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CEHAPTER I
INTRCDUCTION

The purpose of this paper is to make a study of the
Stieltjes integral, more particularly the Lebesgue-Stieltjes
integral, and to make a comparison of the Lebesgue integral
and the Lebesgue-Stieltjes integral.

The Riemann integral receives some attention due to
its relationship to the Lebesgue integral. The fundamental
definitions and properties of the Riemansintegral are stated.

The definitions and theorems of Variations of Func-
tiong, which are essential to the Lebesgue integral,
ere stated, Since the Lebesgue integral is the basgis from
which the Lebesgue~Stieltjes integral is derived 1%t is given
in more detalil., Proof 1s given of such important theorems
ag thoge of Arsela—Young, Egoroff as well ag the lLebesgue
Convergenca_theorem. A comparigson is made of the Riemann
integral and the Lebesgue integral,

The definitions and fundamental properties of the
Hiemann=Stieltjea integral are given. The Lebesgue-

Stleltjes integral 1s developed in detalil,
Some consideration is given the Perron integral, the

Perron-8tieltjes integral, and the Denjoy integrals.
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CHAPTER 11I
THE RIEMANN INTEGRAL

In considering the Riemann integral let us restrict
attention to single real-valued bounded functions f(x)

defined on a bounded closed interval a<x<b, Consider a

partition D of (a,b) into sub-intervals Ij. Let h Ye the

length of Ij’ let xj be a point of the interval 13» and

H(D) = greatest hj' Let 8(D) = gz f(;j) h

3.
Definition 1: A bounded function f(x) 1is integrable
on (2,b) in case the 1lim S(D) exists.

: b
this limit 4s denoted by /// f(x) dax.
B

When it exists,

Definition 2: Upper and lower intepral. Let

HJ ='§f(x), my =_x§_f(x),
Ij Ij
B(D) = ‘?‘ Myhy,  S(D) a%“ m b,

1f (1§m'§(D) exists, it 13 called the upper integral of
N(D)=0 (

b
f(x), and is denoted by //’ f(x) dx. 4 similar definition
a

and notation are used for the lower integral.
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Definition 3: Oscillation of a function. For an

arbitrary closed sub-interval (c,d) of (a,b), let M(c,d) =
B £(x) for x in (c,d), m{c,d) = B £(x) for x in (c,d),
0(c,d) = M(c,d) - m(c,d), O(x) = Tim f(x3) = 1im f(x,) =

X3=X X3=X

éig O(x-d, x+d), where 0(c,d) is the oscillation of f{x)

over (o0,d4).

Definition 4: A point set E has Jordan Content
zero in case, for every number 120 there is a finite set of
intervals covering E, the sum of whose lengths is less than
n. For every ¢£70, we shall denote the set of points in
(a,b) at which O(x) =¢é by E. ,

Theorem 1: A bounded function f(x) is integrable on
(2,b) 1f and only 3if, for every € >0 the set Eé has Jordﬁn
Content sero.

Definition £: A point set E has L;besque measure 2Zero
in case, for every q)»o there is a finite (or denumerably

infinite) set of intervals covering E, the sum of whose

lengths 12 less than Nn.

Theorem 2: ﬁ,boundeé»fgnct;cn f(x) is integrable on
(a,b) if and only Af the set D of points where f(x) is dig-
continuoug hag Lebesue measure zero.

Only those definitions and theorems have been given
here which are fundamental to the further development of the
ideasg of integration. Any further references will be made
by name to those definitions and theorems which can be found

in any standard work on the toplc.
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CHAPTER IIX
VARIATIONS OF A FUNCTION

8S8uppose we have a real single=valued finite function
£(x) defined on a bounded interval a£x<b, Consider a
partition D. Let I3 denote the aegment aj_lﬁxf.aj. (3=1..n)
n
Consider 8(D) = Z [f(aj) - f(aj_l)} = f(b) - f{a). Let
J=1

P(D) sum of the positive terms of 8(D) =
n
2] {teag) - 2085101 + | L2(a) - 2(a,_115.
Let =N(D) be the sum of the negative terms of S(D) =
n
P20 fne(ag) - 2l )1 - [ UrGay) - £ag )]
n
Then P(D) + N(D) = ;Z;—';. lf(ai) - fa, )] .

Let p(a,b,f) = B P(D). This ie called the positive variation
of £ on ?a,b).
Let n(2,b,f) = B N(D). This 1s the negative variation of
f on (a,g).
Let t(a,b,f) = B {P(D) + N(D){ , which is the total variation,
of £ on ?a,b).
Definition 1: If the total varietion is finite, then
f is said to be of bounded variation on (a,b). Such & func-
tion is not necessarlily continuous.
Theorem 1: If f(x) ie of bounded variation on (a,b),
then f(x) may be written asg the difference of two monotone

increasing functions.
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Theorem 2: The discontinuities of a function of bounded
vaeriation on & finite interval (&,b) are at most denumeradbly
infinite.

Theorem 3: If f(x) is of bounded variation on (a,b)
so also is |f(x)] . |

Theorem 4: 1If f3, f, are of bounded variation, then
f1 + £, £3f, are also of bounded variation both on (e,b).

Theorem 5: Suppose fy and f, are of bounded variation
and G{(x) is the greatest of and g(x) is the smallest of

fi({x), f£,(x). Then G{x) and g(x) are a2lso of bounded
f3(x) + fa(z; t 1t - 0l
f3(x) + £,(x) = |f2(x) = £,(x)]_

2 -

variation, where G(x) =

g{x) =
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CHAPTER IV
LEBESCUE INTEGRATION

In the present century Riemann's Intezral has, for
the purposeg of theoretical investications, been largely
superseded by the more general formulation of Lebescue.

The theory of Lebesgue integration has as its foundation
the conception of the measure of a set of points.

Consider the interval ], a<x<b; or for n dimensions,
a3<x4<by, 1 =1, 2, &,...., n. The length of the interval,
L(I), is defined as L(I) = b-a. Let M denote a point set
and I a sequence of intervals {Ini, n=1,2,8,..... Let I,
be an open interval. The collection I covers ¥ if each point
of M belongs to at least one interval of the set. Then

L(I) = L{I3) + L{I;) *+ ===— and OCL{I)% +e0

Definition 1: The exterior measure of M 1s

me(M) = B L(I) for the coverings I of M,
Theorem 1: For an arbitrary set ¥, mg(M) exists, and
O€mg(U) £ ¢c0 .
Theorem 2: If M is contained in Ma, then m (M) =
me(l{a)-
| -~ Theorem 3: If M, e<x<h, is a bounded interval, then

me(¥) is equel to the length of this interval,
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Theorem 4: If M is bounded, then mg(i) £ +oo ; if
furthermore M contains an interval, then mg(X) > 0.

