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CHAPTER I 

INTRODUCTION

The purpose of this paper is to make a study of the 
Stleltjea integral, more particularly the Lehesgue-Stieltjes 
integral, and to make a comparison of the Lebeegue integral 
and the Lebesgue-Stieltjee integral.

The Riemann integral receives some attention due to 
its relationship to the Lebesgue integral. The fundamental 
definitions and properties of the Riemansintegral are stated, 

The definitions and theorems of Variations of Func­
tions» which are essential to the Lebesgue Integral, 
are stated. Since the Lebesgue integral is the basis from 
which the Lebesgue-Stieltjes integral is derived it is given 
in more detail. Proof is given of such important theorems 
as those of Arsela-Young, Egoroff as well as the Lebesgue 
Convergence theorem. A comparison is made of the Riemann 
integral and the Lebesgue integral.

The definitions and fundamental properties of the 
Riemann-Stieltjea integral are given. The Lebesgue- 
Stieltjes integral is developed in detail.

Some consideration is given the Perron integral, the 
Perron-Stieltjes integral, and the Denjoy integrals.
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2

CHAPTER II

THE RIEMAKN INTEGRAL

In considering the Riemann integral let us restrict
attention to single real-valued bounded functions f(%)
defined on a bounded closed interval a ^  x 6b. Consider a
partition D of (a,b) into sub-intervals I^. Let h be theJ j
length of I j, let be a point of the interval Ij, and
N(D) * greatest h .. Let 8(D) » ZZ f (% ) h .J D 0 3

Definition J,,: A bounded function f(x) la integrable
on (a,b) in case the lim 8(D) exists. When it exists,

N(D)*0/b f(x) dx.
a

Definition tipper and lower integral. Let
M. * ^  f(x), ffi. » ^  f(x),J X j X

■§(D) * ZZ M.h-, 8(D) iB.h.,D J J D J 3
If 11m ̂ (D) exists, it is called the upper integral of 

N(D)*0
f(x), and is denoted by J  f(x) dx, A similar definition 
and notation are used for the lower integral.
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Definition Oscillation of a. function. For an 
arbitrary closed sub-Interval (c,d) of (a,b), let M(c,d) »
¥  f(x) for X In (o,d), m(o,d) « ^  f(x) for x in (c,d),
0(c,d) « M(c,d) - in(c,d), 0(x) * lim f(xj) - lim f(xj) «

Xj«X Xi*X
lira 0(x—d, x+d), where 0(c,d) is the oscillation of f(x) d=»0
over <o,d).

Definition A point set E has Jordan Content
zero in case, for every number there is a finite set of
intervals covering E, the sum of whose lengths Is less than 
yj . For every éyO, we shall denote the set of points in
(a,b) at which 0(x) ^ 6 by ,

Theorem A bounded function f(x) is Integrable on
(a,b) if and only if, for every the set has Jordan
Content zero.

j

Definition A point set E has Lebesrrue measure zero
In case, for every Jjj>0 there is a finite (or denumerably
infinite) set of Intervals covering E, the sum of whose 
lengths is less than .

Theorem A bounded functicaa f(x) is integrable on
(a,b) and only the aet D of points where f (x) ^  dis­
continuous has LebesvTue measure zero.

Only those definitions and theorems have been given 
here which are fundamental to the further development of the 
ideas of integration. Any further references will be made 
by name to those definitions and theorems which can be found 
in any standard work on the topic.
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CHAPTER III 
VARIATIONS OF A FUNCTION

Suppose w© have a real single-valued finite function
f(z) defined on a bounded interval a-xi^b. Consider a
partition D. Lot denote the segment (j=l..n)

n
Consider 8(D) « [f(aj) - f(&4_i )] * f(b) - f(a). Let

j=l J ^ ^
P(D) sum of the positive terms of S(d ) «=

i è  [Cf(aj) - f(aj_i)] 4- I [f(a^) -

Let —ir(D) be the sum of the negative terms of 8(D) «

Then P(D) -f N(D) - C  lf(aj - f(a, .) | .5*1 3 5-1
Let p(a,b,f) « P(D). This is called the positive variationD

of f on (a,b).
Let n(a,b,f) * B N(D). This la the negative variation ofD

f on (a,b).
Let t(a,b,f ) « B ^P(D) + K(D) ̂  , which is the total variation, 

of f on (a,b).
Definition 3L: If the total variation is finite, then

f is said to be of bounded variation on (a,b). Such a func­
tion is not necessarily continuous.

Theorem 1: If f(x) is of bounded variation on (a,b),
then f(x) may be written as the difference of two monotone 
increasing functions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Theorem The discontinuities of a function of bounded
variation on a finite interval (a,b) are at most denumerably 
Infinite.

Theorem If f(x) is of bounded variation on (a,b)
so also is I f(x) I •

Theorem 4: If are of bounded variation, then
f% + fg, fifg are also of bounded variation both on (a,b).

Theorem 5! Suppose f* and f, are of bounded variation 
and G(x) Is the greatest of and g(x) is the smallest of 
f»(x), fg(X ). Then G(x) and g(x) are also of bounded

variation, .her. G(x) - t  and3
s i x ) « " I T%(x) - Tg(x)|̂
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CîIAPTER IV 

LEBESGUE INTEGRATION

In the present century Riemann*s Integ;r&l has, for 
the purposes of theoretical investigations, been largely 
superseded by the more general formulation of Lebesgue.
The theory of Lebesgue integration has as its foundation 
the conception of the measure of a set of points.

Consider the Interval a < x < b ;  or for dimensions, 
â  ̂< < b^, i «  1, 2, 3,...., n. The length of the interval,
L(I), is defined as L(l) » b-a. Let M denote a point set
and I a sequence of intervals [l^(, n * 1,2,5,....  Let
be an open interval. The collection I covers M if each point 
of M belongs to at least one interval of the set. Then

L(I) « L(Ii) + L(Ia) +   and 0< L(l) 6  +oo
Definition The exterior measure of M is

ib̂ (M) « JB L(I) for the coverings I of M.
Theorem 1: For an arbitrary set M, mg(M) exists, and 
—  +00 .

