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McCarty, Douglas K ., M.S., January 1990 Geology

Burial diagenesis in two non-marine Tertiary basins, 
southwestern Montana (73 pp.)

Director: Graham R. Thompson

Samples from initially smectite-rich Tertiary continental 
VOIcanielastics sediments from the Deer Lodge and Big Hole 
basins of southwestern Montana show a general decrease in 
illite/smectite (I/S) expandability with increasing burial 
depth. The mineralogical trends in cuttings samples from 
seven wells are interrupted by discontinuities in which I/S 
expandability abruptly decreases by an amount varying from 
30 to 00 percent. I/S expandability discontinuities are 
coincident with stratigraphie unconformities in all four of 
the wells in which the stratigraphy is known.

Core samples show significant differences from the trends 
seen in cuttings samples from the same well and from 
typical marine sequences. A wide range of I/S 
expandabilities occurs over a short stratigraphie interval 
in core samples. This variation may be due to composition, 
porosity, and permeability variations. Sericite coexists 
with I/S in the deep core samples. The sericite may 
represent the end product of the illitization of smectite, 
and the coexisting I/S may have grown after a separate 
nucléation event. Alternatively, the sericite may be 
unrelated to an illitization process.

A core sample from 7958 ft. contains an R3 ordered I/S 
with a nearly ideal 3:1 illite to smectite ratio, similar 
to the mineral tarasovite. The structure of this I/S is 
consistent with a sample dominated by stacks of four 2:1 
layer fundamental illite particles with small proportions 
of thicker particles randomly interstratified among the 
four-layer particles. These data suggest that fundamental 
particles four 2:1 layers thick with R3 ordering may be 
metastable or stable.
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INTRODUCTION.

Low-grade raetamorphic (diagenetic) clay mineral 

reactions are we11-documented in deeply buried clay-rich 

marine sedimentary basins (e.g. Burst, 1959, Dunoyer De 

Segonzac, 1970, Hower et al., 1976, Jennings and Thompson,

1986). Most commonly, the reactions involve the 

progressive illitization of smectite, disappearance of 

kaolinite, and appearance of chlorite, with increasing 

depth and temperature. No detailed studies have been made 

to date, however, of clay mineral reactions in deeply 

buried non-marine Tertiary clay-rich terrestrial 

sedimentary basins.

It is well known that system composition controls paths 

and rates of clay mineral reactions in burial diagenetic 

sequences (Boles and Franks, 1979, Howard, 1987, Eberl and 

Hower, 1976, Whitney and Northrop, 1988, Huang, 1988).

Dutta and Suttner (1986) have shown that climate plays an 

important role in authigenic clay mineral growth in the 

pore space of near-surface non-marine sandstones. 

Compositional differences between interstitial waters in 

marine and non-marine sediments, and effects of climate and 

depositional environment in non-marine basins, may result



in mineralogical differences between non-marine and marine 

sediments during diagenesis. In this paper I describe the 

clay mineralogy and petrology of two clay-rich Tertiary 

non-marine basins in southwestern Montana, and compare the 

clay diagenetic trends with those of marine basins.

GEOLOGIC SETTING.

Several large southwest Montana basins filled with 

sediment as they developed in response to Tertiary tectonic 

activity. The dominant sediments of the Deer Lodge and Big 

Hole basins of southwestern Montana (Figure 1) are assigned 

to the Renova and overlying Sixmile Creek Formations.

Their ages range from late Eocene through latest Miocene. 

The sediments of both units consist of voIcanielastics 

initially rich in rhyolitic ash, gravels derived from the 

immediately adjacent mountain ranges, and organic-rich lake 

and swamp deposits. The Renova Formation unconformably 

overlies the clay-rich Lowland Creek Volcanics. In the 

Deer Lodge basin the Lowland Creek unit unconformably 

overlies late Cretaceous black shales of the Colorado Group 

(Figure 2).

The Sixmile Creek and Renova formations are commonly 

separated by an erosional unconformity which in some



localities also shows an angular relationship (Fields et 

al., 1985). The high organic content in the lacustrine and 

swamp facies of the Renova Formation, and burial depths in 

excess of 10,000 feet, have made the Tertiary basins of 

southwestern Montana targets for petroleum exploration 

during the past 10 years.

ANALYTICAL METHODS.

Sampling.

Samples were taken from cuttings and cores collected by 

AMOCO Production Company from two exploratory wells in the 

Big Hole Valley, and from five wells in the Deer Lodge 

Valley (Figure 1). Cuttings samples were collected at 100- 

200 foot intervals from each of the five Deer Lodge Valley 

wells, and at 30 foot intervals from the two Big Hole 

Valley wells. Core samples were taken from those sections 

of the two Big Hole valley wells that were cored.

Sample treatment.

All samples were washed in deionized water to remove 

drilling mud contamination. Samples were crushed in a 

glazed porcelain mortar and disaggregated in deionized 

water with an ultrasonic probe. In the cuttings samples, 

<0.5 micron (equivalent spherical diameter) size fractions
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were separated from <2.0 micron size fraction suspensions 

for X-ray diffraction (XRD) analysis by centrifugation. In 

the core samples from the Hirshey #2 well in the Big Hole 

Valley the <0.5 micron and <0.1 micron size fractions were 

separated from <2.0 micron clay suspensions by 

centrifugation.

All clay samples were strontium saturated to eliminate 

variations in glycol thickness caused by large monovalent 

cations (Eberl et al., 1986). The samples were 

subsequently washed to remove excess electrolyte.

X-ray diffraction analysis.

Oriented samples of the various size fractions were 

prepared for XRD analysis by a fiIter-membrane peel 

technique (Pollastro, 1982).

XRD analyses were made of all oriented samples from 2 

to 50 degrees two-theta, and for selected samples from 2 to 

90 degrees. Samples were run on a Philips X-ray 

diffractometer with a digital step counter using copper K 

alpha radiation and a graphite crystal-monochromator. Some 

samples were analyzed with an automated Siemens D500 

di ffractometer.



All oriented samples were analyzed by XRD after glycol 

solvation in a heated solvation chamber for 24 hours. Some 

of the samples were analyzed in the air-dried state for 

comparison with glycol solvated XRD patterns.

Selected oriented samples were heat treated at 600 

degrees C for one hour and then analyzed by XRD to 

determine the presence of kaolinite (Carroll, 1970).

Illite/smectite (I/S) identifications were made using 

techniques of Srodon (1980, 1981, 1984), Reynolds and Hower 

(1970) and the NEWMOD computer program (Reynolds, 1985).

Scanning-electron microscope analysis (SEM).

Chips from selected Hirshey #2 core samples were 

cemented onto aluminum mounts, sputter-coated with Au-Pd 

alloy, and in some cases carbon. The mounted samples were 

examined with a Cambridge Stereoscan 250 MK2 SEM at 20 kv 

for textural indications of authigenic clay growth. 

Identification of clay minerals was aided by a spot 

specific Energy Dispersive X-ray Spectrum (EDX) chemical 

analyzer.

Optical microscopy.

Standard thin sections were cut from selected core 

samples from the Hirshey #2 well and examined under the
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optical microscope to observe whole rock textural 

characteristics and replacement textures.

RESULTS.

Mineralogical results.

The dominant mineral in the clay size fraction from the 

cuttings and core samples from all seven wells is 

illite/smectite (I/S). The clay mineralogy of cuttings and 

core samples from each well is summarized in Tables 1 

through 9 , and Figures 3 through 11. The expandabilities 

of I/S from cuttings samples are plotted against depth for 

the <0.5 micron fraction in Figures 3-9 to show

mineralogical trends for each well.

