Axioms for geometry and analysis

William A. White
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation

White, William A., "Axioms for geometry and analysis" (1937). Graduate Student Theses, Dissertations, \& Professional Papers. 8070.
https://scholarworks.umt.edu/etd/8070

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, \& Professional Papers by an authorized administrator of ScholarWorks at University of Montana. For more information, please contact scholarworks@mso.umt.edu.
by

Millian A. Mito
 B. A., Montena State University

preaented in partial fulfiliment of tho requirement for the degree of Master of Arta Nontana State University

1937

Approved:

All rights reserved
INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.
In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion.

UMI
 Dissertation Publishing

UMI EP38871

Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC. All rights reserved. This work is protected against unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, MI 48106-1346

IN APFRLCIATION

The author takes this occesion to thenk Dr. N. J. Lonnos for critically reading this paper and furnishing valueble advice and guidance in its writing. The a thor wishes elso to thank Dr. Lennes and the Lettomatice Dejertment for ellovine hite the use of the kiathetuatice Library and sany of their personsl books.

TABLE OF COMTENS

IMARCDUCTION 1
GEOSNR 3
History 3
Euclid': Axiom: 5
Hilbort's Axions 8
Plori's Axiams 13
Veblon's Axions 15
Comparison 17
ANALYSIS 20
History 20
Genotic Development 23
Arithmotic 29
History 29
Hilbert's Axions 31
Huntington's Axioms 32
GTACNILTRY ADD AMALYSIS 35
BIBLIOGRAMIT 36

IMERODUCTION

Abstract

"Erery demonetrative seience," says Aristotle, "must start from Indemonstrable principles." (1) In mathematics thene indemonstrablea" are called axioms, postuletes, or assumptions. Aristotle adds, "otherwise, tho eteps of demonstration would be endless." The body of propositions representing acience constitutes a closed unit, and any effort to prove every proposition would result in a "vicious circle". Any of the propositions in mathematical aiance can serve as the foundation so lorg as the rest of the propositions can be deduced from them. For tho becinner in any logical science it is necossary to start with notions which he already understands or can oasily acquire. Tris was Buclid" ${ }^{\text {E }}$ policy in his "Elements," This was also Hilbort's aim In his "Grundlagen der Geometrie." On the other hond Veblen' "Axioms for Geonotry" agaumes a tutored student wit a developed skill in logical doduction.

Kany eets of axioms have been worked out for geometry and analysis. Only a few are listed here, and those with the primary purpose of establishing the foundations of the mathematical sciences and the econdary purpose of dis laying the variability of choice of foundations.

1. T. L. Veath, The Trirteon Pookg of Buclid (3 rola." London, 190e), I, p. 145.

Pure mathematics ia sometimes classified into three branches; algebra, geometry, and enalysis. For the purpose of this paper alcobra and anslysis are syonymove. There is no chenge in notation involved in pessing from algebra to anslysis, the introduction of the theory of linits being the chiof distinction. We will therefore treat pure mathemtics as only two sciences, geometry and analysis. To the student of enalysis even this aistinction fades.

History (I)

Lke our number gystem, geometry had its origin before the dam of recorded hietory. The Rhind Papyrus of the eixteonth contury B. C. contains formulas for the areas of the rectangle, triangle, trapetoid, and eircie. Egyptian progress in geometry wes due to noed for it in surveying and architecture. Thales, a Greek, is roported to heve Learned Egyption geometry and taken it to Greoce. To Thalen (about 600 B.C.). 21kewise, geometry wes a precticel seience. It onabled him to measure the diatance of a ship from shore. Pythegoras (about 540 B. C.) and his followers mded much to the known ecience of geometry. They stated and proved many theoress, the moet femous of which was the Pythagorean theoren. Hippoerates in hie efforts to "equare the circle* stated and proved many theorems pertaining to the circle. Plato about 400 B.C.). is credited with putting geometry on a sound logical besis. Arehytas (about $350 \mathrm{~B} . \mathrm{C}$.) in his efforts to duplicate the cube. developed and proved several theorems pertaining mostly to mean proportionals.

Fuclid (about $300 \mathrm{B.C}$.) was the mastar mind who assemblad all the known theorems of geometry, added some, and using the logic of plato, constructed the selence of geometry. That his work was good is ovidenced

1. This historicel sketch follown in a general wey D. S. Smith, History of lethematics (2 vols. Doston, 1925). II. Chep. V.

Abstract

by the fact that his book has been in use with very littie change for 2200 years. He selected f ow of the propositions to be used as fundamentel statoments without proof , and upon these built the whole science of geometry. Controversy contered on his fifth axiom (1) from the thue of Juclid until ainost the present. Critics were ununimously of the opinion that the fifth axiom could be proved a consequence of the otier axiong. Anodern mathematicians have further established the excellence of Duclid's work by shozing that complete and consistent sciences of geonetry can be constructed asaming a different fifth uxioms.

No important additions were made to Duclid's goometry until in the aeventeenth century Format and Deseartes invonted the analytic geometry. Analytic geonetry, and later the applicstion of the calculus to geometry, opened up large fields and added much to the science of geometry. Finelily, in the nineteenth and twentieth centuries, mathematicians turned agein to fuclid's metrod and established various logical foundations for the scionce of geometry.

Few substantial improvementa were made in Luclid's axions. The essential difference being that modern geometera close to show that there is no one foundation for geonetry.

1. Soe page 6.
EUCLID's AXI:S
(1)

Fuclid assumas the oxistonce of various geometrical figures. Ne aterts by iefining them, probsbly intending to ohow with what his geometry shall dead. Ho hes trenty-three such definitions. He then lists five postulates. These are his sterting hypotheses for geometry. They are followed by five axioms which he considered okvious truthe, true in any science. lodern philosophors prefer to consider nothing obviously irae in any ecience. Axione, like postulates, now serve only es starting hypotheses for a science. Duclid mey thon be seid to have ton axioms as foundetion for his "Elements" and his fifth postulate is cuatomarily cailed his fifth axion.

