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Abstract

Morphological, physiological and growth effects of acute chlorine gas (CI2) 
exposure were examined over three growing seasons in Western Montana, Rocky 
Mountains, USA for two conifer species, Pinus ponderosa and Pseudotsuga menziesii. 
Acute damage symptoms after exposure consisted of chlorosis, necrosis, necrotic 
mottling, and defoliation. Cuticles o f exposed P.menziesii needles and needles that flushed 
after Cl2 exposure were more wettable. Moreover, foliage of both species had higher 
cuticular transpiration rates and lower total water content compared to control foliage, up 
to one year after exposure. Lower photosynthetic efficiencies, measured as Fv/Fm ratios, 
were observed for exposed foliage five months after exposure. Foliage on trees that 
flushed two months after CI2 exposure had higher foliar injury and lower needle longevity 
compared to controls, suggesting higher susceptibility to secondary stress factors.
Exposed trees also had lower annual stem increment growth and cone production. Higher 
tree mortality was observed for P.menziesii but not for P.ponderosa.

Saplings of two poplar species, Populus Euramericana Robusta and Populus 
nigra Brandaris, and P.menziesii, were exposed to ozone (O3) concentrations 
characteristic for growing seasons in urban areas and high elevations. Ozone exposure 
increased leaf wettability o f poplars only temporarily, but increased cuticular transpiration 
of P.Euramerieana. Both poplar species had lower foliar biomass in the ozone treatments 
compared to controls because o f lower leaf growth and higher leaf abscission. Ozone 
effects on P.menziesii were limited to increased leaf wettability, which can affect ozone 
deposition and gas exchange. Leaf surface wetness, in the form of simulated dew, rain and 
mist, increased ozone deposition to poplar leaves l.S-S times. This increase was the result 
of lower ozone deposition due to stomatal closure, and ozone deposition to water present 
on leaf surfaces. Leaf surface wetness also decreased photosynthesis and CO2 emissions in 
dark conditions.

This research has shown that acute CI2 exposure and chronic ozone exposure 
caused similar morphological, physiological and growth effects on trees, although ozone 
effects were less severe. Both pollutants may have long-term impacts on drought tolerance 
and growth of coniferous and deciduous trees. However, responses were highly dependent 
on species, both for conifers and deciduous trees.
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CHAPTER 1
Introduction: Effects of strong oxidative air pollutants on plants

Humans have a long history of causing air pollution. Especially since the industrial 

revolution at the end of 1800’s, not only has the production volume of goods dramatically 

increased, but so have emissions of air pollutants. At the modem day levels of emission, 

negative impacts of air pollutants have been observed and documented. The scale at 

which adverse effects of air pollution on vegetation are observed varies from the local to 

regional and global scales. For example, at a very local scale, emissions from a copper 

smelter in Anaconda, Montana, USA, led to severe damage to the surrounding coniferous 

forests in the form of foliar injury, reduced growth rates, increased levels of heavy metals 

in the forest ecosystem, and high tree mortality (Carlson, 1978; Bissell, 1982).

Air pollutants that affect vegetation on a regional scale include, for example, acid

rain and photochemical smog. The main sources of acidifying air pollutants such as SOi

(sulfur dioxide), NO* (nitrogen oxides) and NH3 (ammonia) are industry, vehicular

combustion of fossil fuels, and agriculture, respectively (Schreuder, 1995; Stanners and

Bourdeau, 1995). The main component of photochemical air pollution is ozone (Cape,

1997). Air pollutants, such as add deposition and photochemical smog have been

reported to cause crop damage (e.g., MacKenzie and El-Ashry, 1989), and they may play

a role in the forest decline phenomenon that has been observed in the United States

(Chappelka and Samuelson, 1998), and Western and Central Europe (McLaughlin, 1985;

Smith and Lefohn, 1991; Stanners and Bourdeau, 1995). Although the severity and extent

of forest decline has been lower than was initially predicted (Kandler and Innes, 1995),
I

Reproduced with permission o fthe copyright owner. Further reproduction prohibited without permission.



large scale inventories show a general worsening of forest conditions in many parts of 

Europe (Lorenz, 199S). It is believed that air pollution predisposes trees to environmental 

stress factors (McLaughlin, 1985; Tomlinson and Tomlinson, 1990) such as drought 

stress (Schmieden and Wild, 1995; Chappelka and Freer-Smith, 1995), frost damage 

(Chappelka and Freer-Smith, 1995), nutrient deficiencies (Schmieden and Wild, 1995), 

and insect damage (e.g., Cannon, 1993).

Current examples of air pollutants leading to changes at a global level include 

increased concentrations of carbon dioxide (CO2) in the troposphere and in the 

stratosphere and CFC’s which influence stratospheric ozone levels. Higher COi 

concentrations in the troposphere, the atmospheric layer between the earth’s surface and 

the stratosphere, have been correlated with a slow increase in the temperatures at the 

earth’s surface, referred to as the greenhouse effect (ICCP, 1995). This may result in 

drastic climate changes and shifts in the growth rates and distribution of vegetation 

(Winnett, 1998). Stratospheric ozone concentrations have been reported to be decreasing, 

which may lead to higher levels of UV-B radiation at the earth’s surface, and subsequent 

adverse effects on public health (Burnett et al., 1997; Kunzli et al., 1997) and vegetation 

(Bames et al., 1996).

In an effort to increase our understanding of the role of air pollution in forest 

health, this dissertation will focus on the effects of two strong oxidative air pollutants, 

chlorine gas and ozone, on physiological processes and growth of trees. These two 

pollutants have their influences at different scales. Chlorine exposure is generally caused 

by accidental releases, and effects are acute and observed on a local scale. Ozone
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3
exposure is chronic in many regions of the world, and the adverse effects on vegetation 

is considered to influence vegetation at a regional scale.

Chlorine gas

Chlorine gas (Cb), produced electrolytically from sediment salts and seawater 

(Compaan, 1992), is widely used in the synthesis of an array of organic products (e.g., 

Poly vinyl carbon plastics; Compaan, 1992; Westervelt and Roberts, 1995), as well as for 

bleaching pulp and paper, treatment and disinfection of (drinking) water, and in the 

pharmaceutical industry (Faust and Aly, 1983; Richardson et al., 1996; Yosie, 1996). 

Chlorine has a green-yellowish color, is about 2.5 times denser then air, and is 

moderately soluble in water. It usually is transported in refridgerated tanks as a its liquid.

Accidents involving chlorine gas releases are not uncommon. For example, an 

evaluation of the Hazardous Substances Emergency Events Surveillance System over the 

period of 1990-1992 reported 138 accidental releases involving chlorine gas in nine states 

in the USA (Hall et al., 1996). About 25 % of these accidents involved human injuries 

and about 30 % led to evacuations. Since the production volume of chlorine gas is 

expected to increase over the next decade (Westervelt and Roberts, 1995), the risk of 

accidents with chlorine gas will likely increase.

Chlorine gas is highly toxic to humans as well as vegetation. Human exposure to 

chlorine gas causes irritation to eyes, nose and airways, and severe damage to the 

respiratory system (Baxter, Davies and Murray, 1989; Griffiths and Megson, 1984; 

Whithers and Lees, 1985). Health effects on the respiratory and nervous system can
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4
persist over many years (Baxter et al., 1989). The IDLH concentration (= immediately 

dangerous to life and health) of chlorine gas is 30 ppm (Singh, 1990).

In comparison to human health effects, relatively little is known about the effects 

of chlorine gas on vegetation. A few studies following accidental chlorine leaks and spills 

have been reported (Brennan, Leonne and Holmes, 1969), whereas only a few controlled 

studies have been carried out (Brennan, Leonne and Daines, 19S6 and 1966; Griffith and 

Smith, 1990). Reported morphological effects of chlorine gas exposure on broadleaved 

and coniferous plant species consisted of chlorosis (bleached appearance of leaves), 

necrosis (death of tissues), and necrotic mottling (Brennan et al., 1965; Brennan et al., 

1969; Heck, Daines and Hindawi, 1970; Vijayan and Bedi, 1989). These symptoms are 

similar to those caused by acid rain and mist (Forsline, Dee and Melious, 1983; Whitney 

and Ip, 1991). In conifers, necrosis occurs as tipbum, an orange-brown coloring 

extending from the tip to the base of the needle (Brennan et al., 1966). Foliar injury due 

to chlorine gas exposure has been reported at concentrations as low as 0.1-1.5 ppm Cl: 

after exposures of 4 to 24 hr (Brennan et al., 1965; Griffith and Smith, 1990). Leaf tissue 

pH values as low as 1.0 were observed after exposure of tomato plants to 63 -1000 ppm 

Cl: over 16 hr, and indirect effects may occur due to acidification of the soil (Thornton 

and Setterstrom, 1940). Pine trees seem to be more resistant to chlorine gas exposure than 

most herbaceous species (Brennan et al., 1966). Older and middle-aged conifer foliage 

was more sensitive to chlorine gas exposure than young foliage (Brennan et al., 1965; 

Griffith and Smith, 1990); branches generally were not killed by chlorine gas exposure 

(Brennan et al., 1966).
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5
In contact with water hydrochloric acid (HC1) and hypochlorous acid (HOC1 or 

bleach; pKa= 7.58 at 20°C) are formed:

Clz + H20  ► H* + Cl* + HOC1

This is a disproportonation reaction, leaving one Cl atom in a oxidation state o f-1 , and 

the other, i.e. the atom in HOC1, o f+1. Plant injury can occur by several mechanisms. 

Although chloride ions (CO are a natural component of plant cells, accumulation of 

chloride ions in cell tissues can be toxic to plants (e.g. FUrher and Erisman, 1980).

Second, exposure to hydrochloric and hypochloric acid may lead to a highly acidic 

solution in the apoplast, that disrupts the pH regulation of cells. Moreover, at very low 

pH, FT ions may compete with the Mg2+ ions present in chlorophyll. This may explain 

the chlorosis symptoms that are often observed after exposure to chlorine gas. Finally, 

HOCL, or bleach, is a strong oxidant in its dissociated form, that can injury several 

biochemically important molecules in plant cells.

Long-term effects of acute chlorine exposure on physiological functions such as 

tree water balance, water loss through the stomata or cuticle, photosynthesis, and growth 

have not been reported (e.g., Figure 1.1). The leaf cuticle is a complex mixture of waxes 

that acts as a barrier against excessive water loss and pathogen infection (Martin and 

Juniper, 1970; Cutler, Alvin and Price, 1982; Kerstiens, 1996). When stomates are open, 

water loss via the cuticle is generally a very small fraction of total leaf conductance (van 

Hove, 1989; Kerstiens and Lendzian, 1989b). However, cuticular water loss may be a 

significant fraction of total leaf conductance during summer drought when the stomates 

tend to be closed (e.g., Mengel, Hogrebe and Esch, 1989), and in winter conditions 

(Barnes and Davison, 1988). Cuticular water loss during winter is important because
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water evaporated from foliage during clear winter days cannot be replaced when soil 

and stem water are frozen (Sowell, Koutnik and Lansing, 1982). Cuticular water loss 

during winter has been found to be an important factor in high altitude forests, especially 

because trees at timberline often are exposed to high wind speeds and ice abrasion, which 

enhances cuticular erosion (Baig and Tranquillini, 1976 and 1980; Sowell et al., 1982; 

Hadley and Smith, 1989). Cuticular characteristics can be changed by environmental 

factors such as low water availability, abrasion by rain and wind (Bengtson, Larsson and 

Liljenberg, 1978; Svenningsson and Liljenberg, 1986; GUnthardt-Gdrg, 1994), as well as 

air pollutants. Evans, Gmur and Kelsch (1977) reported damage to cuticles of bean leaves 

after exposure to simulated acid rain, although acid rain did not seem to affect cuticles of 

birch and bean plants (Paparazzi and Tukey, 1984). Foliar injury of bean leaves exposed 

to HC1 decreased with increasing amounts of cuticular waxes (Swiecki, Endress and 

Taylor, 1982). Chlorine gas would be expected to have similar effects to HC1 on cuticles, 

because of the strong acid solutions that Ch forms in water.

Chlorine gas exposure also may affect photosynthesis and growth. Exposure to 

acid mist is well known to decrease rates of photosynthesis (Roberts, 1990; Velikova and 

Yordanov, 1996; Velikova et al., 1997; Momen, Anderson and Helms, 1999), as well as 

photosynthetic capacity (measured as Fv/Fm ratios; FUhrer et al., 1990; Velikova and 

Yordanov, 1996). For example, irreversible damage to photosynthetic capacity was 

reported when Phaseolus vulgaris was exposed to mist of pH <2.0 (Velikova et al.,

1997). Chrome chlorine exposure led to lower photosynthetic biomass, fruit yield, 

chlorophyll content, protein content and carbohydrate content in exposed fruit trees in 

India. These symptoms were accompanied by higher foliar chloride concentrations
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(Vijayan and Bedi, 1989). In conifers, necrotic foliage generally defoliated (e.g., Heck 

et al., 1970; Chapter 2, this dissertation), causing significant declines of photosynthetic 

biomass. This can result in decreases in height growth (Carlson, McCaughey and 

Theroux, 1988; Salemaa and Jukola-Sulonen, 1990; Krause and Raffa, 1996), annual 

stem increment growth (Vosko and Klubica, 1992; Christiansen and Fjone, 1993; Krause 

and Raffa, 1996), and total biomass (Krause and Raffa, 1996; Sanchez and Wagner,

1999).

Ozone

Ozone (O 3) is present naturally in the troposphere, the part of the atmosphere 

between the earth’s surface and the stratosphere. Tropospheric ozone is generated 

predominantly by photochemical processes, i.e., under the influence of solar radiation 

(Krupa and Manning, 1988). Chemical precursors of tropospheric ozone are nitrogen 

oxides and volatile organic carbons. These trace gasses occur naturally in the atmosphere, 

but are generated to a much larger extent by human activities such as car traffic, power 

generation, and solvent use (Krupa and Manning, 1988; Stanners and Bourdeau, 199S). 

Tropospheric ozone concentrations have increased substantially over the last century and 

are expected to increase by -0.3 to 1 % per year over the next SO years (Thompson,

1992). Ambient ozone concentrations observed in many parts of Europe and the United 

States are high enough to cause damage to natural vegetation and crops (Cooley and 

Manning, 1987; Reich, 1987; Krupa and Manning, 1988; Smith, 1990; Lefohn and 

Lucier, 1991; Lefohn, 1992; Scheel et al., 1997a).
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Toxic effects of ozone on plants were first reported in agricultural areas near 

Los Angeles, where significant crop injury was found beginning in the 1950’s (Heck, 

1968). Acute ozone exposure caused foliar injury symptoms such as bronzing, chlorosis, 

and necrosis of plant tissues (Rich, 1964; Hill, Heggestad and Linzon, 1970; Krupa and 

Manning, 1988). Chronic exposure to ozone also reduced growth, yield, and quality of 

crops (Heck, 1968; Laurence and Weinstein, 1981; MacKenzie and El-Ashry, 1989). 

Moreover, ozone is considered one of the primary air pollutants playing a role in forest 

decline in Europe and the United States (Schmieden and Wild, 1995; Reich, 1987; 

Chappelka and Samuelson, 1998).

Ozone enters plants mainly via stomatal pores (Figure 1.1; Wieser and Havranek, 

1993; Neubert et al., 1993; Fredericksen et al., 1996). In the stomatal cavity, ozone reacts 

with the aqueous phase (Laisk ,Kull and Moldau, 1989; Alscher, Donahue and Cramer, 

1997). The breakdown products of these reactions are strong oxidants, and tend to 

interfere with plant membranes (Paakkonen et al., 1995; Anttonen, Sutinen and Heagle, 

1996) and plant metabolism (Sandermann, 1996). Ozone injury starts with the collapse of 

mesophyll and guard cells (Glinthardt-Gdrg et al., 1993), which can cause increased 

stomatal opening during the daytime and incomplete stomatal closure at night (Hassan, 

Ashmore and Bell, 1994). Thus, ozone exposure can increase plant susceptibility to 

drought (Maier-Mdrcker and Koch, 1992; Hassan et al., 1994; Maier-Mdrcker 1999;).

Ozone exposure has been reported to cause decreased rates of photosynthesis 

(Darrall, 1989; Grtinhage and Jdger, 1994; Van Hove and Bossen, 1994; Mikkelsen,

1995; P&lkkonen et al., 1998d; Kytoviita et al., 1999; Yun and Laurence, 1999), and 

increased rates of respiration in plants (Reich, 1983; Skarby, Troeng and Bostrom, 1987;
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Piiakkonen et al., 1995; Matyssek et al., 1997; Maurer et al., 1997). Chronic exposure to 

ozone led to increased shoot to root ratios for some species of plants, and often to lower 

total plant biomass (Darrall, 1989; Pell, Schlagnhaufer and Arteca, 1994; Rennenberg, 

Herschbach and Polle, 1996). Carbon allocation to other sinks, such as flowers and seeds, 

also can be decreased by ozone (Cooley and Manning, 1987). For example, ozone 

exposure reduced height and stem growth, and photosynthetic and total biomass in 

poplars (Dickson et al., 1998; Mortensen, 1998; Yun and Laurence, 1999). Finally, ozone 

exposure frequently has been observed to accelerate senescence in plants (Baker and 

Allen, 1996; Mikkelsen and Heide-Jprgensen, 1996; Piiakkonen, Holopainen and 

Karenlampi, 1997; Beare, Archer and Bell, 1999; Yun and Laurence, 1999).

Effects of ozone exposure may be mediated by environmental factors such as 

temperature, solar radiation, and humidity (Heck, 1968; Neubert et al., 1993; 

Fredericksen et al., 1996). For example, ozone exposure led to decreased water use 

efficiency (van Hove and Bossen, 1994; Shan et al., 1996) and increased susceptibility to 

drought and low temperature stress in conifers (Maier-Miircker and Koch, 1992,1995; 

Penuelas et al., 1994; Chappelka and Freer-Smith, 1995). Trees in forests exhibiting 

forest decline symptoms had lower foliar water content and higher transpiration rates 

(Rosenkranz et al., 1989; Badot and Garrec, 1990; Bussotti and Ferretti, 1998). Higher 

transpiration rates in a declining stand of spruce trees in the Northern Alps were 

attributed to decreased stomatal control (Maier-M3rcker and Koch, 1995; Maier-Miircker 

1999).

Air pollutants have been found to change cuticular characteristics (e.g., 

GUnthardt-Gdrg, 1994). Ozone exposure accelerated wax erosion (Bames, Davison and
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Booth, 1988; Bytnerowicz and Tuirunen, 1994; Mankovska, Percy and Kamosky,

1999), decreased cuticular thickness (McQuattie and Rebbeck, 1994), and changed the 

chemical composition of cuticular waxes (Kerfoum and Garrec, 1992). However, ozone 

exposure generally did not affect the amount of cuticular waxes (Barnes et al., 1990b; 

Thornton et al., 1993; Cape, Sheppard and Binnie, 1995). Ozone-induced changes of 

plant cuticles, especially changes of the structure (Turunen and Huttunen, 1990), 

increased cuticular transpiration (Delucia and Berlyn, 1984; Kerstiens and Lendzian, 

1989b; Hadley and Smith, 1990). Tree water loss may increase due to higher water loss 

from foliage via the cuticle (Figure 1.2). However, altered cuticular properties may not 

always lead to higher cuticular transpiration (Svenningson, 1988; Cape et al., 1995). 

Studies that reported negative effects of ozone exposure on cuticles and cuticular water 

loss generally experimented by exposing intact cuticles. Conversely, studies on isolated 

cuticles did not show effects of ozone exposure (Kerstiens and Lendzian, 1989a, 1989b; 

Schmid and Ziegler, 1992). It is not clear if using isolated cuticles is the best method to 

assess effects of ozone on cuticles, because indirect effects and feedback mechanisms 

from living cells cannot be easily accounted for. Increased water losses via the cuticle 

also can potentially interfere with the stomatal regulation because stomatal opening and 

closure are mediated by the water status of epidermis cells (Sheriff, 1984; Zou and Kahnt, 

1988; Kerstiens, Federholzner and Lendzian, 1992; Kerstiens, 1995).

Although many effects of ozone on plant cuticles have been reported, little is 

known about ozone effects on cuticular transpiration and the extent to which these effects 

contribute to decreased tolerance to low water availability during drought periods (e.g., 

Figure 1.2). Moreover, few studies have related the effects of changed cuticular
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properties to cuticular water loss and leaf wettability. Water layers can be present on 

needle surfaces at atmospheric humidities as low as SO % (Burkhardt and Eiden, 1994), 

and have several types of negative influences on leaves. Water layers can increase the 

leaching of K+, Mg2+ and Ca2+ ions from needle tissues, which has been described one of 

the symptoms of forest decline (McLaughlin, 1985; Tomlinson and Tomlinson, 1990). 

The presence of water films on leaf surfaces also can lead to decreased photosynthetic 

gas exchange (Brewer and Smith, 1994 and 1995). Ozone and acidic fog have been 

shown to increase the wettability of spruce needles (Barnes and Brown, 1990; Percy, 

Jensen and McQuattie, 1992), enhancing formation of water films on needles, and 

potentially higher ozone deposition rates to the leaf surface. Although ozone is mainly 

taken up via stomatal pores, ozone also is taken up via the cuticles. Higher rates of ozone 

deposition have been documented on wet leaf surfaces for individual leaves (Fuentes and 

Gillespie, 1992), as well as natural canopies after rain or dewfall (Fuentes et al., 1992, 

1994). Grantz et al. (1995) reported a significant increase of non-stomatal ozone uptake 

by plant canopies in wet conditions, which was ascribed to chemical reactions of ozone 

with moisture present on the leaf surface. Increased air pollutant deposition rates to wet 

leaf surfaces compared to dry surfaces also have been observed for NH3 and SO2 (van 

Hove and Adema, 1996) and NO2 (Weber and Rennenberg, 1996). However, leaf surface 

wetness does not always lead to increased deposition. Grantz et al., (1997) reported 

decreased ozone deposition to an amphistomatous cotton canopy.
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Research questions

The work reported in this dissertation focuses on the effects of strong oxidants 

from air pollution on leaf cuticles, water balance, and growth of trees. Interestingly, 

chlorine gas and ozone, both oxidative air pollutants, had similar effects on vegetation. 

Only a few studies have addressed acute effects of chlorine gas exposure on vegetation. 

The work reported here is the first on long-term morphological, physiological and growth 

effects on plants, and will be important for our understanding of the effects of accidental 

chlorine gas releases on natural ecosystems. The second part of this dissertation focuses 

on possible mechanisms that may be responsible for the observed increase in 

susceptibility to drought stress that has been attributed to ozone exposure. The last 

chapter explores the effects of leaf surface wetness on ozone uptake by plants. Our 

current understanding of these effects is limited, although leaf surface wetness can have 

large impacts on ozone uptake by plants, as well as photosynthetic gas exchange.

The studies described in chapters 2 and 3 were initiated after a train derailment 

released -  SS metric tons chlorine gas into a montane, coniferous forest ecosystem.

Rocky Mountains, U.S.A. Chapter 2 focuses on the acute effects of chlorine gas 

exposure, addressing the following questions: (1) What are the morphological symptoms 

of acute chlorine gas exposure on herbaceous plants, grasses, and conifers along a 

downwind gradient from the site of gas release; (2) What is the effect of chlorine gas on 

cuticles, cuticular transpiration and water content of conifer needles; and (3) Does acute 

chlorine gas exposure affect photosynthetic capacity of conifer needles?

Chapter 3 addresses the long-term physiological and growth effects of acute 

chlorine gas exposure, and focuses on the following questions; ( I)  What are the long-
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term effects of chlorine gas exposure on cuticular transpiration and foliar water 

content; (2) What are the long-term effects of chlorine gas exposure on conifer growth; 

(3) Does chlorine gas exposure affect the susceptibility of trees to drought stress and 

insect damage; and (4) Does chlorine gas exposure affect tree mortality?

Chapter 4 addresses the following research questions: 1) Does ozone exposure 

affect leaf wettability of intact leaves, and, if so, do these effects occur via a direct or an 

indirect mechanism; 2) Do ozone-induced changes of cuticles affect rates of cuticular 

transpiration; 3) What are the effects of ozone exposure on plant growth; and 4) Do the 

responses of deciduous and coniferous tree species to ozone differ?

Chapter 5 addresses the effects of leaf wetness on ozone deposition and 

photosynthetic gas exchange, and focus on the following research question: 1) What are 

the effects of leaf surface wetness on ozone deposition, both in light and dark conditions;

2) What are the effects of leaf surface wetness on net photosynthesis and dark respiration;

3) What processes are responsible for the effects of leaf surface wetness on ozone 

deposition and gas exchange; and 4) Are the effects of leaf surface wetness on ozone 

deposition and gas exchange affected by pH and chemistry of the aqueous phase?

Chapter 6  is a description and summary of this dissertation written for a general 

audience, and is written like a popular article rather than a technical report.

The results indicate that acute, short-term chlorine gas exposure has long-term 

adverse effects on water relations, foliar biomass and growth of conifers. Thus, effects of 

accidental chlorine gas exposure need to be monitored over several growing seasons to 

address longer-term impacts on water loss, growth and mortality. This dissertation sheds 

more light on the effects of ozone on plant water balance and growth, as well as on the
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mechanisms responsible for these effects. Moreover, it is shown that leaf surface 

wetness significantly increases ozone uptake by plants, and that these effects need to be 

taken into account in ozone deposition models.
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Stomatal pathway Cuticular pathway

C 0 2|A H 20  

O , 4  Oo

leaf cuticle

It
O, HoO

LEAF Stomatal cavity

Figure 1.1: Schematic representation of gas exchange over a leaf surface. In light 
conditions the main pathway for gas exchange is via the stomata. Ozone deposition to the 
cuticle occurs by adsorption as well as uptake. Water vapor also is lost via the cuticle. 
The size of the arrows reflects the relative importance of the gas fluxes.
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CHAPTER 2 
Morphological and physiological effects on forest vegetation 

after acute exposure to chlorine gas

ABSTRACT

I report on forest damage resulting from acute exposure to chlorine gas in a montane, 
coniferous forest in the Rocky Mountains, USA. On April 11,1996, a train derailment 
released -55 metric tons of chlorine gas into the atmosphere. Acute morphological and 
physiological effects of chlorine gas exposure were evaluated on two conifer species, 
Pseudotsuga menziesii (Douglas Hr) and Pinus ponderosa (Ponderosa pine). Foliar 
injury, consisting of chlorosis, necrotic mottling, tip-bum, and necrosis was observed 
only on foliage that was directly exposed to chlorine gas. One-year old needles were 
directly exposed to chlorine gas whereas current-year needles flushed after the gas cloud 
had subsided. Necrotic needles on Douglas Hr and Ponderosa pine defoliated during the 
months immediately following the gas release. Conifer buds were killed within 50 m of 
the gas release, which gave rise to secondary shoot growth in Douglas fir but not 
Ponderosa pine. Injury to plant cuticles was assessed, using droplet contact angles and 
droplet retention angles, on one-year old and current-year foliage. Chlorine gas exposure 
decreased droplet contact angles of both one-year old and current-year needles of 
Douglas Hr (P<0.0001), even when no visible injury was apparent, but not for Ponderosa 
pine. Chlorine exposure led to increased cuticular water loss and decreased total water 
content of one-year old and current-year needles of Douglas fir, and of one-year old 
needles of Ponderosa pine (P<0.0001). Moreover, one-year old and current-year foliage 
on exposed trees had lower Fv/Fm ratios (P<0.0001), indicating decreased photosynthetic 
efficiency and changes in chloroplast membranes. These results indicate that exposure of 
conifer needles to chlorine gas can increase drought susceptibility and may potentially 
decrease photosynthesis of conifer needles, through both direct and indirect influences. 
This may have long-term effects on tree growth. This study also showed that plant 
responses to chlorine gas are species specific and affected by variation between study 
sites, and the stochastic character of movement of chlorine gas clouds.
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IN TR O D U C TIO N

This study reports on the effects of chlorine gas (Cb) on natural vegetation after a 

train derailment in northwest Montana, USA. Few long-term data on the effects of acute 

chlorine exposure on physiological functions such as tree water relations, photosynthesis, 

and growth have been reported in the literature. Chlorine gas, derived from sediment salts 

and by the electrolysis of seawater (Compaan, 1992), has many applications in the 

chemical (Compaan, 1992), pharmaceutical, and paper industries (Yosie, 1996), as well 

as for disinfecting water (Richardson et al., 1996). Chlorine, a green-yellowish gas, is 

about 2.5 times more dense than air, is moderately soluble in water (EPA, 1998), and 

usually is transported in its liquid state. Accidents involving chlorine gas releases are not 

uncommon. For example, an evaluation of the Hazardous Substances Emergency Events 

Surveillance System over the period of 1990-1992 reported 138 accidental releases 

involving chlorine gas in 9 states in the USA (Hall et al., 1996). About 25 % of these 

accidents involved human injuries and about 30 % led to evacuations of people (Hall et 

al., 1996). Since the production volume of chlorine gas is expected to increase over the 

next decade (Westervelt and Roberts, 1995), the risk of accidents with chlorine gas will 

likely increase.

In the gaseous form, chlorine is a highly toxic air pollutant that can cause severe, 

acute effects on human health. Human health effects of chlorine gas exposure include 

irritation to eyes, nose and airways, as well as more severe damage to the respiratory 

system (Baxter, Davies and Murray, 1989; Griffiths and Megson, 1984; Whithers and 

Lees, 1985). The IDLH (= immediately dangerous to life and health) of chlorine gas is 30 

ppm (Singh, 1990). Health effects on the respiratory and nervous system can persist over
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many years (Baxter et al., 1989).

In comparison to effects on human health, only a few studies have reported on the 

effects of chlorine gas exposure on vegetation. These studies either followed accidental 

chlorine releases into the environment (Brennan, Leone and Holmes, 1969), or were 

carried out under controlled conditions (Thornton and Setterstrom, 1940; Brennan, Leone 

and Daines, 1965 and 1966; Griffiths and Smith, 1990; Schulze and Stix, 1990). The 

most common foliar injury symptoms after exposure to chlorine gas include chlorosis, 

(bleaching and yellowing of leaf tissues) and necrosis (death of cells and cell tissue). 

These effects can be observed on foliage of both deciduous plants and coniferous plants 

(Heck, Daines and Hindawi, 1970). Necrosis may be confined to leaf margins, extending 

from the edge to the center and base of a leaf, and be interveinal (Brennan, et al. 1965; 

Heck et al. 1970). In monocots, such as com, onion, and grass species, necrosis occurs in 

a streaky pattern following the course of veins. Damage appears first at the tip and 

extends downward to the base of the leaf (Brennan et al., 1965 and 1969). On conifer 

needles, chlorine gas exposure causes tipbum, an orange-brown coloration extending 

from the tip to the base of a needle, which eventually kills the whole needle (Brennan et 

al., 1966). Necrotic mottling (small necrotic spots scattered over the leaf surface) also has 

been observed after chlorine gas exposure (Brennan et al., 1965 and 1969; Heck et al., 

1970). Completely necrotic foliage generally is dropped from the plant, and can lead to 

significant reductions of photosynthetic leaf area (Heck et al., 1970).

Threshold chlorine concentrations that cause visible injury depend on the plant 

species and duration of exposure (Brennan et al., 1965; Griffiths and Smith, 1990). 

Chlorosis and necrosis have been found at chlorine concentrations as low as 0.5 -  3.0
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ppm (Thomton and Setterstrom, 1940). Brennan et al. (1965) reported that several crop 

species developed chlorosis within 4 hrs, and necrosis within 1 day after exposed to 

concentrations as low as 1.0 -1.5 ppm Cl2. These toxicity thresholds concentrations 

depend on several factors, such as plant species, duration of exposure, and stomatal 

conductance (Brennan et al., 1965; Griffiths and Smith, 1990).

Foliar injury symptoms caused by chlorine gas exposure are similar to those of 

acid rain and acid mist (Hindawi, Rea and Griffiths, 1980; Forsline, Dee and Melious, 

1983; Vijayan and Bedi, 1989; Whitney and Ip, 1991). This is expected because chlorine 

gas can form highly acidic solutions in the aqueous phase, forming hydrochloric acid 

(HC1) and hypochlorous acid (or bleach; HOC1; pKa= 7.58 at 20°C). Exposure to acid 

mist can affect plant cuticles (Schmitt, Ruetze and Liese, 1987; Percy, Jensen and 

McQuattie, 1992; Bytnerowicz and Turunen, 1994), which may increase cuticular water 

loss and thus susceptibility to drought stress (Mengel, Hogrebe and Esch, 1989; Hadley 

and Smith, 1989). Changes in cuticular characteristics can be assessed using droplet 

contact and retention angles. Droplet contact angles indicate how much water droplets 

spread out over the leaf surface, which has important influences on photosynthetic gas 

exchange and susceptibility of plants to diseases (e.g., Brewer et al., 1994). Moreover, 

exposure to acid mist can decrease photosynthetic rates (Roberts, 1990; Velikova et al., 

1997; Momen, Anderson and Helms, 1999), as well as photosynthetic efficiency (FUhrer 

et al., 1990; Bong and Hee, 1995; Velikova and Yordanov, 1996).

