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demographic sensitivity analysis (90 pp.)

Director: Dr. L. Scott Mills

W ildlife biologists must often decide how best to manage species, despite incomplete 
knowledge, scarce funding, and the complexity o f natural systems. This thesis addresses 
one promising tool for wildlife biologists: matrix-based demographic sensitivity 
analysis. By sensitivity analysis, I am referring to methods which measure the 
“sensitivity” o f population growth rate to perturbations in specific vital rates (i.e. birth 
and death rates) associated with an organism’s life history.

I address sensitivity analyses in two chapters. The first chapter is an example o f how 
such methods are used to provide insight into the management o f brown-headed cowbirds 
{Molothrus ater). Collectively, the analyses indicate that natural variation o f egg survival 
likely determines population growth when mean values o f egg survival are low (yet 
plausible) or when high variation exists around mean rates. When the natural range o f 
egg survival does not encompass low rates, yearling survival increases in importance.
Due to uncertainty in vital rates, it is currently impossible to ascertain the true sensitivity 
o f these two vital rates. Management actions that decrease only adult survival on 
breeding ranges are not expected to regulate population growth. In contrast, trapping on 
wintering ranges are expected to be more effective as these techniques reduce both adult 
and yearling survival. However, the impacts o f winter trapping may be swamped by high 
egg survival.

In the second chapter o f this thesis, I experimentally test predictions o f four commonly 
used matrix-based methods o f sensitivity analysis for common deer mice {Peromyscus 
maniculatus). Deer mice provided us with a study system in which I could easily monitor 
and manipulate entire populations.

All analyses indicated that population growth rate should be sensitive to perturbations in 
adult female survival and relatively insensitive to perturbations in juvenile female 
survival. I then tested these predictions using three treatments: (I)  a 50% reduction o f 
adult female survival; (2) a 50% reduction o f juvenile female survival; and (3) a control. 
Counter to the predictions, treatments were equally capable o f reducing population 
growth rate over a short time span and had few effects over longer periods o f time. Using 
m y field data, I identify non-stable age distributions, vital rate compensation, and 
demographic stochasticity as factors that may have lead to my lack o f treatment effects. 
Both non-stable age distributions and compensation o f vital rates can drastically alter the 
predicted sensitivity o f vital rates. Using methods which allow the practitioner to 
incorporate actual age distributions can avoid the problem o f non-stable age distributions 
and post-treatment monitoring can be used to incorporate the effects o f compensation. If  
monitoring programs are designed to estimate vital rates, compensation can be identified 
and used to re-evaluate predictions o f sensitivity, thereby improving management.

11
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PREFACE

W ildlife biologists must often provide management insights, despite incomplete 

knowledge, scarce funding, and the complexity o f natural systems. Clearly, objective and 

cost-effective tools that provide a reliable assessment o f management options are needed. 

Ideally, such tools can be used to provide insight into the efficacy o f management options 

before management is implemented, thereby reducing negative consequences and cost 

associated with inappropriate management.

Two o f the most commonly used modeling tools are habitat-based models and 

demographic-based models. Habitat-based models generally relate the presence or 

density o f a species with habitat characters. The goal o f such models is usually to assess 

wildlife habitat and predict population responses to habitat alterations. The most well 

known examples are Habitat Suitability Index (HSl) models (Schamberger et al.

1982;Van Home and Wiens 1991) and Habitat Capability (HC) models (see Wisdom et 

al. 1986; Morrison et al. 1992). Habitat models generally relate the presence and/or 

density o f  species to specific habitat characters (Van Home and Wiens 1991). While 

such modeling is relatively inexpensive, factors which influence populations may be 

unrelated to habitat (Schamberger and O ’Neil 1986; Kellner et al. 1992) and it is 

questionable if  density is correlated with individual fitness (Van Home 1983, Vickery et 

al. 1992). As a possible solution, many suggest that habitat models be tested with 

demographic data (e.g. Van Home and W iens 1991) or that “habitat suitability” be 

defined in demographic terms (e.g. Kellner et al. 1992).

In contrast to habitat-based models, demographic-based models focus directly

upon the underlying birth and death rates o f  a population. While demographic data is

iii
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more expensive to collect, resulting models do not assume that habitat is correlated with 

underlying demography. Most demographic based models do not consider how habitat 

attributes relate to demography, or if  habitat is considered, these models often focus on 

the role o f  habitat placement for species persistence (e.g. metapopulation models).

This thesis addresses one promising demographic-based tool for wildlife 

biologists: matrix-based sensitivity analysis. These analyses are described as matrix- 

based because they combine estimates o f  reproduction and survival in Leslie or 

Leftkovitch matrices (i.e. rows and columns o f demographic data) which account for 

known population structuring (See Caswell 1989; Burgman et al. 1993). By sensitivity 

analysis, I am referring to methods which use these matricies to measure the “sensitivity” 

o f  population growth rate to perturbations in specific vital rates (i.e. birth and death rates) 

associated with an organism’s life history (e.g. Crouse et al. 1987; Brault and Caswell 

1993; Crowder et al. 1994; Crooks et al. 1998). These analyses are typically used to 

identify which vital rates are most important for altering the population growth o f a 

species. Once identified, important vital rates can be targeted for management or guide 

management decisions. While it is unclear what role sensitivity analyses play in final 

m anagement plans, such analyses are regularly used to make recommendations for 

management for many species o f plants and animals (see table 1 on page v).

I address sensitivity analyses in two chapters. The first chapter is an example of 

how  such methods are used to provide insight into the management o f species. The 

second is an experimental test used to determining if  such analyses can provide useful 

management insight.

IV
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Table 1. Selected examples o f when sensitivity analysis is used to make management 

recommendations.

Species Author(s)

Desert tortoises {Gopherus 
agassizii)

Doak et al. 1994

Yellow mud turtles
{Kinosternon flavescens)

Heppel et al. 1996

Kemp’s ridley sea turtle 
{Lepidochelys kempl)

Heppel et al. 1996

Loggerhead sea turtles {Caretta Crouse et al. 1987; Crouse et al
caretta ) 1994

Palm species Olmsted and Alvarez-Buylla
{Thrinax radiata  and 
Coccothrinax readii)

1995

American ginseng {Panaz 
Quinquefolium)

Carron and Gagnon 1991

Madagascar palm (Neodypsis 
decaryi)

Ratsirarson et al. 1996

Astragalus scapoides Lessica 1995

Florida manatees {Trichechus 
manatus latirostris

Marmontel et al. 1997

Wild rabbits (jOryctolagus 
cuniculus)

Smith and Trout 1994

California gnatcatchers {Polioptia 
c. Californica)

Akcakaya et al. 1997

Greater prairie-chickens 
{Tympanuchus cupido pinnatus)

Wisdom and Mills 1997

Northern pintails {Anas acuta) Flint et al. 1998

Lesser snow geese 
{Anser caerulescens 
caeruiescens)

Rockwell et al. 1997

Greater snow geese 
(Anser caerulescens atlantica)

Gauthier and Brault 1998
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For the first chapter, the brown-headed cowbird {Molothrus ater) is used as an 

example. Brown-headed cowbirds are obligate nest parasites; they do not incubate or 

feed their own young, but rather lay their eggs in the nest o f other species, called hosts, 

which incubate and feed the cowbird young. If the host is unable to reject the cowbird 

egg, the host is then left with abandoning the nest, building a new floor in the nest 

(killing any eggs present), or incubating the foreign egg(s). Hosts that cannot reject 

cowbird eggs often experience decreased nest success (e.g. Hofslund 1957, McGeen 

1972, Mayfield 1977, Elliott 1978, Brittingham and Temple 1983, Weatherhead 1989). 

Because cowbirds are associated with the declines o f numerous host species (e.g. 

K irtland’s warbler - Dendroica kirtlandii, least Bell’s vireo - Vireo belliipusillus, and 

the black-capped vireo - Vireo atricapilla) they are o f intense management interest (See 

Kelly and Décapita 1982).

Using published vital rates for brown-headed cowbirds, I conducted three 

commonly used methods of sensitivity analyses. The objectives were to: (1) determine 

the relative importance o f various demographic components on brown-headed cowbird 

population growth rates; (2) determine the robustness o f model predictions when vital 

rate estimates vary due to measurement error and/or environmental variation; and (3) 

discuss the implications o f this analysis for management and research.

While working on this project, I identified a number o f problems that could result

in incorrect management. First, compensation o f vital rates may lead to incorrect

predictions. For example, if  managers increase reproduction o f a specific age class,

survival may decrease, due to higher population densities. The structure o f such

compensation is rarely known. Unknown compensatory structure is especially

vi
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problematic for sensitivity analysis, because the goal is to make an a priori assessment o f 

management alternatives.

Second, most matrix-based analyses are deterministic and therefore rely upon the 

assumption that populations are at stable age distribution (SAD) or that fluctuating age 

distributions are unimportant (but see Tuljapurkar 1997). SAD is the proportion o f 

individuals in any age or stage class over time, given a constant matrix. It is unlikely that 

populations in fluctuating environments exist at SAD for long periods o f time. Currently, 

it is unknown how deviations from SAD in a fluctuating environment affect sensitivity 

analyses.

Third, matrix-based sensitivity analysis may be difficult to translate into well 

defined management actions. Although it is typically assumed that management actions 

should focus upon the vital rates with the highest impact upon population growth rate, 

this m ay be misleading, because the sensitivity o f  population growth is dependent on both 

the inherent sensitivity o f a vital rate and the amount that a given vital rate varies (Mills 

et. al. In Press). Vital rates predicted by models to be o f  high importance may actually 

vary little in nature (Pfister 1998, Gaillard et al. 1998) or may be impossible to 

manipulate effectively. Interpretation is further complicated by the fact that limiting 

factors (Silvertown et al. 1996) and/or stochastic events may regulate long-term 

population growth independent o f management actions.

Clearly, it is necessary to have a better understanding o f how well sensitivity

analyses predict population growth in actual management scenarios. In the second

chapter o f  this thesis, I experimentally test predictions o f four commonly used matrix-

based methods o f sensitivity analysis for common deer mice (Peromyscus maniculatus).

vii
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Deer mice provided us with a study system in which I could easily monitor and 

manipulate entire populations. I use the results to address the effects o f fluctuating age 

distributions, compensation of vital rates, and how such analyses should be interpreted 

for the management o f species. Furthermore, I identify how such techniques can be 

improved for future use.

V ll l
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Chapter 1: What do demographic sensitivity analyses tell us about controlling 

Brown-headed Cowbirds?

John J. Citta

Wildlife Biology Program, School o f Forestry, University of Montana, Missoula, MT 

59812.

ABSTRACT

While Brown-headed Cowbird {Molothrus ater) control efforts are fairly common, the 

effects o f control programs on cowbird populations are unknown. I apply analytical- 

based and simulation-based demographic sensitivity analysis to the problem o f cowbird 

management. Collectively, the analyses indicate that natural variation o f egg survival 

likely determines population growth when mean values o f egg survival are low (yet 

plausible) or when high variation exists around mean rates. When the natural range of 

egg survival does not encompass low rates, yearling survival increases in importance.

Due to uncertainty in vital rates, it is currently impossible to ascertain the true sensitivity 

o f  these two vital rates. Management actions that decrease only adult survival on 

breeding ranges are not expected to regulate population growth. In contrast, trapping on 

wintering ranges are expected to be more effective as these techniques reduce both adult 

and yearling survival. However, the impacts o f winter trapping may be swamped by high 

egg survival. When this analysis is combined with life history and logistical realities, I 

believe that widespread trapping efforts will be largely ineffectual for controlling cowbird
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2

populations on either breeding or wintering ranges. I suggest that cowbird vital rates be 

specifically examined with respect to host communities, vegetation type, and land use in 

order to rank management priorities.