Definitions

1. A point is that which has no part.
2. A line is breadthless length.
3. The extremities of a lins are points.
4. A straight line is a line which lies evenly witk the pointa on itself.
5. A surface is that which has length and breadth only.
6. The extremities of a surface are lines.
T. A plone gurfece is a surfece which lies evenly with the straight lines on itself.
7. A plene encle is the inclination to one enother of two lines in a plane which maet one another and do not lie in a straight line.
8. And when the lines containing the ancle are straight, the engle is called rectilineal.
9. When a traight line set up on a traight line makes the adjacent angles equal to one enother, sach of the oqual angles is right, and the straight line standing on the other is called a perpendieuler to that on which it atands.
10. An obtuse angle is an angle greater then aright angle.
11. An acute anale is an angle less then right angle.
12. A boundery is that which is an extreaity of anything.
13. T. L. Hoath, The Thirteon Pooks of Buclid, (3 vols., London, 1908), I, p. 153.
14. A figure is that which is contained by eny boundary or boundaries.
15. A circle is a plane figure contained by one line auch that all the etraight lines felling upon it from one point among those lying within the figure are oqual to one avother.
16. And the point is called the centre of the circle.
17. A diameter of the circle is eny strai-ht line drewn through the centre and terminated in both directions by the circiaference of the circle, and such strafght line slso blaects the circle.
18. A gemicircle is the figure contained by the diameter and the circumference cut off by it. And the centre of the semi-circle 1s the seme as that of the circle.
19. Rectilinesl flyures are those which are conteined by otr ight lines, trilateral figures being those contained by three, quadrileterel those contained by four, end nultileterel those conteined by more then four otraight lines.
20. Cf tifilsteral figures, on equileteral trisngie is that whioh has its three sides equal, and isosceles trianglo that which has two of its sides alone equal, and a scalene triendie that which has its three aides unequal.
21. Further, of trilaternl figures, a richt-angles triangle ie that which has a right angle, an obtusemengled tritmele that which has an obtuse angle, and an acute-sngled triangle that which has its three angles acute.
22. Of quadrilateral figures, suare is thet which is both equilateral and right-angled; an oblong that which is right-angled but not equileteral; a rhombus thet which is equilateral but not right-angled; and a rhoaboid that wrich has its opposite sides and angles equal to one another but is noither equilateral nor rightangled. And let quadrilatera. other then these be called trapezia.
23. Parallol straight lines are streight lines which, being in the sawe plane and being produced indefinitely in both directions, do not meet one another in ither direction.

Postulates

Let the following be postulated:

1. To draw a straight line from any point to any point.
2. To produce a finite straight line continuously in a straipht
line.
3. To describe circle with any centre and distance.
4. That all right angles are equal to one another.
5. That, if a straight line falling on two straight linew make the interior angles on the same sides less than two right angles, the two straight lines, if produced indofinitely, meet on thet side on which are the angles less than the two right angles.

Axiome

1. Things which are oqual to the same thing are also equal to one another.
2. If equals be added to equels, the moles are efual.
3. If equals be subtracted from equals, the remainders are equal.
4. Things which coincide with one another are equal to one another.
5. The whole is groster than the part.
HILERRT'S A IMES

Hilbert lenves point, straight line, plane, between and congruent undefined. He relates them into geometry by menns of exioms. The axiome he listo in five groups which he proves to be mutually independent. Group One he calls the axiomg of combingtion. Here he asserty the existence of points, lines, planes, mind molids. Group two ho ceils the oxioms of ordor. Here he implies that the mints of straight line form a linearly ordered dense set. Group Three is Fuclid's perallel axiom stated somewhat differently. Group Four he calls the exioms of congruence. They serve to entablish the congruence of linear segmente. Group Five he calls his axiom of oontinuity. Here he lists the Archinedion axiom and the axiom of completaness. Euclid stated the Archimedien exioms mo magnitudes are said to have a ratio, if they are such that a multiple of either may exceed the other." The axiom of completeness restricts the validity of the other exioms to a aystom made up only of points, straight lines and rlanes.

Hilbert has twenty-one axioms in all. He proves that they do not contoin contradictions by submitting a geomotry, known to bo velid, that atisfies all of them. He proves thet each group of exiomb ia independent of the others by submitting a geometry that fails to satisfy oaly that group.

1. David Hilbert, "Grunderen der Geometrie," third edition, 190je quoted from the English translation ry i. J. Townsend, The Foundstion of Geometry, Chicago, 1910.

The Axiome

Group I

I, 1. Two distinct point A and B always completely determine a Etraight line a. We write $A B=$ or $B A=$.

Instead of "determine", we may also employ other forms of ex ression; for example, we may say A "lies upon" a, A. "is point of"
 ote. If A lies upon and at the some tire upon another straight line b. we make use also of the expressions "The straight lines" a "and" b have the point A in coman," etc.
I. 2. Any two distinct points of a straight line oompletely determine that line; that is, if $A B=a$ ond $A C=a$, where $B \neq C$, then is aleo $\mathrm{BC}=$ a.
I. 3. Three points A, E, C not ituated in the sare atraight line always completely determine plene, . We write $A B C=x_{\text {. }}$.

We omploy also the expressions: $\bar{A}, B, C,{ }^{\prime} 110$ in"x A, B, C, "are points of" x. etc.
I. 4. Any three points A, E, C of a plane α, which do not lis in the sane straight line, comaletely determine that plane.

1, 5. If two points A, \underline{B} of atraight line a lie in a plene α, then overy point of a lies in α.

In this case we say: "The atralght line a lies in tre plane α_{0} " etc.
I. 6. If two planes α, β have a point A in coman, then they have at least a socond point $\bar{B}-$ In cormon.

I, 7. Upon every straight line there exists at least two points, In every plane at lasst threo pointa not lying in the same straight line, and in space there exist at least four points not lying in a plane.

Group II

The axiome of this group define the idea expressed by the word "between," and ruke possible, upon the besis of this idea, un oraer of sequence of the points upon a traight line, in a plane, and in space. The points of a straight line have a cartain relation to one another wich the word "between" serves to describe. The axioms of this group are as follows:

II, 1. If A, B, C are points of a straight line and B lies betweon A and \underline{C}, then B lias also between \underline{C} end jo

II, 2. If A and C ere two points of straight line, then there oxists at least one point E lying detwoon A ad \leq and at lesst one point D so situated that G lies between A and D.

II, 3. Of any three points situeted on a straight lire, there is alway one and only one which lies between the other two.

II, 4. (I) Any four pointa A, B, C, \underline{D} of a atraight line can always be so arranged that B shall 11 between A and C and also between A and D, ond, furthermore, that C shall lie botwoen A and D and also between B and D

1. This axiom was proved by $\because . \mathrm{H}$. Noore to be congequence of proviously stated axioms. (Transactions of the Americon Eathemetical Society, vol. III, 1702).

DEFINITION: We will call the syatem of two points A and $E_{\text {, }}$ lying upon a straight line, a segment and denote it by AB or EA. The points lying between A and B are called the points of the eegment $A B$ or the points lying within the segment $A B$. All other points of the otraight line are referred to as the points lying outside the sogment 4B. The points A and B are called the extremities of the segment $A P$.

II, 5. Let A. $\underline{B}_{9} \underline{C}$ be three points not lying in the same straight line and let a be straight line lying in tho plane LBC and not passing through any of the pointa A, B, G. Then, if the otraight line a passes through point of the segment AS, it will also pass through -ither a point of the segment $B C$ or point of the eegment $A C$.

Group III

The introduction of this axiom aimplifies greatly the fundamentel principles of geometry and facilitates in no smoll cerree its devolopment. This exiom may be expressed as follows:
III. In planeck there can be drawn through eny point A. lying outside of a traight Iine $a_{\text {, one and only one straight ling which }}$ does not intersect the line a-

This atraight line is celled the parallel to a through the given point A.

Group IV
The axions of this aroup define the idoa of congruence or displacement.

Sogments stend in a certain relation to ono another which is described by the word "congruent."

