Study of the Stieltjes Integral

Adrien L. Hess
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd Let us know how access to this document benefits you.

Recommended Citation

Hess, Adrien L., "Study of the Stieltjes Integral" (1941). Graduate Student Theses, Dissertations, \& Professional Papers. 8090.
https://scholarworks.umt.edu/etd/8090

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, \& Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.

A STUDY OF THE STIELTJES INTEGRAL

by

Adrien L. Hess
B.S., Missouri Valley College, 1930

Presented in partial fulfillment of the requirement for the degree of Master of Arts

Montana State University

1941

Approved:

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI EP38891
Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

TABIE OR CONEENTS

CHEPER PAMP
I. Introduction 2
II. Nhe Riemenn Integral $?$
III. Variations of A Tunction 4
IV. Lebosgue Interration. 6
V. A Comparison of the RIemann Integraland The Lebeseue Intepral16
VI. The Riemann-Stieltfes Integral 23
VII. The Lebesgue-stieltjes Integral 21
VIII. The perion Tntegral and The Perron-Stieltjes Integraz 31
IX. The Denjoy Integrals 36
BIBIIOGPANHY 40

CHAPTER I

INTRODUCTION

The purpose of this paper is to make a study of the Stieltjes integral, more particularly the Lebesgue-Stieltjes integral, and to make a comparison of the Lebesgue integral and the Lebesgue-Stieltjes integral.

The Riemann integral receives some attention due to its relationship to the Lebesgue integral. The fundamental definitions and properties of the Riemannintegral are stated.

The definitions and theorems of Variations of Functiona, which are easential to the Lebesgue integral, are stated. Since the Lebesgue integral is the basis from Wich the Lebesgue-Stieltjes integral is derived it is given In more detail. Proof is given of such important theorems as those of Arzela-Young, Egoroff as well as the Lebesgue Convergence theorem. A comparison is made of the Riemann integral and the Lebeague integral.

The definitions and fundamental properties of the Riemann-Stieltjes integral are given. The LebesgueStieltjes integral is developed in detail.

Some consideration is given the Perron integral, the Perron-Stieltjes integral, and the Denjoy integrals.

CHAPTER II

THE RIEMANN INTEGRAL

In considering the Riemann integral let us restrict attention to single real-valued bounded functions $f(x)$ defined on a bounded closed interval $a \leq x \leq b$. Consider a partition D of (a, b) into sub-intervals I_{j}. Let h_{j} be the length of I_{j}, let x_{j} bs a point of the interval I_{j}, and $N(D)=$ greatest h_{j}. Let $g(D)=\sum_{D} f\left(x_{j}\right) h_{j}$.

Definition 1: A bounded function $f(x)$ is integrable
 this limit is denoted by $\int_{a}^{b} f(x) d x$.

Definition 2: Upper and lower integral. Let

$$
\begin{array}{ll}
M_{j}=\frac{B}{X} f(x), & m_{j}=\frac{B}{X} f(x), \\
I_{j} \\
B(D)=\sum_{D} M_{j} n_{j}, & B(D)=\sum_{D} m_{j} h_{j} .
\end{array}
$$

If jim $\bar{S}(D)$ exists, it is called the upper integral of $N(D)=0$ $f(x)$, and is denoted by $\int_{a}^{b} f(x) d x$. A similar definition and notation are used for the lower integral.

Definition 3: Oscillation of ㄹ function. For an arbitrary closed sub-interval (c, a) of (a, b), let $m(c, d)=$ $\bar{B} f(x)$ for x in $(c, d), m(c, d)=\underline{f}(x)$ for x in (c, d), $O(c, d)=M(c, d)-m(c, d), O(x)=\prod_{X_{2}=x} f\left(x_{1}\right)-\lim _{X_{1}=x} f\left(x_{2}\right)=$ $\lim _{d=0} O(x-d, x+d)$, where $O(c, d)$ is the oscillation of $f(x)$ over ($0, \mathrm{~d}$).

Definition 4: A point set E has Jordan Content

 zero in case, for every number $\eta>0$ there is a finite set of intervals covering E; the sum of whose lengths is less than η. For every $\epsilon>0$, we shall denote the get of points in (a, b) at mhich $O(x) \geq \epsilon \quad$ by E_{ϵ}.Theorem 1: A bounded function $f(x)$ is integrable on (a, b) if and only if, for every $\epsilon>0$ the set E_{ϵ} has Jordan Content sero.

Definition 5: A point set E has Lebesque measure zero in case, for every $h>0$ there is a finite (or denumerably infinite) set of intervals covering E, the sum of whose lengths is less than η.

Theorem 2: A hounded function $f(x)$ is integrable on (a, b) if and only if the get D of points where $f(x)$ is discontinuous has Lebesme measure zero.

Only those definitions and theorems have been given here which are fundamental to the further development of the ideas of integration. Any further references will be made by name to those definitions and theorems which can be found in any standard work on the topic.

CHAPTER III

VARIATIONS OF A FUNOTION

Suppose we have a real single-valued finite function $f(x)$ defined on a bounded interval $a \leq x \leq b$. Consider a partition D. Let I_{j} denote the segment $a_{j-1} \leqslant x \leqslant a_{j}$. ($j=1 \ldots n$) Consider $s(D)=\sum_{j=1}^{n}\left[f\left(a_{j}\right)-f\left(a_{j-1}\right)\right]=f(b)-f(a)$. Let $P(D)$ sum of the positive terms of $g(D)=$

$$
\frac{1}{2} \sum_{j=1}^{n}\left\{\left[f\left(a_{j}\right)-f\left(a_{j-1}\right)\right]+\left|\left[f\left(a_{j}\right)-f\left(a_{j-1}\right)\right]\right|\right\} .
$$

Let $-N(D)$ be the sum of the negative terms of $S(D)=$

$$
\frac{1}{2} \sum_{j=1}^{n}\left\{\left[f\left(a_{j}\right)-f\left(a_{j-1}\right)\right]-\left|\left[f\left(a_{j}\right)-f\left(a_{j-1}\right)\right]\right|\right\} .
$$

Then $P(D)+N(D)=\sum_{j=1}^{n}\left|f\left(a_{j}\right)-f\left(a_{j-1}\right)\right|$.
Let $p(a, b, f)=\underset{D}{\bar{B}} p(D)$. This is called the positive variation of f on (a, b).

Let $n(a, b, f)=\bar{B} N(D)$. This $1 s$ the negative variation of f on (a, b).
Let $t(a, b, f)=\bar{B}\{P(D)+N(D)\}$, which is the total variation, of f on ($a, b)$.

Definition 1: If the total variation is finite, then f is said to be of bounded variation on (a, b). Such a function is not necessarily continuous.

Theorem 1: If $f(x)$ is of bounded variation on (a, b), then $f(x)$ may be written 2.8 the difference of two monotone increasing functions.

Theorem 2: The discontinuities of a function of bounded variation on a finite interval (a, b) are at most denumerable infinite.

Theorem 3: If $f(x)$ is of bounded variation on (a, b) so also is $|f(x)|$.

Theorem 4: If f_{1}, f_{z} are of bounded variation, then $f_{2} \pm f_{2}, f_{1} f_{z}$ are also of bounded variation both on (a, b).

Theorem 5: Suppose f_{3} and f_{2} are of bounded variation and $G(x)$ is the greatest of and $g(x)$ is the smallest of $f_{2}(x), f_{a}(x)$. Then $G(x)$ and $g(x)$ are also of bounded variation, where $G(x)=\frac{f_{2}(x)+f_{2}(x)+\left|f_{2}(x)-f_{2}(x)\right|}{2}$ and $g(x)=\frac{f_{2}(x)+f_{a}(x)-\left|f_{a}(x)-f_{a}(x)\right|}{2}$.

CHAPTER IV

LEBEGGUE INTEGRATION

In the present century Riemann's Interrel hes, for the purposes of theoretical investigations, been largely superseded by the more general formulation of Lebescue. The theory of Lebesgue integration has as its foundation the conception of the measure of a set of points.

