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ABSTRACT

Goens, David W . , M.S., June 1979 Forestry

Forecasting Local Winds in a Forest Environment (63 pp.)

Director: Robert W. Steele

Accurate forecasts of wind flow patterns are required to 
adequately predict the behavior of fires in mountainous forested 
areas. The purpose of this work was to investigate forecast 
techniques for predicting wind flow patterns in these complex 
topographical situations,

Basic wind flow patterns are investigated and summarized. 
Atmospheric modeling and forecast techniques are reviewed, A 
specific low level wind predictive model is examined in depth and 
applied in an actual fire situation. Results are compared with 
forecasts generated by more conventional techniques.

Wind flow patterns in the steep, narrow, forested valleys of 
the study area were found to behave in nearly classical manner. 
Forecasts generated by the predictive model were inconsistent and 
compared poorly with those prepared with standard methods. It is 
concluded that an experienced forecaster can consistently produce 
more accurate forecasts than the predictive model examined in 
most complex small scale situations.
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Chapter 1 

INTRODUCTION

The air above and within the forest environment is constantly 

in motion. These motions can be defined as wind. Wind movements are a 

normal part of the natural environmental processes and can serve many 
useful functions. For example, winds aid in the pollination process by 

acting as a transporting agent, and seeds may be carried by the winds 

for great distances.

Just as pollination and regeneration are a part of the natural 

processes so is fire. It has been accepted that fire plays an impor­

tant ecological role in the development and maintenance of the forest 

of the Northern Rocky Mountains (Barrows 1951, Beaufait 1971, et al,). 

One of the primary elements in the spread of fire is wind. Wind deter­

mines the rate and direction of fire spread and is one of the most 

difficult meteorological parameters to forecast.

When the forest is located in a variable topographic situation, 

such as found in any mountainous area, the behavior of wind flow 

patterns become even more complex. In the lower atmosphere above all 

terrain influences winds behave in a fairly consistent and predictable 

manner. The free air movements above the friction layer influence the 

winds near the surface, especially during a sunny, hot summer or fall 
afternoon when there is turbulent or convective mixing of the lower 

atmosphere.



2

In order to make a meaningful prediction of the behavior of a 

fire, the fire manager must have accurate data on fuels, topography and 

weather. Information on fuels and topography can be considered a 

nonvariable as they can be determined through direct observation or 

measurement. Information on weather, and winds specifically, present a 

more difficult problem. Direct measurements of temperature, humidity, 

precipitation, and winds can be made. The problem arises in the 

ability to reliably forecast what these meteorological parameters will 

be during a fire in the next and future burning periods.

Another growing concern requiring the ability to predict winds 

near the surface of the earth is the maintenance of air quality. 

Everyone wants a clean atmosphere, not only for purely aesthetical 

reasons, but in many cases for reasons of public health. The smoke 
generated by a wildland fire will disperse in a manner which is 

dependent upon atmospheric stability and winds. Smoke generated by a 

wildfire may be tolerated by the public, but smoke from a prescribed 

fire may draw severe criticism. If we are to continue to burn by 

prescription we must be able to forecast the behavior of the smoke and 

burn only under those atmospheric conditions which will provide 

adequate dispersal.

Many methods of forecasting winds have been developed and 

tried. Some of these methods are primarily objective while others are 

totally subjective. Since the advent of modern computer technology the 

modeling of many natural processes has taken great strides. The 

ability of these systems to handle large and complex volumes of data in 

short time periods has opened new avenues in applied research. In this
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area numerous mathematical models have been developed to forecast wind 

flow patterns* Some of these models do a reliable job in certain 

situations. However, the models developed up to this time show 

greatest reliability in fairly uniform terrain situations. It seems 

only logical to assume that given enough time, a consistently accurate 

model will be refined or developed for use in complex terrain. Based 

upon this assumption, this study was undertaken*

Dr. Michael A* Fosberg, et al* (1976) of the U. S* Forest 

Service Research Laboratory at Ft. Collins, Colorado has developed a 

mathematical model which predicts the low level winds in various 

terrain situations. Dr* Fosberg has tested this model in western 

Oregon and reports promising results. The model had not been tested in 

the steep and rugged terrain of the Northern Rockies, therefore its 
applicability in these situations was still somewhat unknown.

Dr, Fosberg*s model, hereinafter referred to as the WINDS MODEL 

or MODEL, was selected for evaluation due to promising preliminary 

results. It was hoped that this particular model could be applied as a 

useful real time tool in complex terrain situations. However, the 

applicability of this study was not intended to be tied purely to 

Dr. Fosberg*s model. It is hoped the techniques used in this 

evaluation could be applied in testing any of the present or future 

computer generated models*



Chapter 2 

OBJECTIVES

The objectives of this study were as follows:

1, Review the flow patterns and forecasting techniques for 
local winds in the forest environment,

2, Assess the possibility of utilizing a computer generated 

wind forecasting model in a real time operational situation,

3, Assess the accuracy of the Fosberg WINDS MODEL:

a. Determine whether inputs for the WINDS MODEL can be 
standardized for a specific locale.

b. Assess the potential for using the WINDS MODEL to 

forecast smoke movement.



Chapter 3 

LITEEÎATURE REVIEW

Forecasting

The forecasting of winds in the lower atmosphere has always 

been a major problem for the operational forecaster. Efforts to 
describe the atmosphere and atmospheric processes have long been 

pursued. Early efforts were made by many of the great meteorologist 

and hydrodynamicist including von Helmhotz, Bjerknes, and Richardson 

(Hess 1959). Around 1910, Richardson began to explore the possibility 

of utilizing the complete set of five hydrodynamic equations to 

generate a forecast for the basic meteorological parameters. The data 

handling in itself was overwhelming by manual techniques and was one of 

the basic reasons that Richardson failed.
With the advent of modern computer technology modeling efforts 

have taken great strides. Since about 1948, the movement has pressed 

forward. Research in the late 1950's turned toward the utilization of 

the momentum equations, or as they are presently referred to, the 

"Primitive Equations (P.E,)" (Haltiner 1971). Only in the second half 

of the 1960's did computers become fast enough to permit the use of the 

Primitive Equation models in operational forecasting.

Wind forecasts generated by the Primitive Equation models are 

now being used operationally on a daily basis by the National Weather 

Service, Forecasts are generated twice daily based on the 0000 and
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1200 Greenwich Mean Time (GMT) upper level observation data. The 

problem with these forecasts are that they are made for the atmosphere 

at and above the friction layer. The problem that is being addressed 

in this work are the winds within the friction layer. Therefore the 
Primitive Equation Forecasts have limited use, but may be used as one 

of the input parameters for another more specific model.

The Primitive Equation Model and derived products from 

operational runs are described by Hess (1959), Haltiner (1971),

Badner (1972) and Ostby (1972).

More general descriptions of the character of the wind flow 

regime in the surface layer have been widely published. It is 

reasonably well understood and has been discussed in relationship to 
specific meteorological and physical variables, Petterssen (1956) 

outlines the behavior of winds in relationship to thunderstorms and 

squall lines as well as general characteristics of the wind field and 

frictional influences (also Byers, 1959). The dependence of winds and 

their relationship to temperature fields and ground cover has been 

discussed by Geiger (1950), Schroeder and Buck (1970), and Monteith 

(197 6).

As can be seen, the physical and dynamical characteristics of 

wind fields have been adequately described in all types of terrain 

situations. In addition, recent developments in atmospheric research 

and computer technology have led to reasonably accurate short term 

forecasting of wind fields above the friction layer. The behavior of 

the wind fields within the friction layer are a major forecasting 

problem. Each case must be examined individually and all the physical
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and dynamic variables weighed to produce an accurate forecast. In 
recent years there has been a considerable amount of research in 

developing models to forecast these winds. Fosbergs* (197 6)

"Estimating Airflow Patterns Over Complex Terrain" is one of the more 

sophisticated models yet developed, and was the one chosen for 

evaluation in this study, Liu, Mundkur, and Yocke (1974) reviewed a 

variety of models with primary interest toward the spread of fire in 

California brush fields. Included in their review was the early 

(pre-publication) work of Fosberg along with five other diagnostic 
models.