IV, 1. If A, \underline{B} are two points on struight line $a_{\text {, }}$ and if A^{\prime} is point upon the same or enother traight line $\underbrace{\prime}$ ', then, upon a given side of f^{\prime} on the etraight line E^{\prime}, we ean aiwaj finc ono and only one point B^{\prime} wo that the segt:ent $A B$ (or BA) is congruent to the segnont $A^{\prime} S^{\prime}$. Fo incicate this relation by writing

$$
A B \equiv A^{\circ} B^{\prime}
$$

ivory seguent is confrueat to itself; ihatia, we always have

$$
A B \equiv A B
$$

Tie can state the ahove axiom briefly by grjing that every segment cen be laid off upon a given side of a given point of a given traight lins in cre and orily one way.
IV. 2. If a segment $A B$ is congruent to the segnent $A^{\prime \prime} B^{\prime}$ and also to the segiont A"P", than the sugwit $A^{\prime} D^{\prime \prime}$. is congruent to the segment

IV. 3. Let $A B$ undi DC bo two segrienss of a giraight linio a which have no points in conmon aside from the point B, and furthernore, let $A^{\prime} B^{\prime \prime}$ und $B^{\prime} C^{\prime}$ be two segments of the seme or of enother stroisht lino a' having, lixewise, no point other than x^{\prime} in common. Then, if $A_{B} \equiv A^{\prime} B^{\circ}$ and $B C \equiv B^{\prime} C^{\circ}$, wo huve $A C \equiv A^{\prime} C^{\prime}$.

DEFINITIONS: Lot α be any erbitrary -1 sne and h, k any tro distinct holf-ray lying ing end emsnating fros the point 0 so 8 to form part of two different straizht lines. "o call the system formed by these two half-rays in h, k on angle and repreaent it by the symbol $\leq\left(h_{k} k\right)$ or $\leq\left(k_{\mu} h\right)$. Fron mxions II, l-5, it followa raedily that the half-rays h and k, takon togetrer with the point $c_{\text {, }}$ divide the romaining points of the plene a into tion rocions having tre following propertys If A is a point of one region and g a point of the other, then every broken lino joining A and B either neyses throligh O or hes point in conmon with one of the heif-reys h, E. If, however, A. A both lie witrin the sene recion, then it is elways possible to Join these two pointa by a broken line which neither passes throveh 0 nor has a roict in common with either of the half-rays h, E. Cre of these two regions is distinguished from the other in that the segment joining any two points of this region lies ontirely vitrin the regicn. Tio region so characterized $1 s$ celled the interior of the angle (h, k). To distinguish the cther recion from this, we call it the exterior of the anglo (h,k). The half rays h and k are called the sides of the angle, and the point 0 is cciled the vortex of the angle.

IV, 4. Let an angle (hek) be given in the plane $\alpha \underline{x}$ and let atreight line e^{\prime} be given in a plene \boldsymbol{x}^{\prime}. Sunpose also thet, in the planex' a dofinite side of the traight line $\mathrm{g}^{\prime \prime}$ be essigned. Denote by $\underline{h}^{\prime \prime}$ a half-rey of the stradght line \underline{e}^{\prime} emanating from a point \underline{Q}^{0} of this line. Then in the plane x there is one and only one half-ray k^{*} such that the angle ($h_{2} k^{6}$), or ($k(h)$, is congruent to the angle (h°, k^{\prime}) and at the sane time all interior points of the angle ($h^{\circ} k^{0}$) lie upon the given side of ε^{\prime}. Fe express this relation by means of the notation

$$
\angle(h, k) \equiv \angle\left(h^{\prime}, k^{*}\right)
$$

Brery angle is congruent to itsolf; thet is,

$$
\angle(h, k) \equiv \angle(k, k)
$$

or

$$
\angle(h, k) \equiv L(k, h)
$$

Wo wey, briefly, thet overy engle in a given plane cen bo laid off upon a given gide of a given helf-ryy in one end only one wey.

IV, 5. If the angle (h, k) is congruent to the angle ($h^{\circ},^{k^{\circ}}$) and to the angle $\left(h^{\prime \prime}, k^{\prime \prime}\right)$; that is to sey, if $\angle(h, k) \equiv \angle\left(h^{\prime}, k^{\circ}\right)$ and $\angle(h, k) \equiv \angle\left(h^{*}, k^{\prime \prime}\right)$, then $\angle\left(h^{*}, k^{*}\right) \equiv L\left(h^{\prime \prime}, k^{\prime \prime}\right)$.

Suppose we hove given a triangle ApG. Denote by h, k the two half-rays emanating from A end pessing respectively through B and C. The engle (h, k) is then aid to be the engle jncluded by the gides $A B$ and $A C$, or the one opposite to the side $D C$ in the triangle APC. It conteins all of the interior points of the triangle APC and is represented by the ymbol $\angle B A C$, or by $\leqslant A$.

IV, 6. If, in the two triangles $A P C$ and $A^{\prime} B^{\prime} C^{\prime}$, the congruences $A B \equiv A^{\prime} B^{\prime}, \quad A C \equiv A^{\circ} C^{\circ}, \angle B A C \equiv \angle B^{\prime} A^{\prime} C^{\prime}$ hold, then the congruences $\angle A B C=\angle A^{\prime} B^{\circ} C^{\circ}$ and $\angle A C B \equiv \angle A^{\circ} C^{\circ} B^{\prime}$ also hold.
(1)

Grole V
This axion mekes pessilule the introduction into geometry of the idea of continuity. In order to state this exiom, we unst first outablish a convonition concorning the equality of tro gegrents. For this purpose, we can either base our idea of equality upon the axiome relating to the consrucnce of soc: ents end cersing us "equil" tre corrogpondirely congruent segments, or uyon the basis of gr upa I and II, we nay determine how, by suitable constructions, (a soerent is to be le: d off from point of given traight lino so that a new, definite segment is obteinsd "equel" to it. In conformity rith such a convention, the exiom of Archimedes may be otated as rollows
V. 1. Let A_{1} be any point upon a straiglet line rotmeon the

 be equal to one enother. Then among this series of points, there always exists cortein point A_{n} such that E lies between A and A_{n}.
V. 2. To a yatem of points, straight lines, and planes, it is impossible to add other elements in such a manner that the eystex thus goneralized shall form a new geometry obeying all of the five groups of exioms. In other words, the elements of geometry form a system which is not susceptible of extension, if we regerd the five groups of axions as valid.

1. Axion V, 1 introduces a wesk type of continuity. A line rast also antisfy the Dedikind Cut to be continuous. Ses page 26.

PIERI'S AXIGSS (1)

Pieri leaves only point and motion undefined. He groups pointa into e eot S and postulates the reaults of various notions. Heving defined the etraight line in terms of motion and points he defines the plene ae the sot of all lines joining aides and points of the triangle formed by three non-collinear lines. He defines the shere as the cless of all points E wich can be transformed into a point B by all the motione which leare A fixed. A is defined as the center of the spere. From this definition the circle, midpoint of atraight line and distance ean be defined. Axiom eleven defines perpendicular and aseerts the uniqueness of a perpendicular from a point to a line. The first thirteen axioms define betweenness and Iine segnents. Axiom sixteen is the triangle-tranaversal axiom. Axiom seventeen is restrtement of the Archimedean axiom.

