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Abstract:   
Forests in the western United States and elsewhere face a growing crisis arising from 
global warming, changes in fuel beds and an increasing human population. Fire 
management policy emphasizes fuel treatments, such as thinning and prescribed burning, 
to remedy this situation because fuels are the one component of the problem that we can 
directly affect through management action. At present, however, the tools we have for the 
evaluation of fuel treatments are inadequate because they do not describe the fuel bed, or 
effects of modifications to the fuel bed on fire behavior in sufficient detail. The work 
described here presents a system that has potential to address the shortcomings of current 
approaches. In the first chapter, to improve our ability to represent wildland fuels, a three 
dimensional spatially explicit fuel model, FUEL3D, is presented which represents fuels at 
a level of detail comparable to what we can actually measure: stands as collections of 
individual trees, with branches and foliage. In conjunction with new, physical fire 
models, detailed fire behavior simulations can be carried out using fuels represented with 
FUEL3D as inputs. This system thus comprises a simulation laboratory which will 
greatly enhance our capabilities to evaluate fuel treatments and strengthen our 
understanding of fire and fuel interactions.  
 
In the second chapter, this system is demonstrated in an exploratory simulation study 
which examines the impact of spatial variability within an individual tree crown on fire 
behavior. Results demonstrate that the distribution of fuel within a tree crown 
significantly affects the rate of fuel consumption, as well as the timing, duration and 
magnitude of heat produced. This suggests that modeling of both crown fire initiation and 
propagation would benefit from more detailed description of crown fuels. 
 
 In third chapter a replicated series of stand scale fire simulations is carried out to 
examine variability in forward spread rate; accelerated spread rates endanger fire fighters. 
Substantial variability is observed to arise from fine scale fuel-atmosphere-fire 
interactions which are not easily predicted beforehand. A new strategy is proposed in 
which physical fire models are used to quantify the potential drivers of variability in fire 
behavior. 
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ABSTRACT 
Forests in the western United States and elsewhere face a growing crisis arising from 

global warming, changes in fuel beds and an increasing human population. Fire 

management policy emphasizes fuel treatments, such as thinning and prescribed burning, 

to remedy this situation because fuels are the one component of the problem that we can 

directly affect through management action. At present, however, the tools we have for the 

evaluation of fuel treatments are inadequate because they do not describe the fuel bed, or 

effects of modifications to the fuel bed on fire behavior in sufficient detail. The work 

described here presents a system that has potential to address the shortcomings of current 

approaches. To improve our ability to represent wildland fuels, a three dimensional 

spatially explicit fuel model, FUEL3D, is presented. Using standard forest inventory data 

as inputs, this model is designed to represent fuels at a level of detail comparable to what 

we can actually measure: stands as collections of individual trees, with branches and 

foliage. A key component of the model is that, in conjunction with new, physical fire 

models, detailed fire behavior simulations can be carried out using fuels represented with 

FUEL3D as inputs. This system thus comprises a simulation laboratory which will 

greatly enhance our capabilities to evaluate fuel treatments and strengthen our understand 

of fire and fuel interactions.  
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INTRODUCTION 

Background 
 

In many parts of the western United States, forests are in a state of crisis. Nearly every 

year this decade so far (2000, 2002, 2003, 2004, 2005, 2006, and 2007) has been 

characterized by large and catastrophic fires in which the number of acres burned, and 

associated economic and environmental impacts, are unprecedented in recent history 

(Graham et al 2004, Westerling et al 2006, Robichaud et al 2003, Pierce et al 2004, GAO 

2007). The size and intensity of these fires has stretched fire fighting resources and 

budgets to their limits and has compromised the ability of federal agencies to carry out 

their other responsibilities (GAO 2007, GAO 2004). These increases in area burned and 

burn severity reflect both the climatic influences of global warming, such as earlier 

snowmelt and hotter summer temperatures (IPCC 2007, Westerling et al. 2006), and 

changes in the nature, composition and condition of wildlands, such as increased forest 

density and fuel continuity (Covington and Moore 1994, Graham et al 2004). The 

magnitude and drivers of changes in fuels vary with location and vegetation type 

(Graham et al 2004) but generally have come about as a result of different factors, 

including management suppression of fires, effects of past land use such as grazing 

(Heyerdahl et al 2006), as well as a diminished influence of native American ignitions on 

the landscape in some areas (Pyne 1982, Lewis 1985, Arno 1985). 

 

This crisis is expected to get worse as time progresses, for several reasons. Climate 

models predict continuing trends of higher temperatures and more persistent drought 
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conditions, leading to longer fire seasons, characterized by larger and more intense fires 

(Westerling et al 2006, Gillet et al 2004,  Wotton and Flannigan 1993, Flannigan et al 

2005). Because CO2 released by forest fires accumulates in the atmosphere, increases in 

area burned may accelerate global warming, resulting in yet more area burned (Running 

2006). Similarly, increases in incidence and severity of insect attacks associated with 

warmer climate are expected to make forests more susceptible to fire (Fleming and 

Candau 1998, Fleming et al 2002).  At the same time, a rapidly growing Wildland Urban 

Interface, or WUI (a mixture of housing and wildland vegetation) translates to increasing 

risk to life and property, as well as increased fire suppression costs (GAO 2007), as more 

and more houses face potential destruction from fire (Radeloff et al 2005, Hammer et al 

2007).  The juxtaposition of global warming, changes in fuels and increasing population 

density in wildland areas represents a growing fire management crisis which will likely 

dominate federal agency policy and expenditures for the foreseeable future (GAO 2007).  

In an arena in which the stakes are high, and time is short, there is a desperate need for 

accurate information to aid fire managers in strategic decision-making.  

 

Decades of on the ground fire management and related fire research have established a 

strong knowledge base about wildland fire (Agee 1993). Fundamentally, the behavior of 

wildland fire is determined by three main factors, often referred to as the ‘fire behavior 

triangle’, consisting of weather, terrain, and fuel, all of which influence fire behavior in 

multiple ways. The occurrence of large fires and the total area burned is driven primarily 

by climate, such as drought (Strauss 1989, Swetnam and Betancourt 1990, Westerling et 

al 2006, Gillet et al 2004, Cary et al 2006). Terrain modifies climate (such as differences 
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in solar radiation by aspect) as well as fire behavior (such as preheating of fuels upslope 

of a fire). However, current fire management strategies and policy emphasize 

modification of the fuels, through fuel treatments such as thinning and prescribed 

burning, because fuels are the only component of the problem that can be addressed 

directly through management action (Graham et al 2004).  

 

While fuel treatments may be the only component we can affect directly, they are not 

without limitations. Short of permanent conversion to a non-flammable surface (i.e. 

pavement), modification of fuel beds does not prevent fire from occurring (Graham et al. 

2004, Finney and Cohen 2003). Fuel treatments may not have much effect under extreme 

weather conditions (Finney and Cohen 2003). However, empirical evidence and 

qualitative observation suggest that, under some range of conditions, fuel modification 

can significantly change how fires burn, by reducing either the amount of fuel, or the 

continuity within the fuel bed (Graham et al 1999, Graham et al 2004). For example, 

reduction in the quantity of surface fuels, such as needles and dead fine woody fuels on 

the forest floor, has been shown to reduce fire intensity (heat released over area and time) 

(Weaver 1955, Cooper 1960, Biswell 1960). Similarly, the potential for crown fire (fires 

which burn through the tree crowns) can be reduced through elimination of ladder fuels 

(small such as small trees and shrubs which vertically connect surface fuels and the base 

of the foliage canopy), and by thinning, which reduces both horizontal continuity and 

quantity of crown fuels (Van Wagner 1977, Graham et al 1999, Scott and Reinhardt 

2001). Fuel treatments thus comprise a suite of different alternative actions which can be 

employed to modify how fires burn.  
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In many locations there is a compelling need for fuel treatments, and large scale fuel 

treatment projects are already underway in different parts of the country. At present, 

however, three key knowledge gaps limit our ability to reliably and quantitatively predict 

the effect that a given fuel treatment will have on fire behavior. First, we lack a detailed 

understanding of fine scale fire and fuel interactions. The propagation of fire is a 

fundamentally fine scale, spatial process, dependent on the size, shape, composition and 

arrangement of fuel particles (Burrows 2001) and, particularly, distance between fuel 

particles (Fons 1946, Vogel and Williams 1970, Weber 1990, Bradstock and Gill 1993). 

Wildland fuels are spatially clumped at multiple scales, with gaps between needles, 

between branches and between trees. At present we have no way of either adequately 

describing these properties of real fuels, or accounting for the potential effects of these 

properties on how fire spreads through a natural fuel bed. This in turn leads to our second 

knowledge gap: threshold behaviors. Fire spread through trees and shrubs is characterized 

by abrupt thresholds in fire behavior (Cohen et al 2006), where a surface fire may rapidly 

grow to a crown fire, or, vice versa, in the space of a few meters and within a several 

seconds. The nature and drivers of these thresholds are not well understood. Finally, fuel 

treatments such as thinning can be expected to modify the microclimate in a given site, 

changing the solar radiation regime on the forest floor and within the stand (Reifsnyder 

and Lull 1965, North 1996; Govaerts and Verstraete,1998) and the interception of rain by 

the canopy (Helvey and Patric 1965), both of which influence fuel moisture (Fosberg and 

Deeming, 1971; Nelson 2002). The canopy structure also influences winds within a stand 

(Jensen 1983, Oke 1978, Brandle 1984).   These changes likely represent important 
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potential feedback relationships between fire and fuel which complicate fuel treatment 

assessments. For example, is the reduction in fuel continuity achieved with a particular 

thinning strategy compensated for by an increased effective wind speed and drier surface 

fuels within that stand? At present we do not have the tools to address these issues.  

 

 Fuel treatments must generally be implemented at one time, and actually tested (by a 

wildfire passing through or near them) at a different time. As substantial resources must 

be committed to carry out fuel treatments, and conditions at the time the treated area 

burns are unknown, fuel treatment assessments rely heavily on predictions from computer 

models. The accuracy of predictions from such models is dependent on the detail with 

which they represent the main components of the problem, namely, wildland fuels and 

their interactions with fire.  

 

The architecture and scope of current management tools used in the United States to 

predict fire behavior, such as BehavePlus (Andrews 2005) and FARSITE (Finney 1998) , 

limits the degree to which they can be used to assess these issues. These models assume 

that fuels are homogeneous and continuous and are thus intrinsically inappropriate for 

dealing with the potential effects of spatial variability within the fuel bed on fire 

behavior. Fuel treatments can only be assessed with such models as a comparison of 

average conditions (e.g. Van Wagtendonk 1996). This is problematic because the 

complex and dynamic nature of fire-fuel and fire-atmosphere interactions may result in 

cases in which the average conditions either do not actually occur (such as mean crown 

base height in a two storied tree stand) or do not result in average fire behavior. 
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In recent years more advanced physics-based, numerical fire behavior models have 

emerged such as FIRETEC (Linn et al 2002, Linn and  Cunningham 2005), and the 

Wildland Fire Dynamic Simulator (WFDS) (Mell et al.2005). Unlike current operational 

models, which assume a stead state rate of fire spread (Rothermel 1972), these models are 

self-determining and are thus capable of addressing fire-fuel interactions arising from 

spatial variability within the fuel bed, and fire-atmosphere interactions. The detail with 

which these models address fundamental drivers of fire behavior, as well as the 

underlying physics basis of the models, facilitates robust modeling of fire behavior and 

related analyses of fuel treatments at multiple scales.  

 

One of the key limitations in the application of these models is that they require fine scale 

spatially explicit fuels inputs which are difficult to directly measure in the field, such as 

3-D cells describing the distribution of fuel within a tree. While the fire behavior models 

are very sophisticated in their treatment of the physics of fire spread and heat transfer, 

fuels information for wildland fuels of commensurate detail is extremely rare or non-

existent. At present no procedures exist by which fuels data measured in the field can be 

used to develop these inputs or test the accuracy with which fuels are represented. 

Perhaps even more importantly, no tool exists by which the fundamental properties of 

wildland fuels can be assessed, quantified and evaluated as to their importance across a 

range of spatial scales. Wildland fire science will not be able to take full advantage of the 

advancements that have been made in fire modeling until these knowledge gaps are 

addressed. 
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The objective of this endeavor is to develop a spatially explicit fuel model, FUEL3D, 

which can be used to better describe the complexities of wildland fuels than current fuel 

models, and, in conjunction with detailed fire behavior models, to improve our 

understanding of fundamental fire and fuel interactions.  

Theoretical background 
Spatially explicit models of trees and shrubs have been developed with different levels of 

detail. The most common applications of such models are light dynamics and plant 

growth models (see Brunner 1998 and Busing and Mailly 2004 for reviews of several 

such models, respectively). A common approach is to represent trees and shrubs crowns 

as simple geometric forms, such as cylinders, cones or ellipsoids (e.g. Canham et al. 

1999, Kuuluvainen and Pukkala.1987, Pukkala et al. 1993). Such representations are 

limited to particular scales because detail within the tree crown is not modeled. A much 

more accurate approach represents plants as fractal objects (Mandelbrot 1983, Godin 

2000) and model plant architecture in detail, sometimes extending as far as individual 

branches, twigs and leaves (Berezovskava et al. 1997, Ozier-Lafontaine et al 1999, 

Richardson and zu Dohna 2003, Godin et al 2004). Such approaches are particularly 

relevant to representation of canopy fuels because they successfully capture the natural 

pattern of clumps of fuel separated by gaps, such as those between needles and between 

branches.  

 

The capacity to branch out and occupy space is a defining characteristic of vascular 

plants which tends to represent an optimization in which photosynthesis is maximized 

while constraints such as mechanical support (Morgan and Cannell 1988, McMahon 
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1973, McMahon and Kronauer 1976) and hydrodynamic resistance (Tyree and Ewers 

1991) are minimized (Niklas and Kerchner 1984, West et al. 1997, West et al. 1999). As 

different species occupy different ecological niches and thus face different sets of 

constraints, there is no single universal optimum. Nevertheless, the vast majority of 

species can be classified into a surprisingly small number of plant architectural forms 

(Halle and Oldemann 1970, Halle et al 1978). These commonalities suggest that despite 

the diversity of conditions in which plants are found they are obligated to observe the 

same general set of “rules” governing their form and function. 