Theorem 5: The interval in a covering I of M may
Ye restricted, without loss of generality, to be arbitrarily
small intervals with rational endpoints.

Consider two point sets M and N. M + N denctes the
set of all points belonging to M or N; MN the set of all
points belonging to both M and N, Two point sets are equal,
M = N, if the totality of points in one is the same as the
totality of points in the other. =M denotes the set of all
points x not belonging to ); OM the complement of M. The
symbol C denotes "is contained in" and the symbol ) denotes
"contains." If N(C M, then U~N is the set of points belong=~
ing to ¥ and not to N. Let 8 be the get of all points. Then
=i = 8=}, (=M)(=N) = «(M+N). N =MN = (=M)N.

Theorem £: If M, Mg, 1é a finite or infinite
sequence of polint gets and M = My + My + ....., then
me(k) = me(My) + ma(My) + .......

Definition 2: Distsance hetween Iwo Point Sets.
Suppose ¥ and N are non=vacucus point sets. Then d(¥,¥) =
a(N,¥) = B d(p,q), for p 2 point in M &nd q & point in ¥.

Theorem 7: If M and X are non-vacuous and d(M,XN) =
>0  then mg(MtN) = m (M) + mg(N).

Defirition 3¢ If M is & given point set and m,(N) =
mg(MN) + mg(N-MN) for every point set N, then M is said to

ve measurahle, and 1ts measure is m(}) = mg(¥).
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Theorem 8: If M; and M, are such that ¥,+M; = 0 and
if one set is meagurable, me(M;+ma) = me(M;) + me(Ha).

Theorem 9: If M is measurable, =} 1s measurable elso.

Theorem 10: If My and ¥; are measurable, then
¥y + My is also.

Thgorem_}_}_: If ¥y and ¥3 are measurable, then ¥},
is also.

Theorem 12: If ¥3 and ¥, are measurable, then
Ma~MHy+Hg 1s also.

Theorem 13: If M is an interval, it is measurabdble.

Lemmag 1: If My C ¥, C ;& --—— 1is an increasing
sequence of measurable point sets and M = ¥y + M, + ——-un,

then lim mg{(¥yN) = mg(MN), for ¥ an arbitrary point set,
n= o0

Lemma 2: If Ma D My D My D --—— is a decreasing
sequence of measgurable point sets with produect K, then
;L)g ma (M N) = mg(kN), where N is an arbltrary point set
with finite external meagure,

Theorem 14: If My O M, 2 ¥, 2 === ig a decreasing
sequence of measurable point sets with product M, then A is
measurabhle, .

Theorem 156: If M3 C M, C M C --- is an increasing
sequence of measurable point sets with the sum M, then ¥ |
is measurable.

Theorem 16: If M, Mz, My, === i3 any finite or

infinite sequence of measurable point sets with the sum H,

then ¥ 13 measurable,
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Theorem 17: If M is an open point seit, ¥ is measurable.

Theorem 18: If M is a closed sst, M 1s measurable,
Theorem 19: If ¥y, M;, ¥,, -~- 15 a finite or in-
finite sequence of measurable point sets, then their product

is measurable,

Theorem 20: If mg(X) = O, then V¥ i3 measurable and

m(¥) = O,

Theorem 21: If either M or N 4is measurable and mg(MN)
is finite, then my(¥#N) = me(M) + my(N) - me(¥N).

Theorem 22: If M¥a, M,, ¥,, --= 1s a finlte or infinite

sequence of meas%:Fble point sets and ¥ °¥My = O, nxf'n, then
me [Zw] = 2imetuy).

Theorem 23: If M ies a bounded measuradble point set,
there exists & closed set N contained in ¥ such that
m(N) ) m(}¥) - € for a preassigned positive €,

Definition 4: Interior Meagure. Suppose M is a given

point set and X a measurable set contained in M. The interior
measure of ¥ is my(¥) = B m(¥) for measurable X C i,
Theorem 24: For any ¥, my(M) £ ma(M); 1f ¥ is

measuradble, mj(¥) = ma(M).
Theorem 35: my(¥) is the least upper bound of the
measure of all closed polint sets contained 1n M,

Theoxrem 283 If M is a point set with finlte exterior

measure and my(M) = mg(¥), then Y is measurable.
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Theorem 27: If MN = 0, my(¥) + m (N) £ m, (3+N).

Theorem 28: If M¥,, M,, ¥,, -=-= i any finite or in-

finite sequence of sets such that Mnt”n,‘ 0 if ny # n_, then
. 3 ~N o

Theorem 2Q: If UN = O, then m; (}+N) < my (M) + me(N)<

me(M+N) and my(M+N) £ me(H) + m;(K) < mg(M+X),
Theorem 20t If M i1s & point set with finite exterior

measure and N 1s any measurable set with finite meagure

which contains }, then my(i) = m(¥) - m (F=iF)} = w(X) - m,(KE-¥).
Theorem 21: If M is a bounded point set contained in

& finite interval J, << x < /S then X is measuradble if and

only 1f me(M) + me(I=¥) = mg(I) = m(I) = F—oc,

M

Theorenm 2Z2: (Arzel\a-'foung) If ¥y, M sy === 18 an

a2
infinite sequence of measurable point sets such that for

. od
every integer n m(¥p) =€ )0 and me(z‘; ¥, )< 429, and if ¥
is a set of points contained in infinitely many of the sets

¥n, then X 1s measurable and m(N) > ¢,

g o
Proof: Let B = 2% M; N=77T,. Then Hh > ¥, D T,Dw=-
k=n 1

By theorems 16 and 19 each X, and ¥ are measurahle., Since
T, 2 M, by theorem 2 m(¥,) = m(My)= &. By lemma 2

m(k) = 1im m(Fp) = €.
n= oo

We will suppose that f(x), gl(x), f,{x) are single real
valued functions for x on & measurable set E with finite
measure. When geveral functions are used it will be assumed

ti.at they are defined on the same get E.
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11
Let E(f>¢) be the set of pointe X of £ for which
£f(x) > e¢. &imilar definitions zpply do B{f = o), B(f < ¢),
E{f < ¢), end E(f=q).