Low Level Wind Flow Patterns

Mountainous topography presents a significant barrier to free 

air flow patterns. The topography represents a roughness factor that 

effects the wind pattern in various ways. When vegetation is imposed 

upon the topography, even more modification occurs. These two factors 

represent complex variables to modeling atmospheric processes in the 

lower levels as well as point forecasting of wind fields.

Topography. Winds are both modified and generated by 

topographic features* Topography is one of the primary factors 

controlling both the direction and speed of the wind in mountainous 

regions. Winds may be funneled through narrow canyons and passes, 

causing an increase in the speed of the flow and dictating its 

direction. Figure 1 illustrates some of the modification effects of 

mountainous terrain.



Diverting

Passes
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Figure 1

Topographical Modifications 
of the Wind Flow
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Mountains not only act as barriers to the free air flow, but 

also have a direct effect on convective winds. Convective winds are 

formed on mountain slopes due to differential heating and cooling. 

Slopes that are oriented south and west receive more intense insolation 

during the middle and late portions of the day, but all aspects are 

effected. As the slope heats, air near the surface is warmed by 

conduction and rises by convection. Winds are generated as the warm 
air currents rise along the entire slope. After sundown, downslope 

winds are formed by similar dynamic processes and many times are a 

significant factor in transporting smoke or other pollutants.

The stability of the lower atmosphere is very important when 

considering any wind flow regime. Under unstable conditions, winds in 

the free air above the friction layer can be mixed downward to the 

surface. In mountainous areas this may cause a reinforcement of the 

normally occuring afternoon upslope winds, or it might possibly 

counteract the slope winds depending on slope orientation and the 

direction of the free air flow. The stability factor must be 

considered when constructing any type of wind model or wind forecasting 

technique,

Vegetation. All vegetation is a part of the friction layer 

which determine how the winds will blow near the surface. The effect 

of vegetation is controlled by its relative height and density. Since 

this study was conducted in a northern Rocky Mountain coniferous 

forest, comments will be restricted to effects relating to this type 

of vegetative cover.
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As air flows over and through a canopy, both the velocity and 

direction of flow will be modified. The degree of velocity reduction 

will be a function of tree spacing, tree height, canopy density, and 

understory composition (Cooper 1965 and Bergen 1974). Gisborne (1941) 

developed wind profiles for different canopy densities and heights (see 
Figure 2), The general pattern observed by researchers has been, as

ft.

80
60
40
20

0 2 4 6 8 mph
Figure 2

Dense Conifer Forest 
with Understory 
(Gisborne 1941)

one would expect, a reduction in the wind speed from the top of the 

canopy down. In fairly open stands, a definite sub-canopy maximum has 

been observed (note Figure 3, Bergen 1971). Trying to determine the 

amount of reduction within and below the canopy has been quite 
difficult. Baker (1950) stated that reductions of one third to one 

half of the free air wind, or winds in the open, could be expected.

The amount of speed reduction is nearly impossible to quantify due to 

the tremendous point to point environmental variability. How much the 

wind speed is reduced on a specific forested site depends on the
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detailed structure of the stand and the wind speed above the canopy. 

The relative drag of any frictional surface is much greater at high 

wind speeds than at low wind speeds (Schroeder 1970), At low wind 

speeds, the winds may be reduced by 30 percent to 40 percent, while 
with high wind speeds the reduction may be as great as 70 percent to 

80 percent. This reduction again would vary with species, stocking 

level, height of canopy, etc.

40-

1 ive 
foliage

dead
branches

2010
scaled wind speed

Figure 3

Wind Profile in a Conifer Stand 
Without Understory (Bergen 1971)

Differences in microsite cause variabilities in the wind speed 

Stand density and color will effect local heating and stability 

regimes, and therefore the local winds. Winds may be generated on 

slopes which are either timbered or open. On densely timbered slopes
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with closed canopies, the upslope wind will be strongest just above the 
canopy, while on open slopes the wind maximum will be felt three to 

four feet above the surface.

Local heating will cause instability, and this instability will 

allow free air winds above the surface to be mixed downward. The 

mixing within the tree canopy has been investigated (Bergen 1974), but 

no reliable results obtained. This is to be expected since the canopy 

is sufficiently porous to retard and dissipate sub-canopy heat, thereby 

preventing unstable lapse rates from developing from the surface 
through the canopy.

The problem of determining exact wind speeds through the canopy 

level has not been completely resolved. Standard instrumentation for 

official reporting sites demand that winds be measured at the 20-foot 

(6-meter) level (Fischer and Hardy 1972). This means that the winds 

will be measured (and forecast) at 20 feet above the surface effects in 

order to compensate for uneven ground cover. For example, in a mature, 

dense forest environment with a closed canopy and average tree height 
of 80 feet, the winds are supposed to be measured at the 100-foot 

level. This is obviously an unreasonable situation if a fire is 

burning in the understory with strong winds above.

A number of methods have been proposed to resolve the winds 

through the canopy. Cooper (1965) and later O'Dell (1975) suggested 

two separate and very different techniques, neither of which worked 

reliably or consistently. In 1978, Albini and Baughman proposed a 

technique for resolving this problem (see Appendix 2) which has been
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accepted at this time for use in national fire behavior predictions 

curriculumSe This system was used to resolve the wind fields through 

the canopy for this study.



Chapter 4 

STUDY AREA

The study was conducted on the 7,460-acre (3,019 ha) Coram 

Experimental Forest, on the Flathead National Forest, Flathead County, 

in northwestern Montana (Figure 4). This area was logged in 1974, 

under an intensive management plan with a variety of logging techniques 

Six blocks, consisting of two clearcuts (14 and 17 acres; 5.7 and 6,9 
ha), two shelterwoods (35 and 22 acres; 14.2 and 8,9 ha), and two sets 

of eight small clearcuts (average 0.8-acre; 0.3 ha) were logged with 

resulting residue treated under four different standards. In 1975, 
this study was conducted in conjunction with the prescribed burning of 

these logged areas. The burning prescriptions are outlined by Norum

(1975) and related studies were conducted by Steele (1975), and Artley
(1976).

The timber type in the study area is predominantly old growth 

larch (Larix occidentalis) and Douglas-fir (Pseudotsuga menziesii). 

Associated species include subalpine fir (Abies lasiocarpa) and 

Engelmann spruce (Picea englemannii).

The topography of the study area is quite steep with slopes 

ranging from 30 to 80 percent (17^ to 39°). The ridges are mostly 

oriented north and south with the study area primarily on the east 

facing slope, Ridgetop elevations vary from approximately 5,500 feet 

(1,676 m) on the north to 4,600 feet (1,402 m) on the south. The

14
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1 ^ CORÀM '
L EXPERIMENTAL
V- » FOREST

MISSOULA

Location:
Northwestern Montana, U.S.A 
48° 23* N 113° 58* W
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Figure 4

Study Area with Observation Sites Noted

11
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bottom of the major drainage (Abbot Creek) varies from 4,700 feet 

(1,433 m) on the north to 3,900 feet (1,189 m) on the south. The 

highest point in the immediate area is Desert Mountain, elevation 6,436 
feet (1,962 m ) , approximately 1^ miles (2% km) north-northeast of the 

study site.
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METHODS

Verification Data
Data for verification and validation was collected at 

established observation sites during the period when prescribed burning 

took place. The study area was sectioned using a one quarter-mile 

(0,4 km) grid. Thirteen observation sites were selected at locations 

chosen to give a representative sample of data through a variety of 

exposures (see Figure 5), and to coincide as closely as possible with 
existing grid points. Considerations of accessibility were a major 

factor in site selection due to the limitations of manpower and equip­

ment. However, care was taken so as not to knowingly create any bias 

in the verification data due to unique site characteristics. Appendix 

3 gives a point-by-point description of the observation sites. 

Observation of meteorological elements were taken at least hourly from 

midday through the period of active burning each day. Temperature and 

humidity data were collected using sling psychrometers. Wind speed was 
taken with hand-held anemometers and wind direction determined with a 

compass.

Temperatures were observed to the nearest Wind speeds

were recorded as two-minute averages, and directions estimated to the 

nearest point on a 16-point compass, i.e., north, north-northeast, 

northeast, east-northeast, etc.