Consider the interval I, $a<x<b$; or for n dimensions, $a_{1}<x_{1}<b_{1}, i=1,2,3, \ldots \ldots, n$. The length of the interval, $L(I)$, is defined as $L(I)=b-a$. Let M denote a point set and I a sequence of intervals $\left\{I_{n}\right\}, n=1,2,3, \ldots \ldots$ let I_{n} be an open interval. The collection 1 covers M if each point of M belongs to at least one interval of the set. Then
$L(I)=L\left(I_{2}\right)+L\left(I_{2}\right)+\ldots$ and $0<L(I) \leqslant+\infty$
Definition 1: The exterior measure of h is
$m e^{(M)}=\underline{B} L(I)$ for the coverings I of M.
Theorem 1: For an arbitrary set $M, m_{e}(M)$ exists, and $0 \leq m_{e}(\mu) \leq+\infty$.

Theorem 2: If M is contained in M_{a}, then $m_{e}\left(M_{2}\right) \leq$ $m_{e}\left(M_{2}\right)$.

Theorem 3: If $M, a \leq x \leq b$, is a bounded interval, then $m_{e}(M)$ is equal to the length of this interval.

Theorem 4: If M is bounded, then $m_{e}(M)<+\infty$; if furthermore w contains an interval, then $m_{e}(N)>0$.

Theorem 5: The interval in a covering I of may be restricted, without loss of generality, to be arbitrarily smell intervals with rational endpoints.

Consider two point sets M and $N . M+N$ denotes the set of all points belonging to M or N; M the set of all points belonging to both N and N . Two point sets are equal, $M=N$, if the totality of points in one is the same as the totality of points in the other. $-M$ denotes the set of all points x not belonging to N; CA the complement of M. The symbol C denotes "is contained in" and the symbol \supset denotes "contains." If $\mathbb{N} \subset M$, then $\mathbb{U}-\mathbb{N}$ is the set of points belong ing to H and not to N. Let 8 be the set of ell points. Then $-H=3-M . \quad(-N)(-N)=-(N+N) . \quad N-M N=(-M) N$.

Theorem 6: If M_{1}, M_{3}, is a finite or infinite sequence of point sets and $M_{1}=M_{2}+M_{a}+\ldots .$. , then $m_{e}(k i) \leq m_{e}\left(M_{2}\right)+m_{e}\left(M_{a}\right)+\ldots \ldots$.

Definition 2: Distance between Two Point Sets.
Suppose \mathbb{H} and N are non-vacucus point sets. Then $d(N, N)=$ $d(N, W)=B \quad a(p, q)$, for p a point in w and q a point in N.

Theorem 7: If M and N are non-vacuous and $d(H, N)=$ $\delta>0 \quad$ then $m_{e}(\mathbb{H}+N)=m_{e}(M)+m_{e}(N)$.

Depinition 3: If 4 is a given point set and $m_{e}(N)=$ $m_{e}(M N)+m_{e}(N-N N)$ for every point set N, then M is said to be measurahle, and its measure is $m(M)=m_{e}(M)$.

Theorem 8: If M_{2} and M_{2} are such that $M_{2} \cdot M_{2}=0$ and if one set is measurable, $m_{e}\left(M_{2}+k_{2}\right)=m_{e}\left(M_{2}\right)+m_{e}\left(K_{2}\right)$.

Theorem 9: If M is measurable, -if is measurable elso.
Theorem 10: If H_{2} and M_{2} are measurable, then $\mathrm{H}_{2}+\mathrm{H}_{2}$ is also.

Theorem 11: If M_{3} and H_{2} are measurable, then $\mathrm{M}_{2} \mathrm{H}_{2}$ is also.

Theorem 12: If M_{2} and M_{2} are meazurable, then $M_{2}-H_{2} \cdot H_{2}$ is also.

Theorem 13: If M is an interval, it is measurabie.
Lemma 1: If $M_{1} \subset M_{a} \subset M_{3} \subset \ldots$ is an increasing sequence of measurable point sets and $M=M_{2}+M_{2}+\cdots$, then $\lim _{n=\infty} m_{e}\left(k_{n} N\right)=m_{\theta}(\mathbb{N N})$, for N an arbitrary point set. Lemma 2: If $\mathrm{H}_{2} \supset \mathrm{u}_{\mathrm{a}} \supset \mathrm{M}_{\mathrm{a}} \supset$--- is a decreasing sequence of measurable point sets with product k, then $\lim m_{e}\left(M_{n} N\right)=m_{e}(\mathbb{U N})$, where N is an arbitrary point set $n=\infty$
with inite external measure.

Theorem 14: If $M_{2} \supset M_{2} \supset M_{3} \supset$--- is a decreasing sequence of measurable point gets with product M, then k is measurable.

Theorem 25: If $\mathrm{M}_{2} \subset \mathrm{M}_{2} \subset \mathrm{H}_{3} \subset-$ is an increasing sequence of measurable point sets with the sum M, then is measurahle.

Theorem 16: If $M_{2}, M_{8}, M_{3},--$ is any finite or infinite sequence of measurable point sets with the sum H, then M is measurable.

Theorem 17: If M 1s an open point set, is measurable.
Theorem 18: If M is a closed set, M is messurable.
Theorem 19: If $M_{3}, M_{a}, M_{3},-\infty$ is a finite or inIInite bequence of measurable point sets, then their product is measurable.

Theorem 30: If $m_{e}(N)=0$, then N is measurable and $m(N)=0$.

Theorem 21: If either M or N is measurable and me (MN) is finite, then $m_{e}(N+N)=m_{e}(N)+m_{e}(N)-m_{e}(N N)$.

Theorem 22: If $M_{1}, M_{3}, M_{3},--\infty$ is a finite or infinite sequence of measurable point sets and $M_{n} \cdot M_{m}=0$, m $f=n$, then $m_{e}\left[\sum_{1}^{\infty} M_{i}\right]=\sum_{1}^{\infty} m_{e}\left(M_{1}\right)$.

Theorem 33: If H is a bounded measurable point set, there exists a closed set N contained in M such that $m(N)>m(M)-\epsilon$ for a preassigned positive ϵ.

Definition 4: Interior Measure. Suppose Lis a given point set and N a measurable set contained in M. The interior measure of $1 \mathrm{~m} \mathrm{~m}_{1}(\mathrm{H})=\overline{\mathrm{B}} \mathrm{m}(N)$ for measurable $\mathrm{N} C \mathrm{C}$.

Theorem 24: For any $M, m_{1}(M) \leqslant m_{9}(M) ;$ if M is measurable, $m_{i}(M)=m_{e}(M)$.

Pheorem 25: $m_{i}(M)$ is the least upper bound of the measure of all closed point sets contained in m.

Theorem 26: If M is a point set with finite exterior measure and $m_{i}(M)=m_{e}(M)$, then H is measurable.

Theorem 27: If $H N=0, m_{1}(H)+m_{1}(N) \leq m_{1}(N+N)$.
Theorem 28: If $M_{2}, M_{3}, M_{3}, \cdots$ is any finite or infinite sequence of sets such that $M_{n_{1}} M_{n_{2}}=0$ if $n_{1} \neq n_{2}$, then $m_{i}\left(\sum_{i}^{\infty} m_{k}\right) \geq \sum_{i}^{\infty} m_{i}\left(m_{k}\right)$.

Theorem 29: If $u N=0$, then $m_{i}(N+N) \leqslant m_{1}(M)+m_{e}(N)<$ $m_{e}(\mu+N)$ and $m_{i}(k+N) \leq m_{e}(N)+m_{i}(N)<m_{e}(N+N)$.

Theorem ko: If 4 is a point set with finite exterior measure and \mathbb{N} is any measurable set with finite measure which contains H, then $m_{i}(N)=m(N)-m_{e}(N-i N)=m(N)-m_{e}(N-K)$.

Theorem ki: If M is a bounded point set contained in a finite interval I, $\alpha<x<\beta$ then Y is measurable if and only if $m_{e}(M)+m_{e}(I-M)=m_{e}(I)=m(I)=\beta-\alpha$.