Cuttings samples.

The Benson Well (Figure 3; Table 1) contains RO I/S

from 1500 ft. to the bottom of the hole at 7100 ft. The

I/S is 100 percent expandable to a depth of 6000 ft. where 

the expandability abruptly decreases to 50 percent. The 

deepest samples at 6700 ft. and 7100 ft. are both 40 

percent expandable. Most of the samples also contain 

discrete illite and chlorite or kaolinite.

The Arco Well (Figure 4; Table 2) contains RO I/S from 

1000 ft. to the bottom of the hole. The I/S expandability



varies somewhat erratically with depth, but is greater than 

80 percent to 5700 ft. where it abruptly decreases to 50 

percent. It remains at 50 percent to the bottom of the 

hole. Below 2900 ft. chlorite or kaolinite were also 

present. Discrete illite is present in samples below 2900 

ft .

In the Lewis Johnson Well (Figure 5; Table 3), highly 

expandable RO I/S is present to a depth of 7400 ft. The 

samples from 8000 ft. to 9000 ft. show an ordering and 

expandability transition between highly expandable RO I/S 

and R1 I/S of lower expandability. Neither the ordering or 

the expandability could be precisely identified from the 

XRD patterns in this depth range, but expandability is 

estimated at 50 percent. Below these samples, at 9500 and 

9700 ft., R1 ordered I/S exists with expandabilities of 30 

percent and 25 percent respectively. R3 ordering occurs at 

9800 ft. in I/S with 18 percent expandability. The deepest 

sample at 9900 ft. shows R3 ordering with 16 percent 

expandability. Chlorite or kaolinite and discrete illite 

coexist with I/S in most of the samples.

In the Jacobson Well (Figure 6; Table 4), highly 

expandable RO I/S exists from 1000 ft. to 5500 ft. At 6000
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ft. there is an abrupt mineralogical discontinuity below 

which all samples to the bottom of the hole at 11000 ft. 

contain illite with no measurable expandability and 

chiorite.

In the Montana State Prison Well (Figure 7; Table 5), 

a discontinuity similar to that in the Jacobson well exists 

between highly expandable RO I/S, and illite with no 

measurable expandability, but the abrupt transition occurs 

at a depth of 2000 ft. Discrete illite coexists with all 

RO I/S. Chlorite and/or kaolinite coexist with the illite 

samples down to 3000 ft. From 3500 ft, to the bottom of 

the hole at 6300 ft. chlorite coexists with illite.

In the Hirshey #1 Well (Figure 8; Table 6), from 300 

ft. to 6140 ft. 100 percent expandable RO I/S coexists with 

discrete illite and chlorite. An abrupt mineralogical 

discontinuity occurs between 6140 ft. and 6560 ft. From 

6560 ft. to 15790 ft. I/S expandability decreases from 32 

percent to nearly zero. From 6560 ft. to 11440 ft. 

ordering of most samples is intermediate between R1 and R2 

(designated R1/R2). R1/R2 I/S ordering is identified on

the basis of XRD between reflections 20 and 37 angstroms, 

and criteria described by Srodon (1980, 1981, 1984).



Chlorite coexists with I/S in most of the samples in this 

zone. R3 ordering begins with the 13960 ft. sample and 

persists to the bottom of the hole at 15790 ft.

In the Hirshey #2 Well (Figure 9; Table 7),

expandability generally decreases from 100 percent to 10 

percent from 2000 ft. to 13000 ft. Ordering of 1/S is RO 

from 2000 ft. to 6200 ft. Ordering of the R1/R2, R 1 , and 

R3 types exists without a trend from 6000 ft. to 13000 ft. 

Chlorite is present as an accessory mineral in all samples 

from 4500 ft. to the bottom of the hole. Discrete illite 

is present from 4500 ft. to 6600 ft.

Core samples.

Thirty-two core samples from the Hirshey #2 Well were 

analyzed for clay mineralogy in the interval 6564 ft. to 

11683 ft. The core was not continuous over this interval. 

Many of the samples were stratigraphically closely spaced 

and no core samples were available between 9049 ft. and 

10982 ft. Mineralogical profiles of the <0.5 micron and 

<0.1 micron size fractions are shown in Figures 10 and 11 

and Tables 8 and 9 respectively.

In the Hirshey #2 Well <0.5 micron core samples (Figure

10; Table 8), expandability decreases irregularly from 40
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percent to five percent, from 6564 ft. to 7958 ft.* Most of 

the expandability decrease occurs over a range of only 

about 300 ft. Ordering is R1/R2 from 6564 ft. to 7590 ft. 

Chlorite was detected in all samples within this interval. 

Samples at 7589 ft. and 7590 ft. show distinct feldspar 

peaks, but the type of feldspar could not be determined.

At 7889 ft. R3 ordered I/S occurs and persists to a depth 

of 9049 ft. Chlorite was detected in only one R3 sample, 

and feldspar was present in several samples.

At a depth of 10962 ft. the mineralogic character of 

the core changes significantly. In the XRD patterns from 

10982 ft. to the bottom of the hole, very sharp 10 angstrom 

and integral higher order reflections, are superimposed 

upon I/S peaks. This 10 angstrom phase will be referred to 

as sericite for reasons that will be discussed later in the 

paper. Random powder analyses of the 11873 and 11874 ft. 

core samples show that the sericite is a mixture of Im and 

2mj polytypes. Expandability of the I/S varies in an 

irregular manner throughout this interval, but is generally 

higher than that in the R3 interval above. Expandabilities 

are as high as 30 percent for R1/R2 ordered I/S, and as 1 

as 12 percent for R3 I/S. Rl, R1/R2, and R3 ordering of

ow
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I/s are found in this interval. In all samples from 10982 

ft. to 11883 ft., chlorite and feldspar are present.

The Hirshey #2 Well, <0.1 micron core samples (Figure 

11; Table 9), show a similar profile to that of the <0.5 

micron samples. The major difference is that I/S 

expandabilities average five percent higher in the <0.1 

micron size fraction.

Figure 12 shows three examples of XRD patterns from the 

6565 to 7590 ft. R1/R2 interval and corresponding NEWMOD 

(Reynolds, 1985) calculated patterns.

Figure 13 shows three examples of XRD patterns and 

corresponding NEWMOD (Reynolds, 1985) patterns from the 

7889 ft. to 7958 ft. interval. Two of the experimental 

patterns are R3 ordered, one is R1/R2 ordered.

XRD patterns from the 7958 ft. sample (Figure 14), 

indicate that the R3 I/S has a nearly ideal I to S ratio of 

3:1, based on the presence of a 47 angstrom reflection, and 

higher order reflections. This type of I/S has been called 

"tarasovite" by previous workers (Lazarenko, 1949, 1965;

Lazarenko and Korolev, 1970; Brindley and Susuki, 1983) and 

is discussed later in this paper.
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I/S in samples from 10982 ft. to 11883 ft. ranges from 

16 to 30 percent expandable. All samples from 9049 ft. to 

11883 ft. contain sericite. Ordering of the I/S in this 

lower interval is dominantly R1/R2, but R3 and Rl I/S also 

exist. Three examples of XRD patterns from this interval 

are shown in Figure 15, along with corresponding NEWMOD 

(Reynolds, 1985) calculated patterns. Chlorite and 

feldspar are also present in most of these samples. I/S 

peaks are more intense relative to sericite in the <0.1 

micron fraction than they are in the larger size fraction.

Mineralogy of different size fractions from single

samples.