INTRODUCTION

Land managers have long realized that Brown-headed Cowbirds {Molothrus ater) 

may decrease nesting success o f passerine hosts (e.g. Hofslund 1957, McGeen 1972, 

Mayfield 1977, Elliott 1978, Brittingham and Temple 1983, Weatherhead 1989). Due to 

the negative effect cowbirds have on some host species, land managers have attempted to 

control cowbird populations since the early 1970s. For example, control programs in 

Michigan typically remove 3,000 or more female cowbirds and cowbird eggs yearly 

(Kelly and DeCapita 1982; DeCapita, pers. comm.) and trapping efforts on the Ft. Hood 

military reservation in Texas remove upwards o f 3,000 to 5,000 female cowbirds per year 

(J. D. Cornelius, pers. comm.). These control programs usually target cowbirds to protect 

federally listed endangered species and commonly involve the removal o f adults from 

feeding areas (Rothstein et al. 1987), the removal o f adults and yearlings from communal 

wintering areas (J. D. Cornelius, pers. comm.), and to a much lesser extent, the removal 

o f eggs from host nests. While cowbird control efforts are fairly common and such 

efforts are capable o f  decreasing parasitism rates, the effect o f such efforts on cowbird 

population growth remain unknown.

Better knowledge o f cowbird population dynamics is necessary to assess the 

efficacy o f current management strategies and to aid the design o f more efficient 

management strategies. Here 1 apply traditional techniques and new matrix-based 

techniques o f sensitivity analysis to investigate how different management options may
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influence cowbird population dynamics. Specifically, I use sensitivity analysis to 

determine how managers can most effectively decrease the growth rate o f cowbird 

populations. The objectives are three-fold: ( i )  to determine the relative importance of 

various demographic components on Brown-headed Cowbird annual population growth 

rates (X,); (2) to determine the robustness o f model predictions when vital rate estimates 

vary due to measurement error and/or environmental variation; and (3) to discuss the 

implications o f this analysis for management and research.

METHODS

I examine the sensitivity o f annual population growth rate (X) to perturbations in 

specific Brown-headed Cowbird vital rates with traditional analytical-based and new 

simulation-based techniques.

A n a l y t i c a l -B a s e d  T e c h n iq u e s

Traditional sensitivity analyses (Caswell 1989) are analytical techniques used to 

evaluate expected response o f population growth rates to perturbations in single vital 

rates (i.e. birth or death rates) one-at-a-time and by equal amounts. Sensitivity, as defined 

by Caswell (1989), is the absolute infinitesimal change in population growth rates given 

an absolute infinitesimal change in a vital rate, while all other vital rates are held 

constant. I f  a  is a matrix o f transition probabilities, v and w are the vectors o f 

reproductive values and stable age distributions (SAD) associated with matrix a, 

respectively, and (v w) is the scalar product o f the two vectors, the sensitivity o f matrix 

element a y  (row /, column J) is equal to:
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Sensitivity (sjj) o f j  (1)

Elasticities are similar, but are calculated on a proportional scale, where X is the 

geometric population growth rate at SAD:

(2)

Intuitively, elasticity is the sensitivity o f «y weighted by its proportional change with X. 

The change in vital rates and X is assumed to be infinitesimal and linear.

When matrix elements are composed o f more than one vital rate, component 

sensitivities and elasticities can be calculated for each vital rate that appears in one or 

more matrix elements. Chain rule differentiation is required for each ay that contains a 

particular vital rate x. For n elements that contain vital rate x, the sensitivity and 

elasticity o f x  are:

Component sensitivity o f  vital rate % |^Sy ̂ product o f  non - x co m p o n en t^  (3)

Component elasticity o f  vital rate x  = {Component sensitivity o f  vital rate x) j  (4)

What do analytical techniques o f  sensitivity analysis imply biologically? Because 

sensitivity and elasticity are partial derivatives, they represent the slope o f the 

relationship between a small change in a vital rate to the corresponding change in X. 

Traditionally, researchers and managers have assumed that vital rates with high 

sensitivities or elasticities should be the focus o f management actions, as perturbation o f
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these vital rates produce the greatest change in X. This assumption is not always correct 

(Mills et al. in press).

S im u l a t i o n - B a s e d  T e c it n iq u e s

Traditional sensitivities and elasticities may mislead managers, because inevitable 

variation imposed by nature, by management action, or by measurement error will not be 

infinitesimal or equal across all vital rates (Gaillard et al. 1998, Mills et al. in press). To 

account for vital rate variation on scales that are neither absolutely or proportionally 

equal across vital rates, I also use the sensitivity technique used by Wisdom and Mills 

(1997). Upper and lower limits o f vital rates, determined from literature review, are 

incorporated into high and low matrices and a computer program constructs 1,000 

matrices with each vital rate o f each matrix randomly chosen from a distribution bounded 

by the high and low values. A population growth rate (1) is then calculated for each 

matrix. The relative importance o f a stage specific vital rate is assessed by regressing X 

for each replicate against the value of that rate for all replicates to derive coefficients o f 

determination (R^). In terms o f traditional definitions o f sensitivity, for any 

component vital rate is analogous to the squared sensitivity weighted by the relative 

variance o f a vital rate (H, Caswell, pers. comm.).

The regression method is appealing, because it allows variation in particular vital 

rates to alter according to the scale perceived to occur in the field. With the regression 

technique, variation in vital rates can be incorporated to represent natural amounts o f 

variation, levels o f variation imposed by management, or measurement error.

Furthermore, vital rates can be selected from distributions that mimic natural
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distributions. For the selection o f vital rates, a uniform distribution was favored over 

other distributions. Without knowing how likely different vital rates are, all vital rates 

should have equal likelihood of selection and this distribution evaluates the scenario 

where extreme changes in rates under management have the same likelihood as small 

changes from the current mean.

Because all possible Xs are plotted, the regression technique also has the 

advantage o f being able to detect non-linearities that traditional methods may not. This is 

similar to the covariance technique used by Brault and Caswell (1993), but is 

computationally and intuitively easier to manage. I f  non-linearities do not exist in the 

data, then varying vital rates on absolute and proportional scales should produce similar 

results as traditional sensitivities and elasticities (Mills et al. in press).

M o d e l  S t r u c t u r e  a n d  i n p u t  f o r  c o w b i r d  a n a l y s i s

I use two-stage Leftkovitch matrices (see APPENDIX A) to model cowbird 

populations. Stage specific demographic data form the matrix and the model projection 

interval is 1 year. Eigenanalysis o f the matrix, or projection o f  the matrix over time, 

provides annual population growth rates (A.). Consequently, all techniques o f sensitivity 

analysis assume populations are at stable age distribution (SAD). It is an all female 

model, a reasonable approach given the excess o f  adult males in natural populations 

(Darley 1971, Arnold 1983). Fecundities are divided in half to account for female eggs 

only and are multiplied by annual cohort survival to account for a post-breeding census.

Model input, in terms o f estimated stage-specific ranges of vital rates, is taken 

from the literature (Table 1). The top row o f the matrix (F,, and F,; ; see APPENDIX A)
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contains reproductive information based on both survival o f females to breed and number 

o f  eggs laid (fecundity). Unfortunately, cowbird fecundity has been difficult to determine 

and estimates o f the number of eggs laid per female varied widely. Much o f this 

variation is removed when daily laying rates are considered. When multiplied by the 

length o f  the breeding season, daily laying rates are likely to be the most accurate 

estimator o f annual female fecundity (Rothstein et al. 1986). Consequently, only daily 

laying rates are considered and, to avoid non-constant laying rates over the breeding 

season, assume a 40 d breeding period within which laying rates are constant (Table 1).

To determine the possible importance o f low fecundity, I include Holford and Roby’s 

(1993) fecundity estimates for calcium deprived individuals in captivity. From this data I 

estimate the suppressed daily egg laying rate to be approximately 0.37 eggs per day.

While this figure is significantly lower than the lowest estimate o f daily egg laying rate 

measured under natural conditions (0.51 eggs per day), inclusion in the model illustrates 

the consequences o f extremely low fecundity on X. The final assumption is that adults 

and yearlings have the same maximum and minimum daily laying rates. Although 

Jackson and Roby (1992) indicate that yearlings have lower fecundity rates than adults, 

the lowest measured daily laying rate for yearlings is not as low as the rate for calcium 

deprived individuals. This implies that the lower daily laying rate used in the model (that 

for calcium deprived individuals) represents a worst case scenario for both adults and 

yearlings.

Matrix element G;, is the mean survival from stage 1 to stage 2, and represents a 

composite o f egg, nestling, and yearling survival. Egg survival is defined as the
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probability that an egg survives to hatch. This life stage is assumed to be 15 d. While the 

average incubation period is approximately 10 - 13 d (Briskie and Sealy 1990), these 

estimates do not include time before incubation is initiated. In other words, because eggs 

are likely to remain within the nest some number o f days before incubation is initiated 

(see Nice 1954), a 15 d pre-hatching period is realistic. Nestling survival is defined as the 

probability that a nestling survives to fledge, given that it hatched. This period is 

assumed to be 10 d (Norris 1947, Hann 1937). Yearling survival is defined as the 

probability that a juvenile survives to breed, given that it fledges. This period is assumed 

to be the remaining 340 d of a cowbird’s first year. Estimating yearling survival rates are 

problematic, because only one study (Woodward and Woodward 1979) quantified 

cowbird fledgling survival rates (only until independence at approximately 30 d). For an 

upper bound, I assume yearlings attain adult survival rates immediately after 

independence and combine the Woodward and Woodward (1979) yearling rate for the 

first m onth after fledging (0.48) with the highest estimate o f adult survival for the 

remaining 310 d before breeding. This yields an upper bound for yearling survival o f 

0.32. The lower bound for yearling survival (0.15) is assumed equal to known lower 

bounds for Great Tits {Parus major) (Dhondt 1979). While using data from other 

species is not ideal, great tits are one o f the only passerine species with known yearling 

survival rates, thereby providing insight into a lower bound o f cowbird survival.

Matrix element is the mean survival to remain within stage 2. This is simply 

an adult female survival rate between annual birth events, and is estimated via return rates 

or recoveries (Table 1).
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If variation is artificially constrained to be small and equal around all vital rates, 

the simulation-based technique should rank the importance o f all vital rates similarly to 

the traditional analytical-based sensitivity analysis (Mills et al. in press). Although 

traditional sensitivities and sensitivities are not directly comparable, because they are 

different statistics, with small and equal absolute change o f ±0 .10  for each rate, the 

rankings of vital rate effects on X are identical for both approaches (Fig. la). Likewise, 

incorporating proportional changes in the regression technique (± 1 0 % )  produces similar 

rankings as traditional elasticities (Fig. lb). The small deviations between the 

sensitivities or elasticities and the simulation-based measure are likely due to the effect o f 

non-linearities on sensitivities or elasticities (Mills et al. in press). The vital rates with 

the highest sensitivities on an absolute scale o f variation are yearling survival and 

nestling survival. The vital rates with the highest sensitivities on a proportional scale are 

egg, nestling, and yearling survival.

O f course, neither o f these vital rate ranges, determined by fixed and equal 

absolute or proportional change, are likely biologically realistic. Therefore, I used the 

regression technique to determine sensitivities for the entire range o f cowbird 

variation, letting different rates vary by different amounts according to the upper and 

lower bounds presented in Table 1; I refer to this as the empirical range o f variation (Fig.

2 and 3). Egg survival alone appears to account for over 60% o f the variation in 

population growth rates. The vital rate accounting for the next largest amount o f 

variation in X is yearling survival {R^ = 0.14).
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While the regression technique is likely to be more realistic than traditional 

methods because it selects vital rates from biologically realistic upper and lower bounds, 

it is possible that vital rate ranges that are too large or too small may artificially increase 

or decrease the value of a vital rate (Wisdom and Mills 1997). Unfortunately, the 

sparse data available for most species makes determination o f vital rate ranges difficult. 