Theorem 32: (Arzelì-Young) If $H_{1}, M_{3}, K_{3},-\cdots$ is an Infinite sequence of measurable point sets such that for every integer $\underline{n} m\left(v_{n}\right) \geqslant \epsilon>0$ and $m_{e}\left(\sum_{1}^{\infty} v_{n}\right)<+\infty$, and if H is a set of points contained in infinitely many of the sets M_{n}, then $I \operatorname{ls}$ measurable and $m(N) \geqslant \epsilon$.

Proof: Let $\bar{H}_{n}=\sum_{k=n}^{\infty} M_{k} ; N=\prod_{1}^{\infty} \bar{W}_{n}$. Then $\bar{M}_{2} \supset \bar{E}_{2} \supset M_{2} \supset-$ By theorems 16 and 19 each F_{n} and N are measurable. Since
 $m(N)=\lim _{n=\infty} m\left(R_{n}\right) \geqslant \epsilon$.

We will suppose that $f(x), g(x), f_{n}(x)$ are single real valued functions for X on measurable set E with finite measure. When several functions are used it will be assumed that they are defined on the same set E.

Let $\mathrm{E}(\mathrm{f}>0$) be the set of points 즈 E for which $f(x)>c$. Similar definitions apply to $:(f \geqslant 0), E(f<c)$, $E(f \leq 0)$, ant $E(f=0)$.

Definition 1: Kescurshle Functions $f(x)$ 13 measurable 11 for an arbitrary constant $\&$ the point sets $E(f>c)$, $\mathrm{B}(\mathrm{f} \neq \mathrm{c}), \mathrm{E}(\mathrm{f}<\mathrm{c})$, and $\mathrm{i}(\mathrm{f} \leqslant \mathrm{c})$, ere weasureble. Any one of the four conditions for seanurbility implies the other three.

FROMMTES of mantantr fomotors

Property 1: If $f(x)$ is measurarie and x is a constant, $f \cdot f(x)$ and $z+f(x)$ Ere menธurelie.

Property 2: If $f(x)$ and $f(x)$ are mensurable, then Eff) E) is measurable for a particular x such the $f(x)>$ $\mathcal{E}(x)$, there exists a rational number r_{x} such that $f(x)>$ $r_{x}>g(x)$.

Property B: $^{\text {P }} \mathrm{f}(x)$ and $g(x)$ ere measurable, $f(x) \pm$ $g(x)$ is measurable $E(f \pm g>c)=E(i>c \pi g)$.

Property A: If $f(x)$ ans $G(x)$ are measurable, then $f(x) \cdot g(x)$ is measurable.
property 5: If $\left\{f_{n}(x)\right\}$ is a sequence of measurable functions on E, then the functions $E(x)=\frac{I_{m}}{11=\infty} I_{n}(x)$ and $F(x)=\overline{1 i n}_{n=\infty} f_{n}(x)$ are measurable. Property E: If $f(x)$ is continuous on an interval $\alpha \leq x \leq B$, then $f(x)$ is measurable.

Suppose E is a measurable point set of finite measure and $f(x)$ is a single real-valued bounded function on E.
 $=\bar{B} \underset{E}{f}(x)$ and $\alpha=\frac{B}{x \subset E} f(x) . \quad \beta \leq M, \alpha \geq-M$. Let $D\left(y_{i}\right)$ be a pertition of $\alpha \beta$, where $\alpha=y_{0} \leqslant y_{2} \leqslant \ldots \leqslant y_{n}=\beta$. Let ξ_{i} be an arbitrary value such that $y_{i-1} \leq \xi_{i} \leq y_{i}$. Form $\sum_{i}^{n} \xi_{i} m\left[E\left(y_{i-1}<p<y_{i}\right]=s(D)\right.$.

Definition 2: $f(x)$ is integrable (sumarle) on the point set E if $\mathrm{lim}^{1 \mathrm{im}} \mathrm{S}(\mathrm{D})$ exists, and this limit is denoted $\int_{E} f(x) d x$. This is known as the Lehesmue Intearal.

Let $\bar{S}(D)=\sum_{1}^{n} y_{i} m\left[E\left(y_{1-1}<f \leq y_{i}\right)\right]$ and $\underline{S}(D)=\sum_{1}^{n} y_{1-1}$
$m\left[E\left(y_{i-1}<\rho \leq y_{i}\right)\right]$. Then $S(D) \leq s(D) \leq \bar{S}(D)$. Let $\int_{E}^{-} f(x)=$ $\lim _{N(D)=0} \bar{S}(D)$, if this limit exists. Let $\int_{E} f(x)=\lim _{N(D)=0}^{I(D)}$, $1 f$ this limit exists.

Definition z: If $f(x)=K$ on E, then for an arbitrary partition $\underline{D} S(D)=K m(E)$. Hence $\int_{E} f(x)=K m(E)$. Let $I_{e}(x)=1$ for $x \subset E,=0$ for $x \notin E . I_{e}(x)$ is the chargcteristic function of the set E. Then $\int_{E} I_{e}(x)=m(E)$.

Theorem 1: If $f(x)$ ia a bounded measurable function on a set E of finite measure, then $\int_{E} f(x)$ and $\int_{\mathbb{E}} f(x)$ exist and are equal.

Theorem 2: If $f(x)$ is a bounded measurable function on a set \mathbb{E} With finite measure, then $f(x)$ is Lehesmue 1) on E.

Theorem 3: If $f(x)$ is a bounded measurable function on a set of finite measure and $\alpha=\underset{X C E}{\frac{B}{C}} f(x), \beta=\bar{B} f(x)$, then $\alpha_{m}(E) \leq \int_{E} f(x) \leq \beta_{m}(E)$.

Theorem 4: Suppose E hos finite measure and $\left\{\mathrm{F}_{\mathrm{k}}\right\}$ is a finite or infinite sequence of measurable sets such that $E_{n} E_{m}=0, n \neq m$, and $E=\sum_{1}^{\infty} E_{k}$. If $f(x)$ is a bounded measureable function on E, then $f(x)$ is summable on E, and $\int_{E} f(x)$ $=\sum_{1}^{\infty} \int_{E_{k}} f(x)$.

Theorem 5: If $f(x)$ and $g(x)$ are bounded and measurable on $E, f(x) \leqslant g(x)$ for x in E, then $\int_{E} f(x) \leqslant \int_{E} g(x)$.

Theorem 6: If $f(x)$ and $g(x)$ are bounded and measurable on a set E of finite measure, then $\int_{E} f(x)+g(x)=$ $\int_{E} f(x)+\int_{E} g(x)$.

Theorem 7: If I is a constant, then $\int_{E} K f(x)=$ K $\int_{E} f(x)$.

Theorem 8: If $f(x)$ is bounded and measurable on aet E of finite measure, then $|f(x)|$ is measurable on E and $\left|\int_{E} f(x)\right| \leqslant \int_{E}|f(x)|$.

Definition: A proposition is said to hold almost everywhere on a set if it holds at every point except for a subset of Lebesgue measure zero.

Theorem ?: If $f(x)$ and $g(x)$ are bounded measurable functions on E and $f(x)=g(x)$ almost everywhere on E, then $\int_{E} f(x)=\int_{E} g(x)$.

Theorem 10: If $f(x)$ is a hounded measurable function on $E, f(x) \geq 0$, and $\int_{E} f(x)=0$, then $f(x)=0$ almost everywhere on E.

Theorem 11: (Egoroff). If $\left\{f_{n}(x)\right\}$ is a sequence of finite valued functions which converge almost everywhere on E to a finite limit function, $f(x)$, then for $\epsilon>0$ there exists a set $\overline{\mathrm{E}}$ contained in \underline{E} such that $m(\overline{\mathrm{E}})>\mathrm{m}(\mathrm{E})-\epsilon$ and $\lim _{n=\infty} f_{n}(x)=f(x)$ uniform is in E.