Foliar injury can be caused by cell plasmolysis due to the accumulation of acid in 

the apoplast (Heath, 1980), as well as by chloride accumulation in plant tissues 

(Ashworth, Gaona and Surber, 1985; McCune, 1991). Leaf tissue pH values as low as 1.0
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were observed after exposure of tomato plants to 63 -1000 ppm Ch gas over 16 hrs 

(Thornton and Setterstrom, 1940). Chloride accumulation disturbs the ionic balance in 

plant tissues (FQhrer and Erisman, 1980). Consequently, accumulation of chloride in 

roadside trees due to deicing salts leads to similar foliar injury symptoms as exposure to 

chlorine gas (Shortle and Rich, 1970; Lumis, Hofstra and Hall, 1973; FUhrer and 

Erisman, 1980). Although accumulation of chloride in plant tissues has been observed 

after exposure to chlorine gas (Liegel and Oelschlager, 1962; Vijyan and Bedi, 1989), 

this is not necessarily the case (Brennan et al., 196S).

This study was initiated after a train derailment released chlorine gas into a 

montane, coniferous forest ecosystem in April, 1996. In light of this extensive chlorine 

spill, I addressed the following questions: (1) what are the morphological symptoms of 

acute chlorine gas exposure on herbaceous plants, grasses, and conifers over a down

wind gradient from the site of gas release; (2 ) what is the effect of chlorine gas on 

cuticles, cuticular transpiration and water content of conifer needles; and (3) does acute 

chlorine gas exposure affect photosynthetic capacity of conifer needles?

M ATERIALS AND METHODS

Study site

The site of this study was located in a narrow valley in the Rocky Mountains, -2  

km west of Alberton, Montana, USA (47o00’N, 114°30’W). On April 11,1996, at 0400 

hr, a 72-car train derailment at the site released -55 metric tons of chlorine gas into the 

atmosphere and the surrounding forest. Over the following week chlorine concentrations 

at the site of the gas release varied from 12-20 ppm to -50 ppm (1-hr average), with peak

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



concentrations reaching -1400 ppm (Olympus Environmental, 1996), Atmospheric 

dispersion models reported similar concentrations, with peak chlorine gas concentrations 

ranging from -165 ppm at about 1.2 km, to -5  ppm at 9 km downwind from the point of 

release (ATSDR, 1997). Forests up to -14 km downwind from the derailment site were 

exposed to chlorine gas (Olympus Environmental, 1996). In addition to chlorine gas, 

several chlorophenol compounds were formed due to a ruptured railroad car containing 

potassium cresylate. Data on atmospheric concentrations of these organic pollutants were 

not made available, but concentrations in the soil were well below levels reported to 

adversely affect public health (Olympus Environmental, 1996). Residues of toxic 

chlorinated organic compounds were removed from the site by excavation of the 

contaminated soil layers.

For this study, four sites that had been exposed to chlorine gas were established, 

i.e., within 50 m of the site of the gas release (foliage completely necrotic except for 

current-year needles), 0 .2  (foliage mainly chlorotic), 0.8  (not visibly injured two months 

after gas exposure) and 1.5 km downwind (not visibly injured two months after gas 

exposure) from the release (Table 2.1). Control sites were established at -65 km 

downwind from the site of the gas release (CD; 46°70’N, 114°00’W), and -4  km upwind 

(CU; Table 2.1). There were no indications that chlorine gas reached this upwind control 

site. All field sites were comprised of mixed coniferous forests, dominated by 

Pseudotsuga menziesii (Douglas fir) and Pinus ponderosa (Ponderosa pine)(Hitchcock 

and Cronquist, 1994), and similar understory vegetation and soils (Table 2.1). A 

schematic map of the study sites and their location in relation to the site of gas release is 

shown in Figure 2.1.
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Visible morphological injury

Morphological injury to vegetation was assessed immediately after it was safe to 

access study sites on May IS (1 month post spill) and again 2 months after the spill on 

June 10, 1996. Visible injury to foliage, characterized as chlorosis, necrosis and necrotic 

mottling, was assessed in the Held for Douglas fir and Ponderosa pine. Visual assessment 

of tree conditions (whole tree), based on presence of green foliage, chlorosis and 

necrosis, within each site were uniform. At each study site 10 trees representative for the 

site were randomly chosen for each species (2 branches per tree). Light microscopy 

techniques were used to examine foliar damage for different species. Foliage was then 

scored using the following visual injury scores: non-visibly injured foliage (0 ), necrotic 

mottling (1), chlorosis (2), tipbum (3) and complete necrosis (4). Data for the two control 

sites were based on foliar injury observed in March 1997 and 1998 (1-3 year old foliage).

Secondary shoot growth

Survival rates of exposed buds (as indicated by flush or no flush) of Ponderosa 

pine and Douglas fir were recorded at the end of May 1996. Data on secondary shoot 

growth were collected in the summer of 1999 to assess longer-term damage. Again at 

each site, 5 randomly chosen trees of each species were evaluated, with two replicate 

branches per tree, and the presence or absence as well as the number of secondary shoots 

was recorded. All branches sampled for this and the following analyses were taken from 

the lower tree canopy (1.5 to 2 m above the ground surface).
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Cuticular injury

Cuticular injury was evaluated for Ponderosa pine and Douglas fir. Two branches 

were collected from 5 randomly selected trees at sites -0.8 km downwind from the spill 

site, 0.2 km downwind, 50 m downwind, and at an unexposed down-wind control site 

(CD, -65km downwind). Exposed one-year old needles (flushed in 1995) and non

exposed current-year needles (flushed in 1996) were evaluated.

Effects of chlorine gas exposure on the cuticle were assessed using droplet contact 

angles (CA) and droplet retention angles (RT). For this analysis 4 to 10 needles were 

selected for analysis for each species (Brewer, 1996; Brewer and Smith, 1997;

Staszewski et al., 1998).

Cuticular transpiration was determined by measuring the change in weight of the 

samples periodically over the course of 3 d (Hadley and Smith, 1990). Randomly chosen 

stems, two per species and per site for each needle age class were weighed, water 

saturated overnight, and weighed again. Stems were then sealed with paraffin wax to 

avoid water loss via the edges of the stem, and subsequently dried at -30 °C  in a drying 

oven. Minimal conductance to water vapor of the needles (Kerstiens, 1996) was derived 

from these measurements using data on temperature and relative humidity in the drying 

oven, and specific needle area (SLA). SLA was determined using the glass bead method 

(Thompson and Leyton, 1971). This method estimates SLA from the difference in weight 

of conifer needles before and after the needle is covered with a single layer of small glass 

beads (125 pm diameter). Total water content (TWC, expressed as gr H2O per gr dry 

weight) and relative water content (RWC, expressed as the ratio of fresh-dry weight to 

saturated -dry weight) of foliage were derived from data on the fresh, saturated, and dry
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Photosynthetic efficiency

The two most common conifers in the study area, Douglas fir and Ponderosa pine, 

were chosen to study physiological effects. Chlorophyll fluorescence measurements were 

made with an Opti-Sciences Modulated Fluorometer (Model OS-lOO, PP Systems, MA). 

Measurements were taken between 10.00 and 14.00 hrs, with a saturated light pulse of 

0.8 s, F0 100-125. Needle samples of Douglas Hr (n=6 trees, with 2 replicates per tree) 

and Ponderosa pine (n=6 trees, with 2 replicates per tree) were dark-adapted for 15 min 

prior to measurements. F0 (dark fluorescence yield) and Fm (maximum fluorescence) 

were measured to calculate the variable fluorescence (Fv = Fm -  Fo), and the efficiency of 

excitation (Fv/Fm-ratio).

Statistical analysis

Data on cuticular changes, foliar water content and chlorophyll fluorescence were 

analyzed using the SPSS statistical package (SPSS, 1995). Data that met the requirements 

for normal distribution were analyzed using one-way analysis of variance (reported as F, 

P-value). Pair wise comparisons were made using a Bonferroni post-hoc test. The 

experimental design was a nested analysis of variance, with two replicates (Fv/Fm) to five 

replicates (CA and RT) per tree. Subsamples were tested for significant differences, and 

were pooled if within subsample differences were not significant (F<0.05; Sokal and 

Rohlf, 1997).

Data that did not meet normality assumptions were analyzed using a Kruskal-
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Wallis (reported as H, P-value) test or the Kolmogorov-Smimov (reported as ksz, P- 

value). This was the case for data on droplet retention (RT). Cuticular transpiration 

experiments were done for randomly selected subsamples from 5 randomly selected trees 

at each site, resulting in sample sizes varying from n=2 to n=4. Repeated measures (RM) 

techniques were used to analyze foliar water loss data, with two repeated factors, time of 

drying and sampling date.

RESULTS

Morphological injury symptoms

Visual injury to existing needles on coniferous trees was apparent. Needles on 

both Douglas fir and Ponderosa pine showed extensive necrosis and tipbum (Figure 2.2A 

and 2.2B). Needles on most Douglas fir trees at the spill site and up to -500 m from the 

spill were almost completely necrotic, with a few chlorotic needles and no green needles 

present 2 mo after exposure. Necrotic needles dropped over the course of the summer. 

Some Douglas fir trees 1 and 1.5 km downwind from the spill had chlorotic, necrotic and 

green needles. Most exposed Douglas Hr trees developed new green foliage. Ponderosa 

pine foliage was less visibly affected than Douglas Hr. Ponderosa pine trees at the 

derailment site and -2 0 0  above the derailment site had mainly necrotic and chlorotic 

needles, as well as newly flushed green needles present. However, needles on Ponderosa 

pine trees -0.2 to 1.5 km downwind were mostly green, with only minimal visual injury 

observed.

The degree of foliar damage generally decreased with increasing distance from 

the site of the gas release for both Douglas fir and Ponderosa pine (72=2 .0 1 6 , P<0.05;
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Figure 2.3). However, foliar injury downwind from the release site was higher than at 

the two control sites, especially for Douglas fir. Variation in foliar injury, between 

patches of trees as well as within individual trees, was high. For example, a Ponderosa 

pine tree ~0 .8  m downwind from the derailment was completely necrotic on the bottom 

half of the tree, while the upper half showed no visually injury. Healthy green foliage, as 

well as chlorotic and necrotic foliage, necrotic mottling, and tipbum often occurred 

within the same tree.

Secondary shoot growth

By the end of May 1996,100 % of the buds on Douglas fir trees had burst on 

trees at control sites and sites further than 0.1 km downwind from the release site. Yet, a 

significant number of the buds on Douglas fir trees within SO m of the release had been 

killed compared to control sites (~30%; Fisher’s exact test, P=0.005). The lack of healthy 

buds gave rise to the growth of secondary shoots. Secondary shoots did not appear over a 

whole branch, although there was no specific pattern in the distribution of the secondary 

shoots over the shoot increments of different ages. At the spill site, the youngest age class 

with secondary shoots was S years old (±0.4 SE; n=20) and the oldest was 13 years (±

0.4 SE; n=20). An average of 9 secondary shoots (± 2 SE; n=20) were formed on each 

major branch examined. Further than -200 m downwind and uphill from the gas release, 

Douglas fir buds survived. These buds gave rise to new foliage several weeks after the 

gas release. Similarly, 100 % of buds on Ponderosa pine opened at all study sites, except 

within SO m of the gas release, where only 25 % of the buds opened (Fisher’s exact test, 

P=0.031). Although bud mortality within 50 m of the gas release for Ponderosa pine was
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much higher than for Douglas fir, no secondary shoots were produced on Ponderosa 

pine in 1996.

Wettability o f cuticles

Exposure to chlorine gas changed the interaction of needle cuticles with water 

droplets. The droplet contact angle (CA) of exposed one-year old Douglas fir needles 

decreased in comparison to control needles (Table 2.2), thus increasing leaf wettability 

and the tendency to form of water layers over the waxy cuticle. However, on Ponderosa 

pine needles, lower CA’s were only apparent for one-year old needles of trees growing 

0.8 km downwind from the release site (Table 2.2). Current-year Ponderosa pine foliage 

that had not been exposed to chlorine gas did not show changes in leaf wettability (Table 

2.2). However, current-year Douglas fir needles from 1996 showed significantly lower 

CA at the two sites closest to the release site compared to control needles (Table 2.2). 

Significant changes of droplet retention (RT) were found only for Douglas fir foliage that 

was directly exposed to chlorine gas (Table 2.2).

Cuticular water loss

Observed changes in cuticular water loss as shown on water loss curves (Figure 

2.4) confirm that chlorine gas exposure affected the cuticles of exposed needles.

Cuticular water loss of exposed, one-year old Ponderosa pine foliage was significantly 

higher compared to control needles (F3.96s6 6 . i4 , P<0.001; Figure 2.4A and 2.5A). 

Similarly, exposed Ponderosa pine needles at two of the exposed sites had increased 

minimal conductance to water vapor over the cuticles and closed stomata, Gminjcov
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(̂ *3.96=33.72, P<0.001; Figure 2.4B and 2.5B). Interestingly, this was not the case for 

Ponderosa pine needles closest to the release site. Ponderosa pine needles that flushed in 

1996 on trees growing 0.8 km downwind had increased levels of cuticular water loss 

compared to control needles, expressed as both relative water loss (̂ 3.96=44.19, P<0.001; 

Figure 2.5A) and as G„un,H20v (p3.96=6.73, P=0.006; Figure 2.5B). However, since 

current-year needles on chlorotic and necrotic Ponderosa pine trees did not have 

increased cuticular water loss or G,nin.H20v. there was no consistent trend that could be 

attributed to chlorine gas exposure.

Effects on cuticular transpiration were more pronounced for Douglas fir foliage 

than Ponderosa pine. One-year old foliage and current-year foliage of Douglas fir (Figure 

2.6A, P3,96=6 .6 0 , P=0.007 and F3.%=4.25, P=0.029 respectively) had increased relative 

water loss compared to control needles. However, relative water loss of trees from 

control and necrotic foliage near the release site did not differ for one-year old foliage 

(Figure 2.6A). Moreover, necrotic one-year old foliage of Douglas fir (50 m from release 

site) had significantly lower Gnun.H20v (p3.84=12.75, P<0.001; Figure 2.6B), which can be 

attributed to the already low water content of the necrotic foliage. Interestingly, current- 

year foliage on exposed Douglas fir trees had higher Gmm.H20v when compared to control 

needles (F3.g4=7.03, P=0.006; Figure 2.6B). The increased water loss and minimal 

conductance observed for both Ponderosa pine and Douglas Hr suggests that chlorine 

exposure may lead to increased susceptibility to drought stress, especially for directly 

exposed foliage. However, responses were species dependent, and did not necessarily 

correspond with the severity of foliar injury, or distance to the release.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Water content

TWC of exposed one-year old needles decreased with increasing severity of 

visual injury (Table 2.3). Foliage of both conifer species within 0.2 km of the release site 

had lower TWC than control needles or needles that were further downwind. However, 

current-year needles on trees within SO m of the release site had significantly higher 

TWC than at the other sites (Table 2.3). The differences in RWC were less pronounced 

than for TWC (Table 2.3). Only one-yeair old Douglas fir needles within 50 m of the 

release site had significantly lower RWC compared to control needles (Table 2.3).

Chlorophyll fluorescence

Exposed one-year old needles of both Ponderosa pine and Douglas fir had 

significantly lower Fv/Fm ratios (Table 2.4). Moreover, current-year needles on exposed 

trees also had decreased Fv/Fm ratios (Table 2.4). The reduction in Fv/Fm ratio for one- 

year old foliage was more pronounced in Ponderosa pine than in Douglas fir needles. 

These results suggest that both one-year old and current-year foliage on exposed trees 

had decreased photosynthetic efficiency.

DISCUSSION

This is the first study ever to report physiological responses of natural vegetation 

after accidental chlorine gas exposure. Acute exposure to chlorine gas has immediate 

effects on native vegetation in a spill area and these negative effects also can be found 

some distance downwind from the immediate spill area. Acute foliar injury symptoms, 

consisting of chlorosis, necrotic mottling, tipbum and necrosis, were reported for
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conifers, shrubs, herbaceous species and grasses. Necrotic needles defoliated over the 

course of the growing season following exposure. Foliage that was still in bud at the time 

of the gas release generally was not visibly affected. The results of this study indicate that 

chlorine exposure not only leads to visual foliar injury, but may also affect long-term tree 

growth through defoliation, increased susceptibility to drought stress and decreased 

photosynthetic efficiency. However, these effects vary by species and on a landscape 

scale, probably due to the patchy movement of chlorine gas clouds.

Morphological injury symptoms

The most prevalent foliar injury symptoms observed on Douglas fir and 

Ponderosa pine were chlorosis, necrosis and tipbum. These symptoms are similar to foliar 

injury of chlorine gas reported for other conifer species (Brennan et al., 1966; Heck et al., 

1970). In the vicinity of the gas release, all necrotic foliage and some chlorotic foliage 

defoliated during the months immediately following gas exposure. Beyond 200 m from 

the site of gas release, exposed buds produced new foliage, even when entire shoots were 

necrotic and defoliated. However, within a radius of ~S0 m of the gas release, 30% of 

Douglas fir buds and 75% of the Ponderosa pine buds were killed. Brennan et al. (1969) 

reported that exposure to 10 ppm CI2 killed conifer foliage but not the shoot or the buds. 

The fact that buds were killed in this current incident may be explained by the 

considerably higher chlorine gas concentrations present at the site of the gas release, i.e., 

up to 1040 ppm CI2 (peak concentration, Olympus Environmental, 1996) and -165 ppm 

CI2 (1-hour average, ATSDR, 1997). Douglas fir responded to defoliation by producing 

secondary shoots. Formation of secondary shoots has been reported for species other
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coniferous species as well. For example, the number of secondary shoots increased 

with increasing defoliation for Picea abies (Salemaa and Jukola-Sulonen, 1990). 

Ponderosa pine did not produce secondary shoots, even though more buds were killed 

than on Douglas Hr. Thus, new Ponderosa pine foliage only arose from buds that 

survived. It has been reported that older and middle-aged foliage is generally more 

sensitive to chlorine gas than young foliage (e.g., Brennan et al., 1965; Griffiths and 

Smith, 1990). However, 1 did not address the relationship between the severity of foliar 

injury and leaf age directly.

Deciduous tree species were not visually injured by chlorine exposure, possibly 

because broadleaved species had not yet experienced bud break at the time of gas 

exposure, and foliage was not directly exposed to the chlorine gas cloud. Acute foliar 

injury symptoms found on shrubs and herbaceous species also consisted of chlorosis, 

necrotic mottling and necrosis (Appendix 2.1), similar to injury symptoms reported for 

chlorine exposure injury to shrubs (Brennan et al., 1969; Heck et al., 1970), flowers 

(Brennan et al.,1969), crop species (Brennan et al., 1965; Schulze and Stix, 1990), and 

weeds (Brennan et al., 1969; Griffiths and Smith, 1990). Injured foliage of shrubs, 

herbaceous species, and grasses was replaced over the following growing season.

Foliar injury symptoms were most severe within a radius of about 100 m from the 

site of gas release. Foliar injury can be caused by two mechanisms, chloride 

accumulation in plant tissue (Fiihrer and Erisman, 1980; Ashworth et al., 1985; McCune, 

1991), and cellplasmolysis due to the accumulation of acid in the apoplast (Heath, 1980). 

Foliage within a radius of 70 m from the gas release had a chloride content of 25,000- 

30,000 ppm C1‘ (Olympus Environmental, 1996). These chloride concentrations are up to
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27 times higher than the mean natural background reported for native plants in boreal 

forests in Canada (-1100'ppm Cl*' range 15-5000 ppm; Sheppard, Evenden and 

MacDonald, 1999). Compared to the range reported naturally for chloride concentrations 

in foliage of crop species (-100 ppm Cl* minimum and -1000 maximum ppm Cl*: Liegel 

and Olschlager, 1962; FUhrer and Erisman, 1980) the foliar chloride concentrations 

observed in this study were 30-300 times greater. Thus, chloride accumulation may be 

implicated, in part, as a possible cause of the foliar damage observed after chlorine 

exposure in western Montana. These plants also suffered a second tissue insult. Foliage 

pH values at the release site were 1.0 to 2.5 (Olympus Environmental, 1996), which is 

considerably lower than the typical pH range of plant tissues (7.0 to 8.5, Smith and 

Raven, 1979). Using chemical modeling the pH of the chlorine gas cloud in the vicinity 

of the spill site could have been as low as pH 1 (Schreuder, unpublished data). Under 

such strong acidic conditions in plant cells, competition of H* ions with Mg2* in 

chlorophyll may occur. This is a potential causal mechanism for chlorosis, observed after 

chlorine gas exposure. Although either damage mechanism described above is plausible, 

the rapid appearance of foliar injury points to the acidity of the gas cloud as the most 

likely immediate cause of the foliar injury. However, some of the long-term effects could 

be related to chloride accumulation in exposed foliage. Foliar chloride concentrations and 

pH levels at distances greater than -500 m from the site of the gas release were within the 

expected range of naturally occurring concentrations even though foliar injury was 

present up to at least 2 km downwind from the release site (Olympus Environmental, 

1996).

The large variation in the extent of foliar injury within trees, as well as between
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study sites, can be explained in part by rapid changes of chlorine gas concentrations in 

the chlorine gas cloud (e.g., Koopman et al., 1982, Blackmore, Herman and Woodward, 

1982). Moreover, heavy gasses tend to remain close to the ground (Griffiths and Fryer, 

1988), especially at wind speeds as low as reported at the time of the gas release (e.g., 

Koopman et al., 1982). For example, a Ponderosa pine ~l km downwind had completely 

necrotic needles on the lower 2 m of the tree and did not recover over the period of this 

study. Yet, the upper part of the tree remained visually unaffected. This same pattern of 

injury partitioning was observed on a Juniperus scopulerum -1.5 km downwind, 

suggesting highly variable behavior of the chlorine gas cloud.

Influences on cuticles and leaf moisture content

Droplet contact angles and droplet retention for Ponderosa pine foliage generally 

were not affected by chlorine gas exposure (Table 2.2). In comparison, the changes in 

leaf wettability and droplet retention were more pronounced for Douglas fir. Chlorine gas 

exposure led to decreased droplet contact angles on Douglas fir needles of both exposed 

one-year old needles and unexposed current-year needles (Table 2.2), although the 

decrease in droplet contact angles was not related to the severity of observed foliar injury 

or distance to the release site. This suggests that needle cuticles were affected both 

through direct exposure to chlorine gas, as well as through interference with de novo wax 

synthesis. Decreased droplet contact angles lead to increased leaf wettability, which in 

turn can lead to reduced photosynthetic gas exchange (Brewer and Smith, 1994; Ishibashi 

and Terashima, 199S). Droplet retention of directly exposed foliage was only lower for 

Douglas fir needles. Decreased contact angles after exposure to acid mist have been
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reported for Picea rubens (Barnes and Brown, 1990; Percy et al., 1992). Paoletti,

Raddi and La Scala (1998) reported that leaves of beech trees from declining stands had 

lower droplet contact angles compared to trees from healthy forest stands. One direct 

effect of acid rain on plant cuticles is the erosion of cuticular waxes (Paparazzi and 

Tukey, 1984). Indirect effects of acid rain on cuticles mediated through wax biosynthesis 

include decreased cuticular thickness amount of waxes (Garrec and Kerfoum, 1989; 

Percy, Krause and Jensen, 1990; Percy et al., 1992; Bytnerowicz andTurunen, 1994,) 

changes of the ultrastructure (Schmitt et al., 1987; Percy et al., 1990; Bytnerowicz and 

Turunen, 1994) and changes of the chemical composition of the cuticle (Percy et al., 

1992; GUnthardt-Gdrg, 1994). The amount of waxes present on the cuticle has been 

negatively correlated with the incidence of glazing and necrosis after exposure of bean 

leaves to HC1 (Swiecki, Endress and Taylor, 1982), suggesting that a thicker cuticle 

offers some protection against injury.

One-year old needles of Ponderosa pine had higher water loss from exposed 

foliage, measured as relative water loss (Figure 2.5A), and Gnunjizov (Figure 2.5B). One- 

year old Douglas Hr foliage showed increased relative water loss after chlorine gas 

exposure, but increased Gmin.H20v was not observed (Figure 2.6A and 2.6B). Gm.n n?n« of 

one-year old necrotic needles within in SO m of the release was not different from control 

needles for Ponderosa pine (Figure 2.5B). However, one-year old necrotic needles of 

Douglas fir within in SO m had a very low Gmjn,H20v but high relative water loss (Figure 

2.6B). This can be attributed to the low TWC of the necrotic needles (Table 2.3), as 

cuticular conductance of conifer foliage decreases with decreasing water content (Hadley 

and Smith,1990). Moreover, since relative water is loss is based on TWC, low TWC can
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also lead to high relative water losses, even if these needles lost less water than control 

needles. Interestingly, current-year Douglas Hr needles on exposed trees had increased 

cuticular water loss and Gniin.H20v (Figure 2.6A and 2.6B). This indicates that chlorine 

exposure may affect these cuticles indirectly via wax production. In Ponderosa pine 

however, an effect on cuticular transpiration of current-year needles was observed only at 

0.8 km downwind of the release site, and not the other exposed study sites (Figure 2.5 A 

and 2.4B). This suggests that chlorine gas did not affect cuticular water loss of Ponderosa 

pine, and observed differences may be due to natural variation between study sites. 

Gmm.H20v ° f  b°th exposed and control needles reported in the present study agree well 

with the range of G„uD.h20v values reported in the literature (e.g., Kerstiens, 1996;

Heinsoo and Koppel, 1999).

Previous studies have shown that exposure of Picea abies to acid fog (pH 3.0) led 

to increased cuticular water loss of excised twigs, as well as decreased water holding 

capacity of needles (Mengel et al., 1989; Esch and Mengel, 1998). Increased cuticular 

transpiration has been correlated with decreased cuticular thickness and increased wax 

erosion along elevational and climatic gradients (DeLucia and Berlyn, 1984; Hadley and 

Smith, 1989; Schreiber, 1994) as well as with exposure to anthropogenic pollution (Sase 

et al., 1998). The sharp decrease in G „ u n . H 2 0 v  during the drying treatments in this study 

(Figure 2.4B) indicates that stomata were closed after the first two hours. However, a 

stomatal component to Gmmjuov cannot be excluded due to possible incomplete stomatal 

closure (Kerstiens, 1996). Incomplete stomatal closure may result from exposure to SO2 

and NO (Mansfield et al., 1988), ozone (Maier-Maercker and Koch, 199S; Maier- 

Maercker, 1999) and acid rain (Bames et al., 1990; Eamus and Murray, 1993). However,
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acid rain does not necessarily affect stomatal conductance (Reich and Amundson,

198S; Flagler, Lock and Elsik, 1994; Anderson et al., 1997) since these effects are 

influenced by factors such as ambient temperature (Momen et al., 1999), chemical 

composition of the simulated acid rain (Eamus and Murray, 1993), and tree age (Momen 

et al., 1997). Stomatal responses to vapor pressure deficit (VPD) and light may also be 

changed by increased cuticular transpiration via whole leaf feedback mechanisms 

(Sheriff, 1984; Zou and Kahnt, 1988; Kerstiens, 1997).

Increased minimal conductance to water vapor and water loss from exposed 

needles may lead to increased susceptibility to drought (Mengel et al., 1989) and winter 

desiccation (Sowell, Koutnik and Lansing, 1982; Hadley and Smith, 1989,1990). Field 

observations over the course of the summer confirmed this prediction. Results from this 

study also indicate that chlorine gas exposure decreased TWC of directly exposed foliage 

for both species, and RWC was only affected for one-year old necrotic needles of 

Douglas fir (Table 2.3). Chlorotic Ponderosa pine needles were abscised from the trees 

during conditions of drought stress, whereas control needles were not visibly affected by 

the summer drought. Although chlorine gas exposure generally did not affect foliar water 

content of needles that flushed after gas exposure, these needles did show substantial 

drought damage over the summer, especially for Ponderosa pine. New foliage on necrotic 

Ponderosa pine and Douglas fir had increased TWC (Table 2.3), which can be attributed 

to increased water availability, since these new needles formed the only living foliage on 

these trees.

In my study leaf samples were taken in the lower canopy (1.5-2 m from the 

ground). It is possible that chlorine gas effects resulting in foliar injury were most
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prevalent in the lower half of the canopy, since chlorine gas is denser than air.

Therefore, even if effects on cuticular water loss and TWC in the lower canopy of a 

mature tree were found, it is not clear if foliage higher in the tree canopy was affected to 

some extent. Thus, these data on chlorine gas effects on foliar water balance should be 

used with caution to extrapolate influences to the whole tree level.

Influences on photosynthetic efficiency

Exposure to chlorine gas led to decreased Fv/Fm ratios for one-year old needles of 

both Douglas Hr and Ponderosa pine (Table 2.4), suggesting decreased photochemical 

efficiency of exposed foliage compared to foliage on control trees. Moreover, foliage that 

developed after the chlorine release on exposed trees also had decreased Fv/Fm ratios 

(Table 2.4), suggesting that photosynthetic tissues of these needles were indirectly 

affected by the gas exposure. Given that these measurements were made in the lower 

canopy, the extent to which Fy/Fm ratios of foliage in the upper tree canopy changed is 

not known.

My observations agree with reported injury in other studies. Exposure to acid rain 

adversely affected chlorophyll fluorescence in Picea abies (Siffel et al., 1996) and Pinus 

spp. (Bong and Hee, 199S; Shan, 1998). Foliage exposed to acid rain had lower Fv/Fm 

ratios in bean plants (Velikova and Yordanov, 1996), and these effects were irreversible 

at pH values below 2.0 (Velikova et al., 1997). Other studies have reported that foliage 

exposed to acid rain had reduced chlorophyll levels (Shan et al., 1997), and lower rates of 

photosynthesis (Forsline et al., 1983; Neufeld, Jemstedt and Haines, 1985; Roberts, 1990; 

Ashenden, Bell and Rafarel, 1995; Shan et al., 1996 and 1997; Velikova et al., 1997;
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Momen et al., 1999). FUhrer et al. (1990) reported that the effects of acid-mist on the 

photochemical efficiency were dependent on age-class and genetic factors. The 

combination of defoliation, increased drought susceptibility of foliage on exposed trees 

and decreased photochemical efficiency may lead to tree growth reductions as well as 

increased tree mortality (Salemaa and Jukola-Sulonen, 1990; Christiansen and Fjone, 

1993; Krause and Raffa, 1996) and tree mortality (Webb, 1981).

CONCLUSIONS

This study has shown that acute chlorine gas exposure did not only cause visible 

injury on conifers, but also affected exposed plant cuticles and increased water loss 

through cuticles. Moreover, chlorine gas exposure decreased photosynthetic efficiency of 

directly exposed Douglas fir foliage, but not of Ponderosa pine. Both species lost 

photosynthetic biomass due to defoliation. These effects may lead to higher susceptibility 

to drought stress and lower growth for exposed conifers. Thus, effects of acute chlorine 

gas exposure need to be studied over a time period of least several years to address 

longer-term implications of exposure. However, observed physiological effects were 

species specific. Moreover, there was considerable variation in effects of chlorine gas 

exposure between study sites. This may have been due to natural variation between study 

sites, as well as the unpredictable movement of the chlorine gas cloud and the fast 

changes in chlorine gas concentrations in the cloud, both of which are characteristic for 

heavy gas clouds. Finally, more research is needed to address the effects for deciduous 

trees, when tissues in buds as well as mature leaves are exposed to chlorine gas.
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Table 2.1: Physical description of study sites. Data shown are elevation, soil type, and 

habitat type (Pfister et al., 1977). Pinus ponderosa was the second most abundant tree 

species at all study sites. All sites were level benches in close vicinity to the Clark Fork 

River, western Montana.

Site and

downwind distance

Elevation 

(m asl)

Soil type Habitat type

Upwind Control 876 Coarse loam Pseudotsuga menziesii/

(~4 km) Arctostaphylos uva-ursi

50 m downwind 897 Fine loam Pseudotsuga menziesii/

Physocarpus malvaceus

0 .2  km downwind 898 Fine loam Pseudotsuga menziesii/

Physocarpus malvaceus

0 .8  km downwind 900 Fine loam Pseudotsuga menziesii/

Physocarpus malvaceus

1.5 km downwind 902 Fine loam Pseudotsuga menziesii/

Symphorica albus

Downwind control 976 Fine loam Pseudotsuga menziesii/

(-65 km) Physocarpus malvaceus
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Table 2.2: Droplet contact angle and droplet retention angle of one-year old (1995; 
n=10), and current-year (1996; n=10) needles, measured in July 1996. Letters indicate 
statistically significant differences within each species and factor (within columns;
Nested one-way ANOVA for CA and Kolmogorov-Smimov for RT; P<0.0001; 5 
replicates per tree for the 1995 needle age class and 2 replicates per tree for the 1996 
needle age class). Values are means (±SE).

Species + category Contact angle (CA) Droplet retention (RT)

degrees degrees

1995 1996 1995 1996

Ponderosa pine

Control, downwind 59 (3) a 82(5) 86  (3) a 89(1)

0.8 km downwind 37 (3) b 85 (3) 59 (5) b 85 (5)

0 .2  km downwind 57 (3 )a 91(1) 89(1) a 90(0)

50 m downwind 59 (3) a 89 (3) 85 (3) a 89(1)

Douglas Hr

Control, downwind 73 (3) a 93 (8 ) a 89(1) a 90(0)

0.8 km downwind 31 (3) c 96 (3) a 78 (5) b 90(0)

0.2 km downwind 40 (3) b 50 (5) b 44 (5) c 90(0)

50 m downwind 47 (5) b 74 (5) c 78 (3) b 90(0)
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Table 2.3: Total water content (n=4) and relative water content (jn-2) of one-year old 
needles (1995) and current-year needles (1996), measured in July 1996. Letters indicate 
statistically significant differences within each column, for each species separately (One
way ANOVA). Values are means (±SE).