This is especially true for threatened or endangered species that are modeled the most, but 

is also true for common species such as cowbirds. A critical question is thus; what are 

the consequences o f under- or over-estimating the range o f variation in demographic 

parameters? If  altering the range o f an uncertain vital rate has little effect upon R^, then 

accurate range estimation is unimportant. However, if  R ^  is sensitive to small changes in 

the range o f  vital rates, then correct range estimation is critical. To assess this with the 

data, I altered the range o f each vital rate one-at-a-time while holding the other vital rates 

at the empirical range width (Table 1). Vital rate ranges were decreased by 25 and 50% 

and increased by 25% (50% increases were not possible because some survival rates 

would exceed 1).

Generally, increasing or decreasing range widths results in a monotonie increase 

or decrease in values (Fig 4), as expected from the fact that R^  for any component vital 

rate is weighted by the variance in that rate. Although I do find the statistically expected 

change in absolute R ^  values with changes in vital rate ranges, the biologically important 

result is that the relative rankings do not change for the vital rates that account for most of 

the variation in X.
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Because egg survival was identified as the vital rate most affecting population 

growth when vital rates vary between empirically determined bounds, and because 

decreasing the range o f  egg survival can decrease the value o f egg survival. It is 

relevant to ask how much of a decrease in the range o f egg survival is necessary before 

another rate replaces egg survival as the rate most affecting X. In the most extreme case 

o f  a 50% decline in range width, most o f the change in (40%) was partitioned as 

increased R ^  for yearling survival and that the total R ^  for yearling survival approached 

that o f egg survival (compare Fig. 5 to Fig. 3).

In addition to range width, mean vital rates must also play a role in determining 

the effect o f a change in any rate on X. The variance around the regression line for egg 

survival is non-constant (Fig. 2a), indicating that values will change as the mean 

values o f vital rates change. To investigate this further, I determined how sensitivities 

were affected by altering the mean egg survival rate, while holding the range o f variation 

constant. To keep the total range o f variation within the biologically plausible range of 

variation, the range o f  egg survival was restricted (50% of the empirical range), and the 

m ean vital rate was decreased by 25% and increased by 25%. Even with a small range of 

egg survival, if  the mean egg survival rate is low, then the egg stage has the highest R^

(Fig. 6a). Alternatively, if  the mean egg survival rate is high, yearling survival has the 

highest R ^  (Fig. 6b).
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DISCUSSION

How V i t a l  R a t e s  A f f e c t  P o p u l a t i o n  G r o w t h

The egg survival stage is likely to be the vital rate that most affects population 

growth rate whenever the range o f variation in egg survival is high or in situations where 

the mean egg survival rate is low. The only studies that examine cowbird egg survival 

across the entire community o f hosts within an area yield mean rates o f 0.08 (Elliot 1978) 

and 0.43 (Norris 1947), indicating that the sensitivities in any o f  the simulations are 

plausible. Unfortunately, it is not known how often low rates o f egg survival occur and, 

more importantly, how much egg survival varies within and between sites over time. In 

situations with high mean egg survival rates and low levels o f variation around those 

m ean rates, the yearling stage may play the biggest role in impacting

An obvious question is: with what degree o f certainty are vital rate ranges 

estimated? This question is most critical with regard to egg survival. Range estimation 

for egg survival is problematic, because most studies observe only one host.

Furthermore, cowbird researchers tend to study highly parasitized hosts that accept 

cowbird eggs and are parasitized enough to be analyzed statistically. Unfortunately, 

cowbirds do not exclusively parasitize one species, but typically parasitize a number o f 

hosts within the breeding area. Host communities likely yield rates o f egg survival that 

differ from the rates observed in any single species. Furthermore, egg survival rates are 

sure to be systematically overestimated, because egg ejections or eggs laid in inactive 

nests are unlikely to be detected. The extent o f this bias is unknown and likely dependent 

upon the host community and vegetation type. While many host species are known
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ejectors, very little is know about how often these species are parasitized as eggs may be 

almost immediately ejected (Rothstein 1975, Friedman et al. 1977). Although not well 

quantified, the rate at which cowbirds lay eggs in abandoned nests appears to highly 

variable. Berger (1951) reported a rate o f 1.35% for Song Sparrows (Melospiza meîodia) 

and Freeman et al. (1990) reported a rate o f  21.5% for Red-winged Blackbirds {Agelaius 

phoeniceus). The high rates o f inappropriate egg laying noted by Freeman et al. (1990) 

appear to be a function o f available perch sites; they hypothesized that without perches, 

the cowbirds were not able to assess correctly whether a nest was abandoned.

In summary, traditional analytical techniques indicate that egg, yearling, and 

nestling survival are the most sensitive vital rates. Regression-based techniques indicate 

that egg and yearling stages are the most sensitive. Regression-based techniques also 

indicate that the relative importance o f egg versus yearling stages depends upon the range 

o f variation and the mean rate o f egg survival. Whenever egg survival rates are low or if 

the range o f egg survival encompasses low rates then egg survival will most affect 

population growth. Adult survival, adult fecundity, and yearling fecundity were not 

important factors in any o f the modeled scenarios.

L im i t a t i o n s  o f  M o d e l l in g  T e c h n iq u e s

Although sensitivity analysis is capable o f revealing non-intuitive relationships, 

several limitations must be kept in mind. First, neither the analytical- nor simulation- 

based technique accounts for density dependent relationships. While positive or negative 

correlations between vital rates could be included within either the analytical-based 

technique (van Tienderen 1995) or within the simulation-based technique (Wisdom et al., 

unpubl. data), these data are not available. Furthermore, density dependent correlations
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between vital rates may change as management perturbations are intensified and these 

changes may not be predictable under current conditions.

Second, and related to density dependence, the techniques do not account for 

compensatory effects. One possible compensatory effect is the replacement o f breeding 

females and may occur as present non-breeding “floaters” occupy empty egg laying areas. 

I f  removed females are replaced, then adult survival is not functionally decreased as 

modeled and the predicted sensitivity is biased high. I predict that the sensitivity 

(traditional and regression-based) o f adult survival is maximized when non-breeding 

floaters are not present. Conversely, if  many floaters are present, adult removals will not 

be effectual until the number o f adult females drops below the amount necessary to 

parasitize all available nests. If cowbirds exhibited extremely high replacement rates, 

then it is unlikely that trapping o f adults near sensitive host species would be effective. 

Trapping records from the effort to protect the Kirtland’s Warbler show that most female 

cowbirds are captured within the first few weeks o f the breeding season (Kelly and 

DeCapita 1982), indicating that trapping efforts are capable o f removing all females 

within a short time period and that floaters are not a concern to this analysis.

Third, neither technique accounts for spatial considerations. As modeled, Brown

headed Cowbirds are treated as one large population and assumed perturbations are 

population-wide. Management actions must consider the ratio o f the size o f the target 

population to the size o f the total population, because managing only a subset o f 

individuals dilutes population-wide effects. In other words, if  only a part o f a cowbird 

population is managed, there will be little effect on the population as a whole.

Identifying exactly what effect any given management action will have on cowbird
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populations will require delineation o f population boundaries and knowledge o f 

movement rates between populations within and between breeding seasons. Trapping 

records from the effort to protect the Kirtland’s Warbler (Kelly and DeCapita 1982) and 

the Black-capped Vireo (Barber and Martin 1997) show that trapping does not reduce the 

number o f  cowbirds in subsequent years; this indicates that there is either a large level of 

movement between populations or that the target population is much smaller than the 

total population. Unfortunately, there are little or no data identifying the spatial structure 

and dynamics o f cowbird populations.

Finally, matrix-based calculations o f X also assume populations are at stable age 

distribution (SAD). SAD is the proportional number o f individuals in any age or stage 

class over time, given a constant matrix. It is unlikely that populations in fluctuating 

environments exist at SAD for long periods o f time. Currently, it is unknown how 

deviations from SAD in a fluctuating environment affect either traditional or the 

regression-based techniques.

I m p l i c a t i o n s  f o r  C o w b i r d  M a n a g e m e n t

Although egg survival is likely the vital rate which most affects population 

growth rate in many situations, it is nearly impossible to manage with current techniques 

and logistical constraints. I identify four problems with egg removal programs. First, 

host nests are difficult and expensive to find (Martin and Geupel 1993). Second, 

removing cowbird eggs may increase nest predation rates or result in nest abandonment 

(M ajor 1990, Gotmark 1993), although correct protocols can reduce disturbance (Martin 

and Geupel 1993). Third, to be effective, egg removals must target a large proportion o f
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the total cowbird population. Egg removals will likely have to exist at scales much larger 

than study sites, management areas, and wildlife refuges. The exact scale o f management 

will depend upon the size o f the cowbird population and movement rates between 

populations, which remain unknown. Fourth, eggs are expected to be numerous. At the 

time o f breeding, over 90% of the population is in the egg stage at stable age distribution; 

consequently, management actions may remove many eggs, yet have little impact upon 

total egg survival rates.

To illustrate how a management imposed change in a vital rate is affected by the 

number in that age class, an example is provided. Using the mean matrix (APPENDIX 

A) and assuming a population size o f 5,000 cowbirds, there are over 4,600 eggs resulting 

from approximately 400 adults at the time of breeding (APPENDIX B). Suppose that 

from this population I remove equal numbers o f eggs, nestlings, fledglings, and adults, 

assuming that this mortality was additive. I find that by removing small numbers o f eggs,

I impact total population growth very little compared to other stages (Figure 7). For 

example, on an individual basis, removing approximately 100 adults or fledglings will 

have the same impact as removing over 475 eggs, because there are fewer adults or 

fledglings in the population. In short, there are so many cowbird eggs that even large egg 

removals may have little impact upon total egg survival rates. While environmental 

variation and the consequences o f having different host communities determine the 

population-wide survival rate o f eggs, and therefore affect population growth, the effects 

o f  management on egg survival and the resulting changes in population growth are likely 

minuscule. When the problems o f finding nests, human induced impacts upon hosts.
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large management scales, and the preponderance o f eggs are considered jointly, egg 

removal is probably not a viable management option.

Because reducing egg survival is not a wide-scale management option, I must 

consider what vital rates can be managed. Currently, the most common management 

options are trapping on the breeding grounds and trapping on the wintering grounds. 

Trapping on the breeding grounds typically involves the trapping of adults, while 

trapping on the wintering grounds involves the removal o f  adults and yearlings. Each o f 

these options are considered in turn.

Cowbird population growth rates are generally less affected by fluctuations in 

adult survival than other vital rates and the effects o f  adult removals may be masked by 

variation in egg and/or yearling survival. During the breeding season, the replacement o f 

breeding females (via floaters and immigrants) exacerbates this problem and makes 

population growth rates even less sensitive to adult removals. To illustrate the 

significance o f this problem, consider that cowbird trapping programs in Michigan 

typically remove 3,000 cowbirds per year with no noticeable decline in cowbird 

populations between years, despite the fact that virtually all individuals are removed 

during the breeding season (Kelly and DeCapita 1982; M. DeCapita, pers. comm.). The 

lack o f any effect o f trapping on cowbird populations may be due to either targeting only 

a small proportion o f the total cowbird population or high rates of immigration. Either 

alternative leads to the same conclusion: that adult removal programs on breeding 

grounds are not likely to regulate populations unless they are conducted on a much larger 

scale. However, this does not invalidate trapping programs during the breeding season, 

as such programs are usually intended to protect sensitive host species at a local scale and
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can successfully do so (Kelly and DeCapita 1982, Barber and Martin 1997; M. DeCapita, 

pers. comm.; J. Cornelius, pers. comm.).

Trapping adult and yearling cowbirds on the wintering ranges is expected to be 

much more effective in controlling cowbird population growth. While population growth 

is not sensitive to perturbations in adult survival, adults are only a small proportion o f the 

total population. Hence, adult survival may be greatly altered by removing only a small 

absolute number o f adults (APPENDIX B). In contrast to adult survival, population 

growth is likely sensitive to perturbations in yearling survival; there are also relatively 

few yearlings in any given population. Therefore, the sensitivity analysis and the age 

distributions suggest that winter trapping programs are more likely to decrease cowbird 

population growth rates than by removing eggs or trapping on breeding grounds. In 

addition to these life history considerations, winter trapping has many logistical 

advantages because cowbirds concentrate on large communal wintering grounds.