Definition 1: J}essurehle Fungtiona f{x) 13 measur-

avle if for =n erbitrary constant g the point sets L(f > ¢),
w{f 2 ¢), E(£< ¢), end L(f&c), are weasurstle. Any one of

the Tour conditions for meapuratility implies ti= othz2r three.
CROITVATITE OF YUASTZATLY FUNOTIONS

Property 1: If f(x) is messuratle and ¥ is & constent,
Eof(x) znd i+f(x) rre reasuralle,

Property 2: If f{x) ani g{x) are memrsurablie, then
{f> g) iz rmeasurchle for a particular x such that f{x) >
¢#(x), there exists a ratiocnal numher ¥, such that f(x) ->
r, > gix).

Property &: If f(x) ond g(x) are meesurable, f(z) &
z{x) is measureble E(fig > ¢) = E(f > cFg).

Prepverty 4: If f£(x) e&ni g{x) are measura®rle, then
f(x)+*g{x) 1s neesuradle,

Property 5: 1If ffn(z)g is & senuence of measurable

functiona on E, then the functions F(x) = li= £ .(x) and
n= a2

¥F(x) = Tia fn(x) sre measurable.
=0 '

Property 6: If f(x) 1s continuous on &n intervel

X & x £B, then f£{x) i3 meusurable,
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Suppose E 1s a measurable point set of finite measure
and f(x) is a gsingle real-valued hounded function on k,
Then there exists &n ¥ such that [f(x)| 24, x CE. Let A&

=B Hx)amd <=8 f(x). Bk, of>-U Let D(y;) be
xCE xC

a partition of 8, where o< = Yy, £ ¥y3 = ..... Sy, = B.

t

-

Let f‘: be an arbitrary value such thet y, , £ §

Pt

by ¥y-
“ .

Form 2., f;, m{E(y;.q < £ <y;) = 8(D).
|

Definition 2: f(x) is integrable (summarle) on the

point set E 1f 1im S(D) existe, and this limit is denoted

N(D)-_—O
E/f(x) dx. This is known as the lebesgue Interrsl.
s n

Let B(D) = 2% yim[E(y,_, < f = and S(p) = 52
> yamlE(yy oy Yi)J s(p) = Vim1

m[E(Yi-l <fg 71)]' Then §(D) = s(D) < S(p). Let[f(x) =
J

11m  S(D), 4if this limit exists. Let ff(x) = 1lim g(D),
H{(D)=0 “E N{D)=0

1f this limit exists.
Definition &: If f{x) = K on E, ther for an arbitrary

partition D S(D) = X m(E). Hence ff(x) = K m(E), Let
E

Io(x) = 1 for x CE, = 0 for x ¢ E. I.(x) is the charscter-

istic function of the set E, Then f To{x) = m(E).
E

Theorem l: If £(x) is & bounded measurahble function
on & get E of finite measure, then/f(x) and/ f(x) exist
and are equal, : "

| Theorem 2: If f(x) is a tounded measurable function
on a set E with finite measure, then f(x) is Lebtescue

') on E,
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Theorem 3: If £(x) is a bounded measurable function

on & set of finite measure and « = B f(x), & = B f(x),

xCE XCE
then oC m{E) é—'E/f(x) < Sm(E),

Theorem 4: OSuppose E has finlte measure and {Ekg is
a finite or infinite sequence of measurable sets such that
o0

Epnipm = O, n 7! m, and E = Z’: Ep. 1If f{x) is a bounded measur-

able function on E, then f(x) is summadle on E, and {f(x)
= f’f £(x).
! Ek

Theorem 5: If f{x) and g(x) are bcunded and measursble
on E, f(x) = g(x) for x in E, then/Ef(x) f‘ég(x).
Theorem B: If f(x) and g(x) are bounded and measurable

on a set E of finite measure, then fE f{x) + g(x) =

{f(X) + ég(x)-

Theorem 7: If X 1s a constant, then gKf(x) =

K{ﬁx).

Theorem 8: If f£(x) is bounded and measureble on a set

E of finite memsure, then /f(x)| is measurable on E and
| st s [seol.
E

Definition: & proposition is said to hold almost

everywhere on & get if it holds at'every point except for a
subset of Lebesgue measure zero,
Theorem €: If f(x) and g(x) are bounded measurable

functions on E and f(x) = g(x) almost everywhere on K, then

£z<x) =4g<x).
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Theorem 10: If f(x) is a vounded measurable function
on E, f(x)=o0, and/f(x) = 0, then f(x) = 0 almost everywhere
B

on

i=

Theorem 11: (Egoroff). If {fn(x)g is 2 sequence of
finite valued functions which converge almost everywhere on
E to a finite limit function, f(x), then for & >0 there
exists a set & contained in E such that m(E) > n(¥) - &

and lim fn(x) = £{x) . uniformly in E.
Ti= o0

Proof: Let E  be a subset of E for which {fn(x);
tends to a finite limit function and m{Eg) = m(¥). For a

given />0 let Ep, be Byl | £h(x) = £(x) I >+5]). For arbitrary

n

”

x CE, and n sufficiently large | £,(x) - £f(x) ] <. Let
0 o0

85 =§ Eio,.? Then q 8, =0, But 8,D08,,> ....., &nd

the 8j are messurable, Herce lim m(S;) = m( i?sn) by lemma 2,
n=od

For each />0 and )l>'0 there is an integer n{(d/",n) such that
m[sn(f,n)]<q . Let {Ji{} =§; g and {’lkg ={.§_§for an
k 3k

arbitrary preassigned € > 0. Then m[Sn(%, %)J<'§f' Let
2 2

9
€
8=2- 8 (-l, ). Then M(8)< € by theorem 1&. Let
1t E gk
¥ = E-8, Then m(E) = m(E) = € . For a given J choose Xk
K
€ i e
80 large that < %&. Then for xCHCE - Z 5

is an integer m, such that Ifn(x) - f(x) /< .ig end

n there
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l fm.p(x) - f{x) l< ';;,v{ for n > my. Hence ]fn-t-p(x) -

fn(x) |<d for x CE end n > D o

Theorem 12: (Lebesgue's Convergence Theorem).

