P = % (A+B+C - n).

This swift, elegant proof amounts to little
more than a threefold application of the lemma. The
lemma gives P+X = B and P+Z = A. Since antipodal
triangles are congruent (TP 26 notes, Claim 3), they
cover the same fraction of the sphere’s surface, and
thus have the same size. Hence, the lemma gives
P+Y=_C.

Summing the left and right-hand sides of the

three equations yields
2P + (P+X+Y+Z)=A+B+C.

A glance at the figure reveals that the expression in parentheses represents the size of one

hemisphere: . Making this substitution and solving for P yields P = 2 (A+B+C - ).
By Claim 2 in the TP 26 notes, 4, B, and C measure not only the angles of spherical

triangle AABC, but also the dihedral angles between the three planes that comprise the

trihedral angle at D. Thus, we have proved the theorem.
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TP 27 Rephrased as a Theorem about Spherical Triangles

Every trihedral angle that we shall meet in The Theory of Parallels will have its vertex at
a sphere’s center. Happily, we can rephrase TP 27 in a form specifically suited to this
circumstance, since we may easily relate the trihedral angle and its three dihedral angles
to features of the triangle it subtends upon the sphere’s surface.

First, the trihedral angle’s measure equals the size of the spherical triangle.

Next, since the dihedral angles measure as the spherical triangle’s angles (TP 26
Notes, Claim 2), we may replace the sum of the dihedral angles equals by the angle sum
of the spherical triangle.

After making these two replacements, Lobachevski’s statement of TP 27
(“A trihedral angle equals half the sum of its dihedral angles minus a right

angle) becomes the following statement about spherical triangles:

Size =2 (Angle Sum) - 7/2.
Or equivalently,
Size = 2(Angle Sum - ).

Finally, if we call the quantity in parentheses the angular excess of the spherical
triangle (the amount by which its angle sum exceeds m), we obtain our desired

relationship, which we express formally in the following restatement.

Claim 1 (TP 27 Rephrased). In any spherical triangle, the following relation holds:

Size = 2 (Angular Excess).

From this reformulation of TP 27, an important consequence follows.

Claim 2. In both Euclidean and imaginary geometry, every spherical triangle has angle sum
greater than .

Proof. Since a spherical triangle’s size is a positive number, the preceding equation implies that
its angular excess must also be positive. (Note that the equation holds in both geometries since

TP 27 is a neutral result.) Thus, its angle sum must exceed 7, as claimed. =
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A Theorem So Nice, He Proved It Twice

It is also possible to reach this conclusion by another method, based
directly upon the postulate on equivalence of areas given above [TP 26].

Curiously, Lobachevski gave two proofs of TP 27. His first proof, which we have
just seen, resembles a sleight of hand magic trick; he diverts our attention from AABC
with three auxiliary triangles, and craftily extracts his formula while our eyes are
elsewhere. If his first proof is magical, his second is economical. It requires less
machinery, as it eschews theorem TP 26 altogether. Moreover, the first proof produces
quite a bit of “waste” (the three auxiliary triangles); the second produces none: by
repeatedly remolding the same material, it produces the theorem’s conclusion from its
premise in a strikingly direct fashion.

Like the first, the second proof begins with the spherical triangle A4BC that an
arbitrary trihedral angle subtends. Lobachevski will show that the triangle’s size (and
hence the trihedral angle's measure) is equal to half its angular excess. To accomplish
this, he cuts the triangle into pieces, and rearranges them to form a spherical Saccheri
quadrilateral. He then dissects the quadrilateral as well, and from its pieces, he constructs
a spherical lune, whose size can be shown to equal half the original triangle’s angular
excess. By Lobachevski’s postulate on equality of areas (introduced in TP 26), the size of
the original triangle must also equal half the original triangle’s angular excess. Q.E.D.

Naturally, the devil is in the details.

Efficient though the second proof is, one cannot help but wonder why
Lobachevski felt the need to include it. Despite its theoretical simplicity of means, it
contains details that cry out for verifications of their own (only some of which
Lobachevski provides), making it considerably longer than the first proof, at least on the
printed page. Since it can be omitted without damaging the logical flow of the Theory of
Parallels, 1 have confined my illumination to a mere partition of the proof into bite-sized
pieces, for the sake of those readers who do wish to work through its details for

themselves.

Here is the first chunk, in which Lobachevski shows how to construct a spherical

Saccheri quadrilateral with the same area as the given spherical triangle. The construction
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is a familiar one, normally used (in the Euclidean plane) to prove that a triangle’s area is
half the product of its base and height. The three cases that Lobachevski considers here
(H falls either within segment DE, upon one of the segment’s endpoints, or outside the

segment) arise in the Euclidean context as well.

In the spherical triangle AABC, bisect the sides AB and BC, and
draw the great circle through D and E, their midpoints. Drop
perpendiculars AF, BH, and CG upon this circle from A, B, and C.

If H, the foot of the perpendicular dropped from
B, falls between D and E, then the resulting right
triangles ABDH and AAFD will be congruent, as will
ABHE and AEGC (TP 6 & 15). From this, it follows
that the area of triangle AABC equals that of the
quadrilateral AFGC.

B If H coincides with E, only two equal right
triangles will be produced, AAFD and ABDE.
E*¥*¢ Interchanging them establishes the equality of area
of triangle AABC and quadrilateral AFGC.

F
\
A c

Finally, if H falls outside triangle AABC, the
perpendicular CG must enter the triangle. We may then g_ ¥
pass from triangle AABC to quadrilateral AFGC by adding 4

triangle AFAD = ADBH and then taking away triangle
ACGE = AEBH.

In the next passage, Lobachevski establishes another property of the Saccheri

quadrilateral: each of its remote angles equals half of the original triangle’s angle sum.

Since the diagonal arcs AG and CF of the spherical quadrilateral
AFGC are equal to one another (TP 15), the triangles AFAC and AACG
are congruent to one another (TP 15), whence the angles {FAC and
£ACG are equal to one another. Hence, in all the preceding cases, the
sum of the three angles in the spherical triangle equals that of the two
equal, non-right angles in the quadrilateral.

Therefore, given any spherical triangle whose angle sum is S, there
is a quadrilateral with two right angles of the same area, each of whose
other two angles equals S/2.
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Next, he rearranges the Saccheri quadrilateral into a spherical lune.

Let ABCD be such a
quadrilateral, whose equal sides AB
and DC are perpendicular to BC,
and whose angles at A and D each
equal S/2. Extend its sides AD and
BC until they meet at E; extend AD
beyond E to F, so that EF = ED, and
then drop a perpendicular FG upon
the extension of BC. Bisect the arc
BG, and join its midpoint H to A and
F with great circle arcs.

Finally, Lobachevski shows that the lune’s size is half of the original triangle’s

angular excess, completing his second proof.

The congruence of the triangles AEFG and ADCE (TP 15) implies
that FG = DC = AB. The right triangles AABH and AHGF are also
congruent, since their corresponding arms are equal. From this it follows
that the arcs AH and AF belong to the same great circle. Thus, the arc
AHF is half a great vcircle, as is the arc ADEF. Since
£LHFE = {HAD = S/2 - BAH = S/2 - {HFG = S/2 - {HFE - (EFG
=S/2 - {HAD - n + S/2, we conclude that {HFE = (S - n). Equivalently,
we have shown that (S - n) is the size of the spherical lune AHFDA,
which in turn equals the size of the quadrilateral ABCD; this last equality
is easy to see, since we may pass from one to the other by first adding
the triangles AEFG and ABAH, and then removing triangles that are
congruent to them: ADCE and AHFG.

Therefore, 2(S - n) is the size both of the quadrilateral ABCD, and
of the spherical triangle, whose angle sum is S.
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Theory of Parallels 28

If three planes intersect one another along parallel lines, the sum of the
three resulting dihedral angles is equal to two right angles.

The Prism Theorem

This portentous result, which Jeremy Gray has named the prism theorem, says that if the
edges of an infinitely long triangular prism are parallel to one another, then the three
dihedral angles at those edges will add up to m. What makes this theorem remarkable is
its neutrality. Its independence from the parallel postulate is surprising when one
considers its resemblance to another theorem, Euclid 1.32 (the sum of the angles in a
triangle add up to m), which is actually equivalent to the postulate.

The prism theorem occupies a distinguished place in the structure of the Theory of
Parallels. Thinking of the work as a drama in four acts, we might say that the first takes
place in the plane, introduces the players and their concerns (Does the parallel postulate
hold? What if it doesn’t?), and ends halfway through TP 25. In the brief second act
(TP 25-28), the setting shifts to three-dimensional space. The relevance of this shift is not
immediately clear, but the dramatic entry of the prism theorem, just before the curtain
falls for intermission, suggests that there is a hidden link between the first two acts after
all. Act three (TP 29-34) slowly reveals this connection, and culminates with the
construction of a surface called the horosphere. At the act’s climax, the prism theorem
returns to demonstrate that the horosphere, a surface in imaginary space, is endowed with
an intrinsically Euclidean geometry. The consequences of this discovery unfold in act
four (TP 35 — 37), in which, among other things, Lobachevski finally derives the
trigonometric formulae of imaginary geometry that he promised us at the end of TP 22.

With a new sense of its importance, we now turn to Lobachevski’s proof of the

prism theorem.
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Suppose that three planes intersect
one another along three parallel
lines, AA’, BB', and CC’ (TP 25). Let
X, Y, and Z denote the dihedral
angles they form at AA', BB, and
CC', respectively. Take random
points A, B, and C, one from each
line, and construct the plane
passing through them. Construct a
second plane containing the line AC
and some point D of BB'. Let the dihedral angle that this plane makes
with the plane containing the parallel lines AA" and CC' be denoted by w.

Lobachevski’s reference to TP 25 is simply a reminder that parallelism is
transitive, so that he does not have to specify which edge is parallel to which. They are all
parallel to one another. In terms of the names that Lobachevski gave to the dihedral

angles, to prove the prism theorem is to prove that X+ Y+ Z =m.

To obtain information about the prism’s dihedral angles, Lobachevski introduces
two auxiliary constructions. The first, plane AACD, brings three interrelated trihedral
angles into play. (Their vertices are at A, C and D.) This will allow him to use TP 27 to
extract dihedral information from trihedral sources. In order to get what he needs from
these trihedral angles, he introduces his second auxiliary construction: he puts a sphere
about each of the trihedral angles’ vertices. These will allow him to convert questions
about trihedral angles into questions about the spherical triangles that they subtend. Thus,
Lobachevski’s overall strategy is to deduce information about the prism’s dihedral angles

by studying certain spherical triangles.

The First Sphere

Draw a sphere centered at A; the points
in which the lines AC, AD, and AA' intersect it
determine a spherical triangle, whose size we
shall denote by a, and whose sides we shall
denote p, g, and r. If g and r are those sides
whose opposite angles have measures w and
X respectively, then the angle opposite side p
must have measure n+2a-w -X. (TP 27)
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In the passage above, he constructs the first of these spherical triangles; he calls
its sides p, ¢, and r, and he denotes its size by a.

Recall that the angle between two sides of a spherical triangle is equal in measure
to the dihedral angle between the planes that contain them (TP 26 Notes, Claim 2). This
allows us to find two of the angles of the spherical triangle. The planes containing sides
p, q, and r are AA'BB’, AA'CC', and ACD, respectively. Hence, it follows that the angle
between p and g is X (since this is the dihedral angle between planes A4'BB’ and
AA'CC"), and that the angle between p and r is w (since this is the dihedral angle between
planes A4'CC’, and ACD).

To obtain the remaining angle, we can use the reformulation of TP 27 (TP 27
Notes, Claim 1), which tells us that the triangle’s size equals half of its angular excess.

Expressed in symbols, this yields
o =" [X + w+ (the triangle’s 3" angle) - nt].

Thus, after rearranging this equation, we find that the third angle’s measure is w+2a-w-X.

Lobachevski now turns to the second and third spheres, centered at C and D.
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The Other Spheres

“The other spheres, in ways diverse, direct
the diverse powers they possess, so that
these forces can bear fruit, attain their aims.” .
- Dante Alighieri, Paradiso 11, 118-120.

Similarly, the intersections of CA, CD, and CC' with a sphere centered at
C determine a spherical triangle of size 3, whose sides are denoted by p’,
q', and r', and whose angles are: w opposite q', Z opposite r’, and thus,
n+23-w — Z opposite p'.

This is the same argument, mutatis mutandis, given for the first sphere.
The third sphere, centered at D, requires a slightly different, but essentially

similar line of reasoning.

Finally, the intersections of DA, DB, and DC with a sphere
centered at D determine a spherical triangle, whose sides, [, m, and n, lie
opposite its angles, w +Z-28, w +X-2a, and Y, respectively. Its size,
consequently, must be 6 = %2 (X+Y+Z-n) — (a + B -w).

The angle between sides / and m has the same measure as the dihedral angle
between planes 44'BB’ and BB'CC’. Thus, the measure of the angle between / and m is Y.

The angle between sides m and n has the same measure as the dihedral angle
between planes BCD and ACD. This dihedral angle, in turn, is the supplement of the
dihedral angle that measures the angle between r’' and ¢'. Since this last has measure
n+2f-w-Z, its supplement’s measure is © - (n+2f-w-Z) = w+Z-2f. Consequently, the
measure of the angle between m and n is w+Z-2p.

Similarly, the measure of the angle between / and 7 is 7 - (7+2a-w-X) = w+X-2a.

Now that we have all three angles, the reformulation of TP 27 (TP 27 Notes,
Claim 1) immediately yields the size, J, of the spherical triangle:

0="%[Y+ W+Z2p)+ (WtX-2a)-n] =YX+ Y+Z-m)—(a+[—-w).

" Alighieri, p. 19.
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Rotating the Auxiliary Plane

If w decreases toward zero, then a and 8 will vanish as well, so
that (a + B — w)can be made less than any given number. Since sides [
and m of triangle 6 will also vanish (TP 21), we can, by taking w
sufficiently small, place as many copies of 6 as we wish, end to end,
along the great circle containing m, without completely covering the
hemisphere with triangles in the process. Hence, 6 vanishes together
with w. From this, we conclude that we must have X + Y + Z = 7.

Lobachevski’s argument is more obscure here than it ought to be; I shall present
what I hope is a clearer version of the same.

We want to prove that X + Y + Z = n. Since a rearrangement of the terms in the
expression for ¢ that we found above reveals that X + Y+ Z =1 + 2(a + f — w + 9), we
can do this by proving that 2(a + f — w + J) = 0. Let point D travel down ray BB'. As it
moves, the quantities a, S, w, and ¢ will all vary. On the other hand, the quantity
2(a0 + f—w + ) will not vary, since it equals X + Y + Z - &, an expression whose value
is clearly unaffected by the location of D. The heart of the proof, which we shall examine
in a moment, is to show that as D recedes, the quantities a, £, w, and ¢ all approach zero.
Once we establish this, the proof will be essentially complete; given any positive number
&, we simply take D far enough away to ensure that a, S, w, and ¢ will all be less than &/8,

thus guaranteeing that

R(a+B—w+0)| <2a + |B] + |w| + |0]) <24 &/8) =e.

Since the absolute value of the constant quantity 2(a + f — w + ¢) is smaller than any
positive number &, the constant (o + f — w + d) must, in fact, be zero, as claimed. Thus, X
+ Y + Z = =, proving the prism theorem.

Let us now attend to the details, and demonstrate that the quantities a, S, w, and &

all vanish as D — oo.
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Claim1. AsD — oo, w — 0.

Proof. As D recedes, lines AD and CD rotate about 4 and C respectively, while plane 4CD
rotates about AC, causing w to decrease. The limiting position of AD must be AA4’, the unique
parallel to BB’ through A. (i.e. the first position at which the rotating line fails to cut BB')
Similarly, CD approaches CC’. Consequently, the rotating plane ACD has plane 44'CC’ as its

limiting position. Hence, w approaches zero, as claimed. =

Claim2. As D — o, o and f — 0.

Proof. Consider the first spherical triangle, whose size is a. As D — oo, two of its vertices remain
fixed. These two vertices lie on the great circle in which plane 44'CC’ intersects the sphere.
Since the third vertex lies on plane ACD, which rotates toward A4'CC’, its limiting position as D
— o0 is also point on this great circle. Thus, in the limit, all three vertices lie on the same great
circle, and therefore form a degenerate spherical triangle of area zero. Hence, a approaches zero

as D — oo, For similar reasons, f approaches zero as well. m

Claim3. As D — o, d — 0.

Proof. As D recedes into the distance, the sphere centered about it comes along for the ride; the
sphere itself does not change its shape, but the triangle upon it does. Since £4DB and £BDC
both approach zero as D — o (TP 21), the lengths of the arcs they subtend (/ and m) also
approach zero. Since two sides of the triangle vanish, the third side must vanish with them.

Hence, the triangle’s area (and hence its size) approaches zero as D — oo, m

Having disposed of these details, we have proved the prism theorem. The
picturesque justification for the vanishing of ¢ in Lobachevski’s final sentences amounts
to the following: for any natural number N, we can push D sufficiently far away to
guarantee that its spherical triangle will be so small that we can paste N non-overlapping
copies of it on the sphere’s surface without completely covering it. Since N copies won’t
cover the sphere’s surface, 6 must be less than 1/N. Hence, for any positive real number &,
we can choose a whole number N such that 1/N < ¢ and then push D sufficiently far away

to guarantee that 0 < I/N <e. In other words, as D goes to oo, d goes to zero.
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Theory of Parallels 29

In a rectilinear triangle, the three perpendicular bisectors of the sides meet
either in a single point, or not at all.

Non-concurrent Perpendicular Bisectors
“Sit down, the two of you, there before me,” said Neary, “and do not despair. Remember there is no
triangle, however obtuse, but the circumference of some circle passes through its wretched vertices.”

- Samuel Beckett, Murphy”

In Euclidean geometry, every triangle’s perpendicular bisectors are concurrent. In
fact, they meet at the triangle’s circumcenter (Elements 1V.5). In contrast, it is easy to

construct a triangle in imaginary geometry with non-concurrent perpendicular bisectors.

Suppose that AB || CD. From G, an arbitrary point that lies between the parallels, drop
perpendiculars GE and GH, as shown in the figure. ¥

i

Double the lengths of these segments, extending them £

to F and /, respectively. Notice that F, G, and [ cannot
be collinear: if they were, then the line upon which they
lie would be a common perpendicular for the parallels,
which is impossible in imaginary geometry (TP 22). €

Consequently, these points form the vertices of a

triangle, AFGI. Since two of the perpendicular bisectors

of this triangle are parallel to one another, the three bisectors obviously cannot meet at a point.

Such triangles may seem mere curiosities, but they will play major roles in TP 31.
In TP 29, Lobachevski proves that if two of a triangle’s perpendicular bisectors
meet, then all three will be concurrent. The point of concurrence - if it exists - will be the

center of a circle that passes through the triangle’s vertices.

" Beckett, p. 213.
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The Proof

Suppose that two of triangle ABC’s
perpendicular bisectors, say, those erected at
the midpoints E & F of AB and BC
respectively, intersect at some point, D,
which lies within the triangle. Draw the lines
DA, DB, and DC, and observe that the
congruence of the triangles ADE and BDE
(TP 10) implies that AD = BD. For similar
reasons, we have BD = CD, whence it follows
that triangle ADC is isosceles. Consequently,
the perpendicular dropped from D to AC
must fall upon AC’s midpoint, G.

This reasoning remains
valid when D, the point
of intersection of the
two perpendiculars ED
and FD, lies outside
the triangle, or when it
lies upon side AC.

Thus, if two of the three perpendiculars fail to intersect one another,
then neither of them will intersect the third.

Notes on the Proof

In the first two cases (when D lies either within or without the triangle), the
perpendicular dropped from D to AC splits AADC into a pair of subtriangles, ADAG and
ADCG, whose congruence by RASS (TP 10) implies that AG = CG. Since G 1is the
midpoint of 4C, GD must be the perpendicular bisector of AC. In other words, the
perpendicular bisectors ED, FD, and GD all meet at D, as claimed. The third case (when
D lies on the side of the triangle) is simpler still: the perpendicular bisectors of 4B and
BC meet at the third side’s midpoint.

Finally, it is easy to see that the point of concurrence D (when it exists) is
ANABC’s circumcenter. Since AD = BD = CD, as Lobachevski indicates in his proof, the

unique circle centered at D that passes through 4 must also pass through B and C.
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Circumcircles, the Parallel Postulate, and Bolyai the Elder

We now add one more item to our list of statements equivalent to the parallel postulate.
Claim. The parallel postulate holds if and only if every triangle has a circumcircle.

Proof. =) Euclid IV.5.

<) Suppose that every triangle has a circumcircle. Let / be a line and P¢ [ be a point.
Drop the perpendicular PQ to /, and let m be the perpendicular erected upon PQ at P. By Euclid
1.28, m does not intersect /. We will now show that all

other lines through P must intersect /. Let n be such a P 7[ c

line. Let 4 be an arbitrary point between P and Q. Extend m
PQ through Q to B so that 4Q = (QB. Drop the

perpendicular AR to n, and extend it through R to C so A";Q W i
that RC = AR. Since A4, B, and C are noncollinear, they 8 f

comprise of vertices of a triangle. Thus, by hypothesis,

there exists a circle passing through them. By Euclid III.1 (a neutral theorem), the perpendicular
bisectors of any two chords of a circle will meet at the circle’s center. Consequently, n (the
perpendicular bisector of chord 4C) will meet / (the perpendicular bisector of chord 4B), which

was to be shown. m

Farkas Bolyai (1775 — 1856), the father of Janos, discovered the preceding proof. He
devoted much thought to the parallel postulate, but the following excerpts  from letters to
Janos suggest that his studies in this area may have had a less than salubrious effect upon

his mind.

Y ou must not attempt this approach to parallels. I know this way to its very end. I
have traversed this bottomless night, which extinguished all light and joy of my
life. I entreat you, leave the science of parallels alone...I thought I would sacrifice
myself for the sake of truth. I was ready to become a martyr who would remove
the flaw from geometry and return it purified to mankind. I accomplished
monstrous, enormous labors; my creations are far better than those of others and
yet I have not achieved complete satisfaction...I turned back when I saw that no
man can reach the bottom of the night. I turned back unconsoled, pitying myself
and all mankind. Learn from my example: I wanted to know about parallels, I
remain ignorant; this has taken all the flowers of my life and all my time from
me.

" I have taken the first from Gray, Jdnos Bolyai (p.51), and the second from Rosenfeld (p. 108).
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You should fear it like a sensual passion; it will deprive you of health, leisure and
peace — it will destroy all joy in your life. These gloomy shadows can swallow up
a thousand Newtonian towers and never will there be light on earth; never will
the unhappy human race reach absolute truth — not even in geometry.

Fortunately, Janos persisted in his researches, despite his father’s wishes.
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Theory of Parallels 30

In a rectilinear triangle, if two of the perpendicular bisectors of the sides
are parallel, then all three of them will be parallel to one another.

This proposition continues the story of its predecessor. In imaginary geometry,
certain triangles lack circumcircles, since their perpendicular bisectors fail to meet. In
TP 29, we saw that if two of the perpendicular bisectors of a triangle’s sides intersect one
another, then all three bisectors must be concurrent. But what happens if no two bisectors
meet? In TP 30, Lobachevski gives a partial answer: if two bisectors are not only non-
intersecting, but also parallel to one another, then the third bisector will be parallel to

them as well.

His proof falls into two cases: one in which the two given parallels lie on opposite

sides of the third perpendicular bisector, and one in which they lie on the same side of it.

The First Case

In triangle AABC, erect perpendiculars DE, FG, and HK from D, F,
and H, the midpoints of the sides. (See the figure.)

We first consider the case in which
DE and FG are parallel, and the third
perpendicular, HK, lies between them. Let
L and M be the points in which the
parallels DE and FG cut the line AB. Draw
an arbitrary line entering angle ABLE
through L. Regardless of how small an
angle it makes with LE, this line must cut
FG (TP 16); let G be the point of 4 JJ
intersection. The perpendicular HK enters
triangle ALGM, but because it cannot intersect MG (TP 29), it must exit
through LG at some point P. From this it follows that HK must be
parallel to DE (TP 16 & 18) and FG (TP 18 & 25).

In this first case, we suppose that two of the perpendicular bisectors are parallel
(DE || FG) and lie on opposite sides of the remaining perpendicular bisector (HK).
Lobachevski’s straightforward proof that HK || DE and HK || FG makes use of
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parallelism’s symmetry and transitivity (TP 16, 18, 25): he shows that DE || HK, at which
point symmetry gives HK || DE, whence transitivity yields HK || FG.

The second case proves surprisingly stubborn. Before proving it, Lobachevski

pauses to record a few formulae, whose purpose will become clear shortly.

Lobachevski’s Observations: Three Formulae

In the case just considered, if we let the
sides BC = 2a, AC = 2b, AB = 2c¢, and denote the
angles opposite them by A, B, C, we can easily
show that

A=TIb)-TI(c) B=TIla)-Il(c) C=TIl(a)+I(b)

by drawing lines AA', BB', CC’, from points A, B,
C, parallel to HK - and therefore parallel to DE
and FG as well (TP 23 & 25).

“The case just considered” refers to the circumstance in which all three
perpendicular bisectors are parallel to one another. In this scenario, one can verify the
three formulae simply by looking at the figure. For instance, B = {FBH = AFBB' -
AHBB'=1I(a) - I1(c).

In fact, the validity of each individual formula is equivalent to the parallelism of a
particular pair of bisectors. For example, our derivation of the formula B = [I(a) - [1(c)
depends only upon the fact that HK || FG. Conversely, if B = [I(a) - [1(c) is known to
hold, we can prove that HK || FG."

In this manner, one can show that:

A=TI(b)- TI(c) < HK| DE.
B=1l(a)- Il(¢) & HK| FG.
C=Tl(a) +T1() < DE| FG.

" Proof: BB’|| HK by definition, so £B'BH = I1(c). Thus, we can rewrite B = [[1(a) - [1(c)] in the alternate
form B = [[1(a) - £B'BH]. Solving for [1(«), we obtain [1(«) = [B + £B'BH]| = £B'BF, which implies that
BB'|| FG. Thus, HK || FG by transitivity.
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The Second Case

Next, consider the case in which HK and FG are parallel. Since DE
cannot cut the other two perpendiculars (TP 29), it either is parallel to
them, or intersects AA'.

In the second case, we suppose that two of the bisectors are parallel (HK || FG)
and lie on the same side of the remaining perpendicular bisector (DE). We must show
that the remaining bisector is parallel to the first two. To do so, it will suffice to show that
DE || HK: for if we can establish this, then the transitivity of parallelism will imply that
FG || HK. Lobachevski’s proves that DE || HK by a reductio ad absurdum argument.

First, DE cannot cut HK: the intersection of two C

bisectors would force all three bisectors to be

concurrent (TP 29). In particular, HK and FG would A B
intersect one another, contradicting the fact that they are \'\,
parallels. \'%

Thus, DE is either parallel or ultraparallel to HK. A EKG

If DE is ultraparallel to HK, it must, according to Lobachevski, intersect 44’
(which is defined as the line drawn through A parallel to HK). Lobachevski offers no
proof of this fact, presumably because he felt that the proof was obvious. What “obvious”
proof did Lobachevski see in his mind’s eye? The most plausible candidate that I can

think of (that uses only ideas we have developed thusfar) is the following.

Claim 1. If FG || HK, but DE is not parallel to HK, then DE intersects line AA4".
Proof. DE and AA' are not parallel. For, if they were, then DE would be parallel to HK, by
transitivity, contrary to hypothesis.

DE and AA' are not ultraparallel. If they were, then we
could rotate 44" slightly about 4 to obtain a line AQ that enters
£LA'AH, but does not cut DE. Because AQ enters £A'AH, it
would cut HK at some point X, since 44’ || HK. Since DE
enters AAXH through side 4H, it would have to exit through

one of the triangle’s remaining sides, which, however, is

impossible: by the very definition of AQ, line DE cannot
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intersect AQ = AX; moreover, by TP 29, if DE were to cut its fellow perpendicular bisector
HX = HK, the parallels FG and HK would meet, which is absurd.

Since DE and AA' are neither parallel nor ultraparallel, they must intersect, as claimed. m

Unfortunately, this proof contains a logical gap: it rests upon the unproved
assumption that DE must cross segment AH. Plausible though this sounds, it is hardly
obvious given the unintuitive nature of imaginary geometry. The following lemma will
repair this hole. Readers willing to take it on faith may wish to skip it for now, so as not

to lose the thread of Lobachevski’s argument.

A Geometric Band-Aid

Post Facto Lemma. In the preceding proof, DE crosses segment AH.
Proof. First, we shall prove that, in their direction of
parallelism, HK and FG must exit triangle AABC through the
same side. Clearly, two rays HK and FG cannot be parallel if
AGFH + AKHF > . Yet, if HK and FG were to exit the
triangle through distinct sides, it would follow that

L GFH + {KHF = ({GFB + £ BFH) + ({KHB + £BKF) = (/2 + £BFH) + (n/2 + {BKF) > m.

Thus, the parallelism of HK and FG implies that they exit through the same side, as claimed.
Next, note that by Pasch’s axiom, DE must exit AABC through either AB or CB. That is,
DE must leave through one of the following: AH, HB, BF, or FC. We shall now demonstrate that

the last three possibilities are not feasible.

DE cannot exit through BF.
To intersect BF, it would have to cross FG first (since
FG must exit through 4B, the side through which HK leaves), H
contradicting the fact that no two of the perpendicular T {
K &

bisectors can meet (TP 29).
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DE cannot exit through HB.

Since no two of the perpendicular bisectors can meet, DE could only cross HB if the
extension of HK backwards through H were to leave the triangle through 4D. Were that to
happen, DE would lie between the parallels G and HK, which is not the configuration with

which the second case of Lobachevski’s proof is concerned.

DE cannot exit through FC.

To prove this, we shall use the following simple facts. First, we may characterize the
perpendicular bisector of a segment RS as the set of points that are equidistant from R and S.
Second, the bisector separates the rest of the plane into two parts, the part containing point R, and
the part containing point S. We shall call these parts the R-side and S-side of the plane,
respectively. Points in the R-side may be characterized as those closer to R than to S; a similar
inequality holds for points lying in the S-side of the plane. These facts are easy to prove in neutral
geometry. I will omit the proofs here so that the length of this argument remains within
reasonable bounds.

If DE could leave through F'C through some point X, then ray KH (the extension of HK
backwards through H) would have to leave the triangle through either AD or XF (so that no two

of the perpendicular bisectors would meet one another). We shall explode each hypothesis in turn.

Suppose that DE leaves through FC at X, and ray KH exits the triangle through AD. Then
XB < XA (since X lies in the B-side of the plane, as partitioned
by HK, the perpendicular bisector of AB), but X4 = XC

(because X lies on DE, the perpendicular bisector of 4C), so
XB < XC. The opposite inequality, XC < XB, would also hold A H

(since X lies on the C-side of the plane, as partitioned by FG, T {
the perpendicular bisector of CB). This contradiction K G

demonstrates the impossibility of this configuration.

¢ Next, suppose that DE leaves through FC at some
point X, and ray KH exits the triangle through XF at some

point Y. An argument similar to the preceding one shows that

"r ( YA<YC<YB=YA. Thatis, YA < YA, a contradiction.
K G

Thus, DE cannot exit through FC, as claimed.

Having exhausted all other alternatives, we may finally conclude that DE exits the

triangle through AH. w
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The Second Case Resumed

Having filled in the logical gap, we return to the

second case. Recall that we are trying to prove that DE

is parallel to HK. We have shown that DE cannot cut
H

HK, so it is either parallel or ultraparallel to HK. We ‘¢
shall prove the former hypothesis by destroying the \'\ ]I
E

latter. To this end, we have demonstrated that if DE is

)\ pa—

ultraparallel to HK, then DE must intersect A4’ (the line q

through A drawn parallel to HK and FG).

On the other hand, Lobachevski will devote the rest of his proof to a

demonstration that DE and AA' cannot meet. This will destroy the possibility that DE

might be ultraparallel to HK.

His first step is to secure an inequality.

To assume this latter possibility is to assume that C > [[(a) + [I(b).

That is, to assume that DE intersects 44’ (the hypothesis Lobachevski is trying to

destroy) would imply that C > [](a) + [1(b). We can prove this as follows.

Claim 2. If DE and A4’ meet, then C > [1(a) + [1(b).

Proof. Recall that CC’is parallel to HK and F'G, by definition.
From the figure, we see that C = (L FCC'+ £C'CD) = ([1(a) + £C'CD).
Thus, to prove the claim amounts to proving that £C'CD > [1(b).
If LC'CD = [1(b), then DE || CC" || AA', which

is absurd: intersecting lines cannot be parallel. If

£LC'CD < TI(b), then CC' cuts DE. Thus, ray DE A f"

intersects both 44’ and CC’, which is impossible: it < a : B

emanates from a point lying between these two parallel \'\‘ |

lines, and thus may cut only one of them. (To meet the N !

second line, it would have to recross the first, in 3 :
EAKC G

violation of TP 2.) Thus, we must have £C'CD > [[(b). =
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If this is the case, we can decrease the magnitude
of this angle to [I(a) + [I(b) by rotating line AC to a C
new position CQ (see the figure). The angle at B is

thereby increased. That is, in terms of the formula iy
proved above, ()
A
(@) - I1(c) > T(a) - (), 8

Q ZC-’
where 2¢' is the length of BQ. From this it follows
that ¢’ >c (TP 23).

Rotating AC about C, Lobachevski transforms AABC into AQBC, a new triangle
with a strategically constructed angle: £BCQ = [[(a) + [1(b). Since Q and C lie on
opposite sides of 4B, we have LQBC > £ABC. That is, the angle at B in the new triangle
is larger than it was in the old triangle. In his quest for a contradiction, Lobachevski
expresses the two angles at B in terms of the side lengths. Here, he will finally use the

formulae that he described between the two cases of his proof.

Observation. LABC =11(a) - [1(c).
Proof. As noted above (“Lobachevski’s Observations”), this formula holds because HK || FG. =

Claim 3. £OBC =[1(a) - [1(c).

Proof. Since angle C in AQBC equals [I(a) + [1(b), the
perpendicular bisectors of the sides adjacent to this angle must
be parallel to one another, as noted above. Both of these
parallel bisectors must leave the triangle through side OB. (See
the proof of the “post-facto lemma” above.) If M is the
midpoint of OB, we can prove that one of the bisectors must

leave through QM, and the other through MB as follows.

Suppose, by way of contradiction, that both leave
through the same half of OB (say MB). Then we would have
MQ < MC (since M would lie on the A-side of the plane as

partitioned by the perpendicular bisector of QC). Similarly,
MC < MB. Thus, we have MQ < MB, which contradicts the
fact that M is the midpoint of OB.
Hence, M lies between the two parallel bisectors. Consequently, by the first case of the

proof, the perpendicular bisector of OB must be parallel to the other two bisectors. Since all three
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perpendicular bisectors of AQBC are parallel to one another, all three of Lobachevski’s formulae

hold in this triangle. In particular, the angle at B will be [[(a) - [1(c"), as claimed. =

Since LOBC > £ABC, the expressions from the preceding Observation and Claim
tell us that

[1(a) - T1(¢") > I1(a) - T1(c),

which implies that [I(c’) < [l(c). Since ] is a decreasing function (TP 23 Notes,
Claim 1), it follows that ¢’> ¢. And yet...

On the other hand, since the angles at A and Q in triangle AACQ are
equal, the angle at Q in triangle AABQ must be greater than the angle at
A in the same triangle. Consequently, AB > BQ (TP 9); that is, ¢ > ¢'.

Because AACQ is isosceles, the base angles £ CAQ and c
£CQA are equal (Euclid L.5). Let 0 be their common measure. In
AABQ, it is clear that LBAQ < 6 < LAQB. Thus, OB < AB

A
(Euclid 1.19). That is, 2¢' < 2¢, or ¢ > ¢'. We have arrived at a B

~
-~

contradiction, having demonstrated that ¢ is simultaneously less a 7’
than and greater than c'.

This contradiction followed from the assumption that DE intersects 44'". Early in
the second case, Lobachevski proved that DE either intersects 44’ or is parallel to the
other perpendicular bisectors. Having disposed of the former possibility, we conclude

that the latter must be true. This concludes the second case, and with it, at last, the proof

of TP 30.

Points at Infinity

By adopting the convention that parallel lines meet at a “point at infinity” in their
direction of parallelism, we can unify the statements of Lobachevski’s 29" and 30™
propositions as follows: if two perpendicular bisectors of a rectilinear triangle meet at a

point (possibly at infinity), then the third must pass through the same point as well.

133



If a triangle’s perpendicular bisectors meet at a point at infinity, might the triangle
have a circumcircle in some extended sense? A circle whose center is at infinity? What
can we say about the nature of such a figure, if anything at all? In the early 17"-century,
Johannes Kepler professed that a circle whose center is at infinity is a straight line. Our
hypothetical infinite circumcircle, however, cannot be straight, for the simple reason that
no straight line can pass through all three of a triangle’s vertices.

In the next two propositions, we shall make the acquaintance of the curve that
plays the role of circumcircle in this situation: the horocycle, a curve neither straight nor

circular, but enjoying both line-like properties and circle-like properties.

134



Theory of Parallels 31

We define a horocycle to be a plane curve with the
property that the perpendicular bisectors of its chords
are all parallel to one another.

Horocycles

It is often convenient to think of a horocycle as a “circle of infinite radius”, or “a
circle whose center is at infinity”, but this will not suffice as a formal definition.
Although one typically defines a circle as the locus of points at a fixed distance from a
given point, Lobachevski used an alternate, equivalent definition of a circle as the basis
for his definition of the horocycle. Namely, a circle is “a closed
curve in the plane with the property that the perpendicular
bisectors of its chords are all concurrent,” and its center is the

point of concurrence. (Circles clearly possess this property, and

one may prove that any closed plane curve exhibiting it is
circular.) Since a horocycle’s center is supposed to be “at
infinity”, it ought to be a curve whose chords’ perpendicular bisectors meet there.
Worded more rigorously, it ought to be a plane curve whose chords’ perpendicular
bisectors are all parallel. This is precisely how Lobachevski defines it.

One fussy detail remains. The topological clause in the alternate definition of a
circle (a circle must be closed) is designed to prevent mere circular arcs from satisfying
the definition. For horocycles, the filter of closure is too fine; it would keep out not only
horocyclic arcs, but full horocycles as well, since even they are not closed curves, as we
shall see shortly. Lobachevski, in a minor oversight, fails to supply an appropriate filter,
but we can easily remedy this by declaring that no horocycle can be a proper subset of

another.
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Generating a Horocycle

In accordance with this definition, we may imagine
generating a horocycle as follows: from a point A on a
given line AB, draw various chords AC of length 2a, where
[I(a) = £CAB. The endpoints of such chords will lie on the
horocycle, whose points we may thus determine one by
one.

We can define a unicorn, but this does not imply that such creatures actually exist.
Having defined horocycles, Lobachevski hastens to exhibit one. His process for
generating a horocycle is, I believe, easier to understand in the following dynamic
reinterpretation.

Given a ray AB, which we shall call the axis of the
horocycle, erect a perpendicular ray from 4, and let it slowly
rotate toward AB, so that the angle that it makes with AB
decreases from m/2 to 0. Let C be a moving point, initially
coincident with 4, which moves down the rotating ray as it turns.
The following rule governs the motion of C: if  is the angle that

the rotating ray makes with AB, and a is the length such that [[(a)

= 6 (such a length exists for every 6 by TP 23), then C will be at
a distance of 2a from A. Thus, AC — o as § — 0 (TP23). The moving point C will trace
out half of a horocycle; we shall prove that it actually satisfies the definition in a moment.
The horocycle’s other half, the mirror image of the first, can be obtained by carrying out
the same procedure, but beginning with the other ray emanating from 4 and

perpendicular to AB.

Next, we shall verify that the curve traced out by C satisfies the horocycle’s

definition.
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The perpendicular bisector DE of a
chord AC will be parallel to the line AB,
which we shall call the axis of the
horocycle. Since the perpendicular
bisector FG of any chord AH will be
parallel to AB, the perpendicular bisector
KL of any chord CH will be parallel to AB
as well, regardless of the points C and H
on the horocycle between which the
chord is drawn (TP 30). For that reason,
we shall not distinguish AB alone, but
shall instead call all such perpendiculars
axes of the horocycle.

These, Lobachevski’s concluding words for TP 31, fail to do justice to the
properties of the curve that he has just brought to light. In these notes, we shall explore its
properties in greater depth than Lobachevski does, so that we might obtain more insight
into its nature. But first, let us carefully verify that the curve he has generated is indeed a

horocycle.

Claim 1. The curve traced out by C is indeed a horocycle.

Proof. We must show that the perpendicular bisectors of all the curve’s chords are parallel to one
another. Thanks to the transitivity of parallelism, it suffices to show that they are all parallel to
AB. By the curve’s construction, it is clear that the perpendicular bisector of any chord AC that
joins A to any other point on the curve will be parallel to AB. Any chord CH that joins two points
on the curve, neither of which is 4, should be thought of as one side of the triangle AACH; since
the perpendicular bisectors of the other two sides (AC and AH) are parallel to AB, the
perpendicular bisector of CH must also be parallel to it, by TP 30. Hence, the curve traced out by
C satisfies Lobachevski’s definition of a horocycle, and thus lies within some complete horocycle
‘H. If we can prove that H lies within the curve traced out by C, we will be able to conclude that
the curve traced out by C is identical to H. We do this now.

The perpendicular bisectors of chords of H are, by the definition of a horocycle, parallel

to one another. Since some of them are known to be parallel to 4B P

(namely, those bisecting chords that join points on the curve traced

out by C), the transitivity of parallelism implies that all bisectors of ad

‘H’s chords are parallel to 4B. In particular, if P is an arbitrary point b’
on H, then MM', the perpendicular bisector of AP, will be parallel to A\ B

AB, making £BAM = [[(AM). 1t follows that P lies on our curve:
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when the rotating ray makes the angle [1(4M) with axis 4B during the curve’s generation, the
curve acquires P, since it is the point on the ray at a distance of 2(4M) from A. Hence, every point
of the horocycle H lies within the curve traced out by C. Having shown that the two curves are

identical, we conclude that the curve traced out by C is a horocycle, as claimed. m

Thus, horocycles exist; we may generate one at will simply by choosing a ray as
an axis and following the procedure described above.

Euclid’s construction of an equilateral triangle (Euclid 1.1) proves that triangles
exist, but it is obviously insufficient for constructing a// triangles; equilaterals constitute
but one species of the larger triangle genus. In contrast, we can prove that Lobachevski’s
generation of a horocycle is comprehensive: we can obtain every horocycle this way.
That is, we can demonstrate that every horocycle H has an axis AB — a ray that yields 'H

when we carry out Lobachevski’s generation process upon it.

Every Horocycle has an Axis

Claim 2. Every horocycle has an axis.
Proof. To be more specific, we shall show that any ray that emanates from a point on a horocycle
and is parallel to all perpendicular bisectors of the horocycle’s chords is necessarily an axis of
that horocycle.

To this end, let H be a horocycle, and let 4, C, and D
be arbitrary points upon it. By definition of a horocycle, the
perpendicular bisectors of AC, AD, and CD (and all other
chords, for that matter) are parallel to one another. Let AB be
the ray that emanates from 4 and is parallel to these bisectors.
In fact, the perpendicular bisector of every chord of H will be
parallel to 4B, by definition of a horocycle, together with the

transitivity of parallelism.

Let IC be the horocycle whose axis is 4B. We shall show that H = K.

Let £ be an arbitrary point of H. Since MM’ || AB (where MM’ is the perpendicular
bisector of AE), we have £BAM = [1(AM). Now, when the rotating ray that generates K makes
angle [1(4M) with AB, K acquires the point on that ray which lies at distance 2(4M) from A; that
is, IC acquires point E. Hence, E lies on /C, so H C K. By definition, one horocycle cannot be a

proper subset of another, so H = K. Thus, since AB is an axis for K, 4B is also an axis for H. =
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Having proved the non-self-evident truth that all horocycles are created equal, we
turn to the properties with which they are endowed. The proposition just established

immediately yields two that are very striking.

Many Axes, Much Symmetry

Claim 3. Every horocycle has infinitely many axes — one through each of its points.
Proof. In the preceding claim, point 4 was entirely arbitrary. Since the axis that
we constructed emanated from 4, we could just as easily have constructed an

axis emanating from any other point of H. n

Claim 4. Horocycles possess a tremendous amount of symmetry: a horocycle is symmetric about
each of its axes.