Species + category Total water content, gr HiO/gr dry weight 
1995 1996

Ponderosa pine 
Control, downwind 1.21 (0.04) a 1.92 (0.06) a
0.8 km downwind 1.30 (0.01) a 2.03 (0.01) a
0.2  km downwind 1.01 (0.03) b 2.03 (0.01) a
50 m downwind 0.36 (0.04) b 2.14 (0.04) b
ANOVA ^3.13=279.30, P<0.0001 F i*=8.55, P=0.026
Douglas fir 
Control, downwind 1.26 (0.03) a 1.63(0.09)a
0.8 km downwind 1.12 (0 .0 2 ) b 1.75 (0.03) a
0.2 km downwind 0.87 (0.02) c 1.70 (0.07) a
50 m downwind 0 .1 2  (0 .0 1 ) d 2.57 (0.34) b
ANOVA ^3.13=644.07, P<0.0001 F3.5=7.86, P -0.004

Species + category Relative water content, %
1995 1996

Ponderosa pine 
Control, downwind 92(1) 94(1) a
0.8 km downwind 94(0) 100 ( 1) b
0 .2  km downwind 95 (2) 99 (1) a.b
50 m downwind 8 8 ( 1) 98 (0) a,b
ANOVA F3., 3=5.38, P -0.069 F3j=11.07, P=0.021
Douglas fir 
Control, downwind 95 (3) a 94(2)
0.8 km downwind 93 (1) a 96(1)
0.2  km downwind 89 (1) a 99(1)
50 m downwind 67 (1) b 91(4)
ANOVA ^3.13=65.05, P=0.0008 F3j=2.36, F=0.213
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Table 2.4: Chlorophyll fluorescence measured as Fv/Fm ratios (n=6) of one-year old 
needles (1995) and current-year needles (1996), measured in July 1996. Letters indicate 
statistically significant differences within each column, for each species separately 
(Nested one-way ANOVA; 2 replicates per tree). Values are means (±SE). Needle age 
classes that were no longer alive are indicated as “n.a.”.

Category Fv/Fm ratio

1995 1996

Ponderosa pine

Control, downwind 0.819(0.003)a 0.793 (0.010) a

0.8 km downwind 0.785 (0.008) b 0.753 (0.013) a/b

0.2 km downwind 0.731 (0.024) b 0.748 (0.020) a/b

50 m downwind n.a. 0.741 (0.031) b

ANOVA F3.9=25.87, P<0.0001 F3t9=3.94, P=0.015

Douglas Hr

Control, downwind 0.824 (0.006) a 0.810 (0.006) a

0.8 km downwind 0.779 (0.009) b 0.751 (0.010) b

0.2 km downwind 0.778 (0.011) b 0.737 (0.021) b

50 m downwind n.a. 0.769 (0.0013) b

ANOVA F3,9= 16.00, P<0.0001 F3,9= 14.29, P<0.001
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Figure 2.1: Schematic map of the release site and the main study sites downwind of

the gas release.
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Figure 2.2: Acute visual injury after chlorine gas exposure. Shown are tip burn in 
Pseudotsuga menziesii (A ), and necrosis in Pseudotsuga menziesii with healthy Amelanchier 
Alnifolia (B).
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Ponderosa pine 
Douglas fir

upwind downwind
Distance, km

0.2 0.05 0.2 0.5 1.5

Figure 2.3: Foliar injury on Ponderosa pine (black bars) and Douglas fir foliage (open
bars), for all needle age classes measured in June 1996, two months after exposure to 
chlorine gas. The scores are averages (n=I0  trees, 2 replicate branches per tree) of the 
following visual injury categories: non-visibly injured foliage (0 ), necrotic mottling (I), 
chlorosis (2), tipbum (3) and complete necrosis (4). Data for the upwind and downwind 
control sides (respectively CU, 4 km upwind, and CD, 65 km downwind) are based on 
foliar injury observed in March 1997 and 1998 (1-3 year old foliage). Exposed sites are 
on level terrain, except one 0 .2  km uphill of the gas release (0 .2  up). indicate sites 
that are statistically different from both control sites within each species (t-test, P<0.05).
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Figure 2.4: Relative water loss (panel A) and minimal needle conductance (panel B)
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release (open circles), 0 .2  km downwind (solid triangles), and 50 m downwind (open 
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Figure 2.S : Relative water loss (panel A) and minimal conductance, G m m .H :o v  (panel
B) of one-year old (1995) and current-year (1996) foliage of Ponderosa pine. Relative 
water loss is shown after 7 2  hours (n=4), although statistical analyses are based on data 
from 0 to 7 2  hours (Nested one-way ANOVA, P<0.001; repeated factor drying time, 10 
measurements overtime). G m w .H 20v  is shown as the average from 2  to 7 2  hours, when 
stomates are assumed closed (n=4; nested one-way ANOVA, P<0 .0 0 1 ; repeated factor, 
drying time, 9 measurements over time). Bars represent the downwind control site (open 
bars), and sites 0.8 km downwind (black bars), 0.2 km downwind (hatched bars) and 50 
m downwind (double hatched bars). Error bars represent one SE.
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Figure 2.6: Relative water loss (panel A) and minimal conductance, Gmia.H20v (panel
B) of one-year old (1995) and current-year (1996) foliage of Douglas fir. Relative water 
loss is shown after 72 hours (n=4, nested one-way ANOVA, P<0.001; repeated factor: 
drying time, 10 measurements over time). Gmiajuov is shown as the average from 2 to 72 
hours, when stomates are assumed closed (n=4; nested one-way ANOVA, P<0.001; 
repeated factor drying time, 9 measurements over time). Bars represent the downwind 
control site (open bars), and sites 0 .8  km downwind (black bars), 0 .2  km downwind 
(hatched bars) and 50 m downwind (double hatched bars). Error bars represent one SE.
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CHAPTER 3
Long-term effects of acute chlorine gas exposure on cuticular transpiration 

and growth of Pinus ponderosa and Pseudotsuga menziesii

ABSTRACT

The long-term effects of acute chlorine gas exposure on cuticles, cuticular transpiration, 
tree growth and mortality were studied in foliage of Pinus ponderosa (Ponderosa pine) 
and Pseudotsuga menziesii (Douglas fir), for three growing seasons. Chlorine gas 
exposure led to increased foliar injury of both exposed foliage and foliage that flushed 
after exposure (P<0.05). Chlorine gas exposure led to increased leaf wettability of 
directly exposed foliage (P<0.001) as well as increased cuticular transpiration for both 
types of foliage up to 1 yr for Ponderosa pine and directly exposed Douglas fir foliage up 
to xh  year after the spill (P<0.001), and decreased total water content (TWC) for directly 
exposed foliage of both species up to 1 yr after exposure (P<0.001). During the first year 
cuticular water loss, TWC, and relative water content (RWC) were significantly 
correlated with foliar injury (P<0.05). Fvariabie/Fmaximum (Fv/Fm) ratios of needles that 
flushed two months after exposure showed no effect after 1 yr. Exposure to chlorine gas 
did not affect needle length, specific leaf area, annual shoot increment growth, or the 
number of buds produced. However, longevity of foliage that flushed two months after 
exposure was reduced significantly (P<0.001). Annual stem increment growth decreased 
over at least three growing seasons following chlorine gas exposure (P<0.001), up to 0.2 
km for downwind from the release for Ponderosa pine and 0.8 km for Douglas fir. Cone 
production was lower for exposed Ponderosa pine trees compared to controls (P<0.05). 
Tree mortality for Douglas fir was higher within -50 m of the release site while mortality 
of Ponderosa pine was not affected. The pattern of growth parameters that were affected 
or not affected by chlorine gas exposure reflects the priority of carbon allocation when 
conifers experience defoliation. Over the lifetime of these conifers the impact on growth 
is comparable to disturbances such as several years of drought or defoliation due to insect 
damage.

50
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IN TR O D U CTIO N

This study reports on the long-term morphological, physiological and growth 

effects of chlorine gas on conifers after a train derailment in 1996 in northwest Montana, 

USA. Accidents involving chlorine gas releases are not uncommon (Hall et al., 1996), 

and can result in toxic effects to humans, causing irritation to eyes, nose and the 

respiratory system (Baxter, Davies and Murray, 1989; Griffiths and Megson, 1984; 

Whithers and Lees, 1985). Chlorine gas exposure also causes foliar injury to vegetation, 

consisting of chlorosis, necrotic mottling, and necrosis (Chapter 2; Brennan, Leone and 

Daines, 1965; Brennan, Leone and Holmes, 1969; Heck, Daines and Hindawi, 1970). 

These symptoms are similar to those caused by acid rain and mist (Forsline, Dee and 

Melious, 1983; Vijayan and Bedi, 1989; Whitney and Ip, 1991).

Long-term effects of acute chlorine gas exposure on physiological functions such 

as tree water relations, photosynthesis, and growth have not been reported. Because 

chlorine gas can form highly acidic solutions in contact with water (Morris, 1946;

Chapter 2; Schreuder, unpublished data), exposure to chlorine gas can have effects 

similar to acid rain and acid mist. Chlorine gas exposure may adversely affect tree water 

balance via influences on the waxy cuticle and on stomatal regulation. Acid rain and acid 

mist have been reported to change cuticular wax composition (Percy, Jensen and 

McQuattie, 1992; Kerfoum and Garrec, 1992; Giinthardt-Gorg, 1994), wax structure 

(Schmitt, RUtze, andLiese, 1987; Percy, Krause and Jensen, .1990; Bytnerowicz and 

Turunen, 1994), and decrease total wax production (Garrec and Kerfoum, 1989; Percy et 

al., 1990,1992; Bytnerowicz and Turunen, 1994). These changes may increase cuticular 

transpiration rates (Hadley and Smith, 1989), rendering plants more susceptible to
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drought stress, both in summer (Mengel, Hogrebe and Esch, 1989) and winter 

conditions (Barnes and Davison, 1988; Hadley and Smith, 1989).

Increased stomatal conductance has been reported after exposure to acid mist 

(Eamus and Fowler, 1990; Flagler, Lock and Elsik, 1994), and in forests that show 

symptoms of decline (Maier-MMrcker and Koch, 1992,1995). Exposure to acid mist can 

lead to decreased rates of photosynthesis (Roberts, 1990; Velikova et al., 1997; Momen, 

Anderson and Helms, 1999) as well as photosynthetic efficiency (FUhreret al., 1990; 

Velikova and Yordanov, 1996). A one-time application of acid mist decreased Fv/Fm 

ratios and photosynthesis of Phaseolus vulgaris (Velikova and Yordanov, 1996), and 

these effects were irreversible at pH values below 2.0 (Velikova et al., 1997).

In conifers, necrosis generally begins as tipbum, an orange-brown coloring 

extending from the tip to the base of the needle which eventually develops into complete 

necrosis (Brennan, Leone and Daines, 1966), followed by subsequent defoliation of 

photosynthetic tissues (Chapter 2; Heck et al. 1970). Tree defoliation can lead to 

decreased height growth (Carlson, McCaughey and Theroux, 1988; Salemaa and Jukola- 

Sulonen, 1990; Krause and Raffa, 1996), stem increment growth (Vosko and Klubica, 

1992; Christiansen and Fjone, 1993; Krause and Raffa, 1996), as well as total tree 

biomass (Krause and Raffa, 1996; Sanchez and Wagner, 1999). The adverse effects of 

defoliation on tree growth tended to increase with increasing severity of defoliation 

(Carlson et al., 1988), younger tree-age (Sanchez and Wagner, 1999), and lower starch 

reserves at the time of defoliation (Webb, 1981). Furthermore, the combination of 

defoliation and increased water stress may increase susceptibility to insect injury in 

conifers (Ferrel 1978; Christiansen and Fjone, 1993).
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In this study I report on the long-term physiological and growth effects after 

acute chlorine gas exposure in a coniferous forest in western Montana, USA. Earlier 

studies at this site have shown that chlorine gas exposure led to significant foliar injury, 

and subsequent defoliation of exposed Ponderosa pine and Douglas Hr trees (Chapter 2). 

Moreover, exposed conifer foliage had increased cuticular water loss and decreased 

photosynthetic efficiency (Chapter 2). I predicted that the combination of these influences 

would lead to long-term effects on tree water balance, growth and mortality. This study 

addresses the following questions: (1) What are the long-term effects of chlorine gas 

exposure on cuticular transpiration and foliar water content; (2) What are the long-term 

effects of chlorine gas exposure on conifer growth; (3) Does chlorine gas exposure affect 

the susceptibility of trees to drought stress and insect damage; and (4) Does chlorine gas 

exposure affect tree mortality?

M ATERIALS AND M ETHODS

Study site

The study sites were located in a narrow valley -2  km west of Alberton, Montana, 

in the Rocky Mountains (47°00’N, 114°30’W). On April 11,1996, around 0400 hr, a 

train derailment released -55 metric tons of chlorine gas (CI2) into the atmosphere and 

the surrounding forest. During the following week, chlorine gas concentrations at the site 

of the gas release varied from 12-20 ppm Chto -50 ppm Ch (1-hr average), with peak 

concentrations reaching -1400 ppm (Olympus Environmental, 1996). Atmospheric 

dispersion models predicted similar concentrations, with peak concentrations ranging 

from -165 ppm Chat about 1.2 km to -5  ppm Chat -9  km downwind from the site of
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gas release (ATSDR, 1997). In addition, chlorophenols were formed due to a ruptured 

railroad car containing potassium cresylate. Soil layers polluted with these organic 

compounds were removed from the site by excavation, and concentrations in the soil 

were well below critical levels to public health. Data on atmospheric concentrations of 

these organic pollutants were not made available (Olympus Environmental, 1996).

Two control sites were established, one -65 km downwind (CD; 46°70’N,

114°00’W) and another -4  km upwind (CU) from the site of gas release. Four study sites 

that had been exposed to chlorine gas were established based on foliar injury symptoms 

observed within two months after exposure (Chapter 2). The exposed sites were located 

50 m downwind from the site of gas release (foliage completely necrotic except for 

current-year needles), 0.2 km downwind (foliage mainly chlorotic), -0.8 km and -1.5 km 

downwind (foliage not visibly injured)(Figure 2.1). All sites were similar in elevation, 

vicinity to the river, soil type and vegetation (Table 3.1). Tree status (based on visual 

judgment of foliage) was judged to be uniform within each study site. My investigation 

focused on the two most common conifer species in the area, Pseudotsuga menziesii 

(Douglas Hr) and Pinus ponderosa (Ponderosa pine) (Hitchcock and Cronquist, 1994). To 

cover the total distance over which chlorine gas appeared to affect Pseudotsuga menziesii 

(Olympus Environmental, 1996), some of the measurements were extended up to -10 km 

downwind. Physiological and growth measurements were carried out over three growing 

seasons following the gas release. Samples for all measurements were collected from the 

bottom part of the canopy (1.5 to 2 m above ground). In this study the growing seasons 

will be referred to by calendar year and years since the chlorine gas release, expressed as 

years to spill (yts), in the following manner. 1994: -2 yts (2 years before spill), 1995: -1
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yts (1 year before spill), 1996:0 yts (spill year), 1997: +1 yts (1 year after spill), and 

1998: +2 yts (2 years after spill).

Visual and insect injury

Visible foliar injury due to drought and insects was assessed in March 1997 and 

1998. Two branches with the needle age classes -1,0, and +1 yts, were collected from 5 

randomly selected trees at each site. Ten to fifteen randomly chosen needles from each 

branch, 50 to 75 in all, were scored in the lab according to the five following foliar injury 

categories: 1) 100 % green; 2) 5 to 25 % chlorotic; 3) >25% chlorotic; 4) 5 to 25 % 

necrotic; and 5) >25% necrotic. Beginning in March 1998,1 monitored for evidence of 

insect injury in the Held whenever the study sites were visited.

Cuticular injury and transpiration

Effects of chlorine gas exposure on needle cuticles were assessed using droplet 

contact angles (CA) and droplet retention angles (RT) (Brewer, 1996; Brewer and Smith, 

1997). CA is a measure of leaf wettability, and can be used to study effects of air 

pollutants on cuticles (e.g., Staszewski et al., 1998). CA and RT were determined for 

foliage from 10 randomly selected trees at each site with two replicates per tree.

Cuticular water loss was determined for exposed 1995 foliage (-1 years to spill, 

yts), and non-exposed 1996,1997, and 1998 (0, +1 and +2 yts respectively). One branch 

from was collected from 5 randomly selected trees at each site. From this sample, 2 to 4 

samples were randomly selected for further analysis. Fresh weight, and saturated weight 

after soaking overnight were measured on foliage samples. Then stems of water-saturated
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needle samples were sealed with paraffin wax, to avoid water loss via the stem, and 

dried at -30 °C in a drying oven. Cuticular transpiration was determined by weighing the 

samples periodically over the course of 3 d (Hadley and Smith, 1989). Samples were 

dried for an additional 3 d at -60 °C to determine dry weight. Minimal conductance to 

water vapor, Grain.H20v (Kerstiens, 1996), was calculated from data on specific needle area 

(SLA), temperature and relative humidity m the drying oven, and the weight loss of the 

needles. SLA was estimated for foliage of all needle age classes for each sample date 

using the glass bead method (Thompson and Leyton, 1971). Total water content (TWC, 

expressed as gr H20  per gr dry weight) and relative water content (RWC, expressed as 

the ratio of fresh weight-dry weight to saturated weight-dry weight) of foliage were 

derived from the fresh-, saturated-, and dry-weights of needle samples. Cuticular 

transpiration and foliar water content were measured periodically in until September 

1998 (i.e., 9/96,12/96,3/97, 5/97, 10/97,3/98,6/98 and 9/98), a total of three growing 

seasons after exposure to chlorine gas.

Photosynthetic efficiency

Chlorophyll fluorescence measurements were made with an Opti-Sciences 

Modulated Fluorometer (Model OS-100, PP Systems, MA) in March and May 1997, one 

year after gas exposure. Needle samples of Douglas fir and Ponderosa pine (5 randomly 

selected trees for each species, 2  replicates per tree) were dark-adapted for fifteen 

minutes prior to measurements. Fa (dark fluorescence yield) and Fm (maximum 

fluorescence) were measured to calculate the variable fluorescence (Fv = Fm -  F0) and the 

efficiency of excitation (Fv/Fm ratio). Measurements were taken between 10.00  and 14.00
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Growth measurements

Needle length was measured in March 1997 and 1998 for 15 randomly selected 

trees at each site, with 4 replicates per tree. Annual shoot increment growth was 

measured in the field in winter, spring, and fall of 1997, by measuring the distance 

between nodes on leading branches in the lower canopy. This was done for 5 to 15 

randomly selected trees of each species with two replicate branches per tree, at each site. 

Bud counts were carried out in fall 1996,1997, and 1998, and represent the three growing 

seasons after chlorine gas exposure. On each sampling date, the number of buds per 

leading branch was counted for 10 to 27 trees of each species, depending of tree 

availability at each site (two replicate branches per tree).

Retention of needle age classes was measured in the field in March 1998 at the 

upwind and downwind control sites and at nine sites exposed to chlorine gas (up to ~10  

km downwind from the site of release), for 10 randomly selected trees per site with two 

replicates branches. In April 1999, this survey was repeated at the two control sites, an 

additional upwind control site, and eight exposed sites (<1.5 km downwind of the site of 

release).

Tree cores were collected in May 1997 at the upwind and downwind control sites 

and three exposed sites (<0.8 km downwind from the release site). Sampling procedures 

at each site were the same as those to estimate retention of living needle age classes.

Cores were examined microscopically and annual core increment growth was calculated 

as the % change of the 18-year average (i.e., up to the year before the gas release). This
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analysis was repeated in November 1998. In May 1998, large mature trees at all field 

sites were examined for the presence of cones. These data were then expressed as the % 

of trees that produced cones.

Tree Mortality

Tree mortality was assessed in May 1999, three years after the gas release, at two 

upwind control sites, as well as eight sites up to 1.5 km downwind of the site of gas 

release. At each site a 10 X 10 m plot was randomly established. All trees taller than 2 m 

were identified to species. I measured DBH (diameter breast height, 1.37 m), and whether 

trees were alive (living foliage present on branches) or dead (no living foliage present; 

personal communication, D. Six). This was a conservative estimate of tree mortality since 

a conifer can be dead while there is still living foliage present on the branches. Finally, 

tree mortality was simulated at the stand level, using the FOREST-BGC model (Running 

and Gower, 1991). Results were reported as relationships between foliar biomass and 

stem increment growth (Nichols, 1988). Input values for model calculations were derived 

from data collected in this study.

Statistical analysis

Data were analyzed using SigmaStat (SPSS, 1997). Data that met the 

requirements for normal distribution were analyzed using analysis of variance (reported 

as F, F-value). Pair wise comparisons were made using a Bonferroni post-hoc test. The 

experimental design was a nested analysis of variance. Samples were collected from 5 to 

10 randomly selected trees with 2 to 15 replicates per tree. The actual number of samples
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and replication depended on the measurement. If  there were no significant differences 

based on subsamples, they were pooled to increase power of the statistical analysis 

(P<0.05; Sokal and Rohlf, 1997).

Data that did not meet the normality requirements were analyzed using a Kruskal- 

Wallis ANOVA on ranks (reported as H, P-value) or the Kolmogorov-Smimov test 

(reported as ksz, P-value). Cuticular transpiration experiments were done for randomly 

selected subsamples from 5 randomly selected trees at each site, resulting in sample sizes 

varying from n-2  to n=4. Repeated measures (RM) techniques were used to analyze 

foliar water loss data, with two repeated factors, time of drying and sampling date. 

Frequency data, such as visual injury, % cone production and tree mortality were 

examined using a Chi-square analysis, an extended Kruskal-Wallis test, or Fisher’s exact 

test.

RESULTS

Visual drought injury

Foliar injury was assessed in the two years following chlorine gas exposure. In 

March 1997 (+1 yts), foliar injury of -1 yts and 0 yts needles of Ponderosa pine was 

significantly higher within 0 .2  km of the release site compared to control trees and trees 

0.8 downwind (Table 3.2); foliage that was chlorotic in May 1996 had progressed to 

necrotic. Moreover, even though 0 yts foliage had a healthy appearance after it flushed,

35 to 75 % of needles had become necrotic by March 1997 on trees 0.2 km and 50 m 

downwind. There were no significant differences in foliar injury for Douglas fir trees, 

although there was a trend towards increased foliar injury in the - 1  and - 1  yts age classes
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for the trees within 0.2 km of the site of release in March 1997 (+1 yts) and 1998 (+2 

yts; Table 3.2). Because increased foliar injury was observed for both exposed foliage 

and foliage that flushed after exposure, chlorine gas exposure may have caused foliage 

from both -1  yts and 0  yts age classes to be more susceptible to secondary stress factors.

The extent of visual injury in March 1997 was strongly correlated with visual 

injury in March 1998 for both species (̂ =0.80, P=0.001). This correlation was stronger 

in 0 yts foliage (r=0.90, P=0.002) than in -1 yts foliage (r=0.58, />=0.23). Foliar injury 

of Ponderosa pine in March 1997 (+1 yts) was negatively correlated with TWC and RWC 

in September 1996 (r=  -0.82, P<0.01) and in March 1997 (r=  -0.67, P=0.05). Foliar 

injury of Douglas fir in March 1997 was positively correlated with relative water loss in 

December 1996 and May 1997, and with Gnunjeov in December 1996 and October 1997 

(r>0.70, P<0.05). Negative correlations for Douglas fir were present between visual 

injury in March 1997 and TWC in September 1996 and May 1997. RWC was negatively 

correlated with visual injury at all sampling dates through October 1997 (r<  -0.70, 

PcO.OS). Thus, foliar injury one year after gas exposure was a good indicator of the 

effects chlorine gas exposure on cuticular water loss and needle water content. In March 

1998, no significant relationships between visual injury and indices of water loss were 

found.

Cuticles and cuticular water loss

Two years after chlorine gas exposure, -1 yts foliage of Ponderosa pine trees 0.8 

km downwind had lower CA’s compared to controls, suggesting that chlorine gas 

exposure increased leaf wettability of conifer foliage, and that these effects persisted long
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after the initial exposure (Table 3.3). However, statistically significant differences in 

CA for the other needle age classes could not be attributed to chlorine gas exposure, and 

were probably due to site to site variation. Thus, chlorine gas exposure only led to 

persistent effects on CA for directly exposed conifer foliage of Ponderosa pine. This also 

may have been the case for Douglas f i r  foliage as well, but at the time of measurement 

the directly exposed needle age class had already defoliated. CA decreased significantly 

with increasing needle age (Table 3.3) for both for Ponderosa pine and Douglas fir 

(F 123.66 and F35.69 respectively; P<0.0001) at all study sites. Droplet retention angles (RT) 

did not differ significantly with different chlorine exposures for either species. However, 

there was a trend towards lower RT for Ponderosa pine with increasing needle age 

(#3=22.5, P<0.001).

In September 1996, five months after chlorine gas exposure, 1-year old needles 

(-1 yts) of Ponderosa pine and Douglas fir had higher relative water loss relative to 

controls (Figure 3.1 A and 3.2A). However, increased relative water loss was not reflected 

in significantly higher G „ u n . H 2 0 v  (Figure 3.IB  and Figure 3.2B). Moreover, unexposed 0 

yts needles on trees 50 m downwind also had higher water loss compared to the other 

sites, but again these differences were not reflected in significantly higher G „ u D.h 20v  

(Figures 3.1 A and 3.2A). Relative water loss for-1 yts Ponderosa pine needles within 0.2 

km of the release remained higher than control needles through October 1997 (FVs6=9-04, 

P<0.001; Figure 3.3A and Appendix 3.1). Douglas fir foliage also continued to show 

increased relative water loss from -1 yts foliage within 0.2 km of the release through 

October 1997 (P3,45=5.50 , P=0.007; Figure 3.4A and Appendix 3.2). However, although 

there was a trend towards higher GmiQ,H20v for - 1  yts foliage within 0 .2  km of the release,
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these were not statistically significant (Appendix 3.1 and 3.2). There was a trend 

towards higher relative water loss from 0 yts foliage for both Ponderosa pine and Douglas 

fir trees within SO to 200 m from the release (Figure 3.3B and Figure 3.4B; Appendix 3.1 

and 3.2). This trend was not consistent over time for Ponderosa pine and foliage at 

exposed sites showed higher water loss compared to control sites at some dates but not at 

others. Gm.- of 0 yts foliage for both Ponderosa pine and Douglas fir was higher 

within 0.2 km of the release compared to control sites (F2.65=3.57, P=0.034 and 

F2.73=4.24, P=0.019 respectively; Appendix 3.1 and 3.2). There were no effects of 

chlorine gas exposure on relative water loss and Gmin.H20v of Ponderosa pine needles that 

flushed in 1997 (+1 yts), the second growing seasons after chlorine gas exposure. 

However, the +1 yts needles of Douglas fir trees had increased relative water loss up to 

0 .8  km downwind and higher GnuD,H20v at 0 .8  km downwind compared to control sites 

(^2.33=11 6 6 , P<0.001 and Fys=6.01. P=0.007 respectively; Appendix 3.1 and 3.2).

These data suggest that chlorine gas exposure affected water balance of conifer foliage, 

via both direct and indirect mechanisms, for at least 2-3 growing seasons after exposure. 

However, responses were species dependent (higher for Douglas fir), and not always 

consistent overtime. Although there was a good correlation between increased relative 

water loss and Gmin^ov (mean r=0.69 ± 0.11 SE, n=l9; 75 % of r2 values >0.87), 

significant increases in relative water loss were not always reflected in significantly 

higher Gnun.H20v and vice versa.
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Water content

TWC of foliage that flushed after chlorine gas exposure was lower at all exposed 

sites for Douglas Hr in September 1996 (Table 3.4), but not after this date (Appendix 

3.2). Directly exposed Ponderosa pine foliage within SO m had lower TWC compared to 

the other sites (Table 3.4). TWC was lower in sites up to 0.2 km downwind compared to 

the control site and 0.8 km downwind for directly exposed (-lyts) Ponderosa pine foliage 

up to at least October 1997,1 Vi years after chlorine exposure (F2.62=6.81, P<0.001, 

Appendix 3.1). Similarly, directly exposed Douglas fir foliage (-1 yts) had lower TWC up 

to 0.2  km downwind compared to the control site and 0 .8  km downwind up to at least 

October 1997, xh  years after chlorine exposure (Fij3=16.75, P<0.001, Appendix 3.2). 

RWC was lower for directly exposed foliage within SO m of the release in September 

1996 (Table 3.4). This needle age class defoliated in Fall of 1996. Chlorine gas exposure 

did not affect RWC for either of the species nor any of the needle age classes after 

September 1996 (Appendix 3.1 and 3.2).

Chlorophyll fluorescence

There were no differences in Fv/Fm in late March 1997, and trees of both species 

were still in winter dormancy (Fy/Fm ratio 0.361 ±0.015 SE). Similarly, in May 1997 

there were no differences in Fy/Fm ratios for -1 yts Ponderosa pine and Douglas Hr foliage 

0.8 km downwind and 0 yts Douglas fir foliage (Table 3.S). Although there were 

significant differences in Fy/Fm ratios in the 0 yts needle age class (Table 3.S), these 

differences could not be attributed confidently to chlorine gas exposure, because of the 

inconsistent responses in relation to the distance to the release site.
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Growth measurements

While needle length varied between sites, it did not appear to be affected by 

chlorine gas exposure. Ponderosa pine needles on trees at exposed sites had significantly 

longer needles than the downwind control site in the +1 and +2 needle age classes (Table

3.6). However, since these differences were present before the exposure to chlorine gas 

(Table 3.6), they cannot be attributed to gas exposure. Although there were some 

differences in needle length in Douglas fir in the -1 and 0 yts needle age classes, there 

was no consistent pattern that would link these differences to chlorine gas exposure 

(Table 3.6).

Specific leaf area (SLA) of Ponderosa pine and Douglas Hr foliage was not 

affected by chlorine gas exposure (overall averages 84 cm2 g'*± 3 SE (n=47) for 

Ponderosa pine; 93 cm2 g ‘± 4 SE (n -33) for Douglas fir). SLA decreased with increasing 

needle age in both Ponderosa pine and Douglas fir for both control and exposed trees. 

SLA of +1 yts Douglas Hr needles was significantly higher than - I  yts needles (Ftji=5.4, 

PsO.004), with SLA values of 111 cm2 g' 1 ±  9 and 84 cm2 g‘l ± 4, respectively.

Although the natural variation in annual shoot growth (for branches 1.5-2 m off 

the ground) was considerable, there were significant differences between the study sites. 

Since there were no differences between the sampling dates and subsamples, all samples 

for the three sampling dates were combined for statistical analysis. Shoot growth was 

higher at the upwind control site compared to the other sites, for both Ponderosa pine and 

Douglas fir (Table 3.6). However, these differences cannot be attributed to chlorine gas 

exposure, since similar patterns were observed pre- and post-chlorine gas exposure 

(Table 3.6). Thus, it appears that the differences in annual shoot growth between study
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sites were due to site-specific differences rather than to exposure to chlorine gas.

Ponderosa pine trees at sites 0.2 and 0.8 km downwind had more buds in 1996 (0 

yts) and 1997 (+1 yts), the two growing seasons following chlorine gas exposure (Table

3.6). A similar pattern was observed for Douglas fir, with increased numbers of buds on 

trees 0.8 km downwind in 1996 (0 yts) and 0.2 km downwind in 1997 (+1 yts; Table 3.6). 

In 1998, there were no differences in bud counts for either species.

By spring 1998 (+2 yts), only 40-75 % of needle age classes were present on 

Ponderosa pine trees within 0.5 km of the site of gas release, compared to control trees 

and trees further downwind from the release site (Figure 3.5A). In 1999 (+3 yts), control 

trees still had significantly more needle age classes present than exposed trees (#io=56.8, 

P<0.001). Moreover, in 1999, lower needle retention for Ponderosa pine was evident up 

to 1.5 km downwind (compared to 0.5 km in 1998), and exposed Ponderosa pine had 

even fewer needle age classes present than in 1998. Douglas fir trees up to 1.5 km 

downwind from the site of the gas release had fewer than 2 needle age classes present, 

compared to about 9 years at control sites (Figure 3.5B). In 1999, these differences were 

still present (# 10= 123.1. P<0.001). Patterns of lower needle retention by Douglas fir 

needles were observed up to 10 km downwind from the release site (Figure 3.5B).

There was no difference in annual core increment growth between study sites in 

1994 and 1995, the two growing seasons before chlorine exposure (P>0.05). Moreover, 

there were no differences in annual core increment growth for Ponderosa pine from 1994 

to 1998 at sites 0.2 and 0.8 km downwind (Figure 3.6A). The control sites showed an 

increasing trend from 1994 to 1998 (F4.i20=2.86, P<0.001; Figure 3.6A). In contrast, 

Ponderosa pine up to 0.2 km downwind from the release had significantly lower core
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increment growth in the three years following chlorine gas exposure compared to 

before exposure (F u 2o=2 .8 6 , P<0.001; Figure 3.6A). Ponderosa pine at 1.5 km 

downwind had lower growth the first growing season after exposure, but this decrease 

was not statistically significant (Figure 3.6A). Similarly, Douglas fir at control sites had 

an increasing trend in core increment growth between 1994 and 1998 (Fu2o=5.61, 

P<0.001; Figure 3.6B). Douglas fir up to 0.8 km downwind from the release site had 

significantly lower core increment growth for at least three years after exposure to 

chlorine gas, compared to before exposure. In 1996, reductions of stem growth in 

Douglas fir corresponded to severity of foliar injury, with reductions of 26 % (± 6  %) and 

56 % (± 7 %) for chlorotic and necrotic trees, respectively (F jj, P=0.009).

At the control sites, 75 % of Ponderosa pine produced cones in 1998 (+2 yts). 