The Axiome

1. The class 3 contains at least two distinct points.
2. Giren amy motion μ which eatablishes a correspondenco between every point P and e point $P^{\prime \prime}$, there exists enother motion $/ \mathcal{l}^{\prime}$, which mikes overy point P^{\prime} corrogpond to E. The motion $\mu \mu^{\prime}$ is called the invorse of 14.
3. The resultent of two motions μ and $\underline{\text { performod aucceseively }}$ is equivalent to a single motion.
4. Given any two distinct points A and B. there oxists an effective motion which leares A and B fixed.
5. If there exists an effective motion which leaves fixed three points A, B, C, then overy notion which leaven A and B fixed leaves C IIxed.
6. Liario Fiori, Della Geometris elomentare come sistera ipoteticsdeduttivos monogrofia dol punto o del mote Memorie dolla R. Academia delle Sciense di Torino, (1899). The axioms are Prom J. W. Younc. Fundemental Concepts of NIrebrs and Goometry, (New York, 1934). p. 155-163.
7. If A, E, \underline{C} are three non-collinear pointe and \underline{D} is a point of the line $\frac{B C}{T f}$ distinct from B, the plane $A B D$ is contained in the plane $A B C$.
8. If A and B are tro distinct pointe, there existe a motion which leaves A fixed and transforms B into anothor point of the straight ilno $A B^{2}$
9. If A and E are distinct joints, and if two motions exist whioh leaves A fixed and transform B into enother point of the line AS, the latter point is the ame for both motions.
10. If A, and E-are two distinct points, there oxists a notion which transforme A into B and which loaves fixed point of the line Aㅗㅗ.
11. If A, B, C are three non-collinear points, there exists a motion which leaves A and B fixed and which transforms C into another point of the plane ABC.
12. If A, ㅁ, C are thres non-collinear points and D and E are points of the plane $A B C$ common to the sphere C_{A} and C_{B}, and distinct from C, the two points D and E coincide.
13. If A, E, C are non-colilnear points, there exiets at least one point not in the plene $A B C$.
14. If A, B, C, D are four points not in the saxie plane, there existe motion which leaves A and B fixed and which trensforms D into a point of the pleno ABC.
15. If $A, B, E_{\text {, }} \underline{D}$ are four distinct collinoar points, the point D lsnot a point of one and only one of the intervels AB, AC, BC.
16. If A, B, \mathcal{E} are three collinear points, and C ia between A and B, no point can be botween A and C and between \underline{B} and C at the same time.
17. If A, B, C aro threo non-collinear points, overy otraight line of the plane $A B C$ which has a point in comon with the interval AB must also have a point in cormon with the interval AC or the interval BC, provided the straight line does not pass through eny of the points (A. B, C.
18. If \mathcal{C} is any class of points contai od in the intefval $A B$, there axists in this interval point X such that no point of G is between X and E, and such that for every point X between A and X, there is a point of $\overline{\mathcal{C}}$ botween X and X or coincident with X.

Veblen hes twelve axiom based on the undefined terms point and order. The definitions given along with the exioms sorve to show the menner in which the various concepts ere introduced. Voblen has fower exioms than Hilbert but the geometry is correspondingly more difficult to derive.

The Axioms
(1). There exist at least two distinct points;
(2). If points A, B, C aro in the order A, B, C, they are in the order C, B, A.
(3). If points A, E, E, are in the order ABC, they are not in the order RCA.
(4). If point: A, E, C are in the order ABCi then A is distinct from C
(5). If A and B are any two distinct points, there oxista a point C, such that A, B, C, are in the order ABC.

Def. 1. The line $A B$ nosista of A and B and all points X in one of the possible orders $\Lambda D X_{,} A X B, X A S$. The points X in the order $A X B$ constitute the seguent $A B$. A and B are the end points of the segment.
(6). If C and $\mathrm{D}(\mathrm{C} \neq \mathrm{D})$ lie on the line AB ; then A lies on the Iine CD.
(7) If there exist three distinct points, there exist three points A, B, C, not in the order $A B C, ~ E C A$, or CAB.

Def. \bar{z}. Three dis inct points not lying on the sams line are the vertices of a triengle $A^{2 M} C_{0}$ whose sides are the segnents AS, EC, CA, and whose boundery consists of its vertices and the points of its sides.
(8). If three distinct points A, B, C, do not lie on the same line, and D and E are two points in the orders ECD and CEA, then a
 asac line.

Def. 5. A point g is in the interior of a triongle if it lies on segment, the end points of milich are points of different sides of the triangle. The set of such points O is the interior of the triengle.

Def. 6. If A, $\operatorname{g}, \mathrm{C}$ fora a triangle, the plane ADC consists of all points collinear with any two points of the sides of the triangle.

1. Oswold Voblen, Axioms for Geometry, in Transactions of the American Liathematical Society, Vol. 5 (19n4) p. 346.
(9). If there exist three points not lying in the same line, there existe plane $A B C$ such thet there is a point \underline{D} not lying in the plane. ABC.

Dof. 7. If $A, B_{,} C$, and D are four pointa not lying in the same plane, they form tetrahedron ABCD wose faces are the interiors of the triangles $A B C, B C D, C D A, D A B$ (if the triangle exist) whose
 segments $A B, B C, C D, D A, A C, B D$. The points of faces, edges, and vertice constitute the surfsce of the tetrohedron.

Def. B. If A, E, E, and D are the vertices of a tetrahedrons the space $A B C D$ consiste of all points collinear with eny two points of the faces of the tetrehedron.
(10). If there exiat four points neither lying in the same line nor lying in the same plene, there exists apses $A C D$ such that there is no point E not collinear with two points of the space, $A^{0} C D$.
(11). If there exists an infinitude of pointe, there exists a cortain pair of points A, C such thet if $[\sigma]$ is any infinite sot of segments of the line $A C$, hoving the property that each point ohich is A) C or a point of the eogment $A C$ is a point of segzont σ, then there is a finite subset $\sigma_{-1}, \mathbb{E}_{2}, \ldots$. property.
(12). If a is any line of any planecx thore is some point f of \propto through which there is not more then one line of the plane \underline{x} which daes not intergect E.

Comparison

Euclid defines a point (Def. 1) but builds his geometry without postulating its existence or eny quality it might posseas. Hodern geometers prefer to leave the notion of point undefined but postulate its existence.

Euclid defines atraight line (Dof. 4) and then postulates its existence. (Ax. 1). Hilbert considers it fundamental notion, but postulates its uniqueness. Pieri postulates the existence of a planary motion which leaves two points fixed (Ax. 4) and defines a line ss the set of all points that remain fixed in such motion. Voblen postulates the existence of an ordered set of points (Ax. 5) and defines a line as such a sot.

A plane surface is defined by suclid but considered fundamental onough to not warrant postulating. Filbert, assuming the existence of points, postulates the uniqueness of the plene determined by three non-collinear points (Ax. 1,3). Pieri and Voblen ostablish the existence of non-collinear points by axioms and define the plane in torms of three such points (After Ax. 6 and Ax. 8 respectively).

Angles are defined by Duclid (Def. 8) and the equality of all right angles is postulated (Ax. 4). He further establishes the congruence of identical figures in axiom 9. Hilbert defines angle at the system of two half-linea manating from one point end postulates their congruence (Ax. IV, 4). Pleri and Voblen define angles and their congruence in terms of point relations that heve been established by exioms.