17
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Observations of the meteorological elements (wind speed and 

direction, temperature, and humidity) were collected for the thirteen 

observation sites by four separate observers. All of the observers 
received instructions on the proper techniques of observing and 

recording the data. There was an average of five observations taken at 

each site on every one of the six project days. In order to use the 

data for verification purposes, each of the elements had to be 

individually averaged for each site on each day. Wind speed was 

averaged over the period of observation, but emphasis was placed on 

those observations taken during the period of the afternoon when 

convective mixing was the greatest. Wind directions and temperatures 

were similarly recorded and weighted.
Since wind measurements were taken at eye level, or 

approximately 4,5 feet (1.4 m), it was necessary to adjust these 

readings to a standard exposure height. This was necessary to verify 

the WINDS MODEL forecast because this is the level of the MODEL 

forecasts. Since observations sites varied from nearly open to closed- 

dense timber stands, the height adjustments to reach the 20-foot 

(6-meter) standard level were necessarily variable. The technique used 

to adjust the wind readings is outlined in Appendix 2, A summary of 
the observed and the observed-adjusted data used for verification is 

found in Appendices 4 and 5.

A portable radiosonde unit was used to take atmospheric 

soundings of temperature, moisture, and winds during the early morning 

of each burning day. The runs were taken to a minimum of 400 millibars 

(about 24,000 feet, 7,3 km). This radiosonde unit was located at the
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Coram Work Center approximately two miles (3,3 km) west of the study 

area, and the soundings were taken from this site (Figures 6 and 7),

Pilot balloon observations (PIBALS) were taken in conjunction 

with the daily radiosonde runs. This was done so that upper air wind 

data through the lower 12,000 feet (3.7 km) of the atmosphere would be 
available for planning, daily forecasting, and preliminary input data 

for WINDS MODEL calculations.

Data was also drawn from the National Weather Service regular 

network of surface and upper air observations. This network provided 

cross reference for observed surface data. Further, the upper air 

soundings from Great Falls, Montana and Spokane, Washington were used 

to make first estimates of potential temperature, stability, and upper 

level winds. These parameters were used for initial inputs during the 
operational feasibility portion of the study.

Time lapse cameras were located at preselected points to 

observe fire characteristics as well as smoke column development and 

behavior. Winds estimated from smoke column behavior were useful in 

evaluating actual free air winds during the burning periods.

Information and data for real time forecasts was secured 

through communications and neteorological monitoring equipment 

contained in a "Fire Weather Mobile Unit" (Figure 8), This unit was 

located at the Coram Work Center and included:

1. Surface winds equipment (speed and direction),

2. Hygrothermograph (temperature and humidity),

3. Single sideband radio (voice and data link),

4. Radio facsimile receiver (weather maps and charts).
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Figure 6 

Radiosonde Monitoring Unit

1

Figure 7 

Radiosonde Release
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7

Figure 8 

Mobile Weather Unit

WINDS MODEL Forecasts

Data from the WINDS MODEL was collected in two separate 

sequences. The first set of data was not intended for MODEL 

validation, but rather to see if all of the necessary inputs could be 

collected and run in a real time situation. Figure 9 is a data flow 

chart depicting the sequence of data collection in the field, its relay 

to the computer hardware, and return to the field. Inputs for this run 

were preloaded as much as possible with all constant parameters (i.e., 

elevations of grid points, roughness lengths, latitude, etc.).
After returning from the field, reduction, refinement, and 

manipulation of input parameters was begun* The radiosonde runs taken 
at Coram were reduced utilizing a program on hand at the Northern 

Forest Fire Lab, Missoula,
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GREAT FALLS SPOKANE
CORAM AREA UPPER AIR UPPER AIR CORAM

SURFACE DATA DATA DATA PIBALI

BACKGROUND
DATA

WINDS MODEL 
PROGRAM

MOBILE UNIT 
FORECASTER

BERKLEY
COMPUTER

FORECAST
OUTPUT

Figure 9

Data Flow Chart for WINDS MODEL 
Field Evaluation

The input parameters for the initial WINDS MODEL calculations 

were derived by examining the upper air soundings from Spokane, 

Washington and Great Falls, Montana, By airmass comparisons and 

existing weather conditions, estimates for the local environmental 

lapse rates, winds, and the temperature field could be made. After the 

Coram soundings were reduced, the following were noted:

1. The wind fields in the levels from 7,000-10,000 feet MSL 

were very consistent between Coram Radiosonde, Coram PIBAL and the two 

soundings from Spokane and Great Falls. The 6,000-foot and below winds
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were not consistent, as expected, due to terrain influence,

2, The temperature fields above 850 mb in the three soundings 
were reasonably consistent.

3. The stability parameters computed were somewhat variable. 

This can be explained through examination of the calculation process. 

The height and temperature of the 850 mb surface is one of the prime 

inputs. This level is very near the surface at Coram and reasonably 

close at Great Falls. There was a fairly wide variance in the values 
for this level, which explains the difference in the calculated 

stability parameter. For the final MODEL calculation the stability 

data determined from the COEIAM soundings was used.

Grid Spacings

In order to use the WINDS MODEL at any location, the underlying 

terrain must be described. This is done by superimposing a grid over 

the terrain and reading off elevations at each grid point, Fosberg 

recommends grid spacing of one Km (0.6-mile) or greater, tied of course 

to the complexity and relief variations in the terrain. Fosberg 

suggests that 500 m (0.3-mile) is probably the minimum grid spacing the 

MODEL will handle properly. Upon examination of the terrain of the 

Coram Experiemental Forest it was found that the one Km (0.6-mile) grid 

spacing would not adequately describe the topography of this area.

Since one of the prime objectives was to describe wind fields in this 

complex terrain, it was determined that smaller grid intervals would be 

used even though it would be forcing the MODEL. Consequently, a grid 

interval of one quarter-mile (402 m) was established. No evaluations
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were made at any greater grid intervals since it would not meet with 

the overall objectives.

Level Selections
The selection of the MODEL input levels was guided by 

recommendations from Fosberg, and by trial and error. Fosberg suggests 

that the top o-f the "rigid lid" should normally be expected to be 

1,500-2,000 m (3,000-6,500 feet) above the smoothed terrain. This was 

accepted and used. The "shallow layer" was suggested as 1,25 times the 

difference between the smoothed and actual terrain. This was also 

accepted. The reference wind levels were picked through trial and 
error. Any winds from the 8,000-foot (2,438 m) MSL level and above 

gave wind fields that were consistently too strong. Winds below 6,000 

feet (1,828 m) were too close to the actual terrain influences and gave 

inconsistent results. The 6,000 and 7,000 feet (1,828 and 2,133 m) MSL 

levels gave the most consistently accurate results so further 

investigations were limited to those levels.

In order to gain more experience with the WINDS MODEL two other 

areas were selected and MODEL forecasts run. One of these areas was 

McCauley Butte on the southwest edge of Missoula, and the other was 

along the east slopes of the Continental Divide near Helena, Montana, 

Results from these runs were consistent with those found with the Coram 

data.

Data output from MODEL calculations came in the form of a 

computer printout with wind speeds in meters per second. In order to 

more fully utilize the outputs, selected points were plotted on a 

topographic map and wind fields analyzed with streamline techniques
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(Figure 10), Wind speed values were converted to miles per hour since 

these are the units used in the standard fire behavior predictions 
system.

Standard Forecasts

The National Weather Service Fire Weather Forecast Branch has 

the responsibility for providing specialized forecasts to all land 

management agencies in the United States. To provide this service, 

specially trained meteorologists are stationed throughout the country. 

These meteorologists are specialists in mountain meteorology and 

microscale forecasting. Although forecasting is considered a science, 

wide variations in forecasts and forecasters can be attributed to 

experience primarily, however forecasting is recognized as being nearly 

as much an art as it is a science. The author is one of these National 

Weather Service Fire Weather Forecasters and was responsible for the 

forecasts generated for the Coram project. The forecasts were prepared 

as objectively and scientifically as possible with no emphasis or 

thought given to trying to "beat" the MODEL,

The forecasts prepared followed the standard format for 

specialized fire weather products. Forecasts for prescribed fire 

situations normally show a shift in emphasis toward the critical 

burning parameters and special emphasis is placed on temperature and 

winds at planned time of ignition.