Suppose {fn(x)} ig a gequence of measurable functions on

E end | f, (x) ] < ¥, and lim f,(x) = £(x) almost everywhere

. Then 14m ffix) = ff(X)

=00

Proof: Let Ej be E[ 1lim fn(x) = f(x)]. Then
n= oo

m{(E=Eg) = 0, or m(E) = m(E,). £(x) is measurable on E, by

property 5, and hence measurable on E. | £(x)] % ». Then

£f(x) 1s summatle on kg and on E and f f(x) = ff(x}.
E B
0
By Egoroff's theorem, given € >0 there is a set E C E, such
= .y €&
thet m(Eq) = m(E) >m(Ey) - o end {fn(x)}- converges to

£(x) uniformly on E. Choose ny such that | f,(x) - £(x) ] <

mfoerEanfin—no. f’f(x)-f(x)l

Fo
f £.(x) = £(x) = /__ [fn(x) - £(x) | + [ffn(x) - 2(x) |
Eq P

4—2% +m(E)m4.§ + %:e. Hence lim ff (x)’*=
1im

/f(x) Then 1im ff (x) =

ni=ed E n=ao o

ff(X) ==ff(x)
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CHAPTER V

A COMPARISON OF THE RIEMANN INTEGRAL AND
THE LEBESGUE INTEGRAL

The definition of the definite integral as given by
Riemann is very precise and leaves nothing to be desired
in this respect. It is not only of interest from an
historical point of view, but it still possesses great
importance in Analysis., It will continus to be the basis
upon which practical spplication of the Integral Ualculus
restis.

Several attempts were made t0 generalize the procsss
of the Riemann integral, but Lebesgue first made progress
in this matter, His theory of measure has in its turn,
naturally led to further generalizaticn,

The distinction between the Lebesgue integral and
the Riemann integral rests essentislly upon the difference
hetween the two modes of dividing the domain of integration
into sets of points.

The functions which are measurable in the sense of
Levesgue, and whose definition is closely related to that
of measurable sets, form & very general class. This class
inciudes, in particular, all the functions integrable in

the Riemann sense.
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The method of Lebesgue may be considered simpler than
that of Riemann for it dispenses with the simultaneous
introduction of the two extreme integrals, the lower &nd
the upper.

Thua the Lebesgue method lends itself to an immediate
extension to & certaln clasgs of unbounded functionsg, for
instance, to all measurable functions of congtant sign.

The Lebeszue integral renders it permigsidble to
integrate term by term sequences and series of functions in
certain general cases where passages to the limit under the
integral sign were not allowed by the earlier methods of
integration. The reason for this is found in the complete

additivity of Lebesgue measure,
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CHAPTER VI
THE RIEMANN-STIELTJES INTECRAL

The notion of the integral of & bounded function f(x),
defined in the linear interwval (a,b), witlh respect to enother
function ¢ (x), defined in the same interval, is & generali-
zation of the integral of a function f(x), with respect to
the variable x. This notion was first introduced into
Anslysis by Stleltjes in connection with the theory of continued
fractions,

Suppose f(x) and ¢b(x) are bounded functions, defined
in the interval (a = x €%bv). Consider a partition D of (a,b)
into subtdntervals Ij. Let hj be the length of I, let Xy be

a point of the Interval Iy, and K(D) = greatest nj. Let
3(0) = 2+ £(xy)L ¢ (x5) = #(x;1)].

If the funciions f{x), ¢{x) be such that the in? 3(D)
N{D }=0

exists, f(x) is said to have a Stieltjes Integral with respect
to ¢(x). When 1t exists, this limit is denoted by

///b f(x)df(x). It will be epoken of as the Riemann-3tileltjes
iitegral, or (RS) integral.

Definition: Upper and lower intesral:

Let f(x) ke any function hounded in (a £x € hH) =and

let <f(x) be a bounded monoctone non-decreasing function,
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defined for the same interval. Consider a partition U of

(2,b) as above. Let 3y ='Ex§i;$o(f(x)). my = §:3:2+0(f(x))

in the open interwval (xj-l'xj)'

3(p) = Zn'uj (¢ (x3-0) - $(x3.1+0)] + Eé.' £(xy)[P(x4+0)=(x4=0)1.
8(n) = Zn:mj [ﬁ(xj-—O) —4>(x3—1+0)] + ZD f(xj)[cﬁ(xfO)-é(xJ—O)].

If 1lim 8(D) exists, it is called the upper Riemanne
Stieltjes Integral of f(x) with respect to ¢’(x), ard is

LA

denoted by /éf'f(i) aP(x). A similar definition snd notation
are used for the lover Mismann=Stieltjes Integrsl.

Stieltjes estahliahed the existence of the intepral for
the case in which f£(x) 1is continuous in (a,b) and <P(x) 1is
a function of hounded variation in the same interval.

Theorem 1: If f(x),¢(x) e any two funetions for
which J//bf(x) d¢9(x) exists, then //fzb(x) dff{x) exists snd

a a

the two integrals satisfy the relation

b b
S Ct(x) ad(x) + f $(x) af(x) = £(b) $(b) - f(a) $(a).
n, a

Theorem 2: If f(x) bve bounded in (&,b), end P(x)
bve of bounded variation in the seme interval, the necessary
and sufficient condition that f{(x) should have a Riemann-
Stieltjes integral with respect to ¢(x) 1s that the varia-
tion of <(x) over the set of points of discontinuity of

f{x) should ve zero.
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Theorem 2: If f3(x), f,(x) both have Riemenn-Stieltjes
integrals with respect to the monotone function ${x), then

fi(x) + £5(x) 1s integrable (RS), with respect to <P(x)

T : b B
and [ ffa(x) + £,(x)§ ab(x) =/ falx) akx) + [ 2,(x) ad(x).
a 4

8.

Another property of the Riemann-8tieltjes intezral

is that

b c b
[ £(x) ab(x) =/a £(x) aé(x) +£f(x) a(x).
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CHAPTER VII

THE LEBESCUE-S8TIELTJES INTEGRAL

Trere is &n analogy between additive functions of
bounded variation of en interval and additive functions of
sets. This analogy will be presented in this paper, by
agsociating a function U*-of a get with each edditive func—~
tion U of bounded variatioh of a&n interval., ¥e shall
suppecse that the functions of an interval are defined in
the whole space of N dimensions.