Proof. Clearly, the process of generating a horocycle yields a curve that is symmetric about its
generating axis. Every horocycle has an axis (Claim 2), and thus every horocycle has a line of
reflective symmetry. Since Claim 3 tells us that horocycles have infinitely many axes, they also

have infinitely many lines of symmetry. n

If we think of a horocycle as a circle of infinite radius, then its axes play the role
of diameters. Thus, for example, Claim 4 is analogous to the fact that circles are
symmetric about all of their diameters. Of course, horocycles are not entirely circle-like.
Circles come in a variety of sizes, but the same is not true of horocycles, as we now

show.
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If You’ve Seen One, You’ve Seem Them All

Claim 5. All horocycles are congruent.

Proof. Imagine the plane as a piece of paper upon which
two horocycles, H and K, are drawn. Introduce polar
coordinates by drawing a polar grid on an overhead

transparency and laying it upon the plane, making its polar

axis (the ray 6 = 0) coincide with an axis of H.
Lobachevski’s method for generating horocycles endows

H with the polar equation 6 = [](#/2). Of course, by

repositioning the transparency, we can supply /C with this
equation just as easily. Since H and K have the same equation up to an isometric (distance
preserving) change of coordinates, they must be congruent. (Our change of coordinates is
isometric since it merely involves laying down the polar grid, the object that defines the distances

in our equation, in two distinct places.) m

We are used to such uniformity among points and lines, the basic elements of

geometry, but to find this sameness among horocycles is quite remarkable.

The “thought experiment” with the polar grid has a second notable consequence.
If, instead of moving the polar axis from an axis of H to an axis of X', we move it to a
second axis of H, then the polar equation of H will remain the same (although the
coordinates of its individual points will obviously change). To appreciate the significance
of this fact, first note that we may think of a curve’s equation as a map of its features,
where each solution of the equation tells us the precise location of one of the curve’s
points. For example, if its equation has the solution (20, 30), we may interpret this as the
instruction: “Go to the origin, look down the polar axis, turn 30° counterclockwise, and
walk forward 20 units. You’ll find a point of the curve there.” Of course, one must know
where the origin and polar axis are to use these directions. However, since a horocycle’s
equation remains the same no matter which of its point we chose as the origin, we do not
have to know where the origin is to use such directions; once we know the equation, any
starting point will do. Thus, horocycles are not only congruent to one another, but each
individual horocycle is homogenous: it “looks the same” from the perspective of any

point upon it.
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Further Attributes of Horocycles

Because horocycles have polar equations, 6§ = [](#/2), which are governed by the
continuous function [] (see notes to TP 23), we know that horocycles are continuous
curves.

We have already shown that imaginary geometry admits trios of points that are
neither collinear nor concyclic: the vertices of any triangle whose perpendicular bisectors
do not meet. We may harvest such trios with ease from a horocycle; take any three of its

points, and you will have one.

Claim 6. If 4, B, and C are distinct points on a horocycle, they are not collinear. {A

Proof. If they were collinear, then the line upon which they lie would be a ‘:';—ﬂm_
common perpendicular to two parallel lines (the perpendicular bisectors of AB #

and BC, which are parallel to one another by the definition of a horocycle), =
contradicting TP 22 (parallels never share a common perpendicular in C

imaginary geometry.) m

Claim 7. If 4, B, and C are distinct points on a horocycle, they are not concyclic.
Proof. A circle passing through all three of them would be the circumcircle of triangle AABC,
whose center would necessarily be point at which the triangle’s perpendicular bisectors meet. By

definition of the horocycle, there is no such point, and thus, no such circle. m

All axes of a horocycle are parallel to one another, but we shall now prove
something stronger: every line parallel to an axis of a horocycle is an axis itself. (Properly
speaking, every such line contains an axis, since we defined an axis to be a ray. However,
we shall often abuse the terminology by using the word “axis” to refer to the line
containing the ray. The context will always make it clear whether the ray or the line is

meant.)
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Lemma. If H is a horocycle with an axis 4B, then every line parallel to 4B intersects H.
Proof. Suppose there is a line MN, parallel to 4B, which
does not intersect H. Because MN and 4B draw closer to

one another in their direction of parallelism (TP 24),

there is a point £ on AB (perhaps light-years from A) that

is closer to line MN than it is to point A. That is, if EG is

the perpendicular dropped from £ to MN, then we will
have E4A > EG.

Consider the circle with center £ and radius EA.
Define two points on it as follows: let J be the point where ray £G intersects it, and let K be the
point on it diametrically opposed to A. By construction, J and K lie on opposite sides of H.
Hence, the circular arc joining them intersects H at some point P. Since the circle is symmetric
about its diameter AK, the reflection of P in 4K lies on it. Moreover, since H is symmetric about
its axis AK, the reflection of P in AK lies upon H as well. Thus, we have three points, 4,P,and P’,
the last being the reflected image of P in AK, at which H and the circle meet. This, however, is
impossible, since no three points of a horocycle can be concyclic.

Thus, H intersects every line parallel to AB, as claimed. L]

Claim 8. If H is a horocycle with an axis 4B, then every line parallel to AB is an axis of H.

Proof. We have just seen that every line parallel to AB cuts H. Thus, any such line contains a ray
that emanates from a point on H and is parallel to AB (and hence is parallel to all the
perpendicular bisectors of H’s chords). We have already showed that a ray with these

characteristics must be an axis of H. (See the proof of Claim 2 above) L]

Corollary. If H is a horocycle with an axis AB, then the complete set of its axes is the family of
all lines parallel to AB.

As a result of this corollary, every horocycle is associated with a particular pencil
of parallels, another name for the set of all lines parallel to a given line in a given
direction. We may formalize the notion of “points at infinity” by declaring that two lines
“meet at a point at infinity” precisely when they belong to the same pencil of parallels.
With this understanding, we may say that each horocycle is associated, via its axes, with
a particular point at infinity. We shall call this point the center of the horocycle. Thus,

intuitively, the center of a horocycle is a point at infinity where its axes meet, while
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formally, the center is not a point at all, but rather the set of the axes themselves. This

convention allows us to prove the following analog of Euclid’s third postulate.

Claim 9. Given an ordinary point A and a point at infinity, there exists a horocycle passing
through A, whose center is the given point at infinity.

Proof. We must show that there exists a horocycle through 4, whose axes are the lines of a
particular pencil of parallels. Among these parallels, a unique one passes through 4. Let H be the
horocycle generated by it. By Claim 8, its axes must be the lines of the pencil. Thus, H is a

horocycle through 4 whose center is the given point at infinity. n

Tangents to Horocycles

Although it is difficult to define a tangent line to an arbitrary curve without
recourse to the language of calculus, certain specific curves possess unmistakable
“natural” tangents. For example, the tangent to a circle at any of its points is the unique
line passing through it that does not cut the circle a second time. Of course, this line
satisfies the calculus definition of tangency as well, but one should not suppose that such
“natural tangents” to circles and other conics, which have been known for thousands of
years, were somehow illegitimate until they were formally sanctioned by calculus. On the
contrary, these tangents lend the calculus definition some of its own authority; if the
calculus definition did not agree with the classical definitions in the special cases for
which tangents were already known, mathematicians never would have accepted it.

Since horocycles are related to circles, it is not surprising that they too possess
natural tangents, which we can identify without calculus. Given any point 4 on a
horocycle, we will show that there is a unique line passing through it that satisfies the
following property: every point of the horocycle (other than A4) lies on one side of it.
Naturally, we will define this distinguished line to be the horocycle’s tangent line at A.
Just as a circle’s tangents are perpendicular to its radii, a horocycle’s tangents are

perpendicular to its axes, as we shall now demonstrate.
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Claim 10. If 4B is an axis of a horocycle, then the line erected perpendicular to it at 4 is the
tangent line to the horocycle at 4. (That is, it is the unique line through A4 such that every other

point of the horocycle lies to one side of it.)

Proof. Let AB be an axis of a horocycle, H. Draw AT L AB.

First, we shall show that every point of H lies to one side of line AT.

Let Xe'H, and let M be the midpoint of 4X. The perpendicular
bisector of AX is parallel to AB, so £XAB = £MAB = [[(MA) < n/2, T X H
since the angle of parallelism of any length is acute. Because the side of L
AT in which B lies consists of the set of points P making £PAB < m/2,
the fact LXAB < m/2 implies that X lies on this side on AT. Since X was A WalY) B
an arbitrarily chosen point of H, the entire horocycle H lies on this side
of AT, with the exception of 4, where the horocycle touches the line.

It remains to show that no other line through A has this
property.

Obviously, 4B does not satisfy the property.

Suppose that / is any other line through 4. (i.e. / is neither AT nor 4B.) Any such line
must contain points on both sides of line 47. Assume, without loss of generality, that it contains a
point Y in the interior of <BAT. Since £BAY is an acute angle, there is a length p such that
[1(p) = £LBAY (TP 23). Let Z be the point on ray AY such that 4Z = 2p. Lobachevski’s method for
generating the unique horocycle with axis AB guarantees that point Z lies on this horocycle. That
is, Ze'H. It follows that / cannot satisfy the required property, for it contains two distinct points of
‘H: A and Z.

Having shown that AT is the only line that satisfies the property, we are justified in

calling it the tangent line. =

Corollary. A horocycle cuts its axes perpendicularly.

Proof. The angle between an axis of a horocycle and the horocycle itself at a given point is
defined to be the angle between the axis and the tangent to the horocycle at their point of
intersection. By Claim 10, the axis and the tangent are perpendicular to one another. Thus, the

axis and horocycle meet at right angles, as claimed. n
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Euclidean Horocycles?

Lobachevski modeled his definition of a horocycle on a defining property of circles, but
if we seek the curves that satisfy this definition in Euclidean geometry, we will find
ordinary straight lines. That is, in the presence of the parallel postulate, horocycles and

straight lines are one and the same.

Claim 11. In Euclidean geometry, horocycles are straight lines.
Proof. In Euclidean geometry, lines clearly satisfy the
horocycle definition. Conversely, given a curve that
satisfies it, let, 4,8, and C be three points on it. Let MM’
and NN’ be the respective perpendicular bisectors of 4B

and BC. Draw BB’ parallel to them. We are working in

Euclidean geometry, so we may invoke Euclid 1.29 (the first proposition in the Elements that
depends upon the parallel postulate): when a transversal cuts a pair of parallels, the interior angles
on each side of the transversal sum to m. Applying this to the parallels MM' and BB' (with
transversal MB), and again to the parallels BB’ and NN’ (with transversal BN), we find that

£LABC = AMBB'+ ANBB'= n/2 + /2 =m.

Thus, 4, B, and C are collinear. Since the three points were arbitrary, the horocycle must be a

straight line, as claimed. u
We shall summarize the line-like and circle-like properties of horocycles in the notes to

TP 32. Before turning to this proposition, we shall consider an equivalent definition of

the horocycle given by Bolyai, and a related idea of Gauss.
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Bolyai’s L-Curve.
“Bolyai is a much neater workman than Lobachevski, but his work is a little repellent at first owing to the
adoption of a strange symbolism of his own invention.” - J.L. Coolidge”

Coolidge’s assessment on the relative “neatness” of the work of Lobachevski and Bolyai
is debatable, but the latter is undeniably a faster workman than the former. In §11 of his
Appendix, four pages after his definition of parallelism, Bolyai introduces a curve named
L, and a surface with the equally descriptive name F. These, in Lobachevski’s
terminology, turn out to be the horocycle and horosphere, respectively. (We shall meet
the horosphere in TP 34.) To explain Bolyai’s definition of the L-curve, we must first
explain some of his “strange symbolism”.

According to Bolyai, “4B = CD denotes L CAB = LACD.”

Unfolding this definition, we see that Bolyai writes AB = CD A B

when the rays 4B and CD are equally inclined toward the line D
c

segment AC. When the rays are equally inclined toward AC and AB ||l ¢D

parallel to one another, Bolyai writes AB |||= CD.
Bolyai defines an L-curve by listing its points: given a generating ray AM, which
he, like Lobachevski, calls an axis, Bolyai declares that 4 is a point on L, as is the

endpoint B of any ray BN such that BN |||= AM.

Claim 12. Bolyai’s L-curves are horocycles.
Proof. Let L be an L-curve, with axis AM. We shall show that the perpendicular bisectors of its

chords are all parallel to AM. This will require two cases.

Case 1: Consider a chord 4B, joining A to an arbitrary point B on L. Let PQ be its
perpendicular bisector. If BN is the ray such that BN ||| = AM, the equal angles £ NBA and A MAB
clearly must be acute for BN and AM to be parallel. To prove that PQ || AM, we shall demonstrate
that the alternatives lead to contradictions.

PQ cannot cut AM: if it did, say at X, then let Ye BN be such that
BY = AX. Then APAX = APBY by SAS, so £BPY = AAPX = n/2. That is,
PY and PX are both perpendicular to BA. Since there is only one line

perpendicular to a given line at a given point, we must have PY = PX,

which is absurd. Thus, PQ cannot cut AM. By symmetry, PQ cannot cut BN either.

" Coolidge, p. 72.
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PQ cannot be ultraparallel to AM: if it was, then we could rotate AM slightly toward PQ

without causing these initially non-intersecting lines to intersect. Let us try. If we rotate AM
toward PQ (and hence toward BN), AM will cut BN at some point X, since AM || BN. Ray PQ

enters AABX through side 4B, and therefore exits through another
side (Pasch’s axiom). We have already shown that PQ cannot cut
BN (= BX), so PQ must exit through AX, the rotated line. Hence,
any rotation of AM toward PQ forces an intersection of these lines,
so they cannot be ultraparallel.

Therefore, PQ || AM, as claimed.

Case 2: Consider a chord BC of L, neither endpoint of which
is 4. If A, B, and C are noncollinear, we can form the triangle AABC.
Since the perpendicular bisectors of the sides AB and AC are parallel
to AM (case 1), TP 30 implies that the perpendicular bisector of BC

must also be parallel to AM, as was to be shown.

There is no need to consider a second sub-case in which 4, B, and C are collinear, for

such a configuration cannot occur, as we shall now demonstrate.
Suppose, by way of contradiction, that 4, B, and C are
collinear (see the figure). Let BN and CO be the rays such that BN

|| = AM and CO ||| = AM. Then KNBA = {MAC = £OCA. Bisect :

BC at O, and drop a perpendicular QR to CO. Extend ray BN
backwards through B to P so that BP = CR. Since ACOR = ABQP
(by SAS), we have LCOR = £BQP. It follows that

AROP = LROB + 4BOP = (n - LCOR) + £BOP = (n - {BOP) + {BOP = m.

Hence, R, P, and Q are collinear. Since {BPQ = {CRQ = m/2, line PR is a common

perpendicular for CO and PN, which is impossible since these lines are parallel (TP 22).

Having shown that the perpendicular bisectors of all chords of an
L-curve are parallel to one another, we conclude that every L-curve is
contained within a horocycle. It remains only to show that every L-curve is
a complete horocycle. To this end, let L be an L-curve with axis 4M, and
let H be a horocycle in which is contained. We must show that every point
of H is also a point of L. Let XeH, and let XX" be the axis of H through X.
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To prove that XeL, we must demonstrate that XX ||| = AM. These lines are clearly parallel, since
they are both axes of the horocycle (in our two cases above, we proved that the axis of an L-curve
is an axis of the horocycle within which the L-curve lies), so it remains only to show that they are
equally inclined toward the chord AX. The perpendicular bisector YY’ of this chord is, by
definition of a horocycle, parallel to the rest of the horocycle’s axes. Thus, AM || YY" || XX
Hence, £X'XA = [1(XY) = [1(YA) = £MAX. That is, XX' and AM are equally inclined toward AX,

so XX'||| = AM, as was to be shown. m

The converse proposition is essentially a repetition of the last paragraph of the

preceding proof.

Claim 13. Lobachevski’s horocycles are L-curves.

Proof. (See the preceding figure.) Let H be a horocycle, and let AM 7_{

be one of its axes. We must show that if X is any point on H, then M
XN |||= AM for some ray XX'. Let XX’ be the axis of H emanating a \
from X. As axes of the horocycle, XX" and AM are parallel. To show

that they are equally inclined toward AX, let YY"’ be the perpendicular

bisector of 4B. By definition of a horocycle, YY' is parallel to the X
axes XX’ and AM. If we let d = AC = AB, then it is clear that A X'XY = [[(d) = £MAY.
Thus, XX' |||= AM, as claimed. Hence, H lies within an L-curve, L. That is, H lies within a
horocycle L (since we have just proved that L-curves are horocycles). Since one horocycle cannot

contain another as a proper subset, we have H = L. That is, H is an L-curve, as claimed. m

Gauss’ Corresponding Points

In a brief unpublished note on parallels”, Gauss nearly defined the horocycle. Given two
parallel lines A4" and BB’, Gauss defined 4 and B to be corresponding points when 4B is
equally inclined toward 44’ and BB'. Since A and B “correspond” precisely when A4’ ||| =
BB', it is easy to reformulate Bolyai’s definition of the horocycle using Gauss’
terminology. Given a pencil of parallel lines (i.e. the family of all lines parallel to a given
line), let us amplify Gauss’ definition slightly and say that two points correspond with
respect to the pencil if the line that joins them is equally inclined toward the lines of the

pencil passing through them. Furthermore, let us adopt the convention that every point

" Gauss, p. 207.
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corresponds with itself. We may now define a horocycle as the set of all points that
correspond to some point A with respect to some pencil of parallels.

This definition is more concise than either Lobachevski’s or Bolyai’s, but we
should not be too hasty in praising Gauss for creating it. It is certainly implicit in his
definition of corresponding points, but Gauss never actually wrote it down; he merely

defined corresponding points and listed three facts about them without proofs.

In an oft-quoted letter of March 6, 1832 to Farkas Bolyai, Gauss wrote of Janos’
Appendix, “to praise it would amount to praising myself: for the entire contents of the
work, the path which your son has taken, the results to which he is led, coincide almost
exactly with my own meditations which have occupied my mind for from thirty to thirty-
five years. On this account I find myself surprised to the extreme.”" After proceeding to
offer what Janos would bitterly describe, twenty years later, as “pious wishes and

T Gauss went on to suggest that

complaints about the lack of adequate civilization,
Bolyai replace the “naked symbols” in his work, such as L and F, with descriptive names
such as paracycle and parasphere respectively - names that he, Gauss, had thought of
long ago.

It would seem then that Gauss was fully aware of the horocycle’s importance in
the new geometry, but the credence that we should give Gauss’ claims for priority has
long been a matter of debate, exacerbated by the fragmentary nature of the evidence. A
recent (2004) overview of this vexed question can be found in Jeremy Gray’s appendix to
G.W. Dunnington’s biography of Gauss*. Had Gauss already followed the tortuous path
from corresponding points to non-Euclidean trigonometry (via horocycle and horosphere)
before reading Bolyai’s work? Perhaps so. On the other hand, the path is neither easy to

find nor easy to traverse, and even the great Gauss might have passed it by without

exploring it thoroughly®.

" Gauss, pp. 220-221. Reb Hastrev has written a poem (unpublished) that includes the apposite verses,
“And what of Janos Bolyai, who/ With penetrating logic drew/ Conclusions of profound degree/ ‘Praise
him?’ Gauss cried, ‘I’1l first praise me!” ”’

T Greenberg, p. 142.

t Dunnington, pp. 461-467.

The one note he left on non-Euclidean trigonometry was written after he had read both Bolyai and
Lobachevski. Significantly, this note was discovered inside of his copy of Lobachevski’s Theory of
Parallels. (Dunnington, p.186.)

149



Gauss’ writings mention corresponding points in only one other place — near the
end of a terse list of nine items” under the heading, “Parallelismus”. The first five
encompass the definition of, and basic statements about, parallels. The sixth reads: “What
corresponding points on two parallel lines are.” The seventh and eighth items assert
properties of corresponding points, and the final cryptic entry reads: “Trope ist die L”.
Paul Stickel, who compiled Gauss’ unpublished notes, seems to have interpolated Gauss’
probable meaning in brackets for their publication in Gauss’ complete works, where the
ninth item on the list appears as, “9. Trope ist die L[inie, die von correspondirenden
Punkten gebildet wird, wenn man alle Parallelen zu einer Geraden betrachtet.]” (“Trope
is the L[ine formed by corresponding points...]) Stickel suggests that Gauss compiled the
list in 1831, prompting Bonola to observe, “It is interesting to notice that Gauss, even at
this date, seems to have anticipated the importance of the Horocycle. The definition of
Corresponding Points and the statement of their properties is evidently meant to form an
introduction to the discussion of the properties of this curve, to which he seems to have
given the name Trope.” © I propose a simpler explanation: Gauss drew up this undated list
after reading Bolyai’s work in 1832. In this case, die L would simply refer to Bolyai’s L-
curve, with no interpolation needed. Moreover, it seems more probable that Gauss would
have switched his allegiance from Paracycle to Trope at some point after his letter to
Bolyai rather than just before it, since that letter indicates that Bolyai’s L had been known

privately to Gauss as the paracycle for many years (‘“vor langer Zeit”).

" Gauss, pp. 208-209.
" Bonola, p. 74, footnote.
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Theory of Parallels 32

A circle of increasing radius merges into a horocycle.

When Lobachevski introduced the horocycle in TP 31 with the words, “Grenzlinie
(Oricycle) nennen wir...” (We shall define a boundary-line (horocycle)...), he offered two
names for it: the now familiar “horocycle”, with its suggestions of circle-like properties,
and Grenzlinie, meaning “boundary-line” or “limiting curve”. In his final exposition of
the subject, Pangeometrie (1855), he combined the circle and limit imagery into a single
French name, cercle limite” .

“Horocycle” has become the standard term, and I have taken the translator’s
liberty of making exclusive use of it, despite the fact that Lobachevski favors Grenzlinie
in the German original. Regardless of which name one ultimately settles on, it remains
important to understand why the alternatives are reasonable. Explaining the sense in
which the horocycle is a “limiting curve” or “limit circle” was, in fact, Lobachevski’s
sole purpose for including TP 32 in the present work; its inclusion was not strictly
necessary from a logical standpoint, as TP 32 is never used in any subsequent
proposition.

Since Lobachevski takes no pains to explain what he means by his phrase “a

circle of increasing radius merges into a horocycle,” 1 shall devote a few words to the

intuitive meaning of this statement before examining its proof.

The Intuitive Picture

Let AC be a ray in Euclidean geometry, and / the

perpendicular to it that passes through 4. Let any point £ A
on the ray determine a circle with center £ and radius EA4.

As FE slides down the ray, its corresponding circle grows.

Imagine standing at a fixed spot on ray AC, perhaps a few

" Actually, the two images are already combined in “horocycle”, though few would recognize it. Most
English words with the hor- prefix, such as “horoscope” or “horology”, derive from the Latin hora,

meaning “hour”, “season”, or “time”. A few, however, such as horizon, come from the Greek horos,
meaning “boundary.” Lobachevski’s “horocycle” belongs to this category.

151



feet away from A, and looking at line /. Let E be a point between yourself and A. This
point slides toward you; its corresponding circle grows larger. At first, you are outside of
the circle and can witness the whole shape growing in front of you, but it soon overtakes
you. You find yourself within its circumference. The point E passes under your feet and
continues to recede down ray AC. Most of the circle is now behind your back, and hence
out of your field of vision. Time passes, and the arc of the circle that remains in sight as
you look towards / becomes ever flatter. Eventually, you cannot distinguish it from /.
Curious, you walk toward / to look closer. You find that at points near 4, the circle is
indistinguishable from /, as far as human eyesight can discern. Is this the case all over /,
or just near A? You walk along /, as if walking up the beach, to investigate. Eventually,
you reach a point at which you can discern a space between the still-growing circle and
the line, but on closer examination, you find that the gap is shrinking; after a few
minutes, it shrinks away to imperceptibility. You walk further along / to find a spot where
the circle has yet to catch up with the line. You find one, but here too the gap vanishes as
the circle’s radius increases. No matter how far you walk up /, the circle eventually
becomes indistinguishable from it. In this sense, the circle of increasing radius in
Euclidean geometry “merges into” line /.

A bit more precisely, but still picturesquely, we can describe this merging
situation as follows: if we walk along / for a while, stop at an arbitrary point B, and then
turn 90° to look straight away from / toward the growing circle, then the point /" at which
the increasing circle intersects our line of sight will approach B as the radius of the circle
increases.

Given the same scenario in imaginary geometry, the circle of increasing radius
will not merge into /. Instead, TP 32 tells us that the circle will merge into the horocycle
‘H whose axis is AC. Lobachevski’s proof is essentially a verification of the property
described in the preceding paragraph, substituting A for /. That is, he proves TP 32 by
verifying the following: If B is an arbitrary point on H, and F is the point at which the
line erected perpendicular to H at B meets the growing circle, then /' — B as the circle’s
radius increases. Of course, the line erected perpendicular to H at B is none other than the
axis of H passing through B (see TP 31 Notes, Claim 10).

Before examining Lobachevski’s proof in detail, we make the following

important observation: Regardless of how large the circle grows, it will never touch the
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horocycle at any point other than A. (Proof: If the two curves could share another point X,
then they would have a common chord, the line segment AX. Consider the perpendicular
bisector of such a chord. It would be parallel to axis AC, by definition of a horocycle. On
the other hand, Euclid III.1 implies that it would cut AC at the center of the circle.
Contradiction.)

We turn now to the details of Lobachevski’s proof.

The Proof

Let AB be a chord of the horocycle. From
its endpoints, A and B, draw the two axes
AC and BD; these will necessarily make
equal angles, BAC = ABD = a, with the
chord AB (TP 31). From either axis, say
AC, select an arbitrary point E to be the
center of a circle. Draw an arc of this circle
extending from A to F, the point at which it
intersects BD. The circle’s radius EF will
make angle AFE = f3 on one side of the
chord of the circle, AF; on the other side, it
will make angle EFD = ywith the axis BD.

These opening sentences merely set the scene that we have already described. In
particular, axis BD is the perpendicular to the horocycle erected at B. The equality
£BAC = £ABD follows from the fact that any two axes of a horocycle H are equally
inclined toward the chord joining the points at which they intersect H. (Recall that this
property is part of Bolyai’s very definition of the horocycle.)

It follows that the angle BAF between the horocycle’s chord and the
circle’s chord is BAF = a- < 3+ y— a. From this, it follows that a - 8 <
Yay.

To establish TP 32, Lobachevski must show that ¥ — B (where F' is defined as
the intersection of the growing circle and the axis BD) as the circle’s radius increases.
Showing that F — B is clearly equivalent to showing that £KBAF — 0. Lobachevski
establishes this latter limit. His first step in this direction is to show that {BAF < ' y. He

153



will then finish the proof by demonstrating that y — 0 as the circle grows. We may

establish his preliminary inequality as follows:

ABAF = ABAE - AFAE = a - LFAE
=a - LAFFE (Euclid 1.5 on isosceles triangle AAFE.)
=o—p.

Then, since the sum of the angles in AABF'is less than m, we have

ABAF + LAFB + £ABF < m.
That is,
(a=p+t@m-p-yta<m
Equivalently,
(a=p)<mn-(n-p-y)-o
That is,

(a=p)<y—(a-p),
from which it follows that

(a—p) <2y, as claimed.

Having secured the inequality £ BAF < ' y, it remains for Lobachevski to show

that y — 0 as the circle grows. He addresses this point next.

Now, angle y will decrease if we move F toward B along axis BF while
holding the center E fixed (TP 21). Moreover, y will decrease to zero if we
move the center E down axis AC while holding F fixed (TP 21, 22).

As the circle grows, point £ and point F both move. In turn, their motions alter y,
the measure of £EFD. Lobachevski’s argument that y vanishes as the circle becomes
infinitely large is somewhat objectionable: although the two variables (the locations of £
and F) are not independent of one another, he analyzes them as though they were. We can

fix this as follows.
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Suppose that, before it begins to grow, the circle is initially centered at E' and

initially intersects BD at F', as shown in
the figure. Then, as the circle grows, its
moving center E slides down ray E'C
while F slides up ray F'B. The motion of
F makes it clear that LAEF will always
be less than AAEF'. Since the latter

angle vanishes as the circle becomes

D
C

A 2
infinitely large (by TP 21), it follows that

E E

the former angle must do the same. Finally, to conclude this part of the argument, we

shall show that y, the measure of LEFD, is always less than the vanishing quantity

A AEF, and hence must itself vanish.

Lemma. y < LAEF.

Proof. We shall show that the alternatives lead to contradictions.

First, suppose y = LAEF. Bisect EF at M. By dropping
perpendiculars MP and MQ to BD and AC respectively, we
produce congruent triangles AFMP = AEMQ (by AAS). Hence,
AFMP = LEMQ. Let 6 be the common measure of these
angles. Then £ PMFE, the supplement of {FMP, is ©-0, so that
APMQ = {PME + AEMQ = (nt - 0) + § = . That is, P, M, and
Q are collinear. Consequently, line PQ is a common
perpendicular to the parallels BD and AC, which is impossible
by TP 22. Hence, LAEF # 7.

Next, suppose that y > {AEF. Draw FG such that
LEFG = AAEF. Because FD || AC, line FG must cut AC
(TP 16) at some point H. Then the exterior angle £AEF of
AEFH is equal to LEFH, one of its remote interior angles,
contradicting Euclid 1.16. Hence, LAEF is not less than .

Having exhausted the alternatives, we conclude that
y < LAEF, as claimed.

Thus, we have demonstrated that y vanishes as the circle becomes infinitely large.
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As vy vanishes, so does a - f, the angle between AB and AF.
Consequently, the distance from point B of the horocycle to point F of the
circle vanishes as well.

We have already seen that (o — ) < 2 y. Hence, the growth of the circle causes
(a — p) to vanish along with y. That is, £ BAF vanishes as the circle grows. Since only one
arm of this angle, AF, moves in response to the circle’s growth, it must approach the
other arm, 4B, if the angle is to vanish. Thus, FF — B, as claimed, and the circle of

increasing radius merges into the horocycle in the sense described above.

For this reason, one may also call the horocycle a circle of infinite radius.

The circle approaches the horocycle (its “limiting curve”) as its radius increases
toward infinity. Thus, by indulging in the traditional “abuse of language” associated with
limiting behavior, we may say that when the circle’s radius actually is infinite, the circle
actually is the horocycle. That is, we may view the horocycle as a “circle of infinite

radius”.

Circle-like Properties of the Horocycle: A Summary.

Here are five of the most vital facts supporting the interpretation of a horocycle as a circle

whose center is a point at infinity, and whose “diameters” are its axes.

1. “A circle of increasing radius merges into a horocycle”
(TP 32)

2. The perpendicular bisectors of a horocycle’s chords all “meet at a point at infinity”.
That is, they are parallel to one another. Circles share this property, except that the
bisectors meet at an ordinary point, not at infinity.

(TP 31, Lobachevski’s definition of a horocycle)
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3. A horocycle is symmetric about its axes, just as a circle is symmetric about its
diameters.

(TP 31 notes, Claim 4)

4. A horocycle is orthogonal to its axes, just as a circle is orthogonal to its diameters.
(TP 31 notes, Claim 10, Corollary)

5. A horocycle is determined by a point at infinity (its center) and one ordinary point (a
point on its “circumference”), just as a circle is determined by its center and one point on
its circumference.

(TP 31 notes, Claim 9)

Two Line-like Properties

Two attributes of horocycles, however, mark them as peculiarly line-like.

1. All horocycles are congruent to one another.

2. In the presence of the parallel postulate, a horocycle is a straight line.

Because Euclid constructs all of the geometric figures in The Elements with
straightedge and compass, the tension in his work derives, in one sense, from the
seemingly contrary natures of lines and circles - the very exemplars of perfect
straightness and uniform curvature. One wonders what he would have thought of a curve

in which those natures intertwine.
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Theory of Parallels 33

Let AA' =BB' = x be segments of two lines that are parallel in
the direction from A to A'. If these parallels are axes of two © 8’
horocycles, whose arcs AB = s and A'B' = s' they delimit, then “
the equation s'=se * holds, where e is some number
independent of the arcs s, s, and of the line segment x, the

distance between the arcs s' and s.

To simplify the somewhat confusing statement of TP 33, we shall introduce some

new terminology.

Preliminaries: Concentric Horocycles
‘It’s time for definition,” he said.
‘Then follow my lead,” I replied. ‘“We’ll see if we can reach a satisfactory explanation somehow or other.’
- Plato, Republic, 474c

Recall that a horocycle is determined by two data: a point upon it, and its
L . . e . L SoNceng
center (intuitively, the center is a point at infinity; formally, it is a pencil fe

of parallels — the set of the horocycle’s axes.) Naturally, concentric 3

horocycles are defined to be horocycles sharing the same center. In other
words, two horocycles are concentric if and only if their sets of axes are “"”d“es
identical.

We define the distance between two concentric horocycles to be the length of any
axis cut off between them; this length does not depend upon the particular axis that we

choose to measure, as we now demonstrate.

Claim 1. The distance between two concentric horocycles is a well-defined concept, inasmuch as
it does not depend upon the axis we choose to measure.
Proof. Let A4’ and BB' be segments of axes cut off by
the same pair of concentric horocycles, as in the figure.
We must prove that they have the same length.

Every horocycle satisfies the definition of

Bolyai’s L-curve (TP 31 notes, Claim 13); that is, every
horocycle has the property that any two of its axes are

equally inclined toward the chord joining their

endpoints.
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Consequently, {B'BA = £A'AB and £AA'B'= £BB'A".

Erect a perpendicular to 4B at its midpoint M.

Let N be the perpendicular’s intersection with 4'B’.

Draw AN and BN.

We immediately have ANAM = ANBM (by SAS).

From this, it follows that NA = NB and K NAM = A NBM.

Subtracting equals from equals, we have ({B'BA - { NBM) = ({A'AB - A NAM).
That is, £A'AN = £B'BN.

Consequently, AA’AN = AB'BN (by AAS).

Hence, A4' = BB', as claimed. m

TP 33 is a theorem about concentric horocycles. Once we recognize this, we can

reformulate the statement of the theorem as follows.

TP 33 (Rephrased). Consider two concentric horocycles and two of their
common axes, AA' and BB'. If x is the distance between the horocycles, while

s and s'" are the lengths of their arcs which lie between the axes, as shown in

x
the figure, then the three lengths s, s', and x will be related by the formula B 8’
s'=se”,
where e is a constant whose numerical value is determined by the unit with A % N

which we measure length: by a suitable choice of unit, we can endow e with
any value (greater than 1) that we please. (Lobachevski eventually chooses

the unit of length so that the value of e is the base of the natural logarithm.)

The most curious feature of this formula is the constant e, whose numerical value
depends upon the size of our measuring stick. Such constants are unknown in Euclidean
geometry, but they are actually quite common in spherical geometry. Consider, for
example, how a spherical triangle’s area and angular excess are related. If our unit is one-
fifth of the sphere’s radius, then the radius is 5 units long, and the area of a spherical
triangle is given by 4 = 25 x excess. In contrast, if we take the sphere’s diameter as our
unit of length, then the radius is 2 a unit long, and the area of a spherical triangle is given
by 4 = Y4 x excess. In general, we have A = 1 x excess, where r is a constant whose

numerical value is determined by the unit with which we measure length. Similarly, the
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spherical Pythagorean theorem is cos(c/r) = cos(a/r)cos(b/r), where r’s numerical value
(the length of the sphere’s radius) depends upon our unit of measurement.

The existence of a constant whose numerical value is determined by the unit of
length is therefore not without precedent. However, the comfort afforded by this apparent
similarity to the tangible world of spherical geometry begins to wear thin when we reflect
upon a crucial difference: spherical geometry’s ubiquitous 7 has a natural interpretation as
the sphere’s radius, but the indeterminate constant of imaginary geometry has no clear
geometric significance.

This unsettling aspect of imaginary geometry may have actually been responsible
for the lengthy delay in the publication of Janos Bolyai’s work. On November 3, 1823, he
wrote to his father, Farkas Bolyai, that he had “created a new and different world out of
nothing”. In his response, Farkas urged his son to publish his results quickly, arguing that
“since all scientific striving is only a great war and one does not know when it will be
replaced by peace, one must win, if possible; for here, preeminence comes to him who is
first.” His words proved prophetic. When Janos visited his father in February 1825 to
discuss his “new world”, hoping that his father would help him get it into print, he was
disappointed to find, in the words of Jeremy Gray, that “he was unable to convince him,
worried as he was about an arbitrary constant that entered the formulae his son had
found.”” Consequently, Bolyai’s work was not published until 1832. During the delay,
Lobachevski became (in 1829) the first man to publish an account of non-Euclidean

geometry.

A Missing Lemma

We shall need the following plausible result, which Lobachevski assumes without proof.

Fa
Claim 2. (*Equal Division Lemma”) Let H and K be concentric .

horocycles. If Py, Py, ... , P, are equally spaced points on H (so that the
horocyclic arcs PyPy, P\P,, ... , P, P, all have the same length), then the

axes passing through them meet K in points Qo, Oy, ... , Oy, Which are p,

equally spaced as well.

" Gray, Jéanos Bolyai. pp. 52-53.
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Proof. The symmetry of horocycles about their axes has the following consequence:

1/
C{‘—'_
A

For any distinct points A, B, and C of a horocycle, the arcs AC and CB have the same
length if and only if A and B are swapped by reflection in the axis passing through C.

We will use this fact to prove our lemma.

To begin, we shall show that arcQyQ, = arcQ,0-.

By hypothesis, arcPyP, = arcPP..

Thus, P, and P, are swapped by a reflection in axis P Q.

Hence, the image of line PyQ, under this reflection is a line passing through P,.

Moreover, since reflection preserves parallelism, the image of Py(Q, must be parallel to

the image of P Q;, which is P,Q; itself. Thus, the reflected image of PyQ, is a line passing
through P, which is parallel to P;Q;. The only such line is P,(Q,. Hence, the axes PyQ, and P,Q,

are swapped by the reflection.

Consequently, points O, and O, are swapped by the reflection in axis P;0;.

Hence, arcQyQ; = arc0,0:.
Repeating the argument but reflecting in axis P,Q, shows that arcQ,0, = arcQ,0s.

Thus, arcQoQ = arcQ1Q> = arc0,0;.

Continuing in this fashion, we obtain arcQoQ; = arcQ10> = arcQ,Qs; = --- = arcQn.1Oh.

That is, the points Oy, O, ... , O, are equally spaced along horocycle I, as claimed. =

Overview of the Proof of TP 33

Before diving into the details of the proof, we shall examine the broad outline of the

argument, which essentially falls into two steps.

horocycle, we simply “slide it” down the axes common to the two
curves. (For example, in the figure at right, arc 4B of H projects
onto arc A'B" of K.) Accordingly, given a pair of concentric

horocycles, any arc of the exterior one (such as AB in the figure)

Step 1 (Definition and arc-invariance of the shrinking factor)

To project an arc of a horocycle onto an interior concentric

determines two arclengths: its own (which we shall call s), and the

arclength of its projection onto the interior horocycle (which we shall call s’).
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Individually, the numerical values of s and s’ depend upon the unit of
measurement, but their ratio (say, s/s’, the bigger to the smaller) does not; it is a pure,
dimensionless number . In fact, this ratio is unaffected even by our choice of the arc (4B)
with which we determine s and s". In other words, if I select a tiny arc on the outer
horocycle and divide its length by the length of its projection, I will obtain the same value
that you will, even if you select an enormous arc for the same procedure. Demonstrating
this arc-invariance will be the first step of TP 33’s proof.

I shall call s/s’, the invariant ratio of arclengths, the expansion factor associated
with the two concentric horocycles. For, given an arc of the inner horocycle, when we
multiply its length by the expansion factor, we will obtain the length of its projection onto
the outer horocycle. Similarly, I shall call ss, the reciprocal ratio, the shrinking factor

associated with the two concentric horocycles.

Step 2 (The shrinking factor varies exponentially with the distance between the

horocycles)

The expansion/shrinking factor clearly does depend upon the distance between the
horocycles. If they are barely separated from one another, then projections will cause
minimal shrinking or expanding. Because the axes of concentric horocycles draw ever
closer to one another in the direction of their parallelism (TP 24), distantly separated
horocycles will have more pronounced expansion/shrinking factors.

Since the shrinking factor is a function of the distance between the concentric
horocycles with which it is associated, we may write s’/s = f(x), for some function £,
where x represents the distance between the two concentric horocycles (as measured by
some fixed unit of length). Equivalently, s’ = s-f{x), where f(x) is the shrinking factor
associated with concentric horocycles separated by distance x. Note that this is very close
to Lobachevski’s formula, s’ = se™. Thus, the second step in the proof will be to show that
fx) is an exponential function. That is, the shrinking factor varies exponentially with the

distance between concentric horocycles. We shall do this by demonstrating that f{x)

" For example, if I use inches, I might find s = 18 and s’ = 9, while you, using feet, would find s = 1.5 and
s'=0.75. Although we would disagree on the numerical values of s and s’, we would agree that s/s" = 2.

¥ Since this type of arc-invariance obviously holds when we carry out the same procedure on concentric
circles, we should not be too surprised to meet it in the context of horocycles, which we think of, after all,
as circles of infinite radius.
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satisfies a functional equation whose only solutions are exponential functions. This
functional equation is well known, but I will record it here as a lemma before examining

Lobachevski’s proof.

A Functional Equation

Claim 3. If fis a continuous function such that f{x + y) = f{x)A(y) for all positive reals x and y, and
A0)=1", then f{x) = a*, where a = 1)

Proof. Leta=f(1). For any natural number n, we have
fAm=f1+1+--+D=ADAL) - )= [AD]"=a",
Thus, for any natural numbers n and m, we have a" = f{n) = f(n/m + --- + n/m) = fn/m)",
Hence, fin/m) = a"’™. That is, f{x) = " for all rational values of x.

Since the rationals are dense in the positive reals, /' ’s continuity guarantees that f{x) = a" for all

positive real values of x. m

The Proof: Step 1

Suppose that n and m are whole numbers such that s:s' = n'm. Draw a
third axis CC' between AA' and BB'. Let t = AC and t'=A'C’ be the lengths
of the arcs that it cuts from AB and A'B’' respectively. Assuming that
t:s = p:q for some whole numbers p and g, we have

s=Mn/m)s’ and t=(p/q)s.

If we divide s into ng equal parts by axes, any one such
part will fit exactly mg times into s'and exactly np times
into t. At the same time, the axes dividing s into nq equal
parts divide s'into ng equal parts as well. From this it
follows that

t'/t=s'/s.

Consequently, as soon as the distance x between the horocycles is given,
the ratio of tto t'is determined; this ratio remains the same, no matter
where we draw CC' between AA' and BB'.

" In fact, {0) # 0 will suffice for this proof, but we will use this lemma only in cases where f{0) = 1.
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As described in the “overview”, the arc AB determines the
arclengths s and s". We must show that the ratio s" s, the shrinking
factor, is independent of the arc AB. To this end, we take a second arc
at random (Lobachevski uses AC *), denote its arclength by ¢, and
denote the length of the arc it determines on the second horocycle by

t'. We must prove that t". t = 5" s.

Lobachevski’s argument implicitly involves four cases. He
explicitly proves the first case, in which s is commensurable with both s’ and ¢, but trusts
his readers to supply the details of the remaining three cases (in which s is
incommensurable with s’, incommensurable with ¢, or incommensurable with both s’ and
t.) In fact, Lobachevski’s argument is more involved than necessary. Whether s is
commensurable with ¢ is an important distinction; whether s is commensurable with s’ is

irrelevant, as I shall now demonstrate, by proving that ¢: # = s": s in only two cases:

Case 1 (s and ¢ are commensurable)

In this case, there are whole numbers p and ¢ such that s = gu and ¢t = pu.
Divide 4B into g equal arcs of length u, the first p of which 8
divide AC evenly. By the equal division lemma (Claim 2), the axes / C—

passing through the points of division cut 4'B’ into ¢ equal arcs, the

A » :: A'
first p of which divide 4'C’ evenly. Denoting the common length of : i
these arcs by u', we have that s = A'B'= qu',and t' = A'C' = pu’. £ {\
A’
A

Therefore, t"t=pu"-pu=u"u=qu":qu=s"s.

That is, t: t = 5" 5, as claimed.

" Admittedly, only one endpoint of AC is random, but once we prove that the ratio is the same for arcs with
one endpoint in common, we can easily extend this to a completely random arc as follows: let GH be any
arc whatsoever. The ratio is the same for AB and AH, since they have 4 in common; similarly, the ratio is
equal for AH and GH, since they have H in common. Thus, the ratio is identical for AB and the random arc
GH.
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Case 2 (s and ¢ are incommensurable)

Divide AC into n equal arcs. Let u = #/n denote their length.
Begin at 4 and measure off arcs of length u along 4B until we
reach a point X (before B) such that the arc XB has length less than
u = t/n. Since u measures both AC and AX, these arcs are
commensurable, and so, by Case 1, we have A'C': AC = A'X": AX.