Unfortunately, there are also serious limitations with using winter trapping to 

control cowbird populations. Removing cowbirds from all wintering areas may be 

logistically impossible, because wintering ranges extend from Texas into Mexico (Bray et 

al. 1974, Arnold 1983). Also, even massive control in a limited number o f wintering 

areas may produce extremely diffuse effects on the breeding ranges (Rothstein and 

Robinson 1994), because individuals in one wintering range may breed throughout North 

America (Bray et al. 1974, Dolbeer 1982). Finally, the large effect o f egg survival on 

population growth rate may make trap efforts on other age classes ineffectual. For 

example, note that for the lowest rates o f yearling and adult survival, many o f the 

matrices have positive growth rates (Fig. 2c). So, while winter removals o f adults and
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yearlings are expected to be more effective than removing eggs or adults on the breeding 

ranges, they do not have a high likelihood o f regulating population growth rates unless 

m ost or all wintering areas are targeted for management. Furthermore, the effects of 

winter removals may be swamped by natural variation in egg survival rates.

Given the formidable logistical difficulties in lowering the vital rates that most 

affect cowbird population growth, the most effective method o f cowbird control is likely 

to be the management o f land uses to disfavor cowbirds. Cowbird presence is often 

significantly correlated with the presence o f livestock (Schulz and Leininger 1991, Knopf 

et. al. 1988, Mosconi and Hutto 1982; but also see Kantrud 1981), agriculture (Rothstein 

et ai. 1984, Rothstein et al. 1987, Tewksbury et. al. in press), and forest fragmentation 

(Chasko and Gates 1982, Coker and Capen 1995, Tewksbury et al. 1998). By managing 

grazing patterns, availability o f agricultural waste grain (often an important food source), 

and forest fragmentation, managers may be able to indirectly eliminate or at least control 

the presence o f  cowbirds before they parasitize host species.

I m p l i c a t i o n s  f o r  C o w b i r d  R e s e a r c h

Much research has focused upon the effects o f limiting cowbird fecundity or 

determining what limits cowbird fecundity. While this is a valid research topic for life 

history information, it is o f little management interest unless fecundity can be decreased 

to rates near zero. I varied fecundity to rates lower than anything ever measured in nature 

(the calcium deprived rates) and then decreased that rate to assess the effect o f larger 

variation in vital rate ranges. In all simulations but one (Fig. 6b) fecundity had the least 

effect on X, o f any vital rate.
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To date, most cowbird research has focused upon parasitism o f specific host 

species, not upon parasitism o f host communities within habitats or by land use practice. 

Because parasitism rates, predation rates, host communities, and the ability o f hosts to 

fledge cowbirds vary across the landscape, it is unlikely that all vegetation types and host 

communities are equally productive for cowbirds. Furthermore, the presence o f cowbirds 

may not reflect cowbird habitat quality. As long as adequate foraging habitat (feeding 

grounds) exist within flight range, cowbirds may parasitize host nests in habitats which 

barely provide positive growth rates or provide negative growth rates. By focusing 

research efforts upon cowbird vital rates in different vegetation types and host 

communities, researchers may be able to identify habitats and land use practices which 

are most important for (or possibly are responsible for) cowbird population growth. If  the 

goal o f management is to regulate populations o f cowbirds, I suggest focusing 

management plans on regulating land uses which favor cowbirds in areas with positive 

cowbird growth rates. For example, livestock grazing in areas that have vegetation types 

and host communities that lead to negative cowbird population growth rates should be a 

lower management priority (assuming no endangered species are present) than livestock 

grazing in areas which lead to positive cowbird population growth rates. Currently there 

is no knowledge o f how cowbird population growth rates may vary across combinations 

o f  vegetation types and host communities.

Last, more data are needed to understand cowbird population structure. The 

model assumes that cowbirds exist in one large population, because there are no data for 

constructing spatially-explicit models. W ithout more knowledge o f population 

boundaries and how adult and juvenile cowbirds move between populations over time.
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managers will not be able to predict the true efficacy o f management alternatives and may 

choose inappropriate scales for management.
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APPENDIX A: Brown-headed Cowbird stage-based model 

C o w b i r d  L i f e  C y c l e  D i a g r a m  a n d  M a t r i x

The biologically relevant projection interval for cowbirds is 1 year, so elements within 

the matrix represent annual rates (Figure A l). However, in the first year o f life, there are 

three relevant stages: egg, nestling, and yearling; thus I let the first year of life have egg, 

nestling, and yearling components. Only one adult stage is included (as opposed to 

annual age classes), because age specific adult survival rates are not available and 

m anagement techniques target all adults concurrently.

Transition matrix:

F m F ,2

G n P 2 2 .

D e f i n i t i o n s  o f  M a t r i x  E l e m e n t s  a n d  V a l u e s  f o r  t h e  M e a n  M a t r i x :

M ean survival from stage 1 to stage 2 [G(2,1)J = mean egg survival (0.38) x mean 

nestling survival (0.64) x mean yearling survival (0.24) = 0.06 

M ean survival from stage 2 to stage 2 [P(2,2)] = mean annual adult survival = 0.47 

M ean yearling fertility [F (l,l)] = mean daily laying rate (0.56) x laying period (40 d.) x 

proportion o f  female eggs (0.5) x mean first year survival (0.06) = 0.65 

M ean adult fertility [F(I,2)J = mean daily laying rate (0.69) x laying period (40 d.) x 

proportion o f female eggs (0.5) x mean adult survival (0.47) = 6.49
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These transition probabilities are incorporated into a mean matrix and have the 

resulting stable stage distribution and deterministic population growth rate (X.):

0.65 6.49

0.06 0.47

'  0.9244 '

 ̂ 0.0756 _
X.= 1.184

S t a g e  S p e c i f i c  T im e  I n t e r v a l s

The projection interval is one year (365 d.): 

r '  year:

egg survival stage: 15 d.

nestling survival stage: 10 d.

yearling survival stage: 340 d.

2"  ̂year + (Adults): 1 yr.
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APPENDIX B: Analysis o f a how a given removal may affect Brown-headed Cowbird 

survival and population growth rate

This analysis is included to clarify how the sensitivity analysis must be 

interpreted. Specifically, I was concerned that the analysis would lead to time, effort, and 

money being prematurely applied towards egg removal programs. When environmental 

variance is included in the analysis, egg survival has the largest impact upon population 

growth rate. However, it is not clear how removing cowbird eggs actually alters egg 

survival rates. I investigate this link with the following crude analysis, where cowbird 

vital rates are decremented one-at-a-time by removing a specified number o f individual 

eggs, nestlings, yearlings, or adults.

I start with the following assumptions:

1. There is a population o f 5,000 cowbirds at the beginning o f a breeding season.

2. This population has the vital rates o f the mean matrix in APPENDIX A.

3. All mortality is additive (no compensatory effects) and immigration is 

nonexistent.

4. Populations are at stable age (stage) distribution.

To calculate the number o f individuals in particular life stages within a population 

o f 5,000, at time t, I must first determine the number o f individuals at time t- l :

N,.| X 1 =  5,000

N,., = 4222.97
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By multiplying N,., by the stage distribution vector (APPENDIX A), the total 

number o f eggs and adults at time r-/ is:

4222.97 X
"0.9244" 3903.72 eggs
0.0756 319.26 adults

Then the matrix is multiplied by the stage distribution vector at time t-1 to 

determine the initial number of individuals in each stage at time f.

Initial number o f eggs: (F,, x V,) + (F,; x V^) = 4621.81

Initial number o f  adults: (G2, x V , )  + (P22 x V;) = 377.90

Immediately after breeding, there is a population size o f 377.90 adults and

4621.81 eggs. This is the total population o f  5,000. To calculate the number o f 

individuals in intermediate stages, the total number o f eggs is decremented by egg, 

nestling, and yearling survival rates successively:

Initial number o f nestlings: Initial number o f  eggs x egg survival rate = 1756.29

Initial number o f yearlings: Initial number o f  nestlings x yearling survival rate =

1124.03

I simulate individual removals by decreasing the number o f individuals in a life 

stage by increments o f 40. This mortality is assumed to occur after the initial
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probabilistic mortality o f that stage class (i.e. it is assumed to be additive). For example, 

i f  management removes 200 eggs, then the adjusted egg survival rate is calculated as 

follows:

(Initial number o f eggs x original egg survival rate) - 200 eggs
----------------------------- :..:.:.--------;------    = New egg survival rate

Initial number o f eggs

(4621.81 X 0.38) - 200 eggs
4621.81

In this example, removing 200 eggs reduced egg survival rates by only 11%. The 

altered survival rates are then incorporated into the mean matrix to calculate the resulting 

population growth rate (Figure 7).
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TABLE 1. V i t a l  R a t e s  f o r  t h e  C o w b i r d  T r a n s i t i o n  M a t r i x  ( s e e  A p p e n d ix  A)

Vital Rate Average (N) High Low Citations

Adult Fecundity' 0.69 (4) 0.8 0.51 (lab) 
0.37 (calcium 
limited)

Scott and Ankney 1979 
(California), 1980 
(Ontario); Rothstein et al. 
1986 (California); Holford 
and Roby 1993 (captive 
population)

Yearling
Fecundity'

0.56 (1) N/A N/A Jackson and Roby 1992

Egg survival 0.38 
(pooled 
across 9 
studies; 
N=1346 eggs)

0.68
(single species 
study)

0.08
(host
community
study)

Harm 1937; Norris 1947; 
Berger 1951; Hofslund 
1957; McGeen 1972; Elliot 
1978; Weatherhead 1989; 
Marvil and Cruz 1989; 
Smith and Arcese 1994

Nestling survival 0.64
(pooled
across 6
studies;
N=224
nestlings)

0.76 0.46 Harm 1937; Norris 1947; 
Berger 1951; Hofslund 
1957; Marvil and Cruz 
1989; Weatherhead 1989

Yearling survival 0.24 0.32 0.15 Dhondt 1979 for Great Tits; 
Woodward and Woodward 
1979

Adult survival 0.47 (4) 0.63 0.31 Darley 1971; Fankhauser 
1971; Arnold 1983 
(provides 2 estimates)

Total fecundity; this is divided by 2 to account for an all female model (See APPENDIX 

A).

 ̂Female only rate
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FIGURE 1. Comparison o f component sensitivities and values for Brown-headed

Cowbird vital rates with (a) range standardized on an absolute scale (plus or minus 0.10) 

and (b) range standardized on a proportional scale (plus or minus 10%). Only rankings 

are directly comparable between component sensitivities and values.
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FIGURE 2. Amount o f variation in Brown-headed Cowbird population growth rate 

as accounted for by (a) egg survival rate, (b) nestling survival rate, (c) yearling survival 

rate, (d) adult survival rate, (e) yearling fecundity rate, and (f) adult fecundity rate in 

1000 matricies with randomly selected vital rates. Coefficient o f determination (R^)  and 

linear regression line presented.
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FIGURE 3. Sensitivities of Brown-headed Cowbird vital rates as indexed by the 

coefficient of determination in 1000 matricies with randomly selected vital rates 

regressed against corresponding population growth rates.
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FIGURE 4. Changes for Brown-headed Cowbird life stages when vital rate ranges are 

altered. Each point equals for a vital rate range which is 50%, 75%, 100%, or 125% 

o f the original empirical range, while all other vital rate ranges are held at the empirical 

range.
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FIGURE 5. Sensitivities of Brown-headed Cowbird vital rates as indexed by the 

coefficient o f determination (R^) in 1000 matricies with randomly selected vital rates 

regressed against corresponding population growth rates when the range of egg survival 

is 50% of the empirical range. Compare to Fig. 3.

to
.5
i
B<aXJ

c
CD
U

o
O

0.30

0.25

0.20

0.15

0.10

0.05

0.00 ii i
Egg Nestling Yearling Adult Yearling Adult

Survival Fecundity

Vital rates

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



38

FIGURE 6 . for Brown-headed Cowbird vital rates when the range o f egg survival is 

50% o f  the empirical range and the mean rate is (a) decreased 25% from the empirical 

m ean (new mean = 0.29) and (b) increased 25% from the empirical mean (new mean = 

0.48). All other vital rates have the empirical means and ranges.