However, at exposed sites up to 10 km downwind only 40 % (± 27 %) of trees produced 

cones (Fisher’s Exact test, P=0.05 to 0.001; range 10 to 70 %). Cone production was 

lowest within 1.5 km downwind from the site of gas release, averaging only 29 % of the 

trees. One exception was a heavily managed Ponderosa pine stand ~2.5 km downwind, 

with 70 % of the trees bearing cones. Douglas fir had an overall average of 40 % (± 20 

%) of trees bearing cones in 1998 (+2 yts; range 10 to 67 %). Trees at sites 50 m and 0.5 

km downwind had significantly lower cone production than the control sites (only 10 % 

of trees with cones; Fisher’s Exact test, P=0.02).

Mortality

Chlorine exposure increased susceptibility to insect damage on a very limited 

scale. By April 1998 (+3 yts), only two mature Douglas fir trees, weakened by defoliation
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after chlorine gas exposure, had been killed by Douglas fir beetle (Dendroctonus 

pseudotsugae Hopkins). Several Douglas Hr trees, which had been killed directly by 

chlorine gas, were infested by ambrosia beetles (Trypodendron spp.). There was no 

evidence of infestations by insects of Ponderosa pine.

In spring 1999, three years after gas exposure, there were no effects of chlorine 

gas exposure on mortality of Ponderosa pine, averaging 10 % (± 5 %) mortality over 9 

sites within 1.8 km of the site of release (range 0 to 30 %). Douglas fir mortality was 

significantly higher at the two sites within 40 m of the site of gas release compared to 

control sites (Figure 5). Although Douglas fir mortality at distances beyond >50 m 

downwind of the release site was not significantly different from the upwind control sites, 

tree mortality at these exposed sites tended to be higher than at the control sites (Figure 

5).

DISCUSSION

This is the first study ever to report on long-term physiological and growth effects 

on a natural forest ecosystem after acute chlorine gas exposure. Observed adverse effects 

consisted of influences on leaf water loss and growth. Chlorine gas exposure led to 

increased leaf wettability of directly exposed needles of Ponderosa pine. Moreover, 

relative water loss via the cuticle tended to be higher for exposed trees within 0 .2  km of 

the release, which led to lower TWC for directly exposed foliage. Chlorine exposure 

caused severe defoliation, and led to decreased annual stem increment growth, cone 

production, and leaf longevity of photosynthetic biomass. These effects may have long

term adverse effects on tree health and survival, due to increased susceptibility to drought 

stress and lower rates of photosynthesis.
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Cuticles and cuticular water loss

Two years after chlorine gas exposure, CA’s on directly exposed Ponderosa pine 

foliage (-1  yts) 0 .8  km downwind were lower than controls, suggesting that cuticles had 

not recovered to pre-spill conditions (Table 3.3, Chapter 2). Although exposed 0 yts 

Douglas fir needles had lower CA’s 5 months after gas exposure (Chapter 2), no recovery 

had occurred two years after exposure (Table 3.3). However, CA’s of this needle age 

class on exposed trees were not different from control trees, because CA’s of control 

needles has decreased over time (Table 3.3). Lower CA’s have been reported for other 

conifer species over time due to erosion of cuticular waxes (e.g., Staszewski et al., 1998). 

Other differences in CA could not be attributed to chlorine gas exposure, and were most 

likely due to site to site variation (Table 3.3).

Decreased CA’s have been reported for Picea rubens after exposure to acid mist 

(Bames and Brown, 1990; Percy et al., 1992) as well as for beech trees with forest 

decline symptoms (Paoletti, Radi and La Scala, 1998). CA and RT decreased with 

increasing needle age (Table 3.3), which can be attributed to erosion and degradation of 

cuticular waxes over time (Schreiber, 1994; Staszewski et al., 1998). The observed 

changes in CA o f-1  yts Ponderosa pine foliage may have been caused, in part, by 

exposure to the chlorine gas cloud, since acid rain and mist can increase cuticular wax 

erosion (Paparazzi and Tukey, 1984), change wax composition and structure (e.g., Percy 

et al., 1990,1992; Kerfoum and Garrec, 1992; Bytnerowicz and Turunen, 1994), and 

decrease wax production (Garrec and Kerfoum, 1989; Bytnerowicz and Turunen, 1994). 

These changes may have led to higher cuticular transpiration (DeLucia and Berlyn 1984;
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Hadley and Smith, 1989; Schreiber, 1994), and lower TWC (Mengel et al., 1989; Esch 

and Mengel, 1998).

In September 1996, three months after gas exposure, -1  yts and 0 yts foliage of 

Ponderosa pine and Douglas fir had increased relative water loss (Figure 3.1A and 3.2A), 

further suggesting that cuticles had not recovered since the spill (Chapter 2). These 

effects persisted up to 1 year after exposure for Ponderosa pine foliage, and up to Vt year 

for Douglas Fir foliage (Figures 3.3 and 3.4, Appendices 3.1 and 3.2), after which this 

needle age class was too sparsely represented on Douglas fir branches to be sampled for 

water loss. Interestingly, increased cuticular transpiration was significant for directly 

exposed -1  yts foliage measured as relative water loss, and for the 0  yts needle age class 

measured as Grain,H20v (Figures 3.3 and 3.4, Appendices 3.1 and 3.2). Yet, the differences 

were only significant for one of the factors, either relative water loss or Gnun,H20v. The 

factor that was not statistically significant showed the same general trend as the 

significant factor. Moreover, there was a reasonably strong correlation between relative 

water loss and Gmin.H20v Thus, it appears that chlorine gas exposure tended to increase 

cuticular water loss of conifer foliage within 0.2 km of the release. Increasing the sample 

size may have led to results that were more internally consistent. Cuticular damage to the 

-1  yts needle age class occurred through direct exposure to chlorine gas. Since cuticular 

transpiration of 0 yts of both species and +1 yts Douglas Hr foliage also were elevated, 

these cuticles were most likely affected indirectly via effects on de novo wax synthesis. 

Disruption of wax synthesis also has been reported for Picea rubens in response to acid 

mist (Percy et al., 1992).

Adverse effects of chlorine gas exposure on cuticular transpiration lasted up to 1
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year for Ponderosa pine and 0.5 year for Douglas fir. This led to lower TWC for -1 yts 

foliage within 0.2 km from the release (Appendices 3.1 and 3.2). However, chlorine gas 

effects on TWC were limited to directly exposed conifer foliage within 0.2 km of the 

release. These effects lasted up to May 1997,1 year after exposure. RWC of conifer 

foliage was not affected by chlorine gas exposure (Appendices 3.1 and 3.2). RWC values 

were well above the lethal RWC threshold reported for Douglas fir in Montana (-55 %; 

Pharis and Ferrell, 1966). In September 1996, RWC values of necrotic and chlorotic 

foliage within 50 m of the site of gas release were close to this threshold, and may have 

led to subsequent defoliation. Moreover, lower RWC could have led to stomata! closure 

earlier during the day, and thus, lowered photosynthetic rates (Running, 1976; Pallardy, 

Pereira and Parker, 1991). Finally, all measurements for cuticular water loss and foliar 

water content were taken in the lower canopy. Since the chlorine gas cloud tended to stay 

close to the ground, the relationship of my findings to whole tree water balance are 

uncertain.

Chlorophyll fluorescence

In late March 1997, there were no differences in Fv/Fm ratios, and photosynthesis 

was still down regulated, as is common for conifers during winter (Havranek and 

Tranquillini, 1995). Similarly, in May 1997 there were no differences in Fy/Fm ratios of 

directly exposed -1  yts needles. There were some differences in Fv/Fm ratios of 0 yts 

foliage of both species. However, these could not be conclusively attributed to chlorine 

gas exposure and may have been caused by natural variation between study sites. These 

data suggest that photosynthetic efficiency had recovered since the previous summer,
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when both -1  yts and 0 yts foliage on exposed trees had decreased Fv/Fm ratios 

(Chapter 2). Irreversible decreases of Fv/Fm ratios and photosynthesis have been reported 

for Phaseolus vulgaris after a one-time application of acid mist of pH<2.0 (Velikova et 

al., 1997; Velikova, Tsonev and Yordanov, 1999).

Growth

It has been reported that conifers allocate carbon to different tissues according to 

the following prioritization (Figure 3.8): 1) maintenance respiration, 2) growth 

respiration, 3) leaf growth and storage, 4) root growth and storage, S) stem growth and 

storage, 6 ) protective chemical compounds, and 7) reproduction (e.g., Running and 

Gower, 1991; Weinstein, Beloin and Yanai, 1991; Dewar, Ludlow and Dougherty, 1994; 

Barnes et al., 1998). According to Mooney and Winner (1991) photosynthesis is a high 

priority in carbon allocation in evergreen trees. Others have suggested that carbon is 

allocated to the most limiting resource. For example, decreased light availability might 

lead to increased foliage production and shoot growth, whereas nutrient and drought 

stress to would precipitate allocation to increased root growth (Mooney and Winner,

1991; Luxmore et al., 1995). Based on this carbon allocation scheme (Figure 3.8), I 

predicted that chlorine gas exposure, and the subsequent defoliation, would have the 

greatest effect on tissues that tend to be lower priority for allocation.

Needle length, SLA, and annual shoot increment growth were not affected by 

chlorine gas exposure (Table 3.6). Although there were differences between study sites in 

these parameters, these differences appeared to be site specific and not related to chlorine 

gas exposure. There was a trend towards increased bud production at sites 0.2 and 0.8 km
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downwind of the site of gas release (Table 3.6), suggesting higher investment in 

foliage over the two growing seasons following chlorine exposure. Foliar biomass of 

trees exposed to chlorine gas deceased considerably over the first growing season. 

Necrotic needles within -50 m of the release, as well as some of the chlorotic foliages up 

to 0.2 km downwind site, defoliated during the summer following exposure. Reduced 

needle longevity also was observed for 0 yts foliage for both species (Figure 3.5). The 

downwind distance over which reduced needle longevity was observed for Ponderosa 

pine increased during the years following exposure, suggesting that both directly exposed 

and newly flushed needles on exposed trees were more susceptibility to environmental 

stress factors. This was particularly evident during an extended drought period in the 

summer of 1996, agreeing with data showing premature leaf senescence can be induced 

by decreased RWC (Pharis and Ferrell, 1966; Pallardy et al., 1991).

Both Ponderosa pine and Douglas fir had lower annual stem increment growth 

over at least three growing seasons following chlorine gas exposure (Figure 3.6). For 

Ponderosa pine these effects were significant up to 0.2 km downwind of the release, and 

for Douglas fir up to 0.8 km downwind. Moreover, other exposed sites up to 1.6 km 

downwind tended to have lower core increment growth the first growing season after 

chlorine exposure, and these effects subsided in the second growing season. Interestingly, 

stem increment growth of the deciduous western larch was not affected (Schreuder, 

unpublished data), suggesting that the growth decline observed in the evergreen conifers 

was related to direct exposure of foliage to chlorine gas and subsequent defoliation. 

Defoliation has been reported to decrease stem increment growth of Pseudotsuga 

menziesii and Abies grandis (Nichols, 1988), Pinus ponderosa (Miller and Wagner,
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1989), Pinus contorta (Schoettle, 1990), Picea abies (Christiansen and Fjone, 1993), 

and Pinus resinosa (Clancy, Wagner and Reich, 1995). Possible contributing factors to 

the decrease of stem increment growth in this study include lower photosynthetic 

biomass, lower photosynthetic efficiency in the first growing season (Chapter 2), and 

increased susceptibility to drought stress.

Nichols (1988) described annual stem increment growth of Pseudotsuga menziesii 

and Abies grandis as a function of stem increment growth and percent foliage retained in 

the previous growing season. When this model was applied in the current study, predicted 

results agreed well with measured data for both Douglas Hr (r=0.86, P<0.005), as well as 

Ponderosa pine (r=0.80, P<0.001). Based on this model, stem increment growth of 

Douglas fir was expected to return to normal 5 to 6 years after gas exposure and after 4 to 

7 years for Ponderosa pine, depending on the severity of defoliation. These predictions 

were similar to predicted recovery times using the Forest BGC model (Running and 

Gower, 1991), i.e., 4 years for full recovery for Ponderosa pine and 7 years Douglas fir. 

Results also were consistent with observed recovery times for stem growth of defoliated 

conifer species, including Douglas Hr (2 to 5 years; Alfaro and MacDonald, 1988; Maher 

and Shepherd, 1992).

Douglas fir and Ponderosa pine responded differently to chlorine gas exposure. 

Stem increment growth of Ponderosa pine and Douglas fir were affected up to 0.2 and 0.8 

km downwind respectively (Figure 3.6). Moreover, needle defoliation was lower for 

Ponderosa pine than for Douglas fir, and the replacement rate of defoliated needle age 

classes was slower for Douglas fir. What factors may explain these differences? 

Ponderosa pine tends to be more drought-tolerant than Douglas fir, and has a deeper root
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system. Moreover, Ponderosa pine replaces its foliar biomass at a faster rate (-4  years) 

compared to Douglas fir (-9  needle age classes on healthy trees). Current-year foliage of 

Ponderosa pine tends to contribute proportionally more (-70 %) to whole tree 

photosynthesis compared to Douglas fir (-36 %; Chabot and Hicks, 1982). Thus, one 

would expect faster recovery for Ponderosa pine compared to Douglas fir. This was 

observed for both stem growth as well as replacement of lost needle age classes. 

Furthermore, exposed Ponderosa pine tended to keep the youngest exposed needle age 

class (1-year old), where as Douglas fir dropped most exposed needles, including 1-year 

old needles. Also, defoliation was observed for Douglas fir on much larger area 

compared to Ponderosa pine (up to 10 km downwind from the release for Douglas fir and 

0.S km for Ponderosa pine, Figure 3.5). Thus, Douglas fir appeared more sensitive to 

acute chlorine gas exposure than Ponderosa pine. Although the 1-year old needle age 

classes of Douglas fir and Ponderosa pine contribute about equally to whole tree 

photosynthesis (-25 %; e.g., Chabot and Hicks, 1982; Rundel and Yoder, 1998), 

Ponderosa pine generally retained this age class, probably at a higher respiration cost, 

whereas Douglas fir dropped this age class of needles. This pattern may be explained by 

higher drought tolerance of Ponderosa pine, and higher relative photosynthetic gain from 

the current-year needle age class (Chabot and Hicks, 1982; Rundel and Yoder, 1998). 

Older Douglas fir needles contribute very little to whole tree photosynthesis (Chabot and 

Hicks, 1982), representing a cost rather than a benefit for a tree. This may be, especially 

true when needles are severely damaged, e.g., by chlorine gas exposure.

Repair of exposed tissues in Ponderosa pine may have led to higher respiration 

costs. These costs are added to those incurred because Ponderosa pine supports

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



75
proportionally more sapwood than Douglas Hr (e.g., Margolis et al., 1988). Increased 

respiration costs for chlorine exposed trees may explain observations of lower cone 

production for Douglas hr and Ponderosa pine at exposed sites up to 0.5 and 1.5 km 

downwind of the gas release compared to control sites. Cone production is a considerable 

carbon sink of coniferous trees (Dewar et al., 1994; Gower, Isebrands and Sheriff, 1995). 

Allocation to cones has been reported to lead to decreased stem increment growth 

(Luxmoore et al., 1995). Sidhu and Stanforth (1986) reported decreased numbers of 

fertile trees, cones, and seeds per cone for Abies balsamea, Picea mariana and Larix 

larcina after exposure to fluorides. Thus, the range of possible causal factors for lower 

cone production in exposed trees includes toxicity of chloride, drought as well as 

defoliation. Because reproduction is a carbon sink with a lower allocation priority in 

these long-lived trees (Figure 3.8), allocation to foliar biomass may be a higher priority 

than reproduction.

Chlorine gas exposure, and the subsequent defoliation, did not affect needle 

length and shoot growth or bud growth. However, exposure did correlate with lower 

annual stem increment growth and reproduction. Thus, higher priority carbon sinks, i.e., 

needles, buds and branches, were not affected by chlorine gas exposure, whereas 

allocation to lower priority sinks, i.e., stem increment growth and reproduction, did seem 

to be negatively impacted (Figure 3.8). These observations also agree well with increased 

carbon allocation to shoots (Temple, 1988; Reich et al., 1993; Clancy et al., 1995), and 

decreased stem increment growth (Christiansen and Fjone, 1993) in defoliated conifers.
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Tree mortality

Tree mortality of Ponderosa pine was not affected during the three years 

following chlorine gas exposure. However, mortality of Douglas fir was significantly 

higher at the two sites nearest to the release, and generally higher at the other exposed 

sites compared to control sites (Figure 3.7). Tree mortality within 30-50 m of the release 

most likely occurred within a few months after chlorine gas exposure. Douglas fir 

mortality was highest in the younger tree age classes, with -90 % of the mortality 

occurring in trees with a DBH <6 cm. This is in agreement with reports that tree mortality 

after defoliation is highest among small, suppressed Douglas fir trees (Alfaro et al.,

1982), which have lower carbon reserves than larger trees (Webb, 1981). Although 

smaller trees may come back more vigorously after partial defoliation (Clancy et al., 

1995), defoliation exceeding -80 % increased mortality of Picea balsamea (Margolis et 

al.; 1988). Model results of the Forest BGC model (Running and Gower, 1991) indicated 

that conifer defoliation exceeding -85 % would lead to increased tree mortality due to a 

negative carbon balance. A conservative defoliation estimate, based on visual injury data 

two months after exposure within 50 m of the gas release, was -  75 % for Ponderosa pine 

and -89 % for Douglas fir, thus some mortality at this site was expected, especially for 

Douglas fir.

CONCLUSION

These data suggest that acute exposure to chlorine gas not only leads to 

acute visible injury, but also to longer-term physiological and growth effects of conifers. 

Chlorine gas exposure may have led to increased susceptibility to drought stress, 

decreased photosynthetic biomass, and decreased stem growth and reproduction.
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Moreover, increased tree mortality was observed, especially close to the site of gas 

release. Although effects on drought susceptibility lasted up to 0.5 to 1 year, effects on 

foliar biomass and growth can be expected to persist 4 to 7 years after chlorine gas 

exposure. Effects of exposure to chlorine gas were highly species specific. P. menziesii 

was more susceptible to defoliation than P. ponderosa, and defoliation patterns of P. 

menziesii were a useful indicator to of past presence of chlorine gas. Since chlorine gas 

tended to increase drought susceptibility of directly exposed foliage, tree responses may 

differ between dry and moist sites, as well as between dry and moist climates and 

growing seasons. Growth responses to chlorine gas exposure resembled those of 

defoliation due to severe drought or insect damage. Therefore, when extrapolating results 

from this study to deciduous tree species, known responses of trees to defoliation may 

help to assess what type of long-term responses to expect after chlorine gas exposure. 

Factors such drought tolerance, site characteristics, climate, and timing of exposure need 

to be taken into account for such an assessment.
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Table 3.1: Physical description of study sites. Data shown are elevation, soil type, and 

habitat type (Pfisteret al., 1977). Pinus ponderosa was the second most abundant tree 

species at all study sites. All sites were level benches in close vicinity to the Clark Fork 

River, western Montana.

Site and

downwind distance

Elevation 

(m asl)

Soil type Habitat type

Upwind Control 876 Coarse loam Pseudotsuga menziesii/

(-4  km) Arctostaphylos uva-ursi

SO m downwind 897 Fine loam Pseudotsuga menziesii/

Physocarpus malvaceus

0.2 km downwind 898 Fine loam Pseudotsuga menziesii/

Physocarpus malvaceus

0.8 km downwind 900 Fine loam Pseudotsuga menziesii/

Physocarpus malvaceus

1.5 km downwind 902 Fine loam Pseudotsuga menziesii/

Symphorica albus

Downwind control 976 Fine loam Pseudotsuga menziesii/

(-65 km) Physocarpus malvaceus
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Table 3.2: Foliar injury in March 1997 (n=5 trees; IS replicates per tree) and March 
1998 (n-5 trees; 10 replicates per tree) for Ponderosa pine and Douglas fir (in 
parentheses years to spill). Values shown are mean foliar injury scores. Categories are :
1) 100 % green; 2) 5 to 25 % chlorotic; 3) >25 % chlorotic; 4) 5 to 25 % necrotic; and, 5) 
>25 % necrotic. The two control sites are indicated as CU, upwind control, and CD, 
downwind control. Needle age classes that were not (longer) present on the tree are 
indicates as "Absent”. Sites with higher visual injury compared to all other sites are 
shown as and apply within each needle age class, species, and sampling date (Chi- 
square test, P<0.05).

Site / date Ponderosa pine, needle age class Douglas Hr, needle age class

1995 (-1) 1996 (0) 1997 (+1) 1995 (-1) 1996 (0) 1997 (+1)

March ‘97

CU 1.2 l.l Absent 1.6 1.2 Absent

CD 1.8 1.6 Absent 1.6 1.5 Absent

0.8 km 1.4 1.5 Absent 1.7 1.4 Absent

0.2 km 4.2 * 2.3 Absent 2.0 1.6 Absent

50 m Defoliated 3.9* Absent Defoliated 1.7 Absent

March ‘98

CU 1.4 1.3 1.1 1.4 1.4 1.6

CD 1.8 2.2 1.4 1.4 1.4 1.7

1.6 km 2.1 1.7 1.4 1.9 1.4 1.2

0.8 km 1.1 1.3 1.1 2.5 1.8 1.6

50 m Defoliated 3.1 2.0 Defoliated 1.8 1.2
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Table 3.3: Droplet contact angle (degrees, n=10 trees, 2 replicates per tree) for 
Ponderosa pine and Douglas fir for needle age classes 1995 (-1 yts), 1996 (0 yts), 1997 
(+1 yts) and 1998 (+2 yts), measured in August 1998. Letters indicate statistically 
significant differences within each species and needle age class (nested one-way 
ANOVA; compare in columns). Differences between needle age classes combined for all 
sites are shown in the bottom of the table. Values in parentheses indicate one SE.

Species + distance 1995 (-1) 1996 (0) 1997(+1) 1998 (+2)

Ponderosa pine

CU 46 (3) a 44(4) 57(4) 75 (4) a

CD 51 (4) a 43 (3) 56 (3) 71 (3) a,b

0.8 km downwind 33 (3) b 47(3) 56 (4) 80 (3) a,b

50 m downwind Absent 52(3) 60(4) 80 (3) b

ANOVA F3.77=11.66, *** F3.77=2.85, * F3,77=0.47, n.s. F3.t7=3.15, *

Douglas fir

Control, upwind Not measured 66 (4) a 64 (4) a 78(4)

Control, downwind Not measured 62 (3) a,b 62 (3) a 78(4)

0.8 km downwind Absent 54 (4) b 6 1 (4 )a 73 (3)

50 m downwind Absent 63 (4) a,b 75 (4) b 81(4)

ANOVA F3.t7=3.87, * F3.77=6.20, * * * F3.t7=1.24, n.s.

All categories

Ponderosa pine 43 (2) a 47 (2) a 57 (2) b 77 (2) c

Douglas fir 61 (2 )a 66 (2) a 77 (2) b

* P<0.05

* * *  P<0.001

n.s not significant
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Table 3.4: Total water content (n=4 trees) and relative water content (n=4 trees) of 1995 (-1 
yts) and 1996 (0 yts) needles, measured in September 1996. Letters indicate statistically 
significant differences within each species and needle age class (compare within columns, one
way ANOVA). Values in parentheses indicate one SE.

Species + category Total water content, gr/gr Relative water content, %

1995 (-1) 1996 (0) 1995 (-1) 1996 (0)

Ponderosa pine

Control, downwind 1.10 (0.03) a 1.30 (0.06) a 85 (2) a 86 (0) a,c

0.8 km downwind 1.06 (0.02) a 1.21 (0.01) b 81 (1 )a 82 (1) b

0.2 km downwind 0.89 (0.04) a 1.30 (0.02) a 79 (0) a 89 (0) a

50 m downwind 0.24(0.03) b 1.42 (0.03) c 52 (6) b 85 (1) b,c

ANOVA ^3.13=49.23, * * * F3.13=26.62, * * * ^3.13=12.70, * * * ^3.13=11.68, ***

Douglas fir

Control, downwind 1.26 (0.02) a 1.52 (0.02) a 89 (1) a 93(1)

0.8 km downwind 0.97 (0.03) b 1.32 (0.02) b 88 (1) a 92(4)

0.2 km downwind 0.98 (0.02) b 1.22 (0.01) b 95 (I)  a 91(1)

50 m downwind 0.17 (0) c 1.76 (0.04) c 69 (10)b 89(1)

ANOVA ^3.13=279.9, * * * ^3.13=49.01, * * * ^.,3=8.54, ** ^3.13=1.38, n.s.

* *  P<0.01
***  P <0.001 
n.s. not significant.
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Table 3.5: Fv/Fm ratios (n-5 trees; 2 replicates per tree) of 1995 (-1 yts), and 1996 (0 yts) 
foliage, measured in May 1997. Letters indicate statistically significant differences within each 
species and needle age class (t-test/nested one-way ANOVA; compare within columns). Values 
in parentheses indicate one SE. Needle age classes that were no longer alive are indicated as 
“Absent”.

Category FV/Fm> Ponderosa pine Fv/Fm, Douglas fir

1995 (-1) 1996 (0) 1995 (-1) 1996 (0)

Control, upwind 0.810 (0.010) 0.812 (0.006) a 0.792 (0.020) 0.796 (0.015) a

0.8 km downwind 0.809 (0.011) 0.778 (0.013) b 0.794 (0.018) 0.805 (0.007) a

0.2 km downwind Absent 0.807 (0.011) a/b Absent 0.736 (0.032) b

50 m downwind Absent 0.784 (0.017) a/b Absent 0.778 (0.020) a/b

t-test / ANOVA Tu=Q.Q3, n.s. F337=3.76, * rig=-0.1l,n.s. F337=4.33, *

* P<0.05

n.s. not significant
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Figure 3.1: Relative water loss (panel A) and G„a.H;0» (panel B) of Ponderosa pine foliage in 
September 1996 (in parentheses years to spill). Sites shown are the downwind control (CD, white 
bar), 0.8 km downwind (solid bar), 0.2 km downwind (hatched bar), and SO m downwind 
(double hatched bar). Letters indicate statistically significant differences within each species and 
needle age class (one-way ANOVA, P<0.001). Error bars represent 1 SE.
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Figure 3 .2: Relative water loss (panel A) and G .̂h2o» (panel B ) of Douglas fir foliage in 
September 1996 (in parentheses years to spill). Sites shown are the downwind control (CD, white 
bar), 0.8 km downwind (solid bar), 0.2 km downwind (hatched bar), and 50 m downwind 
(double hatched bar). Letters indicate statistically significant differences within each species and 
needle age class (one-way ANOVA, P<0.001). Error bars represent I SE.
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F ig u re  3.3: Relative water loss of Ponderosa pine foliage over time for 1995 (foliage (-1 yts, 
panel A) and 1996 foliage (0 yts, panel B ). Sites shown are the combined control sites (open 
circles), 0 .8  km downwind (open triangles), and 0 .2  km downwind (open squares). “*” indicate 
sites that are significantly different from the control sites (one-way ANOVA, P<0.001; repeated 
factor date, n=5). Error bars represent 1 SE.
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Figure 3.4: Relative water loss of Douglas fir foliage over time for 1995 (foliage (-1 yts, panel 
A) and 1996 foliage (0 yts, panel B). Sites shown are the combined control sites (open circles), 
0 .8  km downwind (open triangles), and 0 .2  km downwind (open squares). indicate sites that 
are significantly different from the control sites (one-way ANOVA, P<0.001; repeated factor, 
date, /i=5). Error bars represent! SE.
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Figure 3.5: Needle age classes present on Ponderosa pine (panel A, n=l0 ) and Douglas fir 
(panel B, n-10) over a 10 km gradient downwind from the site of gas release, measured in spring 
1998 (+2 yts). The two control sites are the upwind control (CU) and the downwind control 
(CD). Letters indicate statistically significant differences within each species and needle age 
class (Kruskal-Wallis with TuKfey Post-hoc test, P<0.001).
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years within a site that are statistically significant different compared to before chlorine gas 
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CHAPTER 4
Effects of ozone exposure on leaf wettability, plant, water balance, 

and growth of Poplar and Douglas fir saplings

ABSTRACT

The effects of ozone exposure were studied for Pseudotsuga menziesii (Douglas 
fir) and two Poplar species, Populus nigra L  cv. Brandaris (ozone intolerant) and 
Populus euramericana L  cv. Robusta (ozone tolerant). Using fumigation chambers (Tday 
20 °C, Tnieht 17 °C, RH 70-75 %. light period 16 h/d at -  180 pmol m' 2 s'1), 7 week old 
saplings were exposed to four different ozone regimes: control ( -  2  pg O3 m'3), urban 
ozone concentration (minimum 26 pg O3 m' 3 and maximum 82 pg O3 m’3), and montane 
ozone concentrations (minimum 61 pg O3 m' 3 and maximum 90 pg O3 m'3) for 6  wk 
total. Peak ozone concentrations were applied for 6  d (minimum 61 pg 0 3 m' 3 and 
maximum 335 pg O3 m'3). Droplet contact angles (CA) and droplet retention angles (RT) 
of Populus leaves decreased over time (PcO.OOl) for all treatments, but under the urban 
ozone exposure regime the decrease in CA was delayed by 2 to 4 wk (P<0.001). Ozone 
exposure led to increased relative water loss and minimal conductance to water vapor 
(GnumH20v) f°r euramericana (/MJ.OOl), but not P. nigra. Although urban ozone
exposure increased leaf wettability in Douglas Hr (as indicated by lower CA; / ><0.001), 
neither water loss or growth of this species was not affected. Ozone exposure led to 
decreased production of photosynthetic biomass (P<0.001) in the Poplar species, 
especially in the montane ozone treatment, due to fewer new leaves produced (/><0 .0 01 ) 
and premature leaf abscission (P<0.001). Leaf abscission was preceded by foliar injury 
symptoms characteristic for ozone exposure. Height growth of Populus species and 
Douglas Hr were not affected by ozone exposure, although there was a trend toward 
fewer buds in the ozone treated Douglas fir trees. These results suggest that exposure of 
Poplar saplings to ozone concentrations common during the growing season can lead to 
increased water loss and decreased leaf growth for Poplar saplings. This may have 
consequences for tree vigor and health. However, responses were highly dependent on 
species and ozone treatment.
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INTRODUCTION

Ozone is the most common component of photochemical smog (Cape, 1997). 

Ozone concentrations considered harmful to public health, crops and natural vegetation 

are exceeded frequently in many areas of the United States (Smith, 1990; Smith and 

Lefohn, 1991; Lefohn, 1992) and Europe (Stanners and Bourdeau, 1995; Scheel et al., 

1997). And ozone is considered one of the factors contributing to the forest decline 

phenomenon observed in many regions in western and central Europe (McLaughlin,

1985; Maier-Maercker, 1999; Schmieden and Wild, 1995; Bussotti and Ferretti, 1998; 

Chappelka and Samuelson, 1998; Skelly et al., 1998). Severe ozone damage to forests has 

been reported in the western United States (Arbaugh et al., 1998) as well. However, our 

understanding of the mechanics of ozone damage to forests is still limited, and an 

unequivocal causal link has not been established yet (Schmieden and Wild, 1995; 

Chappelka and Samuelson, 1998).

Ozone exposure can result in foliar injury to crops (e.g., Rich, 1964; Hill, 

Heggestad and Linzon, 1970), deciduous trees (Pdakkonen et al., 1998a, 1998b; Yun and 

Laurence, 1999), and conifers (Salardino and Caroll, 1998), and has been reported to 

affect leaf cuticles of both deciduous and coniferous tree species via accelerated wax 

erosion (Barnes, Davison and Booth, 1988; Bytnerowicz and Turunen, 1994; Mankovska, 

Percy and Kamosky, 1999), and subsequent premature leaf abscission (Turunen and 

Huttunen, 1990). Kerfoum and Garrec (1992) reported changes in the chemical 

composition of cuticular waxes under the influence of ozone exposure, yet amount of 

cuticular waxes may not be affected (Barnes et al., 1990; Thornton et al., 1993; Cape, 

Sheppard and Binnie, 1995). For example, ozone exposure decreased cuticular thickness
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of Yellow Poplar (McQuattie and Rebbeck, 1994). Ozone-induced changes of plant 

cuticles may lead to increased cuticular water loss (Delucia and Berlyn, 1983; Kerstiens 

and Lendzian, 1989b), especially due to changes in the structure of the cuticle (Turunen 

and Huttunen, 1990). Although cuticular conductance is negligible when stomata are 

open (e.g., Kerstiens and Lendzian, 1989a), increased cuticular transpiration may 

predispose trees to summer drought and winter frost conditions (DeLucia and Berlyn, 

1984; Hadley and Smith, 1990). However, changes in cuticular properties do not 

necessarily lead to higher cuticular water loss (Svenningson, 1988; Cape et al., 1995). For 

example, there were no relationships between droplet contact angles, cuticular 

transpiration and stomatal injury in Fagus sylvatica from healthy and declining stands 

(Paoletti, Raddi and La Scala, 1998). In other studies, droplet contact angles on conifer 

foliage decreased with ozone exposure, suggesting that foliage became more wettable 

(Barnes and Brown, 1990; Barnes et al., 1990b; Turunen and Huttunen, 1990). Increased 

leaf wettability and permeability of cuticles may increase susceptibility of foliage to 

infection by fungal plant pathogens (Turunen and Huttunen, 1990).