Now, when n — o, we have that (u = t/n) — 0.

Thus, X — B, so that A’X" : AX — A'B' : AB. On the other
hand, 4'X" : AX is always equal to A'C’': AC, which is a constant, so A
we must have 4'X": AX — A'C": AC. A

These two expressions for the same limit must be equal, so
we have

AB': AB=A'C': AC.
That is, ¢": t = 5" s, as claimed.

Thus, we have shown that ¢: # = s" s in any case. That is, the shrinking factor is
arc-independent, as claimed. This completes this first step of the proof. As discussed in
the overview, this implies that s’ = s-f{x) for some function f{x), which represents the

shrinking factor as a function of the distance between two concentric horocycles.

The Proof: Step 2 (A se™y Formula)

From this, it follows that if we write s = es'when x = 1, then s'=se ~* for
every value of x.

When Lobachevski writes s = es’ when x = 1, he is effectively defining the
symbol e as the expansion factor for concentric horocycles separated by one unit of
distance. (It may be helpful to think of e as shorthand for “expansion” in this context.) It
is crucial to understand that e, at this point in the argument, has nothing to do with the
base of the natural logarithm.

Thinking of e as an expansion factor reveals why its numerical value depends
upon our unit of length. If our unit of length is the millimeter, then e is the expansion
factor between nearly coincident horocycles. Clearly, it will be very close to 1 in this
case. On the other hand, if we use the light-year as our unit of length, then e may be

considerably larger than 1. We shall return to the numerical value of e shortly. First, let
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us prove that f{(x), the shrinking factor for concentric horocycles separated by distance x,

is an exponential function.

Claim 4. Consider two concentric horocycles separated by a distance of x. If s and s’ are
corresponding arcs on the horocycles (s on the outer, s’ on the inner), then s’ = se™, where e is the
expansion factor for concentric horocycles separated by a unit distance. (The numerical value of e

depends on the unit of length.)

Proof. The figure at right shows at a glance that fix + y) = f{x)A).
The outer and inner horocycles are separated by x+ y, so an arc of
length 1 on the outer projects to an arc of length f{x+ y) on the
inner. Alternatively, the outer arc projects to an arc of length f{x) on

the middle horocycle, which in turn projects to an arc on the inner

horocycle of length f{x)(y). If we equate the two expressions for
the innermost horocyclic arc, we obtain fix + y) = fix)Ay), so by
Claim 3, f{x) = f(1)".

Since f{(1) is the shrinking factor between concentric horocycles separated by one unit, it
is the reciprocal of e, the expansion factor between such horocycles. That is f1) = e
Hence, fix) = (¢)" = ¢™. Since s’ = sf(x), as we saw in Step 1 above, it follows that s’ = se™, as

claimed. n

Corollary. Parallel lines are asymptotic (i.e. the distance between them not only decreases, but

decreases to zero in their direction of parallelism.)

Proof. Regardless of the unit of length, we know that ¢ > 1 since e is an expansion factor.

Hence, the formula s’ = se™ implies that s'— 0 as x — oo. m

It remains only to clarify the meaning of Lobachevski’s e and relate it to the base of the

natural logarithm.

166



A Unit of Length

We may choose the unit of length with which we measure x as we see fit.
In fact, because e is an undetermined number subject only to the
condition e >1, we may, for the sake of computational ease, choose the
unit of length so that the number e will be the base of the natural
logarithm.

In addition, since s' = 0 when x = o, we observe that, in the
direction of parallelism, the distance between two parallels not only
decreases (TP 24), but ultimately vanishes. Thus, parallel lines have the
character of asymptotes.

We have tacitly assumed that we have a unit of length with which to measure x, s,
and s’, but we have never bothered to describe it in any detail. Above, we saw that the
choice of unit determines the numerical value of the expansion factor, e. Lobachevski
proposes that we reverse this process and let a number determine our unit of length.

Specifically, we may define our unit of length as follows. Let H be a fixed
horocycle, and let K be a second horocycle superimposed on top of it. Move K away
from ‘H so that the horocycles remain concentric as the distance between them increases.
The expansion factor associated with the horocycles is initially 1 (when they are
coincident), but it increases as they separate. In fact, because the axes are asymptotic in
their direction of parallelism, the expansion factor increases without bound as the
distance between the horocycles increases. Hence, at some point, the expansion factor
will be precisely the base of the natural logarithm (2.71828...). At this moment, we stop
moving K and take the distance separating the two horocycles to be our unit of length.

With this carefully constructed unit of length, the expansion factor e in the

formula s’ = se™ is in fact the base of the natural logarithm.

Notation Variation

Lobachevski’s use of e to represent an indeterminate constant is regrettable. Once we
decide to arrange matters so that the e in s’ = se™ is the familiar logarithmic base, we are
apt to forget that we could have endowed it with any other value (greater than 1, of

course) by choosing a different unit of length.
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Lobachevski could have avoided this potential confusion by calling his expansion
factor e'¥, letting e retain its usual meaning and allowing the parameter k to take any
positive value. This works because as k varies over the positive reals, ' assumes all
values greater than 1, as the expansion factor should. This convention is neater, since it
relates the unit length to the value of the parameter £, rather than to the numerical value
ofe. Viewed from this perspective, the formula in this proposition becomes, in its most

general form,

Adopting Lobachevski’s choice of unit length is equivalent to setting £ = 1. If we retain
the parameter k instead of fixing its value at 1, we may express subsequent equations in
more general terms. In future propositions, I shall include footnotes that indicate the form
that Lobachevski’s equations would take if he had retained the parameter. The extra
generality manifests itself only in trivial changes in formulae; no new ideas are involved.
On the other hand, seeing the more general forms reinforces the analogy with spherical
geometry, whose formulae involve a parameter, », whose value depends upon the unit of

length.

Asymptotic Triangles
“One of the most elegant passages in the literature on hyperbolic geometry since the time of Lobachevsky
is the proof by Liebmann that the area of a triangle remains finite when all its sides are infinite.”

- H.S.M. Coxeter’

The convention that parallel lines meet one another at an

ideal point at infinity seems particularly apt in light of the :(;L
asymptotic nature of parallels. It also justifies the notion of

an “asymptotic triangle”: a triangle with at least one vertex i

at infinity, where two of its sides (two infinitely long, (| s b0
parallel sides) meet one another. Such triangles are called ’Etm
singly, doubly, or triply asymptotic, according to the number “‘aﬂ

of its vertices they have at infinity.

" Coxeter, Introduction to Geometry, p. 295.
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We name ordinary triangles by listing their vertices e

(such as AABC); by denoting ideal vertices with capital

SinaLy

omegas (Q, Q', Q" etc.), we can name asymptotic triangles AsYmMpTOTIC

in the same way. (See the figures.)

I shall indicate a few properties of asymptotic triangles,
which we will need in order to understand a remarkable proof by
Gauss that the area of an ordinary triangle in imaginary geometry
is directly proportional its angle defect. None of this material is

needed to understand the remainder of The Theory of Parallels; 1

have included it simply because it is too elegant to ignore.
Accordingly, some of the arguments that I present below are left
deliberately sketchy, lest the details obscure the large ideas in

this digression.

Claim 5. Given two rays 4B and AC emanating from A, there exists a unique line which is
parallel to 4B in one direction and to AC in the other.

Proof. Let d be the unique length such that [[(d) = 24BAC (such a d
exists, by TP 23). Let D be the point on the angle bisector of £BAC such
that AD = d. Draw the line / through D which is perpendicular to AD. By

construction, / will be parallel to AB on one side, and to AC on the other.

Thus, a line of the sort that we desire exists. If m is another such line, then
the transitivity of parallelism implies that / and m are parallel to one
another in both directions, which is impossible (TP 24). Hence, [ is the unique line parallel to AB

in one direction, and AC in the other. n

If we think of the rays AB and AC in the preceding lemma as each “pointing to” a
distinct point at infinity, we may interpret the lemma as an extension of Euclid’s first
postulate: there is unique line joining any two points at infinity. Note that this line is
perfectly ordinary; there is no need to postulate a “line at infinity”, as we do in projective

geometry.
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Claim 6. The area of any singly asymptotic triangle is finite.
Proof (sketch). Let AABQ be a singly asymptotic triangle.
Embed it in a doubly asymptotic triangle by extending its finite

side AB to the ray AB, and drawing the unique line that is
parallel to AB in one direction and parallel to AQ in the other (claim 5). Letting Q" denote the
ideal vertex where this line “meets” AB, we have constructed a doubly asymptotic triangle
NAQQ'. Let B’ be the point on ray 4Q such that AB' = AB. From B and B’, drop perpendiculars
BC and B'C" to Q€. Like any bounded figure, the pentagon ABCC'B’ has a finite area. By a
dissection argument, one can show that the singly asymptotic triangle A4ABQ has the same area as
the pentagon. I shall omit the details of this argument”, and merely present the “picture” of the

proof (above) discovered by Heinrich Liebmann.

Corollary 1. The area of any doubly asymptotic triangle is finite.
Proof. By dropping a perpendicular from the ordinary (non-ideal) vertex of a
doubly asymptotic triangle to its opposite side, we decompose it into two

¢
]
singly asymptotic triangles, each of which has finite area. The sum of their /m\

areas is the area of the doubly asymptotic triangle. n

Corollary 2. The area of any triply asymptotic triangle is finite.
Proof. Choose a point on a side of a triply asymptotic triangle. From the
point, draw a line parallel to the remaining sides. This decomposes the

triply asymptotic triangle into two doubly asymptotic triangles. Its area is

the sum of their areas, and so, by Corollary 1, is finite. n

" They may be found in Coxeter, pp. 295-6.
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We typically describe an ordinary triangle by six data: the measures of its three
angles, and the lengths of its three sides. However, each triangle congruence criterion
requires the agreement of only three of these data (SAS, SSS, ASA, AAS, or AAA in
imaginary geometry).

Singly asymptotic triangles have two infinite sides and an ideal vertex, and thus
can vary in only three of the six data: the two ordinary angles, and their included side.
Any two of these three will suffice to determine a singly asymptotic triangle up to
congruence. Intuitively, this is because any two asymptotic triangles have equal 0° angles
at their ideal vertices. If, in addition, they agree on two other data (AA or AS), we then
have AAA or AAS, which implies that the triangles are congruent.

Similarly, a doubly asymptotic triangle can vary in only one datum: the angle at
its sole non-ideal vertex. Any pair of doubly asymptotic triangles with equal angles will
be congruent: they automatically agree on two 0° angles, so the equality of their
remaining angles yields congruence by AAA.

Finally, a/l triply asymptotic triangles are congruent by AAA (all angles are 0°).

This last fact is quite remarkable: like points, lines, and horocycles, any two triply
asymptotic triangles are identical save for their location in the plane. Combined with

Corollary 2, this tells us that all triply asymptotic triangles have the same finite area.

Gauss’ Proof: Area and Defect are Proportional
“... instead of expressing his great joy and interest, and trying to prepare an appropriate reception for the
good cause, avoiding all these, he rested content with pious wishes and complaints about the lack of
adequate civilization.”

- Janos Bolyai (1851), writing about Gauss’ response to the Appendix in 1832."

Gauss’ 1832 letter to Farkas Bolyai concerning Janos’ Appendix is perhaps best known
for its infamous line, “to praise it would be to praise myself.”" Considerably less well
known is the beautiful proof Gauss sketched in this letter of the fact that the area of a

triangle in imaginary geometry is directly proportional to its angle defect. The proof

" Greenberg, p. 142.

¥ Gauss does offer some relatively selfless praise to Bolyai in his letter (“I...am overjoyed that it happens to
be the son of my old friend who outstrips me in such a remarkable way.”), but one cannot help wishing that
he had told him instead what he confided to his friend Gerling, “I consider this young geometer Bolyai to
be a genius of the highest order.” (Gauss, p.220)
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sketched in his letter is essentially a list of seven steps, culminating in the desired result .

I have amplified Gauss’ argument in the proposition below, following a simple lemma.

Claim 7. If a continuous function fis additive (i.e. if f{x+y) = f{x) + fy)), then f(x) = kx for some
real number £.
Proof. Letk=£(1).
Case 1 (x is a natural number, n)
) =f1+1+-+D=AD)+AD)+ - A=k +k+ -+ k= kn.
Case 2 (x is a positive unit fraction, 1/n)
k=f1)=f1n+1/n---+ 1/n)=f1/n)+f1/n) + --- + f(1/n) = n f(1/n).
Hence, f{(1/n) = k/n.
Case 3 (x is a positive rational number, m/n)
fim/m)=f1/n+--- + 1/n)=f1/n) + --- + f(1/n) = m-f(1/n) = m(k/n) = k(m/n).
Case 4 (x=0)
0) = 0+ 0) = {0) + f{0).
Subtracting f{0) from each side yields f{0) = 0 = k0.
Case 5 (x is a negative rational number, -m/n)
0=A0) =f(-m/n + m/n) = f(-m/n) + fim/n).
Hence, f(-m/n) = - fim/n) = -k(m/n) = k(-m/n), as claimed.
We have now shown that f{x) = kx holds for all rational values of x in the domain of . As

a result, it must also hold for irrational values of x as well, by the continuity of /. n

Claim 8. In imaginary geometry, any triangle’s area is directly proportional to its angle defect.
Proof. Let ¢ be the finite area common to all triply asymptotic triangles.
The area of a doubly asymptotic triangle is a function of its sole
non-zero angle, since this angle determines the triangle up to congruence.
In this proof, it will be more convenient to express this area as a function

of the supplement of this angle. Thus, if ¢ is the external angle of a doubly

asymptotic triangle, we shall denote the triangle’s area by f{¢). Note the
extreme case f{n) = t. (If the external angle is m, then the internal angle is

0, in which case the triangle is triply asymptotic, and consequently has area .)

" Gauss, pp. 220-223.

172



We shall now show that fis an additive function. First, we establish additivity in two

special cases.

Case 1 The figure at left shows that
A@) +fin-¢9)=t forany p<m. (1)

Case 2 The figure at right shows that

Ae) + fly) + fim - ¢ —y) =1
provided ¢ + y < m. 2

(To produce the right figure, we begin with a doubly asymptotic triangle AAQQ' with angle
¢ + y at A. Draw ray AQ" from A, forming angle nm - ¢ with A4Q. Then
LQ"AQ =21 - [(1 - @) + (¢ + y)] = 7 - y. Finally, Claim 5 allows us to draw the sides QQ" and
Q'QY" of the triply asymptotic triangle AQQ'Q".)

By combining these two special cases, we can now establish additivity in general ":

If @ +y <, then (2) gives t=fl9) +fly) + A - ¢ — ).
Substituting (¢ + y) for ¢ in (1) gives t=floty)+fin-op—w).
Equating these two expressions for ¢ yields  f{o) + Aw) =A¢ + v).

Since f'is additive, we know that f{x) = kx for some real number £. (Claim 7)

Now, given any triangle with angles a, f, 7,
and area A, we extend its sides to three ideal points, €,
Q', and Q", and let these points be the vertices of a
triply asymptotic triangle. (Use Claim 5 to draw its
sides.) Having embedded our triangle in a triply
asymptotic triangle’, we express the area of the latter

in two ways, and obtain the equation

t=A4+ fla) +fB) + Ay).

" That is, we can establish that f{g) + fy) = (¢ + ), for all values of ¢ and v, whose sum does not exceed
7. This last condition reflects the geometric definition of the function f: its argument is a triangle’s external

angle, and hence must lie between 0 and .

¥ This construction shows, incidentally, that no triangle in imaginary geometry can have an area that
exceeds 7. Thus, the statement, “there exist triangles of arbitrarily large area” is equivalent to the parallel
postulate.
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Since ¢ = f(m), we may rewrite this as
fm) =4+ fla) + fi) + /7).
Because f{x) = kx, this becomes
km=A+ ko + kf + ky.
Equivalently, A=k(n-a-F-7y).

Therefore, A is directly proportional to defect, as claimed. L]

One consequence of this relationship between area and angle defect is that
triangles in imaginary geometry cannot exceed a certain maximum possible area. (Proof:
Area is proportional to defect, and defect can never exceed m, so a triangle’s area can
never exceed mk, where k is the constant of proportionality.) Interestingly, it can be
shown that circles do assume arbitrarily large areas in imaginary geometry; consequently,

imaginary geometry contains certain circles so large that no triangle can contain them.

Lambert’s Sphere of Imaginary Radius
“From this I should almost conclude that the third hypothesis would occur in the case of an imaginary
sphere.” - Lambert”

By 1766, Lambert knew that if his “third hypothesis” were true, then all triangles would
exhibit angle defect, and their defects would be proportional to their areas. In the notes to
TP 20, we have already seen some of the thoughts that led him to this conclusion. Faced
with this result, and its jarring corollary that triangles’ areas are bounded by a finite
constant, Lambert avoided the tempting trap of believing that he had found a
contradiction in his third hypothesis. Rather, he made the cryptic comment quoted above,
which seems to suggest that the third hypothesis might describe the geometry of a
“sphere of imaginary radius”, whatever that might be.

Presumably, he was struck by the close relationship between the proportion that

he had just deduced, which we may express in the form

A=k(n-a-p-vy), (3)

" Rosenfeld, p. 101.
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where & is an unknown constant, and a, S, y are the angles of a triangle, and the classical

formula from spherical geometry relating a spherical triangle’s angular excess to its area
A=r(a+p+y-mn), 4)

where r is the radius of the sphere. To make geometric sense, the radius » must be a
positive number. However, if we work naively and algebraically, without worrying about
geometric meaning, we might notice that if we let » be the imaginary number
Jii =k V-1 (for some positive real number k), then formula (4) will be transformed
into formula (3).

The preceding algebraic “coincidence” hints tantalizingly at a possible connection
between spherical geometry and imaginary geometry (glimpsed appropriately enough,
with the help of imaginary numbers!), but the precise nature of such a relationship, if it
indeed exists, remains obscure. We shall return to Lambert’s vision of a sphere of
imaginary radius at the very end of The Theory of Parallels, after Lobachevski’s

development of imaginary trigonometry.
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Theory of Parallels 34

We define a horosphere to be the surface generated by revolving a
horocycle about one of its axes, which, together with all the remaining axes
of the horocycle, will be an axis of the horosphere.

Just as we can produce a sphere by revolving a
circle about one of its diameters’, we produce a
horosphere by revolving a horocycle about one of its
axes. We shall call this axis the horosphere’s axis of
rotation.

As the generating horocycle revolves about the

axis of rotation, each of its axes traces out a trumpet-
like cylinder in space. We define all the rays that lie
upon these cylinders as the horosphere’s axes. (i.e. its “other” axes, besides its axis of
revolution). Clearly, every axis of the horosphere lies on some line in space, parallel to
the horosphere’s axis of rotation; conversely, any line in space that is parallel to the axis
of rotation contains one of the horosphere’s axes. Thus, there is a natural correspondence
between a horosphere’s axes and the pencil of lines parallel to its axis of rotation.

Because of this correspondence, it is tempting to abuse the term “axis”; we will
generally use it in its strict sense, to refer to the ray whose endpoint lies on the relevant
horocycle or horosphere, but sometimes we will yield to the temptation and use it in a
looser sense, to refer to the line containing that ray. The context will always make it clear
which meaning is meant.

In TP 34, Lobachevski introduces the horosphere and proves the remarkable fact
that its intrinsic geometry is Euclidean. His proof contains many sticky details, its basic
idea, which follows, is simple. Just as an ordinary sphere has its own intrinsic “lines”
(great circles), so a horosphere has its own “lines” (horocycles). Just as spherical
geometry concerns points, “lines”, and circles on a sphere, so “horospherical geometry”
concerns points, “lines”, and circles on a horosphere. Lobachevski will show that the

points, lines, and circles of horospherical geometry obey all five of Euclid’s postulates —

" In fact, this is essentially how Euclid defines a sphere in Book XI of the Elements.
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including the parallel postulate - and therefore obey every theorem of Euclidean
geometry. This is the sense in which the horosphere’s geometry is intrinsically Euclidean.

The bulk of TP 34 is devoted to showing that Euclid’s first postulate (through any
two points there is a unique line) holds on the horosphere. As we shall see, we have
already done (in TP 28) most of the work that is needed to secure the parallel postulate.
Before undertaking a detailed examination of Lobachevski’s proof, we shall establish

some preliminary propositions, which will help us to gain a better feel for the horosphere.

Preliminary Propositions

We shall often refer to a horosphere by its axis of rotation, as in, the horosphere
with axis of rotation AA'. To justify this convention, we must prove that each ray A4’
determines a horosphere unambiguously. That is, we must prove that ray 44" is the axis

of rotation for only one horosphere.

Claim 1. 4 horosphere is uniquely determined by its axis of rotation.
Proof. Let A4’ be a ray. By definition, any horosphere with axis of
rotation 44’ is the result of revolving a horocycle, one of whose axes is

AA', about A4'. We must show that all such horocycles generate the same

horosphere.

To this end, let H and K be any two such horocycles. Because each has 44’ as an axis,
each lies in a plane containing 44" That is, the planes upon which H and K lie intersect at line
AA'. Consequently, we may rotate either plane about A4’ to bring it into coincidence with the
other. Because H and X are symmetric about A4’ (TP 31 Notes, Claim 4), and congruent to one
another (TP 31 Notes, Claim 5), this rotation will also bring H and X into coincidence. Since
each horocycle lies in the other’s orbit, they will trace out the same horosphere, which we shall

call the horosphere with axis of rotation 44". =

Those horocycles that lie on the surface of a horosphere will be of particular
interest to us. In the geometry of the horosphere, they play the roles of straight lines, as
great circles do in spherical geometry. To avoid frequent repetition of the awkward
phrase, “horocycle lying on the surface of the horosphere,” 1 shall call such horocycles

surface horocycles.
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Claim 2. Given any point on a horosphere, a unique surface horocycle passes through it and the

endpoint of the axis of rotation. (Moreover, the axes of this surface horocycle are axes of the

horosphere.)

Proof. Let B be an arbitrary point on the horosphere with axis of rotation 44".
The existence of a surface horocycle through 4 and B is clear: since

B lies on the horosphere, it must have been “hit” by the revolving horocycle

(which always passes through A) that traced the horosphere out. Moreover,

the axes of such a surface horocycle are clearly axes of the horosphere, by

definition of the latter.

Uniqueness is also simple. The plane containing a surface horocycle through 4 and B
must contain ray 44’ and point B. Consequently, the only plane that can contain a surface
horocycle through 4 and B is plane 44'B. We know that there is a unique horocycle in plane 44'B
passing through B, whose “center” is the pencil of parallels that includes 44". (TP 31 Notes,

Claim 9). Hence, there is a unique surface horocycle through 4 and B, as claimed. L]

Claim 3. The intersection of a horosphere and any plane containing its axis of rotation is a
surface horocycle, whose axes are axes of the horosphere.

Proof. Since a horosphere is a surface of revolution, its intersections with any two planes
containing its axis of rotation will be congruent: we may bring these intersections into
coincidence with one another via a rotation about the axis. Since the horocycle that generates the
horosphere obviously arises as such an intersection, it follows that all such intersections must be

horocycles. The axes of these horocycles are axes of the horosphere, by definition. n

Claim 4. If the axis of rotation of a horosphere also is the axis of some horocycle,” then the
horocycle lies on the surface of the horosphere. (i.e. it is a surface horocycle.)
Proof. Let A4’ be the horosphere’s axis of rotation, H the given horocycle, and T the plane in
which H lies.

Thus, H is the unique horocycle in plane 7 which passes through 4, and whose “center”
is the pencil of parallels containing 44" Since the intersection of 7 and the horosphere is a
surface horocycle (Claim 3), which obviously also lies in plane 7, passes through A4, and has 44’
for an axis, this surface horocycle is identical to H, since H is the unique horocycle satisfying

these conditions. Thus, the given horocycle H is a surface horocycle, as claimed. m

* Here, we are being strict, thinking of axes not as lines, but rays, whose endpoints lie on their associated
horocycle/horosphere.
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Recall Gauss’ definition of corresponding points with
respect to a pencil of parallels: 4 and B are said to be A
corresponding points with respect to a particular pencil of parallel
lines if the rays of the pencil that emanate from 4 and B are
equally inclined to the line segment AB. The definition of B
corresponding points remains the same in three (or even n) dimensions, and provides the

appropriate language for the following alternate characterization of the horosphere.

A horosphere is the surface consisting of all points in space that correspond to the

endpoint of a given ray, with respect to the pencil of lines parallel to that ray.

The simple proposition that follows will demonstrate that this alternate
characterization, which is essentially how Bolyai defined the horosphere in his Appendix,

is equivalent to Lobachevski’s definition.

Claim 5. Each point B in space lies on the horosphere with axis of rotation AA' if and only if B
corresponds to A, with respect to the horosphere’s axes.
Proof. =) If B is an arbitrary point on the horosphere, then there is a surface horocycle through
B and 4 (Claim 2), whose axes are axes of the horosphere. Since any two points of a horocycle
correspond with respect to its axes (by Bolyai’s definition of the horocycle), B and A correspond
with respect to the axes of the horosphere.

<) If B corresponds to 4, then B lies on the unique horocycle in plane BAA' that passes
through A4 and has axis 44’ By Claim 4, this is a surface horocycle. Thus, B lies on this

horosphere. m

To recapitulate, any ray A4’ determines a unique horosphere, which we may
characterize in two equivalent ways:

1. The surface of revolution (about A4") generated by any horocycle having ray
AA' as an axis.

2. The surface consisting of all points corresponding to A, with respect to the

pencil of parallels to AA4".
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Towards the Homogeneity of the Horosphere

In the notes to TP 31, we demonstrated that there is nothing special about a
horocycle’s generating axis. In fact, any axis of a horocycle can be viewed as its
generator, since horocycles, like circles and straight lines, are homogenous curves: they
“look the same” from all of their points. Much of TP 34 is devoted to establishing that the
horosphere, like a sphere or plane, is a homogenous surface. This is important in its own
right, and it will help us prove that Euclid’s first postulate holds in horospherical
geometry. Here too, the key is to show that a horosphere’s axis of rotation is no more
distinguished than are any of its other axes.

Homogeneity is not a surprising property for a “sphere of infinite radius” to
possess, but it does take a fair amount of work to establish it rigorously. Lobachevski will
ultimately secure the homogeneity of the horosphere from the following related result:
every point on a horosphere corresponds to every other point upon it, with respect to the

horosphere’s axes. Or, as he states it:

Any chord joining two points of the horosphere will be equally inclined to
the axes that pass through its endpoints, regardless of which two points
are taken.

It will take several pages to establish this claim. Once we prove it, we will need but a few
short steps to deduce the homogeneity of the horosphere. Let us now examine

Lobachevski’s lengthy proof.

The Long Proof of Homogeneity

Let A, B, and C be three points on the horosphere, where AA’ is the axis
of rotation and BB' and CC' are any other axes. The chords AB and AC
will be equally inclined toward the axes passing through their endpoints;
that is, LA'AB = 4B'BA and £A'AC = LC'CA (TP 31). The axes BB' and CC’
drawn through the endpoints of the third chord BC are, like those of the
other chords, parallel and coplanar with one another (TP 25).
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Lobachevski establishes the setting on the horosphere
with axis of rotation 44". Upon this surface, he chooses two
arbitrary points, B and C. His goal here, and for the next
several pages, is to show that B and C correspond to one

another with respect to the horosphere’s axes. To begin, he

notes that each of these points corresponds to 4. (This follows
from Claim 5.)

Since A4’ and BB' are axes of a horocycle (Claim 2), we have A4’ || BB
Similarly, AA" || CC'". Hence, BB' || CC' by the transitivity of parallelism. Obviously, BB’
and CC' are coplanar, since coplanarity is part of the definition of parallelism.

The proof thus far suggests an infinite prism (of the sort
described in TP 28) within the horosphere, built upon triangle
AABC; the prism’s three infinitely long edges, 44', BB, and CC",
are parallel to one another.” To simplify subsequent figures in this
proof, I shall typically draw the prism alone, as in the figure at

right. Although I will be omitting the horosphere in the figures,

the reader should remember that A4, B, and C are points on a

horosphere, whose axis of rotation is AA4".

The perpendicular DD’ erected from the midpoint D of chord AB in the
plane of the two parallels AA’, BB' must be parallel to the three axes AA’,
BB’, CC' (TP 31, 25). Similarly, the perpendicular bisector EE’' of chord
AC in the plane of parallels AA', CC' will be parallel to the three axes AA/,
BB', CC', as well as the perpendicular bisector DD".

" If the surface horocycles joining 4 to B and 4 to C happen to be identical, then points B and C obviously
correspond to one another, since they lie on the same surface horocycle. Since the following lengthy
argument, which is designed to prove that correspondence, is unnecessary in this “degenerate case”, we
shall take the trivial proof for this case for granted, and assume hereafter that 4, B, and C do not all lie on a
single surface horocycle. The degenerate case, moreover, would result in a two-dimensional “degenerate
prism.” By disposing of this case separately, we may safely assume that our prism is a genuine three-
dimensional object.
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In the two faces of the prism meeting at A4’
Lobachevski constructs DD’ and EE’, the perpendicular
bisectors of AB and AC, respectively.

Because AB and AC are chords not only of the
horosphere, but also of surface horocycles (Claim 2), their

perpendicular bisectors must be parallel to the axes passing

through their endpoints (Lobachevski’s definition of the
horocycle in TP 31). Thus, DD’ || AA', CC' and EE' || AA', BB'. Since DD’ and EE' are
both parallel to A4’ they are parallel to one another (TP 25).

Hence, the five lines, A4', BB', CC', DD', and EE', are all parallel. Lobachevski’s
strategy for showing that B and C correspond to one another is to add yet another line to
this list: the perpendicular bisector of chord BC, drawn in the remaining face of the
prism. Once we establish that this bisector is parallel to BB’ and CC’, the desired
correspondence of B and C will follow easily. However, we shall need to approach the
prism’s third face in a different manner than the one that we just used for the first two; for
here, Claim 2 does not apply, so we do not have the luxury of knowing that B and C lie

on a surface horocycle.

Denote the angle between the plane of the parallels
AA’, BB’ and the plane in which triangle AABC lies by
[1(a), where a may be positive, negative, or zero. If a is
positive, draw DF =a in the plane of triangle AABC,
into the triangle, perpendicular to chord AB at its
midpoint D; if a is negative, draw DF = a outside the
triangle on the other side of chord AB; if a = 0O, let
point F coincide with D.

Lobachevski lets [[(a) denote the dihedral angle T
that the prism’s face 4A4'BB' makes with triangle ----—----._. 1 LI
AABC. This dihedral angle could have any measure Ax .
between 0 and w. Recalling the graph of function [] X—wx
- »

from the notes to TP 23 (at right), we see that
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a > 0 < the dihedral angle [1(«) is acute.
a = 0 < the dihedral angle [[(«) is right.
a < 0 < the dihedral angle [I(a) is obtuse.

Whatever the dihedral angle may be, we will have some real number a associated with it.
Let DF be a line segment of length |a| that lies upon the perpendicular bisector of AB (in
the plane of AABC). For each nonzero value of a, there are two possible locations for F,
one on each side of 4B. We shall put F on the side of AB that contains the triangle if
a > 0, and on the other side if a < 0.

Although this not clear now, we shall see later that F' turns out to be the

circumcenter of AABC.”

All cases give rise to two congruent right triangles, AAFD and ADFB,
whence FA = FB. From F, erect FF' perpendicular to the plane of triangle
AABC.

The case in which ¥ = D (when a = 0) does not
yield a genuine pair of congruent triangles, but it still
exhibits the relationship F4 = FB, which is the important
feature across all three cases. Although FF' is defined as
the perpendicular erected from plane ABC at point F, the
definition of F in terms of a will allow us to prove that FF’

is parallel to the five other rays in our picture, a task to

which we now turn our attention.

Because «D'DF = [[(a) and DF = a, FF' must be parallel to DD’; the plane
containing these lines is perpendicular to the plane of triangle AABC.

* Of course, if 4, B, and C all happen to all lie on a surface horocycle, then AABC cannot have a
circumcenter in the ordinary sense (TP 31 notes, Claim 7). Such a configuration, however, corresponds to
the degenerate case mentioned in the previous footnote, which we have already disposed of; thus, it is
irrelevant here.
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Assuming for the moment that DD' and FF" are
coplanar (we shall prove this shortly), our earlier
constructions guarantee that they must be parallel to
one another. Indeed, the blueprint for their construction
was the very picture of parallels developed in TP 16,
where Lobachevski introduced the angle of parallelism.
We have only to verify that LF'FD = w/2, and that
£LFDD'=[](a).

The first equality holds because FF' is perpendicular to plane 4BC, and hence to

line FD, which lies in that plane. The second holds because [I(a), the measure of the
dihedral angle between planes A4'BB' and ABC, is defined to be equal to the plane angle
between any two lines of slope that meet on the dihedral angle’s hinge*. DF and DD’ are
such lines of slope, so LFDD'= [(a).

It remains to verify that DD’ and FF' are actually coplanar. In doing so, we will

need the following useful lemma from solid neutral geometry.

Claim 6 (Perpendicular plane criterion). Given two planes, if one of them contains a line that is
perpendicular to the other, then the two planes are perpendicular.

Proof. Let 7 and S be the planes. Suppose that WX, a line in T, is
perpendicular to plane S, which it intersects at point X. Let XY be the

intersection of the two planes. Draw XZ perpendicular to XY in plane S.

We must show that the dihedral angle between the planes is 7/2.
Since XZ and XW are lines of slope for this dihedral angle, its measure is equal to £ WXZ.
Since WX is perpendicular to plane S, it must be perpendicular to XZ, which lies in S. Thus,

AWXZ = 1/2. That is, the planes are perpendicular to one another, as claimed. L]

With the help of this lemma, we return to our promised proof that lines DD" and

FF"are coplanar.

" See the section, “A Dihedral Digression” in the notes to TP 26 (pp. 103 — 104).
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Claim 7. The lines DD’ and FF" are coplanar.
Proof. LetI" be the unique plane that contains DF and is perpendicular to plane ABC.
We shall show that I contains both DD’ and FF".
First, we show that plane D'DF satisfies the two conditions that uniquely determine I'.
Since BD is perpendicular to two lines, DF and DD’, that lie in D'DF, TP 11 implies that
BD is perpendicular to D'DF. Thus, since BD is contained in ABC, Claim 6 tells us that D'DF is
perpendicular to ABC. Since it contains DF as well, D'DF must be I". Thus, DD’ lies in plane I'.
Similarly, plane FF'D contains DF, and it is perpendicular to ABC, since it contains FF”,
which is perpendicular to 4BC, by construction. Hence, FF'D must be I'. Thus, FF'liesin". =

Having filled this hole, we now know that DD’ and FF' are indeed parallel, as

claimed. Moreover, the plane containing them is perpendicular to plane ABC.

Moreover, FF' is parallel to EE’; the plane containing them is also
perpendicular to the plane of triangle AABC.

Having shown that FF' is parallel to DD’, the
transitivity of parallelism ushers FF' into our growing list
of parallels: we now know that 44, BB', CC', DD', EE’,
and FF" are all parallel to one another.

Since FF'and EE' are parallel, they are necessarily

coplanar. Because it contains FF', plane EE'FF" is, like
plane DD'FF’, perpendicular to plane ABC, by the

perpendicular plane criterion.

Next, draw EK perpendicular to EF in the plane containing the parallels
EE' and FF'. It will be perpendicular to the plane of triangle AABC (TP
13), and hence to the line AE lying in this plane. Consequently, AE, being
perpendicular to EK and EE’, must be perpendicular to FE as well (TP
11). The triangles AAEF and ACEF are congruent, since they each have a
right angle, and their corresponding sides about their right angles are
equal. Therefore,
FA = FC = FB.
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Here, Lobachevski shows that F'is equidistant from the vertices of A4ABC.

He begins by showing that £4 | FE.

According to TP 13, when two planes are
perpendicular to one another, any line that lies in one
of them and is perpendicular to their intersection will
be perpendicular to the other plane. Thus, having just
shown that planes FEE'FF' and ABC are
perpendicular, we know that EK, which lies in plane

s s m———e =

EE'FF', is perpendicular to plane ABC. (Incidentally,

to verify that EK is distinct from EE’, note that
AFEE' = [1(EF) < 1/2, whereas {FEK = 1/2.) In particular, EK 1 EA, since EA lies in
ABC. Thus, EA 1 EK and EA | EE' (by definition of EE'), whence TP 11 implies that £4
is perpendicular to the plane which contains EK and EE'. Namely, plane EE'F. Thus, in
particular, £4 1 FE, as claimed.

From this, the congruence AAEF = ACEF follows, by SAS.

Hence, F4 = FC.

Combining this with the fact that FA = FB (Lobachevski noted this earlier in the
proof), we conclude that F4 = FB = FIC. That is, F is the circumcenter of AABC.

In isosceles triangle ABFC, a perpendicular dropped from vertex F to the
base BC will fall upon its midpoint G.

Let G be the foot of the perpendicular. To see that G is
the midpoint of BC, simply note that ACGF = ABGF (by A
RASS - see the notes to TP 10). Consequently, CG = BG. That

is, G is the midpoint of BC, as claimed.

The plane containing FG and FF' will be perpendicular to the plane of
triangle AABC, and will cut the plane containing the parallels BB', CC’
along a line that is parallel to them, GG'. (TP 25).
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Since plane FGF' contains a line, FF’, which is
perpendicular to plane ABC, these two planes are
perpendicular to one another, by the perpendicular plane
criterion (Claim 6). Because planes FGF' and BB'CC’
share at least one point, G, their intersection must be a
line through that point (TP 25 notes: plane axiom 2).
Each plane contains one member of a pair of parallels

(FF'"|| BB"), so their line of intersection, which we shall

call GG', will also be parallel to the members of this pair
(TP 25 Notes, Claim 1: “Lobachevski’s Lemma”).
Thus, the seven lines A4’, BB', CC', DD', EE', FF', and GG’ are all parallel.

Since CG is perpendicular to FG, and thus to GG’ as well [TP 13], it
follows that LC'CG = «B'BG (TP 23).

Since planes FGF' and ABC are perpendicular, we
may apply TP 13 to them: CG lies in plane ABC and is
perpendicular to the line at which these planes meet, so by
TP 13, line CG must be perpendicular to plane FGF'. In
particular, CG is perpendicular to GG, since it lies in FGF".

Since £CGG' is a right angle and CC' | GG', we
have £C'CG = [I(CG), by the definition of the angle of
parallelism. Similarly, £B'BG = [I(BG). Finally, because

equal lengths (CG and BG) have equal angles of
parallelism, it follows that £LC'CG = [I(CG) = [I(BG) = 4B'BG. That is, B and C
correspond to one another with respect to the horosphere’s axes.

Thus, after much work, Lobachevski has finally established that any two points on
a horosphere correspond with respect to its axes. We may now finally demonstrate the

homogeneity of the horosphere.
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From this, it follows that any axis of the horosphere may be considered
its axis of rotation.

The definition of a horosphere suggests that each horocycle has one particularly
distinguished axis, the axis of rotation, which is more fundamental than the others. We
have been striving, throughout this long subsection (“The Long Proof of Homogeneity”),

to build the tools to debunk this false impression. Finally, we can complete the task.

Claim. The horosphere is a homogenous surface.
Proof. Consider the horosphere with axis of rotation 44’. We know that A4’ determines the
horosphere (Claim 1).

Let BB' be an arbitrary axis (other than 44'). We want to prove that BB’ also determines
the horosphere.

We know that BB' determines some horosphere — the horosphere whose axis of rotation is
BB'. We will prove that this second horosphere is identical to the horosphere with which we
started (i.e. the horosphere determined by A4").

The axes of the two horospheres lie in the same pencil of parallels, since 44’ and BB,
their respective axes of rotation, belong to the same pencil of parallels. Consequently, two points
in space correspond to one another with respect to the axes of the first horosphere if and only if
they correspond to one another with respect to the axes of the second horosphere. Therefore, we
will save space below by simply writing that two particular points correspond, without bothering
to name the axes with respect to which they correspond; such points correspond to one another
with respect to the axes of both horospheres simultaneously.

Since B lies on the first horosphere, we know that every point on the first horosphere
corresponds to B. Thus, the first horocycle is contained within the second, since the latter is the
surface consisting of a// points that correspond to B (Claim 5). But since all horospheres are
congruent to one another , the first horosphere can be contained within the second only if the two
are identical. Thus, we have only one horosphere after all, which may be determined either by
AA' or by BB'. Accordingly, we may consider either of these axes to be the axis of rotation for
this horocycle. Indeed, since BB’ was an arbitrary axis of the horosphere, we may consider any of

its axes to be the axis of rotation.

" Because all horocycles are congruent and symmetric about each of their axes, the surface produced by
rotating any horocycle one of its axes will always “look the same.” That is, all horospheres are congruent.
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Since every axis can be considered the axis of rotation, the horosphere “looks the same”
from each of its axes, regardless of which point it emanates from. Equivalently, it looks the same

from each of its points, and thus is homogenous, as claimed. m

Thus, like a sphere or plane, the horosphere offers the same vista to any beholder

who stands upon its surface, regardless of the point upon which he stands.

Slices of the Horosphere

We shall refer to any plane containing an axis of a horosphere as a
principal plane. The intersection of the principal plane with the
horosphere is a horocycle; for any other cutting plane, the intersection is
a circle.

Here, Lobachevski considers the appearance of all possible cross-sections of a
horosphere. The crucial distinction is whether the cutting plane is a principal plane (i.e. a

plane that contains an axis of the horosphere) or not.

Claim 8. The intersection of a horosphere and a principal plane is a surface horocycle.

Proof. In Claim 3, we showed that the intersection of a horosphere and a plane containing its
axis of rotation is a surface horocycle. Since we now know that every axis of a horosphere is an
axis of rotation, it immediately follows that the intersection of horosphere and any principal plane

is a surface horocycle, as claimed. n

Claim 9. The intersection of a horosphere and a non-principal plane is a circle.
Proof. Let 4, B, C be points in the intersection of a horosphere and a non-principal plane. Let
AA', BB', and CC' be the axes emanating from them. Regarding 44’ as the horosphere’s axis of
rotation, we may follow the elaborate constructions of Lobachevski’s proof that B and C are
corresponding points, and preserve his notation as we proceed. In producing the “prism” upon
triangle AABC, we obtain an axis FF' that emanates from the circumcenter of AABC, and is
perpendicular to the cutting plane AABC.

When any surface of revolution is cut by a plane perpendicular to its axis of symmetry,

the resulting intersection is clearly a circle”. This is precisely the situation we have here: since the

" In fact, it is a circle in two senses. It is the set of points in plane ABC equidistant (as measured in the
plane) from F; it is also the set of points on the horosphere equidistant (as measured along the surface)
from the point where FF" intersects the horosphere.
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cutting plane ABC is perpendicular to FF', which we shall think of as the horosphere’s axis of

rotation, it must cut the horosphere in a circle, as claimed. n

A plane section of an ordinary sphere is always a circle, and when the cutting
plane contains one of the sphere’s diameters, the intersection will be the largest possible
circle on the sphere’s surface, a great circle. We have now seen that these phenomena
continue to hold on the sphere of infinite radius, the horosphere. A plane section of a
horosphere is always a circle; when the cutting plane contains a “diameter”, this circle
will be as large as the surface of the horosphere allows: it will be a circle of infinite
radius — a horocycle. Thus, surface horocycles are to a horosphere as great circles are to

an ordinary sphere.

Geometry on the Horosphere

This analogy brings us to the conclusion of TP 34, where Lobachevski extends
spherical geometry to spheres of infinite radius — in imaginary space. Just as the “lines”
of spherical geometry are the largest circles on the sphere’s surface, Lobachevski takes
the “lines” of the horosphere to be the its largest circles, the surface horocycles. As exotic
and complicated as the prospect of “horospherical geometry” may seem, the reality is that
much more startling. Horospherical geometry is Euclidean!

To establish this remarkable fact, we must verify that each of Euclid’s five
postulates for plane geometry — including the parallel postulate - hold on the horosphere’s
surface. From this it will follow that every logical consequence of those postulates (i.e.

every theorem of Euclidean geometry and trigonometry) also holds on the horosphere.