Proof: Let E_{o} be a subset of E for mich $\left\{f_{n}(x)\right\}$ tends to a finite limit function and $m\left(\mathbb{E}_{0}\right)=m(F)$. For a Given $\delta>0$ let $E_{n_{\delta}}$ be Fo[$\left.\left|f_{n}(x)-f(x)\right|>\delta\right]$. For arbitrary $x \subset E_{0}$ and \underline{n} sufficiently large $\left|f_{n}(x)-f(x)\right|<\delta$. Let $s_{n}=\sum_{n}^{\infty} E_{i_{j}}$. Then $\prod_{1}^{\infty} s_{n}=0$. But $s_{n} \supset s_{n+1} \supset \ldots \ldots$, and the s_{i}^{n} are measurable. Hence $\lim _{n=\infty} m\left(s_{n}\right)=m\left(\prod_{i} g_{n}\right)$ by lemma 2 . For each $\delta>0$ and $\eta>0$ there is an integer $n(\delta, n)$ such that $m\left[S_{n}(\delta, n)\right]<\eta$. Let $\left\{\delta_{k}\right\}=\left\{\frac{1}{k}\right\}$ and $\left\{\eta_{k}\right\}=\left\{\frac{\epsilon}{2^{k}}\right\}$ for an arbitrary preassigned $\epsilon>0$. Then $m\left[S_{n}\left(\frac{l}{k}, \frac{\epsilon}{2^{k}}\right)\right]<\frac{\epsilon}{2^{k}}$. Let $3=\sum_{1}^{\infty} s_{\eta}\left(\frac{1}{k}, \frac{\epsilon}{2^{k}}\right)$. Then $M(s)<\epsilon$ by theorem 16. Let $E=E-S$. Then $m(\bar{E})=m(E)-\epsilon$. For a given δ choose E so large that $\frac{\epsilon}{2^{k}}<\frac{\delta}{2}$. Then for $x \subset \overline{2} \subset E-\sum_{\sum_{n}}^{K} s_{n}$ there is on integer m_{0} such that $\left|f_{n}(x)-f(x)\right|<\frac{\delta}{2}$ and
$\left|f_{n+p}(x)-f(x)\right|<\frac{\delta}{2}$ for $n>m_{0}$. Hence $\mid f_{n+p}(x)-$ $f_{n}(x) \mid<\delta$ for $x \subset \bar{E}$ and $n>m_{0}$.

Theorem 12: (LebesGue's Convergence Theorem).
Suppose $\left\{f_{n}(x)\right\}$ is a sequence of measurable functions on E and $\left|f_{n}(x)\right| \leqslant \mu$, and $\lim _{n=\infty} f_{n}(x)=f(x)$ almost everywhere on E. . Then $\lim _{n=\infty} \int_{E} f(x)=\int_{E} f(x)$.

Proof: Let E_{0} be $E\left[\lim _{n=\infty}^{\lim } f_{n}(x)=f(x)\right]$. Then $m\left(E-E_{0}\right)=0$, or $m(E)=m\left(E_{0}\right) . \quad f(x)$ is measurable on E_{0} by property 5 , and hence measurable on E. $|f(x)| \leqslant N$. Then $f(x)$ is summarize on E_{O} and on E and $\int_{E_{0}} f(x)=\int_{E} f(x)$.
By Egoroff's theorem, given $\epsilon>0$ there is a set $\mathbb{E} \subset \mathrm{E}_{0}$ such the $m\left(E_{0}\right) \geq m(\bar{E})>m\left(E_{0}\right)-\frac{\epsilon}{4 M}$ and $\left\{f_{n}(x)\right\}$ converges to $f(x)$ uniformly on \bar{E}. Choose n_{0} such that $\left|f_{n}(x)-f(x)\right|<$ $\frac{\epsilon}{2 m(E)}$ for $x \subset \bar{E}$ and $n \geq n_{0} \cdot \int_{F_{0}}\left|f(x)-f_{n}(x)\right| \leq$ $\int_{E_{0}} f_{n}(x)-f(x)=\int_{\varepsilon_{0}-E}\left|f_{n}(x)-f(x)\right|+\int_{E}\left|f_{n}(x)-f(x)\right|$ $\leqslant 2 \sum_{4 M}^{\epsilon}+m(E) \frac{\epsilon}{2 n(E)} \leqslant \frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$. Hence $\lim _{n=\infty} \int_{E_{0}} f_{n}(x)=$
$\int_{E_{0}} f(x)$. Then $\lim _{n=\infty} \int_{E} f_{n}(x)=\lim _{n=\infty} \int_{E_{0}}(x)+\int_{E-E_{0}} f_{n}(x)=$ $\int_{E_{0}} f(x)=\int_{E} f(x)$.

CHAPTER V

A COMPARIGON OF The riemann integral and the lebesgue integral

The definition of the definite integral e, given by Riemann is yery precise and leaves nothing to be desired in this respect. It is not only of interest from an historical point of view, but it atill possesses great importance in Analysis. It will continue to be the besis upon which practioel applioation of the Integral Dalculus rests.

Several attempts were made to generalize the process of the Riemann integral, but Lebesgue first made progress in this matter. His theory of measure has in its turn, naturaily led to further generalization.

The distinction between the Lobesgue integral and the Riemann integral rests essentially upon the difference between the two modes of dividing the domain of integration into sets of points.

The functions which are measurable in the sense of Lebergue, and whose definition ia closely related to that of measurable sets, form a very general class. This class includes, in particular, all the functions integrable in the Riemann sense.

The method of Lebesgue may be considered simpler than that of Riemann for it dispenses with the simultaneous introduction of the two extreme integrals, the 10 wer and the upper.

Thus the Lebesgue method lends itself to an immediate extension to a certain class of unbounded functions, for instance, to all measurable functions of constant sign. The Lebesgue integral renders it permissible to integrate term by term sequences and series of functions in cortain general cases where passages to the limit under the integral sign were not allowed by the earlier methods of integration. The reason for this is found in the complete additivity of Lebesgue measure.

Chapter VI

THE RIEUANN-STIELTJES INTEGRAL

The notion of the integral of a bounded function $f(x)$, cefined in the linear interval (a, b), with respect to enother function $\phi(x)$, defined in the same interval, is a generailzation of the integral of a function $f(x)$, with respect to the variable x. This notion wes first introduced into Analysis by Stieltjes in connection with the theory of continued fractions.

Suppose $f(x)$ and $\phi(x)$ are bounded functions, lefined in the interval ($a \leq x \leq b$). Consider a partition D of (a, b) into subintervals I_{j}. Let h_{j} be the lencth of I_{j}, let x_{j} be a point of the Interval I_{j}, and $N(D)=$ greatest h_{j}. Let $S(D)=\sum_{D} f\left(x_{j}\right)\left[\phi\left(x_{j}\right)-\phi\left(x_{j-1}\right)\right]$.

If the functions $f(x), \phi(x)$ be such that the ifm $S(D)$ $N(D)=0$ exists, $f(x)$ is said to have a Stielties Intecral with respect to $\phi(x)$. When it exists, this limit is denoted by $f(x) d \boldsymbol{d}(x)$. It will be epoken of as the Riemann-stieltjes integral, or (RS) integral.

Definition: Upper and lower integral:
Let $f(x)$ be any function hounded in (a $\leq x \leq b$) and let $\phi(x)$ be a bounded monotone non-decreasing function,
defined for the same interval. Consider a partition 2 of (a, b) as above. Let $M_{j}=E_{x_{j-1}+0} x_{j}-0(f(x)), m_{j}=E_{x_{j-1} x_{j}-0}(f(x))$
in the open interval $\left(x_{j-1}, x_{j}\right)$.
$\bar{S}(D)=\sum_{D} M_{j}\left[\phi\left(x_{j}-0\right)-\phi\left(x_{j-1}+0\right)\right]+\sum_{D} f\left(x_{j}\right)\left[\phi\left(x_{j}+0\right)-\phi\left(x_{j}-0\right)\right]$.
$\underline{S}(D)=\sum_{D} m_{i j}\left[\phi\left(x_{j}-0\right)-\phi\left(x_{j-1}+0\right)\right]+\sum_{D} f\left(x_{j}\right)\left[\phi\left(x_{j}+0\right)-\phi\left(x_{j}-0\right)\right]$.
If $\lim \mathbf{g}(\mathrm{n})$ exists, it is called the upper RiemannStieltjes Integral of $f(x)$ with respect to $\phi(x)$, end is denoted by $\int_{a}^{b} f(x) d \phi(x)$. A similar definition end notation are used for the lower tigmann-Stieltjes Irtegral.