Ozone exposure also can have adverse effects on physiological processes and 

growth of plants. Ozone exposure led to decreased photosynthesis in Populus nigra 

(Reic'henauer et al., 1997), Populus euramericana (Nali et al. 1998), Populus tremuloides 

(Yun and Laurence, 1999), Fagus sylvatica (Mikkelsen, 1995) and Betula pendula 

(PaaKonen et al., 1998c and 1998d; Kytoviita et al., 1999). Lower photosynthetic rates 

also were observed in ozone-exposed Pseudotsuga menziesii (Van Hove and Bossen, 

1994), Picea abies (Fiihrer, Payer and Pfanz, 1993), Pinus ponderosa (Takemoto et al., 

1997), and Pinus armandi (Shan et al., 1996). Lower rates of photosynthesis due to ozone
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exposure have been ascribed to several mechanisms, including decreased stomatal 

conductance (Nali et al., 1998; P33kkonen et al., 1998b and 1998c; Minnocci et al., 1999; 

Sober and Sild, 1999), damage to photosynthetic membranes (Mikkelsen, 1995; 

Reichenauer et al., 1997; Nali et al., 1998), and decreased phloem loading and starch 

accumulation (Ballach, 1997; Landolt et al., 1997; Grantz and Farrar, 1999). Ozone 

exposure also has been reported to increase rates of dark respiration in Populus deltoides 

(Reich, 1983), Betula pendula (Matyssek et al., 1997), and Pinus sylvestris (Skarby, 

Troeng and Bostrom, 1987).

Decreased photosynthesis and increased respiration costs have been reported to 

cause lower growth in trees exposed to ozone (Maurer and Matyssek, 1997). Ozone 

exposure reduced height and stem growth, and photosynthetic and total biomass of 

poplars (Dickson et al., 1998; Mortensen, 1998; Yun and Laurence, 1999). Reduced 

photosynthetic biomass was attributed to premature abscission of exposed foliage to 

ozone (Mikkelsen and Heide-Jprgensen, 1996; Paakkonen, Holopainen and Karenlampi, 

1997; Beare, Archer and Bell, 1999; Yun and Laurence, 1999). Growth reductions due to 

ozone exposure also have been reported for conifers, both in exposure chambers and open 

top chambers (Temple, 1988; Karlsson et al., 1995; Shan et al., 1996), as well as in field 

conditions (Peterson et al., 1995). However, growth effects were not observed for mature 

Pinus sylvestris in the field when exposed to ozone over three growing seasons (Holland 

etal., 1995).

Many studies on the effects of ozone exposure on plants have used high ozone 

concentrations characteristic of photochemical smog episodes (e.g., Skeffington and 

Roberts, 1985; Grantz and Farrar, 1999). These studies addressed ozone effects that may
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occur during peak ozone episodes that generally lasted only 1 to 5 days. However, 

adverse effects of ozone exposure to vegetation may also occur at concentrations 

characteristic over a whole growing season (April to September in the northern 

hemisphere), which are considerably lower than peak concentrations. To assess ozone 

effects that may occur at more commonly observed concentrations, I used ozone 

concentrations typical for the growing season in both urban regions and at high 

elevations. A comparison of effects was made for two deciduous and one coniferous tree 

species. In this study, I  addressed the following questions: 1) does ozone exposure affect 

leaf wettability of intact leaves, and, if so, do these effects occur via direct or indirect 

mechanisms; 2 ) do ozone-induced changes to cuticles affect cuticular water loss rates; 3) 

what are the effects of ozone exposure on plant growth; and 4) do the responses of 

deciduous and coniferous tree species to ozone differ?

MATERIALS AND METHODS

Plant material

Current year cuttings of Populus nigra L. cv. “Brandaris" and Populus 

euramericana L  cv. Robusta, stored in darkness at -2  °C for 3 months, were transplanted 

and placed in a growth chamber (Tday 21 °C, Tnjght 12 °C, relative humidity (R H ) 60 %, 

light period 14 h/d at -  425 pmol m' 2 s'1). After 25 d, the cuttings were planted in pots 

(10 cm diameter) in a 2:1 mixture of sand and potting soil. After the plants had rooted, 

they were transplanted to 5-1 containers and fertilized with 5 g of OSMOCOTE (15% N,

11% P2O5 and 2% MgO). Plants were transported to a second growth chamber for 

fumigation experiments 50 d after transplanting (T^y 20 °C, Tnight 17 °C, RH 70 to 75 %,
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light period 16 h/d at ~ 180 ± 10 pmol m' 2 s'1).

In January 199S, Douglas fir seedlings were potted into 5-1 containers and 

fertilized with 5 g of OSMOCOTE, for growth in a greenhouse (Tsiunmer 20-25 °C, Tenter 

>10 °C). The plants were -2  xh  y old when they were transferred to growth chambers for 

fumigation experiments.

Fumigation treatments

Six exposure chambers (described in more detail by Van Hove et al., 1989) were 

placed in the growth chamber conditions described in the previous section. Two exposure 

chambers were assigned to each fumigation treatment, a control treatment (~ 2  O3 pg m'3; 

Figure 4.1), and two ozone treatments. The first ozone concentration treatment, urban 

exposure, was representative of ozone concentrations during the growing season in many 

urban and agricultural areas (e.g., Kruppa and Manning, 1988; Wunderli and Gehrig,

1990), with average minimal and maximal ozone concentrations of 26 O3 pg m' 3 and 82 

O3 pg m'3, respectively (Figure 4.1). The second ozone treatment, montane ozone 

exposure, was representative of concentrations observed at high elevations (1600 to 3600 

m asl; e.g., Wunderli and Gehrig, 1990; Brace and Peterson, 1998), with minimal and 

maximal ozone concentrations of 61 and 90 O3 pg m'3, respectively (Figure 4.1). 

Concentrations of nitrogen oxides in the exposure chambers were 14 ± 1 ppbv NO and 17 

± 1 ppbv NO2 in the ozone chambers, and 25 ±  1 ppbv NO and 12 ± 2 ppbv NO2 in 

control chambers. Each growth chamber contained 6  poplars, 3 of each species (n=6 ), and 

2 Douglas firs saplings (n=4). Poplars were exposed over a period of 6  wk while Douglas 

firs were exposed over aperiod of 23 wk. Poplar experiments in control and urban ozone
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treatments were carried out three times (n=18), and the montane ozone exposure 

experiment was done once (n=6 ). AOT-40 (sum of hourly ozone concentrations >40 ppbv 

during the growing season 0900-1700) for the urban and the montane ozone treatment for 

Poplars were 0.6 ± 0.2 and 1.0 ± 0.2 ppmv.h, respectively. For Douglas fir in the urban 

ozone treatment, AOT-40 was 2.3 ± 0.2 ppmv.h.

At the end of the final experiment for poplars in the control treatment and for all 

Douglas firs, saplings were exposed to peak ozone concentrations, representative of 

photochemical smog episodes (e.g., Smith, 1990). This treatment lasted for 6  d and was 

characterized by minimal and maximal ozone concentrations of 61 ± 6  and 33S ± 24 O3 

pg m '\ respectively (AOT-40:6.7 ppmv.h). Ozone concentrations in the control 

treatment were similar to those shown in Figure 4.1.

Leaf wettability

Droplet contact angles (CA) and droplet retention angles (RT) were used to assess 

effects of ozone on leaf wettability (Brewer, 1996; Brewer, Smith and Vogelmann, 1991). 

Six mature poplar leaves per treatment (one leaf per tree; ~5% of leaf biomass) were 

sampled, with three replicates per leaf on both the adaxial (AD) and the abaxial (AB) leaf 

surfaces. Leaf wettability parameters were measured on 20 Douglas firneedles (5 per 

tree) for control and urban ozone treatments, in 4-wk intervals. Both current-year and 

previous-year Douglas fir foliage were sampled.
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Cuticular transpiration

Leaf wettability, cuticular transpiration, and leaf water content of poplar leaves 

were measured at the start of the experiment, and then at 2-wk intervals. Leaves of the 

same age were sampled throughout the experiment, to compensate for the effects of leaf 

age on leaf wettability and cuticular water loss. Cuticular water loss was determined for 6 

mature poplar leaves per treatment (one leaf per tree; ~5% of leaf biomass). Upon 

abscission, leaf area and fresh weight of the leaves were determined. Stems were sealed 

with paraffin wax to avoid water loss via the stem. Leaves were placed in a drying oven 

(T 30 °C, RH 57 ± 2 %) and weighed periodically for up to 5 h to determine water loss. 

Then leaves were dried for 24 h to determine the dry weight. Total water content (TWC; 

expressed as gr H2O per gr dry weight) was derived from the fresh and dry weights of the 

samples. Minimal conductance to water vapor, Gmjn.H20v (Kerstiens, 1996) was derived 

from data on temperature and relative humidity in the drying oven, and leaf area. Leaf 

area of Poplar leaves was measured with a leaf area meter (Skye Instruments, Leaf 

Analysis System, version 2.0) equipped with a digital camera (AEG, CCD Video 

Camera, model XC 77 CE). To ensure that leaves were of similar age and developmental 

stage, the same leaf number (i.e., at the same place on the stem) was sampled for each 

plant within each experiment.

Cuticular transpiration and water content of Douglas fir foliage were measured at 

4-wk intervals. After the fresh weight was determined, branches (4 branches per 

treatment and needle age class) were water-saturated overnight, weighed, sealed with 

paraffin wax, and weighed again. The samples were dried in a drying oven (T 30 °C, RH 

29 ± 1 %) over a period of 72 h and weighed periodically (Hadley and Smith, 1989).
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Samples were left in the oven for another 3 d (T 60 °C) to determine the dry weight 

Relative water loss and Gmin.H20v were calculated from leaf weight and SLA. SLA of 

Douglas fir foliage was calculated using the glass bead method (Thompson and Leyton, 

1971). Total water content (TWC; expressed as gr H2O per gr dry weight) and relative 

water content (RWC, expressed as the ratio of fresh weight-dry weight over saturated 

weight-dry weight) of foliage were derived from the fresh-, saturated-, and dry weights of 

needle samples.

Growth

Growth parameters in poplar were measured in week 0 (start of experiment), wk 

3, and wk 6  (end of experiment). The growth parameters recorded were height (both 

absolute and relative to initial height), total number of leaves per shoot, number of new 

leaves per shoot, and number of abscised leaves per shoot. Height growth of the whole 

tree and the growth leader were recorded for Douglas fir at the start of the experiment 

(wk 0), and then at 4-wk intervals. At the end of the experiment (wk 23), the number of 

buds per tree and the percent of buds that had flushed were recorded.

Stomatal density and aperture

Stomatal density and aperture for poplar leaves were determined in wk 3 ,6 , and 

7, for both adaxial and abaxial surfaces of mature leaves (one per tree, same leaves as 

used for determination of leaf wettability parameters). Prints of surfaces of mature leaves 

(one per tree) were made using a gel Xantopren L. (Bayer Dental, DIN13913-C2), and an 

activator, Optisol (Bayer Dental), to harden the gel. Once the gel had hardened, the
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imprint of the leaf was coveted with a thin layer solution of polystyrene in toluol, 

forming a clear imprint of the leaf surface. The prints were examined under a microscope 

(Leitz Wetzlar) connected to a video screen (Philips, LDH 0225/00 and LDH 2122/00). 

Stomatal density was determined using standard grid laid over the video screen. To study 

stomatal closure after leaf abscission, prints were made from intact leaves, leaves that had 

been abscised for 30 min (right before they were placed in the drying oven), and leaves 

that had been in the oven for 30,60 and 90 min.

Data analyses

Data were analyzed using SigmaStat (SPSS, 1997). Normally distributed data 

were analyzed using a one-way analysis of variance (reported as F, P-value), by species 

and needle age class separately. Pair wise comparisons were made using a Bonferroni 

post-hoc test or a t-test (reported as T, P-value). The experimental design was a nested 

analysis of variance. For determination of CA, 18 leaves of similar age were chosen, one 

per tree, with three replicate measurements per leaf. If there were no significant 

differences between subsamples, data were pooled by treatment and time (P<0.05, Sokal 

and Rohlf, 1997). A similar sampling procedure was used to test for effects on relative 

water loss, Gmj„>H20v. TWC and RWC. For these measurements, I sampled 18 leaves, one 

leaf per tree, and again data were tested for differences between subsamples (two 

fumigation chambers per treatment, three replications of the experiment for the control 

and the urban ozone treatment). Measurements of CA for Douglas for were carried out on 

four branches (one per tree, n=4), with 5 replicate needles per branch. If  there were no 

significant differences between subsamples, data were pooled (P<0.05, Sokol and Rohlf,
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1997).

Analysis of growth data also was based on a nested experimental design. Plant 

height growth was measured for all shoots of poplars (2 or 3 shoots per plant). When no 

differences were found between shoots, i.e., within plant differences, data were pooled 

according to the criteria mentioned earlier. Leaf growth data were recorded for the whole 

plant as the sum of the individual shoots of each plant.

Data that did not meet the normality requirements were analyzed using a Kruskal- 

Wallis ANOVA on ranks (reported as H, P-value), or a Kolmogorov-Smimov test (non- 

parametric test; reported as ksz, P-value). This was the case for RT for all species, 

relative water loss data for Poplars, and leaf abscission data for poplars. As before, 18 

poplar leaves were chosen (one per plant) for determination of RT and water loss, with 

three replicates per leaf. Subsamples were pooled for statistical analysis if there were no 

significant differences between subsamples (P<0.05, Sokol and Rohlf, 1997). Because 

each plant was measured several times over the course of the experiments, repeated 

measures techniques (RM) were applied as appropriate.

RESULTS

Foliar injury

Visual injury due to ozone exposure was observed on both poplar species. Foliar 

injury developed first as a dull, light green appearance on leaves, followed by 

development of small chlorotic and necrotic spots (Figure 4.2). The severity of chlorosis 

and necrosis increased overtime and resulted in premature leaf abscission. Leaves 

dropped by themselves or from the slightest physical contact. The first signs of chlorosis
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and necrosis were observed in plants 3 to 5 wk after exposure to urban ozone 

concentrations. However, plants exposed to montane ozone concentrations showed 

chlorosis and necrosis as early as 114 wk after exposure had started. Older foliage was 

most susceptible to foliar injury. P. euramericana was less susceptible to injury than P. 

nigra, especially when exposed to peak ozone concentrations. Control plants did not 

show any of these injury symptoms.

Douglas fir foliage exposed to urban ozone concentrations was not visibly injured. 

However, after exposure to peak ozone concentrations, Douglas Hr needles became 

chlorotic, especially the older age classes, but did not defoliate.

Leaf wettability

There were significant effects of ozone exposure on CA. In general CA decreased 

over time for both species and both sides of the leaf in poplars on control and exposed 

leaves (^4,68=9 . 6 8  to F4,68=37.62, P<0.001; Figure 4.3), suggesting that leaf surfaces 

generally became more wettable over time. CA was higher for the adaxial surface 

compared to the abaxial surface (Figure 4.3), for both P. nigra (F2,ti8=4.42, P=0.036) and 

P. euramericana (F2.118=9.63, P=0.002). There was a 2 to 4 wk delay in the decline of 

CA in the urban ozone treatment compared to the other treatments, although CA did 

eventually decline to angles similar to the other treatments (F ^ = 9 .2 2  to #3,57=11.71, 

P<0.001; Figure 4.3). RT decreased after 2 wk in the exposure chambers for both P. 

nigra and P. euramericana (#3=167.41 and #3=257.94, P<0.001; Figure 4.4), and was 

higher for the adaxial surface compared to the abaxial surface for P. nigra (#2=30.88,
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P<0.001; Figure 4.4). There were no significant differences in RT due ozone 

exposure compared to control leaves (RM, P>0.05).

CA of Douglas firs were significantly higher for current-year foliage compared to 

previous-year foliage (F> ?̂ =23.19. P<0.001; Figure 4.5). Moreover, urban ozone 

exposure led to decreased CA in Douglas fir foliage compared to controls, starting after 4 

to 8 wk of exposure (Figure 4.5). This was the case for both current- and previous-year 

foliage (/r2.258=10.29 and #2,25*=31.29 respectively, / ><0.001; Figure 4.5). There were no 

effects of needle age class or ozone exposure on RT for Douglas fir foliage.

Cuticular transpiration

Relative water loss was higher for P. nigra exposed to montane ozone 

concentrations after 2 and 4 wk compared to controls (#2=6.51, P=0.039 and #2=36.00, 

P<0.001 respectively; Table 4.1), but differences were lost by 6  wk of exposure.

Gmin.H20v for P. nigra in the montane ozone treatment was higher than the other 

treatments after 4 wk of exposure only (#2=19.66, P<0.001; Table 4.1). Effects of ozone 

exposure on water loss for P. euramericana were more evident and consistent than for P. 

nigra. Relative water loss for P. euramericana was higher for plants exposed to ozone 

after 2,4 and 6  wk (#3=18.60 to # 3=3 9 .3 7 , P<0.001; Table 4.1). The highest relative 

water loss generally was observed for the montane ozone exposure, corresponding to the 

plants that received the highest ozone dose. P. euramericana exposed to ozone had 

higher Gnui.H20v compared to controls from 2 to 6  wk (# 3=6.37 to #3-21.46, P<0.001; 

Table 4.1). Relative water loss and Gmj,,,H20v over the first 30 min were generally higher 

for plants exposed to ozone (#3,69=3.86 , P=0.03 to #3,69=21.27, P<0.001; data not
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shown). Higher relative water loss and Gmin.wov did not lead to decreased foliar 

water content (TWC) in either poplar species (RM, P>0.05), which may have been due to 

ample water supply during the experiment. Overall, P. nigra had lower TWC (0.72 ±  

0.004) than P. euramericana (0.74 ± 0.004; 772=3.82, P<0.001). Exposure to peak ozone 

concentrations did not affect relative water loss, Gnu„,H20v, or TWC for Poplars. When 

plants were exposed to an 8-d drought period following 6  wk of ozone exposure, ozone- 

exposed plants had a higher incidence of foliar drought injury, evidenced by higher 

defoliation of leaves.

Relative water loss and Gmio,H20v in Douglas fir increased over the course of the 

experiment (F2,46=7.70 to F2,46=10.35, P<0.001; Table 4.2), and were significantly higher 

in previous-year foliage compared to current-year foliage (F2,94=43.26, P<0.001; Table 

4.2). However, exposure to urban ozone concentrations generally did not affect water loss 

from Douglas fir foliage. Exceptions were in wk 20 and 23, when previous-year foliage 

of control trees had higher relative water loss than foliage of trees exposed to ozone 

(^2,14=11-41 and F2,i4=7 .2 2 , P<0.05; Table 4.2). There were no differences TWC and 

RWC of Douglas fir foliage.

Growth

Ozone exposure did not significantly affect height growth of poplars (Table 4.3), 

although P. euramericana showed a trend towards decreased height growth in the urban 

ozone treatment (Table 4.3). Interestingly, P. euramericana saplings in the montane 

ozone treatment, which received the highest ozone dose, had the highest growth rates 

(Table 4.3). Ozone exposure led to decreased leaf growth for both poplar cultivars. After
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3 and 6  wk of ozone exposure, both P. nigra and P. euramericana had fewer leaves 

(^2.34=2 8 .8 7  and F2t34=3 .7 5 , P<0.001 respectively; Figure 4.6), especially in the urban 

ozone treatment for P. nigra (Figure 4.6). However, there were no differences in the 

number of leaves between P. nigra exposed to montane ozone concentrations and control 

plants. The reduction of the number of leaves on plants exposed to ozone seems to be 

related to two factors. First, trees exposed to urban ozone concentrations produced fewer 

new leaves than control trees, especially for P. nigra (RM, F3,42=8 .4 4 , P<0.001; Figure 

4.6). Second, ozone exposure led to premature leaf abscission for poplar in wk 3 as well 

as wk 6  (RM, F3,42=129.74 and #3=48.78, P<0.001 respectively; Figure 4.6). Leaf 

abscission was significantly higher in the montane ozone treatment compared to the 

urban ozone treatment (Figure 4.6).

Leaf size of mature P. nigra leaves was lower after 4 wk of fumigation in both 

ozone treatments (Table 4.4). However, this trend was not statistically significant (RM, 

P>0.05), and there were no differences in leaf size at the end of the experiment (Table 

4.4). Leaf size of P. euramericana in the urban ozone treatment decreased by ~27% in 

wk 4 and 6  of fumigation (Fu«=3.73, P=0.033; Table 4.4). Stomatal density in new 

leaves was lower after ozone exposure on both adaxial and abaxial surfaces of P. nigra 

(F3,107= 14.70 and ̂ 3̂ 7=6 .5 7  respectively, P<0.001; Table 4.4). However, ozone exposure 

did not affect stomatal density of P. euramericana. Stomatal density was higher on the 

abaxial surface for both cultivars (Table 4.4).

Height growth of Douglas fir saplings was not affected by ozone exposure. There 

were no differences in absolute tree height, length of the growth leader (RM, P>0.05; 

Table 4.S), or relative growth rates (RM, PX).05). After 23 wk of exposure to urban
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ozone concentrations, Douglas fir saplings formed 20 % fewer buds than controls 

(means 125 ±  33 and 159 ± 33 buds per tree, respectively). However, this difference was 

not statistically significant (7u=0.95, P=0.380). The majority of buds flushed during the 

last month of fumigation (90 to 95 %), and the percentage of buds that flushed was not 

affected by ozone exposure treatment.

DISCUSSION

The results of this study suggest that ozone concentrations commonly observed 

during a growing season, in both urban and montane environments, can induce increased 

cuticular water loss, foliar injury, and growth reductions in photosynthetic biomass in 

poplar saplings. However, the intensity of these effects depends on the species. These 

findings have implications for tree water balance and growth of these poplars. In general 

Douglas fir was not affected to the same extent as poplars, and visual injury was observed 

only after exposure to peak ozone concentrations. Nonetheless, cuticular changes in 

Douglas fir were apparent after ozone exposure, and these may have implications for 

ozone uptake and gas exchange of wet foliage (Chapter 5).

Leaf wettability

Adaxial and abaxial surfaces of both Poplar species became more wettable over 

time (Figure 4.3). This may influence gas exchange processes, and pollutant deposition 

on these leaves (Chapter 5). Observed values of CA agreed well with values for Fagus 

sylvatica (101°-108°; Paoletti et al., 1998), and were generally in the range of values 

observed for montane herbaceous plant species (Brewer and Smith, 1997). Exposure to
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urban ozone concentration delayed this decrease by 2  to 4 wk (Figure 4.3), suggesting 

that ozone exposure affected the development of epicuticular waxes in young poplar 

leaves. However, CA’s for leaves exposed to higher montane ozone concentrations did 

not differ from control leaves. RT also decreased over time in a pattern similar to CA, but 

ozone did not affect RT of poplar species (Figure 4.4). Both CA and RT were higher for 

the adaxial surface than for the abaxial surface, typical of species in a broad range of 

habitats (Brewer et al., 1991; Brewer and Smith, 1997), and for hypostomatous leaves 

(Smith and McLean, 1989).

Overall observed CA values for Douglas fir agreed well with those observed for 

other conifers (Barnes and Brown, 1990; Barnes et al., 1990a, 1990b; Stazewski et al., 

1998), which ranged from 73° to 113°. CA’s of Douglas fir exposed to urban ozone were 

lower than those of controls starting after 4 wks of fumigation (Figure 4.S), suggesting 

that ozone exposure affected cuticles in Douglas fir. This trend was observed for both 

current- and previous-year foliage, and agreed well with ozone effects on CA reported for 

Picea abies, when exposed to similar ozone for two to three growing seasons at 

concentrations similar to those used in this study (Barnes and Brown, 1990; Barnes et al., 

1990a, 1990b). Interestingly, ozone exposure of Picea abies in open-air fumigation 

systems over four growing seasons did not affect CA values (Cape et al., 199S). CA of 

Douglas fir decreased with increasing needle age (Figure 4.5), a trend that was also 

observed for Picea abies (Barnes et al., 1990b), and spruce and pine stands in Poland 

(Stazewski et al., 1998).

The observed changes in CA and RT on the cuticle may have implications for 

cuticular conductance to water vapor, Go»a.H20v (Turunen and Huttunen, 1990). Higher
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Gmin,H20v may lead to increased susceptibility to periods of drought stress, both in 

summer (Mengel, Hogrebe and Esch, 1989), and in cold winter conditions (Barnes and 

Davison, 1988). Moreover, increased leaf wettability, as observed for Douglas fir, may 

lead to higher incidence of water droplets and water films on leaf surfaces. Water on 

leaves can increase ozone uptake, and decrease rates of photosynthesis and respiration 

(Chapter 5).

Tree water balance

Plants of P. nigra in both ozone treatments had increased relative water loss 

during the first 4 wk of ozone exposure (Table 4.1). However, Gmin,H20v of ozone- 

exposed P. nigra leaves was only higher in week 4. Interestingly, relative water loss and 

Gmin,H20v of ozone exposed P. euramericana (the species considered to be more ozone 

tolerant) were higher compared to controls over the entire fumigation period (Table 4.1). 

These data suggest that ozone exposure led to increased cuticular water loss of poplar 

foliage, and that responses are species dependent. A possible explanation for increased 

water loss is the erosion of epicuticular waxes, because erosion of the wax layers can lead 

to increased permeability of cuticles to water vapor (Turunen and Huttunen, 1990). 

However, adverse effects of ozone exposure on isolated cuticles have not been reported 

(Kerstiens and Lendzian, 1989b; Kerstiens, 199S). This may be attributed to the 

possibility that it is very difficult to detect indirect effects of ozone exposure on cuticles 

using isolated cuticles. The changes in cuticular properties responsible for increased 

Gmin,H20v in ozone treated foliage could be related to effects on the developmental process 

of the cuticle via indirect ozone effects on developing epidermis cells. Observed values of
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Gmin,H20v for the poplar species were at the higher end of the range observed for 

deciduous leaves (Kerstiens, 1996).

Relative water loss and Gmin.mov for Douglas fir increased over time for both 

control and ozone-exposed foliage, but were not altered by urban or peak ozone 

concentrations (Table 4.2). Observed Gmin.mov for Douglas fir agreed well with values 

reported in the literature (1-12 m s' 1 *10_s; e.g., Kerstiens, 1996). Interestingly, in wk 20 

and 23, previous-year foliage of control trees had higher relative water loss than foliage 

for trees exposed to ozone. A possible explanation of this observation was increased 

relative water loss and Gmin.mov in the first hour of the drying experiment for controls 

(F7.oo and F737, P<0.05; Table 4.2). Water loss was higher for previous-year foliage than 

for current-year foliage (Table 4.2). Higher Gnun,H20v with increasing needle age has been 

reported for other conifers as well (Barnes et al., 1990), and typically is explained by 

erosion of cuticles (Turunen and Huttunen, 1990; GUnthardt-G5rg, 1994) and changed 

wax composition (Kerfoum and Garrec, 1992). Furthermore, relative water loss and 

Gmin>H20v of Douglas firalso increased over the course of the experiment (Table 4.2). This 

appeared to be a chamber effect, as the same trend was found for all treatments, including 

the control treatment, and for both needle age classes.

These data suggest that poplar leaves exposed to ozone, especially P. 

euramericana, were more susceptible to water loss via the cuticle, as well as via stomata 

(which had been presumed to be closed). Thus, a potential role for decreased rates of 

stomatal closure in plants exposed to ozone cannot be excluded. Gmin.iuov has both 

cuticular and stomatal components. The method to determine Gmjn.fuov >s based on the 

assumption that stomata are fully closed. However, some stomata were open on the
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adaxial (~25 %) and abaxial (-90 %) surfaces in intact leaves on trees. After leaf 

abscission, stomata closed rapidly. After 30 to 60 min of drying the number stomata 

closed averaged 94% to 98% (± 1). Thus, stomata were mostly closed during the drying 

experiments, especially during the time period that was considered for Gnun.H20v (Table 

4.1).

Ceulemans, Hinckley and Impens (1989) reported that stomata closed within 90 

min of leaf abscission, but that stomatal closure often was incomplete, especially on the 

abaxial leaf surface. In my study, stomatal aperture was about 0.1 pm (± 0.3) after 60 min 

in the oven, suggesting that the relative contribution of cuticular conductance to total 

GmiQ,H20v may have been about 10 to 22 % (Kerstiens, 1996). Moreover, all cases of 

significantly higher relative water loss and Gnun,H20v for poplar and Douglas fir coincided 

with significantly higher water loss and Gnumiaov within the first 30 min (in Poplars) to 

60 min (Douglas fir) of drying. This suggests that ozone exposure may have decreased 

the rate of stomatal closure for abscised leaves. In general, ozone exposure can cause 

damage to stomata (Barnes et al., 1988; Maier- M&cker and Koch, 1995; Paoletti et al.,

1998), lower rates of stomatal closure (Bames et al., 1990a; van Hove and Bossen, 1994; 

Maier-Marcker and Koch, 1995; Maier-M&rcker, 1999), and increase susceptibility to 

drought stress in regions with high ozone loads (McLaughlin, 1985; Maier- MBrcker and 

Koch, 1995; Schmieden and Wild, 1995; Skarby et al., 1998). Thus, although increased 

water loss due to ozone exposure may have been caused partially by increased 

permeability of the cuticle to water vapor, increased water loss via stomata cannot be 

excluded as a causal mechanism.
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Growth

Ozone exposure did not affect height growth of poplar species (Table 4.3), but 

significantly lowered production of photosynthetic biomass (Figure 4.6). Plants in both 

ozone treatments had fewer leaves, especially P. nigra, due to decreased new growth of 

leaves and premature leaf abscission (Figure 4.6). However, responses depended on 

species and ozone treatment. Moreover, leaf abscission was highest in the montane ozone 

treatment, which received the highest ozone dose. Photosynthetic biomass of P. 

euramericana was further decreased due to the formation of smaller leaves in the urban 

ozone treatment. Leaf abscission was preceded by foliar injury, characteristic of ozone 

exposure (Figure 4.2; Hill et al., 1970; Matyssek et al., 1997; Paakkonen et al., 1998a; 

Yun and Laurence, 1999). Increased leaf abscission due to ozone exposure has been 

attributed to premature leaf senescence (Mikkelsen and Jorgensen, 1996; Paakkonen et 

al., 1997), and has been reported for Populus deltoides (Reich, Lassoie and Amundson, 

1983), Populus tremuloides (Yun and Laurence, 1999), Betula pendula (Matyssek et al., 

1997; Paakkonen et al., 1997), and Fagus sylvatica (Mikkelsen and Heide-Jorgensen, 

1996). Other ozone effects on growth reported for deciduous trees include reduced 

vertical growth, and lower shoot and root growth (Reich et al., 1983; Cooley and 

Manning, 1987; Landolt et al., 1997; Dickson et al., 1998; Mortensen, 1998). Lower leaf, 

stem, and root growth under ozone exposure also have been reported for Betula pendula 

(Paakkonen et al., 1998a), Fagus sylvatica (Paakkonen et al., 1998b), and Populus 

tremuloides (Yun and Laurence, 1999).

Height growth of Douglas fir saplings was not affected by ozone exposure at 

urban levels. There was a trend toward fewer buds on exposed trees, but this trend was
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not significant. The absence of ozone effects on growth of Douglas fir suggests that 

conifers are less susceptible to ozone than deciduous trees (e.g., Kytoviita et al., 1999), 

and this result may be attributed to lower stomatal conductance, and thus, lower ozone 

uptake (Reich, 1987). However, because conifers maintain foliage for several years, the 

cumulative ozone dose may eventually exceed a critical threshold, which may then lead 

to foliar injury and growth reductions. Exceedance of a critical ozone dose may have 

caused the severe foliar injury of Douglas fir observed after exposure to 6  d at peak ozone 

concentrations (AOT-40:9.0 ppmv.h). While growth reductions in conifers due to ozone 

exposure have been reported for Pinus ponderosa (Takemoto et al., 1997), Picea abies 

(Karlsson et al., 1995), and Pinus jeffreyi (Temple, 1988), evidence of these growth 

reductions occurred only after ozone exposure over 2 to 3 growing seasons (Temple,

1988; Karlsson et al., 1995; Takemoto et al., 1997). This suggests that deleterious effects 

ozone exposure may carry-over to the subsequent growing seasons in some species. For 

example, deleterious effects of ozone exposure on photosynthesis and growth have been 

reported for Pseudotsuga menziesii, Betula pendula, and Vitis vinifera up to two growing 

seasons after ozone exposure was stopped (Soja et al., 1997; Langebartels et al., 1998; 

Oksanen and Saleem, 1999).

Yet the data can be contradictory depending on the species; ozone exposure over 

three growing seasons of Pinus sylvestris, Picea abies and Picea sitchensis saplings did 

not result in growth reductions (Holland et al., 1995). The duration of ozone exposure in 

my study may not have been long enough to induce growth effects in Douglas fir. 

Moreover, there may be differences in sensitivity to ozone exposure between seedlings, 

saplings, and mature trees. This is important because there are reports that large, mature
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conifers generally were more susceptible to ozone than younger trees due to lower 

stomatal conductance (e.g., Kolb et al., 1997). However, in Quercus rubra large trees had 

higher stomatal conductance, which resulted in higher ozone uptake and foliar injury 

(Kolb et al., 1997).

Ozone exposure led to decreases in stomatal density in new leaves by 10 - 20 % 

for P. nigra, but not for P. euramericana. This is contrary to reported increases in 

stomatal density for Betula pendula (PMkkonen et al., 1997,1998a) and Olea europaea 

(Minnocci et al., 1999) exposed to ozone. A possible explanation for decreased stomatal 

densities in P. nigra is that plants were slightly water stressed during the fumigations, and 

it is known that drought stress can induce lower stomatal densities in leaves of Betula 

pendula (P&ikkonen et al., 1998a, 1998b, 1998c). Since ozone-exposed plants had higher 

Gmin.taov than control plants, ozone exposure may have led to higher sensitivity to 

drought stress and responses of stomatal density to drought.