Any three principal planes that mutually cut one another will meet at
angles whose sum is n (TP 28). We shall consider these the angles of a
horospherical triangle, whose sides are the arcs of the horocycles in
which the three principal planes intersect the horosphere. Accordingly,
the relations that hold among the sides and angles of horospherical
triangles are the very same that hold for rectilinear triangles in the
ordinary geometry.
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Euclid’s first two postulates fail spectacularly in spherical geometry. Antipodal
points are joined by infinitely many “lines”, and line segments can only be extended to
the finite length of a great circle. Of course, this is to be expected. Euclid designed his
postulates to capture essential aspects of the vast unbounded plane, not of the bounded
world of the sphere. Yet this boundedness — the most vital difference between sphere and
plane - disappears when the sphere’s radius becomes infinite, making the horosphere
more plane-like than any sphere of finite radius. Indeed, by interpreting “lines” as
“surface horocycles”, we may easily show that Euclid’s first two postulates hold on the

horosphere.

Claim 10. Through any two points on a horosphere, there is a unique line (i.e. a unique surface
horocycle).

Proof. Let P and Q be two points on a horosphere. Let PP’ and QQ' be the horosphere’s axes
passing through them. Since any axis of the horosphere may be considered its axis of rotation, we
let PP’ play this role. Appealing to Claim 2, we conclude that there is a unique surface horocycle

joining P and Q, as claimed. L]

Claim 11. Any line segment (i.e. segment of a surface horocycle) on a horosphere may be
extended indefinitely.

Proof. This follows immediately from the fact that horocycles themselves are unbounded. m

Euclid’s third postulate is the “compass postulate”: for any two points P and Q,
there is a circle centered at P that passes through Q. On an arbitrary surface in space, a
circle is defined as the set of points at some fixed distance (measured along the surface)
from some fixed point. With this intrinsic definition of a circle, the third postulate
automatically holds, in one very trivial sense, on every surface: there is always some set
of points on the surface that satisfy the definition of the required circle, even if this
“intrinsic circle” is not an circle in the ordinary sense. For example, the
“intrinsic circle” on a cube’s surface, centered at the midpoint of one "
edge and passing through the center of an adjacent face, is not circular [
in the ordinary sense; it does not lie in a plane.

If this postulate is to have any teeth, it must be more than a mere tautology. Euclid

implicitly makes some assumptions about his circles. In particular, he assumes that they
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are closed, continuous curves. Naturally, we must verify such “hidden axioms” as well, if
we want to be sure that all of Euclidean geometry holds on the horosphere. Fortunately,
we need not tease out a list of hidden axioms: instead, we can show that the intrinsic
circles of a horosphere (like the intrinsic circles of a finite sphere) are in fact ordinary
circles that lie in a particular plane in space; as such, they will possess whatever
properties with which Euclid unconsciously endowed them. Consequently, we need not

fear that we have forgotten to verify a hidden axiom.

Claim 12. For any points P and Q on a horosphere, there is a circle on the horosphere centered

at P passing through Q.

Proof. As discussed in the last paragraph, Euclid’s third postulate is, in one sense, trivially true.
Moreover, the horosphere’s intrinsic circles are ordinary

planar circles as well, which we may demonstrate as follows. -

Consider an intrinsic circle with center P that passes through Q. 9

Extend its radius PQ to a diameter QR. Let S be any other of its

points. Since S obviously cannot lie on diameter OR, which is the unique surface horocycle

through O and R (Claim 10), the points O, R, S must be “noncollinear” (i.e. no surface horocycle

contains all three of them). It follows that plane QRS cannot be a principal plane: if it were, its

intersection with the horosphere would be a surface horocycle (Claim 8) containing O, R, and S.

Since QRS is a non-principal plane, its intersection with the horosphere is a circle, in both the

intrinsic and the ordinary planar senses (Claim 9). Thus, we do have a circle (in both senses)

centered at P that passes through 0, as claimed. n

In general, when two curves in space intersect, we define the measure of the angle
between them to be the measure of the angle between their tangent lines. In the TP 26
notes, we have seen an equivalent method for the special case of measuring angles
between the “lines” (great circles) of a sphere. Namely, such an angle has the same
measure as the dihedral angle between the planes upon which the great circles lie. We can

extend this alternate method of measurement to the sphere of infinite radius.
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Claim 13. The measure of the angle between two surface horocycles equals the measure of the
dihedral angle between the planes in which the surface horocycles lie.
Proof. Consider the angle £<BAC formed by arcs 4B and AC

of two surface horocycles. By definition, this angle is ABC

measured by the angle between #45 and #4¢ , the tangents drawn

to the horocycles at point A. That is, £ BAC = £ (t4z, tsc)- Xop
The principal plane containing horocycle AB (and its /

tangent t45) is AA'B, where A4’ is the axis of the horosphere k%

passing through A. Similarly, 44'C is the principal plane
containing the horocycle AC and its tangent, #4c. To measure the dihedral angle between these
principal planes, we must measure the angle between lines of slope that meet at a point on their
hinge, A4’ (see TP 26 notes: “A Dihedral Digression”).

Since horocycles, like circles, have the property that their axes are perpendicular to their
tangent lines (TP 31 Notes, Claim 10), we have that 44" | ¢, and 44" 1 t4c . Hence, these
tangent lines are lines of slope in the planes A4'B and A4'C, respectively. Putting this all together,

we have

KBAC = K(IAB . tAC)
= (angle between lines of slope)

= (dihedral angle between the principal planes), as was to be shown. "

Lobachevski actually defines the angle measure between two surface horocycles
in terms of the dihedral angle between their principal planes. Lemma 2 assures us that
this is a perfectly natural definition, as it agrees with the usual definition in terms of
tangent lines.

Regardless of which form of the definition one prefers, it guarantees that the
geometry of the horosphere inherits Euclid’s fourth postulate (“all right angles are
equal”) from the geometry of the ambient space in which the horosphere lives, neutral

solid geometry.

Claim 14. All right angles are equal on a horosphere.
Proof. Angles on the horosphere are considered “right” if and only if the plane angles between
their tangent lines are right. Since all right plane angles are equal by Euclid’s fourth postulate

(which holds a neutral geometry), all right angles on the horosphere are equal. m
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Since the first four postulates hold on the horosphere, every theorem of neutral
plane geometry holds there. In particular, we know that in neutral geometry, the parallel
postulate is equivalent to the statement that the angle sum of all triangles is w. Hence, if
we can prove that all horospherical triangles have angle sum 7, we will know that the
parallel postulate, and hence, every theorem of Euclidean plane geometry and

trigonometry, holds on the horosphere.

Claim 15. The angle sum of every horospherical triangle is .

Proof. Let AABC be a horospherical triangle. Let A4", BB', CC’
be the axes emanating from its vertices.

Let a, 5, and y be the measures of angles £4, £B, and
«£C, respectively.

By Claim 13, these angles have the same measure as
certain dihedral angles: o equals the measure of the dihedral

angle between planes BAA4A' and CAA' ; f equals the measure of

the dihedral angle between planes ABB' and CBB' ; and y equals

the measure of the dihedral angle between planes ACC’ and BCC".
Hence, a + f + y, the sum of the three angles in the horospherical triangle, equals the sum

of the three dihedral angles in the “prism” whose edges are the parallel lines, 44', BB', and CC".

By TP 28, this sum is ©. Thus, every horospherical triangle has angle sum m, as claimed. =

The horosphere thus emerges as an unexpected Euclidean oasis in the midst of
imaginary space. Not surprisingly, Lobachevski adopts this strangely familiar terrain as a
base camp from which to conduct further explorations of imaginary geometry. In
particular, he will use the horosphere in the remaining propositions to develop imaginary

trigonometry.
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Taming Wild Geometries
“In this spirit we have sought, to the extent of our ability, to convince ourselves of the results of
Lobachevski’s doctrine; then, following the tradition of scientific research, we have tried to find a real
substrate for this doctrine, rather than admit the necessity for a new order of entities and concepts.”

- Eugenio Beltrami .

Imagine the following hypothetical situation. Mathematicians study a system of
geometric axioms, contrary to Euclid’s own. A series of bizarre theorems — logical
consequences of these axioms — emerges: all lines in the plane intersect one another; the
area of the entire plane is finite; and the angle sum of every triangle in the plane exceeds
n. In the face of such uncomfortable strangeness, one mathematician (a relative of
Saccheri?) discovers a spurious “contradiction” and dismisses the novel geometry as a
delusion born of logically inconsistent axioms. However, this alleged refutation is soon
exposed as wishful thinking, and the irritating geometry remains intact. Years later,
another mathematician discovers that the counterintuitive results of this infidel geometry
are not so disturbing after all; rather, they describe the intrinsic geometry of a surface in
Euclidean space - the sphere (interpreting great circles as lines). The offending system,
thus provided with “a real substrate”, loses its alien quality. It is accommodated within
the larger context of Euclidean space, whose geometry remains the geometry of space,
and everyone lives happily ever after.

Lobachevski’s TP 34 presents a parallel version of this fairy tale. Here, we must
imagine the inhabitants of another planet, who are taught from a young age that
imaginary geometry (which they simply call geometry) is the only possible geometry.
Mathematicians in this universe are led to study a system of axioms that imply a host of
counterintuitive results. For example, contrary to experience, one can prove that parallel
lines in this bizarre geometry do not draw closer to one another in the direction of their
parallelism. Indeed, parallelism does not even have a direction! After a period of great
confusion, an explanation is discovered: these axioms describe the intrinsic geometry of a
surface that lies in the traditional space of our fathers and our fathers’ fathers. Hence, this
surface ultimately derives its strange (Euclidean) intrinsic geometry from the way that it
curves within ordinary space. The Euclidean foe having been thus subdued and

assimilated into a familiar picture, everyone lives happily ever after in insular bliss.

" Beltrami, p. 7.
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A civilization that studied and passed imaginary geometry down through the
millennia as its sole geometric tradition would thus be able to explain Euclidean
geometry away, and continue to maintain that imaginary geometry is only true geometry
of space. But what of our own civilization? Can we save our Euclidean traditions from
the non-Euclidean heresy by taming Lobachevski’s
geometry — giving it a concrete interpretation as the

intrinsic geometry of a surface in Euclidean space?

In 1868, Eugenio Beltrami came very close”.
He proved that the intrinsic geometry of any surface of
constant negative curvature in Euclidean space is a
faithful model of a portion of Lobachevski’s imaginary
plane. The so-called pseudosphere (illustrated at right),
which resembles an infinitely long trumpet, is an

example of such a surface. Given two points on this (or

any) surface, the shortest curve on the surface that joins
them is called a geodesic; in the context of the surface’s intrinsic geometry, such a
geodesic is defined to be the “line” through those points’.

Upon the surface of the pseudosphere, we may fence off an area in which one can
safely “play” imaginary geometry, as follows: let one of the lines running down the horn
(starting from the rim, and going to infinity) represent a fence. Let the rim itself be a
second fence. Imagine a race of tiny two-dimensional creatures who live on the surface,
but are unable to burrow under it, fly away from it, or pass over its two fences. These
creatures, if they were geometrically inclined, would find that the geometry of their world
(whose lines are, naturally enough, its geodesics) is exactly like the geometry of the
imaginary plane, with the obvious exceptions imposed by the fences: when drawing lines,
for example, the creatures could not extend their line segments past the fences.

Consequently, Euclid’s second postulate fails on the pseudosphere*.

" An English translation of Beltrami’s paper is in Stillwell (pp. 7 — 34).

T The “lines” of the sphere and horosphere (great circles and surface horocycles, respectively) are the
geodesics of these surfaces.

' The first fence wards off topological difficulties. With this fence in place, the pseudosphere is
topologically equivalent to a portion of plane; without the fence, it is topologically equivalent to a cylinder.
Beltrami circumvented this problem by working with the pseudosphere’s universal cover — a sort of
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Beltrami’s success in finding a “real substrate” for non-Euclidean geometry was
therefore only partial. Nevertheless, this partial success was a crucial step in convincing
mathematicians that imaginary geometry did somehow partake of “reality”, after all”
This was but one of Beltrami’s many achievements in imaginary geometry, where he
played a vital role both as mathematician and as historian — it was he who rediscovered
and brought attention to the long-forgotten work of his countryman, Gerolamo Saccheri.

Besides his surfaces of constant negative curvature, Beltrami developed still other
models of imaginary geometry of a somewhat more radical nature, which reside not in
Euclidean space, but rather in the Euclidean plane. Naturally, one must pay a price for the
drastic compression that is required to force the entire imaginary plane into the Euclidean
plane (and sometimes into a finite portion of Euclidean plane!). Namely, distances can no
longer be measured in the ordinary way: one must use a special “ruler” to extract
quantitative information from them. Beltrami rarely gets the credit that he deserves for
these models, which are most commonly called the “Poincaré disc model”, the “Poincaré
half-plane model”, and “the Klein disc model”, after Henri Poincaré and Felix Klein.

In 1901, Hilbert proved that no smooth surface in Euclidean space admits an
intrinsic geometry that models the entire imaginary plane’. Consequently, the models of
Beltrami are the best possible: if one insists upon embedding Lobachevski’s plane
geometry into a familiar Euclidean space, then one must be content with either a partial
embedding or a warped method of measurement. Beltrami’s partial success was in fact
the best possible. Although the denizens of a non-Euclidean world can tame Euclidean
geometry, the reverse is not quite true. Imaginary geometry refuses to be entirely

domesticated.

abstract tissue wrapped infinitely many times about the surface — rather than working with the
pseudosphere itself. This allows him to extend line segments past the first fence, but the fence at the rim
remains an intractable problem.

* Actually, this step should have occurred decades earlier. In 1840, Ferdinand Minding published a study of
surfaces of constant negative curvature in Crelle’s Journal. In this paper, Minding derived the trigonometric
formulae for geodesic triangles on such surfaces (Minding, pp. 323-327). These are identical to the
trigonometric formulae for imaginary geometry, which Lobachevski had published three years earlier in the
same journal (Lobachevskii, “Géométrie Imaginaire”), but no one seems to have connected these two
pieces at the time. Beltrami, however, does make explicit reference to Minding in the course of his own
work (Beltrami, p. 18).

" Hilbert, pp. 191-199.
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The Enigma of F.L. Wachter

Early in 1817, a young mathematician named Friedrich Ludwig Wachter published a
paper that purported to prove the parallel postulate. The crux of his flawed proof was an
attempt to establish that every tetrahedron in space has a circumsphere (cf. Farkas
Bolyai’s proof in the TP 29 Notes that parallel postulate would hold if every triangle in
the plane had a circumcircle.)

In December 1816, Wachter wrote to Gauss, his former teacher, with whom he
had recently discussed “anti-Euclidean geometry”. In his letter, Wachter claims that the
surface towards which a sphere of increasing radius tends would support Euclidean
geometry, even if the parallel postulate were false. Wachter offers no hint of a proof, and
his words are far from clear, but they can be read as a remarkable, if hazy, anticipation of

the horosphere. Opinions as the value we should attribute to Wachter’s work vary widely.
According to Harold Wolfe,

Wachter lived only twenty-five years. His brief investigations held much
promise and exhibited keen insight. Had he lived a few years longer he
might have become the discoverer of Non-Euclidean Geometry. As it was,
his influence was probably considerable. Just at the time when he and
Gauss were discussing what they called Anti-Euclidean Geometry, the
latter began to show signs of a change of viewpoint. "

On the other hand, Jeremy Gray, in his appendix to Dunnington’s biography of
Gauss, writes,

The only hint we have that he [Gauss| explored the non-Euclidean three-
dimensional case is the remark by Wachter, but what Wachter said was
not encouraging: “Now the inconvenience arises that the parts of this
surface are merely symmetrical, not, as in the plane, congruent; or, that
the radius on one side is infinite and on the other imaginary” and more of
the same. This is a long way from saying, what enthusiasts for Gauss’s
grasp of non-Euclidean geometry suggest, that this is the Lobachevskian
horosphere, a surface in non-Euclidean three-dimensional space on which
the induced geometry is Euclidean. '

" Wolfe, p. 56.
¥ Dunnington, p. 466.
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Whatever Wachter may have known or intuited, he had no time to develop his
ideas. On the evening of April 3, 1817, he left his house to go for a walk, and never
returned. Kurt Biermann has recently argued (based on letters that Wachter’s father wrote
to Gauss) that the combined blows of a failed love affair and Gauss’ judgment on his
attempted proof of the parallel postulate may have driven Wachter to despair and

o . *
suicide.

" Biermann, pp. 41-43.

199



Theory of Parallels 35

Lobachevski now begins to develop imaginary trigonometry. As promised at the
conclusion of TP 22, he will derive the formulae of imaginary trigonometry both in the
plane and on the sphere. This project, the culmination of The Theory of Parallels,
stretches out over three lengthy propositions. TP 35, the first of the three, is the most
difficult proposition in the entire work and offers the most virtuosic display of
Lobachevski’s genius. Within the pages of this proposition, Lobachevski establishes links
between triangles in the plane, on the sphere, and on the horosphere. He completely
elucidates the structure of imaginary spherical trigonometry and lays the foundations for
imaginary plane trigonometry. The conclusion that he reaches in the former setting is
striking — 1imaginary spherical trigonometry is identical to Euclidean spherical
trigonometry. That is, Lobachevski proves that the entire subject of spherical
trigonometry is part of neutral geometry.

As it is easy to get lost in the intricacies of Lobachevski’s arguments in this

proposition, I have attempted to break it into smaller, more easily digestible pieces.

Building a Prism / Finding its Dihedral Angles

In what follows, we shall use an accented letter, e.g. x, to denote the
length of a line segment when its relation to the segment which is
denoted by the same, but unaccented, letter is described by the equation

[T(x)+ [1(x) = /2.

Lobachevski introduces simple notation with complicated verbiage. It simply

means that he shall denote the complement of angle [[(x) by [1(x"), and vice-versa.

Let AABC be a rectilinear right triangle, where
the hypotenuse is AB = c, the other sides are AC
= b, BC = a, and the angles opposite them are
£BAC = [I(a), £ABC = [](B). At point A, erect the
line AA’, perpendicular to the plane of triangle
AABC; from B and C, draw BB' and CC' parallel
to AA'.

200



Atop AABC, an arbitrary rectilinear right triangle, Lobachevski constructs the by-
now familiar prism. I shall call 44’ the backbone of the prism to emphasize its special
status in the prism’s design. Erecting it from vertex 4 rather than from B was a purely
arbitrary choice, as there is nothing to distinguish these two vertices from each another.
Lobachevski addresses this asymmetry later in the proposition by building a second
prism, whose backbone emanates from B.

We shall prove an important fact about this prism that Lobachevski uses, but does

not prove himself.

Claim 1. Angle £BCC'is a right angle.
Proof. Since the backbone A4’ is perpendicular to ABC by definition, the perpendicular plane
criterion (TP 34 Notes, Claim 6) tells us that every plane containing 44’ is perpendicular to 4ABC.
In particular, we know that plane 44'CC’ is perpendicular to ABC. We shall now use TP 13 on
this pair of perpendicular planes.

Since line BC lies in one of them (4BC) and is perpendicular to the hinge that joins them
(AC), TP 13 implies that BC must be perpendicular to the other plane in the pair (44'CC"). Thus,
BC is perpendicular to CC', a fortiori. That is, { BCC' is a right angle, as claimed. n

Finally, we note that because Lobachevski has chosen to denote the acute angles
of AABC by [I(a) and [](8) (rather than « and f), their complements will be [[(a") and
[1(B"), respectively.

The planes in which these parallels lie meet one another at the following
dihedral angles: [[(a) at AA’, a right angle at CC' (TP 11 & 13), and
therefore, [[(a')at BB' (TP 28).

We confirm that these dihedral angles are correct:

Claim 2. The prism’s dihedral angles at A4’, CC', BB' have measures [[(a), 7/2, and [I(a),
respectively.

Proof. Line AA4'is the hinge between planes 44'BB' and AA'CC'". Lines AC and AB are lines of
slope (see TP 26 Notes: “A Dihedral Digression”), so the dihedral angle at A4’ is £BAC = [I(a),

as claimed.
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Since BC L AA'CC’' (see the proof of Claim 1), every plane that contains BC is
perpendicular to A4'CC’ (by the perpendicular plane criterion). In particular, plane BB'CC’ is
perpendicular to 44'CC". In other words, the dihedral angle at CC"is w/2, as claimed.

Finally, since the prism theorem (TP 28) tells us that the three dihedral angles sum to T,
the dihedral angle at BB’ must be 7 - [(1/2) - [ ()] = /2 - [1(a) = [1(), as claimed. n

Right Triangle Transformation #1: From Rectilinear to Spherical

In this section, Lobachevski shows that each rectilinear right triangle gives rise to a
spherical right triangle, whose sides and angles are determined by the sides and angles of

the rectilinear triangle from whence it came.

The points at which the lines BB/,
BA, BC intersect a sphere centered
at B determine a spherical triangle
Amnk, whose sides are mn = [](c),
kn = [I(B), mk = [I(a), and whose
opposite angles are, respectively,

[1(b), [1(a'), /2.

Implicitly, Lobachevski takes the sphere’s radius to be the unique value that endows
every great circle arc with a length equal to the measure of the angle that it subtends at
the sphere’s center . Since we will be working with spheres of this particular size
throughout this proposition, we shall refer them as simple spheres.

Since Lobachevski’s sphere is simple, is easy to verify the side lengths of

spherical triangle Amnk.

mn = £B'BA =T11(c); kn=4£ABC=TI(); and mk = £B'BC =[I(a).

" Here is an intuitive justification for the existence of such a radius. In any circle of radius 7, it is clear that a
central angle € cuts off an arc whose length, s, must be proportional to 8. That is, s = f{r)8, for some
function f. (In Euclidean geometry, we know that f{») = r.) Since the circle’s circumference vanishes as its
radius goes to 0, and becomes arbitrarily large as its radius goes to o, it follows that f{r)—0 as »—0, and
f(r)—o as r—oo. Consequently, if we make the natural assumption that f varies continuously as a function
of , then we may conclude that there is some value of » for which f{#) = 1. Hence, in a circle with this
radius, s = 6. By taking this radius as the radius for our sphere, we obtain the desired property that great
circle arcs have lengths equal to the central angles they subtend.
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Next, we verify the angles in spherical triangle Amnk.

The angle at vertex & (i.e. the angle opposite side mn) is measured by the dihedral
angle between the planes containing its arms, kn and km (see TP 26 notes, Claim 2). This
is, of course, the dihedral angle at BC, between planes ABC and BB'CC'. Since CC' and
CA are lines of slope for it, the measure of this dihedral angle is £C'CA = [1(b). Thus,
the angle of spherical triangle at vertex & is [ [(b), as claimed.

Similarly, the angle at m (i.e. the angle opposite side kn) is equal to the dihedral
angle of the prism at BB'. This dihedral angle is [[(a"), as was shown above.

Finally, the angle at n (i.e. the angle opposite side mk) is equal to the dihedral
angle between planes A4'BB' and ABC, which is n/2: these are perpendicular planes by
the perpendicular plane criterion, since the former plane contains a line (4A4’) that is

perpendicular to the latter plane.

Bracket Notation for Right Triangles

Suppose we have a right triangle whose legs are a and b, whose hypotenuse is ¢, and
whose respective opposite angles are [[(a), [1(5), and /2. If we look down at the plane
in which the triangle lies, and read its side lengths, beginning with the hypotenuse, and
proceeding counterclockwise around the triangle, we will say either “c-a-b” or “c-b-a”,
depending upon the triangle’s orientation. A “c-a-b triangle” and a “c-b-a triangle” are,
of course, congruent by the SSS criterion, but they are not directly congruent: before
sliding them into coincidence, one would need to flip one of the triangles over.

In much of what follows, the orientations of triangles will be important, so we
shall introduce notation that indicates not only the sides and angles of a right triangle, but

its orientation as well. Specifically,

The “bracket notation” [a,b,c; [1(a),]1(B)] denotes a right rectilinear triangle,
whose legs are a, b, whose hypotenuse is ¢, whose opposite angles are [1(a), [1(8), and
n/2, respectively, and whose sides appear (from above) in the counterclockwise order

a-b-c. (Note that the hypotenuse is written last among the sides.)
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When the right triangle lies upon a simple sphere, we shall use braces instead of
brackets, and we shall order the sides (still cyclic and counterclockwise, with hypotenuse

last) as they appear from the center of the sphere upon which the triangle lies.

Thus, the existence of a rectilinear triangle with sides a, b, ¢ and
opposite angles [I(a), [I(B), n/2 implies the existence of a spherical
triangle with sides [I(c), [1(B), [1(a) and opposite angles [I(b), [1(a’), /2.

Translating this statement into bracket notation, we can summarize Lobachevski’s

first triangle transformation as follows:

m
[a,b,¢; T1(a).I1(B)] 8

= {T1(©), T1(8), Ti(@); T1(5), 1)} P '

ﬂ(@\ ¢ (o)
A

We can rewrite this transformation in e A D
an equivalent form, which is easier to C b y 1\&@
use when we wish to apply it to a
triangle “in the wild.”
(R—S) [Ri, Ry, R3; R4, Rs] — {I1(R3), Rs, [T(Ry); TT(R2), /2 - R4}

For the sake of brevity, we shall refer to this transformation of a rectilinear right triangle
to a spherical right triangle as “the R—S transformation.” We shall derive several other
such transformation rules shortly.

Once we have secured a few such rules, we shall combine them with blithe
algebraic abandon (see Claim 4, below) and derive a further transformation that can look
mysterious if one has forgotten the geometric subtleties underlying the formal
transformation rules. Lest this occur, I shall recapitulate the geometric aspect of the R—S
transformation before moving on.

The R—S transformation turns a rectilinear right triangle into a spherical right
triangle as follows. The given rectilinear triangle becomes the base for an infinite prism,

while one of its vertices becomes the center of a simple sphere. Three edges of the prism
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meet at this vertex; the points where they (or their extensions) pierce the sphere become
the vertices of the resulting spherical triangle. More specifically, if we express the
rectilinear triangle in bracket notation, then the R—S transformation requires us to erect
the prism’s backbone at the vertex lying opposite the side that occupies the bracket’s first
slot. (Similarly, the sphere will be centered at the vertex lying opposite the side that
occupies the bracket’s second slot.) This particular detail — a manifestation of the
asymmetry in the prism construction - is easy to overlook, but it will have an important

consequence in Claim 4.

Right Triangle Transformation #2: From Spherical to Rectilinear

Conversely, the existence of such a spherical triangle implies the
existence of such a rectilinear triangle.

Lobachevski asserts that the R—S transformation is invertible, but leaves the
details to his reader. I shall carry these out, showing that a right spherical triangle Amnk
{I1(c), I1(B), I1(a); I1(b), I1(a")} whose legs are both less than 7/2 in length, implies the
existence of a right rectilinear triangle AABC [a,b,c; [1(a),[1(8)]. T shall do this in two
steps: first, I shall describe how to “build” AABC; second, I shall prove that its bracket

notation assumes the required form.

Construction. (S—R transformation)

Consider a right (simple) spherical
triangle with bracket notation
{I1(e), T1(B), T1(a); T1(®), I1(a")}-

Assume further that both legs of

the triangle have length less than
n/2. Call the triangle Amnk, where
n denotes the right angle, and &

denotes the angle whose measure

is [1(b).

We shall construct AABC in plane Bnk, which we shall refer to as “the equatorial plane.”
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Let B be the sphere’s center.

Let C be the unique point on ray Bk such that BC = a.”

From C, erect a perpendicular in the equatorial plane. It will intersect ray Bn at some point’. Call
it A. We have now constructed AABC. It remains to prove that it has the required bracket

representation. We shall do this shortly. ¢

Note that this transformation has, like the R—S transformation, a basic
asymmetry. Just as the R—S transformation “favors” one of a given rectilinear triangle’s
two acute angles (by making it the site at which the prism’s backbone is erected), the
S—R transformation favors one of the two legs of the right spherical triangle (by making
its plane that in which the rectilinear triangle is constructed.) By favoring the other
vertex/side in either of these transformations, we would obtain a completely different
triangle. This asymmetry is something to keep in mind, as it will return later in the
proposition.

We shall now demonstrate that our new transformation works as advertised.

Claim 3. The S—R transformation just described accomplishes the following:
{I1(e), T1(B), [(a); 11(0), [1(a)} = [a.b.c; [1(a), [1(B)].

Proof. In AABC, we must show that BC = a, AB = ¢, AC = b, 4B = [1(B), and £4 = [1(a).
One side and one angle are easy to verify.
Side BC has length a (by design).
Angle B has measure [[(8) (because the great circle arc nk subtends a central angle that

is equal to its own length).

" The assumption about the triangle’s legs implies that the hypotenuse [I(z) must also be less than 7/2.
(Convince yourself of this by contemplating the figure until it becomes obvious that £ must be nearer to m
than to the North Pole.) Hence, @ must be positive. Were [1(a) greater than n/2, a would be negative, in
which case we could not construct C and the argument would founder. This is why we assume that the legs
are less than m/2.

T Proof: By definition of angle of parallelism, a ray emanating from B will cut the perpendicular if and only
if the angle that it makes with BC is less than [[(a). In particular, ray Bn and the perpendicular will meet if
and only if £nBC < [](a). On right triangle Amnk, [1(B) is a leg, while [1(a) is the hypotenuse, so we have
that [1(8) <Il(a). Since the sphere is simple, £nBC = nk = [1(B). That is, £nBC = [1(#) <Il(a), so the ray
and the perpendicular meet, as claimed.
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To verify the remaining three data requires more work. We begin by constructing a prism
upon AABC as follows. Draw ray Bm, and rename it BB'. In plane BB'C, draw CC' L BC. This
line will be parallel to BB’, since £C'CB = 1/2, AB'BC = [1(a), and BC = a. Finally, draw A4’
parallel to BB’ and CC', completing the prism. In fact, we can prove that 44’ is the backbone of
this prism: that is, 44" is perpendicular to plane ABC". Once this is established, we can verify the
three remaining data in AABC.

Side AB has length c.
Proof: Since AA"|| BB', LA'AB = 1/2, and £B'BA = [](c), this follows from the definition

of angle of parallelism.

Side AC has length b.

Proof: Since AA' || CC" and £A'AC = =/2, the result will follow if we can show that
£C'CA = T1(b). To this end, we measure the dihedral angle at BC in two different ways. First,
because it has the same measure as angle £mkn in the spherical triangle (TP 26 Notes, Claim 2),
its measure is [[(). Second, because it has lines of slope CC’ and CA4, its measure is also equal to
£C'CA. Consequently, £C'CA =T1(b), so AC = b, as claimed.

Angle {BAC has measure [[().

Proof: £BAC has the same measure as the dihedral angle at A4', since AB and AC are
lines of slope. Thus, by the prism theorem (TP 28), we have

ABAC =1 - (dihedral angle at BB") — (dihedral angle at CC").

These last two dihedral angles are easy to determine.

The dihedral angle at BB' is [I(a'), since it has the same measure as angle £nmk in the
spherical triangle. Since BB'CC’ contains a line, BC, which is perpendicular to plane 44'CC’ (by
TP 11/ Euclid X1.4), it follows that BB'CC’ 1. AA'CC' (by the perpendicular plane criterion). That
is, the dihedral angle at CC"is m/2.

Hence, £BAC == - (dihedral angle at BB') — (dihedral angle at CC")

=n-Il(a") - /2
=7/2 -11(a")

=[1(a), as claimed.

" Proof: Spherical angle £mnk = 1/2 has the same measure as the dihedral angle between the planes A4'BB’
and ABC (TP 26 Notes, Claim 2). That is, A4'BB'" 1L ABC. Since a line in ABC (namely, BC) is
perpendicular to plane A4'CC' (TP 11 / Euclid X1.4), the perpendicular plane criterion implies that ABC L
AA'CC'". Because planes AA4'BB' and AA'CC" are both perpendicular to ABC, their line of intersection is also
perpendicular to ABC (Euclid XI.19 — a neutral theorem). That is, 44" L ABC, as claimed.
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Thus, we have verfied that the parts of A4BC have the measurements that we claimed.

That is, {[1(c),I1(8).I1(a); [1(0), [1(a")} = [a,b,c; [1(a),I1(B)], which was to be shown.m

Since not every spherical right triangle that we meet will have its bracket notation
already expressed in the form {I1(c),[1(8).[1(a); [1(b), [1(a")}, it will be useful to rewrite
the transformation with completely general symbols in the five slots of the spherical

triangle’s bracket notation:

(S—R) {S1, S2, S3; S4, Ss¥=> [IT7(S3), IT'(S4), IT'(S1); m/2 — Ss, S3].

In Praise of RS Transformations:
Linked Generic Triangles Yield Two Trigonometries

Developing trigonometry in the plane amounts to discovering relations among the parts
of a generic right rectilinear triangle. Lobachevski’s generic triangle 1is
AABC [a,b,c; [1(a), [1(B)]. Every right rectilinear triangle admits bracket notation of this
form, since every acute angle is the angle of parallelism for some length (TP 23).

The right spherical triangle, Amnk {[1(c), [1(8), [1(a); [1(b), [1(a")}, is almost, but
not quite, generic. Because, as noted in the preceding construction, we have implicitly
assumes that Amnk’s legs are less than n/2, Amnk is actually the generic right spherical
triangle whose legs are less than w/2 in length. Nonetheless, this caveat is of minor
importance, for once we have found the trigonometric relations for Amnk, a simple
argument will extend them to all right spherical triangles. Hence, we are justified in
thinking of Amnk as the generic right spherical triangle, and in thinking of the

RS transformations as the links between generic right triangles in the plane and on the

sphere.
B m
Tr(c)
- W(P\ c T(a)
() k A n

C b A -nt(n

AABC = GENERIC R\GHT Amnk: GENERIC RVGHT
RECT\LINEAR TRIANGLE SPHERICAL TRIANGLE (W1TH

LEGS SHORTER THAN T/2),

208



This link between the generic triangles AABC and Amnk is an extraordinarily
powerful tool. Because the parts of the two triangles are so closely related, every
trigonometric relationship that we discover for spherical right triangles will immediately
yield a dual version for rectilinear right triangles, and vice versa. By exploiting this
duality, Lobachevski is able to develop trigonometry in the plane and on the sphere

simultaneously.

Right Triangle Transformation #3: Reflection (Orientation Reversal)

Reflecting a rectilinear triangle in a line (or reflecting a spherical triangle in a great
circle) yields a new triangle, which is congruent to the original, but with reversed
orientation. We can capture this geometric operation with a particularly simple bracket
transformation rule, which applies both to rectilinear and spherical right triangles. We

shall call it the “O-transformation”, for orientation reversal.

O) [R1, Ro, R3; Ry, Rs] < [Ra, Ry, R3; Rs, Ry,
or  {Si, Sy, S3; 84, Ss} & {Sa, Si, S3; Ss, Sa}.

That is, we swap the first two symbols within the brackets/braces, and swap the last two
as well. Geometrically, the two triangles in the O-transformation are mirror images of

one another; the existence of one obviously implies the existence of the other.

Right Triangle Transformation #4: Lagniappe

Indeed, the existence of such a spherical triangle also implies the
existence of a second rectilinear triangle, with sides a, a’, B and opposite
angles [I(b), [1(c), n/2.

Hence, we may pass from a, b,c,a,pf to b, a,c, B, a, and to
a,d, B, b, c, aswell

Lobachevski obtains his fourth transformation by applying the first three
successively to a given rectilinear triangle. That is, given a rectilinear triangle, he first

converts it into a spherical triangle (using the R—S transformation), then changes the
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orientation of the resulting spherical triangle (O-transformation), and finally, turns the
result back into a rectilinear triangle (S—R transformation).

One might guess that the first and third steps would cancel one another out,
reducing this overall process to a roundabout application of the O-transformation. In fact,
this is not the case at all. Instead, this composite transformation turns [a,b,c; [1(a),[1(5)]
into [a, a', B; I1(b"), I1(c)], which is clearly not a mere reflection of the original triangle.
We shall call this process, which changes a rectilinear triangle into a second rectilinear

triangle, the “L-transformation.” (L is for Lobachevski or Lagniappe.)

Claim 4. (L-transformation) The existence of one rectilinear triangle immediately implies the

existence of another:

(L) [a,b,c; TT(@),]1(B)] = [a, &', p; T1(b"), I1(c)].

Proof. [a, b, c¢;Il(a), [1(A)] = {I1(c), [1(B), [1(a); [1(0), [1(a")}. (by R—S)
= {I1(¥), L1(c), [1(a); [1(a"), [1(b)} (by O)
= [a, &', ; 11(0"), I1(c)] (by S—>R) =

The L-transformation is easy
to deduce algebraically, but remains Al

enigmatic geometrically. Why does it

not merely change the orientation of
the original triangle? To better

understand the question, consider the

figure at right, which shows all but the

last step of the L-transformation: we
begin with Aj, convert it to a spherical
triangle, A, and then apply the
O-transformation to the result,
yielding As. To complete the I
L-transformation, we need "
only convert As back into a rectilinear triangle. At first glance, one might assume that this
will turn Az into AA"BC, but were this the case, then the L-transformation would amount

to nothing more than the humble O-transformation. What happens in that last step?
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The answer lies in the asymmetry of the R<S transformations. In the last step, if
the S—R transformation had “favored” the leg of Aj; that lies in plane 4ABC, then it would
indeed turn Az into AA"BC. However, it favors the other leg, with the result that we
obtain another rectilinear triangle altogether.

Finally, we note in passing that the L transformation is its own inverse.

In Praise of the L-transformation: New Trigonometric Relations from Old

The four transformations that we have seen yield not only new triangles, but also new

trigonometric relations. If two

triangles are linked by a B L-
transformation, then any relation () N\& At . () &
a
among the parts of one triangle T . )
immediately yields a relation C b A '

among the parts of the other

triangle as well. Applied to the RS transformations, this duality leads to a simultaneous
development of rectilinear and spherical trigonometry. Applied to the L-transformation,
this duality leads to a doubling of theorems about rectilinear triangles. To demonstrate
this theorem doubling in an easily understood setting, we offer the following simple (and

mathematically insignificant) example.

Example.

(TP 9) In any rectilinear right triangle, the hypotenuse is the longer than either leg.

Applying TP 9 to AABC yields a < ¢. Applying the L-transformation to AABC yields a
second triangle, AXYZ [a, o', B; [1(b"), [1(c)]. Applying TP 9 to AXYZ yields a < p. Re-reading

this as a statement about the parts of A4ABC, we obtain the following “bonus” dual theorem:

(TP 9 — dualized) A leg of any rectilinear right triangle is shorter than that length whose

angle of parallelism is equal to the acute angle adjacent to that leg. ¢

The particular dualized theorem in this example is of little consequence, but the

process by which we obtained it is not. Because we shall soon use it to obtain results that
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are more significant, we shall recapitulate the technique, and state an algebraic shortcut

for carrying it out.

Given a trigonometric relationship that holds on our generic right rectilinear
triangle AABC, we apply the L-transformation to the triangle, interpret the trigonometric
relationship on its image [a, o', ; [1(b"), I1(c)], and finally, reinterpret the result as a
second relationship on the original triangle.

Formally, we obtain the second relationship by substituting the symbols that
occupy corresponding bracket slots of the L-transformation,

[a.b,¢; 11(a).II(A] = [a, o, B; T1(5), [1(c)].
That is, we can dualize any trigonometric relation on AABC by replacing each b in the
relation with an o', each ¢ with £, each [[(a) with [1(5"), and each [1(8) with [1(c).

Right Triangle Transformation #5: From Rectilinear to Horospherical

Lobachevski has already established links between right plane triangles and right
spherical triangles. Linking these to right horospherical triangles gives him the potential
to use the Euclidean trigonometry of horospherical triangles to discover trigonometric

relationships that govern triangles (plane and spherical) in imaginary space.

If the horosphere through A with axis AA' cuts BB' and CC' at B”
and C", its intersections with the planes formed by the parallels produce
a horospherical triangle with sides B'C" = p, C'A = q, B'A = r and
opposite angles [[(a'), [1(a), ©/2.
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If we think of the plane in which A4BC lies as a vast tabletop, and AABC itself as
a triangle drawn upon it, then we may describe Lobachevski’s method for transforming
AABC into a horospherical triangle as follows:

First, place a horosphere on the table; position it so that their point of contact is at
the vertex 4. Next, draw 44’ perpendicular to the table, and then draw rays BB’ and CC’
parallel to 44". Finally, slide points B and C up their respective rays, like beads on
strings, until they meet the horosphere; let B” and C" be the names of the points at which
they meet the horosphere. We have thus “projected” the rectilinear triangle AABC onto
the horosphere, producing the horospherical triangle AAB"C".

Since we currently lack the means to describe the side lengths of A4AB"C" entirely
in terms of the sides and angles of AABC, Lobachevski simply calls them p, ¢, and r for
now, as depicted in the figure above.

In contrast, the angles of the horospherical triangle are easy to determine.

Claim 5. Angle £C"4AB" =[1(a), £AB"C" =[l(a'), and £B"C"4A = n/2.
Proof. Any angle of any horospherical
triangle has the same measure as the
dihedral angle between the planes in
which its arms lie (TP 34 Notes, Lemma
2). Thus the angle of the horospherical
triangle at A4, B", and C" are measured by

the prism’s dihedral angles at A4’, BB,

and CC', respectively, which are [[(a),
[1(a") and ©t/2, respectively, by Claim 2. =

Although we do not yet know how p, ¢, and r relate to the measurements of the

plane triangle AABC, we do at least know how they relate to one another.

Consequently (TP 34),

p =rsinl[](a) and q = rcos[](a).
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These follow directly from the formulae of Euclidean trigonometry, which hold
on the horospherical triangle A4AB"C". Writing p and ¢ in terms of » (and [[(«), which is
also an angle in A4BC) effectively reduces our unknowns on the horospherical triangle
by two-thirds. This triangle transformation may seem less satisfying than the first four,
since we have not succeeded in expressing the sides of the image triangle (on the
horosphere) as functions of the original triangle’s sides and angles, yet this
transformation represents our first step down the winding path that will eventually lead us

to the trigonometric formulae that we seek.

The Winding Path: An Overview

The path proceeds roughly as follows. Using the rectilinear-to-horospherical
triangle transformation, we shall establish a bizarre-looking equation that expresses a
relationship among a motley group of geometric quantities . I call this the “diamond on
the rough”, for by polishing this equation diligently, we will eventually produce our first
trigonometric relationship.

Applying triangle transformations to this polished diamond then yields four more
trigonometric relations. Collectively, I call the five relations “the five gems”.
Remarkably, these will generate all of the trigonometric relations that hold in the absence
of the parallel postulate, both in the plane and on the sphere. Extracting all of imaginary
trigonometry from them does take some work, however. Lobachevski begins this work by
producing the formulae of imaginary spherical trigonometry. Astonishingly, these turn
out to be identical to those that hold in Euclidean spherical trigonometry! This revelation
that the formulae of spherical trigonometry are independent of the parallel postulate
marks the end of TP 35.

In TP 36, Lobachevski will finally obtain an explicit formula for the angle of
parallelism, which he will then uses in TP 37 to extract the formulae of imaginary plane

trigonometry from the five gems.

" Specifically, it specifies a relationship between various parts of the triangles, and parts of the prism itself,
which are involved in the rectilinear-to-horospherical triangle transformation. Namely, one angle of the
rectilinear triangle, the hypotenuse of the horospherical triangle, a line segment joining two of the triangles’
corresponding vertices, and finally, a horocyclic arc that is concentric to one of the horospherical triangle’s
legs. This will become clear shortly!
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Now that we have some conception of what lies ahead, we begin the journey.

Unfolding the Prism: Mining for the Diamond in the Rough

Along BB', break the connection of the three principal planes,
turning them out from one another so that they lie in a single plane. In
this plane, the arcs p, q, r unite into an arc of a single horocycle, which
passes through A and has axis AA'.

That is, we slit the prism along one of its seams (BB’) and then unfold it, as follows:
rotate face BB'AA" about AA' until it lies in plane 44'CC’, and then rotate face BB'CC’
about CC" until it lies in plane 44'CC’, as well. We have now unfolded the prism and laid
it out in a single plane, as depicted at right. It is easy to see that the three horocyclic arcs

fit together smoothly. We prove this now.

Claim 6. When we unfold the prism, the arcs p, ¢, and » will all lie on a single horocycle.
Proof. Let H be the unique horocycle of which ¢ is an arc.

In the plane containing the flattened prism, there is a unique horocycle through A4 with
axis AA". Its uniqueness implies that the horocyclic arcs g and » both lie upon it. In fact, this
horocycle must be H, since it contains g. Hence, H contains both ¢ and . Similar considerations
regarding the unique horocycle through C" with axis C"C’ reveal that H contains both ¢ and p.