Stieltjes establiahed the existence of the intecral for the case in which $f(x)$ is continuous in (a, b) and $\phi(x)$ is a function of bounded variation in the same interval.

Theorem 1: If $f(x), \phi(x)$ tee any two functions for waich $\int_{a}^{b} f(x) d \phi(x)$ exists, then $\int_{a}^{b} \phi(x) d f(x)$ exists ind the two integrals satisfy the relation

$$
\int_{a}^{b} f(x) d \phi(x)+\int_{a}^{b} \phi(x) d f(x)=f(b) \phi(b)-f(a) \phi(a) .
$$

Theorem 2: If $f(x)$ be bounded in (a, b), and $\phi(x)$ be of bounded variation in the seme interval, the necessary and sufficient condition that $f(x)$ should have a RiemannStieltjes integral with respect to $\phi(x)$ is that the variation of $\phi(x)$ over the set of points of discontinuity of $f(x)$ ahould be zero.

Theorem 3: If $f_{3}(x), f_{2}(x)$ both have Riemenn-Stieltjes integrals with respect to the monotone function $\phi(x)$, then $f_{1}(x)+f_{f}(x)$ is integrable ($R S$), with respect to $\phi(x)$ and $\int_{a}^{b}\left\{f_{2}(x)+f_{2}(x)\right\} d \phi(x)=\int_{a}^{b} f_{1}(x) d \phi(x)+\int_{a}^{b} f_{z}(x) d \phi(x)$.

Another property of the Riemann-Stieltjes integral
is that
$\int_{a}^{b} f(x) d \phi(x)=\int_{a}^{c} f(x) d \phi(x)+\int_{c}^{b} f(x) d \phi(x)$.

CHAPTER VII

THE LEBESCUE-STIELTJES INTEGRAL

Thare is an analogy between additive functions of bounded variation of en interval and additive functions of sets. This analogy will be presentea in this paper, by associating a function U^{*} of a set with each adifive function U of bounded variation of an interval. we shall suppose that the functions of an interval are defined in the whole space of N dimensions.

A figure is defined as a set expressed as the sum of a finite number of intervals. $U(I)$ is then iefined as a function of an interval on a figure R [or, in an open set G] if $U(I)$ is a finite real number uniquely defined for each interval I contained in \mathbb{R} [or in G].

A function of an interval $U(I)$ is said to be adaitive on a ingure R_{0} or in G, if $U\left(I_{2}+I_{2}\right)=\mathbb{Z}\left(I_{2}\right)+U\left(I_{2}\right)$ whenever I_{2}, I_{2} and $I_{2}+I_{a}$ are intervals contained in R_{o} [or in G] and I_{2} and I_{a} are not overlaping.

The upper variation of U on E_{0} is the upper bound of $U(R)$ for figures $R \subset R_{0}$. We shall denote it by雷 ($U ; R_{0}$). The definition for the lower veris.tion is similar. Loner variation is denoted by (U; R_{o}). The number $\bar{W}\left(\mathbb{U} ; \mathrm{R}_{\mathrm{O}}\right)+\left|\underline{(\mathrm{Z}}\left(\mathrm{U} ; \mathrm{R}_{\mathrm{O}}\right)\right|$, which is non-negative, will be called absolute variation of U on R_{o} and we denote it
by $W\left(U ; R_{0}\right)$. If $W\left(U ; R_{0}\right)<+\infty$ the function U is said to be of bounded variation on R_{o}.

Suppose given in the first place, a non-negetive additive function U of an interval. For any set we denote by $U^{*}(E)$ the lower bound of the sums $\sum_{k} U\left(I_{k}\right)$, where $\left\{I_{k}\right\}$ is an arbitrary sequence of intervals such that $E \subset \sum I_{k}^{0}$. For an arbitrary adaitive furiction U of hounded variation, with the upper and lower variations W_{2} and W_{a}, we denote by W_{2}^{*} and $\left(-W_{2}\right)^{*}$ the functions of a set that correspond to the non-negative functions T_{2} and $-W_{a}$. Then we write by definition, $U^{*}=W_{2}^{*}-\left(-W_{z}\right)^{*}$. The function U^{*} is thus defined for all sets and is finite for bounded sets.

When U is non-negative, U^{*} is an outer measure in the sense of Carathéodory. That is, it fulfills the three conditions for Carathéodory measure. The first two conditions are obvious hut the thira condition requires proof.

Let A and B be any two sets whose distance does not vanish, and let ϵ be positive number. There is than a sequence $\left\{I_{n}\right\}$ of intervals such that $[A+B] \subset \sum_{n} I_{n}^{O}$ and $\sum_{n} \mathrm{U}\left(I_{n}\right) \leqslant \mathrm{U}^{*}(\mathrm{~A}+\mathrm{B})+\epsilon$. We may clearly suppose that the intervals of the sequences have diameters less than $\mathcal{P}(A, B)$. We then have $U^{*}(A)+U^{*}(B) \leq U^{*}(A+B)$. Then $U^{*}(A)+U^{*}(B)=$ $U^{*}(A+B)$ which establishes the third condition.

The function U^{*}, determined by a non-negative function of an interval, itself determines, since it is an outer Carathéodory measure, the class S_{U} of the sets measurable With respect to U^{*} and the process of integration (U^{*}). To simplify the notation, we shall omit the asterisi and write simply \mathcal{S}_{U} for $\mathcal{S}_{U^{*} \text {, integral (U) for integral (U*), }}{ }^{*}$, measure U of a set instead of meesure $\left(U^{*}\right), \int_{E} f(U$ instead of $\int_{E} \mathrm{fdu}$ *, and so on. This slight chance of notation will not cause eny confusion, since the meesure U^{*} is determined uniquely by the function of the intervai v.

When U is a general pdative function of an interval, of bounded variation, we shatl understand by \mathcal{S}_{U} the common part of the classes $\mathcal{S}_{H_{2}}$ and $\int_{W_{2}}$, where W_{2} and ${ }_{3}$ denote respectively the upper and lower variations of u. A function $f(x)$ of a point will be termed integratie (O) on a set E, If $f(x)$ is integrable (W_{2}) and $\left(-7_{8}\right)$ stmultaneously. Ey the integral (U) of $f(x)$ we shall mean the number $\int_{E} \mathrm{fam}_{2}-\int_{F_{1}} f\left(-\mathrm{F}_{2}\right)$. Me shall write it $\int_{\mathrm{E}} \mathrm{fdU}$ as in the case of a non-negative function U. This integretion with respect to an additive function of bounded varietion of an interval is called the Lehescue-stielties interration or simply lis-integration. In the case of the interration over an interval $I=[a, b]$ in R_{2} [straight line], we frequently write \int_{a}^{b} fdU for \int_{I} idU.

When the function U is continuous, every indefinite integral (U) vanishes, together with the function U^{*}; on the boundary of eny figure. Consequently an indefinite integral with respect to a continuous function U of bounied variation of an interval is edditive not only as function of a set (δ_{U}) but also as function of an interval.

Orieinally, these notions and the theorems that follow from them referred, not to sdiltive functions of en interval, hut to functions of a real variable. We can establish a correspondence between functions of a real variable and additive functions of a linear interval. This correspondence will render it imnaterial mhich of the two kinds of functions is considered.

To do this, let $f(x)$ be an arbitrary finite function of a real variable on the interval I_{0}. Let us term increment of $f(x)$ over any interval $I=(a, b)$ contained in I_{0}, the iffference $f(b)-f(a)$. Thus defined the increment is an adative function of a linear interval $I \subset I_{0}$, and corresponds in a unique manner to the function $f(x)$. Conversely, if we are given any Edditive function $F(I)$ of a linecr interval I, this in itself defines, except for an aditive conetant, finite function of a real varialie $f(x)$ whose increments on the interval I coincides with the corresponding values of the function $F(I)$.