%

I
Ç

Ê0)
I

io

0 ,4 0

0 .3 5

0 .3 0

0 .2 5

0.20

0 .1 5

0.10

0 .0 5

0.00
Egg Nestling Yearling Adult Yearling Adult

Survival

Vital rates

Fecundity

%
C

I

0)■Ü

Io

(b)
0 .4 0

0 .3 5

0 .3 0

0 .2 5

0.20

0 .1 5

0.10

0 .0 5

0.00
Egg Nestling Yearling Adult Yearling Adult

Survival

Vital rates

Fecundity

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3 9

FIGURE 7. Number of individual eggs, nestlings, yearlings, and adults removed and the 

resulting population growth rates for a hypothetical population of 5,000 cowbirds. 

Removals are assumed to impose additive mortality. See APPENDIX B for details.
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FIGURE APPENDIX 1. Life cycle diagram used for the cowbird Brown-headed 

Cowbird analysis.
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C h a p te r  2: An experim ental field test o f sensitivity analysis models 

John J. Citta

W ildlife Biology Program, School o f Forestry, University o f Montana, Missoula, MT 

59812

ABSTRACT

While demographic sensitivity analysis is commonly used to guide conservation 

efforts, such analyses are virtually never field tested. I constructed a female-only, post

breeding matrix model for deer mice (JPeromyscus maniculatus) and conducted four 

commonly used methods o f sensitivity analysis: (1) elasticity; (2) Life Table Response 

Experiments (LTRE); (3) Life-stage Simulation Analysis (LSA); and (4) a simulation- 

based manual perturbation model. All analyses indicated that population growth rate 

should be sensitive to perturbations in adult female survival and relatively insensitive to 

perturbations in juvenile female survival. These predictions were tested using three 

treatments: (1) a 50% reduction o f adult female survival; (2) a 50% reduction o f juvenile 

female survival; and (3) a control. Counter to the predictions, treatments were equally 

capable o f  reducing population growth rate over a short time span and had few effects 

over longer periods o f time. Using my field data, I identify non-stable age distributions, 

vital rate compensation, and demographic stochasticity as factors that may have lead to 

our lack o f treatment effects. Because both non-stable age distributions and vital rate 

compensation can drastically alter the predicted sensitivity o f demographic rates 

independent o f population size, I recommend using methods o f sensitivity analysis which

41
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incorporate actual age distributions. By designing monitoring programs to estimate 

demographic rates, demographic compensation can be identified and used to re-evaluate 

predictions o f  sensitivity and improve management.

INTRODUCTION

The scarcity o f funds and the inherent complexity o f natural systems impose 

formidable barriers to managers striving to determine appropriate management o f wild 

populations. Clearly, objective and cost-effective tools that provide a reliable assessment 

o f  management options are needed. Ideally, such tools can be used to provide insight into 

the efficacy o f management options before implementation, thereby reducing negative 

consequences and cost associated with inappropriate management.

Recently, there has been much interest in m atrix-based analyses. Such analyses 

combine estimates o f reproduction and survival in a matrix-based format which accounts 

for known population structuring (Caswell 1989a; Burgman et al. 1993). One o f the most 

popular uses for such matrix-based analyses are demographic sensitivity analyses (e.g. 

Crouse et al. 1987; Crowder et al. 1994; Marschall and Crowder 1996; Crooks et al.

1998), which measure the “sensitivity” o f population growth rate to perturbations in 

specific vital rates (i.e. birth and death rates) associated with an organism’s life history.

Matrix-based methods are appealing because they are relatively easy to use and 

focus directly on population growth rates. This is an improvement upon other assessment 

techniques, such as habitat modeling, which must assume a link between habitat factors, 

the presence or density o f a species, and population growth (Van Home 1983; Vickery et 

al. 1992). Similarly, key factor analyses (Morris 1959; Podoler and Rogers 1975) are 

based upon mortality and never address population growth rate (Royama 1996).
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Despite the obvious advantages o f examining population growth directly, matrix- 

based analyses have a number o f problems. First, the analyses require data that are 

difficult to collect, and parameterizing matrix models is difficult even for well studied 

species. The compensatory structure (e.g. density dependent function) and 

spatial/temporal variation o f vital rates are rarely known, even though techniques exists 

which can account for such complex vital rate structuring (see van Tienderen 1995).

These problems are especially acute for endangered species, where a priori assessment o f 

management alternatives is critical and experimentation may lead to species extinction. 

Consequently, most matrix-based analyses rely on a mean matrix o f “best guess” vital 

rates. When variance in vital rates can be included in such analyses, it is usually assumed 

that vital rates do not covary and variance is rarely partitioned into real vital rate variance 

and sampling variance (as recommended by Burnham et al. 1987; Link and Nichols 

1994).

Second, most matrix-based analyses are deterministic. In particular, metrics o f 

population growth usually rely on asymptotic properties and assume a stable age 

distribution (SAD)(but see Tuljapurkar 1997).

Third, matrix-based sensitivity analysis may be difficult to translate into well- 

defined management actions. AJthough it is typically assumed that management actions 

should focus upon the vital rates with the highest impact upon population growth rate, 

this may be misleading, because the sensitivity o f population growth is dependent on both 

the inherent sensitivity o f a vital rate and the amount that a given vital rate varies (Mills 

et. al. In Press). Vital rates predicted by models to be o f high importance may actually 

vary little in nature (Pfister 1998, Gaillard et al. 1998) or may be impossible to
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manipulate effectively (Citta and Mills In Press). Interpretation is further complicated by 

the fact that limiting factors (Silvertown et al. 1996) and/or stochastic events may 

regulate long-term population growth independent o f management actions.

Clearly, it is necessary to have a better understanding o f how well sensitivity 

analyses predict population growth in actual management scenarios. I conducted a 

matrix-based demographic sensitivity analysis for common deer mice (Peromyscus 

maniculatus) and then experimentally tested these predictions with different vital rate 

manipulations. Because the predicted changes in population growth did not occur, I used 

data from the experiment to examine biological processes that the sensitivity analyses did 

not account for.

STUDY SYSTEM

While sensitivity analysis is usually applied to the conservation o f endangered or 

game species (e.g. Noon and Biles 1990; Doak et al. 1994; Wisdom and Mills 1997, Flint 

et al. 1998), field testing sensitivity analysis models with such species is difficult because 

the target species are scarce, have poorly understood demography, or are wide ranging 

and difficult to manipulate. I chose deer mice as a study species because they are 

abimdant, have relatively well understood demography, small home range sizes, and high 

rates o f  population growth. Furthermore, sampling o f small mammals is well-developed 

in theory and practice (e.g. Pollock et al. 1990) and deer mice populations are relatively 

easy to manipulate. This model system allowed me to collect a relatively large amount o f 

data on population processes in a short period o f  time (< 2 breeding seasons).
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Deer mouse model

Following the usual approach to sensitivity analysis, I first collected vital rates via 

literature review (Table I), then created a stage-based, female only matrix model with a 

30 d projection interval (Appendix A). A female-only model is justified, because females 

are usually considered to be the limiting sex. Females have smaller territories (Metzgar 

1979; Van Home 1981; Taitt 1981) with less home-range overlap than males (McCabe 

and Blanchard 1950; Blair 1940).

Density dependence o f vital rates (the change o f birth and death rates by animal 

density) was not included in the matrix model, because such relationships are largely 

unquantified -  despite deer mice being relatively well studied. A number o f studies 

provide evidence to show that adult female deer mice may regulate population densities 

in lab situations by either aggressively defending litters (Savidge 1974a, 1974b; Ayer and 

W hitsett 1980) or by reproductively inhibiting juvenile female deer mice (Terman 1965, 

1973, 1979, 1980). Field experiments also show an inverse correlation between the 

density o f adult females and juvenile survival (Taitt 1981; Galindo and Krebs 1987).

Adult male mice may also regulate population density by reducing juvenile survival (e.g. 

Healy 1967; Petticrew and Sadleir 1974) or by forcing non-breeding or subordinate male 

mice to disperse during the breeding season (Fairbaim 1977). W olff (1985a) found that 

aggression was not detectable until densities exceeded 25-30 mice per hectare.

Density dependence was not included in the model, because the evidence is not 

sufficient to develop predictive functions that explicitly involve the rate o f reproduction 

or survival as a function o f population density. First, there are multiple mechanistic
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hypotheses which can explain the same compensatory phenomena. Second, while the 

laboratory-based studies (e.g. Terman 1965, 1973, 1979, 1980) are probably the most 

convincing, the densities at which females inhibit reproduction or express aggression are 

artificially high compared to wild deer mouse densities. Third, aggression rates are 

believed to interact with other factors, such as food availability (Taitt 1980; Gilbert and 

Krebs 1981; Teferi and Millar 1993), that make it difficult to parameterize a matrix 

model.

The matrix model also assumed that survival and reproductive capability are 

uncorrelated. Individuals may have correlated rates o f survival and reproduction (i.e. 

individuals o f poor condition likely survive and reproduce poorly). However, matrix 

models assume that all members o f an age class have the same rates o f survival and 

reproduction and, for deer mice, I could find no information to parameterize a more 

complex individual-based model.

METHODS OF SENSITIVITY ANALYSIS

I predict the sensitivity o f population growth rate (1) to perturbations in specific 

deer mouse vital rates with four techniques: (1) elasticity o f a mean matrix; (2) Life 

Table Response Experiments (LTRE); (3) Life-stage Simulation Analysis (LSA); and (4) 

a simulation-based manual perturbation technique.

Elasticity o f  a mean matrix

Elasticities are defined as the proportional infinitesimal change in geometric 

population growth rate at stable age distribution (X.) given an proportional infinitesimal
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change in a vital rate, while all other vital rates are held constant (Caswell et al. 1984; de 

Kroon et al. 1986; Caswell 1989a). Specifically, for matrix element aij (row i, column y);

Elasticity (eÿ) o f
f  \  r  \  Vi Wj ( aij

( 1 ).(v ,w )j V ’k)  ’

where v and w  are the vectors o f reproductive values and stable age distributions (SAD) 

associated with matrix a, respectively, (v, w) is the scalar product o f the two vectors, and 

X is the dominant eigenvalue o f the matrix. Because treatments were imposed on a 

proportional scale (see Experimental Methods section), the a priori predictions are based 

upon vital rate elasticity and not the analogous measure, sensitivity, that is more 

appropriate for infinitesimal absolute changes (Caswell 1989a, Horvitz et al. 1997).

When matrix elements are composed o f more than one vital rate, component 

elasticities can be calculated for each vital rate that appears in one or more matrix 

elements. For n elements that contain vital rate x, the elasticity o f x is:

non - X components)

Life Table Response Experiments (LTRE)

Life Table Response Experiments are closely related to traditional sensitivities 

and elasticities. To account for unequal variation in vital rates, LTRE weights traditional 

sensitivities by the variation in a particular vital rate (Caswell 1989b; Brault and Caswell 

1993; Horvitz et al. 1997; Ehrlen and van Groenendael 1988). Because treatments were 

imposed on a proportional scale (see Experimental Methods section), elasticities were 

used to calculate LTRE effects rather than sensitivities. The weighted elasticity of vital 

rate a ÿ  is:
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/ v ÿ  X eij (3 )

where yjvi/ denotes the standard deviation in matrix element a y  and assumes no 

covariation in vital rates.

The weighted elasticities o f the underlying vital rates can also be computed for n 

elements that contain vital rate x. The LTRE for component vital rate x is:

(v w ) j^ ^  ^

While weighting elasticities by variance in vital rates improves predictions o f population 

change, LTRE requires all other assumptions of elasticity analysis.