Theorem 2* If M is contained in then m^( )  —
me(Ka).

Theorem If M, a 6 % ±b, is a bounded interval, then
m.(K) la equal to the length of this interval.
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Theorem 4î If M is Tx>unded, then mg(M) < +<?o ; if 
furthermore M contains an interval, then m@(M) ^ 0.

Theorem_5; The interval in a covering I of M may 
he restricted, without loss of generality, to he arbitrarily 
small intervals with rational endpoints.

Consider two point sets M and ÏÏ. M + ÏÏ denotes the 
set of all points belonging to M or F; MN the set of all 
points belonging to both M and H, Two point sets are equal,
M =e H, if the totality of points in one la the same as the 
totality of points in the other. -M denotes the set of all 
points X not belonging to M; CM the corapleraent of M. The 
symbol C  denotes ”is contained in” and the symbol 3  denotes 
“contains.” If Bf ̂  M, then M-N is the set of points belong­
ing to M and not to ÎT. Let 8 be the set of all points. Then
-M * 8-M. (-M)(-N) = -(M+N). 1Î -MH « (-K)N.

Theorem If Mi, M*, is a finite or infinite 
sequence of point sets and M = + M* 4» ...... then
rag(M) a  m g ( M l )  +  m @ ( M g )  +  ......

Definition 2,: Distance between Two Point Sets.
Suppose M and K are non-vacuous point sets. Then d(M,N) * 
d(K,M) a JB d(p,q), for p a point in M and q a point in ÎÎ.

Theorem %; If M and K are non-vacuoua and d(M,N) =
</">0 then mg(M+N) = m^(U) + (N).

Definition Z: If M is a given point set and m^CN) =
m@(MN) 4* mg(N-MN) for every point set H, then M is said to
be measurable. and its measure is m(F.) * (M ).
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8
Theorem 8: If Mj and are such that = 0 and

If one set is measurable, mgCMj+Ma) = mg(Mi) + mg(K,),
Theorem 9: If M is measurable, -M is measurable also,
Theorem 10; If Mj and Mg are measurable, then 

+ Mg is also.
Theorem 11; If Mj and are measurable, then MiMg 

is also.
Theorem 13; If and Mg are measurable, then

Ml—Ml‘Mg is also.
Theorem 13: If M is an interval, it is measurable.
Lemma 1,; If Mi C Mg C  MgC. — —  is an increasing

sequence of measurable point sets and M « Mi + Mg + ----- ,
then lim =» m@(MIf), for H an arbitrary point set,n=#e

Lemma If Mi M, Mg D ------is a decreasing
sequence of measurable point sets with product K, then
lim Mq (MjjN) » mg(MN), where N is an arbitrary point set 
n=s«>
with finite external measure.

Theorem 14; If Mi 3  Mg Z> Mg D  —  is a decreasing 
sequence of measurable point sets with product K, then M is 
measurable.

Theorem 15; If Mi C  C  —  is an increasing
sequence of measurable point sets with the sum M, then K  
is measurable.

Theorem 16: If Mi, Mg, Mg,   is any finite or
Infinite sequence of measurable point sets with the sura E, 
then M is measurable.
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9
Theorem 17; If M is an open point set, M is measurable.
Theorem 18: If M is a closed set, M is measurable.
Theorem 19; If Mi, is a finite or in­

finite sequence of measurable point sets, then their product 
is measurable.

Theorem 20; If m@(M) =* 0, then K is measurable and 
m(M) as 0,

Theorem 21: If either H or N is measurable and )
is finite, then * m@(M) 4- mg(H) - m@(MN).

Theorem 28: If Mj, M,, Mg, —  is a finite or infinite
sequence of measurable point sets and = 0, m ̂  n, then
Big [ S  Mi] * Z  m@(Mi).

Theorem 22: If M is a bounded measurable point set,
there exists a closed set M contained in M such that 
m(N) ^ m(M) — 6 for a preassigned positive é  ,

Definition 4; Interior Measure. Suppose M is a given 
point set and a measurable set oontained in M. The interior 
measure of M is ^^(M) » ^  m(N) for measurable K C  M.

Theorem 24; For any M, mi(M) ± if M is
measurable, »i(M) = m@(M).

Theorem 35: mi(îvî) is the least upper bound of the
measure of all closed point sots contained in M.

Theorem 26: If M is a point set with finite exterior
measure and rajĵ (M) » mg(M), then is measurable.
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Theorem 27* If Mîl = 0, m^CK) + m^(R) :£ niĵ (M+N). 
Theorem 38: If , Mg, Mg, — is any finite or in­

finite sequence of sets such that = 0 if n% ^ n^, then
oO oO

Mjc) ^  Z  miCMjj;).
Theorem 38: If m  = 0, then mj^(M+N) 6  m^d!) + it!g(N)<
and ^  m@(M) + <  mg(M+N).

Theorem 30; If ̂  la a point set with finite exterior
measure and is any measurable set with finite measure 
which contains then = ra(N) - mg(N-SiIK) = m(N) - rog(K-M)

Theorem 31: If M is a bounded point set contained in
a finite interval %, <?C < x < /f then M is measurable if and 
only if m@(M) + m^d-M) » me(l) “ m(l) ^  /f - o c  .

Theorem 33; (Arzela-Toung) If K^,   is an
infinite sequence of measurable point sets such that foroâ
every Integer ii m(M^) —  <̂ ">0 and mg( M^) < + <=>0 , and if
is a set of points contained in infinitely many of the sets
M^, then N is measurable and m(N) z? 6 .

Proof; Let N = H  % .  Then 3> % : > -
k«=n 1

By theorems 16 and 19 each Hjj and ̂  are measurable. Since
^  by theorem 2 m(¥jj) <5. By lemma 2

m(N) = lim £•
n= 00
We will suppose that f(x), g(x), f^(x) are single real 

valued functions for ̂  on a measurable set ^  with finite 
measure. When several functions are used it will be assumed 
that they are defined on the same set
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let E(f>o) he the set of points ^  of ̂  f o r which 
f(x) > c. Similar definitions apply to K ( f ^  o), E{f <c),
K(f ̂  c), and E(f«o).