The relationships among size fraction, I/S 

expandability, and ordering for the Hirshey #2 well 11000, 

10982, and 11872 ft. core samples are shown in Table 10.

I/S expandability consistently increases with decreasing 

size fraction, with the exception of the <0.03 micron size 

fraction from the 11000 ft. sample (Table 10).

Scanning electron microscopy (SEM).

Figure 16 shows typical examples of mineral textures 

observed with SEM. Figure 16a is from the Hirshey #2 core 

sample at 10982 ft.; the curled and delicate texture of the
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clay indicates authigenic growth. The high potassium 

content indicated by the EDX spectrum (Figure 17a), 

suggests that the clay is illite.

Figures 16b, c , and d are from the Hirshey #2 core 

sample at 7902 ft. Figure 16b shows authigenic illite 

laths, based on texture and EDX data (Figure 17b), on the 

surfaces of authigenic quartz crystals.

Figure 16c shows a mat of authigenic illite, based on 

EDX data (Figure 17c), with authigenic quartz crystals.

The quartz in Figures 16b and 16c is interpreted to be 

authigenic on the basis of size and euhedral morphology.

Figure 16d shows authigenic quartz, based on EDX data 

(Figure 17d) and euhedral morphology, with coatings of 

authigenic clay on the quartz surface.

Figure 16e from the Hirshey #2 11393 core sample, shows 

apparently authigenic K-feldspar based on EDX data (Figure 

17e), size, and euhedral morphology.

Optical microscopy.

Figure 16, shows five photomicrographs illustrating 

typical rock fabric, and replacement textures from Hirshey 

#2 well core samples.
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Figure 10a, from the 6565 ft. level, shows a 

sedimentary rock fragment with minor carbonate alteration, 

in a matrix of unaltered tuffaceous material.

Figure 18b, from the 7890 ft. level, shows tuffaceous 

clay with a few clasts, and little or no replacement 

texture.

Figure 18c, from the 11363 ft. depth, shows sericite 

replacing quartz, and growing outward from the quartz 

grain. Figure 18d, from the 11363 ft. depth, shows 

biréfringent sericite replacing clastic grains and 

tuffaceous matrix, and carbonate replacement of a 

plagioclase grain.

Figure 18e, from the 11363 ft. depth, shows sericite 

replacement of clastic grains and matrix, with a large 

white mica that may be authigenic or detrital.

DISCUSSION.

Diagenetic trends in marine sediments generally exhibit 

a regular progressive decrease in I/S expandability, and an 

increase in long range ordering with increasing burial 

depth and temperature (e.g. Hower et al., 1976; Jennings 

and Thompson, 1986; Velde et al., 1986). The same general 

trends are seen in the cuttings samples from the Deer Lodge



15

and Big Hole Valley wells. However, the general 

mineralogical trends in these wells are interrupted by 

discontinuities in which I/S expandability abruptly 

decreases by an amount varying from 30 to 80 percent.

Core samples from the Hirshey #2 well show significant 

differences from the trends seen in cuttings samples and 

from typical marine sequences.

Cuttings samples.

Unconformities are well documented in the Tertiary 

sedimentary section of southwest Montana (Kuenzi and 

Fields, 1971; Robinson, 1967; Fields et al., 1985). In his 

study of the depositional history of the Deer Lodge basin, 

McLeod (1987) correlated stratigraphy between the Lewis 

Johnson, Benson, Arco, and Jacobson wells based on dipmeter 

logs, changes in the electrical properties of the rocks, 

paleontological, and seismic reflection data (Hanson,

1983). Table 11 compares the depth of the I/S 

discontinuities in the five Deer Lodge Valley wells and two 

Big Hole Valley wells, with the depths and types of 

stratigraphie unconformities documented by McLeod (1987). 

The mineralogic discontinuities coincide with stratigraphie 

unconformities in all four wells in which stratigraphie
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unconformities have been identified.

Two types of minéralogie discontinuities occur in the 

basins: 1) an abrupt transition from highly expandable RO

I/S to pure illite coexisting with chlorite and 2) an 

abrupt transition from I/S with high expandability to I/S 

with lower expandability.

The type 1 discontinuity in the Jacobson well coincides 

with the boundary between the Tertiary Lowland Creek 

Volcanics and Cretaceous Colorado Group shale. The Lowland 

Creek Volcanics are known to be rich in rhyolitic ash, 

tuffs, and clay-rich volcanic sediments (lagmin, 1972), 

which commonly alter to smectite (Moore and Reynolds,

1989). The Colorado Group shale is known to be rich in 

illite and chlorite (Ehinger et al., 1965). The identical 

discontinuity seen in the Montana State Prison well may 

imply a similar Tertiary/Cretaceous contact, although the 

stratigraphy of that well has not been identified (McLeod,

1987).

In three of the remaining five wells, the minéralogie 

discontinuities coincide with stratigraphie unconformities 

between Sixmile Creek Formation and either Renova Formation 

or Lowland Creek Volcanics. In the other two wells the
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depths' of those unconformities are unknown. Studies by 

other workers have shown that system composition can 

greatly enhance or inhibit the illitization process (e.g. 

Eberl and Hower, 1976; Whitney and Northrop, 1988; Huang, 

1988). Other studies have shown that permeability 

variations controlled by rock fabric, control the migration 

of interstitial fluids and modify system composition, thus 

affecting the rate and extent of illitization (Boles and 

Franks, 1979; Howard, 1987). Thus, the coincidence between 

the I/S discontinuities and stratigraphie unconformities 

suggests five possible explanations for the mineralogical 

discontinuities.

1) System composition differences resulting from a 

change in provenance of the sediments above and below the 

unconformities may cause the minéralogie discontinuities 

(Eberl and Hower, 1970; Whitney and Northrop, 1988; Huang,

1988). Significant lithologie and compositional 

differences are known to exist between the Renova and 

Sixmile Creek Formations and the Lowland Creek Volcanics 

(Fields et al., 1985; lagmin, 1972).

2) Compositional differences in interstitial water, 

resulting from different permeabilities above and below the
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Tertiary unconformities, could differentially effect the 

illitization process and produce the I/S discontinuities 

(Howard, 1987; Boles and Franks, 1979). The Sixmile Creek 

Formation is typically coarser grained than the Renova 

Formation, which may result in a permeability contrast 

between the two formations (Fields et al., 1985). The 

Lowland Creek Volcanics are 1ithologically different from 

the Renova and Sixmile Creek Formations and may also show 

permeability contrasts with those units.

3) . System composition differences resulting from 

climatic differences during the deposition of the sediments 

above and below the unconformities may cause the

mineralogical discontinuities. Climate has been shown to 

control the bulk composition, and the composition of 

interstitial waters in clastic sediments (Dutta and 

Suttner, 1986). The Tertiary sediments in the basins of

western Montana contain evidence of major regional climatic 

variations which are thought to have controlled 

sedimentation and erosion in the Tertiary basins of western 

Montana (Thompson et al., 1982).

4) The mineralogical discontinuities may result from a 

two-stage burial process, interrupted by erosion. The
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Renova Formation was deposited in basins which sank 

progressively from latest Eocene through late middle 

Miocene time (Fields et al., 1985). In this scenario, 

illitization of smectite progressed to a significant extent 

in lower Renova sediments during this first burial event.

In late middle Miocene time the Tertiary basins of 

southwest Montana underwent a period of erosion which 

removed an unknown thickness of upper Renova sediment 

(Fields et al., 1985).

The illitization of Lower Renova clays halted or slowed 

due to this erosion and accompanying cooling. The 

progressive illitization of smectite is known to be 

kineticly controlled at temperatures below 300 degrees C. 