 

The pipe model theory theory (Shinozaki et al 1964) is the first broad theory which 

attempts to explain these “rules” of plant structure and function. It is a conceptual model 

of plant structure in which trees are envisioned as a collection of “unit pipes”, where a 

unit pipe transports water to a unit of foliage. This proportional relationship based on the 

functional balance between water supply and demand provides for a straightforward and 

generally accurate estimation of biomass quantities; for this reason, despite criticism of 

its simplistic portrayal of plant function such as hydrodynamics (Tyree and Ewers 1991) 

the pipe model plays a key role in numerous contemporary forest models and is widely 

cited in the literature (Grace 1997).   

One of the main “rules” that plants seem to have to follow is that fundamental properties 

of both their structure and function are governed by size. Plant size influences nearly all 

biological functions, controlling rates of metabolism, reproduction and many other 

functions (Peters 1983). Such size dependent relationships can be described 

mathematically with allometric scaling relationships of the form 
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baDM =  

Eqn. 1- 1 

 

where M is the biomass, D is basal diameter (a dimensional measurement which relates 

to size), a is an empirical scaling constant and b is the  scaling exponent (Huxley 1932). 

While allometric equations can be successfully fit to data for nearly all species, in general 

an explanation of why this was the case has been lacking.  

 

In recent years, the WBE model (West et al. 1997, West et al. 1999, Enquist 2002) has 

emerged as a comprehensive theory attempting to explain why allometric scaling 

relationships exist and the role they play in  the structure and function of living things. 

The WBE model proposes that quarter power based (i.e. 3 / 4, 3 / 8) allometric scaling 

relationships, which have been broadly observed across species(Niklas and Enquist 2001, 

Cheng and Niklas 2007), can be explained by the hierarchical, fractal-like, space-filling 

branching networks which minimize the energy and material costs  and hydrodynamic 

resistance associated with transport within the network.  

The WBE model has been criticized on the grounds that allometric exponents observed in 

many cases do not appear to conform to the universal quarter power scaling relationships 

predicted (White et al 2007, Kozlowski and Konarzewski 2004 Agutter and Wheatley 

2004, Li  et al. 2005). It has also been criticized because the allometric scaling 

relationships described do not necessarily have to arise because of the assumptions made 

by the WBE model, but can be shown to be simply intrinsic properties of systems in 

which materials must be distributed in space (Banavar 1999, Banavar et al 2002 ,Dreyer 
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2001). If these latter arguments are correct, then the quarter power scaling relationships 

represent an ideal case in which no further constraints impede the efficiency of the 

network. This is likely the case in non living systems such as rivers (Leopold  1971). It 

seems likely though that, in living systems such as vascular plants, departures from the 

ideal case can be explained as a loss in efficiency of branching resulting from some 

constraint imposed on the system. Perhaps the true value of the WBE model is that it is 

capable of suggesting an explanation for those cases in which allometric relationships do 

not conform to its predictions.  

 

Makela and Valentine(2006) combined elements of the pipe model with elements of the 

WBE model, with modifications, to address  some of the ways in which allometric 

scaling relationships for trees do not strictly conform to the predictions of the WBE 

model. They demonstrated that allometric scaling relationships are dependent not just on 

the total woody biomass, as stated in the WBE model, but also on the crown ratio, which 

measures the length of the contiguous live crown relative to the total tree height: 

 

( ) ( )12 +∝ za
z

Tf MRM  

Eqn. 1- 2 

   

where Mf is total foliar biomass, R is the crown ratio, MT is total woody biomass, z is the 

fractal dimension, and a is a parameter describing change in the sum cross sectional area 

throughout the branching structure of the crown. When z = 3 and a = 1, the scaling 

relationship reduces to the 3 / 4 scaling predicted by the WBE model. The inclusion of 
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the fractal dimension of the crown, z, accounts for the cavity which arises in the interior 

of the crown due to self-shading, while the parameter a accounts for accumulation of 

non-conducting heartwood in the stem and coarse branches, which change the cross 

sectional area. Since the crown ratio is influenced by the growth history of the tree, the 

scaling relationships that arise are not universal but variable and context dependent. An 

important outcome of their approach is that the fractal-like properties of the tree do not 

apply to the stem below the base of the live crown because the length of the stem below 

the crown base is not necessarily proportional to the total length, but rather, determined 

by the crown ratio, R, which is dependent on the growth history of the tree. For this 

reason the stem below the crown base is dealt with separately from the tree above the 

crown base.  

 

The underlying theory behind the FUEL3D model derives from the pipe model, the WBE 

model and the work of Makela and Valentine 2006. However, all three of these sources 

are theoretical and general in nature and therefore do not actually attempt to model 

biomass realistically in space. To bridge the gaps between general aspatial theory and 

spatially explicit distribution of biomass in three dimensions FUEL3D must necessarily 

traverse many aspects of plant structure which are not explicitly dealt with by the 

theoretical models listed above. Chief among these are specific geometry, variability in 

form and architecture, and the challenge of incorporation of field measurable inputs into 

the model. The manner in which FUEL3D addresses these issues is driven largely by the 

intended concept and scope of the model, discussed below. 
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MODEL DESCRIPTION 

Ancillary Materials 
The development of the FUEL3D model comprises more material than fits easily within a 

single chapter. To enhance the readability of this chapter, a number of related 

components are presented in appendices, listed in the table below. 

Table 1- 1 List of appendices related to the FUEL3D model. 

Appendix Content 
A List of symbols and their meaning, for the FUEL3D model 

 
B Analytical solution for the determination of the coefficients of the 

quadratic polynomial function describing the radius of the tree bole above 
the crown base as a tapering column. 

C Field and image processing based measurement of geometric parameters 
D Parameterization of the FUEL3D model for ponderosa pine 

 

Model concept and scope 
Trees are complex organisms. The growth of trees is determined by their interaction with 

their environment (availability of light, water and nutrients) and their immediate 

surroundings (competition with other trees etc) over time. Given this complexity, it is not 

surprising that computer modeling has played a key role in the advancement of our 

understanding of plant structure and function, and numerous plant architecture models 

exist which span a spectrum of detail. The most detailed plant architecture models are 

dynamic and explicitly deal with the response of trees to these environmental factors; due 

to their complexity and the long periods of time typically modeled they are often limited 

in the number of trees which can be modeled.  

 

Although the processes of plant growth and change over time, and their interaction with 

the environment are clearly relevant to certain aspects of wildland fire science, such as 
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longer term fuel dynamics, these processes occur at broader time scales than are relevant 

to fire behavior, which typically occurs over time scales of a few seconds to several days, 

during which the structure of the fuel is reasonably constant.  For this reason FUEL3D is 

not intended to study dynamic plant processes such as growth or response to the 

environment over time, but rather to simply provide a realistic static representation of the 

fuel that a fire might encounter at a particular moment in time. FUEL3D thus provides a 

compromise to the limitations of more complex plant architecture models by using an 

empirical, field data driven approach rather than a dynamic mechanistic approach.  The 

chief purpose of the model is to provide a means by which the properties of biomass 

(living and dead) which constitute forest fuels can be quantitatively represented in three 

dimensional arrays, both to enhance our understanding of these properties and also as 

inputs to numerical fire behavior models or other models.  There are several central 

requirements underlying the concept of the model. First, because the interactions of fire 

and fuels span a range of spatial scales from micrometers to hundreds of meters, the 

model must facilitate consideration of these properties across spatial scales. Second, as 

many key processes involved in fire and fuel interactions are not yet completely 

understood, as a research model, FUEL3D must provide a means of exploration of 

fundamental crown fuel properties by ensuring flexibility in the type and nature of fuels 

that can be modeled. Third, the model must be able to run with a relatively small list of 

inputs, of which the majority must be measurable in the field. 
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As the first three dimensional plant model developed explicitly for the purpose of 

modeling wildland fuels, FUEL3D is admittedly somewhat simplistic; it is expected that 

additional refinements will be implemented as time goes on.  

Model Inputs 
The model requires information at three levels: tree, species and site. A complete list of 

all symbols used in the model is presented in Appendix A.  Specific values obtained for 

model parameterization are presented in Appendix D. Tree inputs are simply a list of one 

or more trees with commonly measured attributes, such as height, diameter at breast 

height and height to crown base. This tree list may come from forest inventory data or 

may itself be simulated. Species parameters largely describe the geometry and branching 

habit of trees. Measurements include angles, both between the main stem and lateral 

branches, and between branches in a branching node, as well as numbers and dimensions 

of child branch segments at branching nodes. These are more detailed measurements that 

are not typical of standard forest inventory, but it is expected that once collected the same 

general set of species parameters can be used to represent all trees of that species. Site 

parameters are a small set of inputs that allow the model to incorporate climatic 

influences and site productivity into biomass estimates. Figure 1-1 presents an overview 

of the architecture of the model. 
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Figure 1- 1 Overview of the FUEL3D model 
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Model formulation 
The process by which fuels are modeled in FUEL3D consists of three main steps. First 

biomass quantities are estimated using allometric relationships largely based on the work 

of Makela and Valentine (2006 REF). These quantities are then distributed in space 

according to fractal branching rules and species specific geometry parameters. The 

distributed quantities are then summarized to discrete volume cells for inputs to fire 

behavior models. Each of these processes is detailed below. 

Biomass estimation 
A small set of basic tree measurements are the main inputs: diameter at breast height D1, 

where breast height, H1, is 1.37m; the height to base of the contiguous live crown, H2, the 

total tree height HT, and a minimum diameter (Figure 1-2).  
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Figure 1- 2 Schematic diagram of a tree and symbols used in the model 
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From these tree measurements a few basic calculations are made. These include the 

crown length, H3, the crown ratio, R, and the cross sectional area at breast height, A1: 

23 HHH T −=  

Eqn. 1- 3 
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Eqn. 1- 4 (Valentine et al. 1994) 
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Eqn. 1- 5 

 

Valentine et al. 1994 determined from analysis of tree stem taper (Gray 1956) that the 

cross sectional area at the base of the live crown, A2, (Figure 1-2) can be reliably 

predicted by the simple relationship: 

 

RAA 12 =  

Eqn. 1- 6 

 

The stem below the crown presents a problem  in the fractal modeling of the tree because 

the length of the stem below the crown base is not necessarily proportional to the total 

length, but rather, determined by the crown ratio, R, which is dependent on the growth 

history of the tree.  For this reason, the stem below the crown base does not scale in a 
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manner consistent with the wood and foliage within the crown. Following Makela and 

Valentine 2006, FUEL3D assumes that the stem below the crown can be represented as a 

truncated cone. The cross sectional area of the base of the tree, A0 is thus estimated as 
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Eqn. 1- 7 

 

The wood volume in the stem below the crown base is modeled as a truncated cone. The 

volume of a truncated cone is calculated with the general equation for the volume of a 

pyramid as 
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Eqn. 1- 8 

in which A0 is the stem cross sectional area at the base of the tree, A2 is the stem cross 

sectional area at the base of the crown, H2 is the height to crown base. The woody 

biomass of the stem below the live crown base is then 

 

11 VM ρ=  

Eqn. 1- 9 
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The pipe model (Shinozaki et al. 1964) predicts that the foliar dry biomass is proportional 

to the cross sectional area at the base of the live crown, A2 (Figure 1-2). From the pipe 

model, foliar biomass, MF, is then predicted as: 

 

21ACM F =  

Eqn. 1- 10 

where C1 is an empirical constant which is determined by the site productivity, and 

particularly, by the evaporative demands of the environment in which the tree is found 

(Callaway et al. 1994, Mencuccini and Grace 1995,  Berninger et al 1995, Kaufmann et al 

1981, Grier and Waring 1984); more arid sites require more cross sectional area to 

produce the same foliar biomass because the evaporative demand of the foliage is higher. 

The evaporative demands of the environment are described quantitatively as the vapor 

pressure deficit; this quantity can be modeled across landscapes using biogeochemical 

models which describe plant physiological interactions with the environment (Keane and 

Holsinger 2006). Such modeling approaches are termed ‘gradient modeling’ in the 

ecological literature, and form the underlying theory behind current efforts to map fuels 

and vegetation across the conterminous United States (Keane et al 2007). The 

incorporation of parameters sensitive to these gradients in FUEL3D is intended to 

provide a linkage between fine scale, tree level properties, and the coarser scale 

environmental factors which influence tree properties. 

 

Similarly, from the pipe model the total branch basal cross sectional area available should 

be proportionate to the cross sectional area of the tree stem at the base of the live crown, 

A2 (Figure 1-2).   
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where ABT is the total branch basal cross sectional area available, which equals the sum 

of individual branch cross sectional areas ABi .. ABn, A2 is the cross sectional area of the 

stem at the base of the live crown, and C2  is an empirical coefficient determined for the 

site. C2 is similar to another site level parameter, C1, in that both relate to the evaporative 

demands of the environment in which the tree is found but C1 addresses foliar biomass 

(and thus implicitly sapwood cross sectional area relations) and C2 addresses branch 

wood cross sectional area relations.  

 

Following the pipe model, crown wood can be considered as a combination of conducting 

tissue (sapwood) and non-conducting tissue (heartwood). As sapwood cross sectional 

area is considered to be conserved, if there is no heartwood within the crown, the volume 

of wood within the crown, Vwc, which consists of both the main stem above the crown 

base and all branch wood, can be modeled as a simple cylinder, with circular base A2 and 

length H3. However, as studies have shown that there is heartwood within the crown 

(Vanninen et al. 1996, Meinzer et al. 2005), this volume necessarily tapers, resulting in a 

truncated cone, described as  

 

3232 HACV =  

Eqn. 1- 12 
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in which C3 is an empirical coefficient; if  C3 = 1 the crown wood volume is that of a 

cylinder (with no heartwood)  with a value < 1 which  

With the wood volume within the crown known, the crown woody biomass is then 

22 VM ρ=  

Eqn. 1- 13 

 

where ρ is an empirical value for the average wood density for the species in question. A 

single constant wood density value is used throughout the FUEL3D model for the sake of 

simplicity. 

 

          

At this point the woody biomass, above and below the base of the crown, and foliar 

biomass are all quantified. However, before FUEL3D can proceed to distribute the 

biomass in space it is necessary to partition the woody biomass within the crown, M2, into 

stem, M2s and branchwood components, M2b.  This partitioning facilitates modeling of 

variability in branch size and geometry. This flexibility is essential in enabling the model 

to represent different species as well as within-species variability in crown structure. The 

model first calculates the biomass in the stem above the crown base and then determines 

the branch wood by subtraction. 