Definition %: Veü.BxirBhle Functions f(x ) Is me&mnr-
able If for an arbitrary const£.nt ji the point sets D(f >  c), 

f —  o) , E(f <  o), and I)(f^c), are izeasnratle. Any one of 
the four conditions for nsaBurahility implies the other three.

PROi'hhTihh or iChAcr-Aî-hr nrHCTiori^

Prorertv %: If f(x) Is ireasuratdc and %  is a constant,
K • f(X ) and ?:+ f( x) are neasur&hle.

Property If fCx) and e^(x) are s^ensurable, then
F(f> g) is neasurahle for a particular ^  such that f(x) >
^(x), there exists a rational number r^ such that f(x) > 

g(x).
Property 5: If f(%) and g(x) are measurable, f(z) +.

g(x) is measurable D(f+^ > c) « D(f >  c?g).
Frcnerty 4: If f(x) and g(x) are measurable, then

f(x)*g(x) is measurable.
îhronerty If ^ f^(x) J  is a sequence of measurable

functions on E, then the functions ^(x) » lim f^(x) and
11=

T(x) » lim f (x) are measurable.nss^
Property 6i If f{x) is continuous on an interval 

<2< —  X —  B, then f(x) is measurable.
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Suppose jE la a measurable point set of finite measure
and f(x) is a single real—valued bounded function on
Then there exists an J[ such that j f(x)| —  M, x C. E, Let ̂
* ^  ĵ (x) and »  B f(x), /d' — M, Let D(yj ) bexCE xcE
a partition of <?ĉ , where <?c » ^  y% ^ ..... d:
Let /. be an arbitrary value such that 7^^-^ —  f* ^  ^i*

^orra 27 ^  ^ f < 7il * 8(D).

Definition 2; f(x) is integrable (sucimable) on the
point set E if liîu 3(D) exists, and this limit is denoted 
^ N(D)*0
y f(x) dx. This is known as the Lebesfrue Intesrral.
® _  ALet 8(D) « 2 Z  yim[E(y^_^ < f -  7 ^ ) 1 and ^(d) = S  ŷ ,_̂

< f ̂  y^)]. Then ^(d) ^  8(D) ± 8(D). L e t ^  f(x) *
lim H(D), if this limit exists. Let J  f(x) * lira S(D), 
îî(D)*0 “ E N(D)*0~
if this limit exists.

Definition If f(x) - K on E, then for an arbitrary
partition D 8(D) « K m(E). Hence f{ x) * K m(E), Let

E
Ig(x) = 1 for X C E, = 0 for x ^  E. Ig(x) is the character­
istic function of the set E, Then J "  lQ(x) = ra(E).

Theorem If f(x) is a bounded measurable function
on a set E of finite measure, then / f(x) and / f(x) exist 

** -E
and are equal.

Theorem If f(x) is a bounded measurable function
on a set ^  with finite measure, then f(x) is Lebesrue

s) on E.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13
Theorem If f(x) Is a bounded measurable function

on a set of finite measure and << ~ B  f(x), ^  = B f(x),
, XCE xcE

then m(E) —  /  f { x ) 6  /^m(E).
E

Theorem 4: Suppose ^  has finite measure and is
a finite or infinite sequence of measurable sets such that 
^n^m ** 0, n / m, and E = ^  E^. If f(x) is a bounded measur­
able function on then f(x) is summable on E, and fix)

. f /  f(.)./ %
Theorem If f(x) and g(x) are bounded and measurable

on E, f(x) - g(x) for x in E, then J  t{x) - g { % ) .E E
Theorem 6i If f(z) and g(x) are bounded and measurable 

on a set ^  of finite measure, then f(x) g(x) =» 
y  f(x) *f g(x).E E ^

Theorem 7; If ^  is a constant, then J  Ef(x) =
K f  i(x).E

Theorem If f(x) is bounded and measurable on a set 
^  of finite measure, then J f ( x ) l is measurable on and
j T  f (x) J - J ^ j f ( x ) l .

E E
Definition; A proposition is said to hold almost 

everywhere on a set if it holds at every point except for a 
subset of Lebesgue measure zero.

Theorem j?: If f (x) and g(x) are bounded measurable
functions on E and f(x) « g(x) almost everywhere on then
J  f i x) * g(x).«A?
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Theorem 10; If f(x) In a bounded measurable function
on f(x) ̂  0, andy^f(x) = 0, then f(x) = 0 almost everywhereS
on

Theorem 11; (Sgoroff). If ̂ f^(x)j Is a sequence of
finite valued functions which converge almost everywhere on
JE to a finite limit function, f(x), then for ^ > 0  there
exists a set S oontained in E such that mCs) >  ra(E) - 6
and lim f_(x) = f(x) uniformly in E. 

n=oo
Proof; Let he a subset of JE for which ^f^(x) ̂

tends to a finite limit function and m(So) = m(E), For a
given 0 let be J f^(x) - f(x) i , For arbitrary
X C  Eq and n sufficiently large ] f^(x) - f(x) I ̂  </". Let
Sjj » ̂  . Then U  8^ « 0. But 8^ Z> ^ ......» &bd

n ^  1 «0the Si are measurable. Hence lim m(S^) = m( rj S^) by lemma 2.1
For each / ' ^ O  and > 0 there is an integer n(</',n) such that 
wCSn(</*,n)l < . Let ” I k  ̂ ^bd ^

arbitrary preaesigned ^ ? 0. Then m [ L e t

<50
S = 2ZZ Sw (^, Tr). Then M( 8) 6 by theorem 18, Let

1 " 2 ^
?  = E-S, Then m(E) = m(E) - ^  . For a given </" choose k

so large that ^  Then for x C * 2 C E  - â  8^ there
is 9J1 integer such that | f^(x) - f(x) ^  and

s
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I fn+p(z) - f(x) I  ̂ J for n >  Hence ) f^+p(x) -

f^(x) I < ̂  for X C S and n > ffiQ*
Theorem 13; (LelDesgne*s Convergence Theorem),

Suppose I* f^(x) I is a sequence of measurable functions on 
JE and I f^(x) J — M, and lim x) « f(x) almost everywheren=«»o
on . Then 11m J  f j x)  ^  f ( x ) .