Nevertheless, the rate is affected by temperature (Jennings 

and Thompson, 1986). Therefore, cooling accompanying 

erosion would result in cessation or slowing of the 

illitization reaction. In late Miocene time the Sixmile 

Creek Formation accumulated on top of the remaining Renova 

Formation (Fields et al., 1965). As the Sixmile Creek 

Formation became thicker due to continued deposition, 

illitization of I/S in the newly reburied Renova Formation 

recommenced where it left off. At the same time
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illitization of smectite-rich sediment of the lower Sixmile 

Creek Formation began. The head start in development of 

illite layers gained by the lower Renova Formation during 

the first burial episode resulted in the current 

mineralogical discontinuity.

5) The I/S discontinuities may be the result of a 

combination of these models.

The data do not uniquely support any one of the above 

models. However, since all of the above processes are 

known to have affected the Tertiary sediments of 

southwestern Montana, it seems reasonable that a 

combination of these effects may be responsible for the 

pattern of progressive illitization of smectite interrupted 

by the minéralogie discontinuities coincident with 

unconformities.

Core samples.

Mineralogical trends with increasing depth in the <0.5 

and <0.1 micron fractions (Figures 10 and 11) from the 

Hirshey #2 core are significantly different from the 

regular progressive illitization of smectite with depth 

seen in cuttings samples, described in this study, and from 

trends seen in cuttings samples in studies of marine



21

sediments (e.g. Hower et al., 1976; Jennings and Thompson, 

1986). Although the Hirshey #2 core samples show a general 

trend of progressive illitization with depth, they also 

show wide variations in I/S expandability over short 

stratigraphie distances, similar to studies by Boles and 

Franks (1979) and Howard (1987). In addition to these 

variations the core samples have higher I/S expandability 

from 9049 ft. to the bottom of the hole than at shallower 

levels, and these deeper samples coexist with sericite.

The minéralogie trends in the Hirshey #2 <0.5 and <0.1 

micron fractions are similar to each other except that I/S 

in the <0.1 micron fraction averages five percent greater 

expandability than that in the <0.5 micron fraction, and 

there is a higher proportion of accessory minerals in the 

<0.5 micron fraction. The following discussion refers to 

the <0.1 micron fraction samples unless noted otherwise.

The core samples show three distinct minéralogie 

intervals. Between 6564 ft. and 7590 ft. R1/R2 I/S with 

expandability from 50 to 32 percent is present (Figure 12). 

From 7889 ft. to 7958 ft. the samples are comprised of R3 

I/S from 26 to 10 percent expandability (Figure 13). From 

9049 ft. to the bottom of the hole at 11883 ft. dominantly
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R1/R2 ordered I/S of 8 to 30 percent expandability coexists 

with sericite (Figure 15).

The term sericite is used to indicate highly 

biréfringent, fine-grained, micaceous material as viewed 

under the optical microscope (Eberl et al., 1987). XRD and 

microprobe analyses indicate that sericite can have varied 

structures and compositions (Bonorino, 1959; Shirozu and 

Higashi, 1972; Le Bel, 1979; Hendry, 1981; Nicot, 1981; 

Meunier and Velde, 1982; Omelyanenko et al., 1982;

Cathelineau, 1983; Beaufort and Meunier, 1983; Horton,

1983, 1985; Parry et al., 1984). These studies have 

described sericites as being composed of muscovite, 

phengite, illite, hydromica, or mixed-layer I/S, with fixed 

interlayer cation contents that usually are less than the 

structural limit of 1.0 equivalent per O^Q(OH)g. Sericite 

has sharp 10 angstrom and integral higher order reflections 

in XRD analyses. In the Hirshey #2 core samples sericite 

is identified on the basis of these sharp 10 angstrom and 

integral higher order reflections, indicating zero, or 

nearly zero, percent expandability.

The photomicrographs shown in Figures 18c, d, and e 

show sericite replacing quartz and other clastic grains at
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and below the 9049 ft. level in core samples from the '

Hirshey #2 well. This type of texture was not observed 

above 9049 feet, and sericite was not observed in XRD 

patterns from samples above 9049 feet.

XRD analyses of randomly oriented <0.5 micron size 

fractions from the Hirshey #2 11873 and 11874 foot core 

samples show that the sericite in these samples is a 

mixture of Im and 2mj polytypes. Eberl et al. (1987) found 

that hydrothermal sericite from the from the Silverton 

Caldera also consists of a mixture of Im and 2mj polytypes.

The paragenesis of the sericite and coexisting I/S in 

these samples is not known. It is possible that the 

sericite is the end product of the progressive illitization 

reaction of smectite shown by trends in the cuttings 

samples, or that it crystallized as a separate phase 

unrelated to the illitization process. If the sericite 

does represent the end product of illitization, the 

coexisting I/S may be the result of a separate nucléation 

event which formed a separate population of small 

fundamental particles (Eberl and Srodon, 1988).
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The core samples show wide I/S expandability variations 

over relatively short stratigraphie distances, such as the 

range from 7889 ft. to 7958 ft. in which <0.5 micron 

fraction samples vary from 5 to 20 percent expandability 

(Figure 9). This I/S expandability variation may result 

from compositional differences of interstitial fluids, 

controlled by variations in rock fabric and permeability 

over small stratigraphie distances. They cannot be due to 

temperature variations because temperatures would not vary 

significantly over such short stratigraphie distances 

(Howard, 1986; Boles and Franks, 1979).

Core samples compared to cuttings samples.

I/S expandability and ordering are significantly 

different in core and cuttings samples from the same 

stratigraphie horizons (Figures 9 and 10). In addition, 

sericite and I/S coexist in the core samples below 9049 

feet in the Hirshey #2 well, whereas sericite was not 

detected in any of the cuttings samples from the same depth 

range.

Drill cuttings samples are collected over a range of 

depths, and are a mixture of the rock in the depth range. 

Thus, I/S expandability measurements do not represent the
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I/S expandability for any one stratigraphie layer.

Instead, they represent an average value for the depth 

range. Samples taken from narrow stratigraphie horizons 

within a core represent a specific depth and 1ithology in a 

sedimentary section. Mineral assemblages observed from 

core samples provide a more realistic view of the mineral 

assemblages forming at a specific stratigraphie horizon 

than do the mineral assemblages observed from cuttings.

Tarasovite.

The 7958 ft. core sample from the Hirshey #2 well 

approaches a nearly ideal 3 to 1, I to S ratio and is R3 

ordered (Figure 14). This type of I/S has been called 

"tarasovite" by previous workers (Lazarenko, 1949, 1965; 

Lazarenko and Korolev, 1970; Brindley and Susuki, 1983).

XRD data from this sample show a 47 angstrom reflection and 

near-integral higher order reflections. Peaks between 10 

and 15 degrees two—theta, and several distinctive 

reflections between 50 and 90 degrees two-theta are 

particularly diagnostic of a 3:1 I to S ratio and R3 

ordering. Figure 13a shows the experimental <0.1 micron 

XRD pattern for sample 7950 compared with a pattern 

calculated using the NEWMOD computer program (Reynolds,
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1985) for an R3 ordered I/S with 18 percent expandable 

layers. Figure 13b shows the 47 angstrom reflection from 

the same sample obtained from a low angle XRD scan using 

0.1 degree convergence and divergence slits.