Euclid in his postulate 3 established the continuity of space by eaying "eny conter and distance*. This is his nearest approach to the continuity of a line. Hilbort in V, 1 and Fieri in 17 present - type of continuity. Vobien in 11 tates his axiom of continuity in the form usually known as the Heine-Borel proposition.

Fuclid's postulate 5, the parallel axiom, has hed an interesting history. (1) Buclid was apparently eppretienaive of it for he avoided using it until the 2jth theorem when it could no longer be aroided. Several Greek conmentators attacked the propriety of using it as an axion and tried to deduce it from the other postuletes and axi me. In the eighteenth century en Itelian, Sacheri, attacked its independence by assuming the oxion felse and developing geometry that would contradict itself somewhere. He never eucceoded in showing a contrediction but thought he did. In the nineteonth century Bolyai nand Lobatcheysky working independently made the assumption that there is an infinite number of lines through a point parallel to a line. On this hypothesis they built a complete logical science of geometry, of khich Buclidean geometry was a limiting case This established the independence of Euclid*s 5th axiom. Later Reimann built egeometry on the assumpion that there existe no line through a point not on a given iine parallel to the given line All these geometries setisfy our perception of space as nearly as are able to observe. Therefore, there is no question as to which is true. But iuclidean geometry admits of eatier development

1. This parafreph follows in a general way J. V. Young, Fundamentel Concopts of Algobra and Goometry, (Now York, 1934), chap III.
© all modern geanetere have ineluded Fuclid's 5th postulete in 30me form in their axicmefor geometry.

Euclid end Hilbert postulete the congruence of figures regeardm less of their continuity. Pieri and Veblen postulete the existence of coincident points and define congruence in terms of order among these points.

Euclid proves in his geometry that the diagonala of parallelogrem bieect ach other, tacidly assuming that they meet. Hilbert in II, 5 . Pieri in 16, and Voblen in 8 prosent the aocalled triangle-tramersal axiom from which Eucilds assumption can be proved.

Euclid has only ten axioms, but he asaumes some thinge sub ross. which are now preferably stated explicitiy. filbert has twenty-one axiors not all of which are entirely independent. Pieri has eeventeen axioms, probably inderendent of each other. Veblen has only twelve axioms, and they are mutually independent. His approach seems the most logicel fros the atandpoint of primitivenesa of concept. Add a fov axioms to eimplify some of the proofs and Veblen' set would afferd the best method for building upon known concepts. Compare for exemple Hilbertes undefined terms point, line, plane, between, and congruents Pieri" undefined terme point and motion and Veblen* undefined terms of point and order. Obviously Veblen has welected the simplest fundamentel notions upon which to base his exioms.

ANALYSIS

Historical

Amalyaie is purely an arithmetio method,operation, finding its justification in the meionce of numbers. However, the first approach to the method of analysis was made in the field of geometry long before numbers, as then understood, could handie the mothod. The Greeks invented the mothod of exhaustion in the fifth century B. C. As an example, they found the area of a circle by inseribing a polygon then enlarging the inscribed figure by successive doubling of the number of ides until a liait had been sufficiently approached. In principle they set up on infinite converging bounded sequence and assumed its sum had a definite limit. It sas consistent in the Greeks to asume that such a series had a limit because they naturally believed that apace was continuous. They nover adequately explained how one was to completely exhaust an area with a variable sum that approsched that area as a limit but never quite reached that limit. Archimedes in 225 B. C. proved rigorously by the method of exheustion, that the erea of a parabolic segment is four thirds of the triangle with the same base and vortex or two-thirds of the circumecrited parallelogrem. In each case he proved that the area could be noither more nor less than the area which thet formula gives. Therofore, the aroa given by thet formula is the true area.

In the seventeenth century Kopler and Cavalieri made the next approach toward the method of analysis. Their theory was that spece end lines were aude up of mindivisibles". A surface, for instance, is
made up of lines (the indivisibles). An infinite number of these linem are summed to obtain the area of the surface. Cavaliori showed that the area of a triangle was onewhalf the area of parallologram with the same base and altitude as follows: (1) Calling the emallest indivisible element of the triangle 1, the next larger 2 , the next 3 , and so on to n the base. The area of the triangle is therefore $1+2+3 \ldots \ldots+n$, or $\frac{1}{2} n(n+1)$. But each element of the parallelOgram is n, and there are \underline{n} of them as in the triangle, and so the area is n^{2}. Then the ratio of the area of the triangle to the area of the parallelogrem is $\frac{1}{2} n(n+1): n^{2}=\frac{1}{d}(1+1 / n)$. But $\frac{1}{2}(1+1 / n)=\frac{1}{2}$ as $m \rightarrow \infty$. The mothod of indivisiblea providod a shorthand treatment for the mothod of exhaustion but still lacked definite proof that the limit sought existed. Neither was it shownthat the indivisibles existed. There were also certain other naivo aseumptions that we need not describe here.

Leibniz invented the notation that is used today. He indicated the sum of Cavalieri's indivisibles by the integral signg and the Inverse operation by d. In 1676 he published manuscript containing ach staternenta an $\overline{\mathrm{d}}{ }^{3}=3 x^{2}, \overline{\mathrm{~d} \sqrt{\mathrm{x}}}=\sqrt{7 \times}$

Newtons works, published in 1687 and 1704 , show two methods used for anciysis. He first used the method of indivisibles. In order to show that his infinitesimale oxistod he changed from the mothod of indivisibles to that of fluxions. This mothod can be pictured geometrically as point flowing along a curve. He finds the ratio of its z volocity to its x velocity at any point on the curve, assuming 1. Smith, History of Mathematies, Ginn and Co., Vol. II, p. $6: 7$
that a moving body has definite velocity at overy instant of time. He thus avoided an existence proof for his two infinitesimals. He interpreted the ratio geometrically like modern mathematicians do as the limiting slope of a secant through two points on a curve as the distence between the points becomes amall. Newton called integration the method of quadrature, and the solution of differential equations he called the inverse method of tangents.

Newton and Leibnis dovised an analysis that worked in most cases. Their method was weak in that no one had shown that the number systam was eantinuous, a necessary property of the domain of the variable. Since the time of Newton and Leibnis the number systen has been onlarged to include all ite possible linits. The very small constent, es Leibnis conceived the infinitesimal, hes gone into disrepute to be replaced with Newton's theory of limits. Newton's theory is still held that as two variables approach limiting values, if the ratio of their rates of change approaches a limit, this limit has a definite value.

Genctio Developwent
Following is list of definitions whorsin the fundemental notions of analyais are doveloped. The systom of real numbers so far as needed is built up by the "genetic" method.

A set (class, assemblage, body) we will leave undofined. It represents fundemontal idea. All things possessing a comon characteristic are said to constitute a et.

Cne-to-one gorrespondence also represents a fundamental notion. Counting objects is the process of establishing a one-to-one correspondence between the obj cte and the system of positive integers.

Counting con not be logicaily defined in more fundamental terms: Its validity must be granted to afford a starting point in mathematics.

Then an el cment belongs to a set it posses:es the charscteristic necessary to define it a member of that set.