CONCLUSION

The results of this work suggested that ozone exposure may lead to higher water 

loss through the cuticle, and loss of photosynthetic biomass of poplars. These effects may 

have implications for tree water balance and growth. However, responses were highly 

species dependent. Moreover, the strongest and most consistent effects of ozone exposure 

were found for P. euramericana, the more ozone tolerant species. Thus, “ozone 

tolerance” may depend on the response variable considered. Future research needs to 

address the effects of ozone in field conditions and for trees of different sizes because 

tree responses to ozone depend on environmental circumstances as well as tree size.
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Moreover, future research is needed to better understand the role of ozone-exposed 

cuticles in water loss from foliage. Progress in this field is dependent on the development 

of methods that can distinguish between cuticular water loss and minimal opening of the 

stomata on intact leaves. The assessment of ozone effects in field conditions is 

complicated by the species-specific responses.
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TABLE 4.1: Cuticular water loss of poplar leaves for control plants, and plants 
exposed to urban and montane ozone concentrations. Data are relative water loss after S 
hours of drying (± 1 SE), and Gmm.H20v from 1 to 5 hours (± 1 SE). Significant differences 
based on ozone treatment are indicated by letters and apply within species and week 
(nested one-way ANOVA, P<0.001; repeated factor hours, n=8 , and week, n=3).

Species /  week Relative H2O loss after 5 hours, %

Control O3, urban Oj.mtn

(n=l8 ) (n=l8 ) (n=6 )

P. nigra

Week 2 56 (6 ) a 59 (6 ) a,b 70 (8 ) b

Week 4 57 (6) a 59 (7) a,b 81 ( 1) b

Week 6 71(3) 74(2) 80(2)

P. euramericana

Week 2 50 (4) a 57 (5) b 77 (2) c

Week 4 49 (5) a 60 (5) b 79 (l)c

Week 6 64 (4) a 79 (1) b 76 (2) b

Gminjuov, 1-5 hrs, m s'1 * 10-5

Control O3,urban C>3,mtn

P. nigra

Week 2 17.0(1.1) 18.0 ( 1.0 ) 15.9 (1.5)

Week 4 12.4(1.2)a 11.3 (1.1) a 18.2 (3.0) b

Week 6 23.4(1.4) 2 2 .2  (1.0 ) 23.9 (2.6)

P. euramericana

Week 2 13.4 (0.7) a 15.6 (1.0) b 17.1 (1.5) b

Week 4 14.4 (0.9) a 19.2 (1.5) b 27.0 (2.9) b

Week 6 17.5 (1.2) a 19.6 (1.4) a 2 2 .1  (2 .8) a,b
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TABLE 4.2: Cuticular water loss of Douglas fir foliage for control and urban ozone 
treatment of two needle age classes. Data are relative water loss after 36 hours of drying 
(± 1 SE; n=4; 2 replicates per tree), and Gminjuov from 2 to 36 hours (± 1 SE; n=4; 2 
replicates per tree). Significant differences based on ozone treatment indicated by letters 
and apply within needle age class and week (nested one-way ANOVA, P<0.05; repeated 
factor, hour, n=8 , and week, n=6).

Age class / time Relative H2O loss at 36 hours Gmjn,H20vi, 2-36 hrs

% _  -1 m s * 10’5

Control 0 3 -urban Control Os-urban

Current-year

WeekO 38(4) 38(4) 2.9 (0.5) 2.9 (0.5)

Week 4 84(6) 68(5) 6.1 (1.7) 4.4 (0.4)

Week 8 80(3) 70(6) 4.8 (0.8) 4.2 (0.5)

Week 12 87(4) 72(11) 6 .6  (1.4) 5.6 (1.3)

Week 16 88(3) 82(7) 7.0 (1.1) 6.7 (1.4)

Week 20 95(1) 87(4) 7.1 (0.8) 7.5 (0.9)

Week 23 92(1) 85(3) 7.4 (0.7) 6.9 (1.1)

Previous-year

WeekO 27(3) 27(3) 1.3 (0.1) 1.3 (0.1)

Week 4 36(3) 39(3) 1.8 (0 .2 ) 1.5 (0.2)

Week 8 34(2) 34(4) 1.4 (0.1) 1.6 (0 .2 )

Week 12 54(7) 47(11) 2.5 (0.3) 2.7 (0.8)

Week 16 53 (11) 56 (2.7) 2.7 (0.5) 3.9 (1.3)

Week 20 92 (2) a 63 (10) b 5.6 (0.6) 3.6 (0.6)

Week 23 88  (6 ) a 6 6  (5) b 5.3 (0.9) 4.0 (0.7)
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TABLE 4.3: Height growth of poplar saplings (~ 2  shoots per plant) during ozone 
exposure, expressed as absolute growth and growth relative to starting height (week 0 ). 
Treatments were control (n=18; 2 replicates per tree), urban ozone exposure (n=18; 2 
replicates per tree), and montane ozone exposure (n=6 ,2  to3 replicates per tree). Values 
in parentheses indicate 1 SE. Values indicated as “n.a.” could not be calculated.

Species and Absolute plant height Relative height growth

week cm % of week 0

Control O3,urban 0 3 ,mtn Control O3,urban 0 3 ,mtn

P. nigra 

WeekO 27(2) 29(2) 31(2) n.a. n.a. n.a.

Week 3 52(2) 51(3) 61 (3) 108 (74) 89 (10) 103 (12)

Week 6 67(3) 72(3) 79(3) 185 (23) 180 (2 1 ) 170 (22)

P. euramericana

WeekO 19(1) 19(1) 17(2) n.a. n.a. n.a.

Week 3 43(2) 41(2) 47(3) 147 (18) 127 (14) 190 (14)

Week 6 69(3) 66(3) 75(4) 314(35) 271(20) 376 (30)
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TABLE 4.4: Effects of ozone exposure on leaf size and stomatal density for 
poplars. Leaf sizes are means (± 1 SE) for controls (n=18), urban ozone exposure (n=18), 
and montane ozone exposure (n -6 ). Stomatal densities (in week 6  and 7) are shown for 
the adaxial (AD, n=18; 6  replicates per tree) and the abaxial leaf surface (AB, /i=18; 3 
replicates per tree). Significant differences are indicated by letters and apply within (by 
rows) species and week (nested one-way ANOVA, P<0.05; repeated factor week, n -3).

Factor

Control

P. nigra Brandaris 

O3,urban 0 3 ,mtn

Leaf size (cm2)

Week 2 46(5) 55(6) 58 (5)

Week 4 75(9) 65(8) 42(15)

Weeko 69(7) 61(6) 61(8)

Stomatal density (# mm ~2)

Adaxial (AD) 99 (2) a 89 (2) b 80 (30)c

Abaxial (AB) 201 (4) a 204 (6 ) a 175 (6 ) b

AD/AB 0.49 0.44 0.46

Leaf size (cm2) 

Week 2

Control 

58 (5)

P. euramericana Robusta 

O3,urban 0 3 ,mtn

56 (7) 47 (8 )

Week 4 82 (6 ) a 61 (6 ) b 83 (8 ) a

Week 6 94 (8) a 68  (7) b 96 (11)a

Stomatal density (# mm ~2)

Adaxial (AD) 141 (3) 133 (4) 133 (6 )

Abaxial (AB) 224(4) 207 (5) 2 2 0 (6 )

AD/AB 0.63 0.64 0.60
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TABLE 4.5: Height growth of Douglas Hr during ozone exposure, expressed as 
total treo height and length of the growth leader. Treatments were control and urban 
ozone exposure (± 1 SE, n=4).

Time Tree height, cm Growth leader, cm

Control 0 3 -urban Control 0 3 -urban

Week 0 48.7 (4.6) 51.1 (2.4) 9.2 (1.0) 11.5(0.5)

Week 4 49.7 (4.6) 51.3 (2.5) 9.8 (1.1) 12.0 (0.5)

Week 8 50.5 (4.6) 52.4(2.4) 10.6 (1.2 ) 13.1 (0.5)

Week 12 512 (4.8) 53.0(2.4) 10.8 ( 1.1) 13.3 (0.6)

Week 16 51.3 (4.8) 53.4 (2.6) 10.9 (1.2) 13.3 (0.6)

Week 20 52.2 (2.8) 53.8 (1.1) 11.3 (1.4) 13.8 (0.8)

Week 23 55.3 (3.5) 54.3 (0.3) 14.7 (2.5) 14.5 (1.6)
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FIGURE 4.1: Diurnal course of ozone concentrations in fumigation treatments. Shown 
are controls (circles), urban ozone exposure (triangles), and montane exposure (squares). 
Errors bars represent 1 SE.
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Panel A

PanelB

Figure 4.2: Visual leaf injury after 4 wk of ozone exposure. Shown are healthy and chlorotic 
leaves necrotic for P. nigra (A), and healthy (background), chlorotic Gower foreground), and 
necrotic leaves (upper foreground) for P. euramericana (B).
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FIGURE 4J: Droplet contact angles of poplar leaves, for controls (circles, n=18; 3 
replicates per tree), urban ozone exposure (triangles, n=18; 3 replicates per tree), and 
montane ozone exposure (squares, n -6; 3 replicates per tree). Shown are values for P. 
nigra, adaxial surface (A) and abaxial surface (B), and P. euramericana, adaxial surface 
(C) and abaxial surface (D). Error bars represent one SE, and significant differences 
between treatments are indicated by “""’(nested one-way ANOVA, P<0.001; repeated 
factor week, n=4).
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FIGURE 4.4: Droplet retention angles of poplar leaves. Data shown are for P. nigra, 
adaxial surface (solid circles) and abaxial surface (open circles), and P. euramericana, 
adaxial surface (solid triangles), and abaxial surface (open triangles). Errors bars 
represent I  SE. The effect of ozone treatment was not significant, but the effect of week 
was significant (nested one-way ANOVA, P<0.001; n*30; 3 replicates per tree; repeated 
factor week, n=4).
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FIGURE 4.5: Droplet contact angles of Douglas fir foliage (n=4). Values shown are for 
current-year foliage, control (solid circles) and urban ozone exposure (open circles), and 
prcvious-year foliage, control (solid triangles) and urban ozone exposure (open triangles). 
Error bars represent 1 SE. (nested one-way ANOVA, P<0.001; 5 replicates per tree; 
repeated factor week, n=6).
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FIGURE 4.6: Leaf growth of poplar exposed to different ozone treatments. The ozone 
treatments were control (open bars, n=18), urban ozone exposure (solid bars, n=18), and 
montane ozone exposure (hatched bars, n=6). Shown are the total number of leaves per 
shoot (A), number of new leaves per shoot (B), and number of abscised leaves per shoot 
(C) for P. nigra as well as P. euramericana (D, E and F). Error bars represent 1 SE. (one
way ANOVA, P<0.00 I f  repeated factor week, n=4; comparisons within weeks).
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CHAPTER 5
Interactions between leaf wetness, ozone uptake, photosynthesis, 

and dark respiration in poplar leaves

ABSTRACT

Leaf surface wetness events such as dew, rain and mist are common in field conditions 
and affect many processes over leaf surfaces. Moreover, the chemical composition of leaf 
surface moisture influences plant interactions with atmospheric pollutants. We evaluated 
the influence of leaf wetness on ozone deposition to Populus nigra brandaris leaves in 
light (PAR 420 ±  7 pmol m' 2 s'1) and dark conditions. We also examined the effects of 
leaf wetness on photosynthesis and dark respiration. Leaves were sprayed with ionic 
solutions simulating dew, acid rain, and acid mist (pH 6.2,4.5 and 3.8, respectively). 
Background ozone concentrations in the leaf cuvettes averaged 102 ±  1 pg O3 m’3. Ozone 
deposition was highly correlated with rates of net photosynthesis (^=0.87, P<0.001).
Leaf wetness led to increased ozone deposition by 15% in light conditions and by 170 to 
240 % in dark conditions. The influence of leaf surface wetness decreased with lower pH. 
Leaf wetness decreased maximum net photosynthesis by-16 percent (P<0.001) and CO2 
emission in dark conditions by 60 (pH 6.2), 82 (pH 4.5) and 100% (pH 3.8) (P<0.001). 
However, it was uncertain to what extent observed changes in CO2 emissions were 
caused by lower dark respiration of wet leaves, or by chemical reactions of CO2 in the 
aqueous phase. Ozone deposition onto wet leaves was modeled incorporating two 
counteracting processes, decreased ozone uptake due to lower stomatal conductance, and 
increased ozone deposition into the water on the leaf surface (^=0.86, P<0.001). In 
addition to significantly changed ozone deposition and CO2 gas exchange (especially in 
dark conditions), the effects of leaf wetness are highly dependent on pH and chemical 
composition of the water present on the leaves.
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- IN TR O D U C TIO N

Ozone is a nearly ubiquitous air pollutant that negatively affects many aspects 

plant growth (Rich, 1964; Cooley and Manning, 1987; Darrall, 1989; Turunen and 

Huttunen, 1990; Chappelka and Freer-Smith, 199S; Shan et al., 1996; Arbaugh et al.,

1998 and it is widely considered to be one of the causal factors of forest decline in this 

century (McLaughlin, 1985; Maier-M&rcker and Koch, 1995; Schmieden and Wild, 1995; 

Chappelka and Samuelson, 1998). In many regions with high ozone levels, acid 

precipitation in the form of rain and mist also adversely impacts vegetation through 

influences on photosynthesis and respiration (McLaughlin, Tjoelker and Roy, 1993), 

water relations (Mengel, Hogrebe and Esch, 1989; Igawa et al., 1997), and growth 

(Tomlinson and Tomlinson, 1990; Erisman et al., 1998). The co-occurrence of acid 

precipitation and ozone may be particularly problematic at higher elevations because 

nighttime ozone concentrations at high elevation are considerably higher than at lower 

elevations (Wunderli and Gehrig, 1990). In addition to the stresses imposed by more 

severe climatic conditions at high elevations, the health of forests may be affected 

adversely by high doses of ozone and acid deposition (McLaughlin, 1985; Smith and 

Lefohn, 1991; Thornton etal., 1993).

Leaf surface wetness in nature can occur as dew, rain and mist droplets. For 

example, dew is a common phenomenon during the growing season in many regions of 

the world. In agricultural fields, dew can last from 8 to 16 hours per day for exposed and 

shaded leaves respectively (Pedro and Gillespie, 1982). Fuentes et al. (1994) reported that 

the canopy of a deciduous forest in Ontario, Canada, remained wet due to dew and 

rainfall at least 50% of the time during the growing season. Leaf surface wetness due to
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rain and dew also is observed frequently in montane and subalpine environments, 

especially in exposed habitats (Brewer and Smith, 1994 and 1997). The surface of conifer 

needles may be wet up to 72% of the time, both in the form of rain and thin water films 

(Burkhardt, 1994; van Hove and Adema, 1996). Furthermore, the formation of water 

films on leaf surfaces can be enhanced by the presence of small atmospheric particles 

(Burkhardt, 1994).

Leaf surface wetness in the form of droplets and water films affects the deposition 

rates of atmospheric gases and particles. For example, leaf surface wetness increased 

deposition rates of NH3 and SO2 (van Hove and Adema, 1996; Andersen et al., 1999) and 

NO2 (Weber and Rennenberg, 1996) compared to dry surfaces. Leaf wetness also 

influences ozone deposition to plant surfaces, but reports in the literature have not been 

conclusive as to whether rates of ozone deposition are increased or decreased. Grantz et 

al. (199S) reported that there was a significant non-stomatal component to ozone uptake 

by a grape canopy, and that the importance of this component increased when the canopy 

was wet. Others have reported decreased ozone deposition on wet leaves compared to dry 

leaves. For example, leaf surface wetness decreased ozone deposition to an 

amphistomatous cotton canopy (Grantz et al., 1997), which was attributed to a decrease 

in stomatal conductivity over wet leaves, as the water droplets clogged up the stomata. 

Fuentes and Gillespie (1992) reported increased ozone deposition (by up to 40%) after 

applying simulated rain to red maple leaves in leaf chambers. Similarly, ozone deposition 

to a deciduous forest was considerably higher when the canopy was wet due to dew or 

rain (Fuentes et al., 1992 and 1994). Increased ozone deposition to wet leaves has been 

ascribed to chemical reactions with the water present on the leaf (e.g., Grantz et al..
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1995). Although the solubility of ozone in water is relatively low, it readily oxidizes 

many inorganic and organic compounds present in dew, rain or fog (Hoigne, 1988; Oke, 

Smith and Zhou, 1998), as well as many biological compounds essential to plants 

(Chameides, 1989; Alscher et al., 1997; Pell, Schlagnhaufer and Arteca, 1997). 

Therefore, the effect of leaf surface wetness on ozone deposition to a canopy will depend 

on the chemical consistency of the aqueous phase. Moreover, the solubility of ozone in 

water depends on pH and chemistry of the aqueous phase (Hoigne, 1988).

Leaf surface wetness in the form of droplets and water films also influences gas 

exchange of CO2 between plants and their environment. For example, the presence of 

dew on the leaf surface led to decreases in net photosynthesis of soybean and pond lilies 

by 15% and 20%, respectively (Brewer and Smith, 1994 and 1995). Smith and McClean 

(1989) reported a decline of 80 % in CO2 uptake by glabrous leaves of alpine plant when 

wetted by dew field and experimental conditions. Lower photosynthesis over a growing 

season may lead to lower production of leaf area, aboveground biomass, and seed 

biomass (Brewer and Smith, 1994). Photosynthetic gas exchange of Phaseolus vulgaris 

decreased up to 40 % when leaves were wetted with simulated rain, primarily by 

decreasing stomatal opening (Ishibashi and Terashima, 1995). Reduced rates of 

photosynthetic gas exchange over wet leaves can be attributed to the fact that CO2 gas 

diffuses almost 10,000 times slower through water than through air (Monteith and 

Unsworth, 1990). In some cases the effect of leaf wetness depends on the surface of the 

leaf that is wetted. When simulated rain was applied to the adaxial surface of red maple 

leaves only, photosynthesis increased by 30%, due to increased stomatal conductance 

(Fuentes and Gillespie, 1992). In this case stomatal pores were on the abaxial side of the
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leaf.

Because leaf surface wetness influences gas exchange between leaves and the 

environment, and also plays a role in deposition of atmospheric pollutants, I  addressed 

the following questions: 1) what is the effect of leaf surface wetness on ozone deposition 

in both light and dark conditions; 2 ) what mechanisms account for observed effects of 

leaf surface wetness on ozone deposition rates; 3) how does leaf surface wetness 

influence net photosynthesis and dark respiration; and 4) how do pH and the chemistry of 

the aqueous phase on wet leaf surfaces influence gas exchange?

MATERIALS AND METHODS

Plant material

Current year cuttings of Populus nigra L  cv. “brandaris " that had been stored in 

darkness at -2  °C for 3 mo were transplanted to a growth chamber (Tjay 21 °C; Tnight 12 

°C; RH 60 %; light period 14 h/d at ~ 42S junol m' 2 s'1). After 25 d, the cuttings were 

transplanted into pots (10 cm diameter) using a 2:1 mixture of sand and potting soil. After 

the plants had rooted, they were transplanted a final time to 5.0-1 containers and fertilized 

with 5 g of OSMOCOTE (15% N, 11% P 2O 5 and 2% MgO). Fifty days after 

transplanting, plants were moved to a second growth chamber (Tday 24 °C; Tmght 20 °C; 

RH 70 %; light period 12 h/d at -  170 pmol m' 2 s'1). After 6  to 8 wks, individual plants 

were randomly chosen for fumigation and leaf wetness experiments.
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Fumigation and wetness treatments

Individual leaves were fumigated in leaf chambers (2.61 internal volume) while 

they remained attached to the plant (described in more detail by van Hove et al., 1988). 

Background ozone concentrations in empty control chambers averaged 102 pg 0 3 m'3 (±

1 SE), and did not differ in light or dark conditions. Fumigated leaves were held in a leaf 

chamber for 5 to 7 d and received 12 h/d at 419 pmol m*2 s' 1 (± 7 SE). At this light 

intensity, plants achieved about 83 % of their maximum photosynthetic rate. 

Temperatures of dry leaves in light and dark conditions were 22.1°C (± 0.2) SE and 

21.7°C (± 0.2 SE) respectively.

Gas exchange of 0 3, CO2, and H2O was measured over both dry and wet leaves, 

and in light and dark conditions. Leaf wetness events were simulated by opening the 

cuvette, spraying both the upper and lower site of the leaf, and immediately closing the 

cuvette. Equilibrium of gas concentrations in the cuvettes after opening and closing was 

established within minutes, so that measured changes in O3, CO2, and H2O concentrations 

could be fully attributed to leaf surface wetness. Leaves were sprayed with three types of 

water solutions: deionized water (pH 6.2) which was similar to dew (Erisman and Hey, 

1991); simulated acid rain (pH 4.S) with a solute concentrations of SO pmol I' 1 S042’, 30 

pmol 1‘‘ NO3*, and SO pmol I*1 N H /; and simulated acid mist solution (pH 3.8) with a 

solute concentrations of 109 pmol I' 1 S042*, 161 junol I' 1 NO3*, and 260 nmol I' 1 N H /. 

The pH and ion concentrations of the acid rain and mist solutions were similar to those 

reported for ambient conditions (Cape and Unsworth, 1988; Hertz and Bucher, 1987; Laj 

et al., 1997; Sheel et al., 1997b). Both acid solutions were prepared by mixing 

appropriate amounts of deionized water and a 95-97 % H2S0 4 stock solution, in which
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NH4NO3 crystals were dissolved. The size of the sprayed droplets was normally 

distributed with a mean diameter of 0.81 mm (± 0.48 stdev; n=300), which was slightly 

smaller than droplet sizes observed in the field on wheat leaves after rain events (Brain 

and Butler, 1985). Each treatment was repeated with four plants and for one leaf per 

plant. Leaves were wetted up to twice a day, at >1200 h and >2130 h.

Measurements

Ozone concentrations at chamber inlets and outlets were measured every 15 to 30 

min with a UV (254 nm) ozone analyzer (Mon Labs 8810). Similarly, CO2 and H2 0 v 

concentrations at chamber inlets and outlets were monitored with infrared gas analyzers 

(ADC 225 Mk 3; detection limit for C0 2<1* 1 0 '5 pmol m*3). CO2 analyzers were 

calibrated using a calibrated gas cylinder, and H2 0 v using an air stream with a known 

amount of water vapor. The temperature of the air and the leaf in the chamber were 

measured using copper constantan thermocouples. The leaf area was measured with a 

Sky Instruments Leaf analysis system, equipped with a CCD Video camera (AEG, model 

XC 77 CE).

Modeling analyses

Gas exchange of CO2 , H 2O and O3 over the leaf surface was calculated using the 

gas concentrations of the incoming and outgoing air in the chambers. Data on CO2 and 

H2O exchange were used to assess the nature of direct relationships between ozone 

uptake, CO2  uptake, and stomatal conductance. These relationships were used to gain 

more insight into the mechanisms responsible for the effect of leaf surface wetness on
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ozone uptake. Calculations were based on the resistance analogy with electrical 

resistances (Figure 5.1). The total gas flux was derived from:

The leaf total resistance of a gas, rt(s m'1), was determined by:

In equation 5.2, Qeaf represents the gas concentration in the leaf chamber (mass m'3). The 

HzOv concentration in the stomatal cavity was calculated based on the saturated water 

vapor pressure at Ti*af. The ozone concentration in the leaf was assumed to be zero 

(Laisk, Kull and Moldau, 1989). The total resistance for ozone (Figure 5.1) is described

r  _ f(C in — Com) 
r  =  — — —

A

In which: F = gas flux (mass m’2 s'1)

(5.1)

f  = air flow through the chamber (m3 s'1)

Cm = gas concentration incoming air (mass m'3) 

Com = gas concentration outgoing air (mass m'3) 

A = two sided leaf area (m'2)

by:

(5.3)

Where: rb = boundary layer resistance (s m 1)

r ,= stomatal resistance (s m 1)

r, = internal resistance, stomatal pathway (s m'1)

rc=cuticular resistance (s m*1)

rjc = internal resistance, cuticular pathway (s m'1)
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The boundary layer resistance of ozone and CO2 were derived from the boundary

layer resistance to water vapor, rb,v, using the relationship:

r b,g ~ r b ,v

s-0.66

(5.4)

In equation 5.4, rb,g represents the boundary layer resistances to COi or ozone. Dg is the 

diffusion coefficient for CO2 or O3, and Dv is the diffusion coefficient for H2 0 v, with 

values of 25,25 and 15 mm' 2 s' 1 respectively. The estimated n>,v was 41 s m' 1 based on 

evaporation rates of saturated Alter paper in the shapes of leaves. The stomatal resistance 

to O3 and CO2 was derived from the stomatal resistance to IfeOy, according to:

rn  *«.» (5.5)
.D «

The stomatal resistance to water vapor was estimated using the Penman equation for a 

hypostomatous leaf (Monteith and Unsworth, 1990). Thus, the internal and the cuticular 

resistance to O3, r, and rc, can be estimated by rewriting equation 5.3 in the form:

(r, -  rb )"* = (r, + r,)"' + (rc + ric) ‘ ‘ (5.6)

When (rt- rb)1 is plotted against (rs + r;)-1, a straight line should result, with slope=unity 

and intercept =(rc+ He)-1. Since rt, rb, and rs are known, r, and (rc + nc) can be derived 

from the Atted curve. Finally, the deposition rate of O3 to the leaf, Vd,03. was calculated 

as the inverse of r,.o3. i.e., Vd,0 3 = ̂ 0 3 _1- It should be noted that the term “ozone uptake” 

is used to cover both ozone uptake and deposition, because it was not possible to 

distinguish between the two processes over wet leaf surfaces.

Leaf wetness effects on gas exchange were described using three parameters, the 

maximum effect, the total effect, and the duration of the effect (Figure 5.2). The
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maximum effect was defined as the maximum change in gas exchange in wet 

conditions as a percentage of the gas exchange in dry conditions. In the case of CO2, this 

maximum effect will be lower than the effect in dry conditions (Figure 5.2) because CO2 

uptake is decreased over wet leaves. The total effect on gas exchange was defined as the 

total integrated effect of leaf wetness on gas exchange in wet conditions as a percentage 

of the effect in dry conditions. The total wetness effect is shown in Figure 5.2 as the 

hatched area between the actual net photosynthesis curve and the lower limit of the 95% 

confidence interval (C l) during dry conditions. Total net photosynthesis in dry conditions 

equals the dry signal integrated over the same time period as the wet signal. Finally, the 

duration of the leaf wetness effect was calculated as the time period between the onset of 

leaf wetness and the first gas exchange value that was within the 95% C l during dry 

conditions (Figure 5.2). Note that to calculate the total effect on transpiration (E) and O3 

deposition, the upper limit of the 95% C l was used (Vd>0 3), because wetting the leaf 

increased E and ^ 0 3 .

Modeling ozone deposition rates to wet leaf surfaces

The two processes that contribute to the changes of Vd 0 3 over wet leaf surfaces, 

the observed changes in net photosynthesis and a constant to correct for ozone uptake by 

the aqueous phase, were used to describe the effect of leaf wetness on maximum Vd,03 in 

light conditions according to:

V i *^3’me*, wet =  (v d, O3.oax - f(psn, wet))*  Correction ̂  (5.7)

In equation 5.7, maximum Vd,C>3 in wet conditions was estimated from the observed net 

photosynthesis rate in wet conditions (linear regression; ̂ =0.81 to 0.87), multiplied by a
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factor to correct for increased ozone deposition to the aqueous phase (CorrectionWet). 

This correction factor was calculated from the observed increase of Vd.0 3  in dark 

conditions. The total Vd,03 was predicted according to:

Equation S.8  describes the leaf wetness effect on total Vd,0 3  as a function of the total 

Vd,0 3 observed in dry conditions, multiplied by correction factors for the decrease due to 

lower stomatal conductance and the increase due to chemical reactions of ozone with the 

aqueous phase. Equation S.8  assumes that the total influence of leaf wetness effect on 

Vd,0 3 due to reduced stomatal conductance is proportional to the reduction of the 

maximum Vd,0 3 . This reduction was calculated as the ratio of the maximum Vd,0 3  in wet 

conditions (derived from net photosynthesis in wet conditions) to the observed Vd,03  in 

dry conditions.

Data analysis

Data were analyzed using SigmaStat (SPSS Inc., 1997). Data that met the 

requirements for normal distribution were analyzed using one-way analysis of variance 

(reported as F, P-value) with a Bonferroni post-hoc test, or a t-test (reported as T, P- 

value). The experimental design was a nested analysis of variance. Four leaves were 

tested in light and dark conditions, with four or five replicate measurements per leaf. 

Subsamples were not statistically different and were pooled for analysis (P<0.05; Sokal 

and Rohlf, 1997). Because several measurements were carried out on each leaf, the data 

also were tested with a repeated measures analysis. However, there was no significant

Vd,0 3,f(psn,wet)
3 ’ total, wet = v  o<1 '  3 . to u l. d ry * Correction (5.8)

v
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effect of subject or number of days in the cuvette on any of the response variables.

Data that did not meet the normality requirements were analyzed using a Kruskal- 

Wallis ANOVA on ranks (reported as H, P-value). This was the case for the duration of 

leaf wetness effects on CO2 exchange over leaves.

RESULTS

Ozone deposition

In dry conditions Vd,03 was highly correlated with net photosynthesis and dark 

respiration (^=0.87, P<0.0001, n=483), and with transpiration (^=0.81, P<0.0001, 

n=483). In light conditions, 87% of ozone uptake by dry leaves was accounted for by 

stomatal uptake, and 13% by ozone deposition to the cuticle. In wet conditions, the 

cuticular component increased to 36% of total ozone uptake by leaves. Leaf wetness in 

light conditions increased maximum Vdi0 3 by 15% (7s6=2665, P<0.001), and total Vd,03 

by 6% (Figure 5.3). There were no differences based on the pH of the solution. In dark 

conditions, leaf wetness increased maximum V,i,03 up to 237% (748=827, P<0.001), and 

total Vd,o3 by 150% (Figure 5.3). The effect on maximum Vd,03 decreased with 

decreasing solution pH, although this trend was not statistically significant. In light 

conditions, the duration of leaf wetness effects on Vd>0 3 (27 ± 2 min; Figure 5.3) was 

about 10 times shorter than effects on photosynthesis (Figure 5.4) and 5 times shorter 

than the effect on evapotranspiration (Figure 5.5). This can be explained by the chemical 

equilibrium between 0 3 in the gaseous and the aqueous phase. This equilibrium was 

reached well before the water had evaporated from the leaf surface. This was confirmed 

by control measurements with petri dishes filled with the same solutions that were used to
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wet leaves, resulting in a chemical equilibrium after 210 min (± 40 SE), while water 

was still present in the dish after 480 min.

Over dry leaf surfaces, there was a strong linear relationship between (rt-rb)‘ l and 

(rs+ rj)'1 (^=0.76, P<0.001). The internal residual resistance to ozone, rj, was estimated to 

be -0.1 Is mm*1, and the cuticular resistance, rc+rjC (indicated by the intercept with the y- 

axis) was 1.07 s mm'1. Assuming that n equals r;c, rc was estimated to be 1.18 s mm*1.

Photosynthesis

In light conditions, leaf wetness decreased maximum photosynthesis by 16% 

(7*56=4.62, P<0.001) and total net photosynthesis by 6% (Figure 5.4). Solution pH did not 

affect the magnitude of the response of net photosynthesis to leaf wetness, nor the 

duration of the leaf wetness effect (Figure 5.4). In dark conditions, leaf surface moisture 

led to decreases in respiration rates of 60 to 100% (7*48=2542, P<0.001; Figure 5.4). 

Interestingly, respiration rates were more affected at lower pH than at higher pH values 

(F56=16.56, PcO.OOl). Leaf wetness effects on total respiration showed a similar pattern 

(7*38=8.69, P<0.001), but to a lesser extent than the maximum decrease in the respiration 

rate. This can be attributed partially to the shorter duration of the leaf wetness effect at 

lower pH (7/3=20.55, P<0.001; Figure 5.4).

Evapotranspiration

The evapotranspiration rates over dry leaves were highly correlated with net 

photosynthesis (r*=0.85, P<0.0001, n=90). In light conditions, leaf wetness increased 

maximum evapotranspiration rates, E™,.. by 20% (7*56=2684, P<0.001), and total
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evapotranspiration, Emui. by 11% (^6=861, /*<0.001; Figure 5.5). The solution with 

the lowest pH resulted in the largest increase, but the effect lasted for the shortest period 

of time (Figure 5.5). In dark conditions, leaf wetness increased Emu up to 15 times, and 

Etoui up to 9 times (Figure 5.5, pH 3.8). However, since stomates tended to be closed at 

night, the measured HoOv flux was mainly attributed to evaporation rather than 

transpiration in dark conditions. Effects on Emu and Eu*ai increased with lower solution 

pH, but the duration of the effects decreased with lower solution pH. This may have been 

due to slightly smaller droplet sizes with lower pH, because evaporation rates increase as 

droplet sizes decrease (Butler, 1985,1986). Leaf surface wetness effects on net 

photosynthesis and respiration lasted longer than the effect on evapotranspiration, by 

factors of 2 .6  and 1.8 , respectively.