Life-stage Simulation Analysis (LSA)

The third method, Life-stage Simulation Analysis (LSA), accounts for large 

and/or simultaneous changes in vital rates. This is a simulation-based technique where 

replicate matricies are constructed with each vital rate o f each matrix randomly chosen 

from a distribution bounded by empirically determined upper and lower limits (see 

W isdom and Mills 1997). Population growth rate at SAD (1) is then calculated for each 

matrix. The relative importance o f a stage specific vital rate is assessed by regressing X 

for each replicate against the value of that rate for all replicates to derive coefficients of 

determination {R^). In terms o f traditional definitions o f sensitivity, for any 

component vital rate is analogous to the squared sensitivity weighted by the relative 

variance o f  a vital rate (H. Caswell, pers. comm.). Thus, this approach is similar to the 

analytical covariance technique used by Brault and Caswell (1993), but is simulation- 

based.
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The regression method allows specification o f the range and distribution of 

variation based on natural variation. Because all possible X are plotted, the regression 

technique also has the advantage of being able to detect non-linearities that traditional 

methods may not (Wisdom et al. In Press).

Simulation-based manual perturbation technique

There are a number o f sensitivity analyses that do not have a formal methodology, 

but that share one important attribute: effects o f perturbations are evaluated by manually 

altering vital rates and comparing resulting population growth rates. While the modeler 

may examine any combination of perturbations believed to be important and these 

analyses can be very realistic, the modeler must also be able to choose representative 

perturbations from an infinite realm o f perturbation combinations and levels. These 

techniques usually rank vital rate importance by how much a metric o f population growth 

(usually 1) or likelihood o f extinction changes when vital rates are perturbed (e.g. Noon 

and Biles 1990; Heppel et al. 1994; Akcakaya and Atwood 1997). For example, Heppel 

et al. (1994) alter each vital rate o f red-cockaded woodpeckers {Picoides borelais) by 5,

10, and 25%; and rank the vital rates by how much X alters due to each perturbation. 

MODEL PREDICTIONS

Elasticities were derived for the mean matrix (Appendix A) using equation 2 

(Figure 1). Elasticities weighted by vital rate variance (LTRE) were generated using 

elasticities derived from the mean matrix and multiplying them by the variance in the 

total range o f variation (equation 4) as determined via literature review (Table 1). For the 

third technique, Life-stage Simulation Analysis (LSA), I selected vital rates from a
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uniform distribution, bounded by the range o f variation as determined via literature 

review (Table 1). I use a uniform distribution because there is no a priori knowledge to 

suggest another distribution, and because the experimental treatments should result in 

large changes from mean vital rates being as or more likely than small changes.

Last, I manually decreased the vital rates one-at-a-time in the mean matrix by 

50% for the simulation-based manual perturbation analysis. This directly emulates the 

experimental treatments (see Experimental Methods section). The sensitivity o f 

population growth is reported as the change in X after vital rates are altered.

Interestingly, all four methods o f sensitivity analysis indicate that monthly 

population growth is most sensitive to perturbations in adult survival (Figure 1). Thus, 

following traditional approaches in a management or research context, managers would 

focus the efforts upon increasing adult survival if  deer mice were an endangered species 

or decreasing adult survival if  deer mice were a pest species. I tested these a priori 

predictions in wild populations o f deer mice.

EXPERIMENTAL METHODS

The three experimental treatments, conducted on wild populations o f deer mice at 

the Lubrecht Experimental Forest in western Montana, were: (1) an adult removal 

treatment where 50% o f all adult female mice were removed (thereby decreasing adult 

survival); (2) a juvenile removal treatment where 50% o f all juvenile female mice were 

removed (thereby decreasing juvenile survival); and (3) a control treatment in which no 

mice were removed from the population. Removal treatments focused upon female mice, 

because females appear to be the limiting sex in deer mouse systems (Metzgar 1979;
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Terman 1980; Van Home 1981; Taitt 1981; Galindo and Krebs 1987). A removal o f 50% 

o f the target age and sex class should functionally decrease the survival rate o f that age 

class by 50%. The hypothesis, based upon sensitivity analysis, was that control 

treatments would have the highest population growth rates, followed by lower population 

growth rates for juvenile removal treatments, followed by even lower population growth 

rates for adult removal treatments.

All experiments were carried out in replicate 0.81 ha pens (90 m X 90 m), to 

facilitate delineation o f separate populations o f deer mice and to eliminate the effects o f 

dispersal. Pens had walls o f high-density polyethylene plastic sheeting buried 1 foot 

below ground and extending 3 feet above ground; in both years o f the study, there were 

low movement rates into and out o f pens (1996 = 5.00%; 1997 = 1.25%). Movement 

rates between pens decreased in 1997, because trees near enclosure walls were encircled 

with sheet metal to prevent mice from moving through the forest canopy.

One trial with no replication (i.e. three pens with one treatment each) was 

conducted on naturally-occurring populations within the enclosures during the 1996 

breeding season. In 1997, construction o f the enclosures was completed and treatments 

were assigned according to a randomized block design with a total o f  three blocks. Each 

block had three pens with one treatment each. Because I could only trap and manipulate 

populations o f mice within one block at a time and because each block o f pens had 

slightly different levels o f canopy closure, blocking controlled for time differences 

between treatments and slight differences in canopy closure. At the beginning o f  the 

1997 breeding season, mouse densities were very low (< 1 mouse per hectare), 

presumably due to a record snowfall the previous winter. Consequently, I stocked the
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enclosures with mice. Each enclosure was stocked with a total o f 12 mice -  3 juvenile 

males and females and 3 adult males and females — from the surrounding forest. I then let 

the mice adjust to their surroundings for 4 weeks prior to any trapping or manipulations.

Trapping followed Pollock’s robust design (Pollock et al. 1990). Trap spacing 

was 12.8 meters, allowing for 49 sherman live traps on a 7 by 7 grid. At the beginning of 

the season, when daily capture probability {p) was high (0.75 - 1.0), all trap sessions were 

3-4 d in length. As the season progressed and p  decreased, trap sessions were lengthened 

to 6-8 d in length.

During the first capture session, I assessed population size and then removed 50% 

o f  the target age class. I then assessed population size and growth rate every two weeks 

after the initial date o f manipulation.

Data analysis

The Lincoln-Petersen estimator (Seber 1980; Pollock et al. 1990) was used to

calculate population size ( N ) within each trap session (/) and calculate observed 

population growth rate rates over each interval o f two weeks as:

Lbs = (6)
N t

Observed population growth rate (A-̂ bs) differs from the geometric population 

growth rate (A.) (the dominant eigenvalue o f the matrix), because A.̂ b$ does not require the 

assumption o f SAD. After manipulating vital rates, A.„bs should converge on A, as age 

distributions stabilize.
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Following Mood et al. (1974), we estimate variance o f lobs as:

vâr lobs = var
2 /

L N .  J I N {  J \

var(N,+i) var(N t) 2cov(N,+,N,)^
"h ■ ’ (7)Nf N„|N ,

Because covariances cannot be calculated with the Lincoln-Petersen estimator, 

covariance is assumed to be 0.0. Point estimates o f l^bs had very low standard errors 

(Figures 2 and 3). I only statistically analyze the data from 1997, because l„(,s can only be 

calculated for a one month interval in 1996 (block 4; Fig. 3b) and all other estimates for 

l^bs are for two week time intervals. However, the 1996 data has the same trend as all 

other data. The number o f trap sessions differed between blocks, because o f different 

starting dates and because a number o f pens went extinct or nearly so. In 1997, there was 

an average o f 8 mice per pen (after survival reductions) and I ceased monitoring a block 

when a pen went extinct.

RESULTS

Two weeks from the initial date o f manipulation, it appeared that reducing 

survival had an effect on population growth rates. However, contrary to the predictions 

o f  sensitivity analyses, it did not matter what age class had reduced survival (Figure 4a). 

Actual population growth from two to four weeks (i.e. lobs = N (=4 weeks )

indicates that there was no longer any difference between any o f the treatments (Figure 

4b). In all cases, the precision o f average very low. Low precision is due to true 

process variation and not sampling error, as the individual estimates of all have small 

standard errors (Figures 2 and 3).
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FACTORS INFLUENCING EXPERIMENTAL RESULTS

Sensitivity analysis predicted strong differences in population growth rate across 

the treatments, but no such effects were sustained. Four primary factors may have led to 

the lack o f treatment effects: ( 1) experimental perturbations were insufficient to cause a 

large effect; (2) non-stable age distributions; (3) vital rate compensation; and (4) 

demographic stochasticity due to small population size. Because all o f  these could be 

relevant to the application o f sensitivity analysis in wild populations, I consider each of 

these factors in turn. Where applicable, I re-evaluate sensitivity with data collected 

during the study (Table 2).

Insufficient perturbations

Sensitivity analyses usually assumes that vital rate perturbations change the mean 

values through time. However, instead o f altering mean survival rates during the entire 

study, I lowered survival rates only once, as might occur under many management plans 

(scenario #2, Table 2). To investigate the effects o f altering survival rates only once, I 

created a deterministic model which used the vital rates and matrix from the sensitivity 

analysis (Appendix A). Observed population growth rate was calculated as:

X,obs = Nt+, /  N ( ; hence the model did not let the population attain SAD before 

estimating population growth, but calculated population growth between each projection 

interval.

Using this projection model 1 assumed the starting population was at SAD and 

removed one half o f the individuals in the target age class and then projected the model 5 

projection intervals into the future. Population growth from one time step to the next
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changes only immediately after the perturbation (Figure 5). After 1 projection interval, 

for each treatment varies little from the control However, treatment effects 

should still exist over short time intervals.

Non-stable age distributions

I next investigated the possible consequences o f  non-stable age distributions. All 

sensitivity analyses assumed populations were at stable age distribution (SAD). It is 

unknown how often populations in the wild are at SAD; however, because vital rates (and 

underlying age distributions) vary due environmental variation, predictions of sensitivity 

may also vary.

To evaluate the effect o f non-stable age distributions, I first compared actual age 

distributions from the experiment (i.e. the empirical age distributions) with the stable 

distributions the model generated. Unfortunately, the exact age distributions could not be 

determined from field data, because the youngest o f  the three age classes (pre-weaning 

stage) is not trappable. Therefore, the proportion o f  adults (P J  in the wild populations 

was used as an index to age distribution. Because the model indicates that at SAD there 

are equal proportions in all age classes (Appendix A), the observed proportion o f adult 

females to juvenile females during the field study should equal 0.5. In the experimental 

pens, ?3 was generally (in 9 of 12 cases) skewed low. With the exception o f one outlier, 

all Pg values are between 0,2 and 0 .6 .

How much would a juvenile-biased sex ratio alter predictions o f sensitivity? To 

simulate treatments, I assumed pre-weaning mice (which were invisible to sampling) 

were o f the same proportion as juveniles and then projected for various starting age
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ratios (P, = 0 .2 -0 .6 ), removed one half o f the target age class, and calculated (scenario 

#3, Table 2). As P, decreases, the large predicted effect o f decreasing adult survival 

decreases. Contrary to the a priori predictions, the impact o f reducing juvenile survival 

exceeds that o f reducing adult survival when P, is biased below 0.3 (Figure 6). 

Compensation o f  vital rates

The perturbations imposed on the populations o f mice may have been 

counteracted by vital rate compensation. To investigate the effects o f such compensation, 

empirical vital rates were estimated and then incorporated these vital rates into the 

projection model.

I estimated survival rate by treatment with actual field data using Pollock’s robust 

design (Pollock et al. 1990, Kendall et al. 1997) and Program MARK (see Gooch and 

White 1998). Survival rate is estimated for the two blocks o f pens which could be 

trapped for more than two consecutive primary capture occasions. Goodness-of-fit 

testing is poorly developed for complex models (Leberton et al. 1992) and model the fit 

o f  models could only be tested to the level o f the population (see Appendix B for details). 

While the analyses did not detect differences in reproduction, there were higher post

treatment survival rates in pens where adult mice were removed (Figure 7).