 

Stem wood above the live crown base is modeled as a tapering column (Figure 1-3) in 

which the change in radius over its length (from the base to the top) is described with a 
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quadratic polynomial equation (Kozak et al 1969, Goulding and Murray 1975) of the 

form: 

 

 

32
2

1 pxpxpr ++=  

Eqn. 1- 14 

        

 

where r is the radius of the tree bole, x represents height above height of the crown base 

and p1, p2, and p3 are coefficients of the polynomial.  
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Figure 1- 3 The stem wood portion of the woody biomass within the crown is modeled as a tapering 
column with a volume that is referenced to that of a truncated cone. 
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The volume of stem wood above the crown base is then estimated as 
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Eqn. 1- 15 

  

 

 

where A2 is the cross sectional area at the base of the live crown, A3 is the cross sectional 

area corresponding to a measured minimum diameter, D3, and C4 is a taper form 

coefficient determined empirically or from the literature.  The portion of the equation on 

the right hand side which is multiplied by C4 represents the volume of a truncated cone, 

as is used for the volume of the tree stem below the crown base. Thus, if C4 is equal to 1, 

the stem top is modeled as a truncated cone. However, generally taper within the stem top 

results in a volume that is larger than the truncated cone, so C4 is generally larger than 1. 

The specific polynomial coefficients for any given tree can be determined analytically 

because the volume, or left hand side of the equation, is known (Appendix  B). Modeling 

the stem within the crown with a polynomial results in a suitably realistic tree bole 

(Goulding and Murray 1975) which, due to its continuously differentiable form, 

facilitates calculation of the cross sectional area at any point above the crown base as 

well as the woody biomass occupied by any particular section along its length. These 

calculations are essential to the accounting of biomass used within the tree and to ensure 
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that modeled biomass quantities are consistent with theory and observation while still 

providing the flexibility required by the design criteria for the FUEL3D model. 

 

We determine the volume of branch wood biomass, by subtraction, as  

sb VVV 222 −=  

Eqn. 1- 16 

 

and the woody biomass corresponding  to the crown stem wood, M2s and branch wood, 

V2b, are simply the product of the volume and a constant wood density value. 
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Eqn. 1- 17 

    

and the volume of branch woody biomass is determined by subtraction 

 

sb MMM 222 −=  

Eqn. 1- 18 

 

Once all key biomass components are quantified, the model then proceeds to distribute 

this biomass in space, beginning with the tree stem and then adding branches. Strict 

accounting of biomass throughout the process; biomass is distributed until no biomass 

remains. 
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Distributing biomass in space 
FUEL3D models the distribution of biomass in space as one or more lists of primitive 

geometric units; similar objects are listed together. At present two types of fundamental 

geometric units are used to describe a plant. The first is a tree branch segment, which is 

modeled as a cylinder or a frustum of a cone.  Cylinders are also used for conifer needles. 

The other primitive geometric unit is a planar polygon. This unit can be used to represent 

a hardwood or shrub leaf or a portion of a leaf. 

   

Primitive units such as cylinders are grouped into larger structures referred to as ‘objects’ 

to construct more complex branching and leaf structures in which species specific 

architectures can be assembled (Figure 1-4). In this manner it is possible to use the 

model to represent a wide variety of particular plant features. For deciduous trees or 

shrubs with leaves, an object might contain both segments and leaf polygon elements.  

For conifers, in which no planar polygon primitives are included, such objects typically 

consist of a series of cylindrical or truncated cone segments which together constitute a 

branching node.  
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Figure 1- 4 A branching ‘object’ in the FUEL3D model is the set of child segments extending out 
from the end of the parent segment. 
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A central concept in the implementation of the FUEL3D model is that species can be 

associated with different types of objects, and that these objects can be generated from 

parameterized statistical distributions such that variability in the branching structure, 

observed in nature, can be incorporated into the geometric structure of the tree or shrub. 

Thus, at each point where a branching node is needed, the number of child segments, 

their orientations, their relative proportions of biomass and corresponding dimensions can 

all be drawn from appropriate distributions determined from field observation.  

 

The first object in the list is the truncated cone which represents the tree stem below the 

crown base. Coordinates in x,y and z, at the bottom and top of the truncated cone, and the 

radii at those positions are recorded in the list. In addition to this basic spatial information 

other quantities of interest are calculated, including the volume, biomass and the surface 

area: 

 

( ) ( )( )22
2121 hrrrr +−+= πσ  

Eqn. 1- 19 

       

 

In addition to the coordinates, dimensions and properties (such as calculated volume, 

surface area and mass), other descriptors are stored in the list which serve to link this 

object to others when appropriate, such as a common tree identity. Elsewhere in the tree, 

a common branch identity number will be assigned for all branch segments which form 
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part of the same larger branch. These descriptors provide a capability of extracting 

subsets of a tree on the basis of a simple query, such as a particular branch identity 

number, and also facilitate analysis and post-processing of model outputs, such as 

visualization and summarization. 

 

Once the tree stem below the crown base is complete, FUEL3D proceeds to assemble the 

crown, beginning with the stem wood within the crown.  

Using the polynomial coefficients specific to this tree and determined analytically 

(Appendix B), FUEL3D produces the tapering curve of the stem within the crown. The 

stem is then divided up into a series of sections in which the length of each section is 

drawn from a distribution parameterized by data collected on whorl length (a site level 

parameter). 

At each of these locations, a branching object, consisting of a portion of the stem within 

the crown, and one or more potential branching points, is constructed according to 

species parameters. Each of these sections then represents a whorl, or a location on the 

bole from which branches might extend.  

 Species parameters describe the numbers of branches in a whorl and angles associated 

with their orientation. A branch is not actually attached at this point but the location 

where a branch might attach as well as its initial orientation is stored in a temporary list.  

This process continues until the model has arrived at the top of the tree. At this point the 

tree consists of a whole stem and a series of locations from which branches might extend.  

 

 33



 

To facilitate modeling of a diversity of tree architectures, several simple controls are 

implemented at this stage which control overall whole tree patterns. These include crown 

form, initial controls on branch angles, and the use of a statistical probability distribution 

function to provide for variability in branch size. The crown form control enables a 

coarse control over the whole tree crown form by providing a link between branch 

diameter and vertical position within the crown. If a conical form is desired, for example, 

larger branch diameters will be assigned to the lower portions of the crown, while an 

ellipsoidal form can be achieved by assigning larger branch diameters to the center of the 

crown. A less regular overall crown geometry can be achieved by imposing no preference 

on the relationship between branch basal diameter and position within the tree crown. In 

general, although some trees have highly consistent crown form (such as subalpine fir), 

many trees, and particularly Ponderosa pine, exhibit a significant variability in crown 

form, varying with light conditions and stand density (Horn 1971, Osada et al 2004).  

 

Branching out 
FUEL3D adds one branch at a time. Each branch is assigned a basal diameter drawn from 

a statistical probability distribution (the Beta distribution, shown below), and an initial 

segment length. Together these measurements constitute a cylindrical branch segment. 

Both the probability distribution and the initial segment length are parameterized from 

field data. 
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The Beta distribution is a flexible, positive distribution function. Because the distribution 

is bounded on the interval 0 <= x <= 1, it is useful in representing data which are 

proportions of some quantity. The probability density function of the Beta distribution is 
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Eqn. 1- 20 (Evans et al. 1993)                    

 

where β(v,w) is the Beta function with two shape parameters v and w, (v > 0, w >0) 
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Eqn. 1- 21       

 

depending on the values of the shape parameters v and w, the beta distribution can exhibit 

a wide variety of forms (Figure 1-5).  
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Figure 1- 5 Figure demonstrating the flexibility of the Beta distribution, used in FUEL3D to model 
the size distribution of branch basal diameters. 
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 The Beta distribution is used here in FUEL3D largely because its flexibility permits a 

wide range of tree forms to be easily implemented. For example, one set of parameters 

for the Beta distribution might result in a tree with many small branches, while another 

might result in a tree with a small number of larger branches. It is important to be able to 

represent a range of different kinds of branch size distributions because the form of a tree 

crown is highly dependent on the light conditions and competition with other trees (Horn 

1971). 

 

The number drawn from the distribution represents a proportion. This proportion is 

multiplied by the total branch basal cross sectional area available, ABT (described below), 

to determine the cross sectional area for a particular branch as:  

βBTBp AA =  

Eqn. 1- 22 

   

where ABp  is the cross sectional area at the base of a particular branch. Later in the 

process the label ABp will refer to the cross sectional area of any parent segment. ABT is 

the total branch cross sectional area available, and β is a proportion, specific to this 

branch, drawn from the Beta distribution. 

 

The initial segment length is set as a proportion expected total branch length, LT, as 

follows: 
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  50 CLT=l

Eqn. 1- 23 

         

 

where LT is total branch length predicted empirically from branch diameter, DB, and C5 is 

an empirically measured value calculated as the length from the branch base to the first 

live second order branch divided by the total branch length.  

 

The total woody biomass, and associated foliar biomass to be distributed in this branch is 

determined on the basis of its proportion of branch cross sectional area, as follows: 
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Eqn. 1- 24 

   

where M2bi and Mfi are the woody and foliar biomass, respectivelym for branch i, βi is the 

proportion from the Beta distribution for this branch and M2b and Mf are the total branch 

wood biomass and foliar biomass quantities for the tree. 

 

Once dimensions (length and diameter), locations (coordinates of the midpoint of the 

proximal and distal ends), orientation (theta and phi angles), and associated biomass 

quantities (woody and foliar biomass for this branch) for the initial branch segment are 

defined, the model has all the information it needs to distribute biomass within the 

branch. This is done with a recursive (self-referencing) algorithm, similar to other fractal 
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tree models (Berezovskava et al 1997, Niklas 1986, Van Noordwijk and Mulia 2002).  

The algorithm extends itself, splits into smaller branches, which themselves split into 

smaller branches, and so on until the biomass quantities allocated to the branch are used 

up (Figure 1-6).  
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Figure 1- 6 Figure illustrating the process by which branching objects are built on to the ends of 
previous branching objects until biomass apportioned to the branch is depleted. 
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Figure 1- 7 A prototypical fractal branch, with no variability in dimensions or angles. 
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An example of a prototypical fractal branch, with no variability in dimensions or angles 

is shown in Figure 1-7. This process is described below: 

 

At the beginning of the recursive algorithm, the program accesses, through a lookup 

table, all relevant tree, species and site parameters. For example, all species parameters 

(which describe geometry and properties of branching nodes) are accessed via an integer 

code for species identification in the tree input parameters). The algorithm then 

determines the orientation of the segment in question. This is done by determining the x,y 

and z components of the distance between the x,y,z coordinate at the center of one end of 

the segment and the x,y,z, coordinate at the other end: 

 

12

12

12

zzz
yyy
xxx

−=Δ
−=Δ
−=Δ

 

Eqn. 1- 25 

  

where coordinate (x1,y1,z1) is the proximal end of the segment and (x2,y2,z2) is the distal 

end. The orientation of the segment is then calculated by conversion of cartesian 

coordinates to spherical coordinates as follows 
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),arctan(
22 yxz

xy

Δ+ΔΔ=

ΔΔ=

φ

θ
 

Eqn. 1- 26 
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where arctan refers to the four quadrant inverse tangent. The orientation of the segment is 

used when child segments are built off of an existing segment. A simple species level 

parameter for incremental angle changes can also be used here to modify the branching 

habit. For example, a branch could be initially oriented perpendicular to the tree but could 

then angle slightly upward at each successive branching to provide an upward curve.  

 

The  length of the segment is calculated as 

( )222 zyx Δ+Δ+Δ=l  

Eqn. 1- 27 

  

 

The model then evaluates whether the biomass allocated to this branch is sufficient to 

continue branching (based on a theshold value of biomass) . If there is sufficient biomass 

for branching to continue, the model produces a branching node consisting of two or 

more child segments from a template based on species level parameters. Variability is 

explicitly incorporated into this process such that each branching node may have a 

different number of child segments and angles between them may vary, with the numbers 

being drawn from distributions parameterized from field data.  

 

Following the pipe model, the sum cross sectional area across all child segments is 

preserved, according to the relationship 

 

 43



 

Bp

m

i
Bi ACA 6

1
=∑

=

 

Eqn. 1- 28 

   

where ABp is the cross sectional area of the parent branch, ABi is the cross sectional area 

of a particular child segment, m is the number of child segments in this particular 

branching node and C6 is a parameter describing change in the sum cross sectional area 

which allows for the presence of non-conducting tissue within the wood. The parameter 

C6 must be greater than or equal to 1.  

 

In FUEL3D, the proportion of the sum cross sectional area assigned to the various child 

segments may vary, such that child branch segments may be of different size. This 

enables FUEL3D to account in a simple manner for apical control, in which the main, 

usually central portion, of the branch is larger and longer than the smaller branches which 

extend off of it (Figures 1-8 and 1-9).  
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Figure 1- 8 An example branch, shown as a line figure. 
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Figure 1- 9 A different branch, shown as a line figure. A change in the allocation of biomass to the 
dominant branch segment has resulted in a longer branch and a different geometry. 
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This variability in cross sectional area also allows for patterns which reflect natural 

variability in plant growth. This variability in cross sectional area, and corresponding 

proportion of biomass quantities, is implemented as an array of coefficients p1 .. pn, 

where n is the number of child segments in a particular branching node;  
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Eqn. 1- 29 

  

the array is required to sum to 1, and the cross sectional area of a given child branch, Abi, 

is its proportion, pi, multiplied by the sum cross sectional area.This is similar to the 

approach used in other static fractal models in which child segments can be of unequal 

size (Richardson and zu Dohna 2003,Ozier-Lafontaine et al. 1999). 

 

A particular branching node is created with orientations between child segments but 

generic dimensions. Its position is also generic, with the base at the origin (x=0,y=0,and z 

= 0), with the main segment (which would typically serve as the continuing extension of 

the parent branch segment) oriented along the z axis. For this branching node to become 

part of the larger tree structure in space its dimensions must be scaled properly and its 

position must be rotated such that its orientation is consistent with the parent segment, 

and translated such that it extends from the distal end of the parent segment. 
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Following the WBE model (West et al. 1997), when all child segments are of the same 

size, the lengths of child segments scale with the parent segment length as: 

 

3
1−= nγ  

Eqn. 1- 30 

   

where γ is the ratio of the child segment length to the parent segment length, n is the 

number of child segments.  In FUEL3D, where child segments may be of different size, 

this scaling relationship is modified to 
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Eqn. 1- 31 

  

where p is the proportion of the sum cross sectional area for a particular child segment. 