The calculated pattern in Figure 13a was made using a 

defect broadening parameter with a mean defect-free 

distance of seven unit cells (unit cell = one 2:1 layer as 

used in NEWMOD), with a particle thickness distribution 

that has a low N of two unit cells, and a high N of 21 unit 

cells (N = number of unit cells in the C direction in a 

coherent diffraction domain). The calculated pattern for 

the 50 to 90 degree two-theta range was constructed by 

calculating two patterns with the same defect broadening 

parameters, but with different specific wavelength values 

for Cu K alpha 1 and Cu K alpha 2 radiation. The two 

patterns were then added together using NEWMOD'S MIXER 

option (Reynolds, 1985) in a 2:1 ratio for Cu K alpha 1 to 

Cu K alpha 2. This was done because Cu K alpha 1 radiation 

is twice as intense as Cu K alpha 2 radiation in this 

angular range (R.C. Reynolds, personal comm.). The 

wavelength values used for Cu K alpha 1 and Cu K alpha 2 

were 1.5410 and 1.5440 angstroms respectively (Parrish and



27

Mack, 1963).

The absence of the 87.5 degrees two-theta peak from the 

experimental pattern could be due to the near perpendicular 

angle of the incident beam on the sample. If the sample is 

not infinitely thick with respect to the x-ray beam, the 

reflection at such a high angle may not be sufficiently 

intense to be detected.

In a MacEwan crystal 1ite model (Moore and Reynolds, 

1989), where I/S is a sequence of interlayers within a 

single crystal 1ite, I/S with an exact 3:1 I to S ratio 

would be 25 percent expandable. Brindley and Suzuki (1983) 

measured expandability in tarasovite at approximately 20 

percent smectite layers. Brindley and Suzuki (1983) 

attributed the lower expandability relative to an exact 3:1 

I to S ratio, to the addition of random illite layers in 

tarasovite MacEwan crystallites.

The tarasovite structure can also be described by a 

fundamental particle model (Nadeau et al., 1984) in which 

fundamental illite particles four 2:1 layers thick are 

arranged in stacks (Figure 19).

The expandability of sample 7958 was measured at 18 

percent, lower than the ideal expandability of perfect
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tarasovite. In the context of fundamental particle theory 

the addition of a small number of thicker fundamental 

particles in a stack dominated by four 2:1 layer particles, 

could also account for the lower than ideal 25 percent 

expandability because there would be relatively fewer 

expandable interfaces in the stack (Figure 20).

NEWMOD calculations show that if all of the fundamental 

particles were exactly four layers thick, as in perfect 

tarasovite, the XRD peaks would be very sharp and narrow, 

more so than in the XRD pattern from Sample 7958. A small 

proportion of thicker particles as shown in Figure 20 would 

broaden the peaks to be similar to those of Sample 7956.

The limited peak broadening and the 47 angstrom and 

higher order reflections in the XRD patterns from Sample 

7958 implies that the sample has a limited distribution of 

sizes of fundamental particles, and a high proportion of 

four layer i11ite particles (Figure 20). This 

interpretation appears inconsistent with an Ostwald 

Ripening model of clay diagenesis (Eberl and Srodon, 1988), 

in which smaller crystallites, once formed, dissolve and 

recrystal 1ize to form larger crystallites, producing a 

broad distribution of fundamental particle sizes.
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Thus if the Ostwald Ripening model is correct, this 

sample appears to represent a modification or change in the 

normal process of Ostwald Ripening. The limited particle 

size distribution and the interruption of Ostwald Ripening 

suggest stability or metastability of four layer 

fundamental particles.

Velde et al. (1986) and Jennings and Thompson (1986) 

have observed that R3 ordering occurs at about 80 percent 

illite layers in I/S. At that point, the rate of the 

illitization reaction decreases (e.g. Figure 21). This 

relationship supports the suggestion that fundamental 

particles four 2:1 layers thick, with R3 ordering may be 

metastable or stable.

Further evidence of interparticle diffraction from

fundamental particles.

Table 10 shows XRD results from successively smaller 

size fractions from the Hirshey #2 11000, 10982, and 11874

ft. core samples. Measured expandability of I/S increases 

in successively smaller size cuts. A higher population of 

smaller fundamental particles would produce a higher 

percentage of expanding interfaces when particles stack on 

XRD slide preparations (Nadeau et al., 1984; Eberl et al..
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1907). Therefore, the fact that successively smaller size 

fractions show successively higher expandabilities appears 

to support a fundamental particle interpretation of these 

mixed-layer I/S clays.

The smallest size fraction analyzed from the 11000 ft. 

sample, <0.03 microns, was slightly less expandable than 

the next larger size fraction. This may be due to the thin 

concentration of the clay suspension used to make the XRD 

slide. A thin clay concentration would result in shorter 

stacks of fundamental particles, with fewer expanding 

interfaces. This observation is similar to those found by 

Eberl et al., (1987).

Authigenic mineral growth.

Clay textures seen with SEM indicate authigenic crystal 

growth (Figure 16a, b, c). EDX analysis of these clays 

indicate that the crystals have a high potassium content 

and are therefore illite or sericite (Figure 17a, b, c). 

These data suggest that illite or sericite grew from 

solution. Authigenic sericite growth is also documented 

from thin sections (Figure 18).

Figure 16d and 16e show euhedral quartz and K-feldspar, 

respectively. EDX analyses (Figure 17) show a high silicon
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peak and no potassium peak in Figure 17d, and a high 

potassium peak in Figure 17e, The size and morphology of 

these crystals, along with feldspar peaks in the <0.1 

micron XRD patterns from this stratigraphie interval (e.g. 

Figure 15), indicate authigenic K-feldspar and quartz 

growth. The growth of K-feldspar contrasts with data from 

the Gulf Coast and Colorado River delta where K-feldspar 

appears to be consumed with increasing depth (Hower et a l ., 

1976; Jennings and Thompson, 1986).

SUMMARY OF CONCLUSIONS.

1) I/S expandability trends seen in cuttings samples in 

the Tertiary non-marine sediments of southwestern Montana 

have abrupt discontinuities coincident with stratigraphie 

unconformities. These discontinuities may result from: a)

system composition differences due to differences in 

sediment types above and below the unconformities, b) 

compositional differences in interstitial waters resulting 

from rock fabric variations above and below the 

unconformities, c) compositional differences resulting from 

differences in climatic conditions during the deposition of 

the sediments above and below the unconformities, d) a two- 

stage burial event with erosion and cooling separating the
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two stages, or e) a combination of these models.

2) In the core samples a wide range of I/S expandabilities 

occurs within a short stratigraphie interval. This 

variation may be due to differences in rock and fluid 

compositions, and/or fluid composition differences 

resulting from rock fabric variations.

3) Sericite coexists with I/S in the deep portions of the 

Hirshey #2 well. The sericite may represent the end 

product of progressive illitization of I/S and the I/S may 

have grown during a separate nucléation event. 

Alternatively, the sericite may be unrelated to an

illitization process and may have nucleated separately.

4) The percent expandability of I/S in a single sample 

increases in progressively smaller size fractions. This 

relationship supports the interpretation that the I/S in 

these samples consists of fundamental particles rather than 

MacEwan crystallites.

5) Mineral assemblages and diagenetic trends in cuttings 

samples are significantly different from those observed in 

core samples. Core samples depict the mineralogy of narrow 

stratigraphie horizons, in contrast to minéralogie analyses 

of cuttings samples which represent an average mineralogy
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for a relatively broad stratigraphie range.

6) The 7958 ft. core sample contains an R3 ordered I/S 

with a nearly ideal 3:1 illite to smectite ratio, similar 

to the mineral tarasovite. The structure of this I/S is 

consistent with a sample dominated by stacks of four 2:1 

layer illite particles with small proportions of thicker 

particles randomly interstratified among the four-layer 

particles.