I re-evaluated the predictions o f sensitivity by incorporating the empirically 

derived survival rates into the projection model to investigate treatment specific 

compensation o f survival rate across the empirical range o f age ratios (scenario #4, Table 

2). Vital rate compensation drastically alters the predicted sensitivity o f after 

removing adult mice, the resulting higher post-treatment survival rates is predicted
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slightly increase population growth relative to the control treatment or have no effect 

(Figure 8). While interacts with the proportion o f adult females (PJ, this interaction 

has little effect (compare Figure 6 with Figure 8) and reducing juvenile survival 

consistently alters more than reducing adult survival. However, neither treatment is 

expected to drastically alter 

Demographic stochasticity

Demographic stochasticity, the variation inherent in a population because 

organisms reproduce and die as discrete units, may cause population growth rate to 

fluctuate greatly when population sizes are small (Burgman et al. 1993; Akcakaya et al. 

1997). The maximum population sizes were as high as 30 mice, but during 1997 the 

average population size was 8 mice. Because o f the low population sizes, demographic 

stochasticity could have overwhelmed treatment effects. I used a commercially available 

software package, RAMAS/age (Ferson and Akcakaya 1988), to model demographic 

stochasticity (Scenario #5, Table 2). RAMAS/age is a matrix-based simulation package 

which models demographic stochasticity by selecting vital rates from a binomial 

distribution. I input the mean matrix, starting age distributions, and compensatory vital 

rates into the program and then projected 500 replicate simulations one time step into the 

future; all simulations had a starting population size o f 10 mice. I find that the 

demographic stochasticity could overwhelm treatment effects (Figure 9).

DISCUSSION

The best efforts to use sensitivity analysis to predict population change in deer 

mice were unsuccessful. Although the estimates o f population growth were very precise,
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average growth rates across replicates had high variance. High variance is consistent 

with high levels o f demographic stochasticity, but does not explain why sensitivity 

analysis incorrectly predicted point estimates o f X,„hs-

Non-stable age distributions and vital rate compensation may have caused the 

unexpected point estimates of Observed age distributions were skewed away from 

SAD, towards juvenile mice, and the projection model indicated that this skewing could 

reduce or even reverse the predicted change in population growth resulting from the 

treatments. However, the simulations indicate that non-stable age distributions may be a 

m inor problem compared to the compensation o f vital rates. When predictions of 

sensitivity include empirical levels o f compensation; that the change in observed growth 

rate (A,„bs) is much lower than originally predicted by the sensitivity models (compare 

Figure 6 with Figure 8).

The simulations indicate that non-stable age distributions and compensation may 

both be important, but what do the field data suggest? Immediately after the 

perturbations, decreased for the survival reduction treatments (Figure 4a). This 

pattern is consistent with simulation predictions that account for non-stable age 

distributions, but not consistent with simulations that account for compensation o f vital 

rates. From two to four weeks into the future (Figure 4b), observations are consistent 

with either predictions resulting from non-stable age distributions or vital rate 

compensation. Why was compensation not observed immediately after the experimental 

treatments? It is possible that vital rate compensation was not instantaneous (i.e. a time- 

lag existed) and that there was not enough data to identify such a time-lag.
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Unfortunately, the effects o f demographic stochasticity, variation in age ratios, 

and vital rate compensation cannot be separated. While deviations from SAD and vital 

rate compensation were observed and measured, the field data are not conclusive. I can 

only state that I did not observe the predicted effects and that all o f  these factors 

(deviations from SAD, vital rate compensation, and demographic stochasticity) may have 

played roles in obscuring treatment effects. "

W hile populations of small mammals are clearly more variable than many 

populations o f larger bodied vertebrates, the findings illuminate when sensitivity analysis 

is questionable and force consideration o f how sensitivity predictions can be translated 

into management action. First, discrete treatments that do not permanently alter mean 

survival rates are not expected to change population growth rates for long periods o f time. 

While this is not unexpected, commonly used models o f sensitivity analysis do not 

explicitly explore the effects o f discrete perturbations over short time periods.

Specifically, models based on SADs are implicitly based on the assumption that vital rate 

perturbations are permanent.

Second, non-stable age distributions may play large roles in determining the true 

amount and direction o f a vital rate perturbation. Environmental variation causes vital 

rates to fluctuate and results in fluctuating age distributions. Any perturbation that 

drastically altered age distributions in the recent past will alter predictions o f sensitivity 

analysis in the near future regardless o f current vital rates.

One special case of fluctuating age distributions is non-continuous breeding. As 

an example, deer mice only breed from the spring through the fall in the northern 

latitudes. In the spring, all individuals are adults and age distributions are drastically

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



60

biased (i.e. the proportion o f adults, P, »  1.0). As new mice are born, age distributions 

become less biased towards adults and I would expect the sensitivity o f to 

perturbations in adult survival to be greatest in the early spring (when is high) and 

lowest in the fall (when P, is low). Interestingly, this change in sensitivity occurs 

regardless o f  the underlying vital rates. In other words, even if  the vital rates in the 

matrix are invariant and representative o f the population, the population will rarely be at 

SAD because breeding is not constant throughout the year. Hence, the true impact o f 

perturbations depend upon when they are implemented.

Third, vital rate compensation may reduce or even reverse the predicted impacts 

o f treatments. While this result is not unexpected, managers usually have little or no 

knowledge o f  what compensatory effects to expect. Fourth, the variance due to 

demographic stochasticity can be large and may limit how predictable models are when 

management perturbations are unreplicated.

CONCLUSIONS AND RECOMMENDATIONS

What does the experiment and subsequent modeling mean for practitioners o f 

sensitivity analysis? First, age distributions can affect how well predictions match actual 

population growth. I f  age distributions are different from SAD or are likely to change, 

the preferred approach would be to use a simulation-based technique that calculates 

population growth from one projection interval to the next, without assuming SAD. Such 

models should also allow the practitioner to input actual age distributions.

Population Viability Analysis (PVA) may circumvent the assumption of SAD and 

provide a practical alternative to assessing vital rate sensitivity. Population viability
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models are usually matrix or individual-based and are traditionally used to estimate 

extinction risk. Usually, multiple stochastic simulations are projected in the future and 

extinction risk is indexed by the number o f replicate simulations with population sizes 

below a threshold number at the end of the simulation period (See Burgman et al. 1993 

and Beissinger and Westphal 1998 for detailed reviews). Population viability analysis 

models are stochastic and, therefore, vital rates and age distributions alter each time 

interval. As such, PVA models do not rely upon SAD; furthermore, many o f the software 

packages can be parameterized with user defined age distributions at the beginning of 

each simulation (e.g. RAMAS and Vortex). Such a modelling framework can be used in 

conjunction with manual perturbations to rank the sensitivity o f vital rates by 

summarizing how many replicate simulations have population sizes either increasing 

above or decreasing below a threshold population size. Akcakaya and Atwood (1997) 

and Marmontel et al. (1997) provide examples o f how PVA models can be used to assess 

sensitivity o f  vital rates.

The problem o f vital rate compensation is more difficult to overcome than non

stable age distributions. If  the practitioner is not aware o f compensatory 

mechanisms/functions, then management actions must be based upon models which 

temporarily ignore compensation. Without prior knowledge o f compensatory structure, 

sensitivity analysis still provides the best indication of how to alter population growth 

rate. I f  management actions are performed in conjunction with monitoring programs that 

estimate vital rates, then management can be adapted to consider emerging compensatory 

patterns. In this study, I used field data to estimate survival rates and then used these 

empirical rates to re-evaluate predictions o f sensitivity. Practitioners o f sensitivity
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analysis could use this protocol to improve predictions o f sensitivity and alter 

management perturbations as new knowledge arises.

My results also point to the importance o f sustaining changes in vital rates.

Unless mean vital rates are altered permanently, perturbation effects will be temporary 

and projection models will be necessary to determine how long (i.e. how many projection 

intervals) treatment effects will last.
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Table 1. Summary of deer mouse vital rates (female only).

Category Mean rate Range Source Number o f  
estimates

Litter size 2.38 2 .0 -2 .6 Blair 1940; I
Halfpenny 1980; 1
W olff 1985b; 1
Millar et al. 1979; 2

Proportion 0.61 0.39 - 0.84 Sullivan 1979; 6
Adults Breeding Sullivan and Sullivan 1981; 3

Time between 36 d 26.3 - 50 d Millar and Innes 1983; 1
litters McCabe and Blanchard 1950; 1

Pre-trappable 0 .4 8 /3 0  d 0.32-0.791 Millar and Innes 1983; 4
survival Sullivan 1979; 7

Time to ween 20 d 1 8 .0 -2 4 .9 Millar 1982; 1
Millar and Innes 1983; 1
Millar et al. 1979; 1
Halfpenny 1980; 1
Millar 1985; I
King et al. 1963 1

Juvenile 0.64 / 30 d 0.29 -0.861 Sullivan 1979; 6
Survival Sullivan and Sullivan 1981^ ; 3

Van Horne 1981; 12
W olff 1985b 3

Adult 0.61 / 30 d 0.26-0.831 Sullivan 1979; 7
Survival Sullivan and Sullivan 19 8 1; 3

Van Home 1981; 12
W olff 1985b 3

' Vital rates of 0.00 or 1.00 are used to calculate mean rate, but not used in the range, as 
they cannot be typical of populations.

 ̂Vital rates from Sullivan and Sullivan (1981) which are from “experimental” plots 
(treated with herbicides) are not used. I used only vital rates from the “control” or non
herbicide plots.
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Table 2. Modeled scenarios, their data sources, and resulting predictions of vital rate sensitivity.

T3
CD

(/)
(/)

Scenario Fecundity Survival Age
distribution

Metric of 
population 
growth rate

Predictions of sensitivity

8

i
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CD
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Matrix models are used to predict 
demographic sensitivity 
(Appendix A).

2. Actual perturbations and original 
matrix model used to examine 
observed population growth rate 
(Xob,) instead of geometric 
population growth rate (X,).

The sensitivit)’ analysis is 
improved with empirical age 
distributions.

4. The sensitivity analysis is 
improved w ith empirical age 
distributions and empirical 
survival rates.

Literature review 
(Table 1).

Literature review 
(Table I).

Literature review 
(Table I).

Literature review 
(Table I)-data 
not sufficient to 
estimate 
reproduction

Literature review 
(Table I).

Literature review 
(Table 1).

Literature review 
(Table 1),

Empirical 
estimates 
(Figure 7).

Stable age
distribution
(SAD)

Non-stable age 
distributions 
are calculated 
by the model 
from N, to N,+[.

Empirical age 
distributions.

Empirical age 
distributions.

Geometric 
population growth 
rate (X).

Observed 
population growth 

N.
rate X = obs

t + l
N .

Geometric population growth rate (X) is 
much more sensitive to perturbations of 
adult female survival than juvenile female 
survival (Figure 1).

Xgb; is more sensitive to perturbations in 
adult female survival than Juvenile female 
survival, but effects last for only one 
projection interval (Figure 5).

Treatment effects are less for age 
distributions which are biased towards 
Juvenile females. At high proportions of 
Juvenile females, impacts of treatments are 
opposite of original predictions (Figure 6).

Xobs is more sensitive to reducing Juvenile 
survival than for reducing adult sur\ ival 
(Figure 8).

5. Demographic stochasticity is 
incorporated into the sensitivity 
analysis to investigate the effects 
of small population size

Literature review Empirical
estimates

Empirical age 
distributions.

The error due to demographic 
stochasticit)' overwhelms treatment effects 
(Figure 9).
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Figure I. The sensitiv ity  o f  population growth rate assum ing stable age distribution  

(X) to perturbations in sp ecific  vital rates for deer m ice. A ll predictions are 

generated from  the matrix m odel in A ppendix A  and with the m ethods described  

w ithin the text. B ecause each technique (x -ax is) ye ild s a different m etric o f  sensitivity, 

techniques are not directly com parable. H ow ever, qualitative rankings within  

techn iques are com parable.
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Figure 2. Estimates o f observed population growth rate and one standard 

error for (a) block 1 and (b) block 2 with the three survival reduction treatments. 