A figure is defined as a set expressed as tha sum of
a finite number of intervals, U(I) is then defined as a
function of an interval on a fipure R [or, in an open set G
if U(I) 48 a finite real number uniqguely defined for each .
interval I contained in R [or in G],

A function of an interval U{I) is said to be adiitive
on a figure Ry or in G, if U(I, + Ig) = U(I))+ U(I,) when-
ever I, I, snd Iy + I, are intervals contained in R, [or
in G] and I, and I, are not overlapping.

The upper variation of U on Ry 1is the upper bound
of U(R) for figures R C R,. We shall denote it by
W (U;Rg). The definition for the lower varistion is
similar. Lower variation is denoted by ¥ (U;R,). The
nunber W (U;Rg) +| % (U;R,) | , which is non-nepative, will

be called absolute variation of U on By and we denote it
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by #(U;R,). If W(U;Rp) <+ the function U is said to
be of bounded variation on R, .

Suppose ziven in the first place, a non-nezative
additive function U of an interval, For any set E we denote

by U™ (E) the lower bound of the sums 2. U(Iy), where {ka
' X

is an arbitrary sequence of intervals such that EC Z. I;.
For an arbitrary additive function U of tounded variation,
with the upper and lower variations ¥, and W_, we denote by
W{xand (-Wa)f the functions of a set that correspond to the

non-negative functions ¥, and -W,. Then we write by defini-

]

tion, U¥ = W, - (=#_,)". The function U ~4is thus defined
for all sets and is finite for bounded sets.

#hen U is non-negative, U™ is an outer measure in
the gense of Carathéodory. That is, it fulfills the three
conditions for Carathébdory mesgure, The first two condi-
tions are obviocus hut the third condition requires nroof.

Let A and B he any two gsets whoge distance does not

vanish, and let € bYe a positive number. There is than a

sequence Elnl of intervals such that [A+B]C 2T Ig and
n

22 u(1,)= v" (4+B) +€, Ye may clearly suppose that the
I _

intervals of the sequences have dlameters less than d’(A,B).
ol -*
We then have U (A) + U (B) = U (A+B). Then U (&) + U '(B) =

U*(A+B) which establishes the third condition.
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The function U%i determined by a non-negative function
of an interval, itself determines, since it is an outer
Caratheodory meagure, the class .;Zﬁ of the sets measurable
with respact to U~ and the process of integration (v™). To
simplify the notation, we shall omit the agsterisk and write

simply ﬁtg for /£L13 integral (U) for integral (U™},

measure U of a set instead of meesgure (UT), ///de ingtead
v

of /éﬂfdu*: and so on. Thi slight change of notation will

not cauge eny confusion, since the measure U™ is determined
uniquely by the funciion of the interval U,

hen U is & general additive function of an intervai,
of bounded variation, we shiall understand by ‘J:U the ccommon
part of the classes ‘j:W; and ’S;W,’ where ¥; and Y, denote
regspectively the upper and lower variations of U. A function
f(x) of a point will be termed integratble (U) on & set E,
1f f(x) is integrabdle (Wi} and (-¥;) simultaneously. Ly

the integral (U) of f(x) we shall mean the nuwber

ffdw, - Ifd(-'ﬂ,). e ghall write it f f3U as 1in the
E F E

case of & non-negative function U. IThis integration with

respect to an sdditive function of hounded variation of on

interval ig galled the Lebesgue-Stlelties intecsration or

gimply LS-integration. In the case of the integration

over an interval I = [a,b] in Ry [straicht line], we

b
frequently write /// fau for ///de.
a I
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When the function U is continuous, every indefinite
integral §U) vanishes, together with the function U™, on
the boundary of =zny figure. Conaeduently an indefinite
integral with respect to & continuous function U of hounied
variaticn of sn interval is sdditive not only as funection of
a set (,S;) but alaso as function of an interval.

Orlginally, these notions on? the theorems that follow
from them referred, not to sdditive functions of an interval,
it to functions of a real varieble, ¥e can eatablish a
correspondence between functicns of & real variatle and ad-
ditive functions of & linear interval. 7This correspondence
will render it immaterial which of the two kinds of functions
i3 considered.

To do this, let f(x) be zn arbitrary finite function

of a rea) variahble on the interval I et us term increment

o*
of £{x) over any interval I = (a,b) contained in I,, the
sifferences f(b) = f(a). Thus defined the increment is an
a3iitive function of & linear intervel I C I,, &ndi corres—
ponds in a unique manner to the function f(x). Conversely,
if we are given any =zdditive funotion F(I) of = linesy
interval I, this in itgself defines, except for an adlitive
conetant, & finite function of a real variahle f{x) whose

increments on the interval Y coincideg with the correspond=

ing values of the function F(I).
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%e ghall understand by upper, lower, and absolute
variationg of & function of a real variable f(x) on an
interval I, the upper, lower, and absolute variations of
the increment of f(x) over I. We shall denote thesse
nurbers by the symbols W(f£;1), W(f;I) and W(f;I) respectively.

A finite function will be termed of bounded varietion
on an interval I, if its increment is a function of an inter-
val of bounded variation on Io. Bimilarly, the function is
abgolutely continuous or singuler 4if its increment is
ebgolutely continuvous or singular,

Thus we can see that the difference between the
definitions adapted for functions of an interval and for
functions of real varisbles is only formal. Cther definitions
for the functions of s real vaerisble can Te set up by &
rroper modification of tilose for functions of =n intervsl,

In varioue ceses it 1s'more convenient to operate on functions
of a real variabvle than on additive functions of sn interval,

Ag 1z true in the case of other integrals, we can
astate the necessary and sufficlent conditions for a function
to be LS-integrsble. Those conditions are (1) The function
must be Borel measurable and bounded or (2) The function
nust be measurable end ejually atsolutely continuous.

It is necessary to conslder step functions and jump

functicns in connection with the Lebeague~-Stileltjes intecral.
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¥e shall consider the integral ‘/,fdﬂc to be a LS-
integral for o€ non=decreasing and continuous. Then we
congider the integrals f:io" and fla’,‘; -G'fn{ doc >0, Ye
8hall suppose these functions are defined for £ll poinita of
a maagurabls set E of A. Let the characteristic function
of the set £ be 9D

E
bte uilt up in the Lebeggue asense by a gystematig trezxtment

.« Then £(Z) ”ﬂE dexX. The theory can

analagous %o that for the lLebesgue intesral,

Kow let o€ be a non-decreasing function. Then we may
write ol= M 4+ ©, where I is a continuous non=descreasing
{(step) functicn ani © i3 a non=dscreasing (jumn) functiocn,
Definition 1! The exterior measure g:(‘a‘.) = B2 ar7

BeXEIY

Then we can define convergence almsst everyrhere,
convergence approximately, and convercence almost uniformly,
each with regpect to M.