Note that when all children are of the same size, their proportions are equal, and this 

equation resolves to the same as the preceding one. 

 

Throughout the process, FUEL3D makes strict accounting of the biomass available. If the 

biomass allocated to a particular child segment is not sufficient to construct a segment of 

the specified dimensions, the algorithm will build a segment within the limits of the 

biomass available while reserving sufficient biomass to build a terminal structure, 

described some paragraphs below. In no case is a segment allowed to be constructed with 
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more biomass than is available for that construction. FUEL3D is sensitive to the wood 

density, a species level constant. A higher density material will result in smaller 

dimensions for the same biomass. The reduction in dimensions in branches is done in 

length rather than diameter. 

 

Once the appropriate dimensions are determined for all child segments, the algorithm 

then updates the position of the end point of each child segment such that its positions are 

in accord with the new dimensions.  

 

Each child segment is then rotated such that the overall structure of the branching node 

(which is a collection of child segments) is oriented to fit on the distal end of the parent 

segment. This rotation essentially involves a mapping of positions in the local coordinate 

system of the branching node (i.e. at the origin and oriented along its z axis) to the global 

coordinate system in which the tree and its component branches are found. This is done 

with standard coordinate system transformations, which consist of  rotations around the x 

axis (referred to as the “roll angle”), y axis (referred to as the “pitch angle”) and the z 

axis (referred to as the “yaw angle”):   
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Eqn. 1- 32 

  

 

At this point the complete branch node is oriented properly with its parent segment but is 

not in the correct position. The correct position is achieved by translating the branching 

node to the distal end of the parent segment. 

 

Biomass quantities (foliar biomass and woody biomass associated with a particular 

branch segment) are updated such that the biomass that was used in the construction of 

each segment is accounted for and subtracted from the amount of biomass allocated to 

that segment (and its eventual child segments). 

 

A list containing all pertinent information for all geometric structures in the tree is 

updated each time a new segment is added. The list is assembled primarily for the 

purpose of developing three dimensional inputs for 3D fire behavior models, but other 

uses for this list arise as well, such as post processing and analyses and detailed 

visualization. 
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 At this point the recursive nature of the algorithm comes into play as the sequence is 

then repeated for each of the child segments. Each segment continues to branch, 

producing a new branching node consisting of some number of child segments, until the 

amount of biomass left is insufficient for continued branching. When this occurs the 

algorithm stops branching and constructs a terminal structure.  

 

Terminal structures are another kind of species specific branching node. Similar to the 

branching nodes described above, terminal structures have particular aspects that are 

defined, and others that are assembled ‘to order’. For conifers, a terminal structure 

consists of one or more branches supporting clumps of needles. Foliar biomass is divided 

up into needles, and needles are arranged in clumps which are arranged on the terminal 

branches. Measurements of needle dimensions and angles are part of the detailed data 

collection used to parameterize a species; here this information is put to use. An 

important feature of FUEL3D is that it provides for two levels of detail with respect to 

terminal structures. In either case the same calculations are made, but the difference lies 

in what level of detail is explicitly written to the list. In the more detailed case, each 

individual needle is described with explicit coordinates and dimensions and related 

calculations such as mass, volume and surface area.  

 

The positions and orientation of needles are assembled much in the same manner as the 

branching structure within the rest of the tree crown: by assembly of smaller geometric 

objects (Figure 1-10). The total number of needles is calculated by dividing the foliar 
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biomass by the mass per needle;  needles are then assembled in clumps, with dimensions 

and patterns described in the detailed species terminal parameters. Clumps are assembled 

in needle whorls; gaps between needle whorls are described in species parameters as 

well. 
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Figure 1- 10 An example terminal structure consisting of a terminal branch segment and associated 
foliar biomass. 
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One of the most straightforward uses of the geometric objects output by FUEL3D is in 

visualization. As a standard output of the model a file is written which can be used by an 

external ray tracing software for detailed photorealistic visualizations. Ray tracing is a 

spatially explicit approach for light modeling which samples beams of light between the 

light source (such as the sun) and a given object and back to a specified viewpoint. Ray 

tracing  thus is capable of representing shadows and other behaviors related to light with 

great detail, both in space and in time. Figure 1-11 illustrates an example tree shown via 

ray tracing visualization, without foliage; the same tree is shown with foliage in Figure 

1-12. Figure 1-13 presents a more detailed view of the same tree. 
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Figure 1- 11 A three dimensional tree modeled with FUEL3D and visualized with ray tracing 
procedures. The tree is shown here without foliage to illustrate the branching structure within the 
crown. 
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Figure 1- 12 A three dimensional tree modeled with FUEL3D and visualized with ray tracing 
procedures. 
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Figure 1- 13 A three dimensional tree modeled with FUEL3D. The tree is visualized with ray tracing 
procedures and the view perspective is closer to the tree, revealing more detail. 
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Figure 1- 14 Foliage of a tree modeled with FUEL3D has been summarized to “container” objects 
which retain all the information of the finer detail structures within them. Containers facilitate 
quantitative modeling across a range of spatial scales. 
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As might be imagined, this results in a very large number of geometric objects, with 

correspondingly larger file sizes and lengthier processing in summarization of fuel 

information to volume cells. For most purposes this is not necessary, although it is useful 

when there is need for a highly detailed description of a small volume. In most cases, 

though, what is written to the list is a “container”, which is a cylindrical bounding 

volume which includes a summary of its contents; the summary is built from the list of 

needles and fine twigs which are found within it (Figure 1-14). This use of containers 

facilitates much faster processing and analysis. Extending the concept further, for coarser 

scale analyses, an entire branch, portion of the crown or even a whole tree, could be 

described as a container. Figure 1-15 illustrates two different stands in which each tree 

was summarized to a minimal number of containers. This is an important mechanism in 

FUEL3D which facilitates analyses across a range of spatial scales.  
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Figure 1- 15 An example use of large “container” objects to represent two stands of trees. The two 
figures on the left side are oblique perspectives on each of the two stands while the two figures on the 
right show a view from directly overhead. 
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Summarization to discrete volumes 
In order for the collection of branch segments and foliage which compose the simulated 

tree to be used in a numerical fire model it is necessary to convert the data to values 

associated with three-dimensional grid cells, or voxels. To do this, each branch segment, 

or other spatial structure output by the biomass distribution process above, must be 

juxtaposed on the boundary lines of the mesh which defines the three dimensional array.  

 

If volume cells are large relative to the branching segments it is often the case that the 

branch segment is wholly contained by a particular volume cell. In this case, the 

appropriate quantities in the segment needed by the fire model for that cell, such as its 

total woody mass, are simply added to the existing quantity for that cell. In this way the 

quantities in each cell volume reflect all the component segments which fall within their 

bounding coordinates. 

However, in many cases the branch segment will cross boundaries between one or more 

volume cells. In this case, the branch segment must be divided into portions between all 

cells which contain part of it.  While this may not seem difficult it is a process which, if 

not deftly handled, may become computationally demanding. This is particularly true as 

the discrete cells approach the size of the branch segments. A tree may have several 

hundred thousand segments (many more if biomass distribution is done at the level of 

individual needles rather than terminal “containers”); likewise, if the size of discrete cells 

is small there may be a great number of such cells even within a relatively small volume. 

For example, in one cubic meter there are one thousand volume cells of a decimeter on a 

side, and one million volume cells of a centimeter on a side. To evaluate the intersection 
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of all branch segments by all cells in such a case would be prohibitive in computational 

demands. 
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Figure 1- 16 Example of a spatial search in the vicinity of a cylinder. The spatial search is used to 
improve the efficiency of the process of summarization of fuel quantities to three dimensional volume 
cells. 
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FUEL3D eliminates some of this potential computational demand through the use of a 

spatial search to identify potential cells which might intersect a branch segment before 

carrying out more involved calculations (Figure 1-16). A search radius is set to a 

particular length; the appropriate length depends on the relative sizes of the boxes and the 

objects to be summarized. The search radius defines a sphere centered on the midpoint of 

the cylinder. The program identifies those boxes for which any vertex falls within the 

search distance. Only those boxes whose midpoints fall within the search radius are 

considered for assignment of some portion of the mass of the cylinder. To determine the 

portion of the cylinder’s volume (and thus its mass) occupied by each potential volume 

cell, the program then performs a rather simple montecarlo integration. Monte carlo 

integration is a numerical technique typically used to integrate over irregular areas or 

volumes. The general procedure involves sampling a known, regular, bounding volume, 

(such as a box) which intersects the more complex volume, with a series of random 

points, and then evaluating each point as to whether it lies inside or outside the irregular 

volume. In the specific case here, both the bounding volume (the cell box) and the branch 

segment (cylinder) are regular shapes with known properties, so the procedure is 

somewhat simpler. FUEL3D  samples the cylinder volume with a series of random 

points; each point is evaluated as to whether it falls within the bounding coordinates of 

each box and points are tallied by box. The proportion of those points which fall inside a 

particular volume cell is the proportion of mass assigned to that box. Parts of a branch 

segment that fall outside of one cell will be accounted for in an adjacent cell. In this 

manner the total quantities are preserved across whatever spatial scale is desired.   
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As the total mass of the cylinder is known, differences between the sum of mass 

apportioned and the known mass, which may arise from sampling are divided evenly 

among those boxes which had a non-zero proportion.  

 

Figures 1-17, 1-18 and 1-19 illustrate the volume summarization of a small tree at three 

cell sizes. In each figure the tree was collapsed to a single horizontal layer (summing all 

fuel load quantities by vertical columns).  
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Figure 1- 17 Demonstration of spatial pattern in fuels within the crown of a small tree at cell 
resolution of 0.5 m. For this figure all fuels were summarized in vertical columns to produce a single 
layer. 
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Figure 1- 18 Demonstration of spatial pattern in fuels within the crown of a small tree at cell 
resolution of 0.25 m. For this figure all fuels were summarized in vertical columns to produce a single 
layer. 
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Figure 1- 19 Demonstration of spatial pattern in fuels within the crown of a small tree at cell 
resolution of 0.1 m. For this figure all fuels were summarized in vertical columns to produce a single 
layer. 
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Figure 1- 20 View of the crown of a tree collapsed horizontally to a single vertical layer. 
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Figure 1- 21 View of the crown of a tree collapsed horizontally to a single vertical layer, shown here 
as contours indicating the quantity of fuel. 
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Figure 1- 22 Demonstration of the extraction of particular components of a fuel array for a specified 
sub volume:  a 1 m wide swath, consisting of foliage only, was extracted from a tree. A perspective 
view with shadows is made using ray tracing procedures. 
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Figure 1- 23 Demonstration of the extraction of particular components of a fuel array for a specified 
sub volume:  a 1 m wide swath, consisting of foliage only, was extracted from a tree. Here a side view 
is shown. 
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Figures 1-20 and 1-21 illustrate a similar process but where a tree was collapsed by 

horizontal arrays. A useful feature of the spatially explicit representation of crown fuels is 

that fuels can be described for a particular portion of a tree crown; this is accomplished 

by a simple query on the output file. Figures 1-22 and 1-23 illustrate perspective and 

side views, respectively, of a 1m wide portion of a tree crown.  
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Assignment of other fuels attributes 
FUEL3D deals with the spatial structure of fuels. However, other aspects of fuels may 

vary in time while the spatial structure remains the same. A key example is fuel moisture, 

which can change within a tree over the course of a season, or in response to drought or 

insect or pathogen attack. To accommodate this important characteristic of fuel 

variability, each individual branch segment, terminal container or even needle can be 

assigned its own fuel moisture, as well as other attributes. This facilitates explorations of 

changes in fire behavior arising from insect outbreaks or other forest health issues. 

 

MODEL APPLICATIONS 
The detailed outputs of the FUEL3D model can be used in number of ways. Here, I 

briefly demonstrate two important applications: fire and fuel interactions, and light 

dynamics. 

Fire –Fuels interactions 
To demonstrate how model output from FUEL3D can be used in conjunction with 

detailed fire behavior models to explore fire and fuel interactions, foliar biomass from a 

tree simulated with FUEL3D was summarized to 0.25 m cells and used as input to the 

Wildland Fire Dynamics Simulator (WFDS), a physical fire behavior model (Mell et al 

2005). This model is described in greater detail in Chapter II, so here it is presented in 

brief only. WFDS is a Computational Fluid Dynamics (CFD) physical fire model in 

which different modes of heat transfer (i.e. radiation and convection) are dealt with 

explicitly in a time and space dependent simulation. A key aspect of this model, as well 

as other CFD fire models such as FIRETEC (Linn 1997, Linn et al 2005), is that they are 

capable of simulating fire behavior in heterogeneous and discontinuous fuel beds in three 
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dimensions. This makes them ideal for exploring complex fire and fuel interactions. 

Figure 1-24 shows a fire burning under a single tree crown at a particular moment in time 

(t = 21.5 seconds). The tree shown in this figure was assigned high foliar fuel moistures 

(100%) typical of a live tree. In contrast, Figure 1-25 shows the same tree, at the same 

point in time, with the same ignition pattern, but with fuel moistures typical of a dead tree 

(30%). The differences in fire behavior arising from this single factor are probably best 

viewed as animations: live_tree_fire, dead_tree_fire.   

 

 

Figure 1- 24 Detailed fire simulation, using output from the FUEL3D model as input to the physical 
fire model, WFDS. The image shows a fire burning below a tree crown. The tree has a height to 
crown base of 4m, and foliar biomass is parameterized as live, with 100% fuel moisture. At t = 21.5 
seconds, the fire has heated a portion of the tree crown but has not ignited it.  
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Figure 1- 25 Detailed fire simulation, using output from the FUEL3D model as input to the physical 
fire model, WFDS. The image shows a fire burning below a tree crown. The tree has a height to 
crown base of 4m, and foliar biomass is parameterized as dead, with 30% fuel moisture. At t = 21.5 
seconds, the fire is actively torching the tree crown.  