A subset. $\left[a_{1}\right],^{(1)}$ of a set $[a]$ is a eet such that evory element, ald $_{1}$ of $\left[a_{1}\right]$ belonge to the set [a].

If set [a] cen be put into one-to-one correspondence with set [b] then the eots $[a]$ and $[b]$ are said to bo equivalent.

The set $[\underline{m}]$ of all equivalont ots is symbolized by n which is celled the cardinel number of overy one of the equivalent sete.

Of two sots [a] and [b]. If overy eloment of [a] can be put into oneto-one correspondence with elexients of [b]but overy olement of [b] can not be put into one-to-one correspondence with elements of [a] then the

1. The mybol [a]to represent the set $a_{1}, a_{2}, a 3, \ldots . . .{ }_{n}$ is due to Vebien and Lonnes, Infinitesimal Anclysise. (New York, 1907).
cardinal number of [a]is seid to be less then that of $[b] \cdot$ Sot [a] is said to be equivalent to a part of $[b]$.

Designating the cardinal numbers of seta $[a]$ and $[b] b y$ and b. the relation B less than b ie indicated $a<b$.

If eete $[a]$ and $[b]$ are equivelont then $a=b ;$ othorwise $a \neq b$.
The definition given here for "less then" precludes more than one of the rolations, $a=b, b<a$, and $\quad \leq b$ being true.

The set of cardinal numbers [n] can now be put into onemo-one correnpondence with the positive integers $[n *$ in such a wey that of any two elements of $[n]$ g. d in the reletion $\leq \leq d$ the corresponding elements of numbers $g^{\prime \prime} \underline{d}^{\prime \prime}$ of $\left[n^{*}\right]$ are in the relation $c^{*}<d^{\prime}$.
 or bSa is add to be an ordered set.

Given two sots $[$ and $[b]$ form set $[c]$ such that every olement of $[a] \operatorname{and}[b]$ is an element of $[0]$ and every element of $[c]$ is en - Lement of $[a]$ or $[b]$. Then of their cardinal numbers, $a t b=0$.

The set $[0] 1$ obviously unique regardiess of order of elements. Thon $a+b=b+a$.

Given two sets $[a]$ and $[b]$ form a set $[c]$ by associating each element of $[a]$ with every element of $[b]$. Then of their cardinal numbers, $a b=c$.

Aesociating each olemont of $[b]$ with every elenent of [a] obviously bringe the olements together in the same pairs as associatirg each element of $[$ a $]$ wh overy olewont of $[b]$. Therefore, eb $\underset{b}{ } b$.

Given three sets $[a],[b]$, $[0]$, form fourth sot $[d]$ such that every element of $[a],[b]$, or $[c]$ is an element of $[d]$ and every elemont of $[d]$ is an element of $[a],[b]$, or $[e]$. Then the eardinal number of set[d] is uni jue regardless of the ordor in which they were combined. Therefore, $(a+b)+e=a+(b \pm c)=a+b+e$. Given three sets $[a],[b],[c]$, form the set $[a b]$ thon associate each element of [ab] with overy olement of [c]. A brief inopection will show thet the seme triples will appear had the set [be] been formed and each olenont of [a]associated with every el ement of $[b c]$. Thorefore ($a b)_{c}=a(b c)$.

Given three sets $[\mathrm{a}],[\mathrm{b}],[\mathrm{c}]$, form a new sot $[\mathrm{d}]$ such that each olemont of $[a]$ is essociated with every olement of $[b]$ and $[c]$. The sot [d] is ovidently unique. Stated in cerdinal numbers $a b+a c=d \equiv a(b+c)$.

These definitions huve eatablished syatem of positive integers and tine primery rules of operation. Any set which can be put into onew to-one correapondence witir the set of positive integers is said to be donumerable or simply numerable.

Two integers and b may be said to constitute the retional fraction a/b when properly associated.

Of two rational fraction a / b and e^{\prime} / b^{\prime} if $\frac{s b^{\prime}=a^{\prime} b}{}$ then $a / b=a^{\prime} / b^{*}$, if $a b^{\prime}<a^{\prime} b$ then $a / b \leq a^{\prime} / b^{\prime}$, if $a^{\prime} b<a b^{\prime}$ then $a / b^{\prime}<a / b$. The set of rational fractions is thus by definition an ordered set. It can be eadily shown that the set of retionci fractions is numerable.

From our rules of operstion if $a / b \leq a^{\circ} / b^{\circ}$ then $a / b<\frac{a+a^{\circ}}{b+b^{\prime}}<a^{\prime} / b^{\circ}$. Therefore, between every pair of rational fractions theee is another nuaber. An ordered sot possessing this property is said to be denee.

The rule of operation $a+b=0$ dofines regative numbers and zero. b If negative when $e<$ en and b ia zero when $a=c$.

We have here built up rougliy the syeten of rational numbera as 1t is known and used. Fhen the Greeke finally admitted fractions they hed the positive part of this system as their arithmetic. Because a number exiated between every pair of numbers the system would admit of very small numbers and thus appeared to corrospond with the properties of space. Unlike pace, however, this aystom of numbers is not continuous.

Given a set $[a] d i v i d e d$ into two (non-empty) subsets ($\left[a_{1}\right]$ and $\left[a_{2}\right]$ such that for evsry olement a1 of $\left[a_{1}\right]$ and an of $\left[a_{2}\right]$ an and such that every element of $[a]$ is an oloment of $\left[a_{1}\right]$ or [as] on Then there is an element X which divides the two gubsets. This statement is celied the Dedekind Gut. A donse sot which eatiafies the Dedokind Cut is continuous. The olement X is called the upper IImit of subset [$\left.a_{1}\right]$. Applied to the set of retional numbers the Dedekind Cut adda an indefinitely large set of numbers to the syatem, for the number X need not be a rational number. This continuous set is called the real number systom.
(1)

A variable is a mabol that represents any one of a set of elesents. A variable in anolysis is a symbol representing any one of a set of numbers.

A constant is a sybol that represents a set of only one element. A constant in snaly is is a nuber.

Any one element of a set represented by a varieble is called a relue of the variable.

Given two variables x and y. If to esch velue of x there corresponds one and only one value of y then \mathcal{L} is said to be onereluod function of x.

Given two variables x and y. If to each value of x there corresponds a of of values of y then y is said to be meny-velued function of x.

In analysis, if to every number represented by the variable x there corresjonds one or wore nusabers represonted by the variable z, then Z is seid to be angle-or many-valued function respectively of x. If to any value of x end any value of y there correspond ona and only one value of x then E is said to bo ainglo-valued function of x and y.

A serment $\overline{a b}$ is the set $[x]$ of all elements such that $a<x<b$.
A neighborhood of an element a is the segment ca such that $c<a<d$.
The element a is seld to bo a limit of the set [e] if there are elements of [] other than n in every neighborhood of g.
2. Firat stated in this form by Voion and Lennes, in Infinitosimpl Anglysis. (Now York, 1907) p. 44.

The eet of rational numbers together with the irrationals defined by the Dedekind cut constitutes a set which contains all its limit points.

If g is a limit of the set represented by the variable x, then x is said to acproach a upon the set.

If the number ρ is the limit of a function of x as x approaches a, that function is on infinitosimal.