Each estimate o f N was calculated with the Lincoln-Petersen estimator. Point 

estimates o f have low standard error due to high daily capture probability.
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Figure 3. Estimates of observed population growth rate (A-̂ bs) and one standard 

error for (a) block 3 and (b) block 4 with the three survival reduction treatments. 

Each estimate of N was calculated with the Lincoln-Petersen estimator. Point 

estimates of have low standard error due to high daily capture probability.
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Figure 4. Change in observed population growth ^nd 90%CI) following
treatments o f  reducing survival by 50%. Presented are changes in from
(a) 0 to 2 weeks following treatment and (b) from 2 to 4 weeks following treatment.
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Figure 5. Modled impacts of treatments over 5 projection intervals. Perturbations 

were included in the model as they were performed in the experiment — survival of 

the target age class was reduced by 50% prior to interval I and then populations are 

monitored over time. The change in observed population growth rate is relative 

to the control treatment. After the initial perturbation quickly recovers.
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Figure 6. Modled impacts o f biasing age distributions towards adult deer mice with five 

observed age distributions as indexed by the proportion o f adults (PJ. Changes in 

observed population growth rate are for one projection interval after the treatment 

perturbation. Perturbations were included in the model as they were performed in the 

experiment — survival of the target age class was reduced by 50%. As P  ̂decreases to 

levels observed in the field experiment, reducing juvenile survival has equal or more 

impact than reducing adult survival.
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Figure 7. Survival rate and unconditional standard error specific to treatment. 

Treatments are: (1) control; (2) 50% reduction o f juvenile female survival; (3) 50% 

reduction of adult female survival. Unconditional standard error indicates 

uncetainty in both the estimator and the information criterion used to select the 

models. Rates estimated with Program MARK (see Appendix B).
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Figure 8. Modeled impacts of biasing age distributions towards adult deer mice 

across the empirical range of the proportion of adults (P J and while accounting for 

empirical treatment specific survival rates. Changes in observed population 

growth rate are for one projection interval after the treatment perturbation. 

Perturbations were included in the model as they were performed in the 

experiment — survival of the target age class was reduced by 50%. The y-axis (A 

^obs ) equals o f the control minus of the survival reduction treatment. 

Compare with Figure 6 ; the empirical change in adult survival results in slightly 

higher than control treatments.
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Figure 9. Modled impacts o f vital rate compensation and demographic stochas- 

ticity across the empirical range of the proportion o f adults (PJ. All simulations 

assumed a starting populaiton size o f 10 mice. Error bars represent 1 standard 

deviation in population size across 500 replicate simulations. Changes in observed 

population growth rate are for one projection interval after the treatment 

perturbation. Perturbations were included in the model as they were performed in 

the experiment — survival o f the target age class was reduced by 50%. The y-axis 

(A Xgyg ) equals o f the control minus o f the survival reduction treatment.
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Appendix A. Deer mouse matrix model. 

Projection interval: 30 d.

Stages:

1 (pre-weaning)

2 (P*juvenile)

3 (2"*̂  juvenile)

4 (adult)

Approximate ages (d.):

<30 

31 -6 0  

61 -9 0  

121 +

Deer mouse demography differs by season and I could not test the model in all 

seasons, the model was split into a breeding season and a non-breeding season matrix. 

Only the breeding season matrix is used for analysis; this matrix is diagrammed as:

Duration of stage class (d.): 

30 

30 

30 

N/A

Juvenile AdultJuvenile

weaning

30 d. 3 1 -6 0  d. 61 -9 0  d. 9 0 + d.

Deer mouse matrix 

Where:

P = survival to remain within a stage 

G = survival to next stage 

F = reproduction 

H = proportion breeding

0 0 0 P4F4H4

Gi 0 0 0

0 G2 0 0

0 0 G 3  P 4
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Mean and  adjusted matricies

When mean vital rates for deer mice are combined in matrix format, geometric 

population growth rates (A.) are less than one. This is likely due to a systematic low bias 

in survival rates, which are a consequence o f assuming all permanent emigrants from trap 

girds are mortalities. Trapping grids which cover small areas exacerbate this problem, 

because dispersers are less likely to be captured elsewhere on the grid and traps may only 

cover a  small portion o f an animal’s home range. Because A. must be greater than 1.0 

during the breeding season, I increased all survival rates by 20% from the mean rates 

from the literature. All adjusted vital rates are still within the reported range o f  variation. 

This “adjusted matrix” is used in all analyses which require a mean matrix (i.e. elasticity, 

LTRE, and simulation based analyses).

Adjusted matrix 
rate

SAD

'  0 0 0 0 .94 ' ’ 0.34 '

0.58 0 0 0 0.19

0 0.77 0 0 0.14

0 0 0.77 0.73 _ 0.34

Population growth 

at SAD

X = l.05
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Appendix B. Survival rate estimation using program MARK.

Program MARK is a collection o f open and closed estimators for population 

parameters. I used Pollock’s robust design (Pollock et al 1990; Kendall et al. 1997) to 

estimate survival rates for the treatments. Modifying the notation o f Kendall et al (1997): 

Njk, = Estimate o f population size during primary session (/), in pen (k), with

treatment (/), assuming closed populations (i.e. no birth, death, emmigration, or 

immigration).

= Survival rate o f animals from primary session (/) to primary session (/ + 7) in 

pen (k), with treatment (/).

Pijî i =  The probability that an animal is captured in secondary sample (/) o f  primary 

sample (/), pen (k), and treatment (/), given that the animal is alive and in the 

sampled area during period (i).

Cjjki = The probability that an animal is recaptured in secondary sample (/) o f  primary

sample (/), pen (k), and treatment (/), given that the animal has been captured 

before, is alive, and is in the sampled area during period (/).

= The probability that a previously captured animal is not in the sampling area at

primary period (i), but will be recaptured during a later primary period.

Kendall et al. (1997) separate g into two components: y” = the probability o f 

emigrating from the sampling area, and y’ = the probability o f remaining away 

from the sampling area one the animal has left. Because the populations are 

enclosed, I assume y” = y’ = 0.00.
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Parameters which do not vary at specific levels are denoted by (,). For example, 

a model with assumes that survival rate is varies by primary period (/) and pen (k), 

but is invariant (equal) across treatments (.)•

Goodness-of-fit (GOF) was tested for the full model with RD-SURVIVE (see 

Kendall et al. 1997). Because RD-SURVIVE cannot calculate GOF for highly complex 

models, I had to calculate goodness-of-fit for each pen separately and had to assume that 

(|) was equal for all age and sex classes within a pen. I then summed the 

approximations and adjusted the degrees o f freedom to test the overall GOF o f the most 

parameterized model (as done by Leberton et al. 1992) (Table Appendix B l).

I follow Bumham and Anderson (1992) and Lebreton et al. (1992) and use 

Akaike’s Information Criterion (AIC) to determine which models are the most 

parsimonious. Where the log likelihood is determined by the maximum likelihood 

estimators in Program MARK and k  is the number o f parameters, AIC is calculated as:

AIC = (-2Iog Likelihood) + (2k) (AB 1)

AIC penalizes the better fit (i.e. lower deviance) o f more parameterized models 

by the number o f parameters in the model. This tradeoff acknowledges the fact that as 

the number o f parameters increases, the precision o f those parameters decreases. The 

model with the lowest AIC is referred to as the most parsimonious model, in that it has 

the best tradeoff between model fit and the number o f parameters.

Program MARK uses a modified version o f AIC that corrects for small sample 

size bias; where n equals the number o f observations, AlCc is defined by Harvich and 

Tsai (1995) as:
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AICc = A ie  + (AB 2)
n - k - I

I defined 10 models for consideration a priori. Because there is no temporary 

emigration, y is invariant and equal to 0.0. Furthermore, I expected the probability of 

capture (p) and recapture (c) to be equal because the populations were very “trap-happy” 

and daily capture rates were >0.75. If any variation existed in p  or c, I expected this to 

be between primary sessions (/) and not between pens or treatments. Hence, most o f the 

models were developed assuming p  and c are equal and invariant or are equal and vary by 

primary session (/).

There is strong evidence suggesting that survival rate o f adult removal treatments 

is different than those o f juvenile removal or control treatments (Table AB2). Models 

with different survival rates by treatment (models 3 and 4) and models that assume 

survival rate is equal for controls and treatments which reduce juvenile survival, but 

differ for treatments that reduce adult survival (models 1 and 2), have the lowest AICc, 

M odels that assume survival rates are equal for all treatments have relatively high AICc 

values and are less parsimonious (models 7 and 9).

Cooch and White (1998) recommend that all models within 2 AICc o f  the most 

parsimonious model be considered for vital rate estimation. Because there is uncertainty 

in both the estimation o f a parameter (i.e. survival rate or population size) and uncertainty 

in model selection (i.e. none o f the models are likely the true model), Buckland et al. 

(1997) recommend that models be averaged.
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Because some models are more parsimonious than others, model averaging places 

greater weight on more likely models. Using AICc from equation AB2, the weight o f 

model K  equals (from Buckland et al. 1997):

exp
-A IC c.

w . (AB3)

After calculating the weight o f a model, the weighted average o f parameter Ô 

across K  models, denoted as 0^, is calculated as:

9 . (AB4)
i=l

Where v a r ( 4 ) is the estimated variance o f parameter given model M/, and

{êj -  4  ) is a term which quantifies the variation o f 3/ from the weighted average 3g 

across K  models, the variance unconditional on any given model is:

var(ê) = % ]w j^var(ejM j) + (0 i - 8 , ) '  
_ i= l

(AB5)

Hence the variance o f parameter 0 is the product o f the sampling variance in 0 ,  

given model A/(i.e. var^^ ) ) and the variance in ^  across all models averaged (i.e.

~ ^ a )  )■ This product o f variance for ̂  is then weighted by w/ for each model Mi.
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In other words, equation AB5 adds the sampling variance o f 6  to the model selection

variance in 9  and then weights this value by how likely the model is.

While models 1 through 4 are within approximately 2 AICc values of the most 

parsimonious model (Table AB2), I only used models 1, 2, and 4 for vital rate estimation, 

because I wanted average survival rates within treatments and model 4 examined each 

pen separately. The averaged point estimate and one unconditional standard error is 

shown for each treatment in Figure 9.
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Table Appendix B l. Goodness-of-fit statistics from Program RD-SURVIVE with 

unpooled data.

Pen Degrees o f freedom G statistic (unpooled)

1 25 2.017

2 25 17.742

3 25 7.392

4 25 10.511

5 25 8.192

6 25 6.479

Totals 150 52.333

Probability o f a higher 0  statistic: p ^  0.999
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Table Appendix B2. Models used to estimate deer mouse survival rates.

Model Parameters AICc A AICc AICc
Weight

Number of  
Parameters
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(N(ikl) (j)(ikl) p(....) c (....)  ?(....)} - p = c; (|) o f  juvenile removal
treatments equals (j> o f control 
treatments

208.151 0.000 0.3143

{N(ikl) (j>(ikl) p (i...) c(i...)y(....)} - p = c; (j> o f juvenile removal 208.819
treatments equals  ̂o f control 
treatments

0.670 0.2251

{N(ikl) (j)(ikl) p (....) c ( ....) y ( . p  = c 209.430 1.280 0.1658 13

{N(ikl) (])(i.l) p (i...) c(i...) y ( . P  = c 210.187 2.040 0.1136 9

{N(ikl)(t>(ikl)p(i...)c(i...)y(....)} - p = c 210.360 2.210 0.1042 15

(N(ikl) (t>(ikl) p (....) c ( . ...) y (....)} - p does not equal c 211.601 3.450 0.0560 14

{N(ikl) (j)(...)p(....) c(....)y(....)} - p = c; (}) equal for all 
treatments

215.448 7.300 0.0082 3

{N(ikl) (|)(ikl) p(i...) c(i...)y(....)} - p does not equal c 215.775 7.620 0.0070 18

{N(ikl) (})(...) p(i„.) c(i...) y (....)} - p = c; (j> equal for all treatments 216.091 7.940 0.0059 5
VOO
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