 

Light dynamics 
Solar radiation has a significant drying effect on dead fine fuel moisture (Nelson 2002) 
and a fire burning through sun lit fuels can burn hotter and faster than one in the shade. 
Light dynamics on the forest floor thus both impacts fuel moisture dynamics and can 
affect fire behavior. To demonstrate the application of fine scale spatial representation in 
assessing impacts to the microclimate I used ray tracing procedures (North 1996, 
Govaerts and Verstraete,1998, Brunner 1998) to simulate the shadows cast by a single 
tree modeled with FUEL3-D. Ray tracing is a spatially explicit approach for light 
modeling which samples beams of light between the light source (the sun) and a given 
object and thus is capable of representing shadows and other behaviors related to light 
with great detail, both in space and in time. The tree, represented as a series of branches 
and terminal containers, is located in Missoula, Montana., at a point in space (Latitude 
46.5 North, Longitude 114.0 degrees West, Missoula, Montana) and at five different 
points in time over the course of a single day (June 21, 2007, local time) (Figures 1-26 to 
1-30). The sequence can also be viewed as an animation:   Tree_sun_simulation 
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Figure 1- 26 View of a single tree with shadows, on the morning of June 21, 2007, in Missoula 
Montana. The sun-earth-shadow geometry is accurate.  Visualization is done with ray tracing. 
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Figure 1- 27 View of a single tree with shadows, on the morning of June 21, 2007, in Missoula 
Montana. The sun-earth-shadow geometry is accurate.  This image represents a point in time about 
an hour later than the previous one. 
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Figure 1- 28 View of a single tree with shadows, in the afternoon, on June 21, 2007, in Missoula 
Montana. The sun-earth-shadow geometry is accurate.  This image represents a point in time about 
an hour later than the previous one. 
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Figure 1- 29 View of a single tree with shadows, in the afternoon, on June 21, 2007, in Missoula 
Montana. The sun-earth-shadow geometry is accurate.  This image represents a point in time about 
an hour later than the previous one. 
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Figure 1- 30 View of a single tree with shadows, in the afternoon, on June 21, 2007, in Missoula 
Montana. The sun-earth-shadow geometry is accurate.  This image represents a point in time about 
an hour later than the previous one. 
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DISCUSSION 
The ability to represent the spatial structure of vegetation in detail across a range of 

scales will facilitate improvements in our understanding of fundamental fuels science. 

Fuel beds can be constructed describing any configuration of trees and shrubs of any size. 

By building fuel beds from fine scale components of individual trees and shrubs (and 

associated surface fuels), loss of relevant detail, and potential scale-dependent pitfalls 

associated with fuel classifications (e.g. Sandberg et al. 2001) can be avoided. At present 

there is no way that fundamental wildland fuel properties, such as the size distribution of 

particles or distribution of mass within a tree crown, can be easily calculated.  With 

FUEL3-D these quantities can be calculated from the simulated structure, tested and 

calibrated.  The flexibility with which FUEL3-D can represent the architecture of trees 

and shrubs makes it possible to develop species-specific fuel models.  Differences in 

crown architecture between species likely play key roles in how fire burns through a 

stand and how that stand responds to fuel treatment over time. This provides stronger 

linkages between silviculture, ecosystem function and fuel management such that fuel 

treatments can be considered not only in terms of their potential impacts on fire behavior 

but also on other ecosystem components. 

 

A rather simple, but important, feature of the FUEL3D model is that, due to explicit 

incorporation of coefficients C1 and C2 linking fine scale fuel properties to biophysical 

and climatic conditions for a given site, FUEL3D is designed to take advantage of recent 

mapping efforts which currently use an ecosystem process modeling approach to map 

these gradients over large areas. Development of simple correlative relationships linking 
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these gradients to FUEL3D inputs will enable detailed fuels inputs to be developed with 

FUEL3D for any location.  

 

By quantitatively describing fuels at higher detail, FUEL3-D will promote an improved 

understanding of fire and fuels interactions. As seen in the significant differences in fire 

behavior between the live tree and the dead tree, detailed modeling can be very 

informative in identifying thresholds in fire behavior. In conjunction with numerical fire 

behavior models such as FIRETEC or WFDS it will be possible to more precisely study 

transitions from surface to crown fire and develop species-specific thinning spacing 

guidelines. Analyses across scales will help to systematically identify conditions when 

greater complexity in modeling is required, and simpler conditions in which it is not. 

Correlative relationships observed through more intense numerical studies may be used 

to refine existing operational models. One advantage of FUEL3-D is its independence 

from any specific fire behavior model and its assumptions and limitations. At present the 

model is being designed to work with two numerical fire models, FIRETEC (Linn et al 

2002) and WFDS (Mell et al 2005). As other models appear or as these models change 

FUEL3-D will be able to provide the needed inputs. The independence of the fuel model 

from particular fire behavior models provides flexibility and facilitates comparisons 

between models.  

 

Finally, modeling fuel-fire interactions at fine scales will aid in a tighter coupling 

between fire behavior and fire effects. Most fire effects calculations are carried out as 

point calculations, where fuel consumption at a point or mortality of an individual tree 
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are considered (Reinhardt et al  2001). At present it is difficult to rectify the 

homogeneous stand-based fire behavior calculations from operational fire behavior 

models with point level fire effects predictions. Incorporation of finer detail in 

representation of fuels with FUEL3-D, and detailed spatially explicit fire behavior 

models will provide a basis for linkages between fire behavior, fuels and fire effects than 

has been possible before. This will improve our ability to define burn window 

prescriptions and anticipate the consequences of treatments or wildfire. 
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CHAPTER II: EXPLORATION OF FINE SCALE FIRE AND 

FUEL INTERACTIONS WITH FUEL3D AND THE PHYSICAL 

FIRE MODEL, WFDS 
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ABSTRACT 
Current operational predictions of crown fire initiation rely on the assumption that crown 

fuels can be reasonably represented as a homogeneous layer which will burn if enough 

heat is introduced at its base. However, this assumption has never been tested. In this 

study, the effect of heterogeneity within the crown of a tree on fire behavior is 

investigated. Three trees with the same fuel quantities but different spatial configurations 

are simulated with the spatial fuel model, FUEL3D. For each spatial configuration, four 

different scenarios are assembled representing combinations of height to crown base (HI, 

7m and LO, 4m) and inclusion / exclusion of woody biomass within the crown, for a total 

of twelve different cases spanning three factors. Fires are then simulated under these tree 

crowns with the physical fire model, WFDS. All three factors appear to influence 

outcomes, with differences in fuel consumption, timing, duration and intensity of 

temperature and in flow dynamics; height to crown base generally had less effect than the 

spatial configuration of the fuels. These fine scale interactions between the fire and the 

fuel suggest that the initiation of crown fire may depend on the distribution, configuration 

and properties of fuel within the crown.  

    
INTRODUCTION  

Crown fires, once initiated, are extremely difficult to suppress (Albini and Stocks 1986), 

in part due to an increased likelihood of spotting behavior, as firebrands are lofted ahead 

of the flaming front from high in the canopy (Wade and Ward 1973). Crown fires burn 

with greater intensity and faster spread than surface fires (Rothermel 1983), so 

firefighters need larger safety zones to protect themselves from crown fires than from 

surface fires (Butler and Cohen 1998). Given that the onset of crown fire behavior can 

jeopardize fire fighters and typically necessitates a significant change in suppression 
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strategies, prediction of the conditions under which crown fire initiates is of primary 

concern in fire management. 

 

Similarly, from an ecological standpoint, crown fires may result in severe impacts to 

ecosystems. Hydrologic functions within burned watersheds, such as whole system water 

storage, flow rates and timing of runoff events, are affected mainly through changes in 

the interception of rain by forest canopies and by water storage in the vegetation, both of 

which are affected when a crown fire kills trees. Changes in species composition may 

arise due to large scale changes in forest microclimates following severe fires, and often 

due to the destruction of trees which could serve as seed source for new regeneration.  A 

key factor in the severity of crown fire ecological impacts is tree mortality. Thus, 

prediction of the degree of tree mortality that might be expected from a given fire is of 

paramount interest to researchers and ecosystem managers.  

 

Current models used operationally for prediction of crown fire initiation (Finney 1998, 

Scott and Reinhardt 2001, Forestry Canada Fire Danger Group 1992) all rely on a 

common theoretical background developed (Van Wagner 1977 ), which states that,   

 

( ) )2/3(
0 CzhI =  

Eqn. 2- 1 

   

where I0 is the critical surface intensity needed for a crown fire to initiate, C is an 

empirical constant describing the ratio of the ambient temperature to the temperature 
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required for ignition , h is the ignition energy, and z is the height to the base of the crown 

fuel layer. Van Wagner’s approach assumes that the crown fuel to be burned consists of a 

single homogeneous layer and that crown fire will be initiated provided that the base of 

this layer is heated to a sufficient temperature; the spread of the fire upward through the  

crown fuel is thus considered to occur without regard for the bulk density, or other 

properties of the crown. Other models have been developed with more complex 

configurations (e.g. Cruz et al 2006) but which still assume that crown fuels are a 

homogenous and continuous layer; this assumption is common to all of the operational 

models.  Similarly, models used to predict fire induced tree mortality assume a 

homogeneous crown volume extending from the crown base to the top of the tree and 

intersect that volume with a predicted scorch height (Van Wagner 1973) (Ryan and 

Reinhardt 1988, Reinhardt et al. 2001, Keyser et al. 2006); the likelihood that a tree will 

be killed increases with the proportion of the crown volume burned.   

 

The assumption of a homogeneous crown layer is thus a central component in current 

models used to predict the initiation of crown fires and tree mortality arising from fires. 

While it may be reasonable to assume a homogeneous crown layer in forest types 

characterized by dense, continuous trees of very similar size and age, typified by the 

stands used in Van Wagner’s analysis (Van Wagner 1964, Van Wagner 1968), such an 

assumption is increasingly tenuous when applied to stands characterized by variability in 

size and numbers of trees. At present Van Wagner’s model is used in operational models 

for all forest types, regardless of the composition, structure and stocking of the stand; it is 

likewise applied in stands that have been thinned or affected by disease (Reinhardt and 
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Crookston 2003). To date, however, the potential implications of crown fuel 

heterogeneity for crown fire initiation and tree mortality have not been explored.   

 

In general, the only models which are capable of addressing variability in crown fuels are 

numerical physical models (Linn  1997, Linn et al 2002,  Mell et al. 2005, Mell et al 

2006a Dupuy and Morvan 2005, Morvan and Dupuy  2001). To date, however, 

applications of such models have been largely focused at scales larger than an individual 

tree (Linn et al 2002, Linn et al 2005, Cunningham and Linn 2007); those modeling 

experiments which have been done at individual tree scales have not dealt with gaps or 

other fine-scale fuel variability ( < 1 m scale) within the tree crown (Mell et al 2006b, 

Linn et al. 2005).  

 

Heterogeneity exists in a forest at several scales. At a landscape scale differences in 

productivity, aspect (sun exposure) and other factors lead to differences between stands. 

Within stands, heterogeneity arises in the spacing between trees and in differences in tree 

size and species.  At the still finer scale of an individual tree, heterogeneity exists within 

a tree crown in the distribution of fuel in space, the gaps between branches and clumps of 

foliage.  

 This premise of this study is that, since crown fires consist of many burning trees, 

insights relevant to crown fire initiation and to tree mortality may arise from 

consideration of the rather simpler case of a single burning tree.  In real fires, whether an 

individual tree crown burns or not is often highly dependent on the specific flame-crown 
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geometry (Figure 2-1). To avoid unnecessary complexity the basic scenario is that of a 

single tree, exposed to flame from below, with no ambient wind (Figure 2-2).  
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Figure 2- 1 Example photo illustrating the geometry-specific nature of fire burning through a tree 
crown. In this case the portion of the tree crown that is burning is directly in line with the heat source 
below. 
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Figure 2- 2 Photo of a single tree burning from below. This is the situation being modeled in this 
study. Unlike the simulations presented in this study there is some ambient wind influencing the fire 
plume at the top of the tree. 
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Objectives  
The purpose of this experiment was to explore fine scale interactions between fire and 

fuels at the scale of an individual live tree. In this exploratory study three initial factors 

are considered: 1) differences in spatial configuration of the fuels, 2) differences in the 

height to crown base (4 m or 7 m), and 3) and whether or not larger diameter woody 

material within the crown, which does not itself burn but may alter certain aspects of the 

fire, is included in the simulation.  

METHODS 
 

The WFDS Model 
The Wildland Fire Dynamics Simulator (WFDS) model is a recent adaptation of the Fire 

Dynamics Simulator (FDS), a detailed Computational Fluid Dynamics (CFD) model 

designed for structural fire (burning buildings) applications. WFDS was modified from 

FDS to handle wildland fuels that are unlike fuels in structure fires. WFDS is a physical 

numerical fire behavior model which solves the Navier-Stokes fluid dynamics equations 

appropriate for low Mach numbers (when the rates of change at which processes are 

occurring are significantly lower than the speed of sound). In such modeling, the 

simulation is confined within a defined volume, or spatial domain, within which 

quantities are required to be accounted for according to equations for the conservation of 

mass, momentum, energy and species (quantities of gasses). In WFDS, the spatial domain 

is a three-dimensional rectilinear grid. The use of a rectilinear grid facilitates the use of a 

Poisson flow solver, which can significantly speed up calculations, but also makes it 

difficult to deal with non-flat topography. In this fine scale experiment, however, 

topographic variability is not a concern.  
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The simulations 
A total of thirteen simulations were carried out in the course of this study.  

no tree simulation 
The first simulation had no crown fuels and was designed to characterize the fire 

behavior arising from the ignitor rings (described below) alone without any potential 

interactions with the crown fuels. This initial simulation was then followed by twelve 

individual tree simulations, described below.  

 

Tree simulations 
Three live trees with the same biomass quantities and overall crown dimensions (crown 

length, crown radius and height to crown base) were simulated with FUEL3D. Each tree 

had a different crown form, or overall habit of the tree, as well as correspondingly 

different fine scale configuration of the fuels within the crown. Foliar moisture was held 

constant at 100% (dry weight basis). The first tree was simulated with a conical form, the 

second with a cylindrical form, and the third with an ellipsoidal form (Figure 2-3). 
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Figure 2- 3 The three trees simulated with the FUEL3D model and used in these experiments with 
the WFDS fire model. Tree A has a conical form, Tree B has a random crown form and Tree C has 
an elliptical crown form. 
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 The three tree crowns were thus identical but had different spatial configurations. Each 

of these tree crowns was then translated down from its original position to create two, 

otherwise identical, crowns with different height to crown base. Each crown was then 

summarized to three dimensional arrays to be used as fuel inputs to the numerical fire 

behavior model WFDS, in two ways. In the first volume summarization only the 

thermally thin foliage fuel elements were included. Foliage and small twigs are 

considered to be “thermally thin” because heat transfer into the particle occurs essentially 

instantaneously because the particle size is very small. In the second volume 

summarization, larger woody components of the tree were also included (Figure 2-4). 