The fundmental notions of ennlysis heve been doveloped nistorically and intuitionaliy thus far. Now after a briof historical sketch we shall give rigorous devolopment of the number syetem by David filbert and E. V. Huntington.

ARITHISTIC

Historical

Bthnology of primitive cultures indicates that the positive integere were the first numbers to eppear in eivilization. The more backward races show more or lest abllity to cout though that may be the extent of their aritheotic ability. At the dam of written nistory, there were several systems of symbols for the positive integers in oxistence. Cur system originnted with the Findus, all ten digits appearing for the firat time in the yoar 876.

Fractions, also, had appeared by the dawn of recorded history, doubtlese growing out of a need for them in comerce. Early aritings of the Babylonians. Egyptians, Chinese, and Layans show frequent use of the fraction. In the third century B. C. they firat come to be regarded as true numbers. Our own mothod of writing fractions. excepting the bar between numerator and denominator, probably originated with the Findus, ebout the fourth contury A. D.

Incommenfurable ratios vere noticed by the Greeks in their studies of geometry. The Fythagoreans supposedly proved the incommensurability of $\sqrt{2}$ Our present notation, the radical sign appeared firet in France In 1494. The trencendental number T was mot in eforts to express the length of the eircumferonce of a circle. Approximations for \mathbb{T} are given in the early writings of the four civilizations nentioned aboves Babylonian, Egyptian, Chinese and Mayan. The trancondence of \mathbb{F} was first proved in $2 \varepsilon 82$ by F. Lindemann of Gerrany.

Negative numbere presented themselves to the late Greeks in the solution of algebraic equations. The Hindus in the seventh eentury vere first to resognize them as numbers. The minus sign originated with Tyche Brahe of Demmark in 1598.

The operationa adition and subtraction are fundamental to the system of positive integers, synonymous with counting. luitiplication and division, though less fundamental, wore recognized in the earliest writings of civilization. The extraction of roots appeared as stated before, among the Greek geometers. The relations "equals" and "less than" are rundamental notions necessary to the system of positive integers and granted, consciously or unconsciously, whenever numbere: are used. As the number sygtom expanded from positive integers to the eystem now in use, the various operations and relationa wore applied to each new branch. Their ymbols, as used today, were invented in Europe in the fifteenth, sixteonth and seventeenth centuries.

HILBiART'S AXIOMS (1)
Hilberts axiom for the real number system contain the undefined terme number, \pm - and \geq. There are seventeon in all. fo effort was made to obtain a minimum nuber of them so they were not mutually independent.
mimorais cr conaciton (1-12).

1. From the number a and the number \underline{b}, there is obtained by "addition" a definite number c, which we express by writing $a+b=c$ or $=+b$.
2. There exiats definite number, which we call \underline{O}, such thet, for every number $a_{\text {, }}$ whe have $a=a$ and $0+a=a$.
3. If a and b are two given numbers, there oxists one and only one number x, and also one and only one number $Z F$ such that we have respectively $a+x=b, \quad y+a=b$.
4. From the number a and the number b, there may be obtained in another way, namely, by "multiplication", a definite number $g_{\text {, which }}$ ve express by writing $a b=e$ or $0=a b$.
5. There exists a definite number, called 1 , such that, for overy number a, we have a $1=a$ and $1 \cdot a=a$.
6. If a and b are any arbitrarily given numbers, where a is different from O, then there exists one and only one number x and also one and only one number y auch that we have respectively ax $=b$, ya $=b$.

If a, b, e are arbitrary numbers, the following laws of operation always holds
7. $a+(b+c)=(a+b)+c$.
8. $a+b=b+a$
9. $a(b c)=(a b) c$
20. $a(b+c)=a b+a c$
11. $(a+b) c=a c+b c$
12. $\quad \mathrm{ab}=\mathrm{ba}$.

THEORINS OF ORDER (13 - 16)
13. If a, b are any two distinct numbers, one of these, say en, is always greater $(>)$ than the other. The other number is said to be the saller of the two. We express this rolation by writing $a>b$ and $b<a$.
14. If $a>b$ and $b>e$, then is also $a>c$.
15. If $a>b$, then is $a l s o a+c>b+c$ and $c+a>c+b$.
16. If $a>b$ and $c>0$, then is also $a c>b c$ and $c a>c b$.

1. David Hilbert, Grundlagon

THEORESS F F ARCHITEDES (17)

17. If a, bare any two arbitrary numbers, such that a >0 and $b>0$, it is aiway possible to add to iteelf a sufficient number of times so that the resulting sum shall have the property that af atat -.......ta>b.
HUNTIMGTON*S AXICLS ${ }^{(1)}$
Huntington has propared eets of axioms for variou systoms. His set for the real number aystem consists of only fourteon which he proves are mutually independent. The set given here is for the systen of real and complex numbers. This set was chosen because it offors a complete foundation for the number system of which the scionce of analysis treats. Funtington calls the complete number systan the set of complex mubers and classifies the real number systen as a subet of the complex numbers. The set of complex numbers admits of the operations of addition and multiplication. The subset of real numbers admits of the relation of order. The undefined terms Y, G, t, E, \leq correspond respectively to the complex numbers, the real numbers and the relations \pm, X ordinarily understood.

D:IFINITIOMS

Definition 1. If there is a uniquely determined olemont such that E $+=z_{\text {, the }}$ is called the soro-element, or zero.

Definition 2. If there is anique zero-element (seo definition 2), and if there is a uniquely determined element y, different from soro, and such that u, $u=u$, the \underline{u} is called the unit-element, or unity.

Definition 3. If there is a unique zero-elemont $\underline{2}$ (definition 1), and If a given olecient a determinoa uniqueiy an olement $a^{\prime \prime}$ such thet $a+a^{\prime}=y^{\prime}$ then e^{*} is called the nogative of a, and is denoted by-a.

1. E. V. Iuntington, Set of postuletes for Crdinery Complex Algobra, in Transactions of the American suthemetical Society, 6 (1905) p. 222.
```
Dofinition 4. If there is a unique zoro-elemont \(E\) and a unique unit-olement y- (see definition 1 and 2), and if a given element E , diffaront from \(z\), detormines uniquely an oleaont gin \(^{n}\) such that - \(a^{\prime \prime} z u_{0}\) then \(a^{\prime \prime}\) is called the reciprocal of \(a_{0}\) and is denoted by \(1 / a\).
```


AxIOLS

The first sevon postulates, giving the general laws of operation in the syatem, are to be understood to hold only in 10 far as the el mente, sums and products involved are olements of K.

FOSTVLATE I, 1. $a+b=b+a$.
POSTLLATE I, 2. $(a+b)+c=a+(b+c)$.
POSTVLATE I, 3. If $+b=a+b^{\prime}$, then $b=b^{\prime}$.
POSTULATE $I_{\text {, 4. }}$ a $\cdot b=b$. a.
POSTULCTE I, 5. (a , b) . c . a (b ec).
POSTLLTA 1 , 6. If $a \cdot b=a \cdot b^{\prime}$, and $a+a \neq a$, then $b=b^{0}$.
POSTLLTE I, 7. a. $(b+c)=(a \cdot b)+(a \cdot c)$.
POSTIL TS I, B. If 2 and b are olesente of K, then $a+b$ in an element of K .