Te shall understand by upper, lower, and absolute variations of a function of a real variable $f(x)$ on an interval I, the upper, lower, and absolute variations of the increment of $f(x)$ over I. We shall denote these numbers by the symbols $\bar{W}(f ; I)$, ($f ; I$) and ${ }^{\text {(}}(f ; I)$ respectively.

A Iinite function will be termed of bounded varietion on an interval I_{0} if $i t s$ increment is a function $o f$ an interval of bounded variation on I_{o}. Similarly, the function is absolutely continuous or singular if its increment is ebsolutely continuous or singuiar.

Thus we can see that the difference between the definitions adapted for functions of an interval and for functions of real varisbles is only formal. Other defintions for the functions of a real variehle can be set up by a froper modification of those for functions of en intervel. In various cases it is more convenient to operate on functions of a real variable than on additive functions of an interval.

As is true in the case of other integrels, we can state the necessary and sufficient conditions for a function to be LS-integreble. Those conditions are (1) The function must be Borel measurable and bounded or (2) The function must be measurable and equally aksolutely continuous.

It is necessary to consider step functions and jump functions in conneotion with the rebesgue-Stieltjes interral.

We shall consider the integral \int idoc to be a LSintegral for \propto non-decreasing and continuous. Then we consider the integrala $\int d \sigma$ and $\int\left|\sigma_{m}-\sigma_{n}\right| d \propto \rightarrow 0$. We shall suppose these functions are deifined for all points of a mazurable set E of Δ. Let the characteristic function of the set E be φ_{E}. Then $f(E)=\int \phi_{E} d \alpha$. The theory can be built up in the Lebesgue sense by a systematic treatment analagous to that for the Lebesgue interral.

Xow let α be a non-decreasing function. Then we may write $\alpha=\Gamma+\theta$, where Γ is a continuous non-tecressing (step) function and θ is a non-decreasing (jump) function.

Eefinition 1: The exterior measure $\mathrm{g}_{\mathrm{e}}^{\Gamma}(\mathrm{E})=\frac{\mathrm{B}}{\mathrm{B}} \sum_{\mathrm{Z}} \mathrm{S} \mathrm{C}_{\mathrm{C}}$
Then we can define convergence almost everywhers, convergence approximately, and convergence almost uniformy, esch with respect to Γ.

For the stepfunctions we have:
$\int \sigma d r=\sum_{1}^{1} \sigma_{1} c_{1} r \operatorname{end} \sigma\left(\sigma_{1}, \sigma_{2}\right)=\int\left|\sigma_{1}-\sigma_{2}\right| d r$. Hence we get completeness.

We shill next consider the non-decreasing jump function which satisfies the definition of a jump function. That is $\theta(x)=\sum_{a<c \leq x}[\theta(c)-\theta(c-0)]+\sum_{a \leqslant c}[\theta(c+0)-\theta(c)]$.

Now for the function f to be Lebescrus integranis oith respeat to θ the $\sum \rho(c)[\theta(c+0)-\theta(c-0)]$ must converce ansolutely. Then by definition the integral $\int \rho d \theta=$ $\sum f(c)[\theta(c+0)-\theta(c-0)]$.

Defintion 2: A function f that is Lebesgue integrable With reapect to α is Lebeague integrable with respeot to Γ and θ.

Then since the function f is Lebeague integrable with respect to α the $L S \int f Z \alpha=\int f d \Gamma+\int f d \theta$.

Defintion 3: We ghall define measure here to be:
$g^{\theta}(T)=\int_{E} \varphi_{E} d \propto$ where φ is a Lebesgue integrable function with respeot to α.

Eefinition 9: The exterior measure of θ is $\varepsilon^{\theta}(E)=\sum_{0^{\text {I }}}[\theta(c+0)-\theta(c-0)]$.

Then $g_{e}^{\alpha}(E)=g_{e}^{r}(E)+g_{e}^{\Theta}(E)$; 2.1so $g_{e}^{\alpha}\left(\sum E\right) \leqslant \sum \mathbb{g}_{e}^{\alpha}(E)$.
We may now treat in a similar manner many of the theorems for the Lebesgue integrei for the Lebesgue-3tieitjes integral. Ye have a theorem for the Lebesgue integral:If $f^{L} \leqslant g^{L}$ then $\int f d x \leq \int g d z$. Fritten for the LebesgueStieltjes integral it reacis: Euppose α non-decreasing and f_{2} and f_{2} are Levesgue integrable functions with reapect to α, then $\int f_{2} d x \leqslant f_{z} d x$.

We shall consider $E^{\theta}(E)=\varepsilon_{\varepsilon}^{\theta}(E)$. Since $\sum[\theta(c+0)-$ $G(c-0)]$ is absoiutely convergent, edditivity follows.

Definition 5: $h(x)$ is absolutely continuous with respect to α if for every $\epsilon>0$ there is a $\sigma>0$ such that $g^{\alpha}(\mathbb{E})<\delta$ it 13 true that $|h(T)|<\epsilon$.

Now we have the theorem for the Lebesgue integral: If is a lebesgue integrable function then the integral $\int_{\text {P }}$ fax is absolutely continuous. Treated for the Ls-integral it reads: If f is a Lebesgue integrable function with respect to α then the integral $\int_{E} f(x$ is α-absolutely continuous. Te will include the proof. Te may take $i \geqslant 0$ and $f_{n}=f \wedge n$. Then there is an n such that $\int_{l} f d \alpha-\int f_{n} d \alpha<\frac{\epsilon}{2}$. Hence, by Levi's Theorem $\int_{s}\left(1-f_{n}\right) d \alpha<\frac{\epsilon}{2}$. Then for $g(E)$ small enough $\int_{E} f_{n} d \alpha \leq n$ if $g^{\alpha}(\mathbb{E}) \leq \frac{\epsilon}{2}$. This is true for special points.

Theorem 2: If α is non-deoreasing, and the dictance function is $\int\left|I_{2}-I_{n}\right| d \alpha$, the Lebesgue space is complete with respect to α.

Proof: If α is continuous this is true at once. Suppose $\alpha=\Gamma+\theta$. Then we shall consider that if $\int\left|f_{n}-f_{m}\right| d \alpha$ $\rightarrow 0$, then $\int\left|f_{n}-f_{m}\right| d r \rightarrow 0$ and $\int\left|f_{n}-f_{m}\right| d \theta \rightarrow 0$. Iran there is a function f that is a lebesgue integrable function With respect to Γ such that $\int\left|I_{n}-f\right| d \Gamma>0$. Also $\int\left|f_{n}-f_{m}\right| d \theta=\sum_{c}\left|f_{n}(c)-f_{m}(c)\right|[\theta(c+0)-\theta(c-0)]$. Nencos $\left|f_{n}(c)-f_{m}(c)\right| \rightarrow 0$ for every jump. There is an $\overline{\text { I }}$ defined at the jumps c such that $f_{n}(c) \rightarrow \bar{f}(c)$. Now take
$\sum_{c=0}^{c} p\left|f(c)-I_{n}(0)\right|[\theta(c+0)-\theta(c-0)] \leq \sum_{c_{2}}^{c}\left|f(c)-f_{m}(c)\right|$
$[\theta(c+0)-\theta(c-0)]+\sum_{c}\left|f_{m}(0)-f_{n}(c)\right|[\theta(c+0)-\theta(c-0)] \leq$

 $\int\left|f-f_{n}\right| d \theta \rightarrow 0$ and $\int_{\text {There }} \mid f-$
$\rightarrow 0$ made get completeness.

Theorem 2: The set of all step functions is dense on L_{α}-space with distance $=\int\left|f_{2}-f_{2}\right| d \alpha$.