For the stspfunctions we have:

fd-dr-éz%q £yr end o (63,02) = flog -cp)ar.
Hence wé éet completeness.

%e ghall next conslder the non-decreasing Jjump func-
tion which satisfies the definition of & jump function. That
is 6(x) = 2. _[8(0) - 6(c-0] + Z 1 [elc+0) - &(c)].

ac<c s a<o<x
¥ow for the function f to be Lebescus integrarle =with

respedt to © the Z. f(c)i[6(c+0) -~ 8{(c=0)] must converve
ebsolutely. Then by definition the integral f.f 48 =
2. t(c)[e(c+0) - 8(c=0)].
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Pefinition 2: A funciion f that is Lebesgue intezrabdble
with respect to ¢oC 1s lLebesgue integrable with regpeot to
ani @.

Then sirce the function f is Lebesgue intezrable with
respect to o the L8 fi’doc = ffd ~ + ffde.

Definition 3¢ ¥e shall define messure here to be:

gg(’:l') =IE @ dok where gp is a Lebesgue interrable funeilon
E
with respect toKX ,

Cefinition 4: The exterior measure of & 1is

g(x) =ZE’ [(8(c+0) = 8(c=-C)].

c
Then g";(E) = g:(E) + gg(E); zlso g:(z E)f:'Z.’g:(E:).
We may now treat in a similar wanner many of the
theorems for the Lebesgue integrel for the Lebesgue-Stleltjes
integral. ¥e have a tlheorem for the Lebesgue Intepralle
1r £~ = gL then ffdx ffgdz. Tritten for the Lehesgue-—
Stieltjes integral it reads: Ffuppose o« non-decreasing and
fy and fg are Lebesgue integrable functlons with reespect to
&, then [fyax = [f.ax.
be ghall congider ge(E) = gg(Ev). Zince 7. [6(c+0) -
6{c-0)] is absolutely convergent, additivity follows.
Definition 5: h{(x) is abeolutely continucus with
respect to oK 4f for every €>0 there is & >0 such that

F(E) <y 1t 1s true that | n(m)li<e,
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Fow we have the theorem for the Lebesgue intecral:
If £ i8 a Lebes@ue integrable function then the integral
//ffdx is absolutely continuous. Treated for the LS=intesral
it reads: If f is a Lebeszue integrable function with
respect to o< then the integ ral(// fdx is o ~abgolutely
continuous. %Fe will include the proof. We may take £ =0

and f = fAn., Then there is an n such that/ A - ff fioc<z.

Hence, by Levi's Theorem L(f—fn)da(«:. Then for goc(&}
~o

b

o<
small enough /fpd"( £n if g (™) = -,‘-36-. This is true for
E -

erecinl points.

Theorem 1: If o< ia non-decreasing, snd the dictunce
finction is ﬂ fy3 - f,l dX, the Lshesgue gpace 1s complete
with respect to KL . -

Proof: If L is continuous this 13 true at once,
Suppoge o = 4+ 8. Then we ghall consider that 1f// fz:"'fm’ do
>0, then f/ fn-tm/ dr- 0 and /I !n—fml dé > 0. Tren
there is a function f that ig a Lebesgue integrable function
with respect to N such that // 1 -1/ 47 >0. Also
JES N Zc]f,,(c) - £,(c)] [6(c+0) = 6(c=0)1. Hence
'fn(c) - f,(c)] = 0 for every jump. There is an T <efinsd

at the jumps ¢ such that fplc) > f(c}. Now take

If(c) - £ (o) | [8(c+0) - 8(c-0)]% Z]f(c) -1 ()]

u:
[6(c+0) = 8(c=0)1 + Z[f (o) = £_(c) ] [8(c+0) = 6(c=0)T =
e

c P
Z{f(C) - fm(C)l [8(c+0) =~ &(c=0)] + € for ﬁ)ﬁé. Therefore
Ca
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Z(f(c)"fn(o)l{8(c+0)-9(c-0)] for m>¥_ and p an arbitr: vy valuve.
Therefore

I]f - f,] 6> 0 and flf - f./4r>0. Then flf - fnld
2> 0 end we get completencss.,

Theorem 2: The set of ©11 step functions is dense on
Lo —8pace with digtance = fl f1 -2, ) de.

Proof: Point steps mre sllowed. Then for every €20
there 4=z & o__o such that/lo" - 1) dl"(é end en ¥ such that
Id"‘/ S ¥. Let 0, = T 8% & gufficiently largs nurber of jumpas
of 8 a0 that for the remelning jumps
7 18(c+0) - 8(0=0)] < Zg‘and 371¢(e))[6(es0) - oe-c)1< £
let 03 =6 elaewhera. Ve still have /! Ty - ¢ df'<,§.
Then [/o3-f [ g0 =T 15 (0}l 16(c+0) = 8(c-0)] +
ST £(e))Lelc+C) - 8(a-0)] < $* 5

Ye will treat one more theorem of lLebesiue for lerasague~
Stieltjes. The theorem for lLebeague ig: CSuppose that ¢
Lebesgue integrable functions fp —» L approxirately and f fndx
ar3 enually absolutely continuocus, then the funetion f ia a
Lebeszue integrable funotion and /E tndx > /’.:: f4x jmifomly
for b meagursble. Treated for Labesgue~itieltjes it readss
Suppose the Lebesgue integrable functions with rearect to o<
fn > £ approximately with respect to o< and that fgfﬂdx is
ejually abasolutely continuousg with regpect to o6 then tha
function £ is a Ledesgue iInterrable funciion with respect
to o« &nd f frpd o 2 ftdoc uniformly for ¥ & -mousurable.