The forecasts for the local winds were prepared by considering 

a variety of data. Winds in the lower levels of the atmosphere as 

recorded on the morning PIBAL run and stability as calculated from 

mountain-valley wind regime all were prime inputs to the forecasts, A
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sample forecast is shown on the following two pages.

On the ground examination of the microsite conditions helped 

familiarize the meteorologist with physical characteristics that could 

have an effect on the wind regime. The daily record of observations 

from each site was examined as persistence had been found to be an 

extremely good guide in many cases.

Equipment in the Weather Mobile Unit provided complete forecast 

guidance information in the form of prognostic weather charts and 

interpretive discussions from the state and national forecast offices. 

All of this data was compiled and integrated with the forecasters 

personal experience to produce the daily forecasts. It is recognized 

that the information provided by these techniques is somewhat 

individualized. However, basic dynamical and physical processes were 

considered in producing every forecast. These forecasts were later 

checked by other qualified forecasters and no significant or 
unreasonable bias was discovered. Therefore, it was felt that these 

forecasts were justified as ’’Standard Forecasts," logically prepared 

and on par with what could normally be expected.
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NOAA Weather Service 
FCSTR: Dave Goens
Mont, State Mobile Unit 
At Coram Work Center

Sep. 10, 1975 
Forecast #3 
Coram Exp, Burns 
Released at 0930MDT

Discussion,..
Cold air is plunging southward into eastern Montana today.

This is in response to the upper ridge pushing north into the Gulf of 
Alaska, allowing the colder Canadian air to move southward with the 
northerly flow aloft. The airmass continues quite dry, so precipita­
tion risk remains negligible. As the cold air drives the pressures up 
today in Eastern Montana, there will be some spilling of the cooler air 
into Western Montana tonight and Thursday. Cooler temperatures and an 
increase in winds are in the offing.,,Our problem is, how much wind,,.

Today,,, Sunny and warm. Max temp at burn site 73, Min humidity 
35%,,,Winds light upslope 3-6MPH till 1600, then light 
downslope. See Forecast supplement for more detailed wind 
forecast.

Tonight... Fair and cool. Good humidity recovery. Winds generally
light, except chance of increasing ridgetop winds by sunrise 
...These winds will be northerly to northeasterly 5-15MPH,

Thursday.,,Cooler with max temp near 62, humidities a little higher.
Winds in the free air above the ridgetops north to north­
easterly 10-15MPH, On the surface at the head of the Abbot 
Creek drainage the wind will be variable in direction with 
max speed 10-15MPH, Lower in the drainage they will be 
lighter...8-12MPH mostly upslope during the afternoon.

Ventilation will be good today, poor again this evening.

Outlook for Friday and Saturday.,,Cool and dry with decreasing winds.
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Chapter 6 

DATA EVALUATION

Limits of Accuracy

In this section the accuracy of the forecasts generated both by 

the model and standard techniques will be discussed. Before proceeding 

it appears necessary to define limits of accuracy by which outputs will 

be evaluated.

Since the concentration of concern in this work is the 

prediction of winds for use in fire control and management then the 

limits of error in forecasting should be governed by consideration of 
wind generated fire behavior characteristics. Specifically, how does 

the speed and direction of wind influence the character of fire spread? 

How much error is too much? First of all the impact of directional 

error will be discussed.

Since fire will normally spread in the direction the wind is 

blowing it is imperative that this direction be known. An error in 

direction as little as 90 degrees can be critical regarding safety of 

line personnel and placement of resources. In prescribed fire, an 
error of as little as 30 degrees can mean that the fire has escaped 

prescription. Personnel on the ground can normally check the forecast 

based on what is observed, but in the pre-planning process this modifi­

cation can not always be anticipated. Therefore in this study the 

error in the direction parameter is considered critical when it exceeds
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three compass points (16-point compass). This value represents an 

error of 67.5 degrees. This is more than is usually permissable in 

"real world" situations, but allows for some on site adjustments.

Wind speed is extremely critical in the behavior of fire, 

especially as far as fire intensity and rate of spread are concerned. 

This can be seen quite readily by looking at the effects of winds of 

different velocity in a given fire situation. Albini (1976) outlines a 
technique for predicting fire spread and intensity. Using this 

technique it can be illustrated that a change in the wind speed of 

three to six mph in a constant fuel/topography situation can result in 

a change in rate of spread on the order of 250 percent and burning 

intensity of over 300 percent. Based on a series of calculations of 

this nature, it was decided that an error of three to six mph would be 

critical for wind speed predictions.

Accuracy of WINDS MODEL
Daily WIND MODEL forecasts for both Run #1 and Run #2 show a 

high degree of variability. Results of both runs were tabulated and a 

summary can be found in Table 1. A more complete listing of WINDS 

MODEL forecast for all observation sites can be found in Appendix 4,

To more completely understand the MODEL forecasts it is necessary to 

look not only at averaged error but also at some of the specific daily 

point forecasts. This first section will deal with numerical 

verification, and in a later section some interpretative verification 

of specific daily forecasts will be discussed.
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Run #1. Primary input wind for Run #1 was taken from the

6.000-foot (1,829 m) level. Other input data were held constant as 

noted previously.

Adjusted observed winds show a wide range from calm upwards to 

nearly 20 mph (9 mps), For all 13 sites on all six days only 18 
percent of the WINDS MODEL forecasts fell into the three mph or less 

"Hit” category, and 32 percent fell into the six mph or less category.

The MODEL results show a positive bias on five of the six days. 

In other words, the MODEL forecast winds that were too strong those 

five days - on the other day, there was a negative bias.

Wind direction MODEL forecasts were accurate to within three 

compass points or less nearly 63 percent of the time. Three of the six 

days show very good accuracy (82 percent) while the other three are 

relatively poor.

Run #2. Primary input wind for Run #2 was taken from the

7.000-foot (2,134 m) level with other input values held constant as 

before.

The accuracy of Run #2 was again compared with the control data,

that is the adjusted observed wind data. For all sites on all days

MODEL speed outputs fell into the three mph or less category only 

22 percent of the time; into the six mph or less category 39 percent of 
the time.

The MODEL again consistently over forecast wind speeds. On

five of the six days a positive bias was observed, while on the other

day the bias was negative. On one of the days that the MODEL grossly 

over forecast the wind, a weather pattern produced some erratic burning
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Run #1

Table 1 

MODEL Forecasts

Wind Speed Error* Wind Direction Error*
Day H M B H B
1 1 3 9 10 32 4 1 8 6 7
3 7 4 2 5 8
4 0 0 11 6 5
5 0 1 10 9 0
6 1 1 9 8 3

13 10 49 44 26
% H = 18% %H = 63%
% H+M = 32%
% M = 68%

Run #2
Wind Speed Error* Wind Direction Error*Day H M B H B

1 0 0 13 8 32 4 4 5 7 5
3 3 0 10 9 5
4 0 0 11 7 4
5 4 4 3 9 36 5 4 2 9 2

16 12 44 49 22
% H = 22% % H = 69%
% H+M = 39%
% B = 61%

* H = Hit, wind speed error zero to three mph , direction error

less than or equal to three compass points.

M! = Marginal hit, wind speed error four to six mph.

B = Bust, wind speed error greater than six mph, direction

error greater than three compass points.
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conditions which will be discussed in more detail in the last section 

of this chapter*

Wind direction MODEL forecasts were accurate to within three 

compass points 69 percent of the time. Once again, on three of the 

days direction forecasts were reasonably good.

Accuracy of Standard Forecasts
Standard technique forecasts were issued twice daily. The 

primary forecast was issued in the morning between 0900 MDT and 0930 

MDT, An example of this forecast is found in the previous chapter 

(pages 29 and 30). In general the standard forecast shows more 

consistency. Forecasts were made for a midflame height, or approxi­

mately four feet (1.2 m), This was done because the wind observations 

were being taken at that height. In addition, the fire prescription 

called for low intensity burns, confined beneath the canopy in the 

shelterwoods, and to flame lengths less than eight feet in the 

clearcuts. This allowed midflame height winds to be around the four- 

foot level. Verification was thereby simplified since the winds did 

not have to be resolved through the canopy.

Standard forecasts were accurate to within three mph 81 percent 

of the time and were accurate to within six mph 99 percent of the time. 