The larger diameter woody material is considered “thermally thick”, meaning that there is 

a time dependent radial heat transfer into the particle. The thermally thick biomass was 

parameterized with a very high heat of vaporization (9999 degrees) so it would not burn 

up itself. The inclusion or exclusion of that biomass thus does not change the amount of 

fuel that can burn, but might affect how the thermally thin biomass burned or other 

aspects of the fire’s behavior. 

 

Altogether the tree simulations represents all combinations of three cases of spatial 

configuration, two cases of height to crown base, and two cases of woody biomass (with 

and without), for a total of twelve tree simulations scenarios.  
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Figure 2- 4 Three trees simulated with FUEL3D after summarization to 0.25m cell volumes, shown 
here as a series of blue dots representing the center of a each cell. Each cell has a unique quantity of 
fuel associated with it as well as other properties. 
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Figure 2- 5 The spatial domain used in WFDS simulations consisted of 96x96x80 cells. 
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Figure 2- 6 An oblique view of the spatial domain, measuring 96x96x80 cells. 
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Each simulation was run with the numerical physical fire behavior model WFDS for 80 

seconds of simulation time.  

Spatial domain, boundary conditions and cell resolution 
A rectangular spatial domain, measuring 24 meters x 24 meters in the x and y axes and 20 

meters in the z axis (height) was used for the simulations. Cell size in all dimensions was 

0.25 m; this resulted in a total numerical grid of 96x96x80 cells. Simulated trees were 

positioned at the origin (x=0, y=0) such that they were centered within the domain. 

Boundary conditions were open, with no external inertia, such that gasses and heat are 

permitted to leave the volume; for conservation however the quantities which leave are 

accounted for (Figure 2-5 and 2-6). These boundary conditions are straightforward but 

somewhat simplistic; in a real fire burning in the forest, winds outside the immediate area 

of the burning tree would have a good deal of inertia that would likely entrain the wind 

flows within the domain.  

Ignition 
Ignition with the WFDS model is a special, time dependent case of a boundary condition 

for a particular region. The ignition area is defined with a maximum heat output rate (heat 

release rate per unit area, in kW/m2) and time specifications indicating the duration for 

which this heat output will be maintained. This is similar to a gas burner with a specified 

flow rate of gas. All simulations presented here had the same ignition setup, which 

consisted of a series of four concentric circles radiating out from the origin, each 0.5 m 

wide. The ignitor circles were set up on individual timers such that as one finished the 

next one began. This resulted in a pattern of fire ignition intended to mimic a fire being 

started from a small area in a grass fuel bed with no wind.  
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The heat release rate per unit area (kW/m2) used for ignition is a calculated as follows 

( )
D

hwcr
hrrpua cf)1( −

=  

Eqn. 2- 2 

   

 

where r is the rate of spread in m/s, c is the char fraction,wf is the fuel load (kg), hc is the 

heat of combustion (kJ/kg) and D is the fireline depth. The values used in these 

simulations were r = 0.0333, c= 0.2,wf = 0.7,hc = 15600 and D = 0.2909. Altogether these 

yield a straightforward heat release per unit area of 1000  kW/m2. This is approximately 

equivalent to the Anderson fuel model 3 (tall grass) burning in a no wind scenario 

(Anderson 1982). The value of r is set from the distance and time sequence of the ignitor 

rings. The value of wf   is consistent with recent grass fire experiments in Australia 

(Cheney et al 1993, Cheney and Gould 1995) and related numerical fire model tests (Mell 

et al. 2006a), while the values of hc and c are from the literature (Susott 1982). Each 

ignitor ring was set to output the heat release rate per unit area of 1000 (kW/m2)for  15 

seconds following a 2 second ramp up period, and ending with a 2 second ramp down 

period. Rates of change in ignition ramps are linear in nature.  

 

Analysis of model output 

Types of model output 
Interpretation of output from CFD models can be difficult because the data is dynamic in 

space and time. Output from the WFDS model is made accessible to the user through the 
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Smokeview program, a program produced by the developers of WFDS that reads in 

output from WFDS and which produces high quality graphic output (Forney and 

McGrattan 2004). Smokeview can be set up to provide a number of different forms of 

quantitative output, ranging from point measurements to 2 dimensional volume slices to 

complete three dimensional volumes (Forney and McGrattan 2004).  For the most part 

desired outputs must be specified before the simulation is run. For these simulations four 

types of different model outputs were used to compare different simulations: total mass 

loss over time, vertical slices, individual cell temperature records, and animations 

generated from images showing the progression of the fire over time. These outputs, as 

well as related post processing and analysis carried out on those data are described below. 

mass loss data 
The first model output examined was the mass loss data, which refers to the overall fuel 

consumption over time. This is a global quantity tracked at each time step, so the data is 

formatted as a single array of mass loss values along with the corresponding points in 

time. 

  

Two dimensional slice data 
Two dimensional slice data are often used for visualizing flow and other dynamics of 

simulations in three dimensions. To aid in analysis of the simulations, two dimensional 

slices at y=0, (the plane along the centerline of the spatial domain and parallel to the x 

axis), were output for two quantities: the vertical component of the wind flow, and 

temperature.   
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The first quantity was the vertical, or W, component of the flow, or wind field. Winds in 

CFD models (and any other three dimensional application) are described as velocity 

vector fields with U,V and W components, where the U component measures the velocity 

in the direction of the x axis, V measures and velocity in the y axis and W measures the 

velocity along the z axis. In these experiments, in which there is no ambient wind, the 

source of wind is buoyancy from the heat of the fire, so the W component of the wind 

field describes the expected direction of movement, as well as reductions in velocity that 

might occur as a result of drag from the fuels. 

 

The second quantity output as a two dimensional slice was temperature. While 

temperature is an obvious output to consider in comparisons between fire simulations, 

here the expectation was that the spatial pattern of the temperatures within the slice 

averaged over the thirty second period would provide insights about how the spatial 

pattern of the fuels might influence the fire, particularly with respect to reductions in 

temperature arising from either radiative shielding or absorption of heat by the thermally 

thick material.  

 

Over the course of the simulation the values in all cells are constantly changing and can 

be quite ephemeral, with particular conditions lasting only for a fraction of a second. To 

provide a stable basis for comparison, the slices extracted from the simulation output 

were averaged over a 30 second period from t=30s to t=60s.  This serves as a record of 

the overall pattern of what occurred during this period. The particular time window was 

selected because it captured the bulk of the fire-fuel interactions in these simulations.  
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To facilitate comparisons between simulations, the time averaged two dimensional slices 

for the temperature and wind data for each run were used to extract contours. For the 

temperature slices contours were extracted for temperatures of 300, 400 and 500 degrees 

while for the W component of the wind field contours were extracted at 3, 6 and 9 m/s. 

As all contours were closed figures, the area for each contour the area was then 

calculated. Similar to how the perimeter of a fire serves as a useful measure of how a fire 

spreads over time, the area of the contour at each value represents a succinct measure of 

difference between simulations.  

  Individual cell records over time 
The third type of output used to compare simulations was from individual cell records of 

temperature over time. Temperature data were extracted at a series of cells located at the 

origin and extending vertically, at 1 m intervals, to a height of 18 m. For comparisons 

between runs I examined both the maximum temperature for each of these cells for each 

simulation and the progression of temperature recorded over time at each cell. 

 

Animations 
To illustrate the configuration of the fuels and behavior of the fire for each simulation, a 

series of one thousand images were output from the Smokeview software. These images 

were then used to make animations in standard .AVI file format using MATLAB. The 

view of the spatial domain was rotated incrementally during the image output such that 

each animation provides a full 360 degree view of the simulation. 
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RESULTS 

Summary of fire behavior  
As the simulations are highly dynamic, they are best viewed first via the animations. The 

table below presents links to animations for selected simulations: 

 
Table 2- 1 Animations of selected individual tree fire simulations carried out with FUEL3D and 
WFDS. 

Hyperlink to File 
Conical_Hi_no_woody 

Conical_Lo_no_woody 

Elliptical_Hi_no_woody 

Elliptical_Lo_no_woody 

Conical_Hi_w_woody 

Conical_Lo_w_woody 

Elliptical_Hi_w_woody 

Elliptical_Lo_w_woody 

The narrative presented below, however, may be useful in interpreting the animations. 

No Tree run 
The behavior of the fire in the initial simulation, in which no tree was burned, is 

illustrative of the complex dynamics which occur in fires in three dimensions. Here I 

refer to three figures which show the no tree simulation at three particular moments in 

time. A more comprehensive view can be seen in the animation file. In these figures two 

features of the fire are displayed. The first is an orange isosurface, or three dimensional 

contour, of the stoichiometric value of the mixture fraction, which describes the mixture 

of fuel gas and oxygen necessary for flaming combustion. The spatial resolution in this 

simulation, and in most simulations, is too large to actually represent the true flame 

structure, but such an isosurface is commonly used to represent the flames of the fire. The 

second feature of the fire shown is a slice of the W component of the wind field. This is 

represented by the colored surface facing the viewer.  
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The chief behavior observed in this simulation is the formation of a smooth, laminar, 

candle like flame structure which occurs because there is no external ambient wind 

influencing the flames. This can be seen in the progression described below. 

 

At t = 8.5 s, the flames are just beginning to develop at the center of the domain. The 

W wind component shown in color is very symmetrical, tall and smooth. An area near 

the top of the heat column (colored a deeper orange) shows a relatively higher vertical 

velocity from the buoyancy of a heat pulse from the initiation of the fire (Figure 2-7).  
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Figure 2- 7 W  (vertical) component of the flow at y=0 at t=8.5 for the no tree simulation. 
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Figure 2- 8 W (vertical) component of the flow at y=0 at t=16.5 s for the no tree simulation run. 
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At t = 16.5 s, the flame surface has expanded outward radially and is now a cone like 

shape (Figure 2-8). The wind W component shown in color is fairly homogeneous in 

magnitude and has developed some waves in its profile as turbulent eddies start to 

form. These eddies are evident in the corresponding wind U component (Figure 2-9); 

in this figure the light blue colors to the right of the flame indicate a negative flow 

(going backwards in the x direction) associated with a convective in draft. By t=32.5, 

the flame surface has expanded radially again and is taller (Figure 2-10). Although 

there is some wave like movement in the flame at the particular moment in time 

shown, the overall shape is still very smooth and largely symmetrical. Above the 

flame surface the wind W component is broken up into distinct regions of lower 

velocity (green) , medium velocity (yellow) and higher velocity (red). These regions 

arise due to the turbulent eddies in the wind flow, which can be seen in the 

corresponding wind U component (Figure 2-11).  Although the geometry of the 

flame structure at a particular moment in time is difficult to predict, the fire 

atmosphere interaction of the heat and the air tends to maintain an underlying pattern 

which is fairly stable. This can be seen in Figure 2-12 which shows a similar flame 

structure for the no tree simulation at t = 30 and t=45.  
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Figure 2- 9 A slice of the U (horizontal, along x axis) component of the wind flow at t=16.5 w. 
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Figure 2- 10 W (vertical) component of the flow at t = 32.5s for the no tree simulation run. 
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Figure 2- 11 U (horizontal, along x axisl) component of the flow at t=32.5 s for the no tree simulation 
run. 
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Figure 2- 12 Isosurfaces (three dimensional contours) on the mixture fraction, which is used to 
represent the flame structure in WFDS, at t=30 s(top) and t=45 s(bottom). 

 119



 

Tree simulations fire behavior description 
Figures 2-13, 2-14 and 2-15 illustrate that addition of a tree crown  to the simulation 

(conical, random and elliptical tree crowns, respectively, all with 7 m height to crown 

base and no woody mass), modifies the flame structure somewhat, producing a taller 

and thinner structure, but this structure is still fairly consistent over time. In these 

figures the top frame shows the fire at t= 30 and the bottom frame shows the fire at t 

= 45. In addition to the orange isosurface which represents the flame, the figures 

show a series of dots which indicate the location of cells with fuel, and for which the 

color shows the fuel temperature at that location. The figures show differences in the 

degree to which the tree crowns are heated between the two moments in time, with 

the cone tree and the elliptical tree generally hotter than the random tree. At t = 45 the 

base of the elliptical tree has burned off and the dots for those cells are no longer 

present.  

 

While a more complete view of the simulations can be seen in the animations, these 

figures are representative of the fire behavior observed in the tree simulations. In 

general, while the tree crowns were all partially burned, no pronounced torching 

events, in which a large portion of the crown ignites rapidly were observed. This is 

consistent with field observation, where trees with high foliar moisture content do not 

easily ignite without a substantial heat source.  

 

Fuel consumption within the crown was dependent on flame contact, which varied 

over time both as the ignitor rings successively turned on, and as turbulent eddies 

formed in the flow. In all simulations portions of the crown were left at the end of the 
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simulation. In most cases the remaining crown fuel was at the outer edges of the tree 

crown where flame contact was less consistent. 
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Figure 2- 13 Isosurfaces (three dimensional contours) on the mixture fraction, which is used to 
represent the flame structure in WFDS, at t=30 s(top) and t=45 s(bottom), along with the 
representation of the fuel elements, for the cone crown form tree. 
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Figure 2- 14 Isosurfaces (three dimensional contours) on the mixture fraction, which is used to 
represent the flame structure in WFDS, at t=30 s(top) and t=45 s(bottom), along with the 
representation of the fuel elements, for the random crown form tree. 
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Figure 2- 15 Isosurfaces (three dimensional contours) on the mixture fraction, which is used to 
represent the flame structure in WFDS, at t=30 s(top) and t=45 s(bottom), along with the 
representation of the fuel elements, for the elliptical crown form tree. 
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In the section below I describe how the tree simulations differed from the no tree 

simulation and from each other. 

 

Comparisons between simulations 

mass loss data 
Because there were no crown fuels in the no tree simulation comparison of mass loss is 

made for the tree simulations only.  Table 2-2, below, lists the total fuel consumption for 

the tree simulations.  

 

 

Table 2- 2 Percent fuel consumed over the course of each simulation. 