Modeling ozone uptake by wet leaf surfaces

The model results suggest that leaf surface wetness decreased Vd.03  due to lower 

stomatal conductance and increased Vd.0 3  due to chemical reactions with the aqueous 

phase. The effects of stomatal conductance on Vd.0 3 , estimated horn the linear 

relationship between photosynthesis and Vd.03  (^=0.87, P<0.001), increased with lower 

pH in light conditions (Table 5.1). However, in dark conditions, when stomates were 

closed, leaf surface wetness and solution pH did not have consistent effects on Vd.03  

(Table 5.1). Changes in Vd,03  due to chemical reactions with the wet leaf surface were 

increased with lower solution pH in light conditions, and were highest in dark conditions 

(Table 5.1). The combination of these two processes resulted in a slight increase of Vd.03  

in light conditions, compared to dry leaf surfaces, and a considerable increase in dark
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conditions (Figure 5.3).

Equation 5.7 predicted the maximum Vd,0 3  in wet conditions quite well, with 

values within 10% of observed values (Table 5.2). However, the relationship between 

predicted and observed values was only statistically significant for the solution of pH 6.2, 

indicating that the model performance decreased with increasing pH of the solution 

(Table 5.2). Predictions of the total effect of leaf wetness on Vd,0 3  in wet conditions 

were within 18% of observed values. However, there was a trend towards lower predicted 

values with decreasing pH, suggesting that the pH and chemical composition of the 

solution affected the performance of the model. However, the correlations between 

predicted and observed values were very high and not affected by solution pH.

DISCUSSION

Leaf surface wetness had significant effects on gas exchange rates of O3 and CO2 

over poplar leaves, especially in dark conditions. In light conditions, leaf wetness 

increased maximum Vd,0 3  by 7% and decreased maximum CO2 uptake by 16%. In dark 

conditions leaf surface wetness decreased respiration 60 to 100%, depending on solution 

pH, while maximum Vd,0 3  increased 2.7 to 3.4 times. The observed effect of leaf surface 

wetness on V d, 0 3  was the result of two counteracting processes, lower O 3 uptake via the 

stomata, and higher ozone deposition to wet leaf surfaces. Chemical reactions of O 3, CO2 

and O2 with the aqueous phase have an important influence on leaf wetness effects on gas 

exchange.
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Ozone deposition

There were strong correlations between ozone deposition, Vdt0 3  and net 

photosynthesis. Similarly, strong correlations have been reported between O 3, C 02 and 

H20  fluxes in field conditions (Mitic et al., 1999). This can be explained by the fact 

stomatal conductance is the most important factor that determines ozone uptake by plants 

(Neubert et al., 1993; Wieser and Havranek, 1993; Wang et al., 1995; Fredericksen et al., 

1996; van Hove et al., 1999). This is especially true for dry poplar leaves, where 87 % of 

Vd,0 3 was explained by stomatal uptake. The contribution of the cuticle to total ozone 

uptake increased from 13% in dry conditions to 36% in wet conditions. This is in 

agreement with results by Grantz et al. (1995), who reported a considerable non-stomatal 

component to Vd,0 3  in natural canopies, which increased when the canopy was wet due 

to rain or dew.

In light conditions, Vd,0 3  averaged 0.50 cm s‘l (± 0.01 SE) and 0.57 (± 0.01 SE) 

in dry and wet leaf conditions, respectively. These values agree well with ozone 

deposition rates observed in both laboratory (Fuentes et al., 1994) and field conditions 

(Fuentes et al., 1994; Grantz et al., 1995; Massman and Grantz, 1995; Padro, 1996; 

Zhang, Padro and Walmsley, 1996; Grantz et al., 1997; Massman et al., 2000). In dark 

conditions Vd,0 3  to dry leaves averaged 0.13 cm s*1 (± 0.01 SE), which was similar to 

values reported for leaves with closed stomata (0.14 cm s' 1 ±  0.10 SE; Kerstiens and 

Lendzian, 1989a). Zhang et al. (1996) reported similar values of Vd,C>3, ranging from 

0 .1 0  to 0 .2 0  cm s’1, for deciduous forest, grape and cotton canopies during dry nighttime 

conditions. Average observed values of Vd,0 3  over wet poplar leaves in the dark were
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-0.36 cm s*1 (±0.01 SE), which agrees well with observed nighttime ozone 

deposition rates to wet cotton and grape canopies, which ranged from 0 .2S to 0.60 cm s~l 

(Grantz et al., 1995 and 1997). Although ozone deposition to plant surfaces at night was 

considerably lower than during the day, nighttime ozone deposition caused similar or 

more foliar injury compared to damage during the daylight conditions (Musselman, 

Tamara and Minnick, 2000).

The 15% increase of in Va.Oj in light conditions is in the lower range of values 

observed in field conditions, which vary from 1.1 to 2.4 times greater after dew, and 1.4 

to 3.0 time greater after rain (Fuentes and Gillespie, 1992; Fuentes et al., 1992 and 1994; 

Grantz et al., 1995). In darkness, maximum Vd,0 3  increased by a factor of 2.7 to 3.4 due 

to leaf wetness. This agreed well with observed increases of Vd,0 3  due to dew in the 

field, varying from 1.1 (Grantz et al., 1995), to 3 - 6  times as much (Fuentes et al., 1992 

and 1994). When the increase in Vd,0 3  was expressed as a percentage of the predicted 

Vd,03 based on the decrease in net photosynthesis, values from this study on poplars 

agreed very well with the literature, both in light and dark conditions (Table 5.1).

In light conditions, the pH and ion concentrations of the sprayed solution did not 

affect response of Vd,0 3 . However, in dark conditions the effect of leaf surface wetness 

on Vd,0 3 decreased with lower pH. The percent change of Vd,0 3  due to leaf wetness was 

proportional to the concentration of N H / ions in the solution, suggesting that ozone 

reacted with NH*+. Ozone is a strong oxidant, (Hoigne, 1988; Oke, Smith and Zhou, 

1998), and readily oxidizes NH4* to form N2, NO, N2O, and NO2. Increased rates of 

chemical reactions of ozone with the water solution due to the presence of NH4* ions also 

appeared to shorten the time to needed to establish a chemical equilibrium with the
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aqueous phase. This decreased the synergistic effect of leaf surface wetness on Vd,0 3 , 

in agreement with shorter half-life times of ozone in the aqueous phase in solutions with 

higher concentrations of compounds that can be oxidized (Graham, 1997). However, 

although the chemical composition of the solution influenced the response of maximum 

Vd,03, there were no differences in the effects on total Vd,0 3 .

In light conditions, the influence of leaf surface wetness on Vd,0 3 was 4 to 5 

times shorter than the effect on evapotranspiration and the time period in which water 

droplets could be visually observed on the leaf surface, suggesting that a chemical 

equilibrium was established with the aqueous phase well before water had evaporated 

from the leaf.

Photosynthesis

Net photosynthetic rates in dry conditions (10.8 nmol m' 2 s’ 1 ± 0.3 SE) were in the 

lower range of maximum photosynthetic rates reported for Populus nigra brandaris 

(Reichenauer et al., 1997) and other Populus clones (Ceulemans and Impens, 1983). Dark 

respiration rates, -0.5 pmol m*2 s' 1 (±0.01 SE), also were lower than those reported in the 

literature (Ceulemans and Impens, 1983). The lower rates of maximum net 

photosynthesis and dark respiration observed in my study can be explained by lower light 

intensities (170 - 420 funol m*2 s'1) compared to Ceulemans and Impens (1400 nmol m' 2 

s'1; 1983). The observed decrease in net photosynthesis due to leaf wetness is similar to 

data reported by Brewer and Smith (1994 and 1995) and Ishibashi and Terashima (1995), 

where leaf surface wetness from rain and dew decreased net photosynthesis by 15 to 2 0% 

and 30 to 40% respectively.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A potential confounding factor in the interpretation of these results is that the 

methods did not allow to distinguish between interactions of CO2 with the aqueous phase 

and effects of leaf wetness on stomatal opening. However, Ishibashi and Terashima 

(1995) reported that the decrease in CO2 uptake observed after simulated rain could be 

attributed to stomatal closure, injury to photosynthetic membranes and to some extend to 

a limitation of CO2 diffusion in the water Him. Similarly, spray-misted leaves showed a 

decline in photosynthetic gas exchange up to 80 % for alpine plant species with wettable 

leaf surfaces. Moreover, experiments with metal models in the shape of poplar leaves 

showed that wetting of these leaves led to a small increase of CO2 deposition (data not 

shown). Thus, reactions of CO2 with the water present on a real leaf would have led to 

increased apparent photosynthesis, which is opposite of what we observed. Thus, it 

appears that the decrease in CO2 uptake observed in light conditions could be attributed 

to lower photosynthesis, which may have been caused by stomatal closure, as well as 

limitations to CO2 diffusion in the water Him (Ishibashi and Terashima, 1995). 

Moreover, since reactions of CO2 in the aqueous phase tended to increase apparent CO2 

deposition rates, the observed effects on photosynthesis may have been underestimated 

by -3  %.

Dark respiration

Interestingly, in my study, CO2 exchange by leaves that were wet during the night 

was reduced by 60 to 100 %, suggesting that leaf surface wetness strongly decreased 

rates of dark respiration of poplar leaves. A possible explanation of this phenomenon is 

the limited diffusion of O2 gas into the leaf over wet leaf surfaces; O2 has a diffusion
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coefficient through water that is similar to that of CO2, -10,000 times slower through 

water than through air (Monteith and Unsworth, 1990). The effect of leaf wetness on gas 

exchange in dark conditions could be estimated within 5% of observed values (^=0.96) 

based on the percent change of CO2 exchange rates during the day, the absolute gas 

fluxes in light and dark conditions, and the diffusion coefficients of CO2 and O2 in air and 

water. This also suggested that dark respiration rates of wet leaves were limited by O2 

diffusion into the leaf. Since the overall gas flux at night is considerably lower than 

during the day, the reduction of O2 uptake at night will have a relatively larger impact on 

plant respiration than the reduction of CO2 uptake during the day has on net 

photosynthesis.

However, as mentioned before, spraying metal leaf models led to a small increase 

on CO2 deposition, suggesting a chemical interaction CO2 with the aqueous phase. Thus, 

reduced CO2 emission from wet leaves in dark conditions may be partially due to 

chemical reactions of CO2 in the water phase. Future research will need to address the 

causal mechanisms of the response of CO2 emission to leaf wetness in dark conditions.

To what extend is this observation caused by CO2 gas reacting with the aqueous phase? If  

this phenomenon is indeed caused by lower dark respiration rates of plants, what are the 

consequences for plant metabolisms? Impacts of leaf wetness on nighttime respiration 

have received little attention. This is a particularly important area for study given the 

potentially higher repair costs for leaves damaged by ozone exposure. For practical 

purposes I  will continue to refer to the effects of leaf wetness on CO2 emission in the 

dark as respiration in the remainder of this paper.

The effect of leaf wetness on respiration increased with lower solution pH. This
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may be attributed to reaction of O2 with the NH4* ions present in these solutions 

because of the reaction of O2 with NHj+ (to form N 2, N20  and N 02). An alternative 

explanation depends on the reaction of C02 gas with the aqueous phase, which may have 

caused lower emissions of C02 gas from a leaf. However, at low pH, C 02 tends to gas 

out of the solution on the leaf, leaving carbonic acid mainly present in the un-dissociated 

form of H2CO3. Therefore, one would expect that the effect of leaf surface wetness would 

decrease with lower pH. Since the opposite was observed, lower respiration rates of wet 

leaves were probably caused by limited 0 2 diffusion. Interestingly, the duration of leaf 

wetness effects on dark respiration also decreased with lower pH (Figure 5.4). This may 

be related to increased degassing of C 02 from the aqueous phase with lower pH.

The duration of leaf surface wetness effects on net photosynthesis and dark 

respiration were considerably longer than the effects on evapotranspiration. In light 

conditions, the effects on net photosynthesis lasted about 2.5 times longer than both the 

effects on evapotranpiration and the visual presence of water droplets on the leaf surface. 

The effects on dark respiration lasted about 1.8 times longer than the effects on 

evapotranspiration. These results suggest that after droplets have disappeared from the 

leaf surface, a residual water Him could remain on the leaf surface, and continue to 

influence the exchange of C02 over the leaf surface. This is in agreement with results by 

Burkhardt (1994), who reported that water films are present on conifer needles more than 

twice as long as visible water can be observed on the surface. The thickness of water 

films on leaf surfaces increases with decreasing vapor pressure deficit in the air (Hove 

and Adema, 1996).
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Modeling ozone deposition to wet leaf surfaces

In light conditions ozone deposition to wet leaf surfaces was influenced by two 

counteracting processes: a decrease in Vd,0 3  due to decreased stomatal conductance and 

an increase in Vd,0 3  due to enhanced ozone deposition to the wet cuticle (e.g., Grantz et 

al., 199S and 1997). The model combining these two factors, equation 5.7, predicted both 

maximum and total Vd,C>3 during leaf wetness events reasonably well (within 10% of the 

observed values; Table 5.2). However, correlation coefficients between observed and 

predicted Vd,0 3  decreased with lower solution pH, suggesting that chemical reactions of 

O3 and CO2 with the solutions decreased model performance. This approach may prove 

useful to model Vd,0 3  over wet leaf surfaces in light conditions, using observational data 

on photosynthesis, Vd,0 3  over dry leaf surfaces in light conditions and Vd,0 3  over wet 

leaf surfaces in dark conditions. Another, more accurate approach would be to derive 

estimates of Vd,0 3  over wet leaves from the relationships between photosynthesis, 

stomatal conductance to HiOv, and stomatal conductance to ozone. An advantage of the 

latter approach would be that ozone deposition to the cuticle and uptake by stomata can 

potentially be estimated separately. However, this approach did not work too well for my 

data, and estimates of ozone deposition to the cuticle varied widely.

CONCLUSION

Ozone deposition increased when leaf surface were wetted with simulated dew, 

rain or mist. In light conditions, this increase was low, but in dark conditions it was 

substantially higher compared to dry conditions. Two counteracting processes explain the 

observed increase in ozone deposition due to leaf surface wetness. First, droplets and
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water films present on leaf surfaces may interfere with stomata, thus decreasing 

stomatal conductance and Vd,0 3 . Second, leaf surface wetness increased ozone 

deposition to the cuticle, the non-stomatal component of Vd,0 3 . Models combining these 

processes performed well in predicting Vd,0 3  to wet leaves in light conditions. This study 

also showed that leaf surface wetness led to significant decreases in photosynthetic gas 

exchange over leaf surfaces. Moreover, CO2 emissions in dark conditions decreased 

considerably for wet leaves. At this point it uncertain to what extent observed changes in 

CO2 emissions are caused by actual changes in dark respiration of plants, or by chemical 

reactions of CO2 in the aqueous phase. There was a strong interaction between leaf 

wetness effects on exchange of ozone and CO2 over leaves with the pH and chemical 

composition of the solution present on the leaf surface. More work is needed to better 

understand the effects of leaf surface wetness and the chemical composition of the 

aqueous phase, on the exchange of gaseous air pollutants and CO2 gas over natural 

canopies and crops. It is important to incorporate leaf wetness effects into ozone 

deposition models to predict ozone deposition to plant canopies more accurately. Finally, 

little is known about effects of leaf wetness in respiration rates in the dark. My research 

suggested that dark respiration could be reduced considerably due to leaf surface wetness. 

This may be particularly important for ozone exposed leaved, that may have higher repair 

costs than healthy leaves. Given the potential impacts of leaf surface wetness on 

respiration rates at night, more research is needed in this area.
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TABLE 5.1: Relative contributions of effects of stomatal conductance, Gsum)Ua, and 
chemical reactions at the leaf surface to the overall effect of leaf surface wetness on 
ozone deposition to poplar leaves. Data are shown for light and dark conditions, and 
solutions of pH 6.2, pH 4.5 and pH 3.8 (n=4 leaves with 4 to 5 replicate measurements 
per leaf, ±  1 SE). Predicted Vd.03 over wet leaves was derived from the CO2 flux. The 
percent change in Vd.03 over wet leaves due to stomatal closure (indicates as G..™....) is 
calculated as the ratio of Vd.o3-(wet, predicted) over Vd.03-(dry, Observed), and the flux 
to the wet leaf surface as the ratio of Vd.o3-(wet, observed) over Vd.03-(wet, predicted).

Conditions Ozone deposition rate, Vd,o3 (cm s’1) Change in Vdi03 (%)

Dry, observed Wet, observed Wet, predicted G«omaia Surface

Light 

pH 6.2 0.46 ±0.03 0.53 ±0.04 0.36 ±0.01 80 ±3 145 ±6

pH 4.5 0.48 ±0.03 0.53 ±0.03 0.33 ±0.01 71 ± 4 161 ± 10

pH 3.8 0.56 ±0.02 0.64 ±0.02 0.32 ±0.01 58 ±1 201 ±8

Dark 

pH 6.2 0.09 ±0.01 0.28 ±0.03 0.08 ±0.01 101 ±  12 345 ±36

pH 4.5 0.12 ±0.01 0.37 ±0.02 0.08 ±0.01 67 ± 4 483 ±34

pH 3.8 0.15 ±0.01 0.39 ±0.02 0.15 ±0.01 114 ±29 421 ±52
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TABLE 5.2: Predicted Vd,0 3  to wet leaves in light conditions as a percentage of the 
observed Vd,0 3  for solutions of pH 6.2 (n=4,5 replicates per leaf), pH 4.5 (n=4,4 
replicates per leaf) and pH 3.8 (n=4,5 replicates per leaf) (±  1 SE). Statistics shown are 
the correlation coefficients using linear regression analysis between predicted and 
observed values of Vd,03  (r2, P-value).

Factor Predicted/Observed Vd,0 3 , % (r2, P-value)

pH 6.2 pH 4.5 pH 3.8

Maximum Vd,(>3 100 ± 4 99 ±6 91 ± 3

0.86, P<0.001 0.40, P=0.088 0.35, P=0.130

Total Vd,0 3 118 ± 4 103 ±5 98 ± 3

0.99, P<0.001 0.99, P<0.001 0.98, P<0.001
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Figure 5.1: A resistance analysis of ozone uptake by one side of a leaf. F03 represents 
total ozone flux into the leaf. Ca, C, and Q  represent ozone concentrations in the ambient 
air, at the leaf surface and in the substomatal cavity of the leaf. The uptake resistances are 
the boundary layer resistance, ri>, stomatal resistance, rs, internal resistance via the 
stomatal pathway, n, cuticular resistance, and rc, internal resistance via the cuticular 
pathway, riC. The capacity, £ , represents adsorption of ozone to the leaf surface.
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Figure 5.2: Response of net photosynthesis (PSN) to leaf surface wetness. Measurements 
are indicated as open circles and the line represents a fitted curve. The dashed lines 
indicate the limits of the 95 % confidence interval (95 % Cl) of PSN in dry conditions. 
Arrows indicate when the leaf was wetted, the maximum effect on PSN and when PSN 
values returned to dry background values. The total effect of leaf wetness on PSN is 
shown as the hatched area between the PSN curve and the lower limit of the 95 % CL 
The duration of the leaf wetness effect is calculated as the time between when the leaf 
was sprayed and when PSN values returned to the lower limit of the 95 % Cl of PSN in 
dry conditions.
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F ig u re  5 .3 : O zone deposition rates in  w e t conditions, Vd.O 3.wa, as a percentage o f dry  
conditions, Vd,0 3 .*y . fo r m axim um  O 3 deposition (A ) and to ta l O3 deposition (B ), and the 
duration o f the wetness e ffec t (G ). S olution p H  values w ere 6 .2  (w h ite  bar, n =4 w ith  5 
replicas per le a f), 4 .5  (hatched bar; n *4  w ith  5 replicas per lea f), and 3 .8  (double hatched 
bar; n=4 w ith  5 rep licas'per le a f).
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bar; n=4 w ith  S replicas per le a f). Letters indicate statistically  s ig n ifican t differences 
between w ater treatm ents w ith in  the sam e lig h t conditions (nested one-w ay A N O  V  A ; 
subsamples pooled; P < 0 .001 ).
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between w ater treatments w ith in  the same lig h t conditions (nested one-w ay A N O V A ; 
subsamples pooled; P < 0 .001 ).
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C H A P T E R  6
Air pollution and forest growth: Impacts on local and regional scales

Humans have a long history of causing air pollution and since the industrial

revolution at the end of the 1800’s, not only has the production volume of goods

increased, but emissions of pollutants into the environment have increased dramatically

as well. Especially in densely populated urban areas, the effects of air pollution have been

felt. For example, in London in the 1950’s, the combination of stagnant winter weather

conditions and high levels of emissions from industry and coal-heated houses led to

severe air pollution and hundreds of deaths due to lung diseases.1 These winter episodes

of high levels of air pollution are referred to as SMOG, an abbreviation of the words

“smoke” and “fog”. In a region formerly known as Eastern Europe, chronic exposure to

smog episodes similar to those of London has led to a higher incidence of respiratory

diseases such as asthma, and shorter life expectancies compared to less polluted regions

in (Eastern) Europe.2 Interestingly, the first effects of air pollution on plants also were

reported in the late 1950’s and our knowledge of these effects has increased since then as

well. This is due to more advanced technology and research equipment for detecting

influences, but it is also a consequence of the increased volume of pollutants that is

emitted into the air each year. The ways in which air pollution affects vegetation vary

horn acute severe impacts, to chrome and more subtle effects. Moreover, impacts may be

felt from local to regional and global scales. There are many different types of air

pollutants and many avenues for exposure. Two common chemicals, chlorine gas and

ozone, illustrate the diversity of impacts as well as scales of influence that air pollutants
157
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have on plants. These two air pollutants have similar effects on plants, but very 

different types of exposure.

A ir pollution on a local scale: Effects o f chlorine gas on vegetation

Chlorine gas, an element consisting of two chloride atoms (CI2), is used on a large 

scale in our society. If  we would stop using chlorine gas today, the results would 

certainly be felt: no more white paper for books and printers, no more “whiter than 

white” diapers and sheets, certain medicines would not exist, and can you imagine life 

without PVC plastics?3 Moreover, swimming pools would no longer have that familiar 

smell that we all try to wash off after a swim, and there could be hazards for biological 

infections from unsanitary water. Drinking water may not be safe for that same reason.4

So, as a society, we certainly have benefited from many applications of chlorine 

gas. However, this has not been without risk, because chlorine gas is highly toxic to 

humans. Health effects of chlorine gas exposure vary from eye, nose and throat irritation, 

to severe lung damage and even death, depending on the concentration and the exposure 

period.3 The long-term effects of chlorine gas on health are less well documented, and 

consist of long-term respiratory problems and damage to the central nervous system. For 

example, subjects exposed to chlorine gas have complained of symptoms such as 

lightheadedness, extreme fatigue, sleep problems, irritability, loss of concentration and 

memory, mood swings, decreased alcohol tolerance, loss of appetite, and depression.3,6 

Most human exposures to chlorine gas are accidental of character. But are these accidents 

frequent enough to worry about? Yes. A  study in 1996 reported 138 accidental releases 

involving chlorine gas over a period of 3 years in 9 states in the USA (an average of
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about 5 accidents per state per year!). Of these releases, about 25 percent involved 

human injuries, and about 30 percent led to evacuations.7 And considering that the 

production volume of chlorine gas is expected to increase over the next decade,3 we can 

expect the risk of accidents involving chlorine gas to increase as well.

So why is chlorine gas so toxic? In contact with water, chlorine gas forms 

hydrochloric acid (HC1) and hypochloric acid (HOC1). Hypochloric acid is also known as 

household bleach, the substance that we buy to get our laundry just a little whiter, and to 

keep our bathrooms free from germs. We are also familiar with the warning labels 

attached to bleach bottles. Given that hydrochloric acid is an even stronger acid than 

bleach, it is logical that exposure to such strong acids can readily damage our health. It is 

this characteristic of chlorine gas, the formation of highly acid solutions, that makes 

chlorine gas toxic to vegetation as well as well as humans.

What do we know about the effects of chlorine gas on plants? Most reports on 

chlorine gas effects on plants have focused on visible injury symptoms. These symptoms 

consist of bleaching of leaf tissues, called chlorosis, and the death of leaf tissues. The 

latter is called necrosis, and occurs in a streaky pattern in grasses, and as brown spots on 

leaves of herbs and shrubs. In coniferous trees, such as pines and firs, necrosis starts at 

the tip of the needle and eventually extends to the needle base. Once leaves or needles are 

completely brown (or dead), they are generally dropped by the plant, resulting in a bare 

appearance, and considerably lower leaf material than healthy plants.8 The amount of 

chlorine gas that is taken up by plants, as well as the extent of leaf injury, depends on the 

concentration and duration of exposure, as well as environmental and weather 

conditions.9
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Effects of chlorine gas exposure on plants have only been explored in short

term studies. Thus, the acute effects of chlorine gas on plants are reasonably well 

understood, but long-term effects have hardly been studied at all. What might some of 

these long-term effects be? How long after exposure do these effects persist? To begin 

answering these questions, we began a study that lasted 3 years after a major chlorine 

spill. Our study began after a train derailment released about 60 tons of chlorine gas into 

the atmosphere near Alberton, MT, in April 1996. This release was the second largest 

railroad accident involving chlorine gas in US history, and led to the evacuation of about 

1000 people, and medical treatment of over 3S0 people.10 The chlorine gas, in 

combination with ample atmospheric moisture, led to the formation of a highly acidic 

cloud. Moreover, the dispersion of the chlorine cloud was limited due to low wind speed, 

which led to highly concentrated chlorine gas cloud that persisted for several days in a 

very small region. Moreover, the spill happened in a narrow mountain valley, which 

enhanced the adverse effects of the spill on humans, since there was only one escape 

route available to local residents. In addition to the tragic toll on human health, this 

derailment also exposed a coniferous forest, consisting mainly of Douglas Hr 

(Pseudotsuga menziesii) and Ponderosa pine (Pinus ponderosa) to the toxic gas cloud. 

These two species of conifers are characteristic for this region of the Rocky Mountains.

So, what were some of the effects of this chlorine release on these conifers? The 

visible symptoms one month after exposure were similar to those reported after other 

spills. Douglas fir and Ponderosa pine showed bleached leaves (chlorosis) and leaf death 

(necrosis). How about changes to conifer needles that could not be seen with the naked 

eye? Both conifer species showed changes in the characteristics of their exposed needle
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surfaces. Leaf and needle surfaces of most plants species are covered by a waxy layer, 

the cuticle, which protects plants against excessive water loss and infection by pathogens, 

such as bacteria, viruses and fungi.11 Chlorine gas changed these waxy layers. For 

example, water droplets tended to spread out more on Douglas fir needle surfaces that 

were exposed to chlorine gas compared to surfaces that were not. Interestingly, this was 

also the case for exposed foliage that did not show signs of injury to the naked eye, and 

for foliage that flushed out after the chlorine gas had subsided. What does this mean? 

First, foliage was affected even when there was no visible injury. Second, foliage on 

exposed trees that was hidden in winter buds also was affected, suggesting that chlorine 

gas can have both indirect and direct negative influences in plants.

This leads us the question of whether or not these cuticular changes have 

implications for other aspects of tree health. As mentioned earlier, cuticles form a barrier 

that help prevent excessive water loss from foliage. Our experiments showed that needles 

on trees exposed to chlorine gas lost more water through the cuticle. Moreover, directly 

exposed foliage of both conifer species had lower total water content in the leaf tissue 

compared to needles that were not gassed by chlorine. During the daytime, the influence 

of this damage is relatively low since most of the water lost by trees is through pores in 

the leaf surface, called stomata. However, during the night, these stomatal pores are 

closed, and the exposed trees lost water predominantly through the cuticle. In summer, 

when western Montana often experiences drought conditions, loosing precious water 

through a damaged cuticle may predispose trees to drought stress and subsequent death of 

needles. This was confirmed by observations in the field during the summer, when 

foliage on exposed trees showed signs of drought damage, such as brown needles.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



162
Eventually many needles fell off the trees. In comparison, trees at places the chlorine 

cloud did not reach did not have these drought symptoms. The drought susceptibility of 

exposed trees remained higher up to 1 to 2 xh  years after they were exposed to chlorine 

gas.

As mentioned earlier, conifer foliage near the site of chlorine gas release became 

necrotic, and subsequently dropped off the tree. This may have had an important effect on 

tree growth because trees need leaves for photosynthesis. How does photosynthesis 

work? Plant leaves use sunlight and atmospheric carbon dioxide to produce sugars, which 

are used in the leaf or exported to other plant tissues. Eventually these sugars are broken 

down into carbon dioxide and water when the plant uses them for energy. Breaking 

sugars down provides plants with the energy needed to maintain their living tissues (also 

called respiration), grow, and reproduce. Plants that lost a lot of leaves may not produce 

enough energy to survive, grow and produce seeds. So what can be expected when a 

conifer that carries needles produced over several years (four years for Ponderosa pine 

and nine years for Douglas fir) looses most of its needles? They lose their ability to 

photosynthesize, or in other words, to acquire energy from their environment. Thus, we 

expected the loss of foliage to result in lower growth rates for trees exposed to chlorine 

gas.12 This is exactly what was observed. Although branch and needle growth were not 

affected, exposed trees had lower stem growth (up to lA mile downwind from the gas 

release) and produced fewer cones, and therefore, fewer seeds. This pattern can be 

explained by thinking about how these long-lived trees might allocate the energy that 

they take in to different tissues and functions. Just as people may prioritize how they 

spend their limited resources, such as time and money, trees prioritize how they spend the
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sugars they produce.13 In general, shoot and leaf growth are high priorities for energy 

allocation in these trees, and we did hot see big changes in how many leaves were 

produced on defoliated trees compared to healthy trees. However, stem growth and seed 

production may be lower priorities in any given year. And the damaged trees allocated 

less energy to these processes compare to healthy trees. In other words, the trees exposed 

to chlorine gas did not grow very much and they did not produce very many seeds.

Finally we observed higher mortality, especially for Douglas firs, within 50 yards 

of the area where railroad cars derailed and released the toxic clouds of chlorine gas. 

There are two possible explanations for the death of these trees. First, the trees may have 

been killed directly by chlorine gas exposure. Second, the defoliated trees only had a 

small fraction of needles left and it took these needles two months after the chlorine gas 

exposure to appear. This may not have been enough needles to meet the energy demands 

of the tree.14 That is, more carbon was used than the tree could acquire via 

photosynthesis. This can be compared with a savings account at the bank. When more 

money is taken out (i.e., energy requiring processes) than comes in via deposits and 

interest (photosynthesis), eventually this will lead to a negative balance (no more energy 

to spend on survival so the tree dies). This process may have been promoted by two 

factors: 1) the needles were not as efficient in photosynthesis on trees exposed to chlorine 

gas, and/or 2) there were high costs to repair tissues damaged by chlorine gas exposure. 

The first factor translates into lower inputs to the bank account balance, for example, 

lower interest rates or fewer deposits. The second factor is equivalent to higher 

withdrawals to pay for repair costs. The same factors that may have contributed to tree
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mortality also may be (partially) responsible for the observed decline in stem growth, 

and seed and pine cone production.

To summarize, we can say that adverse effects of chlorine gas exposure on 

conifers are not restricted to acute visible injury of foliage. Chlorine gas exposure was 

shown to have long-term effects on physiological and growth processes of these conifers. 

The main causes of these effects were higher susceptibility to environmental stress 

factors, such as drought stress, and lower mass of needles on the trees. Interestingly, 

Douglas fir and Ponderosa pine responded differently to chlorine gas exposure. The 

differences may have been due to differences in how long these trees keep their needles, 

how much different years of needles contribute to whole tree photosynthesis, and drought 

tolerance. Over time, these conifers will probably replace the needles that were lost due 

to chlorine gas exposure, and adverse effects will probably disappear over time. 

Projections using tree growth models indicate that this recovery may take at least 4 to 7 

years in western Montana. However, tree responses were mediated by climate (relatively 

dry summer), site characteristics (relatively dry sites) and species (even within conifers 

there were different responses. Thus, these factors need to be considered in case of future 

chlorine exposures.

Regional a ir pollution: Effects o f ozone on vegetation

An example of an air pollutant that influences plants on a regional scale is ozone. 

During the last several years, ozone has received a lot of press coverage. However, most 

of the news has focused on decreasing ozone concentrations in the stratosphere, the 

atmospheric layer above the layer that we breathe and where the weather takes place. So,
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most people will be familiar with what is referred to as the “ozone hole”, a decline of 

ozone in the earth’s stratosphere. Scientists predict that the loss of stratospheric ozone 

will lead to higher levels of harmful UV-B radiation at the earth’s surface, and cause 

adverse effects on public health and vegetation.t5,16 However, another environmental 

problem relating to ozone takes place in the troposphere, the layer of the atmosphere that 

we live in. In the troposphere, ozone concentrations have increased over the last decades, 

and they are expected to increase even more over the next decades as well.17

Tropospheric ozone is formed from two chemical ingredients, nitrogen oxides and 

volatile organic hydrocarbons (VOC’s). The main emission sources of these pollutants 

are exhausts from motor vehicles, power generation, and solvent use.18 Ozone production 

requires sunlight. Thus, ozone pollution generally is a problem in the spring and summer, 

especially in urban areas with a lot of traffic exhaust and industrial emissions. The 

skylines of Los Angeles or Mexico City, showing a thick brown layer of pollution near 

the surface with limited visibility, are excellent images of conditions with high levels of 

ozone.