Hence, the arcs p, ¢, and r all lie on the single horocycle H. ]
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Thus, the following lie on one side of AA': arcs p and q; side b of the
rectilinear triangle, which is perpendicular to AA’ at A; axis CC’, which
emanates from the endpoint of b, then passes through C", the join of p
and q, and is parallel to AA’; and the axis BB', which emanates from the
endpoint of a, then passes through B", the endpoint of arc p, and is
parallel to AA'. On the other side of AA’ lie the following: side c, which is
perpendicular to AA' at point A, and axis BB’, which emanates from the
endpoint of ¢, then passes through B", the endpoint of arc r, and is
parallel to AA'.

This awkward passage simply describes the features of the unfolded prism. It was
presumably intended as a verbal substitute for the figure that should have accompanied
the text but was in fact consigned (like all the other figures) to a set of plates at the back
of the book. This practice was quite common in the 19" century as a means of keeping
printing costs within reasonable bounds.

Lobachevski will now introduce some notation for an aspect of the unfolded

prism, which will appear shortly as a term in the diamond in the rough.

A New Function: f

The length of the line segment CC" depends upon b; we shall
express this dependence by CC" = f(b). Accordingly, BB" = f(c).

The figure illustrates Lobachevski’s new function, f(x). ffx,l
There are several equivalent ways to describe this

function in words. Here is one. Draw a tangent line to a point

on a horocycle. Upon this tangent, measure out a segment of
length x, starting at the point of tangency. The distance from
the segment’s endpoint to the horocycle is f{x).

Since horocycles are homogenous, the point from which we draw the tangent will
not affect the value of f(x). Since all horocycles are congruent, the particular horocycle

upon which we carry out this operation is also irrelevant. Hence, f'is well defined.
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If we draw the horocyclic arc t that begins at C, has axis CC', and
ends at D, its intersection with axis BB', then BD = f(a), so that

BB" = BD + DB" = BD + CC".

B D 6Il
That is,
f(c) = f(a) + f(b). “I/p
C n )
B
For the most part, we can read these facts ik c’
directly from the figure. Note that DB” = CC"” A A
since both of these lengths represent the distance N g’

between the concentric horocycles of which p

and ¢ are arcs. (See TP 33 Notes, Claim 1.) The B B
relationship fic) = fla) + f(b) will prove useful

shortly.

The Diamond in the Rough

While following Lobachevski’s intricate arguments and marveling at his flights between
plane, sphere, and horosphere, it is easy to lose track of the fact that his underlying goal is
to develop trigonometric relationships. As I discussed in above (“The Winding Path”),
these will ultimately derive from the “five gems”, a set of trigonometric equations that
themselves have a common source in a single “diamond”. The diamond, however, will
hardly be recognizable as such when we first meet it in the rough.

The trigonometric formulae that we seek must relate the quantities a, b, ¢, a, and
B, which occur (sometimes cloaked in the [[-function) as sides and angles of A4BC and
Amnk, our representative rectilinear and spherical right triangles. The diamond in the
rough exhibits a mixture of these desirable quantities with several unwanted quantities
such as ¢, r, and the f~function, which are only indirectly related to the triangles.
Lackluster though it may seem initially, Lobachevski will find a way to scrape off the

unwanted bits, and polish what remains into pure sparkling trigonometry.
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Moreover, we see that (by TP 33)

t = pefl) = rsin[[(a)ef®).

Claim 7. (Diamond in the Rough) ¢ = rsin[1(a)e’®.”

Proof. Applying TP 33 to ¢ and p yields p =1t
Equivalently, t=pe.
But CC" = f{(b), so this becomes t=pe’®.

Thus, since p = rsin[[(a),
(which we derived just after Claim 5),

we have that t = rsin[1(a)e’”, which was to be shown. m

We now have our diamond in the rough. Bit by bit, Lobachevski will polish
away its unwanted parts. First, he will scrape away the unwanted horocyclic arcs ¢ and r.
Then he will polish off the f~function, revealing the diamond at last. The last bit of
sediment, the [[-function, can be removed after TP 36, with the help of the explicit

formula for [ [(x) that Lobachevski derives in that proposition.

Seeking the Diamond Within
(Part 1: Scraping Off the Horocyclic Arcs)

The next passage in Lobachevski’s text is particularly obtuse. I considered tampering
with his words to render them more comprehensible, but to do so would require adding so
much more text that the result would cease to be what Lobachevski actually wrote. Thus,

I have left it as is, with the promise of an explanation afterwards.

If we were to erect the perpendicular to triangle AABC ’s plane at
B, instead of A, then the lines c and r would remain the same, while the
arcs q and t would change to t and q, the straight lines a and b would

" To derive this, we need the formula s’ = se™ from TP 33. Recall that a more general form of this equation
is s' = se™*, where k is some positive constant. (Lobachevski picks his unit of length so that k = 1). It is
easy to see that if we use this general form of TP 33 in the proof of Claim 7, the diamond in the rough
assumes its more general form: ¢ = rsin[ I(a)e’™ ¥,
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change to b and a, and the angle [[(a) would change to [[(B). From this it
follows that

q = rsin[](B)ef.

Thus, by substituting the value that we previously obtained for q, we find
that

cos[I(a) = sin[](B)ef.

Before worrying about the details of erecting a perpendicular at B rather than 4,
let us return to our “diamond in the rough”: ¢ = rsin[1(a)e’®.

We obtained this formula by constructing a prism on the right triangle AABC.
Because this triangle has no special properties (other than a right angle at C), our decision
to erect the prism’s backbone at 4 was a purely arbitrary choice. Had we erected the
backbone from B, the resulting formula would have been slightly different. We shall
determine the form that it would take in a moment. As a means of doing so, we shall first
express our diamond-in-the-rough rhetorically, as though we were 16™ century
algebraists.

To this end, consider the naked triangle, shorn of all labels. We erect the prism’s
backbone from one of its two acute vertices (which we shall call the favored vertex) and
carry out the construction detailed above, thus obtaining a prism, a horospherical triangle,
and an “extra” horocyclic arc, concentric to one side of the horospherical triangle and
passing through the vertex of the rectilinear triangle’s right angle.

The diamond in the rough, expressed rhetorically, would take the following form:

Sin Jfavored vertex
the favored vertex

{length of the"extra "J

. length of the rectilinear
length of the horospherical \ . ( angle measure at f[trmngle‘s leg that touches the]
e
horocyclic arc

triangle's hypotenuse

Having obtained our rhetorical formula, we restore the labels to our triangle,
AABC. Now, if we erect the prism upon it so that its backbone emanates from B rather
than 4, we may apply this rhetorical formula to its parts to obtain another formula, related
to our diamond in the rough. Of course, to carry this out, we must find the quantities on
the second prism that occur in the rhetorical formula. This is a simple matter, requiring

only the following observation.
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Lemma. Let AXYQ and AX'Y'Q' be two singly

Yl
asymptotic right triangles, with right angles at X Y
and X'. If their finite sides XY and X'Y’ have the ,
same length, then the horocyclic arcs shown in the X }.Q. ! }Q
X

figure must also have the same length.
Sketch of Proof. The asymptotic triangles are congruent. Thus, we may bring them into
coincidence with one another. Superimposing AX'Y'Q)" upon AXYQ forces the horocyclic arcs to

coincide, since there is only one horocycle through X with axis XX". "

With this lemma in mind, it is easy to discover the lengths of the parts on the
second prism that we need for our rhetorical formula; we simply look at the two prisms
side by side. For example, the lemma immediately implies that the “extra” horocyclic arc
on the second @'
prism (CE) has ' A
the same length as
the arc AC" that
lies on the first.

That is, arc CE

B A

o>

has length gq.
Similarly, the

hypotenuse of the
horospherical

right triangle in the second prism must be 7. Finally, we don’t need the lemma to tell us
that the angle at the favored vertex B is [ (), nor that BC, the unique leg of AABC’s that
touches B, has length a. Feeding all of this information into the rhetorical formula, we

obtain

g = rsin[1(8)e’"“.

From here, it is a short step to a semi-polished diamond.
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Claim 8. (The Diamond, Still Rough, but Semi-Polished) cos[1(c) = sin[1(8)e’."
Proof. We have just found that ¢ = rsin[1(8)e“.
Moreover, we know that g = rcos[[(a). (We established this just after Claim 5.)

Equating the two expressions for ¢ yields the semi-polished diamond:

cos[I(a) = sin[1(8)e’“. "

This expression is a definite improvement over our original diamond in the rough.
The irrelevant horocyclic arcs ¢ and » have been scoured away, bringing us one step

closer to a comprehensible trigonometric relation. The next procedure will be to remove

the function f.

Seeking the Diamond Within
(Part 2: Polishing Away the f~Function)

Lobachevski has now detached two horocyclic arcs from the emerging diamond. He will
remove the function f(x) next. To begin the process, he shows that the related function
sin[1(x)e/™ assumes the same value when x is a, b, or ¢. This unexpected invariant of

AABC’s sides will allow us to express f(x) in terms of [(x).

If we change a and {3 into b" and c, then

sin[](b) = sin[](c)efl.
Multiplying by eflb) yields

sin[](b)ef) = sin[](c)efl.
Consequently, it follows that

sin[](a)ef® = sin[](b)eflb).

Because the lengths a and b are independent of one another and,
moreover, f(b) = 0 and [[(b) = /2 when b = 0, it follows that for every a,

efl@) = sin[](a).

" More generally, this will be cos[1(«) = sin[1(8)e/ /¥, where k is a positive constant. (See the previous
footnote.)
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To establish this, we shall finally employ our triangle transformations.

Claim 9. In an arbitrary right rectilinear triangle AABC [a,b,c; [1(a),]1(8)], the following holds:
sin[1(») = sin[1(c)e™.
Proof. In Claim 8, we obtained our semi-polished diamond, cos[1(a) = sin[1(8)e’*.
We shall use the technique described above, in “The Power of Triangle Transformations”.
Applying the L-transformation” to the semi-polished diamond yields
cos[1(»") = sin[1(c)e .
By definition, [1(") is ©/2 - [1(b). Hence, cos[[(b") = sin[ [(), which implies that
sin[1(b) = sin[1(c)e’”, as claimed. "

We shall now obtain the invariant.

Claim 10. In AABC, the following relation holds:
Sil’lH(a)e fla) — SinH(b)eﬂb) = SiHH(C)eﬂC) 1

Proof. sin[](b) = sin[1(c)e’” . (Claim 9)
sin[1(b)e”” = sin[1(c)e @ e?  (Multiplying both sides by /")

= sin[1(c)e’* (since f{c) = fla) + f(b); see “A New Function: /™).

That is, sin[I(b)e’® = sin[I(c)e’".
Hence, sin[I(a)e’ = sin[1(c)e’®. (Applying the O-transformation)

Combining the last two equations yields

sin[1(@)e”" = sin[1(6)"” = sin[1(c)e . .

We shall now determine the nature of our triangle invariant. If AABC is an
arbitrary rectilinear right triangle with side lengths a, b, and ¢, the invariant tells us that
sin[1(a)e’® = sin[1(b)e’®. Moreover, for any positive number x, there is a right triangle

AXBZ with legs x and b; applying the invariant to this triangle yields

" Recall that the L-transformation is as follows: [a,b,c; [1(a).I1(8)] = [a, &', 8; T1(b"), T1(c)].
 Had we retained the parameter , this would take the form sin[I(a)e”®’* = sin[1(5)e"?/* = sin[T(c)e 19~
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sin[1(x)e’™ = sin[1(b)e’”. That is, the function sin[1(x)e/* is a constant function on the
positive real numbers. It therefore has nothing to do with triangles after all. Next, we

shall show that it assumes the constant value 1.

Claim 11. For all positive values of x, the following holds: sin[](x)e™ =1."

/% is a constant function. To

Proof. We have argued in the previous paragraph that sin][(x)e
determine which constant value it assumes, we simply take a limit as x approaches 0 through the
positive reals.

As x vanishes, [[(x) approaches n/2 (see last lines of TP 23), so sin[](x) approaches 1.
Moreover, f{x) vanishes with x (as is obvious from the definition of ), so e/ approaches 1.Thus,
sin[I(x)e/® itself approaches 1 as x vanishes. Consequently, the constant value of sin[I(x)e

must be 1, as claimed. [

Corollary. For all positive values of x, the following identity holds: e ~/® = sin[(x).}

The Five Gems

Having expressed f(x) in terms of [[(x), Lobachevski can finally bring the diamond, our
first new trigonometric relation, to light. A series of triangle transformations will then
produce four more relations, completing the set of five gems, the matrix from which all

of imaginary trigonometry will eventually be born.

Therefore,
sin[](c) = sin[](a)sin[](b)
sin[[(B) = coslI(a)sin]](a).

Moreover, by transforming the letters, these equations become

sin[](a) = cos[(B)sin[I(b)
cos[I(b) = coslI(c)coslI(a)
cos[(a) = cos[I(c)cosII(B).

" Retaining the parameter, this would be sin[I(x)e™’* =1 for all positive values of x.

-f(x)/k

T If we retain the parameter, this takes the form e = sin] [(x) for all positive x.
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These five equations are easy to verify. The first gem is the long-sought diamond
itself. To expose it, we remove the unsightly f-function from an equation that we obtained

from the semi-polished diamond. The remaining four gems are then easy to obtain.

Claim 12. (1* Gem) In any right rectilinear triangle [a,b,c; [1(),I1()], the following holds:
sin[1(c) = sin[I(a)sin] 1(b)."

Proof. We know that sin[]() = sin[1(c)e’. (Claim 9)
Hence, sin[1(b) e/ = sin[](c).
Thus, sin[1()sin] I(a) = sin[1(c) (Corollary to Claim 11). m

Claim 13. 2" Gem) In any right rectilinear triangle [a,b,c; [1(«),I1(8)], the following holds:
sin[ 1(B8) = cos[I(a)sinl ().

Proof. We know that sin[I(c) = sin[I(a)sin[ I(d). (The 1* Gem)
Hence, sin[1(8) = sin[ [(a)sin] I(a). (By the L-transformation)
That is, sin[[(B) = sin[ [(a)sin(n/2 - [1(a)) (By definition of [](a"))
Thus, sin[1(8) = sin[ [(a)cos[ I(c). n

Claim 14. (3" Gem) In any right rectilinear triangle [a,b,c; [1(),]I1(8)], the following holds:
sin] I(a) = cos[ I(B)sinl 1().

Proof. We know that sin[[(8) = sin[I(a)cos[ (). (The 2™ Gem)
Hence, sin[ I(a) = cos[ I(B)sinl 1(). (By the O-transformation) m

Claim 15. (4™ Gem) In any right rectilinear triangle [a,b,c; [1(«),I1(5)], the following holds:
cos[1(b) = cosI I(c)cos[I(a).

Proof. We know that sin][(a) = cos[1(B)sin[ I(b). (The 3™ Gem)
Hence, sin[1(h") = cos[ I(c)sin] I(a"). (By the L-transformation)
That is, cos[1(b) = cosI I(c)cos[I(a). (Since [I(x)=n/2 - [I(x)) m

" Even had we chosen to retain the parameter %, it would not occur in the five gems, so long as they remain
expressed in terms of the [[-function. However, the [[-function itself conceals a hidden parameter. Thus,
when we polish the [[’s away from the gems in TP 36 and express them [[-free notation, we shall see that
the five gems do involve a parameter (whose numerical value depends upon our unit of length) after all.
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Claim 16. (5" Gem) In any right rectilinear triangle [a,b,c; [1(«),IT1(5)], the following holds:
cos[1(a) = cos[I(c)cosl1(B).

Proof. We know that cos[I(b) = cos[I(c)cos[I(a). (The 4™ Gem)
Hence, cos[I(a) = cosI I(c)cos[ I(5). (By the O-transformation) m

The Gems’ Present Polish:
Sufficient for the Sphere, Not for the Plane.

We may interpret the five gems as a set of statements about:

1) the generic rectilinear right triangle,

AABC [a,b,¢; TI(@).TI(B)]. a0 NS o
or - AGH) @)
2) the generic spherical right triangle, %
smnk {T1(e), TI(B), [1(a); T1(b), TT(a)} . e

As statements about rectilinear triangles, the five gems are still unsatisfying in
their present form. The first gem, for instance, concerns the sines of the angles of
parallelism of the sides of AABC. This is certainly a vast improvement over the diamond
in the rough, but we ultimately want a relation that deals directly with the sides of AABC
rather than with their angles of parallelism. Similar problems exist in each of the five
gems when we interpret them as statements about imaginary rectilinear triangles. These
problems will be resolved only after further lapidarian activities in TP 36.

In contrast, all five gems make satisfyingly direct statements about right spherical
triangles in imaginary space. For example, when applied to Amnk, the first gem expresses
a straightforward relationship between two sides and an angle. Lobachevski takes up this

theme next.

" More precisely, Amnk is the generic right spherical triangle whose legs are less than 7/2. (See “Right

Triangle Transformation #2”.)
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The Spherical Gems: Déja vu.

In the spherical right triangle, if the sides [I(c), [1(B), [I(a) and
opposite angles [[(b), [I(a')are renamed a, b, c, A, B, respectively, then
the preceding equations will assume forms that are known as established
theorems of the ordinary spherical trigonometry of right triangles.
Namely,

sin(a) = sin(c)sin(A)
sin(b) = sin(c)sin(B)
cos(B) = cos(b)sin(A)

(
cos(A) = cos(a)sin(B)
cos(c) = cos(a)cos(b).

From these equations, we may derive those for all spherical triangles in
general. Consequently, the formulae of spherical trigonometry do not
depend upon whether or not the sum of the three angles in a rectilinear
triangle is equal to two right angles.

If we relabel the parts of Amnk as indicated in figure, and make the corresponding
changes in the five gems, we obtain the following relations (the Spherical Gems), which

hold on any imaginary spherical right triangle, {a,b,c; A,B}.

(SG1) sin(a) = sin(c)sin(A)
(SG2) sin(b) = sin(c)sin(B)
(SG3) cos(B) = cos(b)sin(A)
(SG4) cos(A) = cos(a)sin(B)
(SGHS) cos(c) = cos(a)cos(b).

These equations would have startled Lobachevski’s 19™-century audience. Having
traversed for so long the increasingly alien pathways of imaginary geometry and having
uncomfortably relinquished the orthodox Euclidean conception of space, their surprise
must have been immense when they encountered, deep in this dark wood, five formulae
that they had learned from their own schoolteachers. Unfortunately, but inevitably, the
full impact of this “Young Goodman Brown” revelation” is lost on most 21 century

readers. We no longer study spherical trigonometry in school, and therefore we do not

" Nathaniel Hawthorne was in fact a contemporary of Lobachevski. He published “Young Goodman
Brown” in 1835.
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recognize the surprising truth before our eyes: the five equations above are basic
formulae of Euclidean spherical trigonometry!

Thus, these five spherical trigonometric relations are neutral theorems; they hold
in both Euclidean and imaginary space. Any further relations that we derive from them
will also be neutral. Hence, when Lobachevski asserts that we can derive every spherical
trigonometric relation from these five relations, this is equivalent to a claim that the entire
subject of spherical trigonometry is neutral! That is, the formulae of spherical
trigonometry are independent of the parallel postulate.

Lobachevski concludes TP 35 with this bold assertion; how do we verify it? How
can we check that every spherical trigonometric relation derives from those given by the
five spherical gems? First, we shall show that the gems hold on all right spherical
triangles, not only those (like Amnk) whose legs are less than n/2. Then we shall show
that the gems imply that the spherical law of sines and the two spherical laws of cosines
are neutral theorems. Finally, we shall argue that these three laws encompass all of
spherical trigonometry: every spherical trigonometric relation is a consequence of them.

Hence, if the three are neutral, all of spherical trigonometry is neutral.

The Spherical Gems Hold on All Right Spherical Triangles

The spherical gems, SG1 — SG5, hold on all right spherical triangle whose legs are less
than 7/2 in length. A clever trick or two will quickly extend their domain to a// right

spherical triangles.

Claim 17. The spherical gems hold for all right spherical triangles whose legs are both greater
than n/2.

Proof. Let AABC be a right spherical triangle with the usual labeling”, in which the legs  and b
are both greater than n/2. Complete the lune, as shown in the figure below, by extending the
triangle’s legs until they meet again at C’, the point antipodal to C. Clearly, the angle at C’ is also
right, so AABC' is a right spherical triangle with legs both less than wt/2.

Applying the spherical gems to AABC’, we obtain the following equations:

" Le. We shall denote the angles 4, B, C, and the opposite sides a, b, ¢, respectively, with a right angle at C.

227



sin(m - @) = sin(c)sin(m - A)
sin(r - b) = sin(c)sin(zw - B)
cos(w - B) = cos(m - b)sin(m - A)

cos(m - A) = cos(w - a)sin(rw - B)

cos(c) = cos(m - a)cos(w - b)

Using the identities sin(rw - x) = sin(x) and cos(w-x) = - cos(x), these equations become the

equations we wish to establish. Thus, the gems hold for AABC. "

Claim 18. The spherical gems hold for all right spherical triangles with one leg greater than m/2,
and one leg less than /2.

Proof. Let AABC be a right spherical triangle with the usual

labeling, in which a > ®/2 and b < ©/2. Complete the lune, as

C

shown in the figure, extending the long leg and hypotenuse . & A
until they meet again at B’, the point antipodal to B. We may f

now apply the gems to AAB'C and use argument nearly B T-C A
identical to the preceding one to establish that the spherical

gems hold on A4ABC, as claimed. n

Claim 19. The spherical gems hold for all right spherical triangles which have at least one leg
equal to T/2.

Proof. If AABC is a right spherical triangle with the usual labeling
and b = /2, then 4 must be a “pole” for the great circle through C
and B, as depicted in the figure. Thus, 4 is equidistant from C and B
(and all other points of its “equator”, the great circle through C and
B), so ¢ = b = /2. Thus, the spherical pons asinorum (TP 14) yields
B = C = n/2. Since an angle at a pole subtends an arc with its same
measure on its equator, we have 4 = a. These equalities render each

of the gems trivially true. =

We have exhausted all cases. The five spherical gems hold for all right spherical

triangles.
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The Spherical Law of Sines is a Neutral Theorem

Claim 20. (Law of Sines) If A4BC is an arbitrary spherical triangle with the usual labeling, then
the following relation holds, regardless of whether the parallel postulate holds:

sin(A)/sin(a) = sin(B)/sin(b) = sin(C)/sin(c).

Proof. If the parallel postulate holds, then so does all of Euclidean geometry and trigonometry,
including the spherical law of sines. The interested reader may find a proof in older trigonometry
books (written before 1950 or so), in spherical astronomy books, or in Stahl (pp. 172-3).

If the parallel postulate does not hold, then we obtain the result from SG1, as follows.
Drop a perpendicular BD from B to AC (extended if necessary), and let d = BD. Regardless of
whether D falls within AC, or to either side of this segment, we find

sin(d) = sin(c)sin(4) (applying SG1 to the right triangle AADB)",
sin(d) = sin(a)sin(C) (applying SG1 to the right triangle ABDC).

Equating these two expressions for sin(d) yields

c \ / a
N o d g
sin(c)sin(4) = sin(a)sin(C). : ]
A1 R

Equivalently, ¢ D
sin(A)/sin(a) = sin(C)/sin(c).

Repeating the argument, but dropping the perpendicular from C to 4B, yields, by symmetry,
sin(4)/sin(a) = sin(B)/sin(b).

Combining the last two equations gives the spherical law of sines in imaginary geometry. m

" If D happens to fall directly upon A4 or C, this equation (and the one that follows) are trivially true. For
example, if D = 4, then d = ¢, and sin(4) = 1, so the fact that sin(d)=sin(c)sin(4) is obviously true.
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The First Spherical Law of Cosines is a Neutral Theorem

In our derivation of the first spherical law of cosines, we shall find the following lemma

useful.

Lemma. In a right spherical triangle with the usual labeling, the following relation holds,
independent of the parallel postulate:
cos(B) =tan(a) / tan(c).

(Note the similarity to a familiar result of ordinary plane Euclidean trigonometry: cos(B) =a /c.)

Proof. cos(B) = cos(b)sin(A4) (by SG 3)
= cos(b)[sin(a)/sin(c)] (by SG 1)
= [cos(c)/cos(a)][sin(a)/sin(c)] (by SG 5)
= tan(a) / tan(c) n

Claim 21. (First Law of Cosines) In an arbitrary spherical triangle A4BC with the usual
labeling, the following relation holds, independent of the parallel postulate:

cos(c) = cos(a)cos(b) + sin(a)sin(b)cos(C).

Proof. If the parallel postulate holds, this is a classical result.

If not, we prove it as follows.

If AABC happens to be a right triangle, label it so that the right angle is at C. In this case,
cos(C) = 0, so the first law of cosines reduces to cos(c) = cos(a)cos(b). This is the spherical
Pythagorean Theorem, which we have already proved above. (It is SG5.)

If AABC is not a right triangle, we drop a perpendicular BD from B to AC, as we did in
the proof of the spherical law of sines. Unfortunately, the law of cosines requires slightly
different proofs (different in details, but the same in spirit) for the case in which D falls inside
AC, and the case in which D falls outside AC.

Case 1 (D lies within AC)

As in the figure, we letd = BD, p = AD, and ¢ = DC.

Then, cos(c) = cos(d)cos(p) (SG5 on AABD)
= [cos(a)/ cos(g)]cos(p)  (SG5 on ABDC)

= [cos(a)/ cos(g)]cos(b - q)
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= [cos(a)/ cos(q)][cos(b)cos(g) + sin(b)sin(g)] (trig identity ")
= cos(a)cos(b) + sin(b)cos(a)tan(q)
= cos(a)cos(b) + sin(b)cos(a)[cos(C)tan(a)] (by the Lemma, on ABDC)

= cos(a)cos(b) + sin(a)sin(b)cos(C), as claimed.

Case 2 (D falls outside of 4C)
Label the parts of the triangle as shown in the figure.

Then, cos(c) = cos(b+r)cos(s) (SG5 on AABD) 8
— [cos(b)cos(r) - sin(b)sin(r)]cos(s) (trig identity)
= [cos(b)cos(r) - sin(b)sin(r)][cos(a)/cos(r)] 'i:s
(SG5 on ABCD) A '\
= cos(a)cos(b) - sin(h)cos(a)tan(r) BeTy TP

= cos(a)cos(b) - sin(b)cos(a)[cos(m - O)tan(a)]
(by the Lemma, on ABCD)
= cos(a)cos(b) - sin(a)sin(b)cos(r - C)

= cos(a)cos(b) + sin(a)sin(b)cos(C), as claimed.

Thus, the first spherical law of cosines holds for all spherical triangles in imaginary geometry. m

Polar Triangles

We can establish the second law of cosines (cos(C) = -cos(4)cos(B) + sin(4)sin(B)cos(c))
with the same type of unedifying calculations that we used to prove the first cosine law.
However, this approach does little to explain the striking similarity of form that the two
laws exhibit. Accordingly, I shall follow a more illuminating path, which will require a
brief digression on “polar triangles”, a beautiful, elementary, and largely forgotten topic.
First, some terminology. Given any great circle of a sphere, we may think of it as
an equator, which divides the sphere into two equal hemispheres. Accordingly, we shall

refer to the two antipodal points on the sphere that lie furthest away from a particular

" The laws of sines and cosines are geometric theorems, so their forms will change in different geometric
contexts. In contrast, trigonometric identities such as sin’x + cos’x = 1, or cos(x-y) = cos(x)cos(y) +
sin(x)sin(y), are not geometric theorems. These are theorems about the trigonometric functions sin and cos.
In other words, they are statements about numbers, rather than shapes, and consequently are independent of
geometric context.
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equator as its poles. Conversely, we may think of any point on the sphere as a pole, and
speak of its equator.

For each triangle AABC on a simple sphere*, there is a related triangle A4'B'C’
called its “polar triangle” (or sometimes its “dual triangle”). We shall describe its

construction and a few of its most important properties.

Construction (Polar Triangle). Side BC of AABC lies on an equator. Exactly one of its two
poles lies in the same hemisphere as point 4. (Equivalently, exactly one pole lies at a distance of
less than w/2 from A4.) Call this pole 4. We define the points B’ and C’ analogously. We call
NA'B'C' the polar triangle of AABC.

Claim 22. Given any spherical triangle, the polar triangle of its polar triangle will be identical to
the original triangle.
Proof. Let AA'B'C'be the polar triangle of AABC.

By definition of the polar triangle, B’ is a pole of
equator AC, and C'is a pole of equator 4B.

The distance, as measured along a great circle arc,
from a pole to any point on its equator is clearly /2 (on a
simple sphere), so B'A = C'A = 1/2.

Since B’ and C' therefore lie at a distance of m/2

from 4, it follows that points B’ and C' lie upon the equator

of A. Equivalently, 4 is a pole of B'C". Since the distance
between 4 and A’ is already known to be less than 7/2, point
A is a vertex of the polar triangle of A4A'B'C".

Similarly, B and C are vertices of the polar triangle of A4'B'C".

That is, the polar triangle of the polar triangle of AABC is AABC, as claimed. L]

Thus, polar triangles come in pairs. In each such pair, there is a remarkable relationship
between their parts. Namely, each part (side or angle) of either triangle is the supplement
of a related part of the other triangle. In particular, if AABC and AA'B'C’ are a polar pair,

each labeled in the wusual way (side a opposite angle A, etc.), then

" Recall that on a simple sphere, the length of any arc of a great circle equals the measure of the angle it
subtends at the sphere’s center.
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atd'=n, b+B'=n, c+C=n A+a=n, B+b'=n, Ctc'=mn,

Before proving that these relationships hold, we need to establish a simple lemma.

Lemma. On a simple sphere, any angle has the same
measure as the arc that it subtends on its vertex’s equator.

Proof. A picture is worth a thousand words. In the picture at
right, it is clear that angle # and length / are directly
proportional. Since the “full angle” at the pole is 27w, and the
“full length” (i.e. the equator’s circumference) is 2w (by

definition of a simple sphere), the constant of

proportionality must be 1. That is, § = /, as claimed. n

Claim 23. Given a spherical triangle A4ABC and its polar triangle A4'B'C’, each part (side or
angle) is the supplement of the part that lies opposite its correspondent on the other triangle.
(That is, the following are supplementary pairs: {a,4'},{b,B'},{c,C'},{a"A},{b",B},{c',C}.)

Proof. First, we show that B and b' are supplementary:
Extend the sides of B (if

necessary) until they cut the great circle

containing side b". Let D and E be the
points of intersection, as in the figure.
By construction, D lies on the equator
containing BC, whose pole is 4".

Hence, arc DA’ = n/2.

Similarly, arc EC' = n/2.

Substituting these values into
the equation DA’ + EC' = A'C' + ED
(see the figure) yields t = b'+ ED.

Thus, since ED = B (by the Lemma),
it follows that = = b’ + B. That is, B and b’ are
supplementary, as claimed.

By symmetry, A and a' must also be

supplementary, as are C and c'.
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We have demonstrated that the angles of a spherical triangle are supplementary to the
sides opposite their corresponding angles on the polar triangle. Applying this result to A4'B'C’
(whose polar triangle is AABC, by Proposition 1) tells us that A" and a are supplementary, as are
B’and b, as well as C"and c.

This completes the proof . "

The Second Spherical Law of Cosines is a Neutral Theorem

The preceding result on polar triangles is a neutral theorem, and thus we may use it in
imaginary geometry. It affords a spectacularly simple proof of the second spherical law

of cosines.

Claim 24. (Second Law of Cosines) In an arbitrary spherical triangle AABC with the usual
labeling, the following relation holds, independent of the parallel postulate:
c0s(C) = -cos(A)cos(B) + sin(A)sin(B)cos(c).

Proof. Let AABC be a spherical triangle in either Euclidean or imaginary geometry. Let A4A'B'C’
be its polar triangle. Applying the first law of cosines (Claim 21) to the polar triangle, we find
cos(c’) = cos(a’)cos(b’) + sin(a”)sin(b")cos(C").
Using Claim 23 to express the parts of A4'B'C"in terms of the parts of A4ABC, this becomes
cos(m - C) = cos(rw - A)cos(nt - B) + sin(rw - A)sin(w - B)cos(x - ¢).
That is, -cos(C) = cos(A4)cos(B) - sin(4)sin(B)cos(c).
Equvalently, cos(C) = -cos(A)cos(B) + sin(4)sin(B)cos(c). L]

Spherical Trigonometry is a Neutral Subject

We have now demonstrated that the laws of sines and cosines are neutral theorems. It

remains only to argue that all spherical trigonometric relations are consequences of these

" In this proof, I have assumed that D and E fall between A’ and C’ (i.e. that they actually lie on side A'C’ of
the polar triangle). This need not happen. If it does not, then obvious adjustments in the proof can be made
to salvage it. In the spirit of Euclid, I will refrain from explicitly proving these trivial variations.
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theorems, and hence all of spherical trigonometry is independent of the parallel postulate.

This amounts to little more than a review of high school geometry and trigonometry.

One of the basic problems of geometry is to recognize when two triangles are
congruent.

In the Euclidean plane, this problem is solved by the congruence criteria (SSS,
SAS, ASA, AAS), each of which specifies a trio of data sufficient to fix a triangle’s size
and shape. Any such trio determines a// six of the triangle’s parts. For example, given
three sides of a triangle, SSS guarantees us that its three angles are, in theory, completely
determined. To find their numerical values in practice (i.e. to “solve the triangle”), one
must go beyond The Elements and turn to trigonometry. In its literal sense of triangle
measurement, trigonometry is simply an adjunct to the congruence criteria. Its tools are
“trigonometric relations”, equations that relate the various parts of triangles to one

another. In fact, one can get by with only two relations in the Euclidean plane.

The laws of cosines and sines suffice to solve every problem of Euclidean plane

trigonometry.

As a practical demonstration of this claim, note that if we know the three sides of
the triangle (SSS), we can use the law of cosines three times in succession to determine
its angles. Given two sides and their included angle (SAS), the law of cosines will yield
the third side, reducing the problem to the already solved SSS case. When two angles are
known (ASA or AAS), we can use Euclid 1.32 (the angle sum of any triangle is ) to find
third angle and then the law of sines to produce a second side, reducing the problem to
SAS. Thus, the laws of cosines and sines do indeed completely encapsulate plane

trigonometry. Similarly,

The two spherical laws of cosines and the spherical law of sines suffice to solve

every problem of spherical trigonometry.

As in plane trigonometry, the (first) law of cosines suffices to solve a triangle in
SSS or SAS case. When two angles are known (ASA or AAS), we must use the second
law of cosines to find third angle (Euclid 1.32 does not hold on the sphere), and then
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apply the law of sines to find a second side, reducing the problem to SAS. Finally, we can
handle AAA, which is a congruence criterion on the sphere, by using the second law of
cosines three times in succession to determine the sides. Hence, the spherical law of sines
and two spherical laws of cosines encapsulate Euclidean spherical trigonometry, as
claimed.

Consequently, the neutrality of the spherical laws of sines and cosines guarantees

the neutrality of spherical trigonometry.

An Aside: Why the Spherical Gems Would
Have Looked Familiar to 19“‘-Century Readers.

As I mentioned earlier, readers raised with spherical trigonometry would recognize the
spherical interpretations of the five gems as old schoolfriends. SG5 is the spherical
Pythagorean theorem. But what of the first four? To explain why these would have been
familiar requires another return to high school mathematics.

Although in theory the laws of sines and cosines suffice to solve all trigonometric
problems in the Euclidean plane, we often forgo them in practice in favor of the humbler
formulae specific to right-triangle trigonometry. These are useful in practice because we
may decompose any non-right triangle into two right triangles by a dropping an altitude
from an appropriate vertex.

Right-triangle trigonometric relations are merely special cases of the laws of
cosines and sines. In the Euclidean plane, they are simple: in a right triangle, the law of
cosines reduces to the Pythagorean Theorem, while the law of sines reduces to a compact

set of rules often summarized by the equations

Sin = Opposite/Hypotenuse, Cos = Adjacent/Hypotenuse, Tan = Opposite/Adjacent.

Many students learn these today with the mnemonic name SOH CAH TOA, the ancient
god of plane trigonometry.
However, on the sphere, right triangle trigonometry is not quite so simple. There,

SOH CAH TOA'’s monotheistic rule is replaced by a pantheon of ten equations, each
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governing a specific combination of parts of the right spherical triangle . The five gems,
in their spherical interpretation, are five of these ten equations that govern right triangle

spherical trigonometry.

A Quibble

It is tempting to conclude that if we pluck a simple sphere out of Euclidean space and
thrust it into imaginary space, its trigonometric formulae remain unchanged. This is
almost, but not quite correct. Because we have been working with a simple sphere
throughout this proposition, we should state what Lobachevski has proved more
precisely: trigonometry on a simple sphere agrees in both spaces.

A sphere is simple if and only if its great circles have circumference 2n. Thus, in
Euclidean space, where C=2nr, a sphere is simple if and only if its radius is 1. However,
in imaginary space, circumference is given by C = 2msinh(r), so a sphere is simple if
and only if its radius is sinh™(1). Thus, a simple Euclidean sphere thrust into imaginary
space (or vice versa) would cease to be simple in its new context. However, the changes
in the formulae are insignificant. Trigonometry on an imaginary sphere of radius » will
always agree with trigonometry of some Euclidean sphere; namely, the sphere of radius
sinh(r). This agreement with some Euclidean sphere is the important point. The

differences  between one Euclidean sphere and another are trivial.

" Each equation asserts the precise relationship between a particular trio of a right triangle’s five variable
parts (its sides and non-right angles). There are ten equations precisely because there are ten ways to
choose trios from amongst a set of five. There is, incidentally, a mnemonic device for recalling the ten
equations, known as Napier’s Rule.

¥ Lobachevski proves this elsewhere (in Pangeometry, for example), but not in The Theory of Parallels.

Note that the formula for circumference implies that @ loses its usual geometric meaning in imaginary
geometry: the ratio of circumference to diameter is nof a constant in this setting.
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Theory of Parallels 36

Having revealed the structure of spherical trigonometry, Lobachevski returns to the plane
to settle some old business: twenty propositions after introducing it, he finally derives an
explicit formula for the [ [-function.

Lobachevski begins by deriving a pair of relations among AABC’s parts.

First Relation: [1(b) = [1(a) + I1(c+p).

We now return to the rectilinear right
triangle AABC with sides a,b,c, and
opposite angles [[(a), [I(B), n/2. Extend
this triangle’s hypotenuse beyond B to a
point D at which BD = (3, and erect a
perpendicular DD’ from BD. By
construction, DD’ is parallel to BB', the
extension of side a beyond B. Finally,
draw AA' parallel to DD’; it will be
parallel to CB' as well (TP 25).

From this, we have LA’AC = [](b)
and £A'AD = [[(c + B), from which it
follows that

A

[1(b) = I1(a) + I(c + B).

Lobachevski draws ray CB and two rays parallel to it: one emanating from A4, the
other perpendicular to the hypotenuse. Each is uniquely determined.

The derivation of the relation in this passage is self-explanatory, but it does
depend upon the fact that [[(b) > [I(«). Lobachevski does not bother to prove this, since
it is so easy to justify. Among the pencil of rays that emanate from A, each ray either cuts
or does not cut CB. Since AA' does not cut it, while AB does, we know that
KLA'AC> LBAC. That is, [ () > [1(«), as claimed.
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Second Relation: [I(c - p) = 1(«) + I1(b).

The construction here is almost identical to the one above, except that we draw the rays
parallel to BC instead of CB. The derivation of the second equation is slightly messier,
however, as it requires three separate cases, according to whether f is less than, equal to,

or greater than c¢. He begins with £ < ¢

Now let E be the point on ray BA for
which BE = [3. Erect the perpendicular EE’
to AB, and draw AA" parallel to it. BC', the
extension of side a beyond C, will be a
third parallel.

If B < c, as in the figure, we see that
£CAA" = [I(b) and LEAA" = [l(c - B), from
which it follows that

[1(c - B) = [1(a) + T1(D).

In fact, this last equation remains 1
. ; A
valid even when f =c, or 3 > c.

The two remaining cases (f = ¢ and f > c¢) are straightforward, although
Lobachevski makes what may appear to be inappropriate references to TP 23 the midst of
establishing them. In fact, these are not references to the theorem in TP 23 (“For any
given angle a, there is a line p such that [I(p) = «.”), but to two facts about the
[ I-function that Lobachevski first mentions in TP 23: [[(0) = n/2, and [(-x) = & - [1(x),

by definition, for any x.

"1 have taken the liberty of changing some of Lobachevski’s notation in the following passage. My E is
actually a second point D in the manuscript, while my 44" is a second A4’ Using the same symbol to
denote distinct objects that play similar roles was common practice in 19™-century mathematics.
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If B =c (see the figure

B at left), the perpendicular AA’ / B
o . erected upon AB is parallel o e )
/ to BC, and hence to CC/, ‘//”L
E=A Hc AT =
Ee b

ey ° from which it follows that
[I(a) + [I(b) = n/2. Moreover,
[I(c-B) ==n/2 (TP 23).

If B > c (see the figure
at right), E falls beyond point
A. In this case, we have
gE:A ¢  LEAA" = [](c - B), from which PO

it follows that B

[I(a) + [1I(b) == - T1(B — ¢) =Il(c-B) (TP 23).

Combining the Relations

With a little algebraic manipulation, Lobachevski will now combine the two relations

into a new form, which is related to the 4™ gem from TP 35 (cos[1(5) = cosI1(c)cos[1()).

Combining the two equations yields

2I1(b) = I(c - B) + I1(c +B)
2I1(a) = II(c - B) - [1(c + B),
from which follows
cosII(b) cos[All(c—PB)+"2I1(c+B)]

cosII(a) cos[Il(c—B)-"II(c+B)]

Claim 1. In the generic right rectilinear triangle A4BC, the following holds:
cosIl(b) cos[2ll(c— p)+"~I1(c + B)]
cosIl(a) cos[2ll(c— p)—"211(c+ p)]

(0]

Proof. Subtracting the second relation from the first and solving for [[(b) yields a “doubling
formula” for [1(b): 2[1(b) =T1(c - p) + I1(c + p).
Adding the corresponding sides of the two relations yields a “doubling formula” for [[(«):

2M1(@) = TI(e - ) - T(e + B).
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Hence,
cos[I(b) = cos(V2 - 2[1(b))
=cos(“2[I(c - B) + %l l(c + B)) (by the first doubling formula),

and
cos[I(a) = cos(% - 2] 1(a))
=cos(%all(c - p) - all(c + B))  (by the second doubling formula).

Therefore,

cosIl(h) cos[all(c— p)+%Il(c+ )] .

= , as claimed. n

cosIl(a) cos[Il(c— pB)—"%I(c+ )]

A Tangy Equation

Thus far in TP 36, Lobachevski has yet to use any substantial results from imaginary

geometry. This will now change.

Using the substitution
cosI1(b)
cos I[1(a)

tan’ (H(C)j =tan (H(C_B)j tan(wj .
2 2 2

The “substitution” is the fourth gem (cos[1(») = cos[I(c)cos[I(a)). We shall

=cosII(c) (from TP 35)

yields

derive the other equation in this passage with the help of some trigonometric gymnastics,

and the following oft-forgotten identity.

tan’ (fj = 1-cosx (Half-angle identity for tangent)
2) l+cosx
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Claim 2. If ¢ is the hypotenuse of a rectilinear right triangle in imaginary geometry, and [[(f) the

measure of one of its acute angles, then the following relation holds.

tan’ (@j = tan ( le=p) j tan ( Mc+ 'B)j . 2)
2 2 2

Proof. tan’ ( H(c)j = 1-cosIl(¢)

2 1+ cosIl(c)
I cosII(b)

_ cosll(a)

N cos I1(b)
cosII(a)

(half-angle identity for tangent)

(4™ gem: TP 35 Notes, Claim 15)

- cos[2Il(c — p) +%I(c + B)]
. cos[Il(c— B) —"~I1(c + p)] .
T |, cosDATle— f)+ Vll(e+ P (equation (1))

cos[2Il(c = §) ="Il(c + f)]

_cos[all(c— B)—"2I1(c + B)]—cos[2I1(c — ) +2Il(c + B)]
~ cos[WI(c— B) - Il(c + B)]+cos[AIl(c — B) + Il(c + B)]

(algebra)

If we expand all four cosines in this expression with the addition/subtraction formulas for

cosine (cos(A £ B) = cos Acos B Fsin 4Asin B) and simplify the result, it becomes

2sin[%I1(c — B)]sin[2I1(c + B)]
2cos[I1(c — p)]cos[I1(c + p)]

= tan[%I1(c — B)]tan[%II(c + B)].

That is,

tan’ (@j = tan ( le=4) j tan ( le+p) j , as claimed. m
2 2 2
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The Fundamental Formula
“This is certainly one of the most remarkable formulas in all of mathematics, and it is astonishing how few
mathematicians know it.”