Proof: From equa.l thagolutely entinuity we have for

every € >0 there is a ¢ > O auch thet the measure z Pl <
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then f E‘ fnl dA <€, By spproximate convergence wa have an
¥ such that ; >N 1% is true that & (%, ), where E . 1a the
get E[[fy~f />&€1. At the points where o has jumps £, > f.
Therefore for g > H it is true that//’] Tm=fnl d K =

Fal

-

mne
¥ow there is a LS=-integrable funotion T such that

)/ {]fml + jfnlgdoc -Q-I | Ip=fnl Aol S3€ + e[ (D)=x(a)].
Erne E '

1lim f[ fp=f| dx= O, Hence fné“f approxinately with rsepect
to 06% Therefore the £ is a Lebesgua intesrable funotion
with regrect tool o

L3 has already been pointed out there 1z & markad

| analogy between additive functicns of bounded variziicn on

an interval and additive functions of seta. ALl of the
ecsdontial properties of the ordinary Lebescue intecral,
excent at ﬁcst thoge implying the process of derivaticen hold
for the Lebesgue=8tieltjes intesral,

However, the Letesgue=tiielties intesral is not, in
general, en additive function of an interval.

Since there 1s such & cloges analogy bvetween the two
intezrals we can treat many of the theorems for Letescue
inte ration for the lLeheszue—~Stieltjes intesral., e havae

treated gsome in this manner,
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CHAPTER VIII
THE PERRCN INTECGRAL
and

THY PERRON-STIELTJES INTECRAL

Perron introduced & new definition of =n interral
baged on major end minor functiona. It does not revuire
the thecry of measurse. In 4ts original form this defini-
tion concerned only integration of bounded funciions, hut
i1t has now been extended to unbounded functions,

Horeover, the Perromn integral may be regarded aag a
synthesis of the twe fundamental conceptions of intesration,
Gne of these corresronds to tha 1dsa of the Aefinite irtee=
gral as limit of certain epproximating sums, The other one
corresponds to the 1dea of the indefinite integrsl as a
vrimitive function,

The notions of major &nd minor functions, &nd their
ayrlicationas to lLebesgue interration are discusaed for
arhitrary spaces. In defining the Perron integral, and the
Perron-Stieltjes integrel, we shall 1limit curselves %o
functions of one real variable.

We ghall suppose we are given a regulsar sequence
i a{??k} of nets of intervals in & spece Ry and & furction
of &n interval F in R,, & denotes eny intervel containing
x and belonging to one of the nets ??}.
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UDsfinition 1t We shall czll unper derivate of F st
& point x with respect to the sequence of nets 9:( the upper
limit of the ratioc F{9) /) @) as /(9)+0. By symmetry we
define similarly the Jower derivate of F at x with respect
%o the sequence of neta 9? . ¥Wa ghall denote these two
derivates by (] Y¥(x) and (97)E(x). ¥hen they are equsl
at a point x, thelr common value will be denoted by (9})}" /(x)
andi called the derivate of ¥ at x with respesgt to ithe

gecuencs of neta 7} o

Defirition 2: A system of intervals will be coalled
e norme) get 1in the space Hm; when it consizts of the closed

intervels {a.élz aéii H aég), a.gl R a,l((m), aéf{ 3 for

k=0, 31, £2, =~-~, which are determined by eyatems of

numkers a,i(:i) subject tc the coniition a{”< aéi{, for

1 = 1, 3’ —— n 31'1(5. k = """'", -1’ G’ "'1' ""'”’ &nﬁ.

1inm ai“ = +00, A regular sequance of normal mets will
k> 200

T2 termed normal sequence.

Definition X: An alditive function of ap interv:l F

1a termed !nior [¥inox] function of a function of a point f
on a figure Ry if, at every point x of this figure,

- o0 # Fg(x) 2 £{x){+ 0 d Fg(x) < £(x)]. Then it follows

that 1f the funcilons of an interval U and V are rsspectively
& rmajor end & minor function of & function on a figure iy,,
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Theoxem }: If f ig & gummable function, then, for
each €20, the functiocn f has an absolutely continuous major
function U, and an absolutely continuous minor function V
such that, for each interval I, 0 = U(I) -,/’f(x) ix = €
and O —-/ f(x) dx = VW(I)=€ ,

Let U be eny major function of £ on R, and let V ve
any minor function of £ on Ro' A function of & real variable,
f, is termed 1lntegrable in the genge of Perron on & fiure
Ry in Ra, 4f f hee both major and minor functions on R,, and
if the lower bound of the numbers U(Ro), and the uppsr bound
of the numbers V(HQ) are equal, The common value of the two
tcunds is then called the definite Perron integrel, of { on
Ry, and denoted by'cjf;/, £f{x} 42, For a function f on a
fizure Ry to be integrable it is necessary and sufficient
that for each €70 there should exist a major function U and
a minor function V of f on Ry such that U(Ry) = V(Rp) <€,

Since the function U=V ig monotone non-decreasing for
every major function U and every minor function V of f, ihen
every function which 1is ¢7r:1ntegrable on a figure H,, is
ealgo on every figure R C R, The function of an integral
F({I) =czz_fﬁx) dx, thus defined for every interval I C Ry,
is called an indefinite Perron integral of f on By Thus
F(I) is an &dditive function of an interval, 4 function of
@ real variable is tsermed 1ndefinite¢7?;integral [major,
minor function] of a function f, if this is the case for the

function of an interval determined by 1t,
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From theorem 1 we see that every function which is
integrable in the sense of Lebesrue on a fisure R,, 1is so
in the sense of Perron, and its definite lLehesoue &nd Perron
integrals over Ry, are equal,

Theorem 2t Everycﬁflintegrable function 1=z measurable,
and 1s almost everywhere finite and eqgual and equal to the
derivative of its indefinite intepgral.

Theorem 3: Every function f which is cjﬁ:integrable
and elmost everywhere non-negative on & figure Ry, 1s summablas
en thie figure,

This theorem ghows that elthough the Ferron intesration
is more general then Lebesgue integration, the two processes
are completely squivalent in the case of integraiion of
functions of constant sign.

In congidering the Perron-Stieltjes integral we ghall
restrict ourselves to finite functions. Suppose we are given
two finite functions f and G, &An additive function of an
interval U will be termed majoyr funoction of f with respect
to G on an interval Io, if to each point x these correspond
to a number &3>0 guch that U{I) = £(x)0(I) for every interval
I containing x and of lencth less than €, The definition
of minor function with regpect to G is symmetrical., Now
following the method for establishing the Perron int=eral
with the help of the noticns of major ani minor functions

with respect to G, we define Perron-Stieltjes interration,
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or~§7§-1ntegration with respect to any finite function G
whatever, The .Sra-integral of a function G on an interval

I,=[a,b] »ill be denoted by (Jf%) ‘//.f(x) dG(x), or by

I
b 14
(J8) J/’ £(x) aG(x).
&

The criterion for :7é-integrability of a function is
entirely simileyr to that .7<-integrability.