So one may wonder, if  too little ozone in the upper atmosphere is bad, shouldn’t 

more ozone in the lower atmosphere be a good thing? Unfortunately, this is not the way it 

works. Human exposure to tropospheric ozone causes irritation to eyes and nose, lowers 

lung performance, and can worsen asthmatic symptoms.19 Ozone levels considered 

harmful to human health are exceeded frequently in many areas of Europe and the United 

States.2,20 Ozone levels are high not only in urban regions, but also in agricultural and 

forested regions, because ozone and its chemical ingredients can be transported over 

hundreds of miles. Thus, if you go for a hike in the mountains on a nice sunny summer
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day near the Los Angeles basin, you may not be totally safe from experiencing 

discomfort from high ozone levels.21

Like chlorine gas, ozone also has negative effects on plants, and ozone 

concentrations observed in many parts of Europe and the United States are high enough 

to cause these negative effects.2,20 The adverse effects of ozone on vegetation were first 

discovered in the LA Basin in the 1950’s, where visible injuries to leaves, as well as 

reduced yield and quality, were observed for several crop species.18,22,23 Since then, a 

steady stream of reports on adverse ozone effects on plants has hit the press. Ozone 

influences many processes that affect plant growth. These include damage to plant 

membranes that can reduce photosynthesis, higher repair cost for injured plant tissues, 

premature loss of leaves, and lower growth.24,25’26 Exposure to ozone also changes how 

plants interact with their physical environment. For example, plants exposed to ozone 

may be more susceptible to freezing temperatures and drought stress.27,28

When ozone-exposed plants encounter the stresses of drought, they cannot 

completely close their stomatal pores. Thus, the plants tend to be susceptible to excessive 

water loss.28 While we understand how ozone affects stomata, relatively little is known 

about ozone effects on plant cuticles. As mentioned earlier, the cuticle is waxy layer on 

leaf and needle surfaces that protects plants against excessive water loss and infection by 

pathogens, such as bacteria, viruses and fungi.11 Does ozone affect plant cuticles in way 

that water loss through the cuticle increases? Could damage to the cuticle influence the 

overall water balance of plants through the course of a year? To better understand how 

ozone affects plants and their cuticles, we set up several laboratory experiments. We used 

two species of poplars (Populus nigra brandaris and Populus euramericana Robusta)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



and Douglas fir (Pseudotsuga menziesii) trees in these experiments. For 6 weeks, we 

exposed Poplar species to ozone concentrations that these plants might experience on a 

daily basis during a season when they are growing in the forest. Interestingly, ozone had 

relatively little effect on the cuticles of these poplars. For example, a typical water droplet 

spreads out just the same way on leaves, whether or not plants were exposed to ozone. Is 

there a relationship between how water spreads on a leaf surface and water loss across the 

cuticle? In the case of poplars, it would be a very poor relationship. Why? The two 

species of poplars behaved in different ways. Leaves exposed to ozone from one poplar 

species (P. euramericana) lost significantly more water than leaves that did not get 

exposed. Yet, there were no differences in how water spread out on the leaf surface, 

suggesting that the cuticle was not badly damaged. Interestingly, some scientists have 

suggested that one of the possible mechanisms contributing to the decline in forest health 

that has been observed in Europe and the United States is water loss through these 

damaged plant surfaces.28*29,30 So what happened with the other poplar species? Leaves of 

P. nigra exposed to ozone lost just as much water as leaves that never came in contact 

with ozone. This interesting result suggests that the way a plant responds to ozone 

depends on the type of species.

Many scientists reported that ozone also can interfere with how leaves grow.26 

Our experiments confirmed these reports. Ozone exposure caused considerable injury to 

poplar leaves, which was easily detected by the naked eye, including the presence of 

many chlorotic and necrotic spots. At some point, these leaves became so fragile that they 

simply dropped off the tree by themselves, or broke off with the slightest touch. What is 

the effect on the tree? The effect is similar to the effect we described for leaves exposed
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to chlorine gas. There are fewer leaves on the tree, and less leaf area to capture 

sunlight for photosynthesis. This effect was enhanced by fewer new leaves on ozone- 

exposed trees.

Douglas fir, a conifer, and poplars are very different in terms of how long they 

keep their leaves. Poplars are deciduous, meaning they lose their leaves every year when 

conditions for growth are no longer favorable. Conifers, in comparison, tend to keep their 

leaves for many years. So how might conifers differ in their response to ozone compared 

to deciduous trees? We exposed Douglas fir (Pseudotsuga menziesii) trees and poplar 

trees to the same levels of ozone, but Douglas firs were exposed to ozone for 23 weeks, 

nearly four times longer than poplars. This is a much higher ozone dose for the Douglas 

firs, so you might expect that the conifers would suffer greater damage than the poplars. 

However, that is not what we found at all. Ozone exposure did not affect how much water 

was lost through the cuticles of Douglas fir and it did not affect growth either! Needle 

injury you could actually see only occurred at extremely high ozone levels. Douglas fir is 

similar to other conifers in being more tolerant to ozone than deciduous trees.31 But 

remember that conifer needles can live many years, and when they get exposed to ozone 

year after year, the negative influence of ozone may eventually show up.32 While exposed 

conifers did not loose more water, ozone exposure did seem to affect the cuticles of 

Douglas fir after four weeks of exposure, because water spread out in different ways, 

depending on whether or not the needles were in contact with ozone. This observation 

supports what we learned about poplars - the negative effects of ozone on cuticles are 

independent of the way ozone influences how much water the leaves loose. And changes 

in how water behaves on a leaf surface may have significant impacts on how plants

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



169
interact with air pollutants. This is critical for predicting how pollutants get into a leaf 

to do damage.

Water droplets on leaf surfaces: implications fo r pollution uptake

Both chlorine gas and ozone exposure increased the wettability of conifer needles, 

that is, water droplets spread out more over these exposed leaf surfaces compared to 

needles that were not exposed. Why is this relevant for understanding how air pollution 

and plants interact? Conditions leading to wet leaves are very common in nature; for 

example, crop plants and forests can be wet horn dew or rain more than SO percent of the 

day during the growing season.33,34 The surface of conifer needles may be wet up to 72 

percent of the time.33 Many types of air pollution can react with water on leaves and have 

a big influence on how much of the pollutant lands on and gets into the leaf. We set up 

another experiment to address the effects of leaf surfaces wetness on ozone deposition. 

We did this using a special chamber where we could study dry and wet poplar leaves 

when they were exposed to ozone.

What did we learn? Ozone uptake by poplar leaves was 1.5 to 2 times greater 

during the day when leaves were wet and pores were open for photosynthesis. Moreover, 

during the night, when stomatal pores are usually closed, leaf surface wetness increased 

ozone uptake 3.5 to 5 times compared to dry leaves! So day or night, the presence of dew, 

rain, or mist droplets on leaf surfaces can lead to considerably higher ozone uptake by 

plant leaves. Oddly enough, you would expect more ozone to get into a leaf when the 

stomatal pores on the leaves are open compared to when they are shut. How can we 

explain this counterintuitive result? There were two counteracting processes. The good
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news is that leaf surface wetness tends to cause stomatal pores to close during the 

day. This alone led to a 20 to 40 percent reduction in the uptake of ozone. The downside 

is that when stomata close, plants cannot get as much carbon dioxide, so photosynthesis 

is slower. But that is not all the bad news; ozone deposition is higher on wet leaf surfaces, 

so the amount of ozone that plants take up also increases. Consequently, wet plant leaves 

tend to receive a higher dose of ozone than dry leaves, which increases adverse effects of 

ozone exposure.

This experiment brought up new questions for future research. The amount of 

ozone deposited to a wet leaf surface was highly dependent on the chemical composition 

of the water on the leaf. More ozone was deposited when the water on the leaf was 

slightly acidic compared to neutral. More research is needed using water with acidities 

similar to those in nature to understand how leaf surface wetness might affect ozone 

deposition in natural conditions. Moreover, ozone deposition on wet conifer needles may 

be different from that on wet deciduous leaves, such as poplar leaves.

Chlorine gas and ozone: summary o f effects and possible solutions

Although chlorine gas and ozone are very different in their chemistry, how plants 

are exposed to them, type of exposure as well as duration, both pollutants can change 

how leaves interact with water. Chlorine exposure increased the susceptibility of conifers 

to drought stress. Ozone exposure did so only for poplars. Both pollutants had negative 

effects on leaf growth, although the effect of chlorine gas on conifer needles was more 

severe than the ozone effects on poplars. Acute chlorine gas exposure did have significant 

long-term effects of conifers. We expect the same result for ozone effects on conifers, but
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we need more long-term studies. Nonetheless, our experiments helped us to clarify 

some of the mechanisms that may play a role in how ozone damages plants.

This leads us to what some scientists, farmers and forest managers consider the 

million dollar question: what can we do to ameliorate the negative effects of chlorine gas 

and ozone on crops and natural forest resources? Obviously, increasing our understanding 

of how air pollutants affect plants, and the mechanisms by which they act, is one step in 

the right direction. But, the scientist can only tell us why the crop or forest is suffering. In 

a general sense, the solutions require actions by people, companies and the government, 

and require that we focus our efforts on the source of the pollutants.

In the case of chlorine gas, we need to reduce the risk of accidental releases. Good 

substitutes for the use of chlorine gas exist for the production of PVC plastics, pesticides, 

refrigerants, solvents, and pulp and paper bleaching. These substitutes could decrease the 

chlorine use in Canada and the United States by as much as 75 percent!36 No good 

substitutes are yet available for chlorine use as a disinfectant without creating an 

unacceptable risk of biological infections.37 However, chlorine-based disinfectants 

account only for 4 percent of the total chlorine use.37 In concert with finding alternatives 

to chlorine, implementation of emergency response planning also can play an important 

role in minimizing the negative impact of accidental chemical releases.38

In order to mitigate adverse effects of tropospheric ozone on the health of people 

and vegetation, the most effective solution is to reduce ambient ozone concentrations.

This will require a drastic decrease in emissions of both nitrogen oxides and VOC’s, the 

chemical precursors of ozone. Ozone chemistry in the troposphere is quite complex, and 

unfortunately a decrease in only one of these precursors will not necessarily lead to lower
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ozone concentrations.39 Moreover, our experiments show that ozone has adverse 

effects on vegetation at relatively low concentrations. Thus, in practice it may prove very 

difficult to reach ozone concentrations low enough to avert all the negative impacts on 

forests and agricultural crops in the short term. However, there are steps we can take right 

away to start dealing with the ozone problem.

What can we, as individuals, do to reduce the risk of adverse effects of these air 

pollutants on health of people and vegetation? As consumers we certainly have a say in 

what types of and how we produce goods. For example, we can help decrease the use of 

chlorine gas by using paper that has not been bleached with chlorine, decrease our use of 

household bleach, buy refrigerators that do not require chlorine gas in their production 

process, and use non-PVC plastic. As mentioned earlier, there are many good alternatives 

to these uses of chlorine gas, and as consumers we do make a difference. If  we decide to 

purchase products that do not need chlorine in their production process, the suppliers will 

respond to this demand. To reduce ozone concentrations, there is a definite role of 

individuals. Two important sources of the chemicals that lead to tropospheric ozone are 

exhausts from motor vehicles and power generation. We, as individuals, can limit how 

much we use our vehicles; and if we replace them, we can buy vehicles that are fuel 

efficient and low in emissions of air pollutants. Moreover, we can also limit our use of 

energy. This has two benefits: it would not only help to reduce ozone concentrations in 

the troposhere, but also emissions of carbon dioxide, a pollutant responsible for the 

“greenhouse effect”.40 In all of these measures, the government has a role to implement 

policies that encourage society to change to more environmentally friendly ways of
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living. In this challenge we could look at other countries, with less polluting life 

styles, as examples.
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C H A P T E R  7
Executive summary

Air pollution has long been recognized to cause adverse effects on human health, 

crops and natural vegetation. Adverse effects of air pollution have been observed on 

different scales, from the local scale to the regional and global scales. Many types of air 

pollution result from anthropogenic sources related to industrial activities and combustion 

of fossil fuels. Although additional research is needed, a number of key points emerge 

from this dissertation project, which are outlined below.

An example of air pollution that occurs on a on a local, short-time scale is 

chlorine gas. Typically, this gas is present in the atmosphere due to accidental releases. 

Chlorine gas has many applications in our society, such as in industrial processes, 

manufacturing of medicines and water treatment. The production volume of chlorine gas 

is projected to increase over the next decades. This may increase the risk of adverse 

effects from accidental chlorine gas releases, since chlorine gas is highly toxic to both 

public health and vegetation. Public health effects of chlorine gas are well known, and 

vary from irritation of eyes, nose and throat, to severe lung damage and even death. 

However, relatively little is known about the effects of chlorine gas on crops and natural 

ecosystems. The focus of the first part of this dissertation is on the long-term effects of 

acute chlorine gas exposure on a coniferous forest in the Rocky Mountains, USA. 

Although a few studies have reported on the visible injury symptoms after acute exposure 

to chlorine gas, this is the first study to report on long-term impacts of chlorine gas on 

morphology, physiology, and growth of coniferous trees.
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An example of air pollution on a regional scale is ozone. Ozone is the main 

component of photochemical smog, and is formed from nitrogen oxides and volatile 

organic carbons, VOC’s, under the influence of sunlight. The main sources of the 

chemical precursors of ozone are road traffic, industrial processes and solvent use. Ozone 

concentrations considered harmful to vegetation are exceeded in urban and agricultural 

areas in the world, as well as at subalpine and alpine altitudes. Ozone is considered one of 

the factors contributing to forest decline, a phenomenon that has been observed in Europe 

and the western United States. One of the proposed mechanisms by which ozone may 

affect tree health is by increasing their susceptibility to drought stress. The second half of 

this dissertation addresses a possible mechanism of increased drought susceptibility due 

to ozone exposure, increased water loss via leaf cuticles, and the implications’ for tree 

water balance and tree growth. The interactions between leaf surfaces and atmospheric 

moisture, such as dew, rain and mist, were also studied, because leaf surface wetness can 

have a large impact on photosynthetic gas exchange and the uptake air pollutants by 

plants.

C H L O R IN E  G A S E F F E C T S  O N  V E G E T A T IO N

•  Acute morphological injury symptoms of chlorine gas exposure on plants consisted of 

chlorosis (yellowing of tissues), necrosis (death of tissues), and necrotic mottling (black 

stipling of leaves). These symptoms occurred in conifers, broadleaved shrubs, herbaceous 

species and monocots such as grasses, hi monocots the symptom was a streaky pattern, 

following the veins. In conifers, necrosis started at the tip of the needle gradually
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extended to the base (also called tipbum). Completely necrotic conifer needles 

defoliated. Foliage in buds at the time of chlorine gas exposure was not visibly affected.

•  Chlorine gas exposure increased leaf wettability of cuticles of needles of P. menziesii 

but not P. ponderosa, suggesting that chlorine gas exposure had changed plant cuticles of 

one species. Directly exposed foliage of both species also had higher cuticular water loss, 

and lower total foliar water content. Moreover, both foliage that was directly exposed to 

chlorine gas and foliage that flushed after exposure were affected similarly, suggesting 

that even indirect exposure weakened leaves. Thus, chlorine gas may have increased the 

susceptibility of exposed trees to drought stress, over at least three growing seasons.

•  Chlorine gas exposure caused severe defoliation of both of P. menziesii and P. 

ponderosa. Not only were directly exposed needles dropped from the trees, foliage that 

flushed after chlorine gas exposure had decreased longevity, causing a significant 

decrease of photosynthetic biomass for exposed trees of both species.

•  The combination of increased susceptibility to drought stress and decreased 

photosynthetic biomass led to reduced annual stem increment growth over at least three 

growing seasons for P. menziesii, up to 0.8 km downwind from the release, and, to a 

lesser extent, for P. ponderosa, up to 0.2 km downwind. Moreover, chlorine gas 

decreased reproductive output, as fewer exposed trees produced cones compared to 

unexposed trees. Increased tree mortality was only observed for P. menziesii, most of 

which occurred within months after chlorine gas exposure.

•  Long-term responses of tree growth were species dependent. Factors that need to be 

considered when using data from this study to effects of future chlorine release need to
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consider climatic and site characteristics factors, such as moisture availability, and 

differences between different conifers, and conifers versus deciduous tree species.

O Z O N E  E F F E C T S  O N  V E G E T A T IO N

•  Leaf wetness of poplar leaves increases over time. Exposure to urban ozone 

concentrations delayed this increase by 2 to 4 weeks, and there were not differences in 

leaf wettability after 6 weeks of ozone exposure.

•  Exposure of poplars to ozone concentrations characteristic for urban regions increased 

water loss via the cuticle for P. Euramericana, but not for P. nigra, suggesting that the 

way ozone exposure increases plant susceptibility to drought stress is species specific. 

Moreover, ozone exposure decreased photosynthetic biomass of both poplar species via 

production of fewer new leaves and premature abscission of foliage with symptoms of 

ozone injury. This was the case for ozone exposure regimes characteristic for urban as 

well as high elevation areas. Higher susceptibility to drought stress and decreased foliar 

biomass may have adverse effects on tree health and growth. However, plant responses to 

ozone exposure were species dependent within these experiments and may be also 

different for plants grown in field conditions.

•  Although saplings of P. menziesii were exposed to ozone about four times longer than 

poplar saplings, negative effects were less pronounced for P. menziesii. While urban 

ozone exposure led to significant increases in leaf wettability of P. menziesii. This 

species did not show foliar injury symptoms, and cuticular water loss and tree growth 

parameters were not affected.
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•  These results suggest that coniferous trees were more tolerant to ozone exposure 

than deciduous trees. However, effects of ozone exposure may accumulate over several 

growing seasons, and the exposure period in our study may not have been long enough to 

find significant effects for P. menziesii.

LEAF SURFACE WETNESS AND A IR  POLLUTION

•  Exposure of conifers to chlorine gas and ozone increased leaf wettability of needle 

surfaces. This may lead to increased formation and duration of water layers on leaf 

surfaces, which can influence gas exchange over these leaf surfaces.

•  Simulated leaf surface wetness events, such as dew, rain and mist, increased ozone 

deposition to poplar leaves by 1.5 to 5 times, especially in dark conditions. This was the 

result of two processes, lower ozone uptake due to decreased stomatal conductance, and 

higher ozone deposition to wet leaf surfaces.

•  Photosynthetic gas exchange was 15-20 % lower for wet leaves. Moreover, CO2 

exchange over wet leaves in dark conditions was 60 to 100 % lower compared to dry 

conditions. In light conditions the effect was attributed to lower photosynthesis due to 

limited diffusion of CO2 through the water present on the surface. However, more 

research is needed to assess whether the observed response in dark conditions was due to 

CO2 gas dissolving in the aqueous phase or to an actual decrease in dark respiration.

•  In dark conditions, leaf surface wetness effects on ozone uptake and respiration were 

strongly influenced by the pH and ionic composition of the solution on the leaf surface. 

This suggests that the chemistry of the aqueous phase is an important factor in mediating 

responses of ozone deposition and gas exchange to leaf surface wetness.
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DIRECTION FOR FUTURE RESEARCH 

These results have increased our understanding of the adverse effects of chlorine 

gas and ozone on plants, as well as our understanding of some of the mechanisms 

responsible for these effects. Moreover, the results point to areas where additional 

research is needed.

•  This research pointed out that effects of acute chlorine gas exposure on forests are not 

limited to short-term foliar injury symptoms, but that long-term impacts on forest health 

and growth can be expected after severe defoliation. Moreover, even trees that were not 

visibly affected three months after exposure showed adverse effects. Thus, studies limited 

to descriptions of foliar damage a few weeks after exposure are not sufficient to 

appropriately assess the real damage of chlorine gas exposure on forest ecosystems. In 

order to understand the impact of accidental exposure to pollutants on physiological 

processes, growth, and survival, monitoring over several years after the exposure is 

necessary. Incorporating effects on soils and soil microbiology would further our 

understanding of accidental exposure to materials, such as chlorine gas effects on forests.

•  Data presented in this work reported on effects o f chlorine gas over three growing 

seasons following the exposure event. However, these effects may persist much longer 

than the time frame studied. Three years after chlorine gas exposure, exposed trees still 

had lower photosynthetic biomass and shorter needle longevities, which may have 

lingering effects on tree vigor and health. Reduced vigor of exposed trees was manifested 

as lower stem increment growth and reproduction. These effects may continue to persist 

for an unknown period of time. In order to address these effects, long-term study sites
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have been established. These sites will be used to collect data on foliar injury, needle 

age classes present, insect injury, stem increment growth, cone production, and tree 

mortality, and will be visited on an annual basis.

•  In case of future chlorine gas releases, managers need to take into account that species 

respond in different ways to chlorine gas exposure. These differences appear to be related 

to needle longevity, relative contribution of needle age classes to whole tree 

photosynthesis, and drought tolerance. Moreover, long-term responses will be mediated 

by climatic and site characteristics, such as moisture availability, and differences between 

different conifers, as well as coniferous versus deciduous tree species.

•  Beyond the scientific arena, society needs to address the risks of the use of chlorine 

gas, because not only is it highly toxic to humans, but exposure also causes long-term 

negative effects on vegetation. It is crucial to continue to explore safer alternatives for 

chlorine gas use, implement these into production processes, and to work on regulations 

that would lead to safer transportation of hazardous materials.

•  At this point there are no methods to distinguish between the stomatal and the cuticular 

components that contribute to minimal conductance to water vapor in dark conditions. 

The only methods that do so are methods that chemically isolate cuticles from intact 

leaves. However, these methods may alter cuticular characteristics, and cannot be used to 

study indirect effects of air pollution on the development of cuticles, such as those 

observed for poplar leaves presented in this dissertation research. Development of 

methods that can separate stomatal and cuticular components so we can understand 

minimal conductance to water vapor on intact leaves will be extremely valuable in 

increasing our understanding of air pollution effects on plant water relations.
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•  Studying the effects of ozone exposure on tree saplings under laboratory conditions 

helped identify some of the mechanisms by which ozone exposure may affect plants in 

field conditions. However, tree responses to air pollutants are influenced by many factors, 

including species (as was shown by my research), tree size, and environmental conditions 

encountered in the Held. Thus, additional research is needed to assess the role of 

identified ozone injury mechanisms in Held conditions, and for trees of different size.

•  Leaf surface wetness experiments identified the influence of leaf surface wetness on 

ozone deposition in laboratory conditions, as well as the underlying mechanisms. Leaf 

surface wetness is a common phenomenon in nature, and has been shown to significantly 

increase ozone deposition rates. The next step is to study the role of these processes and 

the relative contribution of leaf wetness events to the total ozone uptake by plants in field 

conditions. Moreover, ozone uptake by plant canopies often is assessed using models. In 

order to improve ozone uptake models, influences of leaf wetness events should be 

incorporated.

•  Ozone deposition to wet leaves was influenced by pH and water chemistry due to 

reactions of ozone in the aqueous phase. Additional research is needed to increase our 

understanding of the chemical interactions of ozone with the aqueous phase, especially 

with solutions similar to dew, rain, and mist. Moreover, the chemical fate of reaction 

products of ozone in the aqueous phase needs to be studied. Key questions include 

identifying the reaction products, if these compounds take up by the plant, and the extent 

to which these products have adverse effects on cuticles or other plant processes.

•  Ozone deposition was significantly higher on wet leaf surfaces in dark conditions.

Since stomata are closed during the night, increased ozone deposition to the cuticle may
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lead to considerably higher ozone uptake, especially at high elevations where 

nighttime ozone concentrations remain relatively high. Additional research is needed to 

assess the importance of nighttime ozone uptake for plants, both in light of the total 

ozone dose and its contribution to adverse effects on plants.

•  Finally, leaf surface wetness decreased the exchange of CO2 over leaf surfaces, causing 

lower rate of photosynthesis. Li dark conditions, leaf surface wetness had a large impact 

on CO2 exchange over leaves. The observed decrease in CO2 emission could potentially 

be attributed to lower rates of dark respiration. These results are the first to report such an 

effect of leaf surface wetness on CO2 emission, and many uncertain factors remain. 

Additional study is needed to understand whether CO2 gas was adsorbed by the aqueous 

phase, or whether dark respiration was limited by O2 diffusion. If  the latter was the case, 

to what extend was dark respiration reduced by leaf surface wetness and what are the 

physiological consequences for plants?
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A p p end ix  2 .1 : A cu te  fo lia r in ju iy  o f ch lorine gas exposure on conifers,

shrubs, forbs and grasses

IN T R O D U C T IO N

Only a few studies have reported on the effects o f chlorine gas exposure on 

vegetation. Foliar injury symptoms o f chlorine gas exposure on vegetation consist o f 

chlorosis, (bleaching and yellowing o f leaf tissues) and necrosis (death o f cells and cell 

tissue). These effects can be observed on foliage o f both coniferous and deciduous plant 

species (e.g. Heck, Daines and Hindawi, 1970), although the patterns in which these 

symptoms occur differs between conifers, broadleaves shrubs and forbs (dicots), and 

grasses (monocots). On conifer needles, chlorine gas exposure causes tipburn, an orange- 

brown coloration extending from the tip to the base o f a needle, which eventually kills the 

whole needle (Brennan et al., 1966). In broad-leaved species necrosis may be confined to 

leaf margins, extending from the edge to the center and base o f a leaf, and be interveinal 

(Brennan, et al. 1965; Heck et al. 1970). In  monocots, such as com, onion, and grass 

species, necrosis occurs in a streaky pattern following the course o f veins. Foliar injury 

symptoms have been found at concentrations as low as 0.5 -  3.0 ppm Cfe at exposures 

times varying from 4 to 24 hours (e.g.Thomton and Setterstrom, 1940; Brennan et al., 

1965). Threshold chlorine concentrations that cause visible injury depend on plant 

species and duration o f exposure, as well as environmental conditions (Brennan et al., 

1965; Griffiths and Smith, 1990). This appendix describes the acute foliar injury effects 

on natural vegetation after an accidental chlorine gas release in western Montana, USA.

Reproduced with permission of the copyright owner Further reproduction prohibited without permission.



M E T H O D S

Description o f the chlorine gas exposure

The study sites were located in a narrow valley in the Rocky Mountains, -2  km 

west o f Alberton, Montana, USA. On April 11,1996, at 0400 hr, a 72-car train 

derailment at the site released -55  metric tons o f chlorine gas into the atmosphere and the 

surrounding forest. Forests up to -1 4  km downwind from the derailment site were 

exposed to chlorine gas (Olympus Environmental, 1996). Chlorine gas concentrations at 

the site o f the gas release varied from 12-20 ppm to -50  ppm (1-hr average), with peak 

concentrations reaching -1400 ppm (Olympus Environmental, 1996). Atmospheric 

dispersion models reported peak chlorine gas concentrations ranging from -165 ppm at 

about 1.2 km, to -5  ppm at 9 km downwind from the point o f release (ATSDR, 1997). In 

addition to chlorine gas, unknown concentrations o f chlorophenols were present in the 

gas cloud. However, levels in the soil were well below levels reported to adversely affect 

• public health, and residues o f toxic chlorinated organic compounds were removed from 

the site by excavation o f the polluted soil layers (Olympus Environmental, 1996).

Study sites

Study sites that had been exposed to chlorine gas were established within 50 m o f 

the site o f the gas release, 0.2 km above the release, and 0 .2 ,0 .5 ,1 .0  and 1.5 km 

downwind from the release. A  control site was established at -6 5  km downwind from the 

site o f the gas release. A ll field sites were mixed coniferous forests and had similar 

vegetation and soils (fine or coarse, mixed loam). More information on the study sites is 

given in Table 2.1
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Visible morphological injury

Morphological injury to vegetation was assessed immediately after it was safe to 

access study sites on May 15 (1 month post spill) and again June 10,1996 (2 months post 

spill). Visible injury to foliage was assessed in the field for several species o f trees 

(Pseudotsuga menziesii (M irb.) Franco, Pinus ponderosa, and Abies lasiocarpa), shrubs 

(Prunus Virginia, Amelanchier alnifolia, Juniperus communis, and Juniperus 

scopulerum), herbaceous species (Mahonia repens, Arctostaphylos uva-ursi L., Arabis 

rectissima) and grasses (Digitaria sanguinalis, Elymus sp.). Samples were collected up to

1.5 km downwind from the spill site based on availability and public access (see previous 

section), and were representative o f common vegetation present at each study site. The 

number o f plant samples varied based on availability at the study sites, ranging from n-1 

to 10, depending on the species. Light microscopy techniques were used to examine 

foliar damage for different species.

R E S U L T S

Morphological injury symptoms

Deciduous tree species were not visually injured by chlorine exposure. Since new 

leaves were still in buds when they were exposed to chlorine gas, they were not directly 

exposed to the chlorine gas cloud. However, visual injury to existing needles on 

coniferous trees was apparent. Needles on both Douglas fir and Ponderosa pine showed 

extensive necrosis and tipbum (Figure 2.2C and 2.2D). Needles on Douglas fir trees at 

the spill site (n=4) and up to -500 m (n=5) from the spill were almost completely 

necrotic, with a few chlorotic needles and no green needles present 2 mo after exposure.
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Necrotic needles dropped over the course o f the summer. Douglas fir trees 1 and

1.S km downwind from the spill (n=3) had chlorotic, necrotic and green needles. Most 

exposed Douglas fir trees developed new green foliage. Ponderosa pine foliage was less 

visibly affected than Douglas fir. Ponderosa pine trees at the derailment site (n -3 ) and 

-200 above the derailment site (n = l) had mainly necrotic and chlorotic needles, as well 

as newly flushed green needles present. However, needles on Ponderosa pine trees ~0.2 

to 1.5 km downwind (n -3) were mostly green, with only minimal visual injury observed.

The degree o f foliar damage generally decreased with increasing distance from 

the site o f the gas release for both Douglas fir and Ponderosa pine (t-7=2.016, p<0.05; 

Figure 2.3). However, foliar injury downwind from the release site was higher than at the 

two control sites, especially for Douglas fir. Variation in foliar injury, between patches o f 

trees as well as within individual trees, was high. Healthy green foliage, as well as 

chlorotic and necrotic foliage, necrotic mottling, and tipbum often occurred within the 

same tree. For example, a Ponderosa pine tree -0 .8  m downwind from the derailment was 

completely necrotic on the bottom half o f the tree, while the upper half showed no 

visually injury.

Four different shrub species were examined. Juniperus communis (Rocky 

mountain juniper; n=3) growing within a 50 m radius of the gas release had been killed. 

Further downwind the juniper species showed chlorosis, necrotic mottling, tipbum, and 

necrosis, although most o f the foliage was necrotic. One Juniperus scopulerum (common 

juniper) tree growing about 1.5 km downwind showed extended necrosis in the bottom 

half o f the tree, whereas the top half o f the tree was visibly unaffected. Foliage on the 

bottom half o f the tree was shed later due to the chlorine gas exposure and a subsequent
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disease. This was evidence that the chlorine gas cloud tended to stay near the 

surface, which is common for heavy gas clouds. Another broad-leaved shrub, 

Amelanchier alnifolia (western service berry; n = l), located -0 .5  km downwind had 

mainly green foliage, but also chlorotic and necrotic foliage, and necrotic mottling. 

Necrosis in this species varied from a few spots to whole leaves. Prunus virginiana L. 

(common choke cherry, n = l), located about 1.5 km downwind, was mainly unaffected 

but showed some bifecial necrosis, extending from the tip to the base o f the leaves.

Mahonia repens (n=5) showed chlorosis and interveinal necrosis (Figure 2.2A  

and 2.2B). The severity o f the injury symptoms did not differ between sites located about 

-0 .2  km above point o f gas release and sites -1 .5  km downwind. Leaf tips commonly 

were more affected than the base and center o f leaves. The extent o f the symptoms varied 

between plants and within plants. Chlorine gas killed the buds o f Mahonia repens, 

followed by the formation o f new buds during the next growing season. Arctostaphylos 

ura-ursi (n = l) located -0 .2  km above gas release also showed interveinal necrosis. 

Necrosis on this species was bifecial, and varied from a light degree o f mottling to 

complete necrosis. Exposed foliage o f Arabis rectissima (Recter’s rock cress, n=2,) -1  

km downwind showed chlorosis and necrosis, occurring predominantly on the older 

leaves. Moreover, both buds and flowers o f this species had a “bleached” appearance, 

resembling chlorosis.

Two grass species, located -1  km downwind from the gas release also were 

examined for visual damage. Both an Elynus sp. and Digitaria sanguinalis (crab grass) 

showed bifecial chlorosis, mottling (black and yellow spots scattered over the leaf 

surface), and necrosis. Necrotic injury extended from the tip to the base o f the leaves. On
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Digitaria sanguinalis, chlorosis occurred predominantly on the abaxial surface o f 

the leaves, whereas necrosis was most common on the adaxiai surface. Chlorosis and 

necrosis on these two grass species occurred in the direction o f the veins, resulting in a 

streaky pattern o f damage. Digitaria sanguinalis had not put out new green foliage one 

month after the gas release, whereas the other two grass species did. New foliage and 

flowers that came out after the exposure to chlorine gas were visibly unaffected.

C O N C L U S IO N S

This study confirmed that chlorine gas exposure led to chlorosis and necrosis in 

natural vegetation. On conifers, necrosis occurred as tipbum, i.e. necorsis extending from 

the tip to the base o f the needle. Although many conifer needles became completely 

necrotic over tone, followed by defoliation, conifer shoots and buds were generally not 

affected (i.e., no visible injury, alive). Moreover, deciduous foliage that was exposed as 

buds was not visibly affected by chlorine gas exposure. Visual injury symptoms o f 

chlorine gas exposure shrubs, forbs and grasses also consisted o f chlorosis and necrosis. 

In grasses (monocots) these foliar injury symptoms occurred in a streaky pattern, 

following the veins. This research confirmed foliar injury symptoms o f chlorine gas 

exposure reported in the literature. These injury symptoms can be used to describe the 

geographic extent and severity o f effects o f chlorine gas exposure after accidental 

releases in natural vegetation as well as crops.
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