The overall bias was positive as forecast wind speeds were consistently 

slightly higher than the actual wind speeds observed.

Wind direction forecasts were also quite good. Wind directions 

were forecast to within three compass points 93 percent of the time.

The last three days verification show that wind directions were 

forecast correct to within three compass points 100 percent of the time
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and this is a trend that should normally be expected. As a forecaster 

becomes familiar with a given area and the behavior of the local wind 

regime, wind direction forecasts should become better,

A summary of verification results for standard forecasts is 

shown in Table 2, and complete verification results are shown in 
Appendix 5.

Table 2 

Standard Forecasts

Day Wind
H

Speed
M

Error
B

Direction
H

Error
M

1 10 3 0 9 2

2 11 2 0 10 2

3 13 0 0 12 1
4 7 3 1 11 0
5 8 3 0 9 0
6 9 2 0 11 0

% H =' 81% % H = 93%

% (H+M) - 99%

7o B = 1%

sion of WINDS MODEL Versus standard Forecasts

In the prediction of fire behavior it becomes necessary for 
someone to interpret the elements of the forecast. If the forecast 

comes in the form of a computer printout, that data must be transferred 

to a more usable format. In the case of the WINDS MODEL output, the 

data was plotted on a topographic background map.
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In plotting the WINDS MODEL data some very interesting results 

were noted. In cases where upper level winds were light, less than 

seven mph (3 mps), forecast speeds and directions were quite reasonable. 

The resultant wind fields conformed well with expected upslope/down- 

slope regimes and speeds were within acceptable limits. A plotted 

MODEL forecast wind field with a streamline analysis is shown in 

Figure 10.
Whenever upper level winds became stronger and exceeded nine 

mph (4 mps) the results from the WINDS MODEL became suspect and 

verification was poor. In a majority of cases, the surface level winds 

were forecast to be much stronger than observed, but just as seriously, 

the direction component was predominately the same as that of the upper 

flow. Since this was contrary to what was observed, the implications 

for fire management and/or control are potentially grave. Had this 

been an active "going” fire situation and this forecast used to 

position manpower and resources, the potential for serious loss would 

be great.

The handling of the worst case situation by the model led to 

further questioning of the reliability of the system. On that day, 

September 11th, the weather pattern changed. A frontal system moved 

through the project area from the northeast, upper level winds shifted 

from the northwest to easterly, and the lower levels of the atmosphere 

became quite unstable. In this situation, the model magnified the 

upper level winds and forced them downward into the narrow drainages 

and totally overpowered the slope wind effect. This was totally 

contrary to what was actually observed and forecast speeds at all
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elevations were unrealistically strong.

Inherent in this model is the assumption that advection terms 

are ignored. This means that all elements considered in calculations 
are confined within the model boundaries, and anything outside those 

finite boundaries is ignored. This implies that the MODEL should 

handle steady state conditions best, and that outputs near the upstream 

boundary are necessarily questionable, A serious deficiency in this 

situation is that any movement of weather systems (fronts, squall lines, 

etc.) outside the model boundaries are not considered. In the Northern 

Rocky Mountains, fast moving systems are common during the normal fire 

season, and many times are responsible for major conflagrations. It 

would seem reasonable to expect a dependable forecast scheme to have 

the capability to predict at least some potential for longer range 

effects. However, it appears this particular model is deficient in 

this regard.

Forecasts generated by the on-site meteorologist were 

significantly more useful than the model forecasts. The winds were 

forecast not only in the general sense but were tailored for specific 

sites and times, A forecast wind flow chart was prepared daily to give 

fire management officials a more specific picture of expected micro­

scale winds. This chart proved quite useful in preparing detailed fire 

behavior predictions and helped later during the verification process. 

On the worst case day (September 11th), the standard forecast also had 

its worst day for verification purposes. The wind speeds were over­

forecast, although not nearly as badly as the MODEL (64 percent hit 

versus 0 percent), but direction forecasts verified 100 percent (versus
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60 percent for the MODEL).

In summary, it seems that the WINDS MODEL predictions were most 
accurate in noncritical, light winds situations that required a minimum 

of interpretation. Standard forecast had greater flexibility and 

tended to handle the full spectrum of situations with greater 

reliability.



Chapter 7 

CONCLUSIONS

In summarizing the results of this study, the objectives will 
be reviewed and specific conclusions drawn.

Objective I

Wind flow patterns in complex, forested terrain environments 

are controlled by many variables. Wind patterns can be generalized 

into slope and valley winds and effects of terrain such as channeling 

and blocking can be identified. Microsite influences are sometimes 

difficult to predict and can best be determined by on-site observations. 
Specific flow patterns in most situations are adequately described in 

the literature.

Forecast schemes for predicting wind patterns in these areas 

are limited. Generalized forecasts for the free air above the 

frictional influence of the terrain are available regularly by computer 

generated products. Wind flow patterns within the friction layer are 

dependent on data availability and individual forecaster experience.

Objective 2

This study demonstrated that it is possible to use a computer 

generated forecast model in a real time operational situation. It 

became apparent that for a MODEL as complicated as the one evaluated to 

be useful the inputs would have to be preloaded and ready before the

40
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operational situation occurred. The input data is very detailed and 

describes some very complex atmospheric interactions. The user must 

have a broad scientific background with some specific working knowledge 

of forestry, mathematics, and meteorology to adequately handle all 

input variables. People with this type of knowledge are not normally 
found in the field as working resource managers. This means that the 

usefulness of the MODEL is probably limited, and its applicability in 

the average fire situation is not realistic at this time.

Objective 3

Although the WINDS MODEL appears to have promise in certain 

terrain situations, its usefulness in complex terrain situations is in 

doubt,
Through trial and error and judicious selection of input data, 

the WINDS MODEL can produce forecasts, but of only marginally 

acceptable accuracy. It was found that it could not consistantly 

produce accurate forecasts in all situations (variable meteorological 

conditions). It was found that the inputs could be standardized if 

meteorological elements were stagnant. In changing weather conditions 

the MODEL performed poorly. It was felt that this was probably due to 

boundary conditions and the grid spacing. The MODEL was asked to 

perform in a resolution mode that was near its limit. However, this 
resolution (%-mile grid) is required to adequately describe many 

complex terrain situations.

Smoke generated by the Coram fires dispersed well. Most fires 

burned actively with a well developed convective column which carried 

the smoke upward into the free air flow. Residual smoke was minimal
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and behaved as expected, flowing downs1ope/downcanyon in the late 
afternoon and into the night. The WINDS MODEL forecast for the 

afternoon was unusable for smoke movement since most smoke was carried 

aloft above surface wind influence. The late afternoon WINDS MODEL 

forecast indicated normal downslope/downcanyon flow and the smoke moved 

accordingly. Although the MODEL was accurate in this sense, it was of 

limited usefulness since this movement was easily predicted by standard 

techniques and/or local experience.



Chapter 8

SUMMARY

The forecasting of wind flow patterns in forest environments 

remains a difficult problem* Great strides in computer modeling of 

wind fields have been made in the past few years* These models do a 

good job in certain terrain situations, and poorly in others. It is 

necessary to recognize the limitations of these systems and not expect 

a specific model to perform beyond its capabilities.

It appears as if the on-site meteorologist can consistently 

produce a better site specific forecast at this time. His value is 
further enhanced when his interpretive capabilities are considered.
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APPENDIX 1 

The Fosberg WINDS MODEL

Structure

The Fosberg WINDS MODEL was derived through a simplification of 
the fundamental Navier-Stokes flow equation. The simplification 

resulted in a one-layer model of atmospheric boundary layer flow, and 

Its development was directed for use in complex terrain. In general, 
the model is based on terrain induced flow, thermally induced flow, 

and frictionally induced flow.

In the development of the model, advection terms were neglected. 

This greatly simplifies the mathematics, but a complete description of 

the dynamical processes is lost. The terrain, thermally and 

frictionally induced flow were superimposed on a background flow across 

the computational boundaries. Each of these disturbances were assumed 

to take place only within the computational area and were allowed to 

act only over a small finite time interval. Flow following the ground 

surface was obtained by a coordinate transform. A rigid upper surface 

above the terrain was assumed in order to define the top of the 

atmospheric slab.