7) A high population of four-layer fundamental particles, 

viewed in conjunction with an Ostwald Ripening model of

clay diagenesis, suggest stability or metastability of 

fundamental particles four 2:1 layers thick with R3 

ordering.
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Well name: 
Location: 
Dates :

Deer Lodge Valley

Benson
SE, SW, Sec. 34, T. 7 N., R. 9 W 
7—31—84 to 9—4—04

Well name: Arco
Location: NW, SW, Sec. 3, T. 5 N., R. 10 W
Dates: 9—30—84 to 11— 15—84

Well name: Lewis Johnson
Location: SW, SW, Sec. 31, T. 7 N ., R. 9 W
Dates : 9-19-81 to 5-18-02

We 11 name 
Location: 
Dates :

Jacobson
NW, NE, Sec. 25, T. 6 N., R 10 W 
3-18-84 to 6-18-84

Well name 
Location: 
Dates :

Montana State Prison
N, SW, Sec. 2, T. 7 N. , R. 10 W.
7-5-82 to 8-9-82

Big Hole Valley

Well name: 
Location : 
Dates :

Hirshey #1
NE 1/4, Sec. 27, T. 3 5., R 16 W 
1-12-80 to 2-3-81

Well name: Hirshey #2
Location: NW 1/4, Sec. 31, T. 4 S., R 15 W
Dates: 2— 21—83 to 4—22—83
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Deer Lodge 
ftasln

BUTTE

Big Hole 
Basin

DILLON45"

MONTANA

112"113"

40

Miles

r
N

1 = Benson well
2 » Arco well
3 = Lewis Johnson well
4 = Jacobson well
5 = Montana State Prison well
6 » Hlrshey #1 well
7 * Hlrshey #2 well

Figure 1. Deer Lodge and Big Hole Valleys of 
southwestern Montana, with relative well locations 
appendix for exact well locations.

See
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Predominantly coarse­
grained fluvial deposits 
of fine sand to 
conglomerate, with clay- 
rich tuffaceous matrix.

Predominantly fine­
grained floodplain, pond, 
and stream channel 
deposits of mudstone, 
siltstone and tuffaceous 
shale. Minor interbedded 
limestone and mudstone. 
Lesser coarse-grained 
deposits with clay-rich 
matrix.

Rhyodacite, dacite, and 
latite-andesite ash-flow 
tuffs. Clay and silt 
rich volcanic sediments. 
Volcanic breccia with 
ashy tuffaceous matrix. 
Laminated pheno-andesite 
to pheno-quartz andésite 
lava.

Marine and non-marine 
black shale and 
siltstone.

Figure 2. Composite stratigraphy of soutwest Montana 
basins (Fields et al., 1985; lagmin, 1972; Ehinger et al., 
1965; McLeod, 1987), All units shown are in unconformable 
contact with adjacent units.
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Figure 3. Percent expandability and ordering of 
i11ite/smectite compared with depth for the less than 0.5 
micron size fraction from drill cuttings.
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Figure 4. Percent expandability and ordering of 
illite/smectite compared with depth for the less than 0.5 
micron size fraction from drill cuttings.



45

100
EXPANDABILmr (%)
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LEWIS JOHNSON 
WELL

Figure 5. Percent expandability and ordering of 
i11ite/smectite compared with depth for the less than 0.5 
micron size fraction from drill cuttings. Samples 8000, 
8400, and 9000 feet are estimated at 50 percent expandable 
Horizontal lines indicate possible ranges of 
expandabi1ities.
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Figure 6. Percent expandability and ordering of 
illite/smectite compared with depth, and depth of illite + 
chlorite samples with no measurable expandability. All 
samples are from the less than 0.5 micron size fraction from 
drill cuttings.
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Figure 7. Percent expandability and ordering of 
illite/smectite compared with depth, and depth of illite + 
chlorite samples with no measurable expandability. All 
samples are from the less than 0.5 micron size fraction from 
drill cuttings.
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Figure 8. Percent expandability and ordering of 
111ite/smectite compared with depth for the less than 0.5 
micron size fraction from drill cuttings.
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Figure 9. Percent expandability and ordering of 
illite/smectite compared with depth for the less than 0.5 
micron size fraction from drill cuttings.
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Figure 10. Percent expandability and ordering of 
illite/smectite (I/S) compared with depth for the less than 
0.5 micron size fraction from drill core samples. In all 
samples at and below 10982 ft. I/S coexists with sericite. 
Sericite is not plotted separately on the figure.
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Figure 11. Percent expandaJbility and ordering of 
i11ite/smectite (I/S) compared with depth for the less than 
0.1 micron size fraction from drill core samples. In all 
samples at and below 9049 ft. I/S coexists with sericite. 
Sericite is not plotted separately on the figure.
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Calculated
RI 42 % Expandable

Ch 6565 Ft.

Calculated
R1 40 % Expandable

7576 Ft.

Calculated
R1 35 % Expandable

Ch

7590 Ft.

r XT TT T T T T T

Figure 12.

Measured XRD patterns 
from the Hlrshey #2 
6565, 7576, and 7590 
ft. core samples 
compared with 
calculated
i11ite/smectite (I/S) 
patterns from NEWMOD 
(Reynolds, 1905). All 
measured patterns are 
from the less than 0.1 
micron size fraction. 
The R1 42 percent 
expandable and R1 40 
percent expandable I/S 
patterns were 
calculated with a mean 
defect-free distance 
of six 2:1 layers.
The R1 35 percent 
expandable I/S pattern 
was calculated with a 
mean defect-free 
distance of 10 2:1 
layers. The I/S from 
the three experimental 
samples are R1/R2 
ordered, based on 
parameters outlined by 
Srodon (1980, 1984).
I/S peaks are not 
labeled. Ch = 
chlorite, Q = quartz,
F = feldspar.
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Calculated
R3 20 % Expandable

7889 Ft.

Calculated
R1.5 26 % Expandable

7895 Ft.

Calculated
R3 12 % Expandable

7920 Ft.
T T TT X

F i g u r e  1 3 .

Measured XHD patterns 
from the 7809, 7895, 
and 7920 ft. Hlrshey 
#2 core samples 
compared with 
calculated
illite/smectite (I/S) 
patterns from NEWMOD 
(Reynolds, 1985). All 
measured patterns are 
from the less than 0.1 
micron size fraction. 
All NEWMOD patterns 
were calculated using 
a mean defect-free 
distance of eight 2:1 
layers. The I/S from 
the 7889 and 7920 ft. 
samples are both R3 
ordered and the I/S 
from the 7895 ft. 
sample is R1/R2 
ordered (similar to 
R1.5 of NEWMOD 
calculations), based 
on parameters outlined 
by Srodon (1980,
1984). I/S peaks are 
not labeled. Q = 
quartz.



54
HIRSHEY #2 CORE SAHPUE 7358 FT. 

A3 18 X EXPANDABLE 
< 0.1 MICRON

1 1.
9.61

2.055. IS
2 75

CALCULATED

2.03
1.9*2.S3

MEASURED

PEAKS O-SPACXNOS IN
ANGSTROMS

1. 2*

CALCULATED

1.27 1.24

MEASURED

50 54 9074«2

TWO - THETA (DEGREES)
Figure 14a. Measured XRD pattern for the Hlrshey #2 

7958 ft. core sample from the less than 0.1 micron size 
fraction, compared with a NEWMOD (Reynolds, 1985) calculated 
pattern for an R3 ordered 18 percent expandable 
illite/smectite. The NEWMOD pattern was calculated using a 
mean defect-free distance of seven 2:1 layers. See 
Tarasovite section page 25 in text for details on the 
calculated pattern parameters.
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33

A 3  1 8  % E X P A N D A B L E

l a b e l e d  p e a k s  a r e  o - s p a c i n g s  
a n g s t r o m s

IN

0 .1 DEGREE SLITS

9. 51
19. 12 11 . 48

975

TWO - THETA <DEGREES>

Figure 14b. Low angle XRD pattern ran with 0.1 degree 
slits, for the Hirshey #2 7958 ft. core sample from the less 
than 0.1 micron size fraction.
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Calculated
RI 30 % Bcpandabl*

10962 Ft.

Calculated
R1.3 22 % Expandable

11393 Ft.

Ch

Calculated
R1 26 % dependable

S

11883 Ft.

Ch

F i g u r e  1 5 .