Description # Total Fuel Consumed % 

CONE HI   NO  WOODY 1 38.6 

CONE LO  NO  WOODY 2 35.8 

RAND HI   NO  WOODY 3 21.2 

RAND LO NO   WOODY 4 26.5 

ELLPT HI   NO  WOODY 5 30.0 

ELLPT LO NO  WOODY 6 43.3 

CONE HI   W     WOODY 7 32.2 

CONE LO  W      WOODY 8 33.1 

RAND HI   W     WOODY 9 20.8 

RAND LO  W     WOODY 10 23.7 

ELLPT HI   W     WOODY 11 38.6 
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ELLPT LO  W    WOODY 12 40.8 

NO TREE SIMULATION 13 NA 

 

 

 For all tree simulations, fuel consumed was less than half of the total fuel available, so 

no crown was completely consumed. The highest percent fuel consumed was 43.3%, for 

the elliptical crown with lower crown base (4 m) and without large diameter woody 

biomass. The lowest percent fuel consumed was 20.8 %, for the random crown with 

higher crown base (7 m) and with woody biomass included. The range in fuel 

consumption was thus 22.5%.  

 

Differences were observed in both the total fuel consumed ( Figure 2-16) and in the 

timing in fuel consumption between the various simulations, with some simulations 

having fairly consistent rates of fuel consumption and others showing higher variability 

(Figure 2-17). In comparisons of fuel consumption across appropriate pairings (e.g.  

changing one factor while holding others constant), the largest differences in fuel 

consumption were between crown forms (e.g. . conical vs random); both crown form and 

the inclusion of woody mass  had larger pairwise differences between simulations in 

mass loss than reduction in height to crown base.  

 

 126



 

 

Figure 2- 16 Differences in fuel consumption between the various simulations. All bars of the same 
color share the same crown form. Patterns within a color indicate the other factors: height to crown 
base (HI = 7m, LO = 4m), and with and without woody biomass. 
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Figure 2- 17 Mass loss over time for each of the 12 tree burn simulations. 
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Some patterns in fuel consumption are suggested; inclusion of woody mass reduced fuel 

consumption in all but one case (Simulation 6 vs. Simulation 12), and lowering the height 

to crown base increased fuel consumption in all but one case (Simulation 1 vs. 

Simulation 2). The random crown form had the lowest fuel consumption in all cases. 

 

Slice data 

Comparisons of tree simulations vs no tree simulation 
Although the temperature and wind are highly dynamic when viewed at particular 

moments in time, when viewed over a larger time span, such as the 30 second –averaged 

temperature and wind W slices for the no tree simulation, they show a very smooth and 

predictable pattern (Figure 2-18). Figures 2-19, 2-20 and 2-21 illustrate how the patterns 

of time averaged temperature and wind W values were altered by the presence of the 

conical , random and elliptical trees, respectively. Figures shown are for simulations 1,3, 

and 5 (Table 2, below TAB) (the cases with high height to crown base (7 m) and without 

the inclusion of large diameter woody biomass).  Qualitatively we see from these figures 

that the spatial pattern of temperature and wind is different between each tree and 

between each tree and the no tree simulation.  
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Figure 2- 18 Slices of temperature and W (vertical) component of the flow for the no tree simulation, 
averaged over the period t=30 to t=60, the period during which fuel consumption occurred in all the 
tree simulations. 
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Figure 2- 19 Slices of temperature and W (vertical) component of the flow for the conical crown form 
tree simulation, averaged over the period t=30 to t=60, the period during which fuel consumption 
occurred in all the tree simulations. 
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Figure 2- 20 Slices of temperature and W (vertical) component of the flow for the random crown 
form simulation, averaged over the period t=30 to t=60, the period during which fuel consumption 
occurred in all the tree simulations. 
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Figure 2- 21 Slices of temperature and W (vertical) component of the flow for the elliptical crown 
form simulation, averaged over the period t=30 to t=60, the period during which fuel consumption 
occurred in all the tree simulations. 
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Table 2-3, below,  presents the contour areas from the slice data for the simulations. 

 

Table 2- 3 Contour areas extracted at selected levels from 30 second time averaged two dimensional 
slices of temperature  (levels T=300,T=400, and T=500) and wind W (levels W = 3, W = 6, and W = 
9). Simulations are identified by name and by number. 

Description # T300 T400 T500 W3 W6 W9 

CONE HI   NO  WOODY 1 19.2 12.8 6.7 58.9 30.2 14.7 

CONE LO  NO  WOODY 2 21.9 13.3 6.0 55.1 29.7 17.0 

RAND HI   NO  WOODY 3 14.2 8.3 2.3 54.9 25.5 11.5 

RAND LO NO   WOODY 4 19.3 13.2 6.5 54.5 30.9 15.7 

ELLPT HI   NO  WOODY 5 13.4 7.7 2.4 67.7 18.0 9.0 

ELLPT LO NO  WOODY 6 17.7 11.6 5.9 63.0 28.3 13.0 

CONE HI   W     WOODY 7 18.0 11.8 5.8 57.5 25.8 8.0 

CONE LO  W      WOODY 8 17.3 11.3 5.2 53.9 24.2 10.3 

RAND HI   W     WOODY 9 15.8 8.6 4.5 56.0 22.2 4.6 

RAND LO  W     WOODY 10 16.8 10.6 5.0 49.8 26.4 9.2 

ELLPT HI   W     WOODY 11 16.1 10.3 4.5 68.4 17.2 4.8 

ELLPT LO  W    WOODY 12 16.6 10.7 6.4 55.9 21.9 4.5 

NO TREE SIMULATION 13 13.3 6.9 1.6 64.3 39.1 15.2 

 

All tree simulations had larger temperature contour areas, for all three contour levels 

(T=300, T=400 and T=500). The majority of the tree simulation runs had smaller wind 

contour areas than the no tree run (two exceptions).  These are intuitive results; larger 

temperature contours result when trees are burned because additional heat (above that of 

the ignitor rings) is generated from the burning of the crown fuels. Similarly, the smaller 
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wind W contour areas in the tree simulations arise because the wind field in the no tree 

simulation is unimpeded by crown fuels. Comparison between the no tree simulation and 

the tree simulations thus serves mostly to demonstrate an expected outcome that provides 

a context for comparisons between tree simulations. 
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Figure 2- 22  Bar graph illustrating the contour areas for the time averaged slices of temperature and 
the W (vertical) component of the flow for all simulations. 
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Figure 2- 23 Changes between simulations in the time averaged temperature slices for the conical 
crown form simulations. 

 137



 

 

Figure 2- 24 Changes between simulations in the time averaged temperature slices for the elliptical 
crown form simulations. 
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Figure 2- 25 Changes between simulations in the time averaged W (vertical) component of the flow 
slices for the conical crown form simulations. 
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Figure 2- 26 Changes between simulations in the time averaged W (vertical) component of the flow 
slices for the elliptical crown form simulations. 
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Comparisons between tree simulations 
Figure 2-22  presents a bar graph illustrating the contour slice areas for temperature and 

wind for all simulations. This same information is presented in Table 2-3 above.  

 

Figures 2-23 and 2-24 illustrate changes between simulations in the time averaged 

temperature slices for the conical and elliptical tree crown forms. Figures 2-25 and 2-26 

present the same comparison for the wind slice contour areas for the conical and elliptical 

tree crown forms. 

 

In general, among the tree simulations, decreasing the height to crown base increased the 

temperature contour areas. This is intuitive because the fuel is closer to the heat source 

and corresponds with higher fuel consumption with lower height to crown base. Inclusion 

of woody biomass decreased the area of the temperature contours and of the wind W 

contours. These effects varied with crown form. For example, the wind field velocities 

were reduced more by the elliptical crown form than by the conical crown form at the 

lower crown base height. The conical crown form reduced the temperature more than the 

elliptical form but less than the random crown form; it had the least reduction of the wind 

field. 

 

Individual cell data 
The individual cell temperature data provide a complementary view of differences 

between simulations. The effects most clearly visible in these results are changes in the 

timing, magnitude and duration of heating within the crown. These effects were most 
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visible for the lower height to crown base simulations, in contrasts between simulations 

with and without the woody fuels.  

 

Table 2- 4 Maximum temperatures recorded at individual cells, for five locations extending in a 
vertical line above the origin.  Simulations are identified by name and by number. 

Description # z = 2 z = 6 z = 10 z = 14 z = 18 

CONE HI   NO  WOODY 1 579 973 1001 887 692 

CONE LO  NO  WOODY 2 558 933 989 916 905 

RAND HI   NO  WOODY 3 562 844 916 812 530 

RAND LO NO   WOODY 4 568 899 1003 905 879 

ELLPT HI   NO  WOODY 5 573 865 970 667 332 

ELLPT LO NO  WOODY 6 547 888 947 908 743 

CONE HI   W     WOODY 7 561 980 918 869 652 

CONE LO  W      WOODY 8 521 883 944 905 808 

RAND HI   W     WOODY 9 535 1036 952 874 471 

RAND LO  W     WOODY 10 543 950 954 941 667 

ELLPT HI   W     WOODY 11 563 947 961 884 264 

ELLPT LO  W    WOODY 12 536 983 1044 837 547 

NO TREE SIMULATION 13 514 636 865 872 470 

 

Figure 2-27 shows an example of the individual cell values at a particular height (z =14 

m) for all twelve tree simulations. In this figure, red lines are for simulations in which the 

woody mass was not included, and green lines are for simulations in which the woody 

mass was included. The inclusion of woody mass delayed heating, and shortened the 
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duration of heating, for the individual cell temperature at 14m for the lower height to 

crown base simulations (the lower three panels of each graph). 

Figure 2-28 shows the maximum temperature for each individual cell (from a height of z 

= 1m to z = 18m) for each simulation. Again, green lines indicate simulations where 

woody mass was included and red lines where woody mass was excluded. Inclusion of 

woody mass reduced the maximum temperature recorded at individual cells over a range 

of heights for the conical and random crowns, particularly for the lower height to crown 

base simulations.  
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Figure 2- 27 Comparison of individual cell temperature records over time at z= 14m for all 12 tree 
burn simulations. Top panels:  HI height to crown base (7 m), bottom: LO (4 m); red lines: woody 
biomass was excluded, green lines: woody biomass included. 
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Figure 2- 28 Maximum temperature over time for individual cells located on the origin and extending 
up the z axis at 1 m intervals. Top panels: HI height to crown base (7 m), bottom: LO (4 m). Red 
lines: woody biomass excluded, green lines: woody biomass included. 
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DISCUSSION 
In this study I carried out an exploratory analysis examining the effect of three factors, 

spatial configuration (crown form), height to crown base, and inclusion/exclusion of 

woody mass, on fine scale fire /fuel interactions, as described by patterns of fuel 

consumption, temperature and vertical component of the flow. All three factors affected 

both overall outcomes, such as the total fuel consumed or the time-averaged slices of 

temperature and wind, and how those quantities changed over time, such as the individual 

cell time traces and mass loss over time. Altogether, the overall result is that the specific 

spatial distribution of fuel, and the nature of that fuel, interacts with the specific geometry 

of the fire to determine not only what is burned but also how it burns. In these 

simulations this can be seen in the significant differences in fuel consumption, and 

temperature and wind effects between the different tree crowns. For example, the conical 

tree had greater fuel consumption with a height to crown base of 7 m than the random 

tree did with a height to crown base of 4 m.  

 

All these factors relate to individual tree crown fuel properties. The spatial configuration 

of the crown, and the issue of inclusion of woody biomass in fire behavior modeling have 

not been considered previously. The height to crown base, however, is the primary driver 

in prediction of crown fire initiation in current operational models. The results presented 

here suggest that, while still important, height to crown base may not, in itself, be 

sufficient in prediction of crown fire initiation.  
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A basic problem with height to crown base is that, while it is easy to measure where the 

lowest live branch is, it is difficult to directly measure how crown biomass is distributed 

between the crown base and the top of the tree. A truly homogeneous crown volume is 

probably exceedingly rare in nature.  Whether or not the height to crown base is relevant 

to the question of crown fire initiation, or of fire induced tree mortality, is dependent on 

knowledge of the nature of the distribution of crown fuel above that point; it is only 

directly related if the crown fuel is uniformly distributed (i.e., a homogeneous volume). 

It is precisely for this reason that the FUEL3D model was developed: there is a 

significant need for a quantitative description of how fuel is distributed in space. Because 

of its flexible design FUEL3D should be capable of modeling a wide diversity of tree and 

shrub crowns, providing a detailed, spatially explicit description of both foliar and woody 

biomass within the crown. 

 

Results presented here illustrate that even woody biomass that does not burn still may 

affect how a tree burns, shown here in alteration of the temperature and vertical flow. I 

did not conduct in-depth analyses to explain these effects but it seems likely that they 

arose from a combination of different physical mechanisms. Both the radiative and 

convective heat transfer within the tree crown are altered by the presence of the coarser 

woody biomass. First, the added woody biomass material shields the foliar biomass 

above it from radiative heat (radiative shielding) and serves as a heat sink, receiving heat 

that would otherwise be available for the foliage. The wind field flow velocity is likely 

due to a minor drag effect of the added material (which is of coarse diameter and so thus 

has a small surface area to volume) and also reduced from heat loss, which is coupled to 

 148



 

the wind flow. These effects, although subtle, suggest that an accurate depiction of the 

composition of fuels within the crown, may be helpful in this sort of modeling. The 

coarser woody components of the crown are generally ignored; these results suggest that 

perhaps they should be given more attention, both in description of the fuel bed and in 

modeling of fire interactions. Physical fire model developers are cognizant of the 

potential importance of the effect of different fuel components and are actively working 

on building the capability to deal with multiple fuels within the crown (Mell, pers. 

comm.. and Linn, pers. comm. 2007). The FUEL3D model is helpful in this regard 

because it can be used to quantify the properties of many different components of the 

crown fuels, with individual summations of material by different size classes or types of 

material.  

The work presented here is exploratory in nature, and intended to suggest possible 

avenues for future work rather than to test a particular hypothesis. No replication 

(through multiple simulations) was carried out so no statistical inferences should be 

made. Nevertheless, this work represents an important step towards a more integrated fire 

and fuels modeling strategy, employing detailed spatial modeling of fuels in conjunction 

with physical fire behavior modeling.  

In general the complex dynamics involved in crown fires tend to result in problems for 

which simple calculations, which can be done in a spreadsheet or via a nomogram, are 

inadequate. As computing resources have improved, simulations with computer models 

have played an increasingly important role as a laboratory in which robust experiments 

can be designed. In many cases such simulation experiments make it possible to carry out 
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tests that would otherwise be infeasible, such as burning the exact same tree crown under 

different conditions as was done in these experiments.  