- Marvin Greenberg®

It is now but a short step to the equation that will finally reveal the precise nature of the

[ I-function:

tan (@j =e . 3)

We are justified in referring to this as the fundamental formula of imaginary geometry
since it yields an explicit expression for the all-pervasive angle of parallelism:
M(x)=2tan"'(e™).

Because the angle [[(B) at B may have any value between O and
n/2, B itself can be any number between 0 and «. By considering the
cases in which B = ¢, 2¢, 3¢, etc.,, we may deduce that for all positive

values of r,t
tan” (H(C)j = tan[n(rc)j )
2 2

If we view r as the ratio of two values x and c¢ , and assume that
cot([I(c )/2) = ec, we find that for all values of x, whether positive or

negative,
tan(n(x)J =e”,
2

where e is an indeterminate constant, which is larger than 1, since
[I(x) = 0 when x = o0.

Since the unit with which we measure lengths may be chosen at
will, we may choose it so that e is the base of the natural logarithm.

"Greenberg, p. 323.

" Where I have r, Lobachevski uses the symbol n. Whatever one calls it, it stands for any positive real
number. I have switched to 7 so as to conform with the convention of reserving n for natural numbers.
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Lobachevski’s proof of the fundamental formula is sketchy and somewhat
unclear. I shall present an alternate proof, which is complete and transparent, based on
the functional equation that we have already used to establish an exponential relationship
in TP 33 (between corresponding arcs on concentric horocycles). At the end of the notes,
however, I will return to Lobachevski’s method, and show how to expand his sketch into
a full proof of the fundamental formula. The reader may then decide for himself which

method of proof he prefers.

I1(x)
Theorem. tan T

j =e " for any real value of x.”

Proof. If a right rectilinear triangle has hypotenuse ¢ and an acute angle [[(5), then we know
that:

tan’ (@j = tan ( He=p) j tan ( e+ 'B)) . 2)
2 2 2

Note, however, that for any positive ¢ and S, there is a right triangle with hypotenuse ¢ and an
angle [1(5)". Thus, (2) holds for any positive values of ¢ and §. In particular, if x and y are

arbitrary positive reals, we may write

o ( ? ) i ( H(xz— ») j an ( H(x2+ y)] ’ (letting ¢ = x and 8= in (2))
and
e (@j _ tan(l_[(yz— x))tan( H(y2+ X)) (letting ¢ = y and = x in (2)).

Multiplying these, we obtain

(12 (1)
2 2
= tan (Mj tan (H(x_—l—y)) tan ( My =) j tan ( IT(x + y)j
2 2 ) 2

" If we retain the parameter k, the right-hand side of this expression becomes ¢™’*, which is shown
explicitly in this proof.

" Let 4B be a segment of length c. Draw ray BB’ such that £ B'BA = [1(f). Drop a perpendicular AC from 4
to BB'. The resulting triangle, AABC, is the required one.
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H(x +y)

= tan tan( x=) tan(mj

~tn ( H(x +) fan ( O(x—y) tan (Mj (definition of [1(-x))

H(X+y))tan(ﬂ(x ) cot(ﬂ(x—y))

(H(x-i—y)

Taking square roots yields

. (H(Xer))_ (H(x)j (H(y)j
an| ———— [=tan| —— |tan| —— |.
2 2 2

11
Thus, f(x)= tan’ (%) satisfies the functional equation f{x + y) = Ax)Ay).
Hence, by Claim 3 in the notes to TP 33, we must have

tan’ (H(x)j =a",
2

for all x > 0, where a = f(1). In fact, the identity holds for all negative arguments as well: since

[1(-x) = = - [1(x), it follows that

tanz(n(_x)j:tanz(n_n(x))= : :L:aﬁ
2 2 tan (H(x)) a '

2

T1(x)

Thus, tan” (—j =a" holds for all real values of x.. Note that the numerical value of

a= tan2 (@j
2

depends upon the unit of length, since, for example, [I(1 millimeter) is not the same as
[1(1 light-year). In fact, if we choose the unit of length judiciously, we may endow [I(1) any
value between 0 and n/2, and thus we may endow a with any value between 0 and 1. For each

value a in this range, there is a unique k> 0 such that ¢"'* = a. Hence, we may write

IT -x
tanz(%x)jze /k,
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where £ > 0 is a parameter whose numerical value depends upon the unit of length. Lobachevski

selects his unit of length to be that which makes & = 1, and thus writes

tan’ (@j =e ',
2

as claimed. n

The Rosetta Stone

The “five gems” of TP 35 are remarkable inasmuch as they simultaneously describe
trigonometric relations on a spherical triangle and on a rectilinear triangle. We found that

these five equations,

sin[[(c) = sin[ I(a)sin] [(b)

. M(E) ¢ sin[[(B) = cosl [(a)sin] [(a) . G
sin[ [(«) = cos[ [(B)sin] [(b)
C Tl cos[ () = cos[1(c)cos[I(«) 2
cos[ (@) = cos[1(c)cosI1(h) T

were immediately comprehensible as statements about the sides and angles of our generic
spherical right triangle {[1(c), [1(B), I1(a); I1(b), I1(a")}, and they led to a complete
understanding of spherical trigonometry in imaginary space. In contrast, thus far we have
been unable to fully grasp the rectilinear interpretation of these equations, as they include
the terms [I(a), [1(b), and [I(c), none of which have simple interpretations as sides or
angles on our generic rectilinear right triangle [a, b, ¢; [1(«), [1(8)].

However, now that we have an explicit formula for the [ [-function, we can polish
it away from the five gems, yielding simple statements about the sides a, b, and ¢, instead
of their angles of parallelism, in which we have little interest when trying to solve
trigonometric problems.

Rather than applying the fundamental formula directly to the five gems, we shall
produce some simple substitutions for sin][(x), cos[I(x), and tan]I(x), and use these

instead.
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*

Claim 3. For all x, the following holds: tan IT(x) =

sinhx
sin [2 H;x)]
Proof. tanll(x)=———FX% (defn. of tangent)
( I1(x) ]
cos| 2 )

2sin ( () j cos ( () j
_ 2 2
cos’ (H(x)j —sin’ (H(x)j
2 2

(double angle formulae)

2 tan ( 1(x) )
- é( ) (dividing top and bottom by cosz(l_[(x)/Z) )
x
1—tan’
( 2 )
2e¢ "
= — (the fundamental formula)
—e
2 L x
= (multiplying top and bottom by ¢")
e —e
1 .
=— (defn. of sinh) L]
sinh x

1
Claim 4. For all x, the following holds: sin [1(x) = *

coshx
Proof. cosh’(x) =1 + sinh’(x) (hyperbolic trig. identity)
=1+ cot’TI(x) (Claim 3)
= csc’[1(x) (trig. identity)
=1/ sin’TI(x) (defn. of csc).
Solving for sin[ [(x) yields the desired result. m

" If we retain the parameter k, this becomes tan[I(x) = 1/sinh(x/k), as is easily seen by making the
appropriate changes in the proof.
" With the parameter, sin[1(x) = 1/cosh(x/k).

247



Claim 5. For all x, the following holds: cosII(x) = tanh x.”
Proof. cos[](x) = sin[(x) / tan] I(x)
= (1/cosh(x)) / (1/sinh(x)) (Claims 3 and 4)
= sinh(x) / cosh(x) = tanh(x). n

The Five Gems Revisited: the Planar Interpretation

With these three substitutions, we may read the five gems as simple statements
about our generic rectilinear right triangle AABC [a, b, c; [1(a), [1(#)]. For example, the
first gem is sin] [(c) = sin[ [(a)sin] [(b). Applying the substitution in Claim 4 yields

cosh(c) = cosh(a)cosh(b),

which is the Pythagorean theorem in the imaginary plane, since it relates the three sides
of any rectilinear right triangle in imaginary geometry.

The second gem is sin[[(8) = cos[I(a)sin] [(a). We need not eliminate [[(a) or
[1(#) from it, since these are angles in AABC. In contrast, we want a statement that
involves a, not [[(a). Consequently, we can eliminate sin][(a) to obtain cos[I(a) =
cosh(a)sin[ [(8).This will look neater if we use the customary symbols 4 and B for the

angles, instead of [ [(«) and [1(f). After this cosmetic change, the second gem becomes
cosA = cosh(a)sin(B).

After applying the same strategies to the remaining equations, the five gems

assume their rectilinear interpretations (i.e. the Rectilinear Gems)':

(RG1) cosh(c) = cosh(a) cosh(b)

(RG2) cos(A) = cosh(a) sin(B) y

(RG3) cos(B) = cosh(b) sin(4) o <

(RG4) tanh(b) = tanh(c) cos(A)

(RGH) tanh(a) = tanh(c) cos(B). b A

" With the parameter, cos[1(x) = tanh(x/k).
" If the parameter & is retained, the side lengths appearing in the rectilinear gems (a, b, ¢) would each be
divided by k. Thus, for example, RG2 would become cos(4) = cosh(a/k)sin(B).
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Just as the relationships among the parts of a right spherical triangle are described
by ten rules (Napier’s rules), the parts of a right rectilinear triangle in the imaginary plane
are related by ten analogous rules. We have just found five of them. The laws of cosines
and sines for imaginary plane trigonometry are, in fact, implicit in these five equations;
hence, all of imaginary plane trigonometry is implicit in them. In TP 37, Lobachevski
will make this explicit, deriving the fundamental trigonometric relationships of the
imaginary plane, thus fulfilling his promise at the end of TP 22.

Curiously, Lobachevski does not bother to translate the [1(a), [1(b), and [1(c)
terms into the language of hyperbolic functions of a, b, and c. Since the trigonometric
relations are so much easier to comprehend after this translation, I shall perform this
routine task for him in the notes to TP 37. For now, I conclude this section with a

summary of the translation process for future reference.

Translation Summary

To translate Lobachevski’s [[-laden equations about a generic rectilinear triangle
(with sides a, b, ¢, and opposite angles [[(a), [1(8), and [1(y)) into [ [-free equations about
the generic rectilinear triangle (with sides a, b, ¢, and opposite angles A4, B, and C), we

use the following substitutions:

. 1 | B
sinI1(x) = , cosll(x)=tanhx, tanIl(x)=— ,
cosh x sinh x

[Ta)=4, TIB)=B, Tl =C.

" Retaining the parameter &, these become tan[[(x) = 1/sinh(x/k), sin[1(x) = 1/cosh(x/k), and
cos[ [(x) = tanh(x/k).
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Appendix:
Lobachevski’s Derivation of the Fundamental Formula

Lobachevski’s derivation requires more work than the functional equation approach did.

The key is to prove that the following identity holds for all positive real numbers ¢ and 7:

tan” (@j = tan ( H(rc)j . (4)
2 2

Lobachevski’s hint (to let f = ¢, 2¢, 3¢, etc. in equation (2)) suffices only to

establish the identity when 7 is a natural number. We shall begin here, and then extend
the result to all positive values of 7.

o 11 IT . .
Claim 6. The identity tan (%)j = tan (%j holds whenever r is a natural number (and c is

any positive real)

Proof. The identity obviously holds when » = 0 or 1.
Setting f = c in (2) shows that it holds when r = 2.
Setting f = 2¢ in (2) yields

tan’ (@j = tan (M) tan (Mj
2 2 2
= tan ( n- H(c)] tan ( 11G<) j
2 2
(H(c)j (H(&:)j
=cot tan .
2 2

Multiplying both sides of this equation by tan(] [(c)/2) establishes the identity when r = 3.

We can base a routine induction argument on this last case to show that identity
(4) holds when 7 is any natural number. I shall omit the details, which are completely

straightforward. ]
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Claim 7. The identity (4) holds whenever » = m/n, where m and n are natural numbers (and c is

any positive real).

Proof. We know that

tan” (?j = tan (@] (Claim 6)

I1 (n (m CD
+ (Algebra)

= tan

n n . . m
= tan T . (Claim 6: letting (—c) play the role of ¢)
n
Taking nth roots of both sides of this equation yields (4) when » = m / n. =
Corollary. The identity
e 1
tan (%j = tan( (2rc)] 4)

holds for all any positive numbers ¢ and r.

Proof. For any fixed value of ¢, the two sides of the equation are continuous functions of » that
agree on the positive rationals. Since the positive rationals are dense in the positive reals, the
functions must agree on the positive reals. That is, the identity holds for any positive real numbers

candr. n

With the identity (4) established for all positive » and ¢, Lobachevski sets » = x/c

(where x can be any positive real number), and thereby obtains that for any positive x,

tang (&c)) = tan (Mj . 5)
2 2

He then selects his unit of measurement to be that which endows the expression

tan(I1(1)/2) with the numerical value e™'. This choice of unit implies that
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1
tan® (Ej =e!,
2

which we can see by setting x = 1 in (5). Consequently, (5) becomes

tan(n(x) ] = tang (@j = (e_l )X =e ",
2 2

which is the fundamental formula.

252



Theory of Parallels 37

In this final proposition, Lobachevski develops the trigonometric formulae of the
imaginary plane. Although we can now replace the [[-functions in any trigonometric
equation with hyperbolic functions, Lobachevski chooses not to make these helpful
translations. This lack, coupled with some awkward derivations and peculiar notation,
make his work in this section appear particularly opaque. This is unfortunate, since the
conclusions of this section are actually quite simple and admit easy proofs. To emphasize
this fact, I shall derive Lobachevski’s results in []-free notation and deviate from his

unnecessarily convoluted proofs of the two laws of cosines.

The Need for a New Rectilinear Relation

We can interpret the five gems as statements about right spherical triangles or
right rectilinear triangles. In their spherical interpretation (see TP 35 notes), they specify

the following trigonometric relationships:

A relation among the triangle’s three sides. (SG5S)
A relation among the two acute angles and a leg. (SG34)

A relation among the hypotenuse, a leg,
and the acute angle they do not include. (8G 1,2)

In the notes to TP 35, we developed all of spherical trigonometry from these
relationships. Naturally, as soon as we have equations that specify the same three
relations for right rectilinear triangles, we will be able to develop all of plane
trigonometry by an analogous procedure.

The five gems, in their rectilinear interpretation, fall just short of providing these

three relationships. In particular, they specify the following (see TP 36 notes):

A relation among the triangle’s three sides. (RG 1)
A relation among the two acute angles and a leg. (RG2,3)

A relation among the hypotenuse, a leg,
and their included angle. (RG 4,5)
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If we can use these to derive a relation among a right rectilinear triangle’s hypotenuse,
leg, and the acute angle they do not include, then our trigonometric toolbox will be
sufficiently powerful to develop all of trigonometry in the plane. It is easy to derive such
a relation, but Lobachevski’s words make the process seem mysterious. The required

relation is the one that he calls (1) in the passage below.

The Need Satisfied
Of the five equations above (TP 35), the following two

sin[](c) = sin[](a)sin[I(b)
sin[[(a) = cos[](B)sin[](b)

suffice to generate the other three: we can obtain one of the others by

applying the second equation to side a rather than side b; we then

deduce another by combining the equations already established. There

will be no ambiguities of algebraic sign, since all angles here are acute.
Similarly, we obtain the two equations:

tan][I(c) = sin[I(a)tan]](a) (1)
coslI(a) = cos[](c)coslI(B)- (2)

The crucial relationship in this passage is (1). Using our translations from TP 36,
we can rewrite this relation as
sinh(a) .

sin(4) = o)

1)

(Compare this with the familiar relation from plane Euclidean geometry: sin(4) =a/ c.)

Claim 1. In the generic right rectilinear triangle [a, b, ¢ ; A, B], equation (1') holds.
Proof. Since
sin®(4) = 1- cos*(4)

= 1- cosh’(a)sin’(B) (by RG 2 —see TP 36 notes)
= 1- cosh’(a)[1- cos*(B)]
= 1- cosh®(a)[1- cosh®(b)sin*(4)] (by RG 3)

= 1- cosh’(a) + cosh*(a)cosh’(b)sin’*(4)

" If we retain the parameter k, this equation becomes sin(4) = sinh(a / k) / sinh(c / k).
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= 1- cosh’(a) + cosh’(c)sin*(4) (by RG 1)
= -sinh*(a) + cosh’(c)sin’(4),
a little algebra yields
sinh’(a) = [cosh’(c) — 1]sin*(4).

That is,
sinh’(a) = sinh’(c)sin’*(4),

from which equation (1') follows. L]

We now have our relation among a right triangle’s hypotenuse, leg, and the non-

included acute angle. Lobachevski will now use this relation to derive the law of sines in

the plane, in precisely the way that we used its spherical analogue (SG1) to derive the law

of sines on the sphere.

The Law of Sines for the Imaginary Plane
“...with the mind I myself serve the law of God; but with the flesh the law of sin.” — Romans 7:25

We shall now consider an arbitrary rectilinear
triangle with sides a,b,c and opposite angles
A, B, C.

If A and B are acute angles, then the
perpendicular p dropped from C will fall within
the triangle and cut side c into two parts: x, on
the side of A, and ¢ — x, on the side of B. This

produces two right triangles. Applying
equation (1) to each yields b : 'M p
A

tan[](a) = sin(B)tan[I( p). c
tan[[(b) = sin(A)tan[]( p).

®
o~
s
®

>
o«
p— Yo
o
P
jvr)

These equations hold even if one of the
angles, say B, is right or obtuse. Thus, for any
rectilinear triangle whatsoever, we have

-0

(3) sin(A)tan[l(a) = sin(B)tanlI(b).

Equation (3) is the law of sines for the imaginary plane. Translated into []-free

notation and expressed in a more general form, it becomes
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sin(4) _ sin(B) _ sin(C)
sinh(a) sinh(b)  sinh(c)

3"

As on the sphere or in the Euclidean plane, we can prove the law of sines in this context
by dropping a perpendicular and working with the two resulting right triangles. This is
precisely what Lobachevski does in his proof above. Here is the same proof, re-expressed

in terms of hyperbolic functions.

Theorem 1. (Law of Sines) In any rectilinear triangle A4ABC in the imaginary plane with the

usual labeling”,
sin(4)  sin(B) _ sin(C)
sinh(a) sinh(b) sinh(c) |

Proof. Drop an altitude from C, and label the parts of the
triangle as in the figures. Regardless of where the foot D of the
perpendicular falls, we apply (1') to the two right triangles that

]
result, obtaining A x rB
sin(A) = sinh(p) / sinh(b),

and sin(B) = sinh(p) / sinh(a).*

Solving both equations for sinh(p) and equating the results, we

obtain sin(4)/sinh(a) = sin(B)/sinh(b). Repeating the argument,

- RS Vel
-

but dropping the perpendicular from A, we find that
sin(C)/sinh(c) = sin(B)/sinh(b). Equating the two expressions

for sin(B)/sinh(b) produces the law of sines. n

The First Law of Cosines for the Imaginary Plane

Lobachevski’s derivation of the law of cosines is long-winded and his exposition of it is
somewhat clumsy, but when we clear away the brambles, we find that his proof conforms

to the expected mold: he drops an altitude to obtain two right triangles, applies known

"Le. angles 4, B, C lie opposite sides a, b, c.

* More generally, sin(4)/sinh(a / k) = sin(B)/sinh(b / k) = sin(C)/sinh(c / k), for the positive parameter k.
Y If D happens to fall directly upon 4 or B, these two equations are trivially true. For example, if D = 4,
then p = b, and sin(4) = 1, so the fact that sin(p )=sin(b)sin(4) is obviously true.
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trigonometric formulae to them, and combines the results to produce the law of cosines.
Breaking his convoluted proof into pieces and commenting on each part would only serve
to reinforce the misconception that the law of cosines is difficult to establish. Thus, after
presenting his argument whole, I shall follow it with an alternate, much cleaner
derivation, which is essentially identical to the proof of the spherical law of cosines, or
for that matter, the proof of the Euclidean law of cosines that appears in most high-school

textbooks.

Applying equation (2) to a triangle with acute angles at A and B yields

cos[[(x)= cos(A)cos[](b)
cos[I(c — x )= cos(B)coslI(a).

These equations hold even when one of the angles A or B is right or
obtuse.

For instance, when B = n/2, we have x = c; in this case, the first
equation reduces to equation (2) and the second is trivially true. When
B > n/2, applying equation (2) still yields the first equation; in place of
the second, it yields cos[I(x — c)= cos(r—B)cos]I(a), which, however, is
identical to the second, since cos|[[(x — c)=-cos[l(c - x) (TP 23), and
cos(n-B) = —cos(B). Finally, if A is right or obtuse, we must use ¢ — x and
x , instead of x and c — x, so that the two equations will hold in this case
also.

To eliminate x from the two equations above, we observe that

5]
<[ 1)

2x-2c

cosIl(c — x)=

_l—e

- 2x-2
l+e

ol (1]
(%)

_ cosll(c)-cosII(x)
" 1-cosII(c)cos II(x)
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If we substitute the expressions for cos[[(x)and cos[](c — x)into
this, it becomes
cos II(c)— cos(A)cos II(b)
1—cos(A)cosII(b)cosTI(c)’

cosIl(a)cos(B) =

from which it follows that

cos Il(a)cos(B)+ cosII(b)cos(A) .,

cosIl(c) = 1+ cosII(a)cos I(b)cos(A)cos(B)’

and finally,
(4) [sin H(C)]2 =[1-cos(B)cos I(c)cos II(a)][1 - cos(A)cos II(b) cos I(c)] .
Similarly, we also have

[sin H(a)]2 =[1-cos(C)cos I(a)cos I(b)][1 - cos(B)cos I(c)cos I(a)]
[sin H(b)]2 =[1 - cos(A)cos II(b)cos IT(c)][1 - cos(C)cos IT(a) cos I(b)].

From these three equations, we find that

[sinTI(b)]" [sinTI(c)]”

fsin H(a)]2 = [1-cos(A)cosII(b)cos H(C)]2 :

From this it follows, without ambiguity of sign, that

(5) cos(A)cosIl(b)cosII(c)+ sin H.(b)sin f©) =1
sinll(a)

Such is Lobachevski’s proof for the law of cosines (5). Here is a simpler

approach, in which I have rewritten the law in [ [-free notation.

" In Lobachevski’s original, the positions of this equation and the preceding one are reversed: presumably
this was a printer’s error, which was perpetuated in Halsted’s 1891 translation.
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Theorem 2. (First Law of Cosines) In any rectilinear triangle A4BC in the imaginary plane with

the usual labeling,
cosh(c) = cosh(a) cosh(b) —sinh(a)sinh(b) cos(C) "

Proof. If AABC happens to be a right triangle, label it so that the right angle is at C. In this case,

cos(C) = 0, so the first law of cosines reduces to cos(c) = cos(a)cos(b). This is the Pythagorean

Theorem for the imaginary plane, which we have already proved in TP 36. (It is RG1.)
If AABC is not a right triangle, we drop a perpendicular BD from B to AC. We

will

require slightly different proofs (different in details, but the same in spirit) for the case in which D

falls inside AC, and the case in which D falls outside AC.

Case 1 (D lies within AC)

As in the figure, we let d = BD, p = AD, and ¢ = DC. B

Then, - ' e

cosh(c) = cosh(d)cosh(p) (RG1 on AABD) rL
= [cosh(a)/ cosh(g)]cosh(p) (RG1 on ABDCQ) AP D % C
= [cosh(a)/ cosh(q)]cosh(b - q) el
= [cosh(a)/ cosh(g)][cosh(b)cosh(g) - sinh(b)sinh(g)]
= cosh(a)cosh(d) - sinh(b)cosh(a)tanh(q)
= cosh(a)cosh(b) - cosh(a)sinh(b)[tanh(a)cos(C)] (RG3 on ABDC)
= cosh(a)cosh(b) - sinh(a)sinh(b)cos(C), as claimed.

Case 2 (D falls outside of 4C)
Label the parts of the triangle as shown in the figure at right.

Then,
cosh(c) = cosh(b+r)cosh(s) (RG1 on AABD)
= [cosh(b)cosh(r) + sinh(b)sinh(r)]|cosh(s) (trig identity)
= [cosh(b)cosh(r) + sinh(b)sinh(r)][cosh(a)/cosh(r)] (RG1 on ABCD)
= cosh(a)cosh(b) + sinh(b)cosh(a)tanh(r)
= cosh(a)cosh(b) + sinh(b)cosh(a)[cos(r - C)tanh(a)] (RG4 on ABCD)
= cosh(a)cosh(b) + sinh(a)sinh(b)cos(rw - C)
= cosh(a)cosh(b) + sin(a)sin(b)cos(C), as claimed.
Thus, the first law of cosines holds for all rectilinear triangles in imaginary geometry. L]

" More generally, cosh(c / k) = cosh(a / k)cosh(b / k) - sinh(a / k)sinh(b / k)cos(C), for the positive
parameter k.
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The Second Law of Cosines for the Imaginary Plane

Like spherical geometry, plane imaginary geometry admits AAA-congruence, and

therefore admits a second law of cosines for determining a side when given all three

angles. On the sphere, we obtained the second cosine law from the first by calling on

the

theory of polar triangles. Unfortunately, that is not an option in the plane. Lobachevski’s

proof is unnecessarily tortuous, so once again, I shall follow it with a simpler argument

rather than detailing its twists and turns point by point.

The following expression for sin[][(c) follows from an alternate form of (3):

_sin(A)

sin(C) tanIl(a)cosII(c).

sinII(c)

If we substitute this expression into equation (5), we obtain

cosTl(c) = cos I1(a)sin(C)
sin(A)sinII(b) + cos(A)sin(C)cosII(a)cos II(b)

If we substitute this expression for cos[](c) into equation (4), we obtain

(6)  cot(A)sin(C)sinII(b)+ cos(C) = S H(B).
cosIl(a)

By eliminating sin[[(b) with the help of equation (3), we find that

cosIlI(a) cos(C) =1 cos(A)

————=sin(C)sinIl(a).
cos I1(b) sin(B)

On the other hand, permuting the letters in equation (6) yields

cosIl(a)

cos H(b) = COt(B) Sln(C) sin H(a) + COS(C) .

By combining the last two equations, we obtain

sin(B)sin(C)

(7) cos(A)+cos(B)cos(C) = sinTi(a)
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Here is a simpler approach to the second law of cosines, which I have rewritten in
[I-free notation.

Theorem 3. (Second Law of Cosines) In any rectilinear triangle AABC in the imaginary plane

with the usual labeling,
cos(C) = sin(A4)sin(B) cosh(c) — cos(A4) cos(B) .

Proof. If AABC happens to be a right triangle, label it so that the right angle is at C. In this case,
cos(C) = 0, so the second law of cosines reduces to cos(4)cos(B) / cosh(c) = sin(4)sin(B). By the
Pythagorean theorem (RG1), this is equivalent to cos(4)cos(B) / cosh(a)cosh(b) = sin(4)sin(B).
By RG 2 & 3, this is equivalent to sin(4)sin(B) = sin(4)sin(B), or 1 = 1. Thus, for any right
triangle, the second law of cosines is equivalent to a trivially true statement.

If AABC is not a right triangle, we drop a perpendicular BD from B to AC. We will
require slightly different proofs (different in details, but the same in spirit) for the case in which D

falls inside AC, and the case in which D falls outside AC.

Case 1 (D falls within AC)

With the labels indicated in the figure, we have

cos(C) = cosh(d)sin(B,) (RG2 on ABDC)
= cosh(d)sin(B - B))
= cosh(d)[sin(B)cos(B;) - sin(B;)cos(B)]
= cosh(d)sin(B)cos(B;) — cosh(d)sin(B;)cos(B)
= cosh(d)sin(B)cosh(p)sin(4) — cos(A4)cos(B) (RG2 on ABDA)
= cosh(d)sin(B)[cosh(c)/cosh(d)]sin(4) — cos(4)cos(B) (RG1 on ABDA)
= sin(A4)sin(B)cosh(c) — cos(4)cos(B)

Case 2 (D falls outside of AC)
Label the parts of the triangle as shown in the figure, where f = £{ABD. Then,
cos(C) =—cos(n — C)
= — cosh(s)sin(B") (RG2 on ACDB)
= — cosh(s)sin(f — B)
= — cosh(s)[sin(f)cos(B) — cos(f)sin(B)]
= sin(B)cos(f)cosh(s) — sin(f)cosh(s)cos(B)
= sin(B)cos(f)cosh(s) — cos(4)cos(B)

" Or, if we retain the parameter k > 0, this becomes cos(C) = sin(4)sin(B)cosh(c / k) — cos(4)cos(B).
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(RG2 on AADB)
= sin(B)cos(f)[cosh(c) / cosh(b+ r)] — cos(4)cos(B) (RG1 on AADB)
= [cos(f) / cosh(b+ r)]sin(B)cosh(c) — cos(4)cos(B)
= sin(4)sin(B)cosh(c) — cos(4)cos(B) (RG2 on AADB)

Thus, the first law of cosines holds for all rectilinear triangles in imaginary geometry. n

Recapitulation of Trigonometric Formulae

Thus, the four equations that describe how the sides a,b,c and the angles
A,B,C are interrelated in rectilinear triangles are [eqns. (3), (5), (6), (7)]:

sin(A)tanTl(a) = sin(B)tanII(b)

cos(A)cosII(b)cosII(c)+ sin H'(b)SinH(C) _1
sinIl(a)
)1 cot(a)sin(C)sinTi(b) + cos(c) = S L)
cosIl(a)
cos(A)+ cos(B)cos(C) = M
sinTl(a)

The first, second, and fourth of the relations collected in (8) are, respectively, the
law of sines, the first law of cosines, and the second law of cosines. To understand why
the remaining, unnamed equation is in their company, consider the following.

Any trigonometric relation necessarily involves four data (sides or angles), any
three of which determine the entire triangle up to congruence and thus, in particular,
determine the fourth datum. There are four distinct types of sets of four data: three sides
and an angle (first law of cosines), three angles and a side (second law of cosines), two
sides and their opposite angles (law of sines), or two sides and two angles, only one of
which lies opposite an involved side. The unnamed relation in (8) is of this last type, and
is included only for the sake of completeness*. Its theoretical importance is minimal,

since the laws of sines and cosines already suffice to solve any “solvable” triangle.

" To derive an analogous relation in Euclidean plane trigonometry, begin with the Euclidean law of cosines
(¢ = a*+b* - 2abcosC ), and use the substitution ¢ = asinC /sind (law of sines) to obtain an equation
involving two sides (a, b) and two angles (4, C), only one of which (4) lies opposite one of the two sides.
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Lobachevski derived this relation as an intermediate result in his proof of the second law

of cosines. For the sake of completeness, I will give a proof of this relation here,

expressed in [ [-free notation.

Claim 2. In any rectilinear triangle AABC in the imaginary plane with the usual labeling, the
following holds:
t(A)sin(C tanh(b
cot(A)sin( )+cos )= anh(b) .
cosh(b) tanh(a)

Proof. This relation is an algebraic consequence of the laws of sines and cosines. In particular,

we know that

sin(C)sinh(a) = sin(A) sinh(c) (law of sines)
=sin(4) [ COSh(b_) cosh(c) — cosh(a) j (1*' law of cosines)
sinh(b) cos(A4)

_ tan(A4) ( cosh(b) cosh(c) — cosh(a) J .

sinh(b)
Multiplying both sides by cot(A4)/sinh(a)cosh(b) yields

cot AsinC _ cosh(b) cosh(c) — cosh(a)
cosh(d) sinh(a) sinh(b) cosh(b) '

_ cosh(b) (cosh(a) cosh(b) — sinh(a) sinh(b) cos(C )) —cosh(a)
- sinh(a)sinh(b) cosh(b)

(1** law of cosines)
_ cosh(a) cosh(b) — cos(C)— cosh(a)
~ sinh(a)sinh(b) sinh(a)sinh(b) cosh(®)

(algebra)

Adding cos(C) to both sides, and putting the resulting right-hand side over a common
denominator gives us

cot(A4)sin(C) +cos(C) = cosh(a) cosh’ (b) — cosh(a)
cosh(d) - sinh(a) sinh(b) cosh(d)

) cosh(a) (cosh’ (b) 1) _ cosh(a)sinh®(®) _tanh(b)
~ sinh(a)sinh(b)cosh(b)  sinh(a)sinh(h)cosh(h)  tanh(a)

263



To supplement Lobachevski’s summary, here are the key trigonometric formulae

for rectilinear triangles in imaginary geometry, expressed in [ [-free notation.

sin(4) _ sin(B) sin(C)
sinh(a) sinh(b) sinh(c)

Law of sines

First law of cosines  cosh(c) = cosh(a) cosh(b) —sinh(a)sinh(b)cos(C)

Second law of cosines  ¢0s(C) = sin(A)sin(B)cosh(c) —cos(A)cos(B).

Approximations

When the sides a,b,c of the triangle are very small, we may content
ourselves with the following approximations (TP 36):

cotl[](a) = a,
sin[I(a) = 1-1a’,

cosll(a) = a,

where the same approximations hold for sides b and c also.

Lobachevski will soon use the formulae of trigonometry to investigate what
imaginary geometry looks like on the “infinitesimal” scale. He begins this process by
approximating cot[I(x), sin[I(x), and cos[I(x) with simple functions whose accuracies

approach perfection as x approaches zero.

Claim 3. For infinitesimal values of x, the following equation holds: cot[T(x) =x."
Proof. Our translations from TP 36 give cot[[(x) = sinh(x). Developing the right-hand side as a
Taylor series and dropping higher order terms (which become increasingly insignificant

compared to the leading term, as x — 0) yields

" That is, cot[I(x)/x — 1 as x — 0. All other references to infinitesimals below should be interpreted as
shorthand for statements about limiting behavior.
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3
cot T1(x) =sinh(x):x+%+%+---zx,

for small values of x. Thus, cot[ [(x) = x for infinitesimally small values of x, as claimed. =

Corollary. For infinitesimal values of x, the following equation holds: tan[[(x) = 1/x. n

Claim 4. For infinitesimal values of x, the following equation holds: sin[I(x) = 1 - (x*/2).
Proof. We know that
1 1

) 1
sin [1(x) = = — ~
coshx 1+5+%5+-+ 1+

Developing this last expression as a geometric series, and dropping higher order terms yields

. 1 Xz x4 X6 X2
sin [1(x) =~ YY)
1+ 2 4 8 2
for small x. Thus, sin[1(x) = 1- (x*/2) for infinitesimally small values of x, as claimed. ~ m

Claim 5. For infinitesimal values of x, the following equation holds: cos[ [(x) = x.
Proof. For infinitesimal values of x, we may use the expressions that we have found in Claims

13 & 14 to write

2 3
cosI1(x) = cotIT(x)sinII(x) = x(l—%) = x—% ~X.

That is, cos] [(x) = x for infinitesimal values of x, as claimed. n

Under the Microscope:
Infinitesimal Imaginary Geometry = Euclidean Geometry

By substituting these approximations into the four trigonometric relations that
Lobachevski summarizes in (8), we will obtain approximate relations, which becoming
increasingly accurate when applied to smaller and smaller triangles (i.e. triangles that fit
in smaller and smaller discs). In fact, we can guarantee that the difference between the
exact and approximate values will be arbitrarily small if we restrict our attention to

sufficiently tiny triangles. To avoid repeating precise but verbose statements about
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limiting behavior, we shall use the evocative if vague shorthand of describing our
approximations as exact relations on infinitesimal triangles (i.e. triangles that fit in a disc

of infinitesimal diameter).

For such small triangles, the equations (8) become

bsinA = asinB
a’ =b’ +c’ —2bccos(A)
asin(A + C) = bsinA
cosA + cos(B + C) =0.

The first two of these equations are used in ordinary geometry; the last
two equations lead, with help from the first, to the conclusion

A+B+C=mn.

Therefore, imaginary geometry passes over into ordinary geometry when
the sides of a rectilinear triangle are very small.

We can establish the four trigonometric relations for infinitesimal triangles by
substituting our approximations into (8). The first two relations show that at a sufficiently
small scale, the law of sines and the first law of cosines for imaginary geometry is

indistinguishable from their Euclidean counterparts.

Claim 6. The Euclidean law of sines holds for any infinitesimal triangle A4ABC in imaginary
geometry.

Proof. All triangles in imaginary geometry satisfy the imaginary law of sines:
sin(4)tan[ [(a) = sin(B)tan[[(b). Because the triangle is infinitesimal, we may use the substitution
tan[[(x) = 1/x from Claim 3 (corollary), and rewrite this in its infinitesimal version,

sin(4)/a = sin(B)/b, which is the ordinary Euclidean law of sines.” n

" If we wanted to avoid Lobachevski’s [I-function altogether, we could have used the []-free formulation
of the imaginary law of sines, sin(4)/sinh(a) = sin(B)/sinh(d). Since sinh(x) = x for small x, we immediately
have that sin(4)/a = sin(B)/b for infinitesimal triangles. The next few claims could be handled the same
way, using sinh(x) ~ x and cosh(x) ~ 1 + (x*/2).
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Claim 7. The Euclidean law of cosines holds for any infinitesimal triangle A4ABC in imaginary
geometry.

Proof. For any triangle in imaginary geometry, the first law of cosines (the 2™ equation in (8))
holds. For an infinitesimal triangle, we may use the substitutions given by Claims 4 & 5 to rewrite

this cosine law as

—_
|
I\)“‘,\,
~—

bccos(A) + %

-3

S

Or, after an algebraic massage,
b’c’ +2a° =2b% +2¢° —4bccos(A)+2a’be cos(A) .

At a sufficiently small scale, we may neglect terms of order 3 or higher; accordingly, we drop
b*¢* (order 4) and 2a’bc cos(4) (order 3). After dropping them and dividing both sides of the

resulting equation by 2, we obtain the infinitesimal version of the first law of cosines,
a’ =b>+c” —2bccos(A),

which is the Euclidean law of cosines, as claimed. n

The two remaining trigonometric relations for infinitesimal triangles in imaginary
geometry do not correspond to named relations of Euclidean trigonometry, but when
combined, they yield a still greater prize: the angle sum of an infinitesimal triangle in

imaginary geometry is 7."

Claim 8. For any infinitesimal triangle A4ABC in imaginary geometry, asin(4+C) = bsin(4).
Proof. For any triangle in imaginary geometry, the 3 equation in (8) holds. For an infinitesimal
triangle, we may use the substitutions given by Claims 4 & 5 to rewrite this relation as
: » b
cot(A)sm(C)(l —7)+ cos(C) =—.
a
At a sufficiently small scale, we may choose to neglect terms of order 2 or higher. Dropping 5%/2

and multiplying both sides of the resulting equation by asin(4) yields

" Again, this infinitesimal language is just shorthand; a more accurate statement would be that, in imaginary
geometry, the angle sum of a triangle approaches 7 as the size of the triangle decreases. In fact, this result
follows immediately from Gauss’ observation that angle defect and area are directly proportional in
imaginary geometry (see the notes to TP 33), but since Lobachevski himself never mentions this
proportionality within The Theory of Parallels, he obviously cannot invoke that theorem here.
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a (cos(A) sin(C) + cos(C) sin(A)) =bsin(A) . Finally, a trigonometric identity lets us rewrite this

as asin(4+ C) = bsin(A4), which was to be shown. m

Claim 9. For any infinitesimal triangle AABC in imaginary geometry, cos(4) + cos(B + C) = 0.
Proof. For any triangle in imaginary geometry, the second law of cosines (4™ equation in (8))
holds. For an infinitesimal triangle, we may use the substitutions given by Claims 4 & 5 to rewrite

the second cosine law as
sin(B)sin(C)

(-4

Dropping the higher order term ¢*/2 and rearranging the resulting equation yields

cos(A4) + cos(B)cos(C) =

cos(A) + [cos(B) cos(C) —sin(B) sin(C)] =0.
That is, cos(4) + cos(B + C) =0, as claimed. m
Claim 10. In imaginary geometry, every infinitesimal triangle AABC has angle sum 7.

Proof. Since
0 = sin(B)cos(B) - sin(B)cos(B)

= [bsin(A4)/a]cos(B) - sin(B)cos(B) (by Claim 6: infinitesimal law of sines)
= [bsin(4)/a]cos(B) + sin(B)cos(4 + C) (by Claim 9, with the letters permuted)
=sin(4 + C)cos(B) + sin(B)cos(4 + C) (by Claim 8)

=sin((4 + C)+ B) (trigonometric identity)

=sin(4d + B+ O),

it follows that (4 + B + C), the angle sum of AABC, must be an integral multiple of ©. Since the
angle sum is obviously positive, and cannot exceed m (by the Saccheri-Legendre Theorem:

TP 19), it must be 7, as claimed. n

Because Euclid’s parallel postulate is equivalent to the statement that triangles
have angle sum 7 (see end of TP 22), the preceding result indicates that imaginary
geometry becomes Euclidean at the infinitesimal scale. In other words, if one restricts
one’s attention to smaller and smaller portions of the imaginary plane, the phenomena
that one observes will look increasingly Euclidean. Hence, Euclidean geometry is a

limiting case of imaginary geometry.
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Denouement

In the scholarly journal of the University of Kazan, I have
published several investigations into the measurements of curves, plane
figures, surfaces, and solids, as well as the application of imaginary
geometry to analysis.

Beneath the surface of Lobachevski’s innocent suggestion that readers of The
Theory of Parallels might seek out his earlier Russian papers lie several layers of
frustration and pathos. Let us work our way backwards through some of them, beginning
with an event (or more accurately, non-event) that still lay in the future when
Lobachevski wrote these hopeful words.

In the sixteen years of life that remained to Lobachevski, the mathematical
community of Europe was to ignore or misunderstand 7he Theory of Parallels; no one
wanted more of his work. Even if he had found some sympathetic readers in Germany,
France, or elsewhere in Europe, it is unlikely that they would have been able to secure, let
alone read, his Russian publications*. Thus, in order to find readers, he had to contend
not only with the “howls of the Boetians” that Gauss so feared, but also a language
barrier.

The one Russian mathematician who had Europe’s ear in 1840 was Mikhail
Ostrogradski, who makes an illuminating contrast with Lobachevski. Ostrogradski did
impressive work in a fashionable area of mathematics, of which he wrote exclusively in
French. Lobachevski, neither fashionable nor obliging, resented the suggestion that a
Russian intellectual must abandon his native tongue to reach a receptive audience. “The
language of a people,” he argued, “is the testimony of its education, a true indicator of the
degree of its enlightenment...”".

One wonders how enlightened Russian mathematicians actually were at the time.
A Russian review of Lobachevski’s first publication on imaginary geometry, On the
Principles of Geometry (1829-30), suggests the howling Boetians whom Gauss feared so

much. The review accused Lobachevski of “simpleminded ignorance” and declared that a

" The exception is Gauss, whose love of languages rivaled his feeling for mathematics: he knew some
Russian, and after reading The Theory of Parallels, he sought out and read Lobachevski’s earlier Russian
works.

" Vucinich, p.478.
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more appropriate title for his work would have been, “A Satire on Geometry” .
Undeterred, Lobachevski continued to publish his work on non-Euclidean geometry
solely in Russian: Imaginary Geometry (1835), The Applications of Imaginary Geometry
to Some Integrals (1836), and New Principles of Geometry, with a Complete Theory of
Parallels (1835-8). His desired audience failed to materialize. Eventually, he gave in and
wrote accounts of his work in German and French. By the time Lobachevski wrote The
Theory of Parallels, he had already spent over a decade trying to publicize his work, in
vain. His doomed efforts would continue for another fifteen years, ending only his death
in 1856.

In his early Russian papers, Lobachevski did indeed solve some mensuration
problems in imaginary geometry, computing, for example, the circumference and area of
a circle and the surface areas and volumes of spheres and tetrahedra. He was then able to
evaluate some intractable definite integrals by interpreting them as magnitudes in
imaginary geometry. Although he does not address these issues in The Theory of

Parallels, he published another account of them in his final work, Pangéométrie (1855).

The Geometry of the Universe

“What Vesalius was to Galen, what Copernicus was to Ptolemy, that was Lobachevsky to Euclid. There is,
indeed, a somewhat instructive parallel between the last two cases. ... Each of them has brought about a
revolution in scientific ideas so great that it can only be compared with that wrought by the other. ...they are
changes in the conception of the Cosmos.”

~William Kingdon Clifford"

In and of themselves, the equations (8) already constitute sufficient
grounds for believing that the imaginary geometry might be possible. As
a result, we have no means other than astronomical observations with
which to judge the accuracy that follows from calculations in the
ordinary geometry. Its accuracy is very far-reaching, as [ have
demonstrated in one of my investigations; for example, in all angles who
sides we are capable of measuring, the sum of the three angles does not
differ from n by so much as a hundredth of a second.