POSTULATA I, 9. There is an elemont x in K ach that $x+x=x$.
PCSTLLITE I,10. If there is a unique sero-el ment I in K (see dofinition 1). then for every element $a \ln K$ there is an eloment A^{\prime} in $K_{\text {, }}$ such thet $a+a^{\prime}=z_{\text {。 }}$

POSTULATE I,11. If a and b aro lemonts of K, thon a, b is an element of K.

POSTULATH I, 12. If thore is unique mero-olement, E in K (soe definition 1), then thore is an olement Y in K, difforent from E, end auch that $y \cdot y=y$.

FOSTUL:TE 1,13 . If there is unique sero-slement, g, and anique unity-element, u, different from g, in K (seo definition 1 and 2), then for overy element 2 in K, provided $\neq \mathrm{E}$, there is an olement $a^{\prime \prime}$ in K such that an=u.

The Postulates I: 1 - 13 moke the cless K a field with respect to ${ }^{\circ}$
and + .
POSitLite II, 2. If a is an element of $\underline{C}_{\text {e }}$ then \underline{a} is on olenent of \underline{K}. POSTLLATA II, 2. The class $\underset{C}{ }$ contains at least one eloment. FOSTLITE II, 3. If a is an element of C, then thers is an olement b in C, such that $\neq b$.

POCSulate II, 4. If a and b are elements of C, then $a+b$, if it exiata in K at all, is an element of C .

POSTULATS II, 5. If a is an lement of C, then its negative, $-a$ (see definition 3), if it exists in K at all is an elemont of $\frac{C}{b}$.

POSTLLKTi II, 6 . If and b ere elements of \underline{C}, then $a \quad b$, if it oxists in K at all, is an element of C.

POSTULATIS II, 7 . If a is on el Gerit of G_{9} then ite reciprocel $1 / a$ (soe dofinition 4), if it exists in K at all, is on element of C.
mike the Postulates II: $1-7$, takon with the postuletes I: $1-13$,
Foo sub-class C, like the class K , a field with respect to + eiad . . either $a<b$ or III, 1 . If a and b are lements of c, and $\neq b$, thon
 FPGGHLATE III, 3. If a, b, and c aro eloments of G, and if $a<b$ and $b<c$, then $a<c$.

FOETLLATE III, 4. If Γ is a non-mpty subilase in C, and if there is an ol ement b in $\frac{c}{x}$ such that $\alpha<b$ for overy olonent α of C then there is an element \bar{X} in $\underset{C}{ }$ having the folloring two properties with regerd to the sub-elese I
$\left.3^{\circ}\right)$ if α is an element of Γ, then $\alpha<X$ on $\alpha=X ;$ while
2°) if $x^{\prime \prime}$ is eny olomont of \underline{C} auch thet $x^{\prime \prime}<x$, there is an element ξ in \mathbb{E} such that $\bar{x}>x^{\prime}$.

The Postulates III: $1-4$ and II: $2-3$, taken with the redundent postulate III, 5 (which is here omitted), wake the sub-class C a onedimensional continum with respect to \leq, in the sense defined by Dodokind.
 and $x<y$, thon $a+x<a+y$, whonever $a+x \neq a+y$. POSTHLATE IV, 2. If a, b, and a a are elements of C, and a >5 and $b>{ }^{\text {a }}$, then $a \cdot b>z$ (whera g is the zero-element of Definition 1). The twenty-sixpostulates of groups I - IV make the sub-cinss \mathbb{C} equivalent to the class of all real numbers with respect to + , , and $\stackrel{\text { PO}}{ }$ there is an element 1 in $\underset{K}{ }$ such that j. $\mathcal{A}=-u$, where $-u$ is the negative of the unit-olement of the fiold (see Definitions 2 and 3).

POSTVLATS V, 2. If K and also C are fields with respect to t and Fhend if there is an olauent i such that $i \cdot i=-u$ (see fostulat $V_{\text {, }}$ i), Ehen for evary elemont a in K there are olements x and I in \underline{C} such that $x+(i \cdot y)=a$.

Those twenty-eight postulates make the class K equivalent to the clasa of all (ordinary) complex numbors with resfoct to $+\ldots$ and \leq.

GEOLLITRY AND ANALYSIS

Asame that we have a complete aystem built up for the analyais of real numbers. Suppose we define any zet of three such numbers es a point, and the sot of all sets of three numbers that setisfy an equation of the form ax $+b y+c z+d=0$ as plane, and the set of all ots which satisfy two such equetions lines. Further, suppose wo describe the relation that exists when no numbers satisfy the two equations as perallol planos, and define the sot of all sets that satisfy on equation of the form $(x-a)^{2}+(y-b)^{2}+(x-c)^{2}+d=0$ as ashere. The sot of sets of numbers that satisfy both the - quation for plane and the equation for aphere we can define as a circle. It is obvious that we con obtain complete geometry Prom our analysis structure merely by definition. Furtheremore, the operation in analysis remain valid in geomotry. Linear order can be defined in the geomotry in such a way that the relations of order of analysis hold without change in geometry.

Go construct a geometry for restricted relativity it is only necessary to define a point as any set of four numbers. To extend the geometry to mechanice the point is defined as aet of \underline{n} numbers.

BIBLIOGRAIFIY

Cajori, Florian
in Americen liathematical Lonthly, XXIV, (1917) p. 145
Cajori, Florian
in Amorican Kathomatioal Lonthly, XXVI, (1919) p. 25
Heath, T. L., The mirteon Eooks of Buclid (3 vols.. London, 1908), I. p. 153.

Hodrick, I. R., Reviet of Milbert's Grundlagon, in Eulletin of the American Liathematical Society, vol. 9, (1903) p. 158-165.

Hilbort, David, Grundlagon der Geomotry, translation by Townsend, U. J. (Chicago 1910).

Hobson. E. W., On the Infinite and the Infinitesimel in Eathometicel fnalysig, in Proceedings of the London kathematicel Society. vol. XXXV (1902-1903). p. 117.

Huntington, E. Y. Sot of Fostulotes for Ordinery Complex Alrebre, in Transactions of tho American Mathematical Society, vol. 6, (1905) p. 222.

Huntington, S. V.I The Continum, (Cembridec, 1917) $^{\text {G }}$
Lennes, N: J., Differontiel and Intorrel Celculug, (Ho: York, 1931) p. 425-463.

Newson, $\mathrm{K}_{\text {. }}$ ㄲ. in Bulletin of the Auericen hathomatical society, 2nd series, vol. 8. p. 447. (1902)

Saith, D. E., History of Nathemetics, (2 vols., Boston, 1925) II.
Somer, J., Review of Elilbertis Grunclagen, in Bulletin of the American liathemetical Society, vol. 6. (1900) p. 287-299.

Voblen, Orveld, Axioms for Geometry in Transactions of the Alerican Lathematical Society, vol. 5 (1904), F. 346.

Voblen and Lonnes, Infinitomimpl Analysig. (Niow York, 1907)
Young, J. Ho, Fundamentel Concopts of Algebra and Geomotry, (New York,1934)