I1f G(x) = x for every poiht x .jrénintegratien with
regpect to G coincides with ,j’;intégraticn. Thus the
Ferron=-Stieltjes integral includes the ordinary Perron integral,
&8t any rate as regards integration of finite functions. The
Perron=Stieltjes intezral includes also the Leheszue~Stisltjes
integral. But the definite Perron-Stieltjes and Lehesgue=
Btieltjes integrals ers not slweys equal, even fcr a function
f intecrable in hoth gsenses. This is Adue to the fact that
the indefinite integral of Lebescue~LStieltjeg 1s not in

general en additive function of &n interval,
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CHAPTER IX
THE DENJOY IRTLGRALS

We may regard the Letesgue integral as a specisl
nodification of the conception of the intezxral dues to Newton.
~e define it as follows:

(L) 4 function of a resl variable f is intecrable
if there exists a function F such that Fl(x) = f{x) at
almost all points x, and F iz ebsolutely continuous.

The function F (thenm uniquely determined apart from
&n additive conastant) 1s the indefinite integral of the
function £,

Thia is a descriptive daefinition of the Lebesgus
integral; that is, 1t 1s based on differentlial properties
of the indefinite integral ard therefore, connscted with
the Newtonian notion of Primitive.

The definition (L) constitutes a modification of
that of the integral of Hewion, in two directiona. ¥Wa have
a generalizatison which enables us to disregard sets of
messure zero in the fundamental relation F'(x) = £(x).

There 1s an eagential restriction which excludas all but the
absolutely continuous functions from the domain of continuous
priritive functions considered.

Although it is not rossible to wholly remove the seaond
wolification from the definition (L) it is possible to replace
1t by much weaker conditions. The corresponding genernliiza=-

tions of the notion of aksolute continvity give rige to
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extensions of the Lebeggue integral, known as tha integrels
éz,and.zp of Penjoy. Ye shell consider itwo generaslirations
of absolutely continuous functions: the functions which
are generalized abgolutely ccenrntinuous in the restrictad
sengs or ACG, , snd those which are generalized absolutely
continuous in the wide ssnse or ACO, TIf, in the definition
(1) we replace the condition of ersolutely continuous
functione by the conditions that the function F is A7, ,
or ACC regpectively, we obtain the descriptive definitions
of the integralg.zz and j)., The second definition requires
a simultaneous generalization of the notion of derivative,
to wvhich is assigned the name of approximate derivative,
which correspends to approximate continuity.

Lefinition 1l: A finite function ¥ will be termed
absolutely continuous in the wide sense on a set E, or
absolutely continuous on E, or siumply &beolutely continuouvs
(Ac), if ziven any € >0 thers exists &n 5>0 such thut
for every sequence of non-overlapping intervals {-[ak,bk}f

whose end-poinis dbelong to E, the inequality ZE'(bk-ak)‘é n
trplies 2 [F(ey) - Fin )] <e.
k

Definition 2¢ A function F will be termed generslized

gteclutely continuous function in the wide sencge on ¥, or
generalized absolutely ocontinuous function on k, or fiﬁally
A7t on B 4f F 1s continuous on T and if E 1s the rum of 2
finite or enumerable sequence of sets E, on each of which F

1a AC,
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Definition 3: & finite funotion F is sald to be ab-
solutely continuous in the restricted sense on a hounded set
E, or to be AC, on E, if F is bounded on an interval containe
ing b and 1f to each &>0 thare corresponds ar X)) such
tliat, for every finite seqguence of non-overlapping intervals

sz} whoge end=-points belong to &, the inequa.lityz I Ikl<"l
k
inplies §O(F;1k)<€.

Definition 4: A function will be termed generalized

absolutely continuous on & set £, or ACG _on E, if the func—
tion 1is continuvous on £ and i1f the get £ ig expressitle =2
the sum of a sequence of vounded sets on ermch of which the
furction is AC_. | |

The egsential ideas for the Benjoy inteczrals have
already been sketched. ¥e will now complete them, A4
function of & real variable f will be tiermed ;9-dﬂt9grahle
on an intervel I = {a,h] if there exigts a funcilon F which
ig A7YC on I and which has £ for its approximate derivaiive
2lmost everyrhere. the function F is then called indiafinite
z)-integral of £ on ¥I. Its increment F(I) = P'(b}=I{a} over

the interval 1 is termed definite D-integral of T over-1I

erd is denoted by p {f(x) dx or Q/bf(x) dr.
&

Similarly, a function £ will e termed 9-1111‘.8;:3?&?)13

on an interval I = [a,b]l, if there exists & functiocn ¥ which
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18 ACG, on I and which hag f for its ordinary derivative
almost everywhere, The function F ig then callsd indefinite
éil,-integral of £ on I; the difference F(I) = F(b)=F{sa) is

termed dafinite Q-inteﬁral of £ over I and dencted by

{.Q,}{f(x) dx or by (2){ f(x) ax.

The intagrals ;9 angd és>, gre often given the nzunss
of Penjoy integrals in the wide sense, and in the restricted
s2nsge respectively. The first of these is algo termed Usnjoy-
¥hintchine integral, and the second, FengoyhPerren integral,
for the latter is equivalent to the Perron integral zsz we
have defined them.

The fundamentzl relations retween the Lenjoy wni
Lebesirue proceasses are given in the following:

Theorem_;g: 4 function £ which is 29 =intezrable on
en interval I is necessarlly also éza—integratle on I and we
have (g))/{ff dx = (22 ) J;.f dax.

2%: A function f which is lLebesgue integratle on an

interval I 1s neceasarily 29 =intecrable on I and w2 havs

(:) )/[”f dx z_)f f dx.

QS: A *anﬂtion which 4s ;D -integrahle and almost
sverywhere non-negative on an interval I is necessarily
lebesgue integrahle on T.

Thus we see for functiona of constant sigr the Tenjoy

processss &Te equivalent to those of liebesmue.
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