" Rosenfeld, p. 209. The review was anonymous, but evidence suggests that Ostrogradski may have been
responsible for it, either as author or instigator.
T Clifford, pp. 297 — 298.
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When Saccheri entered the counterintuitive world of imaginary geometry in the
early eighteenth century, he anticipated a contradiction at every turn. He never did find
one, but, undermined by his own fervent desire to do so, he eventually deluded himself
into thinking that he had”.

In contrast, when Lobachevski described the same world a century later, he was
convinced that the new geometry was at least as solid as Euclid’s geometry, if not more
s0: its accuracy as a description of the physical universe might even surpass Euclid’s. His
plane trigonometric formulae (8) support this conviction. Since these equations imply that
Euclidean geometry is a limiting case of imaginary geometry, the fact that the world
“looks Euclidean” need not indicate that it actually is Euclidean. If the universe were
very large — so large that even our telescopes could perceive only an infinitesimal portion
of it — then physical space would appear Euclidean to us, even if imaginary geometry
actually governs it.

What might Saccheri have thought of such an argument? He might well have
thought of his countryman Galileo, who, only a few decades before Saccheri’s birth,
argued that the Earth is in constant motion despite the fact that it appears to be at rest.
Might this analogy have swayed him into sympathy with Lobachevski’s views? Saccheri
and his contemporaries comprehended the vast size of the solar system', but lacked any
conception of the distances to the “fixed stars.” They would have agreed that Italy is
infinitesimal compared to the universe’s size, but might still have maintained that the
Earth’s orbit encompasses a non-infinitesimal, though still small, portion of the universe.
Thus, Saccheri might have maintained that if imaginary geometry governed the physical
universe in the large, then astronomical measurements should reveal this fact. They do

not. Ergo, Euclides vindicatus est.

" According to Prékopa (p. 25), Imre Téth has proposed that Saccheri’s dubious “contradiction” was
inserted because he feared the Inquisition. This is a fascinating thesis, even if Saccheri does seem a bit late
for the Inquisition, but since Toth’s book, God and Geometry, is written in Hungarian, I have no way of
learning more about it. The language barrier strikes again.

"In 1672, Cassini had calculated that the Earth’s distance to the sun was approximately 87 million miles.
This was still short of the true value (of approximately 93 million miles), but it was a vast improvement
over Ptolemy’s estimate (approximately 4 million miles). Because Kepler’s third law (1619) establishes the
relative distances of all of the known planets to the sun, Casini’s measurement also measured the distances
from the sun of of every other known planet.
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By the time that Lobachevski published The Theory of Parallels, astronomers had
discovered a very different picture of the universe. In 1780, William Herschel discovered
Uranus, the first new planet found since antiquity. His later discovery of binary stars,
orbiting one another, disposed of the last vestige of the Ptolemaic system, the “fixed
crystalline sphere” upon which the stars all lie. Finally, his observations and calculations
led him to the first estimate of our galaxy’s diameter: 9000 light years. This enormous
distance is in fact less than a tenth of the true value, but it represented a colossal step
forward in humanity’s understanding of just how big the universe truly is. Objections that
might have been reasonable for Saccheri had become insupportable in the light of
Herschel’s discoveries. The conception of an overwhelmingly vast universe was,
naturally, manifest in Laplace’s masterpiece Méchanique Céleste (1799-1825). In his first
published account of imaginary geometry, Lobachevski refers to

...the view expressed by Laplace, that all the stars we see and the very Milky Way

belong to merely one isolated cluster of heavenly bodies, similar to those that we
perceive as faint shimmering spots in Orion....

The lesson that Lobachevski draws from this is significant,

Nature itself reveals distances to us compared with which even the distance from
Earth to the fixed stars disappears to insignificance. '

The first reasonably accurate measurement of a stellar distance came in 1838, when
Friedrich Bessel showed that the distance from Earth to 61 Cygni, a faint “nearby” star, is
over 270,000 times the distance from Earth to the sun.

The universe had become, in men’s minds, much larger during the century that
separates Lobachevski from Saccheri: large enough to suggest that all of our
measurements — even astronomical measurements — might amount to infinitesimal
distances with respect to it. In such a world, it was reasonable to conjecture that nature’s
large-scale geometry might be non-Euclidean. Its Euclidean appearance might be an
illusion born of the fact that we make all our measurements from an insignificant corner

of the cosmos.

" Lobatschefskij, Zwei geometrische Abhandlungen, p. 24.
T ibid., p. 24.
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Once we acknowledge the possibility that the geometry of the universe might be
non-Euclidean, it is natural to want to test this hypothesis. Accordingly, Lobachevski
analyzed astronomical records in an attempt to detect angle defect in an enormous
triangle whose vertices lay at the Earth, the Sun, and Sirius, the brightest star in the night
sky. An erroneous measurement of Sirius’s parallax compromised his calculation, but in
any case, he concluded that the defect must be (significantly) less than a hundredth of a
second. Since we would expect this much experimental error even if Euclidean geometry
were known to hold, this was not evidence in favor of imaginary geometry. Nor, of
course, was this evidence in favor of Euclidean geometry. Instead, this calculation simply
indicated that if the geometry of the universe is imaginary, we are too tiny to discern the

discrepancy from Euclidean geometry .

From the Imaginary Plane to the Sphere in the Blink of an i.

Finally, it is worth observing that the four equations (8) of plane
geometry become valid formulae of spherical geometry if we substitute

av-1, byv/-1 , cv/—1 for the sides a,b,c ; these substitutions will change

sin[](a) to ! ,
cosa

cos[l(a) to +-1tana,
1

\/—lsina7

tan[](a) to

and similarly for sides b and c. Hence, these substitutions change
equations (8) into the following:

sinAsinb =sinBsina
cosa =cosbcosc+sinbsinccos A
cot AsinC+cosCcosb =sinbcota
cos A =cosasinBsinC-cosBcosC.

" For more information on Lobachevski’s views on the relation between his geometry and the physical
world, see Daniels.
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Lobachevski’s last words in The Theory of Parallels hint at a blood relationship
between the imaginary plane and the sphere. If we multiply all side lengths by i, we can
magically transform the formulae of imaginary trigonometry into the formulae of
spherical trigonometry. This is easy to see if we write the imaginary laws of cosines and

sines in terms of hyperbolic functions.
For example, the first imaginary law of cosines is

cosh(c) = cosh(a)cosh(b) + sinh(a)sinh(b)cos(C).

If we multiply all the side lengths that appear in this equation by i, it becomes
cosh(ci) = cosh(ai)cosh(bi) + sin(ai)sin(bi)cos(C).

Since cosh(xi) = cos(x) and sinh(x7) = isin(x), we can rewrite this as

cos(c) = cos(a)cos(b) - sin(a)sin(b)cos(C),

which is the first spherical 1law of cosines.

The same operation clearly transforms the imaginary law of sines and second law
of cosines into the analogous trigonometric formulae for the sphere. Note that this
process is reversible: multiplying the sides of a general spherical triangle by i will
transform the spherical trigonometric laws into the corresponding imaginary laws. (This
works because cos(xi) = cosh(x) and sin(x7) = -isin(x).)

The relation between imaginary and spherical trigonometry is perhaps most
manifest if we retain their respective parameters k& and ». When we express them in this
more general form, we can transform one law into the other simply by multiplying the
parameter by i. For example, with their parameters expressed, the two laws of sines

appear as follows:

Imaginary Spherical
sin(A) sin(B) sin(C) sin(4)  sin(B)  sin(C)

Laws of Sines = = = = .
. a ) b i c (a (a . (a
sinh| — sinh| — sinh| — sin| — sin| — sin| —

(kj [k) [k) (Vj (rj (Vj

where & and r are positive parameters whose numerical values depend on the unit of

measurement used in each context. It is clear that multiplying the parameter by i in either

case will transform the law into its counterpart in the other geometry. (Recall that /' = -i.)
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This seems to verify Lambert’s hunch that a non-Euclidean geometry could make sense

on a “sphere of imaginary radius”.

The Consistency of Imaginary Geometry

“Lobatchevsky and Bolyai had considered this problem but had not been able to settle it.”
-Morris Kline"

“Finally, it is not true that Lobachevsky’s works do not contain a proof of the consistency of his geometry.
Objectively, they do. The reduction of hyperbolic trigonometry to spherical is no less of a consistency
proof of Lobachevsky’s plane geometry than the Beltrami model.” - V. Ya. Perminov’

“Lobacevskii’s arguments do not represent a finished proof of the consistency of his plane geometry.”
- B.A. Rosenfeld*

“In order to show that his ‘imaginary’ geometry or ‘pangeometry’ is as consistent as Euclidean geometry,
Lobatschewsky pointed out that it is all based on his formulae for a triangle, which lead to the familiar
formulae for a spherical triangle when the sides a, b, ¢ are replaced by ia, ib, ic. Any inconsistency in the
new geometry could be ‘translated’ into an inconsistency in spherical geometry (which is part of Euclidean
geometry). Thus, after two thousand years of doubt, the independence of Euclid’s postulate V was finally
established.” - H.S.M. Coxeter®

“Lobachevsky... pondered over the problem all his life, but could not find a conclusive solution; this fell to
the lot of future generations.” - V. Kagan™

This selection of quotations should serve as a corrective to the notion that
mathematicians always agree as to what constitutes a proof and what does not. (It is also
notable for exhibiting four distinct transliterations of Lobachevski’s name, none of which
agrees with my own.)

Lobachevski was convinced that contradictions would never appear in imaginary
geometry, but few others shared his faith until compelled to do so by Beltrami and
Poincaré, whose models of the imaginary plane definitively established imaginary
geometry’s consistency. These models, created more than a decade after Lobachevski’s
death, demonstrated that if a contradiction were to arise in imaginary geometry, a
corresponding contradiction would also arise in Euclidean geometry. Hence, unless one is

prepared to doubt the consistency of Euclidean geometry (which no one does), one has

" Kline, p. 914.

T Perminov, p. 19.

! Rosenfeld, p. 228.

§ Coxeter, Non-Euclidean Geometry, p. 10.
" Kagan, p. 60.
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no right to question the consistency of imaginary geometry. Accordingly, we say that
imaginary geometry is at least as consistent as Euclidean geometry.

Proving the relative consistency of a set of axioms by showing that any
contradiction arising from them implies a contradiction in another (presumed consistent)
area of mathematics has become a standard technique. For example, one can use it to
show that Euclidean geometry is at least as consistent as the real number system, which
itself is at least as consistent as the rational number system, which, in turn, is at least as
consistent as the system of the natural numbers. The first to pioneer this technique, even
if the attempt was not quite successful, seems to have been Lobachevski himself. In his
New Principles of Geometry (which was published in installments between 1835-8, in
Russian), he wrote,

We have found equations which represent the dependence of the angles and sides

of a triangle [i.e. the laws of cosines and sines]. When, finally, we have given

general expressions for elements of lines, areas and volumes of solids, all else in

the Geometry is a matter of analytics, where calculations must necessarily agree

with each other, and we cannot discover anything new that is not included in

these first equations... . Thus, if one now needs to assume that some contradiction

will force us subsequently to refute principles that we accepted in this geometry,

then such contradiction can only hide in the very equations [ie. the

trigonometric equations]. We note, however, that these equations become

equations of spherical Trigonometry as soon as, instead of the sides a, b, and c,

we put a\J-1, b\-1, and c\-1... therefore, ordinary Geometry, Trigonometry and
the new Geometry will always agree among themselves."

In this passage, Lobachevski seems to glimpse the future of geometry. To begin
with, he hints at a remarkable synthesis of geometry and analysis: once the basic
trigonometric relations are known, one can find expressions for the line, area, and volume
elements (ds, d4, dV), and from thence, he suggests, one can answer (in principle) any
geometric question. Thirty years after Lobachevski wrote these words, Bernhard
Riemann gave a celebrated lecture in which he described how all of geometry is implicit
in the Pythagorean theorem (a particular trigonometric relationship) and how different
geometries ultimately stem from distinct versions of this theorem. Here, Lobachevski
argues that because his trigonometric equations encompass all of imaginary geometry,
any contradiction in imaginary geometry must be implicit within them. Such a

contradiction, he intimates, is impossible: we can “translate” every statement of

" Rosenfeld, p. 223.
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imaginary trigonometry into a corresponding statement of spherical trigonometry, so a
contradiction in one context implies a contradiction in the other. Because there are no
contradictions in spherical trigonometry, there can be none in imaginary trigonometry,
and therefore, there can be no contradictions in imaginary geometry. Q.E.D.

This is a remarkable strategy for securing the consistency of his geometry, but it
has a few flaws in its execution. First, even if we accept his claim that the higher parts of
imaginary geometry are all consequences of the laws of cosines and sines, we still must
worry about the logical status of these trigonometric equations. Even if no contradictions
can arise from them, the possibility remains that the lower parts of imaginary geometry
(i.e. the chain of theorems leading up to the trigonometric equations) may harbor one.
Lobachevski addresses this objection in Géométrie Imaginaire (1837), his first non-
Russian publication. In its pages, he develops imaginary geometry backwards. In The
Theory of Parallels, he begins with the neutral axioms, assumes a new axiom (the angle
sum is always less than m), and proceeds to deduce the trigonometric equations. In
Geéométrie Imaginaire, however, he begins with the neutral axioms, assumes the
trigonometric equations, and deduces that the angle sum is always less than n. Thus, in
the presence of the neutral axioms, the existence of angle defect (the added
“Lobachevskian axiom™) is equivalent to the formulae of imaginary trigonometry.
Consequently, Lobachevski would seem to be justified in his claim that a contradiction
anywhere in the imaginary geometry, regardless of whether it lurks in the higher or lower
regions, would manifest itself in his trigonometric equations.

Even if we grant this, a fatal problem remains in his “translation” mechanism
between imaginary and spherical geometries. Suppose that we wish to translate the proof
of a theorem in imaginary geometry into its spherical analogue. We must translate each
step of the proof in turn. Those that are algebraic consequences of the trigonometric
equations will translate smoothly, but when a step in the proof calls upon the neutral
axioms or the theorems derived from them, trouble may appear. Suppose, for example,
that one step involves a triangle in the imaginary plane and applies the neutral axioms to
its sides, which are, of course, three lines in the plane. For the translation to work, we
would need to apply the same neutral axioms to the sides of a spherical triangle, which
are three great circles on the sphere. The neutral axioms, however, do not hold for such

“lines”! Hence, our translation mechanism may break down at this point. We might find
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an ad hoc method to circumvent any given problem, but we cannot declare the
consistency of imaginary geometry to be fully established until we have a translation
mechanism that is guaranteed to function perfectly in every instance.

Although Lobachevski’s method falls short of being a full proof of consistency, it
nonetheless provides compelling evidence that imaginary geometry is at least as
consistent as Euclidean geometry. Incidentally, The Theory of Parallels does (implicitly)
contain a proof of the converse statement: any contradiction in Euclidean geometry
would also manifest itself as a contradiction in the geometry of the horosphere, which in
turn is a part of imaginary space. Hence, Euclidean geometry is at least as consistent as
imaginary geometry. Combined with the famous converse of Beltrami and Poincaré, this
result tells us that the two geometries stand or fall together. Astonishing though this fact
seemed to the first mathematicians who recognized it, it would have come as no surprise
to Lobachevski, who saw the two geometries not as separate warring entities, but as
aspects of the same pangeometry, of which Euclid had investigated only the special case
in which the angle of parallelism is fixed at m/2. By imposing his parallel postulate,
Euclid had set the rest of pangeometry off limits. Lobachevski simply posed himself the

task of charting the unexplored regions.
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In der Geometrie fand ich einige Unvollkom-
menheiten welche ich fir den Grund halte,
warum diese Wissenschaft, so lange sie nicht in
die Analysis tibergeht, bis jetzt keinen Schritt
vorwarts thun konnte aus demjenigen Zustande,
in welchem sie uns von Euclid iiberkommen
ist. Zu den Unvollkommenheiten rechne ich die
Dunkelheit in den ersten Begriffen von den
geometrischen Groflen, in der Art und Weise wie
man sich die Ausmessung dieser Groflen
vorstellt, und endlich die wichtige Liicke in der
Theorie der Parallelen, welche auszufiillen, alle
Anstrengungen der Mathematiker bis jezt ver-
gehlich waren. Die Bemiihungen Legendre’s
haben zu dieser Theorie nichts hinzugefiigt, in-
dem er genothigt war, den einzigen strengen
Gang zu verlassen, sich auf einen Seitenweg

285



4

zu wenden, und zu Hilfssatzen seine Zuflucht
zu nehmen, welche er sich unbegriindeter Weise
bemiihet als nothwendige Axiome darzustellen.

Meinen ersten Versuch iiber die Anfangs-
grinde der Geometrie veroffentliche ich im
"Kasan’schen Boten” fiir das Jahr 1829. In
der Hoffnung, allen Anforderungen geniigt zu
haben, beschaftigte ich mich hierauf mit einer
Abfassung dieser Wissenschaft im Ganzen, und
publicirte diese meine Arbeit in einzelnen Thei-
len in den ”Gelehrten Geschriften der Univer-
sitat Kasan” fiir das Jahr 1836, 1837, 1838
unter dem Titel: ”Neue Anfangsgriinde der
Geometrie, mit einer vollstandigen Theorie der
Parallelen.” Der Umfang dieser Arbeit hin-
dert vielleicht meine Landsleute einem solchen
Gegenstande zu folgen, welcher nach Legendre
sein Interesse verloren hat. Ich bin jedoch
der Ansicht, dafl die Theorie der Parallelen
nicht ihre Anspriiche auf die Aufmerksamkeit
der Geometer verlieren durfte, und deshalb be-
absichtige ich hier das Wesentliche meiner Un-
tersuchungen darzulegen, indem ich voraus be-
merke, dafl der Meinung Legendre’s zuwider
alle iibrigen Unvollkommenheiten, z. B. die De-

5

finition der geraden Linie, sich hier fremdartig
und ohne allen eigentlichen Einslufl auf die
Theorie der Parallelen zeigen.

Um meine Leser nicht zu ermiiden durch
die Menge solcher Sétze, deren Beweise keine
Schwierigkeiten darbeiten, gehe ich hier nur
diejenigen im Voraus an, deren Kenntnif§ fiir
das folgende nothig ist.

1) Eine gerade Linie deckt sich selbst
in allen Lagen. Hierunter verstehe ich, dafl
bei der Drehung der Flache die gerade Linie
ihren Ort nicht verandert, wenn sie durch zwei
ungewegliche Punkte in der Flache geht.

2) Zwei gerade Linien koénnen sich nicht
in zwei Punkten schneiden.

3) Eine gerade Linie, auf beide Seiten
genugsam verlangert, mufl {iber jede Grenze
hinausgehen, und theilt auf solche Weise eine
begranzte Ebene in zwei Theile.

4) Zwei gerade Linien, die auf ein und
derselben dritten senkrecht sind, schneiden sich
nie, wie weit sie auch immer verlangert werden.

5) Eine gerade Linie schneidet jederzeit eine
andere gerade, wenn sie von einer Seite der-
selben auf die ander Seite iibergeht.
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6) Scheitelwinkel, bei denen die Seiten des
einen die Verlangerungen der Seiten des an-
deren sind, sind gleich. Dies gilt von ebenen
geradlinigen Winkeln unter sich, so wie von
ebenen Flachenwinkeln.

7) Zwei Gerade Linien kénnen sich nicht
schneiden, wenn eine dritte sie unter gleichen
Winkeln schneidet.

8) Im geradlinigen Dreiecke liegen gleiche
Seiten gleichen Winkeln gegentiber, und um-
gekehrt.

9) Im geradlinigen Dreiecke liegt der gro-
Beren Seite auch ein groferer Winkel gegen-
iber. Im rechtwinkligen Dreiecke ist die Hy-
pothenuse grofler als jede Cathete und die an
ihr anliegenden Winkel sind spitz.

10) Geradlinige Dreiecke sind congruent,
wenn bei ihnen eine Seite und zwei Winkel
gleich, oder zwei Seiten und der zwischenlie-
gende Winkel gleich, oder wenn zwei Seiten
und der Winkel, welcher der grofiten Seite ge-
geniiber liegt, gleich, oder wenn drei Seiten
gleich sind.

11) Eine gerade Linie, welche perpendiculér
auf zwei anderen geraden Linien steht, die sich

7

mit ihr nicht in einer Ebene befinden, ist senk-
recht auf allen geraden Linien, welche durch den
gemeinschaftlichen Durchschnittspunkt in der
Ebenederbeidenletztern gezogen werden konnen.

12) Der Durchschnitt einer Kugel mit einer
Ebene ist ein Kreis.

13) Eine gerade Linie, die perpendicular
auf dem Durchschnitt zweier Ebenen ist, und
in einer der beiden schneidenden Ebenen liegt,
ist senkrecht auf der andern Ebene.

14) In einem sphérischen Dreiecke liegen
gleichen Seiten gleiche Winkel gegeniiber, und
umgekehrt.

15) Sphérische Dreiecke sind congruent,
wenn zwei Seiten und der eingeschlossene Win-
kel gleich, ober eine Seite und die anliegenden
Winkel gleich sind.

Von hier folgen die tbrigen Satze mit
ihren Erlauterungen und Beweisen.

16) Alle geraden Linien, welche in einer
Ebene von einem Punkte auslaufen, konnen
mit Bezug auf eine gegebene gerade Linie in
derselben Ebene in zwei klassen getheilt wer-
den, und zwar in schneidende und nicht
schneidende. Die Grenzlinie der einen
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und anderen Klasse jener Linien wird der ge-
gebenen Linie parallel genannt.

Es sei vom Punkte A (Fig. 1.) auf die
Linie BC' der Perpendikel AD gefallt, auf
welchem wieder AFE senkrecht errichtet sein soll.
Im rechten Winkel FAD werden entweder alle
geraden Linien, welche vom Punkte A ausge-
hen, die Linie DC treffen, wie z. B. AF', oder
einige derselben werden, ahnlich dem Perpen-
dikel AF, die Linie DC nicht treffen. In der
Ungewiflheit, ob der Perpendikel AE die ein-
zige Linie sei, welche mit DC' nicht zusammen-
trifft, wollen wir annehmen, es sei moglich,
daB es noch andere Linien, z. B. AG géibe,
welche DC' nicht schneiden, wie weit man sie
auch verlangern mag. DBei dem Uebergange
von den schneidenden Linien AF' zu den nicht
schneidenden AG, mufl man auf eine Linie AH
treffen, parallel mit DC, eine Grenzlinie, auf
deren einer Seite all Linien AG die DC nicht
treffen, wahrend auf der andern Seite jede
gerade Linie AF' die Linie DC' schneidet. Der
Winkel HAD zwischen der Parallele HA und
dem Perpendikel AD heifit Parallel Winkel
(Winkel des Parallelismus), diesen werden

9

wir hier durch II(p) bezeichnen fir AD = p.
Wenn II(p) ein rechter Winkel ist, so wird die
Verlangerung AE’ des Perpendikels AE eben-
falls parallel sein der Verlangerung D B der Linie
DC; wozu wir noch bemerken, dafl in
Beziehung auf die vier rechten Winkel, welche
am Punkte A durch die Perpendikel AE und
AD, und ihren Verldngerungen AE’ und AD’
gebildet werden, jede gerade Linie, welche vom
Punkte A ausgeht, entweder selbst, oder doch
wenigstens mit ihrer Verlangerung, in einem
der zwei rechten Winkeln liegt, welche nach BC'
hingekehrt sind, so dafl aufler den Parallelen
EFE’ alle iibrigen, wenn sie nach beiden Seiten
hinreichend verlangert werden, die Linie BC
schneiden miissen.

Wenn II(p) < Yo7 so wird auf der andern
Seite von AD unter demselben Winkel
DAK = II(p) noch eine Linie AK liegen, par-
allel mit der Verlangerung DB der Linie DC,
so daB bei dieser Annahme wir noch eine Seite
des Parallelismus unterscheiden miissen.
Alle tibrigen Linien oder Verlangerungen der-
selben, innerhalb der beiden nach BC' zugewen-
deten rechten Winkel, gehoren zu den schneiden-

288



10

den, wenn sie innerhalb des Winkels HAK =
2T1(p) zwischen den Parallelen liegen; sie ge-
hoéren dagegen zu den nicht schneidenden AG,
wenn sie auf der anderen Seite der Parallelen
AH und AK, in der Oeffnung der zwei Winkel
EAH = Yyr — 1(p), FAK = Yyr — I1(p)
zwischen den Parallelen und der auf AD
perpendikuldren EE' liegen. Auf der anderen
Seite des Perpendikels EE’ werden auf dhnliche
Weise die Verlangerungen AH’ und AK’ der
Parallelen AH und AK ebenfalls parallel
mit BC sein; die iibrigen Linien gehoren im
Winkel K'AH’ zu den schneidenden, in den
Winkeln K’AE, H' AE" aber zu den nichtschnei-
denden.

Demnach koénnen bei der Voraussetzung
[I(p) = Yym die Linien nur schneidende oder
parallele sein ; nimmt man jedoch an, daf§ TI(p)
< Yy, so mufl man zwei Parallelen zulassen,
eine auf der einen und eine auf der andern
Seite; auBerdem mufl man die iibrigen Linien
unterscheiden in nichtschneidende und schnei-
dende. Bei beiden Voraussetzungen dient als
Merkmal des Parallelismus, daf3 die Linie eine
schneidende wird, bei der kleinsten Abweichung

11

nach der Seite hin, wo die Parallel liegt, so
da wenn AH parallel DC, jede Linie AF die
DC' schneidet, wie klein auch immer der Winkel
HAF sein mag.

17) Eine gerade Linie behélt das
Kennzeichen das Parallelismus in allen
ihren Punkten.

Es sei AB (Fig. 2.) parallel mit CD, auf
welcher letztern AC perpendicular ist. Wir
wollen zwei Punkten betrachten, welche beliebig
auf der Linie AB und ihrer Verlangerung jen-
seits des Perpendikels genommen sind. Es
liege der Punkt E auf derjenigen Seite des
Perpendikels, auf welcher AB als parallel mit
CD angesehen wird. Es werde aus dem Punkte
E ein Perpendikel FK auf C'D gefallt, hierauf
werde FF' so gezogen, dafl sie innerhalb des
Winkels BEK fallt. Man verbinde die Punkte
A und F durch eine gerade Linie, deren Ver-
langerung die C'D irgendwo in G schneiden
mufB (16. Satz). Hierdurch erhéllt man ein
Dreieck AC'G, in welches die Linie E'F' hinein-
geht ; da letztere nun nicht AC' schneiden kann,
in Folge der Construction, und eben so wenig

289



12

AG und EK zum zweiten Male (Satz 2.) so
muf sie C'D irgendwo treffen in H (Satz 3.)

Es sei jetzt E' ein Punkt auf der Verldn-
gerung von AB und E'K’ perpendikuldr auf
die Verlangerung der Linie C'D, man ziehe
die Linie F'F’ unter einem so kleinen Winkel
A'E'F’, daf sie AC irgendwo in F’ schneide,
unter demselben Winkel mit AB ziehe man noch
aus A die Linie AF, deren Verlingerung C'D
in G schneiden wird, (16. Satz). Dergestalt
erhdlt man ein Dreieck AGC', in welches die
Verlangerung der Linie E’F’ hineingeht; da
nun diese Linie nicht zum zweiten Male AFE
schneidet, aber auch nicht AG schneiden kann,
weil der Winkel BAG = BE'G’' (7. Satz), so
muf sie C'D irgendwo in G’ treffen.

Von welchen Punkten F und E’ also die
Linien FF und E’'F’ auch ausgehen und wie
wenig sie auch von der Linie AB abweichen
mogen, so werden sie doch stets C'D schneiden,
zu welcher AB parallel ist.

18) Zwei Linien sind stets wechsel-
seitig parallel.

Es sei AC ein Perpendikel auf C'D (Fig. 3),
mit welcher AB parallel ist; man ziehe aus

13

C die Linie C'E unter irgend einem spitzen
Winkel EC'D mit CD, und falle aus A den
Perpendikel AF auf C'E, so erhdlt man ein
rechtwinkliges Dreieck AC'F, worin die Hypo-
thenuse AC' grofer als die Cathete AF (9te
Satz). Man mache AF = AG und lege AF
auf AG, so werden AB und F'F die Lage AK
und GH annehmen, dergestalt dafl Winkel
BAK = FAC, folglich mul AK die Linie DC
irgendwo in K schneiden (16ter Satz), wodurch
ein Dreieck AKC' entsteht, innerhalb welches
der Perpendikel GH mit der Linie AK in L
zusammentrifft (3ter Satz) und dergestalt die
Entfernung AL des Durchschnittspunktes der
beiden Linien AB und CE auf der Linie AB
vom Punkte A aus bestimmt.

Hieraus folgt, dal C'E stets AB schneiden
wird, wie klein auch immer der Winkel EFC'D
sein mag, mithin ist C'D parallel AB (16ter
Satz).

19) Im geradlinigten Dreiecke kann
die Summe der drei Winkel nicht gro-
Ber als zwei Rechte sein.

Gesetzt es sel im Dreiecke ABC (Fig. 4)
die Summe der drei Winkel m + «, so wahle
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man im Falle der Ungleichheit der Seiten die kle-
inste BC', halbire sie in D, ziehe aus A durch
D die Linie AD und mache die Verlangerung
derselben, DE, gleich AD, hierauf verbinde
man den Punkt £ durch die gerade Linie EC
mit dem Punkte C'. In den congruenten Drei-
ecken ADB und CDF ist der Winkel ABD =
DCFE und BAD = DEC (6ter und 10ter Satz) ;
hieraus folgt, dal auch im Dreiecke ACE die
Summe der drei Winkel gleich 7 4+ o sein mu#f,
auferdem ist der kleinste Winkel BAC (9ter
Satz) des Dreiecks ABC' iibergegangen in das
neue Dreieck AC'E, wobei er in die zwei Theile
EAC und AEC zerlegt wurde. Auf diese Weise
fortfahrend, indem man stets die Seite hal-
birt, welche dem kleinsten Winkel gegeniiber
liegt, mufl man endlich zu einem Dreiecke ge-
langen, in welchem die Summe der drei Win-
kel m + « ist, worin sich aber zwei Winkel be-
finden, deren jeder, seiner absoluten Gréfie nach,
kleiner als 1/, cv ist ; da nun aber der dritte Win-
kel nicht grofer alls 7 sein kann, so muf} «
entweder Null oder negativ sein.

20) Wenn in irgend einem geradli-
nigen Dreiecke die Summe der drei

15

Winkel gleich zweien rechten ist, so ist
diefl auch fiir jedes andere Dreieck der
Fall.

Es sei im geradlinigen Dreiecke ABC
(Fig. 5) die Summe der drei Winkel = 7, so
miissen wenigstens zwei Winkel desselben A und
C, spitze sein. Man félle aus dem Scheitel
des dritten Winkels B auf die gegeniiberlie-
gende Seite AC den Perpendikel p, so wird
dieser das Dreieck ABC' in zwei rechtwinklige
zerlegen, in jedem von welchen die Summe
der drei Winkel ebenfalls 7 sein muf, damit
sie nicht in einem von beiden grofler als =«
und im zusammengesetzten nicht kleiner als 7
werde.  So erhalt man ein rechtwinkliches
Dreieck, dessen Catheten p und ¢, und hier-
aus ein Viereck, dessen gegeniiberliegende Sei-
ten gleich und die aneinander anliegenden p und
q senkrecht sind (Fig. 6). Durch Wiederho-
lung dieses Vierecks kann man ein &hnliches
mit den Seiten mp und ¢, und endlich ein
Viereck ABC'D mit untereinander senkrechten
Seiten bilben, so dal AB = np, AD = mgq,
DC = np, BC' = mq, wo m und n beliebige
ganze Zahlen sind. Ein solches Viereck wird
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durch die Diagonale BD in zwei congruente
rechtwinklige Dreiecke BAD und BC'D getheilt,
von welchen in jedem die Summe der drei
Winkel = 7 ist. Die Zahlen n und m kon-
nen hinreichend grofi genommen werden, da-
mit dafi rechtwinklige Dreieck ABC' (Fig. 7)
dessen Catheten AB = np, BC' = mgq, ein an-
deres gegebenes Dreieck BDFE in sich schliefle,
sobald die rechten Winkel einander decken. Man
ziehe die Linie DC', so erhélt man dazu recht-
winklige Dreiecke von denen je zwei auf ein-
anderfolgende eine Seite gemein haben. Das
Dreieck ABC' entsteht aus der Vereinigung der
beide Dreiecke ACD und DCB, in deren je-
dem die Summe der drei Winkel nicht grofi-
er als 7 sein kann; sie mufl folglich gleich 7
sein, damit diese Summe im zusammengesetz-
ten Dreiecke gleich m werde. Auf gleiche Weise
besteht das Dreieck BDC aus den zwei Drei-
ecken DEC und DBE, folglich mufl in DBE
die Summe der drei Winkel gleich 7 sein, und
tiberhaupt muf3 dief} fiir jedes Dreieck stattfin-
den, weil jedes in zwei rechtwinklige Dreiecke
zerlegt werden kann.

Hieraus folgt, daB nur zwei Annahmen
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zulassig sind: entweder ist die Summe der drei
Winkel in allen geradlinigen Dreiecken gleich
7, oder diese Summe ist in allen kleiner als 7.

21) Von einem gegebenen Punkte
kann man stets eine gerade Linie der-
gestalt ziehen, dafl sie mit einer gege-
benen geraden einen beliebig kleinen
Winkel bilde.

Man félle vom gegebenen Punkte A (Fig. 8.)
auf die gegebene BC' den Perpendikel AB,
nehme auf BC willkiihrlich den Punkt D, ziehe
die Linie AD, mache DE = AD und ziehe
AFE. Es sei im rechtwinkligen Dreieck ABD
der Winkel ADB = «; so mufl im gleichschenk-
ligen Dreieck ADE der Winkel AED entweder
Yy o oder kleiner sein. (Satz 8. und 20.) Der-
gestalt fortfahrend gelangt man endlich zu einem
solchen Winkel AEB, der kleiner als jeder ge-
gebene ist.

22) Sind zwei Perpendikel auf einer
und derselben geraden Linie unter sich
parallel, so ist in den geraglinigen
Dreiecken die Summe der drei Winkel
gleich .

Es seien die Linien AB und CD (Fig. 9.)
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parallel unter sich und perpendikular auf AC.
Man ziehe aus A die Linien AF und AF
nach den Punkten E und F', welche auf der
Linie C'D in beliebigen Entfernungen FC' >
EC vom Punkte C' angenommen sind. Ge-
setzt es sei im rechtwinkligen Dreiecke ACE
die Summe der drei Winkel gleich 7 — «, im
Dreiecke AEF gleich © — (3, so wird sie
im Dreiecke AC'F' gleich m — a — 3 sein miis-
sen, wo « und [ nicht negativ sein konnen. Es
sei ferner der Winkel BAF = a, AFC = b,
so ist « + 8 = a — b; indem man nun die
Linie AF sich vom Perpendikel AC entfer-
nen lafft, kann man den Winkel a zwischen
AF und der Parallele AB so klein ma-
chen als man nur will, ebenso kann man den
Winkel b vermindern, folglich konnen die
zwei Winkel a und (8 keine andere Grofie ha-
ben als @« = 0 und § = 0.

Demnach ist in allen geradlinigen Dreiecken
die Summe der drei Winkel entweder 7 und zu-
gleich auch der Parallel Winkel II(p) — Y,7
fiir jede Linie p, oder fiir alle Dreiecke ist diese
Summe < 7 und zugleich auch II(p) < 1, 7.

Die erste Voraussetzung dient als Grund-
lage der gewohnlichen Geometrie und der
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ebenen Trigonometrie. Die zweite Vor-
aussetzung kann ebenfalls zugelassen werden,
ohne auf irgend einen Widerspruch in den Re-
sultaten zu fiihren, und begriindet eine neue
geometrische Lehre, welche ich den Namen:
Imagindre Geometrie” gegeben habe,
und welche ich hier darzustellen beabsichtige,
bis zur Entwickelung der Gleichungen zwischen
den Seiten und Winkeln der geradlinigen und
spharische Dreiecke.

23) Fir jeden gegebene Winkel «
kann man eine Linie p finden, so daf
II(p) = a.

Es seien AB und AC (Fig. 10.) zwei geraden
Linien, welche am Durchschnittspunkte A den
spitzen Winkel « bilden; man nehme auf AB
willkiihrlich einen Punkt B’, aus diesem Punkte
fdlle man B’ A’ senkrecht auf AC', mache A’A” =
AA’, errichte in A” die senkrechte A”B”, und
fahre so fort bis man zu einem Perpendikel C'D
gelangt, welche mit AB nicht mehr zusammen-
trifft. Dies mufl nothwendig statt finden, denn
wenn im Dreiecke AA’B’ die Summe aller drei
Winkel gleich m — a ist, so wird die im Dreiecke
AB'A” gleich m—2a, im Dreiecke AA” B” kleiner
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als m — 2a (20. Satz.) sein, und so fort, bis sie
endlich negativ wird und dadurch die Unmog-
lichkeit der Dreieckbildung zeigt. Die Senk-
rechte C'D kann dieselbe sein, von welcher aus
naher zum Punkte A alle iibrigen AB schnei-
den; wenigstens mufl bei dem Uebergange von
den einen schneidenden zu den nicht schneiden-
den ein solcher Perpendikel F'G existiren. Man
ziehe jetzt aus dem Punkte F' die Linie F'H,
die mit F'G den spitzen Winkel HF'G bildet,
und zwar nach der Seite hin, wo der Punkt
A liegt. Von irgend einem Punkte H der
Linie FH fille man auf AC' den Perpendikel
HK, dessen Verlangerung folglich AB irgend-
wo in B schneiden muf}, und dergestalt ein
Dreieck AK B bildet, in welches die Verlange-
rung der Linie F'H eintritt, und daher irgend-
wo in M die Hypothenuse AB treffen muf.
Da der Winkel GFH willkiihrlich ist und so
klein angenommen werden kann, als man will,
so ist FG mit AB parallel und AF = p. (16.
und 18. Satz.)

Man sieht leicht ein, dal mit der Vermin-
derung von p der Winkel o wachst; indem er
sich fiir p = 0 dem Werthe 4,7 ndhert; mit
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der Zunahme von p vermindert sich der Winkel
a, indem er sich immer mehr der Null nahert
fiir p = oco. Da es ganz beliebig ist, welchen
Winkel man unter dem Zeichen II(p) verstehen
will, wenn die Linie p durch eine negativ Zahl
ausgedriickt wird, so wollen wir

I(p) + U(=p) =7

annehmen, eine Gleichung, welche fiir alle
Werthe von p, positive sowohl als negative, und
fiir p = 0, gelten soll.

24) Je weiter Parallel Linien auf
der Seite ihres Parallelismus verldan-
gert werden, desto mehr nahern sie sich
einander.

Es seien auf die Linie AB (Fig. 11.) zwei
Perpendikel AC' = BD errichtet, und ihre End-
punkte C' und D durch eine gerade Linie ver-
bunden, so wird das Viereck CABD bei A und
B zwei rechte, bei C' und D aber zwei spitze
Winkel haben (22. Satz), welche einander gleich
sind, wie man sich leicht tiberzeugen kann, in-
dem man sich das Viereck auf sich selbst gelegt
denkt, so dal die Linie BD auf AC und AC
auf BD féllt. Man halbire AB und errichte
im Halbirungspunkte F die Linie EFF senk-
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recht auf AB, welche zugleich auch senkrecht
auf C'D sein mufl, weil die Vierecke CAEF
und FFEBD einander decken, wenn man sie so
auf einander legt, dafl die Linie F'E in dersel-
ben Lage bleibt. Demnach kann die Linie C'D
nicht parallel mit AB sein, sondern die Paral-
lele der letztern fiir den Punkt C', namlich CG,
mufl sich auf die Seite von AB hin neigen
(16. Satz), und schneidet vom Perpendikel BD
einen Theil BG < CA ab. Da der Punkt
C in der Linie CG willkiihrlich ist, so folgt,
dal CG sich der AB um so mehr néhert, je
weiter sie verlangert wird.

25) Zwei gerade Linien, die einer
dritten parallel sind, sind auf paral-
lel unter sich.

Wir wollen zunachst annehmen, dafl die
drei Linien AB, CD, EF, (Fig. 12.) in einer
Ebene liegen. Wenn zwei derselben, der Ord-
nung nach AB und CD; parallel mit der au-
Bersten E'F sind, so sind auch AB und CD
parallel unter sich. Um dies darzuthun, félle
man aus irgend einem Punkte A der aufler-
sten Linie AB auf die ander duflerste F'FE den
Perpendikel AE, welcher die mittlere Linie C'D
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in irgend einem Punkte C' schneiden wird (3.
Satz) unter einem Winkel DCE < ', auf
der Seite der mit CD parallelen EF. (22.
Satz.) Ein Perpendikel AG aus demselben
Punkte A auf C'D gefallt, mufl innerhalb der
Oeffnung des spitzen Winkels ACG fallen (9.
Satz), jede andere Linie AH aus A innerhalb des
Winkels BAC' gezogen, muf} die mit AB paral-
lele EF irgendwo in H shcneiden, wie
klein auch immer der Winkel BAH sein mag,
folglich wird C'D im Dreiecke AEH die Linie
AH irgendwo in K schneiden, da es unmog-
lich ist, daf} sie mit E'F' zusammentreffe. Wenn
AH vom Punkte A innerhalb des Winkels
CAG ausginge, so wiirde sie die Verlangerung
von CD zwischen den Punkten C' und G im
Dreiecke C'AG schneiden miissen. Hieraus folgt,
daB AB und CD parallel sind. (16. und 18.
Satz) Werden die beiden &uflern Linien AB
und E'F' parallel der mittleren C'D angenom-
men, so wird jede Linie AK aus dem Punkte
A innerhalb des Winkels BAE gezogen, die
Linie C'D irgendwo im Punkte K schneiden,
wie klein auch immer der Winkel BAK sein
mag. Auf der Verlingerung von AK nehme
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man beliebig einem Punkt L und verbinde ihn
mit C durch die Linie C'L, welche FF irgend-
wo in M schneiden muf}, wodurch ein Dreieck
MCE gebildet wird. Die Verlingerung der
Linie AL innerhalb des Dreiecks MC'E kann
weder AC' noch CM zum zweiten Male schnei-
den, folglich mufl sie EF irgendwo in H tref-
fen, mithin sind AB und EF wechselsetig pa-
rallel.

Es mogen jetzt die Parallelen AB und C'D
(Fig. 13.) in zwei Ebenen liegen, deren Durch-
schnittslinie E'F ist. Aus einem beliebigen
Punkte E dieser letztern fille man einen Per-
pendikel E'A auf eine der beiden Parallelen,
z. B. auf AB, hierauf aus A, dem Fulpunkte der
senkrechten FA, fille man einen neuen
Perpendikel AC' auf die andere Parallele C'D
und vereinige die Endpunkte E und C der
beiden Perpendikel durch die Linie EC. Der
Winkel BAC' muf ein spitzer sein (22. Satz),
folglich fallt ein Perpendikel C'G, aus C auf
AB gefillt, in den Punkt G auf dieselbe Seite
von C'A, auf welcher die Linien AB und CD
als parallel betrachtet werden. Jede Linie FH,
wie wenig sie auch immer von EF abweichen
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mag, gehort mit der Linie EC' einer Ebene
an, welche die Ebene der zwei Parallelen AB
und C'D léngs irgend einer Linie C'H schnei-
den mufl. Diese letztere Linie schneidet AB
irgendwo und zwar in demselben Punkte H,
der allen drei Ebenen gemein ist, durch wel-
chen nothwendig auch die Linie FH geht;
folglich ist F'F' parallel mit AB. Auf ahnliche
Weise 1afit sich der Parallelismus von E'F' und
CD zeigen.

Die Voraussetzung, daf} eine Linie FF pa-
rallel sei, mit einer von zwei andern unter sich
parallelen AB und CD, heifit demnach nichts
anders als E'F als den Durchschnitt solcher
Ebenen betrachten, in welchen zwei Parallelen
AB, CD liegen. Demnach sind zwei Linien
parallel unter sich, wenn sie parallel ein und
derselben dritten sind, obgleich sie in verschie-
denen Ebenen liegen. Der letzte Satz kann
auch so ausgesprochen werden: Drei Ebenen
schneiden sich in Linien, welche alle pa-
rallel unter sich sind, sobald der Pa-
rallelismus von zweien derselben vor-
ausgesetzt wird.

26) Einander gegeniiber stehend
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Dreiecke auf der Kugeloberflache haben
gleichen Flacheninhalt.