Procedures for solution of the equations involve serial 

approximations which superimpose a new physical effect on the previous 

solution. The first step in the solution was to transfer the large 

scale background wind into a terrain-induced modification of the 

throughflow. This step provided a local throughflow wind. Next, 

thermal and frictional modifications of the vorticity and divergence 

were introduced. These changes were superimposed on the terrain
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induced flow. Finally, stream functions and velocity potentials were 

calculated so that wind speed and direction could be defined at all 

Interior points.

Data Required

The study area must be described by a grid point system. The 

grid scale may be varied with minimum desirable grid spacing of 500 

meters. For each computational or grid point, the model requires 

temperature, pressure, elevation, and roughness length. Several single 

valued coefficients are required to complete the model. Most important 

are the static stability and the large scale wind speed and direction. 

Less Important coefficients are the eddy viscosity, the latitude, and 
the large scale vorticity if strong curvature exists in the large scale 

flow pattern.

Output from the model is simply a vector wind (speed and 

direction) at the six-meter height above the roughness length parameter 

for each computational grid point.
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APPENDIX 2

Albini and Baughman Wind Reduction Procedure

Midflame Wind

Midflame wind speed is estimated from the 20-foot wind, the 

nature of the canopy or lack of one, and the topography. The 

accompanying wind reduction table (20' wind speed to midflame wind 

speed) is provided for this purpose.

Wind flowing near the ground is slowed by friction caused by 

roughness of the surface. The nature of the wind reduction has been 
studied for many years, Frank Albini and Bob Baughman at the Northern 

Forest Fire Laboratory have developed a method of estimating the 

midflame wind speed based on the depth of the fuel bed and whether or 

not there is a canopy sheltering the fuel. In general, fuels without 

an overstory canopy can be considered exposed. Fuels beneath a canopy 

may still be considered exposed if the force of the wind can penetrate 

the canopy from an edge rather than as a result of wind shear from 

above the canopy. If the needles of the canopy have been burned away 

by a crown fire, this can change a sheltered situation into an exposed 

one. Hardwood standard with fallen leaves should be considered to have 

exposed surface fuels.

Exposed fuels. Use the upper portion of wind reduction table 

to determine the midflame wind.

Sheltered fuels:

1, Daytime or heating conditions use the lower portion of the 

wind reduction table to determine the midflame wind speed.
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2* Nighttime or cooling conditions for fuels sheltered from 
the wind.

a. Use the lower portion of the wind reduction table to 

determine the midflame wind speed expected from the 20-foot general 

wind component.

b. Combine this midflame value with the downslope midflame 

value. If they are both in the same direction, add them together. If 

the general wind component is upslope, take the difference between them.

Thunderstorms

If thunderstorms are forecast with an expected wind speed, 

different procedures will have to be used for estimating midflame wind 

speed. The direction of thunderstorm winds is very unpredictable. An 

estimate of their effect upon rate of spread and intensity can be made, 

but reliable predictions of fire growth is probably not possible.

Strong winds are caused by downdrafts that strike the earth, turn and 

travel sideways.

Estimate the midflame wind speed as the average value between 

the forecast speed and the midflame value from the upper portion of the 

wind reduction table.

Example. If winds of 25 to 30 mph are forecast, the upper 

table for fuel Model 2 gives 10 mph. The average between 10 and 25 to 

30 is about 18 mph. The expected time that these winds will last is 

generally short. Use local experience to make that estimate.
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(20* Wind Speed to Midflame Wind Speed)
Fuels under sparse trees or timber fuels directly exposed to 

wind; include thermal winds in 20 ft. estimate.

20-ft. wind - 0-3 4-7 8-12 13-18 19-24 25-31 32-38 40 up
Fue1 Mode1

1 1 2 4 6 8 10 13 16
*2 1 2 4 6 8 10 13 16
3 1 2 4 7 10 12 15 19
4 1 3 6 8 12 15 19 24
5 1 2 4 6 9 12 15 18
6 1 2 4 7 10 12 15 19

*7 1 2 4 7 10 12 15 19
*8 1 2 4 6 8 10 13 16*9 1 2 4 6 8 10 13 16

*10 1 2 4 6 8 10 13 16
11 1 2 4 6 8 10 13 16
12 1 2 4 7 9 12 15 18
13 1 2 5 7 10 13 16 20

*Fuels often sheltered from wind by canopy cover.
Downslope winds beneath canopy must be superimposed upon midflame
wind speeds given below

Shade Open ,5 1 2 3 4 5 6 7
Intolerant Dense .5 1 1 2 3 4 5 6
Shade Open .5 1 1 2 3 4 5 6
Tolerant Dense 0 0 1 1 2 2 3 3

Note : Fuel models 8 and 10 were used for wind reductions when necessary
for this study.
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APPENDIX 3 

Observation Site Descriptions

Site 1. Northwest exposure - in a NW-SE saddle - dense timber - 

closed canopy.

Site 2 . East to southeast exposure - upper one third of slope - 

semi-open - small clearcuts below - dense timber above.

Site 3. East exposure - upper one third of slope semi-open - 

clearcut below - dense timber above.

Site 4 . East to southeast exposure - upper one third of slope -

in the timber - shelterwood cut below - dense timber above.

Site 5 . East to northeast exposure - near top of ridge in a

saddle - in the timber - shelterwood cut below - dense timber above.

Site 6 . Southwest to southeast exposure - moderately dense 
timber - canopy semi-open.

Site 7 , South to southeast exposure - lower one third of 

slope - semi-open on the edge of a small clearcut with dense timber all 

sides.

Site 8. East exposure - lower one third of slope - semi-open - 

clearcut below - dense timber above.

Site 9, Southeast exposure - lower one third of slope - small 

opening in dense timber.

Site 10, South to southwest exposure - drainage bottom - dense 

timber - closed canopy.

Site 11. Southwest exposure - top of ridge - semi-open - 

scattered timber and brush.
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Site 12, Southwest exposure - lower one third of slope - 

semi-open - old brushy clearcut above - dense timber below.

Site 13. Southwest exposure - lower one third of slope - small 
opening along road in dense timber.
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APPENDIX 4 

WINDS MODEL Verification

This appendix gives the specific verification date for the 

WINDS MODEL calculations. The heading blocks are defined as follows:

1, Model Wlnd/mph. This is the model output wind for the 
nearest grid point to each specific observation site. The units are 

miles per hour.

2, Observed Wind/mph. This is the average daily wind observed 

at each of the observation sites at the 4%-foot (1,5 m) level. The 

units are miles per hour.

3, Adjusted Observed Wind/mph, This is the observed wind, 

resolved through the canopy to standard height,

4, Difference. This is the difference between Model Wind and 

Adjusted Observed Wind.

5, Model Direction. This is the wind direction forecast for 

each observation site,

6, Observed Direction. This is the observed wind direction at 

each observation site.

7, Difference. This is the difference between the Model 

Direction and Observed Direction. It is determined by assigning each 

direction a number based on a 16-point compass, i.e., NNE=1, NE=2,

...S=8,.,.S-12,...N=16.
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Run # 1
Date

Site #
Mode 1 

Wind/mph
Obsc rved 
Wind/mph

Adj us ted 
Obse rved 
Wind/mph

Di f fer- 
encc
.akAOj.._

Mode 1 
Direction

Observed
Direction

Differ­
ence

Sept. 8
1 13 0 3 10 ENE — — — —
2 9 1 8 1 E SSE 3
3 9 0 2 7 ESE SE 1 .
4 7 0 2 5 SE mm

5 13 1 3 10 SSE SW 3
6 13 2 8 10 SSE SW 3
7 9 2 8 7 SSE SSE 0
8 11 3 15 7 SSE SE 1
9 7 3 13 6 SE ENE 3

10 7 2 13 6 E ESE 1
11 33 4 10 23 NE SSW 7
12 11 6 15 -4 SE SSE 1
13 13 3 13 0 ESE SSE 2

D < 3  
3/ 6

D > 6 
BIAS

1
3
9
POS

Avg D = 2,3 
D <  3 = 10

Date 1 

Site #
Mode 1 

Wind/mph
Observed
Wind/mph

Adjusted 
Observed 
Wind/mph

Dif fer- 
ence 
(M-AO)