Proof: Point steric are allowed. Then for every $\epsilon>0$
 $|\sigma| \leqslant \mu$. Let $\sigma_{1}=f$ at a sufficiently large number of jumps of θ bo that for the remaining jumps
$\Sigma^{*}[\theta(c+0)-\theta(0-0)]<\frac{\epsilon}{4!}$ and $\sum|f(c)|[\theta(c+0)-\theta(c-c)]<\frac{\epsilon}{i}$. Let $\sigma_{2}=6$ elsewhere. Te still have $\int\left|\sigma_{3}-9\right| a r<\frac{\epsilon}{\hat{N}}$. Then $\int\left|\sigma_{2}-f\right| d \theta=\sum\left|\sigma_{1}(0)\right|(\theta(c+0)-\theta(0-0)]+$ $\sum{ }^{*}|f(c)|[\theta(c+c)-\theta(0-0)]<\frac{\epsilon}{4}+\frac{\epsilon}{4}$.

Te will treat one more theorem of n, bierce for lighagrueStieltjes. The theorem for Lebesgue is: Suppose that the Lebesgue integrable functions $f_{n} \rightarrow f$ approximately and $\int_{h_{3}} i_{n} d x$ ara equally absolutely continuous, then the function i is a Leversue integrable function and $\int_{5} f_{n} d x \rightarrow \int_{E}$ dx uniformly for E meabreble. Treated for Lebesgue-Stieltjes it reads: Suppose the lebesgue integrable function e with reapect to \propto $f_{n} \rightarrow f$ approximately with respect to \propto and that $\int_{E} f_{n 1} d x$ is equally absolutely continuous with respect to α then the function i la a Lebesgue interrabia function 7 th repeat to $\alpha \operatorname{and} \int_{E} f_{n}{ }^{2} \alpha \rightarrow \int_{E} f d \alpha$ uniformity for $E \alpha$-measurable. Proof: From equal absolutely continuity we have for every $\epsilon>0$ there is a $\delta>0$ such the the measure $g_{(\Omega)}^{\alpha}<\delta$
then $\int_{E}\left|f_{n}\right| d \alpha<\epsilon$. By approximate convergence wo have sn N such that $\frac{m}{m}>$ it is true that $g_{g}\left(E_{m,} \in\right)$. Where $E_{m n \in}$ is the get $E\left[\left|f_{m-1}\right|>\in\right]$. At the points where α has jumps $f_{n} \rightarrow f$. Therefore for ${ }_{n}^{m}>$ it is true the $\int_{\Delta}\left|I_{m}-f_{n}\right| d \alpha \leq$
$\int_{E_{m n} \in}\left\{\left|f_{m}\right|+\left|f_{n}\right|\right\} d \alpha+\int_{\Delta-E_{m n \in}}\left|i_{m-i}\right| d \alpha \leq 2 \epsilon+2 \epsilon[\alpha(b)-\alpha(s)]$. Nom there is a Li-integrable function $\overline{\mathrm{f}}$ such that in $\int_{\Delta}\left|f_{n}-f\right| d \alpha=0$. Hence $f_{n} \rightarrow \bar{f}$ approximately with respect to α. Therefore the f is a Lebesgue integrable function with respect to α.

As has already been pointed out there is E marked analogy between additive functions of bounded varitition on an interval and additive functions of gets. All of the essential properties of the ordinary Lebesgue integral. except at most those implying the process of derivation hold for the Lebesgue-Stieltjes integral.

However, the Lebescue-atieltjes integral is not, in general, an additive function of an interval.

Since there is such a close analogy between the two integrals we can treat many of the theorems for lebesgue integration for the Levesgue-Stieltjes integral. We hare treated some in this manner.

CHAPTer VIII

the Perron integral

and
THE PERRON-STIELTJES INTEGRAL

Perron introduced a new definition of an interred based on major and minor functions. It does not require the theory of measure. In its original form this definiion concerned only integration of bounded functions, but It has now been extended to unbounded functions.

Moreover, the Perron integral may be regarded as a synthesis of the two fundamental conceptions of integration. One of these corresponds to the ides of the definite intergrail as limit of certain approximating sums. The other one corresponds to the idea of the indefinite integral as a primitive function.

The notions of major end minor functions, and their agitations to lebesgue integration are discussed for arbitrary spaces. In defining the Perron integral, and the Perron-Stieltjes integral, we shall limit ourselves to functions of one real variable.

We shall suppose we are given a regular sequence $\eta\}=\left\{\eta_{k}\right\}$ of nets of intervals in ε space R_{m} and a function of an interval F in R_{m}. Q denotes any interval containing x and belonging to one of the nets 9?.

Befingtion 1: 简e shail cull mper ferivate of F at a point x with respect to the sequence of nets $\mathcal{T}\}$ the wper limit of the ratio $F(Q) /|Q|$ as $\delta(Q) \rightarrow 0$. By aymetry ve define similarly the 10 mer gerivets of F at x whth regpect to the sequence of neta 9$\}$. He ahall denote these two derivates by $(\mathcal{Y}) \bar{F}(x)$ and $(\mathcal{O}) E(x)$. Then they are equal at a point x, their comon value will be denoted by (9) $)^{\prime}(x)$ and callea the derivate of f at x wth respect to the zecuence of nets 93.

Definition $2:$ A systen of intervale will bo oullea a normen Eet in the spece $F_{\text {ma }}$ when it consists of the closed
 $k=0, \pm 1, \pm 2,-\cdots$, which are determined by gyatems of numbers $x_{k}^{(1)}$ subject to the condition $a_{k}^{(1)}<a_{k+1}^{(1)}$, for $1=1,2, \cdots, m$ and $k=\cdots,-1,0,+1, \cdots$, ani $\lim _{x \rightarrow \pm \infty}{ }^{(1)}= \pm \infty$. A regular sequence of normel nets will $\mathrm{k} \rightarrow \pm \infty$
ba termei normal bequence.
Eefinition 3: An aditive function of an interval F 12 termed lator [finor] function of a function of a point f on a figure H_{o} if, at every point x of this ilegure, $-\infty \neq F_{s}(x) \geq f(x)\left[+\infty \neq \bar{F}_{g}(x) \leq f(x)\right]$. Then it folious that if the functions of an interval u and V are respeotively a rinjor end a minor function of a function on a pigure no, their difference $U-V$, is monotone non-negative on n_{0}.

Theorem 1: If f is a summable function, then, for each $\epsilon>0$, the function f hes an absolutely continuous major function U, and en absolutely continuous minor function V such that, for each interval $I, 0 \leq U(I)-\int_{I} f(x) d x \leq \epsilon$ and $0 \leq \int_{I} f(x) d x-\nabla(I) \leqslant \epsilon$.

Let U be any major function of f on R_{0} and let V be any minor function of f on P_{0}. A function of a real variable, f, is termed integrable in the sense of Perron on a fimpe R_{0} in R_{2}, if f hes both major and minor functions on R_{0}, and if the lower bound of the numbers $U\left(H_{0}\right)$, end the upper bound of the numbers $V\left(R_{0}\right)$ are equal. The common velue of the two bounds is then called the definite Perron integral, of f on R_{0}, and denoted by $\mathcal{T} \int_{R_{0}} f(x)$ ax. For a function f on a ifgure R_{0} to be integrable it is necessary and sufficient that for each $G>0$ there should exist a major function U and a. minor function V of f on R_{0} such that $U\left(R_{0}\right)-V\left(R_{0}\right)<\epsilon$. Since the function $U-V$ is monotone non-decressing for every major function U and every minor function V of f, then every function which $1 a \mathcal{T}$-integrable on 2 figure R_{0}, is also on every figure $R \subset R_{0}$. The function of an integrai $F(I)=\mathcal{T}_{I} f(x) d x$, thus defined for every interval $I \subset \square_{0}$, is called an indefinite Perron integral of f on R_{o}. Tws $F(I)$ is an adaitive function of an interval. A function of a real variable is termea indefinitec \mathcal{J}-integral [major, minor function] of a function f, if this is the case for the function of an interval determined by $1 t$.

From theorem 1 we see that every function which is integrable in the sense of Lebesgue on a figure H_{0}, is so in the sense of Perron, and its definite hehescue end Ferron integrals over R_{0} ere equal.