Proof: Let Eq be E[ lim f^(x) = f(x)]. Then
n=co

m(E-Eo) as 0, or m(E) = f(x) is measurable on by
property 5, and hence measurable on . / f(x)/ ^  M. Then
f(x) is sumniable on Eq and on E and / f(x) = / f(x),

%  ' i
fly Egoroff*s theorem, given € > o  there is a set If C  such 
that m(EQ) — m(E) >  mCE^) — and [ f ^ ( x ) J  converges to

f(x) uniformly on E. Choose n^ such that / f y ^ ( x )  - f(x) I ^  

I m W T  X C  E and n —  R g .  ^ / f ( x )  - f ^ ( x )  I —

fn(^) ~ f ( x )  “ /fpCx) - f(x) I + If (x) - f(x) IEq ^ Eq-S . E

~  - I  + I  = Henoe 11m ^  f^(x) -
^  n=5»o Ejj

/ f(x). Then lim J  f«(^) *“ J  fn(x) + j f (x) =E^ n * ^  E n=<^ Eq

^  f(x) * y  f(x).E
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CHAPTER V

A COMPARISON OF THE RIEMAM INTEGRAL AND 
THE LEBESGUE INTEGRAL

Tiie definition of the definite integral as given by 
Riemann is very precise and leaves nothing to be desired 
in this respect. It is not only of interest from an 
historical point of view, but it still possesses great 
importance in Analysis, It will continue to be the basis 
upon which practical application of the Integral Calculus 
rests.

Several attempts were made to generalize the process 
of the Riemann integral, but Lebesgue first made progress 
in this matter. His theory of measure has in its turn, 
naturally lad to further generalization.

The distinction between the Lebesgue integral and 
the Riemann integral rests essentially upon the difference 
between the two modes of dividing the domain of Integration 
into sets of points.

The functions which are measurable in the sense of 
Lebesgue, and whose definition is closely related to that 
of measurable sets, form a very general class. This class 
includes, in particular, all the functions integrable in 
the Riemann sense.
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The method of Lehesgue may he considered simpler than 
that of Riemann for it dispenses with the simultaneous 
introduction of the two extreme integrals, the lower end 
the upper.

Thus the Lebesgue method lends itself to an immediate 
extension to a certain class of unbounded functions, for 
instance, to all measurable functions of constant sign.

The Lebesgue integral renders it permissible to 
integrate terra by terra sequences and series of functions in 
certain general oases where passages to the limit under the 
integral sign were not allowed by the earlier methods of 
Integration. The reason for this is found in the complete 
additivity of Lebesgue measure.
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CHAPTER VI

THE RIEÎ.1AKM-STIELTJE3 INTEGRAL

The notion of the integral of a bounded function f(x), 
defined in the linear interval (a,b)^ with respect to another 
function ^ ( x ) ,  defined in the same interval, is a generali­
zation of the integral of a function f(x), with respect to 
the variable x. This notion was first introduced into 
Analysis by Stieltjes in connection with the theory of continued 
fractions•

Suppose f(x) and ^(x) are bounded functions, defined 
in the interval (a £: x éb). Consider a partition D of (a,b) 
into subtntervals Ij. Let hj be the length of Ij, let Xj be 
a point of the Interval Ij, and N(d ) = greatest h^. Let

8(D) = ^  f(%j)[f (Xj ) - f

If the functions f(x), ^ (x) be such that the lim 8(D)
N(D)=0

exists, f(x) is said to have a Stielt.ies Interrral with respect
to <h{x), W'hen it exists, this limit is denoted by 
/-b

J  f(x)df{x). It will be spoken of as the Riemann-otieltjes
integral, or (RS) integral.

Definition; Upper and lower inte>?ral;
Let f(x) be any function bounded in (a ^  x ±  b) and 

let <^(x) be a bounded monotone non-decreasing function.
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defined for the same interval. Consider a partition D of
(a,b) as above. Let ^  j +Q(f (x) ), =» B J . n( f (x) )j-1 J ^ - 1 ^
in the open interval

3(D) = C<|>(xj-0) - -̂ >(ij_i+0)] + 2Z f(Xj)[*(ij+0)-^ij-0)]

â(D) = Z  Kj [^(xj-0) - ̂(Xj_^+0)] + S  f(Xj)[<^(xj+0)-^Xj-0)]

If lim S(P) exists, it is called the upper Hiemann- 
Stieltjes Integral of f(x) with respect to ^(x), and is 
denoted by j f(x) d^(x), A similar definition end notation
are used for the lower Hienann-'^tleltjes Integral,

Stielt j 68 established the existence of the integral for 
the case in which f(x) is continuous in (a,b) and <t>(x) is 
a function of bounded variation in the same Interval,

Theorem 1: If f(x),^(x) be any two functions for
/b y b

f(x) d^(x) exists, then / <j>(x) df(x) exists and 
«. a

the two integrals satisfy the relation
/'b y b

J  f(x) df(x) + y 4^(x) df(x) = f(b)^(b) - f(a)^(a). 
a -'a

Theorem If f(x) be bounded in (a,b), and <^(y)
be of bounded variation in the same interval, the necessary 
and sufficient condition that f(x) should have a Riemann- 
Stieltjes integral with respect to 4>(x) is that the varia­
tion of <^(x) over the set of points of discontinuity of
f(x) should be zero.
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Theorem If fi(x), fg(x) "both have Hieîri8.nn-Stieltjes 
integrals with respect to the monotone function then
fx(x) + fg(%) is integrable (RS), with respect to 4^{x)

and [ f x ( x )  -f fg(x) ? df(x) = Z ' fi(x) df(x ) + f fa(x) x).