Model
Direction

Observed
Direction

Differ­
ence

Sept. 9
1 29 0 3 26 NNE — —

2 18 2 8 10 NNE SSE 6
3 13 2 8 5 NE E 2
4 9 2 8 1 ENE ENE 0
5 13 1 5 8 SE NE 4
6 15 1 "6 ' " 9 SE NE 4
7 15 2 8 7 ESE SE 1
8 15 2 13 ^ 2 ESE ___ SE . ... .1
9 11 2 8 3 E SSE 3

10 18 2 15 3 NE SSE S
. 11 57 2 10 47 NE SW 8

12 20 2 8 12 ESE SW 5
13 26 3 13 13 E SSE 3

D 6  3 
3< D <  6 

D > 6 
BIAS

4
1
8
POS

Avg D = 3.5
D < 3 - 6
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Run # 1
Date

Site #
Model

Wind/mph
Obse rved 
Wind/mph

Adjus ted 
Observed 
Wind/mph

Differ­
ence 

XMr.AO) ,
Mode 1 

Direction
Obse rved 
Direction

Differ­
ence

Sept. 10
1 9 1 6 3 ENE N 32 7 2 10 -3 ENE SSE 43 7 3 13 -6 ENE SE 3
4 4 4 10 -6 NE SE 4._
5 7 4 13 -6 ESE ENE 2
6 4 2 10 — 6 SE WSW 5
7 7 3 10 - 3 SW SE 4
8 7 4 19 -12 SSW ESE 4
9 7 2 8 -1 SW SE 4

10 4 1 13 -9 SW NW 4
11 11 4 10 1 E WNW 7
12 11 4 13 -2 SSW SW 1
13 11 3 13 -2 SSW S 1

D < 3  = 
34 D < 6 = 

D > 6 = 
BIAS

7
4

42
NEC

Avg D = 3. 
D < 3  =

5
5

Date

Site 4
Mode 1 

Wind/mph
Observed
Wind/mph

Adjusted 
Obse rved 
Wind/mph

Differ­
ence
(M-AO)

Model
Direction

Obse rved 
Direction

Differ­
ence

Sept. 11
1 127 1 3 104 NE N 2
2 86 2 8 76 ENE SSE 4
3 59 3 8 55 ENE SSE 4
4 46 1 3 39 E SE 2
5 51 M - — ESE M -
6 48 M - - SE M -
7 51 3 10 41 ESE SE ■ ■■
8 55 4 15 40 E ESE 1
9 64 3 13 51 ENE SE 3

___ 10___ 95 2 13 82 ENE SSE 4
. 11. . 198 2 6 192 NE ENE 1

12 90 3 10 80 E SW 6
13 116 2 10 106 ENE SSW 6

D < 3 = 0 
3< D < 6 = 0 

D ̂  6 =11 
BIAS POS

Avg D = 3.1
D <  3 = 6
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Run # 1
Date

Site #
Mode 1 

Wind/mph
Obse rved 
Wlnd/mph

Adj us Led 
Obse rved 
Wind/mph

Di f fcr- 
e n c e 
(MrApj „

Mode 1 
Direction

Observed
Direction

Differ­
ence

Sept. 12
1 62 0 3 59 E _ _
2 46 3 8 38 E E 03 37 1 5 32 E SE 24 29 0 2 27 E5 33 M — — • — ESE M
6 24 M te te ESE M
7 13 3 8 5 SSE SE 1
8 17 3 10 7 SE ESE 1
9 20 2 8 12 ESE SE 1

10 26 2 15 11 ESE SE 1
11 53 3 6 47 E SE 2
12 24 2 10 14 SE SSW 3
13 31 2 10 21 SE SSE 1

D < 3  = 0 
3< Di  6 = 1 

D > 6 =10 
BIAS POS

Avg D = 1,5 
Di 3 = 9

Date

Site #
Mode 1 

Wind/mph
Ob se rved 
Wind/mph

Adjusted 
Observed 
Wind/mph

Di fCar­
ence 
(M-AO)

Model j 
Di rection

Observed
Direction

Differ­
ence

Sept. 13
1 48 1 6 42 E S 4
2 37 3 10 27 E SE 2
3 31 2 10 21 E SE 2
4 24 1 2 22 E SSE 3
5 29 M — — — — ESE M — —
6 22 M — — te te SE M --
7 15 4 13 2 S §E Z
8 19 4 15 4 SSE ESE 2
9 15 2 8 7 SE SE 0
10 20 2 13 7 ESE SE 1
11 37 2 6 31 E SW 6
12 20 3 10 10 SSE WSW 4
13 22 3 8 14 SE s ... _2 ..

D i  3 
3< D i  6 

D > 6 
BIAS

1
1
9
POS

Avg D = 2.5
D < 3  = 8
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Run # 2
Date

Site #
Mode 1 

Wind/mph
Obse rved 
Wind/mph

AdjusLod 
Observed 
Wind/ m|>h

Differ­
ence Mode 1 

Direction
Observed
Direction

Differ­
ence

Sept. 8
1 48 0 3 41 NE
2 28 1 8 20 ENE SSE 4
3 20 0 2 18 E SE 2
4 15 0 2 13 ESE — — —
5 26 1 3 23 SSE SW 3
6 29 2 8 21 SSE SW 3
7 24 2 8 16 SE SSE 1
8 24 3 15 9 SE SE 0
9 22 3 13 9 E ENE 1

10 33 2 13 20 ENE ESE 2
11 83 4 10 73 NE SSW 7
12 35 6 19 16 ESE SSE 2
13 44 3 13 31 E SSE 3

D & 3  = 0 
3< D4 6 = 0 

D > 6 =13 
BIAS POS

Avg D = 2.5 
D< 3 = 8

Date

Site #
Mode 1 

Wind/mph
Obse rved 
Wind/mph

Ad j us ted 
Observed 
Wind/mph

Di f fer- 
ence 
(M-AO)

Model
Direction

Observed
Direction

Differ­
ence

Sept. 9
1 24 0 3 21 NNE — —

2 17 2 8 9 NE SSE 5
3 13 2 8 5 NE E 2
4 9 2 8 1 ENE ENE 0
5 11 1 5 6 SE NE 4
6 11 1 6 5 SSE NÉ 5
7 13 2 8 5 SSE SE 1
8 11 2 13 2 SSW SE __ 3 _
9 7 2 8 -1 SW SSE 3

10 4 n 2 15 -11 WNW . SSE 6
11 17 2 10 7 NNE SW 7
12 15 2 8 7 SSW SW 1
13 10 3 13 -3 SW SSE 3

D <  3 
3< D <  6 

D > 6 
BIAS

4
4
5
POS

Avg D = 3.3
D< 3 = 7
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Run # 2
Date

Site #
Mode 1 

Wlnd/mph
Observed
Wlnd/mph

Adjus ted 
Obse rved 
Wlnd/mph

Di f fer- 
e n c G 
(M-AOl

Mode 1 
Direction

Observed
Direction

Di ffG r- 
ence

Sept. 10
1 68 1 6 62 ENE N 3
2 55 2 10 ' 45 NE SSE 5
3 42 3 13 29 ENE SE 3
4 24 4 10 14 ENE SE 3
5 26 4 13 13 ESE ENE 2
6 22 2 10 12 SSE WSW 4
7 29 3 10 19 SSW SE 3
8 22 4 19 3 S ESE 3
9 9 2 8 1 SSE SE 1

10 13 1 13 0 E NW 6
11 37 4 10 27 E WNW 7
12 31 4 13 18 S SW 2
13 26 3 13 13 S S 0

D< 3 = 3 
3 < D 6  6 = 0 

D > 6 =10 
BIAS POS

Avg D = 3.2 
D < 3  = 9

Date 1 

Site #
Mode I 

Wind/mph
Obse rved 
Wlnd/mph

Adjusted 
Observed 
Wind/mph

Dllfer- 
encc 
(M-AO)