Theorem 2: Very \mathscr{T}-interranie function 18 roosurable, sind is almost everywhere finite and ecual and equal to the derivative of its indefinite integral.

Theorem 3: Every function F which is \mathcal{F}-integrable and almost everywhere non-negative on a figure R_{0}, is suamable on this figure.

This theorem shows that although the Ferron intecration is rare general then Lebesgue integration, the two processes are completely equivalent in the case of integration of functions of constant sign.

In considering the Perron-Stieltjes integral we shall restrict ourselvee to finite functions. Suppose we are given two finite functions f and G. An adalive function of an interval U will be termed major function of f with respect to G on an interval I_{0}, if to each point x these correspond to a number $\epsilon>0$ guch that $U(I) \geqslant f(x) c(I)$ for every interval I containing x and of lencth less than ϵ. The definition of minor function with respect to Q is symmetrical. Nor following the method for eatablishing the Perron intorial With the help of the notions of major eni minor functions With respect to G, we define Ferron-Stieltjes interpation,
or \mathcal{F}-integration with respect to any finite function G Whatever. The \mathcal{T}-integral of a function G on an interval $I_{0}=[a, b]$ will be denoted by $(\mathscr{T} s) \int_{I_{0}} f(x) d G(x)$, or by $(\mathcal{J}) \int_{a}^{b} f(x) d G(x)$.

The criterion for Js-integrability of a function is entirely simile to that \mathcal{T}-integrability.

If $G(x)=x$ for every point $x \mathcal{J}$ s-integretion with respect to G coincides with \mathcal{T}-integration. Thus the Ferron-Stieltjes integral includes the ordinary Perron integral, st any rate as regards integration of infinite functions. The Perron-Stieltjea integral includes also the Lebesgue-Stieltjes Integral. But the definite Perron-Stieltjes ana LebesgueEtieltjes integrals are not always equal, even for a function 1 integrable in both senses. This is due to the fact that the indefinite integral of Lebesgue-stieltjea is not in general an additive function of en interval.

CHAPEER IX

PHE DENJOX INMEGAALS

We may regara the Lebesgue integral as a special modification of the conception of the integral due to Newton. "e define it as follows:
(L) A function of a reul veriable f is integrable if there exists a function F such that $F^{\prime}(x)=f(x)$ at almost all points x, and F is absolutely continuous.

The function F (then unicquay determined apart from an additive conatant) is the indefinite integral of the function f.

This is a descriptive definition of the Lebescue integral; that is, it ls based on differential properties of the inderinite integral and therefore, connected with the Newtonian notion of Primitive.

The definition (I) constitutes a molification of that of the integral of Newton, in two direotiona. 胃e have a generalization fhich enables us to disregard sets of measure zero in the fundanental relation $F^{\prime}(x)=f(x)$. There is en essential restriction whion excludas all but the absolutely continuous functions from the domain of continuous privitive functions considered.

Although it is not possible to wholly remove the second modification from the definition (L) it is possible to replace it by much weaker conditions. The corresponifig generaitations of the notion of absolute continuity give rise to
extensions of the Lebegcue integral, known as the interrels 5) end \mathcal{D} of Denjoy. Fe shell consider two generalizationg of arsolutely continuous functions: the functions which are generalized ahsolutely continuous in the restrictod sence or ACG ${ }_{\mu}$, End those which are Eenerelized absolutely continuous in the wide sense or AOC. If, in the definition (J) We replace the condition of etsolutely continuous functions by the conditions the the function F is An $*$. or $A C Q$ respectively, we obtain the descriptive definitions of the integrals, $)^{\text {, }}$ and . The second definition recuires a simultaneous generalization of the notion of derivative, to which is assigned the name of approximate derivative, Whioh corresponds to approximate continuity.

Eefinition 1: A finite function will ve termed absolutely continuous in the wide sexige on a set E, or absolutely continuous on E, or simply sibsolutely continuous (AO). If given any $\in>0$ there exists en $;>0$ such thet for every sequence of non-overlapping intervals $\left\{\left[b_{k}, b_{2}\right]\right\}$ whose end-points belong to E, the inequality $\sum_{k}\left(k_{k}-n_{k}\right)<\eta$ inolies $\sum_{k}\left|F\left(b_{k}\right)-F\left(a_{k}\right)\right|<\epsilon$.

Definition 2: A function F will be termed eperelised arcolutely continuous function in the wide senae on E, or generalized absolutely oontinuous function on E or finally $A \subset G$ on E if F is continuous on E and if E is the cum of a finite or enumerable sequence of sets E_{n} on each of which F is $A O$.

Definition 3: Afinite funotion F is said to be absolutely continuous in the restricted sense on a bounded set E, or to be $A O_{*}$ on E, if F is bounded on an interval containing E and if to each $\epsilon>0$ there corresponds ar $\quad 3>0$ such that, for every finite sequence of non-overlapping intervals $\left\{I_{k}\right\}$ whose end-points belong to E, the inequality $\sum_{k}\left|I_{k}\right|<\eta$ implies $\sum_{k} O\left(F ; I_{k}\right)<\epsilon$.

Definition 4: A function will be termed generalized absolutely continuous on a set E, or $A C G_{x}$ on F, if the function is continuous on E end if the set E is expressirle as the sum of a seçuence of bounded sets on exch of which the furction is $A G_{*}$.

The essential idecs for the Denjoy interrala have already been sketched. Te wili now complete them. A function of a real variable f wili be termed \mathcal{S}-intecrable on an intervel $I=[a, b]$ if there exists a function F mich is ANC on I and which has f for its approximate derivative almost everymere. The function F is then called inlofiaite \int-integral of f on I. Its increment $F(I)=I(b)-F(a)$ ofer the interval I is termed definite 3 -integral of f over I and is denoted by (J) $\int_{I} f(x) d x$ or $\iint_{E}^{b} f(x) d x$. Similarly, a function f will be termed, S-interrable on an interval $I=[a, b]$, if there exists a function F winch

1s ACGf on I and which has f for its orinary derivative almost everymere. The function F is then called indefinte 5 -integral of f on I; the difierence $F(I)=F(b)-F(a)$ is termed dafinito S-integral of f over I and denotea by (5) $)_{1} f(x) d x$ or by $\left(\int_{x}\right) \int_{0}^{e} f(x) d x$.

The intograls 5 end St, ere often given the natiog of Denjoy integrals in the wide sense, and in the restrioted sense respectively. The first of these is also termed jenjoyKhintohine integral, and the second; Cenjoy-Ferron integral, Lox the latter is equivelent to the Perron integral es ife have defined them.

The fundemental relations vetween the Denjoy ani Lebessue processes are Given in the following:

Theorem 2° A funotion 1 which is S-intequabie on en intervel I is necessarily also $\frac{S}{f}$-integratile on I and we have (S) $\int_{I} I d x=(S) \int_{I} f d x$.
20. A function f which is Iebesgue integratio on an interval I 1 n necesaarily S -integrable on I and we have ()$\left._{1}\right) \int_{I} f d x=\int_{I} f d x$.
3. A finction which is P-interrable and elmost everymhere non-negative on an interval I is necesserily lebesmue integrahle on I.

Thus we see for functiong of constant ster the renjoy procesces are equivalent to those of Iiebesrue.

BIBLIOGRAPHY

Graves, Lawrence M., The Theory of Functions of Rery Varimbles. (Mineographed) A Course offered in the University of Chicago Gummer Quarter 1901. 77 pp.

Hobson, E. H., The Theory of Functions of ${ }^{3}$ Regl
Variahle and The Theory of Fourier's Series.
London: Cambridge University Press, 1e21. 671 pp.

Usual courge fiven, University of Chicago. 25 w.
Zexs, Stanislew, Theory of the Internel. Secone Eopised
Ejition. Englieh Translation by L. C. Younc.
Printed in Folend, 1957. 347 pp.
Notes taken fron lecturee on Vodern Theories of
Interration, at the university of Chicago, 103 A .