Unter gegeniiberstehenden Dreiecke werden
hier solche verstanden, die gebildet werden durch
die Durchschnitte der Kugelflache mit Ebenen
auf beiden Seiten des Centrums; in solchen
Dreiecken haben daher die Seiten und Winkel
eine entgegengesetzte Richtung.

In den einander gegeniiberstehenden Drei-
ecken ABC und A'B'C’" (Fig. 14., wo eines
derselben als umgekehrt dargestellt angefehren
werden muf};) sind die Seiten AB = A'B,
BC = B'C', CA = C'A" und die entsprechen-
den Winkel an den Punkten A, B, C' sind
ebenfalls gleich denen im andern Dreiecke an
den Punkten A’, B’, C'. Durch die 3 Punkte
A, B, C' denke man sich eine Ebene gelegt und
auf dieselbe aus dem Mittelpunkte der
Kugel einen Perpendikel gefallt, dessen Verlan-
gerungen nach beiden Seiten hin die beiden
einander gegeniiberstehenden Dreiecke in den
Punkten D und D’ der Kugeloberfliche schnei-
den werden. Die Abstande des Punktes D
von den Punkten A, B, C, auf de Sphare
in Bogen des grofiten Kreises, miissen gleich
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sein (12. Satz), sowohl unter sich, als auch
mit den Abstanden D'A’, D'B’, D'C’, auf dem
andern Dreiecke (6. Satz.), folglich sind die
gleichschenkligen Dreiecke um um den Punkten
D und D’ in beiden sphérischen Dreiecken
ABC und A’B’C’ congruent.

Um tber die Gleichheit zweier Oberflachen
tiberhaupt zu urtheilen, nehme ich folgenden
Satz als Grundlage an: Zwei Oberflachen
sind gleich, wenn si durch Zusammen-
fiigung oder Trennung gleicher Theile
entstehen.

27) Ein dreiseitiger Korperwinkel
ist gleich der halben Summe der Fla-
chenwinkel weniger einem Rechten.

Im sphérischen Dreiecke ABC (Fig. 15.),
wo jede Seite < m, bezeichne man die Winkel
mit A, B, C, verlingere die Seite AB, daf
ein ganzer Kreis ABA'B’A entsteht, welcher
die Sphére in zwei gleiche Theile theilt. In
derjenigen Halfte, in welcher sich das Dreieck
ABC' befindet, verlingere man noch die ande-
ren beiden Seiten durch ihren gemeinschaftli-
chen Durchschnittspunkt C, bis sie den Kreis
in A und B’ treffen. Dergestalt wird die
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halbe Sphéare in vier Dreiecke ABC, ACH',
B'CA', ACB getheilt, deren groflen P, X,
Y, Z sein mogen. Es leuchtet ein, dafl hier

P+X =208
P+7Z=A

Die Grofle des spharischen Dreiecks Y ist
gleich der des ihm gegeniiberstehenden Dreiecks
ABC’, dessen Seite AB gemein ist mit dem
Dreiecke P und dessen dritter Winkel ¢’ am
Endpunkte des Durchmessers der Sphare liegt,
der von C' durch das Centrum D der Sphare
geht. (26. Satz.) Hieraus folgt, dal P +Y
= C und weil P+ X +Y + 27 = 7, so
hat man auch:

P=Y% (A+B+C—m).

Zu demselben Schlusse kann man noch auf
ander Weise gelangen, indem man sich allein
auf den Satz stiitzt, welcher oben iiber die
Gleichheit der Fléchen angefithrt wurde. (26.
Satz.)

Im sphérischen Dreiecke ABC' (Fig. 16.)
halbire man die Seiten AB und BC' und durch
die Halbirungspunkte D und F lege man einen
grofften Kreis, auf diesen fille man aus A,
B, C die Perpendikel AF, BH und CG. Wenn
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der Perpendikel aus B in H zwischen D und
FE fallt, so wird das enstehende Dreieck BDH
gleich AFD, und BHE gleich EGC sein (6.
und 15. Satz.), woraus folgt, dafi die Ober-
flache des Dreiecks ABC' gleich des des Vier-
ecks AFGC (26. Satz.). Wenn der Punkt
H mit dem Mittelpunkte E der Seite BC
zusammenféllt (Fig. 17.), so werden nur
zwei gleiche rechtwinklige Dreiecke AF'D und
BDE entstehen, durch deren Verwechselung
man die Gleichheit der Oberflachen des Dreiecks
ABC und Vierecks AFEC nachweist. Wenn
endlich der Punkt H auflerhalb des Dreiecks
ABC fallt, (Fig. 18) der Perpendikel CG
folglich durch das Dreieck geht, so wird man
vom Dreiecke ABC' zum Viereck AFGC' iiber-
gehen, indem man das Dreieck FAD = DBH
hinzufiigt, und hierauf das Dreieck CGE =
EBH hinwegnimmt. Denkt man sich im sphéa-
rischen Vierecke AFGC' durch die Punkte A
und G, so wie durch F' und C' grofite Kreise
gelegt, so sind die Bogen derselben zwischen
AG und FC einander gleich, (15. Satz) mithin
auch die Dreiecke FFAC' und ACG congruent
(15. Satz.) und der Winkel FAC gleich dem
Winkel ACG.
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Hieraus folgt, dafl in allen vorhergehenden
Féllen die Summe aller drei Winkel des sphéa-
rischen Dreiecks gleich ist der Summe der bei-
den gleichen Winkel im Vierecke, mit Ausschlufl
der beiden rechten. Demnach kann man fir
jedes spharische Dreieck, in welchem die Summe
der drei Winkel S ist, ein Viereck mit gleicher
Oberflache finden, in welchem zwei rechte Win-
kel und zwei gleiche perpendiculédre Seiten sind,
und wo die beiden andern Winkel jeder 1/, .S ist.

Es sei jetzt ABCD (Fig. 19.) das sphé-
rische Viereck, wo die Seiten AB = DC' senk-
recht auf AB und die Winkel bei A und D
jeder 14, S.  Man verlangere die Seiten AD
und BC' bis sie sich in E schneiden, und wei-
ter jenseits E, mache DFE = FF und falle auf
die Verlangerung von B(C' den Perpendikel
FG. Den ganzen Bogen BG halbire man
und verbinde den Halbirungspunkt A durch
Bogen des grofiten Kreises mit A und F.
Die Dreiecke FF'G und DCFE sind congruent
(15. Satz.), mithin ist FG = DC = AB. Die
Dreiecke ABH und HGF sind ebenfalls con-
gruent, weil sie rechtwinklig sind und gleiche
Catheten haben, folglich gehoren AH und AF
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zu einem Kreise, der Bogen AHF ist gleich 7,
ADEF ebenfalls = m, der Winkel HAD =
HFE = YS — BAH = Y,8 — HFG =
YyS—HFE—-FEFG=1,S—HAD —n+,S,
folglich: Winkel HFE = Y, (S — ), oder was
dasselbe ist: gleich der Grofle des Ausschnitts
AHFDA, welche wiederum dem Dreiecke
ABCD gleich ist, wie man leicht sieht, wenn
man von dem einen zum andern iibergeht,
indem man zuerst das Dreieck EFFG und
alsdann BAH hinzufiigt, und darauf die ihnen
gleichen Dreiecke DCE und HFG wegnimmt.
Demnach ist Y5 (S — m) die Groe des
Vierecks ABC'D und zugleich auch die des
sphérischen Dreiecks, in welchem die Summe
der drei Winkel gleich S.

28) Wenn drei Ebenen sich in paral-
lelen Linien schneiden, so ist die Summe
der drei Flachenwinkel gleich zweien
Rechten.

Es seien AA", BB',CC’,(Fig. 20.) drei durch
die Durchschnitte von Ebenen gebildete Paral-
lellinien. (25. Satz.) Man nehme auf ihnen
willkiihrlich drei Punkte A, B, C, und denke
sich durch diese eine Ebene gelegt, welche folg-
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lich die Ebenen der Parallelen langs den ge-
raden Linien AB, AC und BC schneiden wird.
Ferner lege man durch die Linie AC' und ir-
gend einen Punkt D auf der Linie BB’, noch
eine Ebene, deren Durchschnitte mit den zwei
Ebenen der Parallelen! AA’ und BB’, CC’ und
BB’, die beiden Linien AD und DC er-
zeugt, und deren Neigung zur dritten Ebene
der Parallelen AA" und C'C" wir durch w be-
zeichnen wollen. Die Winkel zwischen den drei
Ebenen, in welchen die Parallelen liegen, sol-
len durch X, Y, Z, bezeichnet werden, in Be-
ziehung auf die Linien AA’, BB’ und CC’;
endlich seien die Linear Winkel BDC = a,
ADC = b, ADB = ¢. Um A als Mittelpunkt
denke man sich eine Kugelfliche beschrie-
ben, auf welcher die Durchschnitte der Geraden
AC, AD, AA’, mit derselben ein sphérisches
Dreieck bestimmen. mit den Seiten p, ¢ und
r, dessen Grofle o sein mag, und wo die Win-
kel: w der Seite ¢, X der seite r, und folg-
lich m + 2a — w — X der Seite p gegen-
tiber liegt, (27. Satz.). Auf gleiche Weise
schneiden CA, CD, CC" eine Kugeloberflache
um den Mittelpunkt C'; und bestimmen ein

Obvious misprint: prime is printed in wrong posi-
tion, and the first parallel line is referred to as AA,.
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Dreieck von der Gréfle 3, mit den Seiten p/,
¢, v und den Winkeln: w gegeniiber ¢, Z
gegeniiber 7/, und folglich = + 28 — w — Z
gegeniiber p’. Endlich wird durch die Durch-
schnitte einer Kugelflache um D mit den Linien
DA, DB, DC ein spharisches Dreieck bestimmt,
dessen Seiten [, m, n und die ihnen gegeniiber-
liegenden Winkel w + Z — 206, w + X — 2a,
und Y sind, dessen Grofle folglich 6 =
Y(X+Y +Z -7 —a—F+w Mit
der Abnahme von w vermindert sich auch die
Grofe der Dreiecke o und 3, dergestalt, dafl
a + B — w kleiner gemacht werden kann als
jede gegebene Zahl. Im Dreiecke ¢ konnen
die Seiten [ und m ebenfalls bis zum Ver-
schwinden verkleinert werden, (21. Satz.) folg-
lich kann das Dreieck 6 mit einer seiner Sei-
ten [ oder m auf einen grofiten Kreis der
Sphare so oft gelegt werden, als man nur
will, ohne dafl dadurch die Halfte der Sphére
ausgefiillt wiirde, mithin verschwindet § zu-
gleich mit w; woraus folgt, dafl nothwendig
X +Y + Z =7 sein muB.

29) Im geradlinigen Dreiecke tref-
fen sich die Perpendikel, welche in der
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Mitte der Seiten errichtet sind, ent-
weder nicht, oder sie schneiden sich alle
dreiin einem Punkte.

Vorausgesetzt in dem Dreiecke ABC' (Fig.
21.) schnitten sich die beiden Perpendikel ED
und DF, welche auf den Seiten AB und BC
in deren Mittelpunkten E und F errichtet sind,
im Punkte D, so zieche man innerhalb der Win-
kel des Dreiecks die Linien DA, DB, DC.

In den congruenten Dreiecken ADFE und
BDE (10. Satz.) ist AD = BD, ebenso folgt
auch, dal BD = CD; das Dreieck ADC ist
mithin gleichschenklig, folglich fallt der Perpen-
dikel vom Scheitel D auf die Grundlinie AC
gefallt, in den Mittelpunkt der letztern G.

Der Beweis bleibt unverandert auch in dem
Falle, wenn der Durchschnittspunkt D der bei-
den Senkrechten ED und FD in die Linie
AC selbst, oder auflerhalb des Dreiecks fallt.

Im Falle man also annimmt, dal zwei
jener Perpendikel sich nich schneiden, kann auch
der dritte nicht mit ihnen zusammentreffen.

30) Die Perpendikel, welche auf den
Seiten eines geradlinigen Dreiecks in
ihrer Mitte errichtet sind, miissen alle
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drei unter sich parallel sein, sobald als
der Parallelismus von zweien dersel
ben vorausgesetzt wird.

Es seien in dem Dreiecke ABC (Fig. 22.)
die Linien DFE, FG, HK senkrecht auf den
Seiten errichtet, in ihren Mittelpunkten D, F,
H. Wir wollen zuvorderst annehmen, daf3 die
beiden Perpendikel DE und F'G parallel seien,
welche die Linie AB in L und M schneiden
werden, und daf sich der Perpendikel H K zwi-
schen ihnen befinde. Innerhalb des Winkels
BLE ziehe man aus dem Punkte L beliebig
die gerade Linie LG, welche F'G irgendwo in
G schneiden mufl, wie klein auch immer der
Abweichungswinkel GLE sein mag. (16. Satz.)
Da im Dreiecke LGM der Perpendikel HK
nicht mit M G zusammentreffen kann, (29. Satz),
so muf} er also LG irgendwo in P schneiden,
woraus folgt, dafl HK parallel mit DE (16.
Satz.) und MG (18. und 15. Satz) sein mufl.

Setzt man die Seite BC' = 2a, AC' = 2b,
AB = 2c¢ und bezeichnet die diesen Seiten ge-
geniiberstehenden Winkel durch A, B, C, so
ist in dem so eben betrachteten Falle

A =11(b) — II(c)
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B =1I(a) — I(c)
C =1(a) + II(b)

wie man sich leicht tiberzeugt mit Hiilfe der
Linien AA’, BB', CC’, welche aus den Punk-
ten A, B, C parallel mit dem Perpendikel
HK und folglich mit den beiden andern Per-
pendikeln DE und F'G gezogen sind (23. und
25. Satz.).

Es seien jetzt die beiden Perpendikel H K
und F'G parallel, so kann der dritte DE sie
nicht schneiden (29. Satz.), mithin ist er ent-
weder parallel mit ihnen, oder er schneidet AA’.
Die letzte Annahme heifit nichts anderes, als
daB der Winkel C' > II(a) + II(b). Vermindert
man diesen Winkel, so daB er gleich I1(a)+I1(b)
wird, indem man dergestalt der Linie AC
die neue Lage CQ giebt, (Fig. 23.) und be-
zeichnet man die Grofle der dritten Seite
BQ durch 2¢, so mufl der Winkel C'BQ am
Punkte B, welcher vergrolert wurde, nachdem
was oben bewiesen ist, gleich II(a) — II(¢) >
II(a) — II(c) sein, woraus folgt ¢ > ¢
(23.  Satz.) Im Dreiecke ACQ find jedoch
die Winkel bei A und @ gleich, mithin muf}
im Dreiecke AB(Q der Winkel bei () gro-
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Ber sein als der am Punkte A, folglich ist AB
> BQ@ (9. Satz.); das heit es ist ¢ > .

31) Grenzlinie (Oricycle) nennen
wir diejenige in einer Ebene liegende
krumme Linie, fiir welche all Perpen-
dikel auf den Mittelpunkten der Seh-
nen errichtet under sich parallel sind.

In Uebereinstimmung mit dieser Definition
kann mann sich die Erzeugung der Grenzlinie
vorstellen, wenn man zu einer gegebenen Linie
AB (Fig. 24) aus einem in ihr gegebenen
Punkte A unter verschiedenen Winkeln C'AB
= II(a) Sehnen AC = 2a zieht; das Ende
C' einer solches Sehne wird auf der Grenz-
linie liegen, deren Punkte man so allmahlich
bestimmen kann. Der Perpendikel DFE auf
der Sehne AC' in deren Mitte D errichtet,
wird parallel mit der Linie AB sein, welche
wir Axe der Grenzlinie nennen werden.
Auf gleiche Weise wird auch jeder Perpendi-
kel FFG im Mittelpunkte irgend einer Sehne
AH errichtet, parallel mit AB sein, folglich
muf diese Eigenschaft auch jedem Perpendikel
KL iiberhaupt angehoren, welcher im Mittel-
punkte K irgend einer Sehne C'H errichtet ist,
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zwischen welchen Punkten C' und H, auf der
Grenzlinie diese auch gezogen sein mag. (30.
Satz.) Dergleichen Perpendikel miissen daher
ebenfalls ohne Unterscheidung von AB Axen
der Grenzlinie genannt werden.

32) Ein Kreis, dessen Halbmesser
wachst, geht in die Grenzlinie tiber.

Es sei AB (Fig. 25) eine Sehne der Grenz-
linie, man ziehe aus den Endpunkten A und
B der Sehne zwei Axen AC und BD, welche
folglich mit der Sehne zwei gleiche Winkel
BAC = ABD = « bilden werden, (31.
Satz.) Auf einer dieser Axen AC, nehme man
irgendwo den Punkt F als Mittelpunkt eines
Kreises an, und ziehe den Kreisbogen AF vom
Anfangspunkt A der Axe AC' bis zu seinem

Durchschnittspunkte F' mit der andern Axe BD.

Der dem Punkte F' entsprechende Halbmesser
FE des Kreises wird auf der einen Seite mit
der Sehne AF einen Winkel AFE = [ und
auf der andern Seite mit der Axe BD den
Winkel EFD = ~ bilden. Es ergiebt sich, daf3
der Winkel zwischen den beiden Sehnen BAF
=a—0 < f+7—a (22. Satz.), woraus
folgt: o — 3 < 14~. Da nun aber der Win-
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kel v sich bis zu Null vermindert, sowohl in
Folge einer Bewegung des Mittelpunkts £ in der
Richtung AC, wenn F verandert bleibt
(21. Satz.), als auch in Folge einer Annéhe-
rung von F' an B auf der Axe BF, wenn der
Mittelpunkt E in seiner Lage bleibt (22. Satz.),
so folgt, daBl mit einer solchen Verminderung
des Winkels ~ auch der Winkel o — (3, oder
die gegenseitige Neigung der zwei Sehnen AB
und AF, und mithin auch der Abstand des
Punktes B auf der Grenzlinie vom Punkte F
auf dem Kreise, verschwindet. Demnach kann
man auch die Grenzlinie einen Kreis mit
unendlich groBem Halbmesser nennen.

33) Es seien AA" = BB = z (Fig. 26.)
zwei nach der Seite von A zu A’ hin parallele
Linien, deren Parallelen den zwei Grenz-Bogen,
(Bogen auf zwei Grenzlinien), AB = s, A'B’
= ¢, als Axen dienen, so ist

s =se’”®

wo e unabhéngig ist von den Bogen s, s’ und von
Geraden z, dem Abstande des Bogens s’ von s.

Um dies zu beweisen, nehme man an, dafl
das Verhéltnifl des Bogens s zu s’ gleich sei
dem Verhaltnisse der beiden ganzen Zahlen n
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und m. Zwitschen den beiden Axen AA’, BB’
ziehe man noch eine dritten Axe CC’, welche
dergestalt von dem Bogen AB einen Theil
AC = t und vomn dem Bogen A’'B’ auf der-
selben Seite einen Theil A’C’ = t' abschnei-
det. Es sei das Verhaltnif des ¢ zu s gleich dem
der beiden ganzer Zahlen p und ¢, so daf3

s= g , b= P
m q

Man theile jetzt s durch Axen in ng glei-
cher Theile, so werden solcher Theile mqg auf
s’ und np auf ¢ sein. Inzwischen entsprechen
diese gleiche Theile auf s und ¢ ebenfalls glei-
chen Theilen auf s und t’, folglich hat man

s

t S
Wo demnach auch immer die beiden Bogen ¢
und t' zwischen den zwei Axen AA” und BB’
genommen sein mogen, stets bleibt das Verhalt-
nifl von ¢t zu t’ dasselbe, so lange der Abstand
x zwischen ihnene derselbe bleibt. Wenn man
daher fir x = 1, s = es’ setzt, so mufl fur

jedes x: .
s =se "

sein.
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Da e eine unbekannte Zahl und nur der
Bedingung e > 1 unterworfen ist, ferner die
Einheit der Linie fiir x beliebig angenommen
werden kann, so kann man dieselbe zur Ver-
einfachung der Rechnung so wahlen, daf§ unter
e die Basis der Neper’schen Logarithmen zu
verstehen ist.

Man kann hier noch bemerken, dal s = 0
flir x = oo, mithin vermindert sich nicht nur
der Abstand zwischen zwei Parallelen (24.
Satz.), sondern bei der Verldngerung der Pa-
rallelen nach der Seite des Parallelismus hin
verschwindet serselbe zuletzt ganz. Parallel-Li-
nien haben also den Character der Asymptoten.

34) Grenzflache (Orisphére) wird die-
jenige Oberflache genannt, welche ensteht durch
die Umdrehung der Grenzlinie um eine ihrer
Axen, die zugleich mit allen tibrigen Axen der
Grenzlinien auch Axe der Grenzflache sein wird.

Eine Sehne ist gegen solche durch
ihre Endpunkte gezogene Axen unter
gleichen Winkeln geneigt, wo auch im-
mer diese zwei Endpunkte auf der
Grenzflache genommen werden mogen.

Es seien A, B, C, (Fig. 27.) drei Punkte
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auf der Grenzoberfliche, AA’ die Drehungsaxe,
BB’ und CC’ zwei andere Axen, folglich AB
und AC Sehnen, gegen welche die Axen unter
gleichen Winkeln A’AB = B'BA, A'AC
= C'CA (31. Satz.) geneigt sind; zwei Axen
BB', CC" durch die Endpunkte der dritten
Sehne BC' gezogen, sind ebenfalls parallel und
liegen in einer Ebene (25. Satz). Ein Perpendi-
kel DD’ in der Mitte D der Sehne AB und der
Ebene der beide Parallelen AA’, BB’ errichtet,
mufl parallel mit den drei Axen AA’" BB’
CC" sein, (23. und 25 Satz.); ein eben solcher
Perpendikel EFE’ auf der Sehne AC in der
Ebene der Parallelen AA’, CC’ wird parallel
mit den drei Axen AA’, BB', CC’ und dem
Perpendikel DD’ sein. Es werde jetzt der Win-
kel zwischen der Ebene. in welcher die Paral-
lelen AA" und BB’ liegen. und zwischen der
Ebene des Dreiecks ABC durch Il(a) bezeich-
net, wo a positiv, negativ oder Null sein kann.
Ist a positiv, so errichte man F'D = a inner-halb
des Dreiecks ABC, und in der Ebene
desselben, senkrecht auf der Sehne AB in deren

Mittelpunkte D; ware a eine negative Zahl,
so mufl D = a auflerhalb des Dreiecks auf
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der andern Seite der Sehne AB gezogen wer-
den; wenn a = 0, so fallt der Punkt F mit
D zusammen. In allen Fallen entstehen zwei
rechtwinklige congruente Dreiecke AFD und
DFB, folglich ist FA = FB. Man errichte
jetzt in F" die Linie F'F’ senkrecht auf die Ebene
des Dreiecks ABC.

Da der Winkel D'DF = Il(a), DF = a,
so ist F'F' parallel mit DD’ und der Linie FE’,
mit welcher sie auch in einer Ebene liegt, die
senkrecht auf der Ebene des Dreiecks ABC' ist.
Denkt man sich jetzt in der Ebene der Paral-
lelen EE', FF', auf EF den Perpendikel
EK gefallt, so wird dieser auch senkrecht sein,
auf der Ebene des Dreiecks ABC' (13. Satz.)
und auf der in dieser Ebene liegenden Linie
AFE (11. Satz.), und demnach mufl AE, die
perpendicular auf FK und EFE’ ist, auch zu-
gleich senkrecht auf F'E sein. (11. Satz.) Die
Dreiecke AEF und FEC sind congruent, da
sie rechtwinklig sind und gleiche Catheten ha-
ben, mithin ist AFF = FC = FB. Ein Per-
pendikel aus des Spitze F' des gleichschenkligen
Dreiecks BFC' auf die Grundlinie BC' gefallt,
geht durch deren Mittelpunkt G'; eine Ebene
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durch diesen Perpendikel F'G und die Linie F'F’
gelegt, mufl senkrecht sein auf die Ebene des
Dreiecks ABC und schneidet die Ebene der Pa-
rallelen BB’, CC’ langs der Linie GG’, die
ebenfalls parallel mit BB’ und CC" ist (25.
Satz.); dan nun CG senkrecht auf F'G, und
mithin zugleich auch auf GG’, so ist folglich
der Winkel C"CG = B'BG. (23. Satz.)

Hieraus folgt, dafl fiir die Grenzflache jede
der Axen als Drehungsaxe betrachtet werden
kann.

Hauptebene werden wir jede Ebene nen-
nen, welche durch eine Axe der Grenzflache
gelegt ist. Demnach schneidet jede Haupt-
ebene die Grenzflache in der Grenzlinie, wéh-
rend fiir eine andere Lage der schneidenden
Ebene dieser Durchschnitt ein Kreis ist. Drei
Hauptflachen, die sich wechselseitig schneiden,
bilden unter einander Winkel, deren Summe
m is (28. Satz.) Diese Winkel werden wir
als Winkel im Grenzdreiecke betrachten, dessen
Seiten Bogen der Grenzlinie sind, welche auf
der Grenzflache durch die Durchschnitte mit den
drei Hauptflachen entstehen. Den Grenzdrei-
ecken kommt folglich dieselbe Abhéangigkeit der
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Winkel und Seiten unter sich zu, welche in der
gewohnlichen Geometrie fur die geradlinigen
Dreiecke bewiesen werden.

35) In der Folge werden wir die Grofle
einer Linie durch eninen Buchstaben mit beige-
setztem Accent, z. B. 2/, bezeichnen, um anzu-
deuten, dafldieselbe zu der einer andere Linie,
welche durch denselben Buchstaben ohne
Accent x dargestellt wird, eine Beziehung habe,
die durch die Gleichung

(z) + () = Yo

gegeben ist.

Es sei jetzt ABC (Fig. 28) ein geradlini-
ges rechtwinkliges Dreieck, wo die Hypothenuse
AB = ¢, die Catheten AC' = b, BC = a und
die ihnen gegeniiberliegenden Winkel BAC' =
[I(«), ABC = 1I() sind. Im Punkte A errichte
man die Linie AA" senkrecht auf die ebene des
Dreiecks ABC, und aus den Punkten B und
C ziehe man BB’ und CC’ parallel mit AA’.
Die Ebenen, in welchen diese drei Parallelen
liegen, bilden unter sich die Winkel: II(«) an
AA’ einen rechten an CC” (11. und 13. Satz.),
folglich II(«’) bei BB’ (28. Satz.).
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Die Durchschnitte der Linien BA, BC, BB’
mit einer Kugeloberflache, um der Punkt B
als Mittelpunkt beschrieben, bestimmen ein
sphérishces Dreieck mnk, worin die Seite mn
= II(c), kn = II(B), mk = I(a) und die ihnen
gegeniiberliegenden Winkel II(b), II(a/), Y,
sind.

Demnach mufl man mit der Eristens eines
geradlinigen Dreiecks dessen Seiten a, b, ¢, und
die gegeniiberliegenden Winkel I1(«), I1(3), Yo 7
sind, auch die eines sphérischen Dreiecks (Fig.
29) zulaBlen, mit den Seiten II(c), II(3), I1(a)
und den gegeniiberliegenden Winkeln TI(b),
[(a'), Yo

Bei diesen beiden Dreiecken bedingt aber
auch umgekehrt die Eristens des spharischen
Dreiecks wiederum die eines geradlinigen, wel-
ches folglich auch mit den Seiten a, o/, [,
und denen ihnen geneniiberliegenden Winkeln
('), II(c), Yy m sein kann.

Demnach kann man von a, b, ¢, «, 3, Uiber-
gehen zub, a, ¢, 3, « und auch zua, o/, 3,V c.

Man denke sich durch den Punkt A" (Fig.
28) mit AA’ als Axe eine grenzfliche gelegt,
welche die beiden andern Axen BB’, C'C’, in
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B” und C" schneidet, und deren Durchschnitte
mit den Ebene der Parallelen ein Grenzdreieck
bilden, dessen Seiten B"C” = p, C"A = g,
B"A = r und die ihnen geneniiberliegenden
Winkel II(«), II(a/), Y57 sind, und wo folglich
(34. Satz.):

p=rsinll(a), ¢=rcosll(a).

Man hebe jetzt langs der Linie BB’ die
Verbindung der drei Hauptflichen auf und
schlage dieselben as einander, dafl sie mit allen
in ihnen befindlichen Linien in eine Ebene zu
liegen kommen, wo folglich die Bogen p, gq,
r sich zu einem einzigen Bogen einer Grenz-
linie vereinigen werden, die durch den Punkt
A geht und AA’ zur Axe hat, dergestalt, dafl
auf der einen Seite liegen werden: die Bogen
g und p, die Seite b des Dreiecks, die in A
senkrecht auf AA" ist, die Axe C'C’, von der
Spitze von b parallel mit AA” und durch C”
dem Vereinigungspunkte von p und ¢ gehend,
die Seite a senkrecht auf C'C’ im Punkte C,
und aus dem Endpunkte derselben die Axe BB’
parallel mit AA’, die durch den Endpunkt B”
des Bogens p geht. Auf der andern Seite
von AA’ werden liegen: die Seite ¢ senkrecht
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auf AA" im Punkte A, und die Axe BB’ pa-
rallel AA’, vom Endpunkte von b aus durch den
Endpunkt B” des Bogens r gehend. Die
GroBe der Linie CC" hangt von b ab, welche
Abhéngigkeit wir durch CC” = f(b) ausdriikken
wollen. Auf gleiche Weise wird BB" = f(c)
sein.  When man CC” als Axe nehmend eine
neue Grenzlinie vom Punkte C' aus bis zu
ihrem Durchschnittspunkte D mit der Axe BB’
be schreibt, und den Bogen C'D mit ¢ bezeich-
net, so ist BD = f(a), BB” = BD + DB" =
BD + CC” folglich

fe) = f(a) + F(b).
Auflerdem bemerken wir, dafl (32. Satz.)
t =pe!® = rsinTl(a) e/®.

Wenn der Perpendikel auf die Ebene des
Dreiecks ABC' (Fig. 28.) anstatt im Punkte
A in B errichtet worden ware, so wirden die
Linien ¢ und r dieselben geblieben sein, die
Bogen ¢ und ¢t wiirden sich in ¢t und ¢, die
Geraden a und b in b und a und der Winkel
[I(«) in II(() verdndern, folglich hatte man

q = rsinll(G) /@

woraus folgt, indem man den Werth von ¢
substituirt
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cosI(a) = sinI1(3) /@

und indem man « und G in & und ¢ ver-

andert:
sin IT(b) = sin IT(c) /@

ferner durch Multiplikation mit e/(®

sinTI(D) e/® = sinTI(c) e/
Hieraus folgt auch

sinTl(a) ef@ = sin I1(b) e/ ®
Da nun aber die Geraden a und b von ein-
ander unabhéngig sind, und auserdem f(b) = 0,
II(b) = Yom fiir b = 0, so ist fiir jede gerade
Linie a e~ 7@ = sin [I(a)
demnach:

sinII(c) = sinIl(a) sin I1(b)

sinI1(3) = cos () sin TI(a)
Hieraus erhalt man noch durch Veranderung
der Buchstaben:

sinII(a)) = cosII(B) sin I1(b)

cosI1(b) = cosIl(c) cos IT(av)

cosII(a) = cosIl(c) cos II(B)
Wenn man im spharischen rechtwinkligen
Dreiecke (Fig. 29.) die Seiten II(c), TI(5),

[I(a), mit gegeniiberliegenden  Winkeln
I1(b), II(«/) durch die Buchstaben a, b, c,
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A, B bezeichnet, so nehmen die gefundenen
Gleichungen die Form derjenigen an, welche
man bekanntlich in der spharischen Trigonome-
trie fiir rechtwinklige Dreiecke beweist, namlich:

sina = sinc sin A
sinb =sinc sin B
cos A = cosa sin B
cos B = cosb sin A

cosc = cosa cosb

von welche Gleichungen man ubergehen kann
zu denen fiir alle spharische Dreiecke tiberhaupt.
Demnach hangt die spharische Trigonometrie
nicht davon ab, ob in einem geradlinigen Drei-
ecke die Summe der drei Winkel gleich sei zweien
Rechten oder nicht.

36) Wir wollen jetzt auf’s Neue das recht-
winklige geradlinige Dreieck ABC' (Fig. 31.)
betrachten, in welchem die Seiten a, b, ¢, und
die gegeniiberliegende Winkel II(«a), II(3),
Yo7 sind. Man verlangere die Hypothenuse
¢ iber den Punkt B hinaus, und mache BD
= (; im Punkte D errichte man auf BD die
Senkrechte DD’ welche folglich parallel sein
wird mit BB’, der Verlangerung der Seite a
jenseits des Punktes B. Aus dem Punkte A

ol

ziche man noch mit DD’ die Parallele AA’
welche zugleich auch parallel mit C'B’ ist, (25.
Satz.) deshalb ist der Winkel A’AD = II(c+ (),
A'AC =TI(b) folglich

I1(b) = II(c) + II(c + 5).

Wenn man ( von B aus auf die Hypo-
thenuse ¢ triagt, hierauf im Endpunkte D (Fig.
32.) innerhalb des Dreiecks auf AB die Senk-
rechte DD’ errichtet, und aus dem Punkte A
mit DD’ die Parallele AA" zieht, so wird BC'
mit ihrer Verldngerung C'C’ die dritte Paral-
lele sein; alsdann ist: Winkel CAA" = TI(b),
DAA" =TlI(c — () folglich

M(c — B) = I(a) + IL(b)

Diese letzte Gleichung ist auch dann noch
glltig, wenn ¢ = [ oder ¢ < 3. Wenn ¢ =
B (Fig. 33.), so ist der Perpendikel AA" im
Punkte A auf AB errichtet parallel der Seite
BC = a mit ihrer Verldngerung C'C’, folglich
ist (o) + I(b) = 1YY4ym, wiahrend auch
[I(c — B) = Yym. (23. Satz.) Wenn ¢ < (3,
so fallt das Ende von [ jenseits des Punktes
A in D (Fig. 34.) auf die Verldngerung der
Hypothenuse AB. Der hier auf AD errichtete
Perpendikel DD’ und die ihm aus A parallele
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Linie AA’" wird ebenfalls parallel der Seite
BC = a mit ihrer Verlangerung CC’ sein.
Hier ist der Winkel DAA" = II(5 — ¢) folg-
lich (a) 4+ II(b) = 7 — II(B — ¢) = (c — ()
(23. Satz.)

Die Verbindung der beiden Gefundenen Glei-
chungen giebt:

211(b) = I1(
211(a)= TI(
woraus folgt

cosTI(b)  cos[VoTl(c — B) + Yo II(c + 3)]

—0) +1(c+ p)

C
C

cosTi() — cos[oTI(c — B) — Yy TI(c + 3)
Substituirt man hier den Werth, (35. Satz.)
cosTI(b)
cosTI(a)

so ergiebt sich
tan? Y, I(c) = tan Yo II(c — B) tan Yo I(c + )

Da hier ( eine beliebige Zahl ist, weil der
Winkel I1() an der einen Seite an ¢ beliebig
genommen werden kann zwischen den Grenzen
0 und 4, m, folglich § zwischen den Grenzen
0 und oo, so wird man folgern, indem man
der Ordnung nach § = ¢, 2¢, 3¢ u. s. w.
setzt, daf} flir jede positive Zahl n:

tan™ 1, I1(c) = tan ', I1(nc)

= cosII(c)
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Betrachtet man n als das Verhaltnifl zweier
Linien x und ¢ und nimmt man an, dafl

cot Y5 Il(c) = e°

so findet man fiir jede Linie z im Allgemei-
nen, sie sei positiv oder negativ,

tan Yy Il(z) = e™°

wo e jede beliebige Zahl sein kann, die grofler
als die Einheit ist, weil II(z) = 0 fiir x = co.

Da die Einheit wodurch die Linien gemes-
sen werden, beliebig ist, so kann man unter e
auch die Basis der Neper’schen Logarithmen
verstehen.

37) Von den oben (35. Satz.) gefundenen
Gleichungen ist es hinreichend, die zwei fol-
genden zu kennen

sinII(c) = sinIl(a) sin I1(b)
sin I1(a) = sin I1(b) cos I1(3)
indem man die letzte auf beide Catheten a und
b bezieht, um aus ihrer Verbindung die iibri-
gen zwei (35. Satz.) herzuleiten, ohne Zwei-
deutigkeit der algebraischen Zeichen, da hier
alle Winkel spitze sind. Auf dhnliche Weise
gelangt man zu den zwei Gleichungen:
1. tanIl(c) = sinIl(«) tan I1(a)
2. cosll(a) = cosIl(c) cos II(3)
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Wir wollen jetzt ein geradliniges Dreieck
betrachten, dessen Seiten a, b, ¢ (Fig. 35.)
und die ihnen gegeniiberliegenden Winkel A, B,
C sind. Wenn A und B spitze Winkel sind,
so fallt der Perpendikel p aus der Spitze des
Winkels C' innerhalb des Dreiecks und theilt
die Seite ¢ in zwei Theile, und zwar in den
Theil = auf der Seite des Winkels A, und
¢ — x auf der Seite des Winkels B. Dergestalt
entstehen zwei rechtwinklige Dreiecke, fiir
welche man durch Unwendung der Gleichung 1.,
erhalt:

tanIl(a) = sin B tanIl(p)

tanI1(b) = sin A tan I1(p)
welche Gleichungen unverandert bleiben, wenn
auch einer der Winkel, z. B. B, ein rechter

(Fig. 36.) oder ein stumpfer (Fig. 37.) wére.
Demnach hat man allgemein fiir jedes Dreieck

3. sin Atanll(a) = sin B tanII(b)

Fiir ein Dreieck mit spitzen Winkeln A, B,
(Fig. 35.) hat man auch noch (2. Gleichung)

cosII(z) = cos A cosTI(b)
cosII(c — ) = cos B cosIlI(a)

welche Gleichungen sich auch auf Dreiecke be-
ziehen, in denen einer der Winkel A oder B

%)

ein rechter oder stumpfer ist. Zum Beispiel
fir B = Y,m (Fig. 36.) muf z = ¢ genom-
men werden, die erste Gleichung geht dann in
diejenige iiber, welche wir oben gefunden ha-
ben (2. Gleichung), die andere aber wird von
selbst erfiillt. Fir B > Y, 7 (Fig. 37.) bleibt
die erste Gleichung unverandert, statt der zwei-
ten aber mufl man entsprechend schreiben:

cosIl(z — ¢) = cos(m — B) cosl(a)

es ist aber cosIl(x — ¢) = —cosIl(c — x)
(23. Satz.), und auch cos(m — B) = — cos B.
Wenn A ein rechter oder stumpfer Winkel ist,
so mufl statt x und ¢ — x gesetzt werden
¢ —x und x, um diesen Fall auf den frithern
zuriickzufiihren.

Um z aus beiden Gleichungen zu elimini-
ren, bemerken wir, dafl (36. Satz.)

cosIl(c — z)
1 —tan? 1, I(c — x)

1 + tan® 1, TI(c — z)
2z—2c

l1—e
1 — tan? 1, TI(c) cot? 1/, ()
1 + tan? 1, TI(c) cot? Y, TI(z)
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_ cos II(c) — cosI(x)
1 — cosIl(c) cosII(x)

Substituirt man hier den Ausdruck fiir cos I1(z),

cosII(c — z), so erhdlt man:

cosII(a) cos B + cosII(b) cos A
1 4 cosII(a) cos II(b) cos A cos B

cosIl(c) =

woraus folgt:

cosII(c) — cos A cosII(b)
1 —cos AcosII(b) cosII(c)

cosIl(a)cos B =

und entlich

sin?II(c) = [1 — cos B cosII(c) cos I1(a)]
X [1 — cos AcosII(b) cosII(c)]
Auf &hnliche Weise mufl auch sein:
4. sin*M(a) = [1 — cos C cosII(a) cos TI(b)]
X [1 — cos B cosIl(c) cosII(a)]
sin? II(b) = [1 — cos A cos I1(b) cos II(c)]
X [1 — cos C cosII(a) cos TI(b)]
Aus diesen drei Gleichungen findet man noch:
sin? I1(b) sin® I(c)
sin? I(a)
— [1 — cos A cos II(b) cos II(c)]?

Hieraus folgt ohne Zweideutigkeit der Zeichen:
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5. cos AcosII(b) cosII(c)

sinI1(b) sinIl(c)
* sinIl(a) =1

Substituirt man hier den Werth von sinII(c)
tibereinstimmend met der Gleichung (3.)

sin A
inll(c) = II II
sin I1(c) e tan I1(a) cos I1(c)
so erhélt man
cosII(c)
cosII(a)sinC

~ sin Asin I1(b) 4 cos Asin C' cosI1(a) cos I1(b)

aber indem man diesen Ausdruck fiir cosII(c)
in die Gleichung (4) substituirt:

cos I1(b)

6. cot AsinC'sinIl(b) + cosC = g

Durch Elimination von sinIl(b) mit Hiilfe
der Gleichung (3) kommt:
cosII(a) cos A

P s C =1 —
cosI1(b) o8 sin B

sin C'sin [1(a)

Inzwischen giebt die Gleichung (6) durch
Veranderung der Buchstaben:
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cosII(a)
cos I1(b)
Aus den beiden letzten Gleichungen folgt:

= cot Bsin C'sinIl(a) 4 cos C

sin Bsin C

7. cosA4cosBcosC = sin T1(a)

Alle vier Gleichungen fiir die Abhéangig-
keit der Seiten a, b, ¢, und der gegeniiber-
liegenden Winkel A, B, C, im geradlinigen
Dreiecke werden demnach sein [Gleich (3), (5),

(6), (7)]:
(sin AtanII(a) = sin B tan TI(b)
cos A cosII(b) cos I1(c) +

sin I1(b) sin I1(c) _q
8. sinTI(a)

cos I1(b)
cosII(a)

in Bsin C
cos A + cos BecosC = |me Sl
L sinI1(a)

cot Asin C'sinTI(b) 4 cos C' =

Wenn die Seiten a, b, ¢ des Dreiecks sehr
klein sind, so kann man sich begniigen mit den
gendherten Bestimmungen. (36. Satz.)

99
cot I1(a)
sinI1(a)
cosII(a)

a
1—Y,a?

a

und auf dhnliche Weise auch fir die anderen
Seiten b und ¢. Die Gleichungen 8. gehen fiir
solche Dreiecke under in folgende:

bsin A = asin B

a® = b* 4+ ¢ — 2bccos A
asin(A+C) =bsinA
cos A+ cos(B+C) =0

Von diesen Gleichungen sind die beiden
ersten in der gewohnlichen Geometrie ange-
nommen ; die beiden letzten fithren mit Hiilfe
der ersten zu dem Schlusse

A+B+C=m.

Demnach geht die imagindre Geometrie in die
gewOhnliche tiber, wenn man voraussetzt, dafl
die Seiten eines geradlinigen Dreiecks sehr klein
sind.

Ueber die Ausmessung der krummen Li-
nien, der ebenen Figuren, der Oberflachen und
des Inhalts der Korper, so wie iiber die An-
wendung der imaginaren Geomtrie auf die
Analysis, habe ich  Untersuchungen in

313



60

den ,,Gelehrten Geschriften der Universitat Ka-
san” veroffentlicht.

Die Gleichungen (8.) gewéhren fiir sich selbst
schon eine hireichende Grundlage, um die
Voraussetzung der imagindren Geometrie als
moglich anzusehen. Demnach giebt es kein
anderes Mittel als die astronomischen Beobach-
tungen zu Hiilfe zu nehmen, um iiber die Ge-
nauigkeit zu urtheilen, welche den Berechnun-
gen der gewonlichen Geometrie zukommen.
Diese Genauigkeit erstreckt sich, wie ich in einer
meiner Abhandelungen gezeigt habe, sehr weit,
so daB z. B. in Dreiecken, deren Seiten fiir
unsere Ausmessungen zuganglich sind, die Sum-
me der drei Winkel noch nicht um den hun-
dertsten Theil einer Secunde von zwei Rech-
ten verschieden ist.

Es ist noch bemerkenswerth, daf3 die vier
Gleichungen (8.) der ebenen Geometrie in die
Gleichungen fiir spharische Dreiecke tibergehen,
wenn man statt der Seiten a, b, c¢ setzt:
av/—1, b\/—1, ¢y/—1, mit dieser Verinderung
mufl man aber folglich auch setzen:

1
cosa

sinll(a) =
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cosIl(a) = vV—1tana
1
sina+/—1

und auf ahnliche Weise auch fiir die Seiten
b und c¢. Dergestalt geht man von den Glei-
chungen (8.) iiber zu den folgenden:

tanIl(a) =

sin Asinb = sin Bsina
cosa = cosbcosc + sinbsinccos A
cos AsinC 4+ cosC cosb =sinbcota

cos A = cosasin Bsin C — cos BcosC
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