^nether property of the Hiemann-Stieltjes Integral
is that

f(%) df(x) * f(x) d«#>(x) + f(x) d^x).
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CHAPTER VII

THE LfBESGUE-STIELTJES INTEGRAL

% r e  is an analogy "between additive f"unctions of 
bounded variation of an interval and additive functions of 
sets. This analogy will be presented in this paper, by 
associating a function of a set with each additive func­
tion U of bounded variation of an interval, shall 
suppose that the functions of an interval are defined in 
the whole space of H dimensions,

A figure is defined as a set expressed as the sum of 
a finite number of intervals, U(I) is then defined as a 
function of an interval on a figure R [or, in an open set G] 
if U(I) is a finite real number uniquely defined for each 
interval I contained in R [or in G],

A function of an interval U(I) is said to be additive
on a figure Rq or in G, if U(Ii + I*) = U{Ii)+ U( 1̂ )̂ when­
ever Ii, I, and Ij. + Ig are intervals contained in R^ [or
in G] and 1% and I* are not overlapping.

The upper variation of U on Hq is the upper bound 
of U{R) for figures R C R q . shall denote it by
^  (U;Rq ), The definition for the lower variation is
similar. Lower variation is denoted by 2  (U ; ) .  The
number W (U;Ro) + 1 2  I » which is non-negative, will
be called absolute variation of U on Rq and we denote it
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by W(U;Rq ), If W(U;Rq ) the function U is said to
be of bounded variation on R^.

Suppose given in the first place, a non-negative 
additive function U of an interval. For any set F we denote
by U^(F) the lower bound of the sums ZZ U ( ), where f ^

k
is an arbitrary sequence of intervals such that F C  %% i^. 
For an arbitrary additive function U of bounded variation, 
with the upper and lower variations and we denote by 

and (“^a) the functions of a set that correspond to the 
non-negative functions and -W,. Then we write by defini­
tion, = Wj - (—Wg)^, The function ÎJ^ls thus defined 
for all sets and is finite for bounded sets.

î hen U is non-negative, Is an outer measure in 
the sense of Caratheodory. That is, it fulfills the three 
conditions for Caratheodory measure. The first two condi­
tions are obvious but the third condition requires proof.

Let A and B be any two sets whose distance does not 
vanish, and let ^ be a positive number. There is than a 
sequence  ̂I^^ of intervals sucfi that [A+B] C  1° and

Z 2 U( I- ):S ü*(A-tB) +€, We may clearly suppose that the 
n
intervals of the sequences have diameters less than 
We then have (A) + U^(B) ±  U*(A+B), Then u '̂ (A) + u ‘*{B) =
Ü (a+B) which establishes the third condition.
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Y'The function ü , determined by a non-neficative function 

of an Interval, itself determines, since It is an outer 
Caratheodory measure, the class of the gets measurable
with respect to U^^and the process of integration To
simplify the notation, we shall omit the asterisk and write 
simply for integral (U) for integral (U*),
measure U of a set instead of measure (U^), J  fdU instead

r  *of J  fdU , and so on. Thfe slight change of notation will E
not cause any confusion, since the measure U ^ i s  determined 
uniquely by the function of the interval U.

'^hen U is a general additive function of an interval, 
of bounded variation, we shall understand by the common
part of the classes and , where and V/ denote
respectively the upper and lower variations of U. A function 
f(x) of a point will be termed Integrable (tJ) on a set h, 
if f(z) is integrable (W%) and (-7g) simultaneously, by 
the integral (ü) of f(x) we shall mean the number
J ' fd(-Wg). '̂ e shall write it fdU as in the
E E  E

case of a non-negative function Ü. This integration with
respect to an additive function of bounded variation of an
interval is called the Lebesgue-Stielties integration or
eimply hS-integration. In the case of the integration
over an interval I = [a,b] in R% [straight line], we
frequently write J  fdU for / fdU,a
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When the function U is oontlnuoue, every Indefinite 
integral (u) vanishes, together with the function on 
the boundary of any figure. Consequently an indefinite 
Integral with respect to a continuous function Ü of bounded 
variation of rn interval is additive not only as function of 
a set { but also as function of an interval.

Originally, these notions njid the theorems that follow 
from them referred, not to additive functions of en interval, 
but to functions of a real variable, W© can establish a 
correspondence between functions of a real variable and ad­
ditive functions of a linear interval. This correspondence 
will render it immaterial which of the two kinds of functions 
i3 considered.

To do this, let f(x) be an arbitrary finite function 
of a real variable on the interval . bet us term Increment 
of f(x) over any interval I ~ (&,b) contained in 1q , the 
difference f(b) - f(a). Thus defined the increment is an 
additive function of a linear interval I C  Iq, and corres­
ponds in a unique manner to the function f(x). Conversely, 
if w® are given any additive function F(I) of a linear 
interval I, this in itself defines, except for an additive 
constant, a finite function of a real variable f(x) whose 
increments on the interval I coincides with the correspond­
ing values of the function F(I).
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We shall understand hy upper, lower, and absolute 
variations of a function of a real variable f(x) on an 
Interval I, the upper, lower, and absolute variations of 
the increment of f(x) over I. We shall denote these 
numbers by the symbols f ;I), W.(f;I) and W(f;I) respectively.

A finite function will be termed of bounded variation 
on an interval if its increment is a function of an inter­
val of bounded variation on I^, Similarly, the function is 
absolutely continuous or singular if its increment is 
absolutely continuous or singular.

Thus we can see that the difference between the 
definitions adapted for functions of an interval and for 
functions of real variables is only formal. Other definitions 
for the functions of a real variable can be set up by a 
proper modification of those for functions of an interval.
In various oases it is more convenient to operate on functions 
of a real variable than on additive functions of s.n interval, 

As is true in the case of other Integrals, we can 
state the necessary and sufficient conditions for a function 
to be L8-integrable. Those conditions are (1) The function 
must be Borel measurable and bounded or (2) The function 
must be measurable and equally absolutely continuous.