Model
Direction

Observed
Direction

Differ­
ence

Sept. 11
1 244 1 3 241 E N 4
2 185 2 8 178 E SSE 3
3 136 3 8 128 ENE SSE 4
4 97 1 3 94 ENE SE 3
5 101 M — — — E M Mt

6 66 M — — — — E M — —

7 35 3 10 25 SE SE 0
8 48 4 15 33 ESE ESE 0
9 79 3 13 66 ESE SE 1

10 132 2 13 119 E SSE 3
11 238 2 6 232 ESE ENE 2
12 99 3 10 89 ESE SW 5
13 141 2 10 131 ESE SSW 4

D<  3 = 0 
3< D£  6 = 0 

D ? 6 =11 
BIAS POS

Avg D = 2,6
D < 3  = 7
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Run # 2
Date

Site #
Mode 1 

Wind/mph
Obse rved 
Wind/ mpii

Ad j us Led 
Observed 
Wind/mph

Di fTer­
ence 
(M-AO)

Mode 1 
Direction

Observed
Direction

Differ­
ence

Sent. 12
1 9 0 3 6 ESE M —
2 9 3 8 1 SE E 2
3 9 0 5 3 ESE SE 1
4 7 M 2 5 ESE M mm
5 "11 ■ M — — — — ESE M — —
6 9 3 — — — — ESE M - —
7 2 3 8 - 6 SE SE 0
8 4 2 10 - 6 SSE ESE 2
9 4 2 8 -4 S SE ^ 2

10 7 3 15 -8 S SE 2
11 15 2 6 9 E SE 2
12 7 2 10 -3 S SSW 1
13 9 2 10 -1 SSE SSE 0

D< 3 
3< D &  6 

D > 6 
BIAS

4
4
3
NEG

Avg D = = 1,5
8

D < 3  = 9

bate

Site #
Mode 1 

Wind/mph
Obse rved 
Wind/mph

Adjusted
Observed
Wind/mph

Differ­
ence
(M-AO)

Model
Direction

Observed
Direction

Differ­
ence

Sept. 13
1 13 1 6 7 E S 4
2 11 3 10 1 ESE SE 1
3 13 2 10 3 ESE SE 1
4 11 1 2 9 ESE SSE 2
5 15 M —  — —  — SE M —  —

6 15 M —  — —  — SE M —  -*

7 11 4 13 -2 SSW SE 3
8 11 4 15 -4 S ESE 3
9 9 2 8 -1 S SE 2

10 7 2 13 - 6 SSW SE 3
2 6 1 ENE SW 7

12 15 3 10 5 SSW WSW 2
13 13 3 8 -5 SSW s 1

D ^ 3  
3< 6

D > 6 
BIAS

5
4
2
POS

Avg D = 2.6
D <  3 = 9
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APPENDIX 5 

Standard Forecast Verification

This appendix gives the specific verification data for the 
Standard Forecast Verification. The heading blocks are defined as

follows :

1. Forecast Wind/mph. This is the wind speed derived by

standard forecast techniques. The units are miles per hour,

2. Observed Wind/mph. This is the average daily wind observed

at each of the observation sites at the 4%-foot (1.5 m) level. The
units are miles per hour.

3. Difference. This is the difference between Forecast Wind

and Observed Wind.

4. Forecast Direction. This is the wind direction forecast by

standard techniques for each observation site.

5. Observed Direction. This is the observed wind direction at

each observation site.

6. Difference. This is the difference between the Forecast

Direction and Observed Direction, It is determined by assigning each 

direction a number based on a 16-point compass.
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Date

Site #
Forecast 
Wind/mph

Obso rved 
Wind/mph

Di r iercnce 
(F-0)

Forecast
Direction

Obse rved 
Direction

Di fference

Sept. 8
SE1 4 0 4 M  »

2 4 1 3 SE SSE 1
3 4 0 4 ESE SE 1
4 4 0 4 ESE —  — •  —

5 4 1 3 SE SW 4
6 4 2 2 SSE SW 3
7 4 2 2 S SSE 1
8 4 3 1 SSE SE 1
9 % 3 1 SSE ENE 4

10 4 2 2 SSE ESE 2
11 6 4 2 SW SSW 1
12 4 6 -2 SSW SSE 2
13 4 3 1 SSW SSE 2

d £t 3 =10 
3< D< 6 = 3 

D ̂  6 = 0 
BIAS POS

Avg D = 2
D£ 3 = 9

Date

Site #
forecast
Wlnd/mph

Observed
Wind/mph

Difie renee 
(F-0)

F orecast 
Direction

Observed
Direction

Di f fe rence

Sept. 9
1 4 0 4 SE mm » w  mm

2 4 2 2 SE SSE 1
3 4 2 2 ESE E 1
4 4 2 2 ESE ENE 2
5 4 1 3 SE NE 4
6 4 1 3 SSE NE 5
7 4 2 2 S SE 2
8 4 2 2 SSE SE 1
9 4 2 2 SSE SSE 0

10 4 2 2 SSE SSE 0
11 6 2 4 SW SW 0
12 4 2 2 SSW SW 1
13 4 3 1 SSW SSE 2

Di 3 =11 
34 D4 6 = 2 

D > 6 = 0 
BIAS POS

Avg D = 1,6
D 43 = 11
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Date

Site #
Forecast 
Wind/mph

Observed 
Wind/mph

Di f fcrcnce 
(F-0)

Forecast 
Direct ion

Observed
Direction

Difference

^ept. 10
1 3 1 2 NE N 2
2 3 2 1 SE SSE 1
3 3 3 0 SE SE 0
4 3 4 -1 SE SE 0
5 4 4 0 E ENË 1
6 4 2 2 SW WSW 1
7 4 3 1 S SE 2
8 4 4 0 SE ESE 1
9 4 2 2 SE SE 0

10 3 1 2 SSW NW 5
11 6 4 2 NW WNW 1
12 4 4 0 SW SW 0
13 -TT' 3 1 SSW S 1

D< 3 =13 
3< Di 6 = 0 

D > 6 = 0 
BIAS POS

Avg D = 1. I 
D < 3 = 12

Date

Site #
Forecast 
Wind/mph

Obse rved 
Wind/mph

Difference
(F-ü)

F orecast 
Di rec tion

Obse rved 
Direction

Dif ference |

Sept. 11
1 6 1 5 NE N 2
2 6 2 4 SE SSE 1
3 6 3 3 SE SSE 1
4 6 1 5 SE SE 0
5 10 M NE M — -

■ 6 '■ 10 M — - NE M — — ■
7 ■ 5"" 3 2 SE SE 0
8 5 ■“5” 1 SE ESE 1
9 5 3 2 SE SE Ü

10 5 2 3 SSW SSE 2
11 15 2 13 E ENE 1
12 5 3 2̂ SW SW 0
13 5 2 ■ 3 S W SSW 0

D i  3 = 7 
3< D <  6 = 3 

D > 6 = 1 
BIAS POS

Avg D = .7
D i  3 = 11
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Date

Site #
Forecast 
Wind/mph

Obse rved 
Wind / mpli

Di f fe re nee 
(F-0)

Forecast 
Direct ion

Observed
Direction

Difference

_Seot. 12
1 2 0 2 E __
2 5 3 2 SE E 2
3 5 1 4 SE SE 04 5 0 5 SE
5 7 M — — NE — —
6 7 M — — SW —
7 5 3 2 SE SE Ü
8 5 3 2 SE ESE 1
9 2 3 SE SE 0

10 2 2 0 SSW SE 3
11 8 3 5 SE SE 0
12 1) 2 3 SW SSW 1
13 5 2 3 SSW SSE 2

D &  3 
3 < D < 6  

D > 6 
BIAS

8
3
0
POS

Avg D = 1
Dé 3 = 9

Date

Site #
Forecast 
Wind/mph

Observed 
Wind/mph

Difference
(F-ü)

Forecast 
üirec tien

Observed
Direction

Difference

Sept. 13
1 2 1 1 SSE S 1
2 5 3 2 SE SE 0
3 5 2 3 SE SE 0
4 5 1 4 SE SSE 1
5 7 M - - NE M — —

6 7 M — —' SW M — —

7 5 4 1 SE SE 0
8 5 4 1 SE ESE 1
9 5 2 3 SE SE 0
10 2 2 0 SSW SE 3
11 7 2 5 SW SW 0
12 5 3 2 SW WSW 1
13 5 3 2 SSW . s 1

D é 3 
3< D é  6 

D > 6 
BIAS

9
2
0
POS

Avg D = 0,7 
Dé 3 = 11
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