Measured XRD patterns 
from the Hirshey #2 
10982, 11393, and 
11863 ft. core samples 
compared with 
calculated
illite/smectite (I/S) 
patterns from NEWMOD 
(Reynolds, 1985). All 
measured patterns are 
from the less than 0.1 
micron size fraction. 
The NEWMOD patterns 
for the R1 30 percent 
expandable and R1 26 
percent expandable I/S 
were calculated using 
a mean defect-free 
distance of eight 2:1 
layers. The R 1 .5 22 
percent expandable I/S 
pattern was calculated 
using a mean defect- 
free distance of 10 
2:1 layers. The 
experimental patterns 
show that I/S coexists 
with sericite. The 
sericite 001, 002, and 
005 peaks are labeled. 
The I/S phases in the 
experimental samples 
are all R1/R2 ordered, 
based on parameters 
outlined by Srodon 
(1980, 1984). I/S
peaks are not labeled. 
Ch = chlorite, Q = 
quartz, F = feldspar,
S = sericite.



Figure 16. Scanning electron micrographs showing 
authigenic mineral textures from Hirshey #2 core samples. 
Figure 15a is from 10982 ft.; 15b, c, and d are from 7902 
ft.; 15e is from 11393 ft.. The spot in the center of each 
photo is the location of the energy-dispersive X-ray 
analysis (figure 17).
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Figure 17. Energy-dispersive X-ray analyses (EDX) 
corresponding to scanning electron micrographs in figure 16.
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Figure 18. Cross polar photomicrographs showing 
typical rock fabric and replacement textures from Hirshey #2 
core samples. Figure 17a is from 6565 ft.; 17b is from 7890 
ft.; 17c, d , and e, are from 11363 ft.
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47 mmim

47 m s m m

Figure 19. Illustration of a stack of four 2:1 layer 
fundamental particles expanded with ethylene glycol.
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47 t

Figure 20. Illustration of four 2:1 layer fundamental 
partie 1 es, in a stack with a thicker fundamental particle 
expanded with ethylene glycol.
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90
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• < Zim
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60 ao4020
PERCENT I l u t e  LAYERS

Figure 21. Percentage of illite layers in mixed-layer 
illite/smectite compared to logged well temperatures, from 
the Borchard A-2 well Colorado River Delta (from Jennings 
and Thompson, 1906). Note inflection in curve at transition 
to R=3 ordering.
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TABLE 1. BENSON WELL

Sample I/S ordering- % Expandability Accessor'

1500 RO 100

Mineral 5

2500 RO 100 —  —  —

3600 RO 100
4000 RO 100 Ch/K
4500 RO 100 —  —  —

5000 RO 100 Ch/K, I
5200 RO 100 Ch/K, I
5500 RO 100 Ch/K, I
5700 RO 100 Ch/K, I
6000 RO 50 Ch/K, I
6500 RO 50 Ch/K, I
6700 RO 40 Ch/K, I
7100 RO 40 Ch/K, I

I = illite, Ch/K = chlorite and/or kaolinite
K = kaolinite, Ch = chlorite
Sample # = depth below surface in feet.
All samples are <0.5 micron size cut from cuttings



TABLE 2. ARCO WELL

64

S a m p 1e I/S ordering % Expandab i1ity Accessory 
Minerals

1000 RO 100 —  —  —

1200 RO 90 ^  —  —

1500 RO 80 —  —  —

1800 RO 100 —  —  —

2100 RO 100 — —
2900 RO 100 Ch/K, I
3100 RO 80 Ch/K, I
3600 RO 90 Ch/K, I
4200 RO 80 Ch/K, I
4600 RO 80 . Ch/K, I
5700 RO 50 Ch/K, I
6600 RO 50 - - -

I = illite, Ch/K = chlorite and/or kaoliinite, K = kaolinite 
Ch = chlorite
Sample # = depth below surface in feet.
All samples are <0.5 micron size cut from cuttings.



TABLE 3 .  LEWIS JOHNSON WELL
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S a m p l e I/S ordering % Expandab i1ity Accessory 
Minerals

1500 RO 100
2700 RO 100 “ — —
3700 RO 100 — — —
4400 RO 100 . Ch/K, I
5000 RO 95 Ch/K, I
6000 RO 90 Ch/K, I
6200 RO 90 Ch/K, I
6500 RO 100 Ch/K, I
6800 RO 80 Ch/K, I
7000 RO 80 Ch/K, I
7400 RO 100 Ch/K, I
8000 RO ? 50 Ch/K, I
8400 RO/Rl ? 50 Ch/K, I
9000 RO/Rl ? 50 7 Ch/K, I
9500 R1 30 Ch/K, I
9700 R1 25 Ch/K, I
9800 R3 18 Ch/K
9900 R3 16 Ch/K

I = illite, Ch/K = chlorite 
Ch = chlorite,

and/or kaolinite. K = kaolinite

Sample # = depth below surface.
All samples are <0.5 micron size cut from cuttings. 
Expandability values for samples 6000, 8400, and 9000 ft.
are estimated at 50 percent.



TABLE 4 .  JACOBSON WELL
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S a m p l e I / S  o r d e r i n g % Expandabi I j-ty Accessory 
Minerals

1000 RO 90 — — —

1500 RO 90 —  —  —

2500 RO 90 —  —

4500 RO 90 — " —  —

5500 RO 80 —  —  —

6000 illite 0 chlorite
6500 illite 0 chlorite
7000 illite 0 chiorite
8000 illite 0 chlorite
8500 illite 0 chiorite
9000 illite 0 chlorite
10500 illite 0 chlorite
11000 illite 0 chlorite

Sample # = depth below surface in feet. 
All samples are <0.5 micron size cut from cuttings.
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TABLE 5. MONTANA STATE PRISON WELL
Sample I/S orderinqr % Expandab i1i ty Accessory 

Minerals

100 RO 90 I
500 RO 90 I
1000 RO 90 I
1500 RO 90 I
2000 illite 0 Ch/K
2500 illite 0 Ch/K
3000 illite 0 Ch/K
3500 illite 0 Ch
3880 i11ite 0 Ch
4000 illite 0 Ch
4500 illite 0 Ch
4700 illite 0 Ch
5000 illite 0 Ch
5500 illite 0 Ch
6000 illite 0 Ch
6300 illite 0 Ch

I = illite, Ch/K = chlorite and/or kaolinite 
Ch = chlorite.
Sample # = depth below surface in feet.
All samples are <0.5 micron size cut from cuttings.