It is necessary to consider step functions and jump 
functions in connection with the bebeague-Stieltjes integral.
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We shall consider the integral fdc% to be a LS'­
intégra! for <sC non-decreasing and continuons. Then we 
consider the integrals f  ̂ ( T and d^-^o. W©
shall suppose these functions are defined for all points of 
a maasurable set E of 6. Let the characteristic function 
of the set L be . Then f(S) d ^ *  The theory can
be built up in the Lebesgue sense by a systematic treatment 
analagous to that for the Lebesgue integral,

Kow let ^  be a non-decreasing function. Then we may 
write oC s* P  4- 0, where P  is a continuous non-decreasing 
(step) function and 0 is a non-decreasing (jump) function.

Definition 1: The exterior measure g_ (E) * b ZI^Pe

Then we can define convergence almost @very?;her@, 
convergence approximately, and convergence almost uniformly, 
each with respect to P  ,

For the stepfunctions we have: 
i ^JcT dr** "ZZT <3̂ T* and 0" ( <T̂ , <5^2)»/^^*<>"2idP,

Hence wé get completeness,
We shall next consider the non-decreasing jump func­

tion which satisfies the definition of a jump function. That
is 0(x) = [0(o) - ©(o—0)1 + ^2—  ̂ [0(040) - 0(c)3.

a ̂  c - X a <x
Now for the function f to be Lebesgue integrabie with 

respect to 0 the 2 T  f(o)[0(c+O) - 0(c-O)l must converge 
absolutely. Then by definition the Integral ^ f  d© =
/ZT f(c)[0(o+O) - 0(c-O)l.
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Definition A function f that is Lehesgue integrahle
with respect to e C is Lebesgue integrable with respect to r* 
and Ô,

Then since the function f is Lebesgue integrahle with 
respect to oC the LS f  fAcc = ^ f d  r  + ft6%.

Definition W© shall define measure here to be;

g^CE) rat J  <P dOC where Cp is a Lebesgue interrrable function S S '
with respect to <?C ,

Definition a * The exterior measure of G la
a a Z U  [e(c+o) - e(o-o)].

Then ^(E) * g^(E) + gf(E); also E ) ± Z g " ( E ) .
We may now treat In a similar manner many of the 

theorema for the Lebesgue integral for the Lebesgue-Gtleltjes 
integral, have a theorem for the Lebesgue integral?—
If ±  then j fdx ^Jgdz. Written for the Lebesgue-
Stieltjes Integral it reads: Suppose << non-decreasing and
fJ and f© are Lebesgue integrable functions with respect to 
oC , then y^fjdx ~y"fadx.

W© shall consider g^(E) = g®(E), Since [G(c4 0) —
G (o-O)] is absolutely convergent, additivity follows.

Definition h(x) is absolutely continuous with 
respect to <?C if for every O O  there is a y >  0 such that 
af^(E)^/“ lt is true that / h(E)
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Kow we have the theorem for the Lebesgue integral:
If f Is a Lebesgue integrable function then the integral
j fdx is absolutely continuous. Treated for the LS-integral%
it reads: If f is a Lebesgue integrable function with
respect to oC then the integral / fdx is oQ -absolutely 
continuous. »e will iôclude the proof, may take f —  0 
and f * f A n. Then there is an n such that^/^ fdc?C — J f̂ dcK"<

Hence, by Levi’s Theorem f  (f-f^)dx<'-^. Then for g^E)

ĵ doc ^ n if g^(^) — This is true for
special points.

Theorem %; If oc is non-decreasing, and the distance
function is fj — f# / d<X, the Lebesgue space is coxzplete
with respect to .

Proof; If is continuous this is true at once,
Suppose oC « r» + <9 , Then we shall consider that if ' fp-f^i û.oC

->0, then y7Tjj-f|a/ dr-^0 and  ̂ d © 0. Then
there is a function f that is a Lebesgue Integrable function
with respect to P  such that / l  f^-f / d r  ̂  0. -̂ Iso
//fjj-fHI / d© = ^ I T jjCc ) - fgjCc)/ [©(c+0) - G(c-O)]. Hence

c
|f^(c) — fgj(c)/ 0 for every jump. There is an f defined
at the jumps c such that fjj( c ) -5» *f( c ). How take

& :  |f(o) - f_(o) 1 [e(tM-O) - e(o-O)]^: &%|f(o) - f (c)|Ca*Cj Cl '■
[©(c+O) — ©(c—0)1 + If (o) — f (c) I [©(o+O) - ©(c-O)l —
0 V  , i _

f  ( c )  -  f in (c ) /  [© (c+0)  -  © ( c - 0 ) ]  + e  f o r  There foreCl* ^
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C@(o+0)-^(c—o)] for nXt and p an arbitrer;" value*c J, ^Therefore

/ ) f  - t J  0 and / / f  - f^/dr-^0. Then / / f -* f^jdoc
-> 0 and we get completeness#

Theorem 2; The set of all step functions is dense on
-space with distance « f l ^ x  “ / doc.

2roof: Point steps are allowed. Then for every ^ > 0
®o /there is a 0* such t h a t  /  / tf" - f / and an H such tîiat

/ff“/ ^ M. Let * f at a sufficiently large nuBtber of jumps 
of 6 so tiî it for the remaining jumps
71*i€^(c*0) - e(o-O)] < ^ a n d  Z l f ( c ) l [ e ( c + 0 )  - e(c-c)]<^

4M 4
Let (Tj * d" elsewhere, still have - f / dr*
Then j fl© - 2 1 1a7(o)lL®<o+0) - ©(o-O)] +
2I*P(o5He(c+o> - e(o-c)] ^  | +  |  .

Te will treat one more theorem of Lebesgue for î.ebesgue-
Stieltjes. The theorem for Lebesgue is: Suppose that the
Lebesgue integrable functions f j j f  approximately and f%̂ dxk
are equally absolutely continuous, then the function f is a 
Lebesgue integrable funotion and J  f^dx fdx uniforaly5Î S
for L measurable. Treated for Lebeague-Stieltjes it reads: 
Suppose the Lebesgue integrable functions with respect to oc

f approximately with respect to oC and that isE
equally absolutely continuous with respect to then tha 
function f is a Lebesgue Integrable function with respect 
to <jC and / f-d «x -? / fd uniformly for L oC-meaaurable, 

7*roofI J'roK equal absolutely omtinulty ws have for 
every 6 ?0 there ie a </p 0 such that the measure E ) < (/̂
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then I d (X. z: e . By approximate convergence wa have an 
ÎÎ auch that It Is true that where 2 ^ ^  ia the
set I / > <̂ ]. the points where oC has jumps -> f,
Therefore for ® > îî it is true thaty '  j f^-fnj d oC

X  f  I f m f  +  lfnl?4<<- +  /  I f„-fJdoC;?2e + 2f[oc(b)-«{a)],
®œne

How there is a L3-lntegrahl© funotion T  such that 
11m j / fjj—f / doc» 0, Hence f_-> ?  approximately with respect 
to cC, Therefore the f Is a Lehes;gua integrable funotion 
with respect to oC .

Ag has already been pointed out there is a marked 
analogy between additive functions of bounded variation on 
an interval and additive functions of seta. All of the 
essential properties of the ordinary lebesgue integral, 
except at most those implying the process of derivation hold 
for the Lebesgue-Stieltjes integral.

However, the Lebesgue— Stieltjes integral is not, in 
general, an additive function of an interval.

Since there is such a close analogy between the two 
Integrals we can treat many of the theorems for Lebesgue 
integration for the Lebesgue-Stieltjes integral, %  have 
treated some in this manner.
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CHAPTER VIII 
THE PSRRCH INTEGRAL 

and
TRE PERHOH-SîIELTJïiS INTEGRAL

Perron Introdnoed a new definition of an Intep^ral 
based on major and minor functions. It does not require 
the theory of measure. In its original form this defini­
tion oonoemel only Integration of bounded functions, but 
it hae now been extended to unbounded functions.

Moreover, the Perron integral m y  be regarded as a 
synthesis of the two fundamental conceptions of integration. 
One of these corresponds to the idea of the definite inte­
gral as limit of certain approximating sums. The other one 
corresponds to the idea of the Indefinite integral as a 
primitive function.

The notions of major and minor functions, and their 
applications to Lebesgue integration are discuseed for 
arbitrary spaces. In defining the Perron integral, and the 
Perron-Stieltjss integral, we shall limit ourselves to 
functions of one real variable.

shall suppose we are given a regular sequence 
9^ nets of intervals in a space Rĵ  and a function
of an Interval F in R%. denotes any interval containing
X and belonging to one of the nets ^ ,
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definition shall call npper derivate of F at
e point % with respect to the sequence of nets 5^ the t^per 
limit of the ratio F(<^)/y4’ias By symmetry we
define similarly the lower dérivât^ of F at % with respect 
to the sequence of nets ̂  shall denote these two
dérivâtes hy (^)T(x) and '«hen they are equal
at a point x, their common value will be denoted by (^)F (%) 
and called the derivate of F at % with respect to the 
sequence of nets ^ .

Definition 2,: ^ system of intervals will be called
a normal eet in the space when it consists of the closed

intervals ; ---» «4*^* ®4+l ^
k = 0, jJL, âiZf — , which are determined by systems of 
numbers $4^^ subject to the condition ®4+l*
i a* 1, 2» , m and k » — -, -1, 0, +1, and
lim al^^ » ±*»o« ^ regular sequence of normal nets will
k-̂
bo termed normal sequence*

Definition 3; An additive function of an Interval F 
is termed üa^or f>*inor1 function of a funotion of a point f 
on a figure if, at every point % of this figure,
• OÔ ^  Fg(x) f(x)[e* «PÔ y/ Fg(x) ^  f(x)]. Then it follows 
that if the functions of an interval II and V are respectively 
a major and a minor function of a function on a fi|çure 
their difference tJ—V, is ra>notone non—negative on
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Theorem 1; If f Is a stimm&hle function, then, for 
each € > Q ^  the function f has an absolutely continuous major 
function U, and an absolutely continuous minor function V 
such that, for each interval I, 0 ±  D( I) f(x) dx —  ^
and 0 - ^

Let U be any major function of f on and let ? be
any minor function of f on A function of a real variable,
f, is termed Integrable In the sense of Perron on a fî -'jre 
Rq in Ri, if f has both major and minor functions on and 
if the lower bound of the numbers U(Rg), and the upper bound 
of the numbers VCR^) are equal. The common value of the two 
bounds is then called the definite Perron integral, of f on 
Rq , and denoted by f(r) d%. For a function f on a
figure Rq to be integrable It is necessary and sufficient 
that for each «f70 there should exist a major function U and 
a minor function V of f on H© such that U(Rq ) - V(Ro) < 6  .

Since the funotion Ü-V is monotone non-decreasing for 
every major function Ü and every minor function V of f, then 
every function which ia integrable on a figure is 
also on every figure R C  R^, The funotion of an integral 
P(I) *s,«^^f(x) dx, thus defined for every interval I Cl Rq, 
is called an indefinite Perron integral of f on Rq  ̂ Thus 
F(I) is an additive function of an interval, A function of 
a real variable is termed Indefinitôc/^ —Integral [major, 
minor function] of a function f, if this is the case for the 
function of an Interval determined by it.
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From theorem 1 we see that every funotion which is 
integrable In the sense of hebesf^ue on a figure R©» Is so 
in the sense of Perron, and Its definite Lebesgue and Perron 
integrals over are equal,

Theoren 3; Pvery <3/'— integrable function is rapasurable, 
and Is almost everywhere finite and equal and equal to the 
derivative of Its indefinite Integral.

Theorem Every funotion f which is integrable 
and almost everywhere non-negative on a figure Rg, is eummable 
on this figure.

This theorem shows that although the Perron integration 
is more general than Lebesgue integration, the two processes 
are completely equivalent in the case of integration of 
functions of constant sign.