TABLE 6 .  HIRSHEY #1  WELL
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S a m p l e I/S ordering % Expandability Accessory 
Minerals

300 RO 100 I, Ch
2410 RO 100 I, Ch
3700 RO 100 I, Ch
4250 RO 100 I, Ch
5180 RO 100 I, Ch
5750 RO 100 I, Ch
6140 RO 100 I, Ch
6560 R1/R2 25 Ch
6970 R1/R2 30 Ch
7480 R1/R2 32 I , Ch
7810 R1/R2 32 Ch
8490 R3 12 — —
8710 R1/R2 23 Ch
9340 R1/R2 23 Ch
11440 R1/R2 12 Ch
12280 R1 20 Ch
13960 R3 10 Ch
14620 R3 5 Ch
14860 R3 5 Ch, R1
15790 R3 0 Ch, R1

I = illite. Ch = chlorite
Sample # = depth below surface in feet.
All samples are <0.5 micron size cut from cuttings.
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TABLE 7 .  HIRSHEY # 2  WELL (CUTTINGS)

S a m p l e I/S ordering- % Expandabi1ity Accessory 
Minerals

2000 RO 100 — —  —

2250 RO 50 "  ^  —

3000 RO 50 —  *
3400 RO 50 — — —

3750 RO 50
4500 RO 100 I, Ch
5400 RO 50 I, Ch
6200 RO 40 I, Ch
6600 R1 30 I , Ch
6900 R1/R2 30 Ch
7100 R1/R2 30 Ch
7300 R1 30 Ch
7500 R1/R2 30 Ch
7700 R1 28 Ch
8400 illite 0 Ch
8600 illite 0 Ch
8800 R1 20 Ch
11440 R1/R2 20 Ch
12280 R1 20 Ch
13000 R3 10 Ch

I = i11ite, Ch = chlorite. Sample # = depth below surfaci
feet. All samples are <0. 5 micron size cut from cutting

in



S a m p l e
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TABLE 8.' HIRSHEY »2 WELL, CORE <0.5 MICRON

I/S orderinqr % Expandability Accessory 
Minerals

6564 R1/R2 38 Ch
6565 R1/R2 40 Ch
7576 R1/R2 32 Ch
7589 R1/R2 25 Ch, Fsp
7590 R1/R2 35 Ch, Fsp
7889 R3 13 — — —

7890 R3 18 — —
7891 R3 13 Ch
7895 R3 20 Fsp
7896 R3 15 Fsp
7902 R3 10 Fsp
7902+ R3 10 — — —

7903 R3 12 —  — —

7919 R3 10 — — —
7920 R3 8 — — —
7928 R3 5 Fsp
7940 R3 13 Fsp
7941 R3 15 Fsp
7958 R3 15 — — —
9049 R3 <5 Fsp
10982 ser. + R1/R2 22 Ch, Fsp
10994 ser. + R1 32 Ch, Fsp
11000 ser. + R3 12 Ch, Fsp
11358 ser. + R3 16 Ch, Fsp
11362 ser. + R1 25 Ch, Fsp
11369 ser. + R1/R2 22 Ch, Fsp
11385 s er. + R1 15 Ch, Fsp
11393 s er. + R1 25 Ch, Fsp
11858 s er. + R1 25 Ch, Fsp
11873 ser. + R1/R2 25 Ch, Fsp
11874 ser. + R1/R2 30 Ch, Fsp
11883 ser. + R1 20 Ch, Fsp

Ch = chlorite, Fsp = 
ser. = sericite.

feldspar (plagioclase or K-feidspar

Sample # = depth below surface in feet.
See text for discussion of ser. + R 1 , ser. + R1/R2, and ser. 
+ R3 designations.
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TABLE 9 .  HIRSHEY » 2  WELL. CORE < 0 . 1  MICRON

S a m p l e I/S orderinqr % Expandability Accessory 
Mineral s

6564 R1/R2 50 Ch
6565 R1/R2 50 Ch, Fsp
7576 R1/R2 40 Ch
7589 R1/R2 32 Ch, Fsp
7590 R1/R2 35 Ch, Fsp
7889 R3 20 Fsp
7891 R3 20 Ch
7895 R1/R2 26 — — —

7896 R1 22 —  — —
7919 R3 10 — — —
7920 R3 12 — — -
7940 R3 20 — — —
7941 R3 15 — — —
7958 R3 18 Ch, Fsp
9049 ser. + R3 8 Fsp
10982 ser. + R1/R2 30 Ch, Fsp
10994 s er. + R1/R2 25 Ch, Fsp
11000 ser, + R1/R2 26 Ch
11358 ser. + R1 20 Ch, Fsp
11362 ser. + R1 27 Ch, Fsp
11369 ser. + R1 25 Ch, Fsp
11385 ser. + R1/R2 16 Ch, Fsp
11393 ser. + R1/R2 25 Ch, Fsp
11858 ser. + R1/R2 30 Ch
11873 ser. + R1/R2 30 Ch, Fsp
11874 s e r . + R1/R2 30 Ch, Fsp
11883 ser. + R1/R2 30 Ch, Fsp

Ch = 
ser. :

chlorite, Fsp ■ 
= sericite.

= feldspar (plagioclase or K-feldsp

Sample # = depth below surface in feet.
See text for discussion of ser. + R 3 , ser. + Rl/R2y and ser 
+ R1 designations.



TABLE 1 0 .  HIRSHEY # 2  CORE SAMPLES

11000 Ft

72

Size fraction. 
in microns.

Bracketed size fraction, 
in microns.

IllIte/smectite 
ordering and 
expandabi1itv.

< 2 . 0 ser. + R1 10 % exp.
< 1 .0 ser. + R1 7 % exp.
< 0. 1 R1 17 % exp.
< 0.05 R1/R2 30 % exp.
< 0.03 R1/R2 25 % exp.

1.0—2.0 ser. + R1 7 % exp.
0.5-1.0 ser. + R1 ? % exp.
0.1-0.5 ser. + R3 12 % exp.
0.05-0.1 R1/R2 25 % exp.
0.03-0.05 R1/R2 32 %
e xp.

Size fraction, 
in microns.

10982 Ft.

0
0
0

0
O
0

5
1
05

5
1
05

11874 Ft.

ser. + R1/R2 22 % exp 
ser. + R1/R2 30 % exp 
ser. + R1/R2 32 % exp

ser. + R1/R2 30 % exp 
ser. + R1/R2 30 % exp 
ser. + R1/R2 40 % exp

XRD results of different size fractions from single samples 
at 11000, 10982, and 11874 feet from the Hirshey #2 well.
See section on mineralogy of different size fractions from 
single samples, page 12 in text.
ser. = sericite coexisting with illite/smectite



T A B L E  1 1 .

Well Depth in ft. of 
1/S discont.

% Expand, 
above discont.

% Expand, 
below discont.

Change in % 
expand, at 
d i s c o n t .

Depth in ft. 
and type of 
un c o n f o r m i t y

Benson 570 0 - 6 0 0 0 100 50 50 5600, Rénova/ 
L o w land C r .

Arco 4 6 0 0 - 5 7 0 0 80 50 30 5000, Sixmile 
C r . /Renova

Lewis
Johnson 7 4 0 0 -9500 100 30 70 7350, Sixmile 

C r . /Renova
J acobson 5 5 0 0 -6000 80 0 80 5700, L o w ­

land Cr./ 
Cret. shale

Mo n tana
State
Prison

1500-2000 90 0 90

Hi r s h e y  
// 1 614 0 - 6 5 6 0 100 25 75
Hirshey 
Ü 2 2000-2250 100 50 50

Depth of I/S dis c o n t i n u i t i e s  in cuttings samples compared with percent expandability 
above and below each discontinuity, change in percent expandability at each discontinuity, 
and depth and type of u n c o nformity in the Benson, Arco, Lewis Johnson, and Jacobson wells 
(from McLeod, 1987).
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