In considering the Perron-Stieltj es integral we shall 
restrict ourselves to finite functions. Supposa we are given 
two finite functions f and G, ^n additive function of an 
interval U will be termed ma^or function of f with respect 
to G on an interval if to each point x these correspond 
to a number <?>0 such that U(I) «  f(x)G(I) for every interval 
I containing x and of length less than <f • The definition 
of minor function with respect to 0 is symmetrical, Row 
following the method, for establishing the Perron Integral 
with the help of the notions of major and minor functions 
with respect to G, we define Perron—Stieltjea integration,
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or c^S— integration with respect to any finite function G 
whatever. The .^^«integral of a function G on an interval

will be denoted by { ^ B )  t { % ) dQ(x), or by
_  /-b(jTs) j  f(x) dG(x).

The criterion for ,^%-integrabllity of a function is 
entirely elailar to that «^-integrability.

If G(x) = X for every poiht % *7^3-integration with 
respect to G tx>inold0s with intégrât ion. Thug the 
Perron-Stieltjea integral includes the ordinary Perron integral, 
at any rate aa regards integration of finite functions. The 
Perron-Stieltjes integral includes also the Lebeegus-Stlaltjes 
integral. But the definite Perron-Stieltjes and Lebesgue- 
Stieltjes integrals are not slwaya equal, even for a function 
f integrable in both senses. This is due to the fact that 
the indefinite integral of Lebeegue-Stieltjes is not in 
general an additive funotion of an interval.
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CHAPTER IX 
THE DEHJOY IHTEGHALS

We may regard the Lehesgue Integral as a special 
modification of the conception of the integral due to Newton, 

define it as follows;
(L) A function of a real variable f is integrable 

if there exists a function F such that F^(x) » f(%) at 
almost all pointa and F is absolutely continuous.

The function F (then uniquely determined apart from 
an additive constant) is the indefinite integral of the 
function f.

This is a descriptive definition of the Lebesgue 
integral; that is, it is baaed on differential properties 
of the indefinite integral and therefore, connected with 
the Newtonian notion of Primitive,

The definition (L) constitutes a modification of 
that of the Integral of Newton, in two directions. have 
a generalization which enables us to disregard sets of 
measure zero in the fundamental relation F^(x) = f(x).
There is an essential restriction which excludes all but the 
absolutely continuous functions from the domain of continuous 
primitive functions considered.

Although it is not possible to wholly remove the second 
modification from the definition (L) it is possible to replace 
it by much weaker conditions. The corresponding generaliza­
tions of the notion of absolute continuity give rise to
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extensions of the Lebesgue integral, known as the integrals
end ̂  o f Lenjoy. *?© shell consider two généralisât Iona

of absolutely continuous functions: the functions which
are generalized absolutely continuous in the restricted
sense or ACG^ , and those which are generalized absolutely
continuous in the wide sense or ACC. If, in the definition
(L) we replace the condition of absolutely continuous
functions by the conditions that the function F is A C C ^ ,
or ACC respectively, we obtain the descriptive definitions
of the integrals ^  and ^  . The second definition requires
a simultaneous generalization of the notion of derivative,
to which is assigned the name of approximate derivative,
which corresponds to approximate continuity,

Definition 1,: A finite function F will be termed
absolutely continuous in the wide sense on a set or
absolutely continuous on L, or simply absolutely continuous
(AC), if given any é > 0  there exists an )̂  >  0 such that
for every sequence of non-overlapping intervals ^ ^
whose end-points belong to the inequality ZT ^ ^k
implies fF(b^) — F(a^) / € .

k
Definition 2; A function F will be termed generalized 

Rclutelv continuous function in the wide senee on or
generalized absolutely continuous function on F, or finally 

o n  E if F Is continuous on D and if F is the cum of a 
finite or enumerable sequence of sets on each of which F 
ia AC,
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Definition A finite function F is said to be ab­
solutely ccmtlnuous in the restricted sense on a bounded set 
E, or to be AC^ on if F ig bounded on an interval contain­
ing D and if to each ^ ^ 0  there corresponds ar ^>0 ouoh 
that, for ©very finite sequence of non-overlapping intervals

whose end-points belong to the inequality2T /

implies 2 7 o (F;I^)^£,
k

Definition A function will be termed generalized 
absolutely continuous on a set or ACG^on E, if the func­
tion is continuous on F and if the set E ig expressible as 
the sum of a sequence of bounded seta on each of which the 
function is AO^.

The essential Ideas for the Benjoy integrals have 
already been sketched, We will novi complete them, A. 
function of a real variable f will be termed ^  -integrable 
on an interval I =* [a,b] if there exists a function F \fnich 
la ACG on I and which has f for its approximate derivative 
almost everywhere, The function F ia then called indefinite 
^-integral of f on I, Its increment F(ï) « r(b)-F{a) over 
the interval I is termed definite ^  —Integral of f over I

and is denoted by ^  y^f(x) dx or ^  f(%) dr..
I a

Similarly, a function f will be termed ^  — integrable 
on an interval I = [a,b], if there exists a function ï which
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is ÂCG^ on I and which has f for its ordinary derivative
almost everywhere. The function F is then called indefinite

-integral of f on I; the difference F(l) « F(b)-F(a) is
termed definite — Integral of f over I and denoted by
(-^ ) y^f(x) dx or hy < ̂  f (x) dx.

Î b
The integrals ^  and ^  , are often given the names 

of ^enjoy integrals in the wide sense, and in the restricted 
sense respectively. The first of these is also termed hgnjoy- 
Khlntchine integral, and the second, Tenjoy-Perron integral, 
for the latter is equivalent to the Perron integral as we 
have defined them.

The fundamental relations between the Den joy &ii d 
Lehes.'pje processes are given in the following;

Theorem 1°: A function f which is ^  —integrable on
an interval I is necessarily also ^-integrable on I and we 
have i ^  ) j Ç f dx » f dx.

2^; A funotion f which is Lehssgu© integrable on an 
Interval I is necessarily ^-integrable on I and we have
( %  ) /" f dx = f  f dx.

^  I2^; A function which is ^  -integrable and almost 
everywhere non-negative on an interval l i s  necessarily 
Lebesgue integrable on I.

Thus we see for functions of constant sign the Donjoy 
procesces are equivalent to those of Tiebesgue,
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