 

Employing this strategy of modeled fuels and physical fire models will likely be of use in 

a number of ways, of which a few examples are presented here. First, extending the 

experiments presented here, with a replicated set of tree crowns and to span a wider range 

of heat inputs, fuel moistures and fuel quantities could be used to determine when 

sustained torching in the crown occurred. This could facilitate estimation of thresholds 

for crown fire initiation. Further extensions could address different levels of wind speed 

or different vertical wind profiles to identify thresholds important to crown fire 

propagation. Similarly, the effect of different spatial configurations of multiple trees and 

fire scenarios could be useful in the design and testing of fuel treatments to accomplish 

particular objectives. Finally, incorporation of change in vegetation over time could be 

used in assessment of the effective duration of fuel treatments, and could provide insights 

as to the degree to which vegetation succession influences fire occurrence and behavior 

over larger time and space scales. Through incorporation of detailed modeling of 

wildland fuels and physical fire behavior modeling, linkages between fire behavior and 

fire ecology, which have so far been elusive, could be determined. 
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CHAPTER III: AN INVESTIGATION OF VARIABILITY IN 

FIRE SPREAD RATES WITH THE PHYSICAL FIRE MODEL, 

FIRETEC 
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 ABSTRACT 
Operational fire behavior models predict an overall average forward spread rate based on 

small scale test burns in homogenous fuel beds. A shortcoming of these models is that 

there is no way to estimate error in the model prediction; this represents a potentially 

substantial error term of unknown magnitude which may endanger firefighters. Here, a 

replicated set of fire behavior simulations was conducted to examine the effects of spatial 

fuel variability on the forward spread rate of a wildland fire. Using a three dimensional 

physical fire model, fires were simulated in four different general spatial patterns of fuels, 

in which tree crowns were randomly clumped into different numbers and sizes of clumps. 

Seven different replicates, or unique spatial configurations, were tested for each clumping 

group, for a total of 28 simulations. Analyses were conducted comparing spread rates 

between clumping groups, within groups and within individual simulations; significant 

variability in spread rates was observed at all levels. Results suggest that, while the nature 

of variability in spread rate may relate to the spatial scale of fuel variability, variability in 

spread rate can largely be attributed to fine scale fire-fuel-atmosphere interactions which 

are by their nature difficult to predict beforehand. This suggests a need for a paradigm 

shift in fire behavior prediction which more explicitly recognizes the intrinsic variability 

in inputs and outcomes. A strategy is proposed in which physical fire models are used in 

replicated simulations to identify the underlying drivers of variability and their magnitude 

at different spatial scales; once thus identified new operational models could be 

developed which are better equipped to accommodate heterogeneity in the fuel bed. 
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INTRODUCTION 
Numerous fire researchers have remarked that even in relatively homogeneous fuel beds, 

such as pine needles, fire spread is not even, but is characterized by variability, 

sometimes described as a progression of “fits and starts” (Fons 1946, Catchpole et 

al.1998, Rothermel 1972). In truth, no natural fuel beds are actually homogeneous, but 

are rather composed of particles of various sizes and voids between them. Despite the 

presence of these voids these fuels are considered to be “continuous” because the size of 

the flame typically extends beyond the void space, such that flame contact can 

consistently be made throughout the bed (Cohen et al. 2006).  In surface fires burning in 

such fuels, it may be practical to ignore this variability by calculating the spread rate at a 

larger, integral scale, at which fine scale variability might reasonably be considered as 

transient and might be expected to even itself out (Figure 3-1). In this paper I refer to this 

integral scale spread rate as the overall average spread rate, calculated as the complete 

distance traveled divided by the time taken to get there. This approach is attractive 

because it permits the use of empirical correlative relationships to describe the rate of 

spread rather than having to deal with the significantly greater complexity of describing 

all the mechanisms involved. This approach is used by the Rothermel fire spread model 

(Rothermel 1972) which serves as the basis for all operational wildland fire behavior 

prediction of surface fires in the United States (Finney 1998, Andrews et al 2005, Scott 

and Reinhardt 2001). 
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Figure 3- 1 Operational models predict an average rate of spread (red dash line) but not variability 
in spread rate (blue solid line). Variability in spread rate is important as accelerated spread rates 
(steep slope in center) may increase danger to firefighters. 
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 Operational fire models then apply the same approach to predict crown fire spread using 

a correlative relationship identified from field observation of a small number of crown 

fires in different locations (Rothermel 1991). The correlative relationship used is a linear 

function of the spread rate predicted by the Rothermel surface fire spread model for Fuel 

Model 10 (timber, litter and understory), a common forest surface fuel (Anderson 1982).  

In this case the observed overall spread rates for crown fires were estimated over distance 

scales of miles traveled over hours; these distance and time scales are several orders of 

magnitude larger than the distance and time scales of meters over minutes that the 

original empirical litter and needle bed tests which the Rothermel model was based on.  

 

A problem that arises with such predicted spread rate is that it is unclear at what spatial 

scale such predictions of an overall average spread rate are expected to be relevant. The 

overall average spread rate is essentially the slope of the trend line fitted to a graph in 

which time is on the x axis and distance is on the y axis (Figure 3-1).  In ordinary 

empirical studies the variability around the trend line, or error term, associated with the 

data fitting, would be evident and would be quantified in some typical way (i.e. R2 or Chi 

square). However, the formulation of the Rothermel model is such that this information is 

not available. It is clear from Figure 3-1 that the adequacy of the overall average spread 

rate described by the trend line is not the same in all portions of the graph; the steep 

spread rate in the central portion of the graph represents a momentary accelerated rate 

which, while perhaps not significant when considered over a large time and distance 

scale, would be quite significant to a firefighter needing to evacuate an untenable fireline. 

The expression of an empirical spread rate without a corresponding expression of the 

 157



 

variability in that spread rate leads to a situation in which firefighters in the field may be 

exposed to danger because they rely on predictions of fire spread rate in which potentially 

significant sources of error are not considered. 

 

One potential source of error or uncertainty in fire spread rates is the variability arising 

from heterogeneity within the fuel bed. Operational models assume homogeneous fuel 

beds and steady state spread rates, and thus do not address the potential effects of fuel 

bed heterogeneity in fire behavior calculations. Unlike operational fire behavior models, 

physics-based numerical fire behavior  models (Linn 1997, Linn et al 2002, Mell et al 

2005) have self-determining spread rates and thus are capable of addressing transitional 

behaviors and variability within the fuel bed; variability in spread rates is an emergent 

property of such models. Such models are thus ideally equipped to study the effects of 

spatial fuel variability on fire behavior.  

 

One nuance of highly deterministic and dynamic models is that it is often difficult to 

generalize the observed outcomes, as to some degree what was observed may be sensitive 

to the particular spatial configuration of the fuels in a particular simulation. This 

sensitivity can be tested via replication, in which multiple simulations are carried out with 

unique spatial configurations. However, due to the high computational demands of 

physical fire models it is unusual to carry out large ensemble runs. 
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Objectives 
The overall objective of this set of experiments was to use a detailed physical numerical 

fire behavior model, FIRETEC, to explore the effects of spatial variability in fuels on the 

forward rate of fire spread. Towards this aim, three sets of analyses were conducted. 

The first analysis consisted of comparison of overall spread rates between four groups of 

simulations. Each group consisted of seven simulations in which fuels were clumped in a 

similar way but with unique spatial configurations. The clumping approach essentially 

spanned a range of numbers and sizes of clumps of trees. Altogether 28 simulations were 

carried out. This analysis thus tested whether differences in the overall average spread  

rate between simulations might be attributed to different clumping patterns.  

The objective of the second analysis was to assess whether different clumping patterns 

influence the nature of the distributions of incremental spread rates within each of the 28 

simulations described above.  

The third and final analysis consisted of a case study in which two simulations from the 

same clumping group were subjected to a more detailed analysis exploring differences in 

spread rate. 

 METHODS 

The FIRETEC model 
FIRETEC/HIGRAD is similar to the WFDS model (described in Chapter II) in that both 

are Computational Fluid Dynamics (CFD) models which are driven by the principles of 

conservation of energy, mass, momentum and species. Both models distinguish different 

means of heat transfer (principally radiation and convection), address fire –atmosphere 

interactions (in which the vertical momentum equation includes a buoyancy term, so 

differences in local air pressure arising from the heat of the fire modify the wind field) 
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and fuel-atmosphere interactions (in which the quantity and geometrical properties of 

fuels in a particular location imposes drag on wind flows). Both models are built on the 

same general hydrodynamic theoretical basis, the Navier-Stokes equations. Beyond these 

similarities there are a number of ways in which the two models are different; most of 

these are rather technical in nature. In general, however, the differences between the two 

models reflect the history of their development. WFDS was developed from a structural 

fire background, and thus favors smaller spatial domains characterized by low-speed 

flows, and a more detailed treatment of combustion chemistry. In contrast, the underlying 

hydrodynamic model of FIRETEC/HIGRAD, HIGRAD arose from a larger-scale 

atmospheric / meteorological science background and thus is best applied over larger 

spatial domains; while its treatment of combustion and fuel properties is somewhat 

simpler than in WFDS it has in general a more involved treatment of atmospheric 

interactions. Fluid dynamics in FIRETEC are modeled with full compressibility, which 

allows for accurate wind field predictions even in complex conditions involving 

topography, fire and fuel interaction. Both models are in active development.   

  

The simulations 
The simulations carried out in this project are described below. The table below provides 

links to digital files of animations comparing two sets of two simulations; while the two 

simulations shown are discussed in more detail later in this chapter (in the case study) 

they are presented here as examples to aid the reader in visualizing the nature of these 

simulations. In the file names below, L7 and L3 are two simulations from the “LARGE” 
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clumping group (explained in more detail below) and S6 and S3 are two simulations from 

the “SMALL” clumping group. 

  
Table 3- 1 Animations of stand Scale fire simulations with FIRETEC. 

Hyperlink to File 
Oblique_view_comparison_L7_vs_L3 

Top_view_comparison_L7_vs_L3_winds 

Oblique_view_comparison_S6_vs_S3 

Top_view_comparison_S6_vs_S3_winds 

 

Spatial domain and resolution 
The numerical experiments were set up with the same rectangular spatial domain 

consisting of 160 cells in the x direction, 80 cells in the y direction, and 41 cells in the z 

direction. Cellsize in x and y  was fixed at 2 m but z was transformed with a sigma 

transformation (Figure 3-2), in which a cubic polynomial is used to systematically 

increase the cell dimensions with increasing z. This has the effect of providing sufficient 

spatial detail near the ground (~ 1.5m) while ensuring that the top boundary is far enough 

away from the surface that boundary condition effects are minimized; the larger cell sizes 

toward the top boundary also reduce the computational demands as fewer cells are 

needed.  Each simulation was set to run for 12000, 0.02 s time steps, for a total 

simulation time of 240 s, or 4 minutes. In all figures which follow in which references to 

simulation time are made, a difference of 1000 time steps is equivalent to 20 seconds. 

 

Boundary conditions and layout 
In computational fluid dynamics models, essentially all cells are interconnected and 

interact and influence each other. Just as a pebble tossed into a still pool causes ripples 

that extend for some distance, a change in pressure in one location, perhaps as a result of 
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added buoyancy from the heat of the fire, will cause subtle changes throughout the spatial 

domain. For this reason the definition and handling of the boundary conditions is one of 

the more difficult parts of setting up a simulation. 

The same layout of specialized boundary conditions and related areas were used for all 

simulations (Figure 3-3). Each of these is described below; letters refer to the 

corresponding position in Figure 3-3. 

 

Figure 3- 2 The sigma transformation increases the height of the volume cells as you get closer to the 
top of the spatial domain to balance the need for higher resolution at the bottom against the need for 
sufficient space to avoid boundary condition effects. 
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Figure 3- 3 The simulation layout. The simulation layout. The spatial domain measured 160 x 80 x 41 
cells. Cells are 2m in x and y but increase in dimension with increasing z. A) predeveloped wind field 
enters as inflow B) Wind field entry zone C) Ignition strip D) Initial fire development zone E) Zone of 
fuel modification F) far end pre-boundary zone G) relaxation to outflow ambient windfield  H) 
lateral relaxation boundary conditions.  
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A. pre-developed windfields as inflow 
The sensitivity of CFD models to the nature of the flow requires careful handling. Inflow 

conditions that are too contrived and artificial can result in unrealistic outputs. For this 

reason, winds used in the simulations were developed beforehand by running 

FIRETEC/HIGRAD for the base case forest for a substantial period of time without a fire 

simulation. The forward wind speed was set at a constant 6 m/s above the top of the 

canopy and a defined vertical wind profile typical of real winds, where wind velocities 

decrease substantially from the top of the canopy to the forest floor as a result of 

increased drag. Over the course of this simulation a wind field developed that reflected 

the spatial structure of the base case forest. This pre-developed wind field was then used 

as inflow (winds flowing into the domain) for all cells on the left (x = -160m) boundary 

(Figure 3-3 A), as well as for outflow (winds flowing out of the domain) on the right 

boundary (Figure 3-3 G) (see below). The purpose of this complex and dynamic 

boundary conditions is that winds outside the domain have a significant amount of inertia 

that tends to influence flows within the domain to some extent. 

B. Wind field entry zone 

An area extending from this boundary to x = -80 was considered as the wind field entry 

zone. This area was designed to provide a reasonable distance over which the wind field 

could respond to the inhomogeneous fuels before the ignition strip. 

C. Ignition strip 

An ignition strip measuring 80 m in y by 2 m in x was defined at x = -80. This ignition 

strip was established with a time dependent ramp progression which increased from 

ambient temperature up to 1000 degrees and lasted for 50 seconds.  
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D. Initial fire development zone 

An area extending from x = -80 to x = -40  and spanning the full dimension in y (160 m, 

from y=-80 to y = 80) was set aside for the initial development of the fire before entering 

the zone of fuel modification, described below. This provided a common fire start 

condition to all the simulations. Fuels within this area were identical for all simulations. 

 

E. Zone of fuel modification 

The only area within which the spatial configuration of fuels was permitted to be changed 

was called the zone of fuel modification. This area extended from x = -40 to x = 80, and 

the full dimension in y.  

 

F. Far end pre-boundary zone 

An area extending from x=80 to x = 140 was designated as the far end pre-boundary 

zone. This zone essentially ensured that changes in the fuels within the zone of fuel 

modification did not result in an abrupt transition near the boundary of the domain. 

G. Relaxation to outflow ambient windfield  

The ten cell wide strip from x = 150 to x = 160 was a special boundary zone, referred to 

as a ‘relaxation’ boundary condition, in which flow velocities and other quantities are 

incrementally modified to ‘relax’, or conform to values at the boundary. Here, the 

numerical values were relaxed to those of the outflow ambient windfield. This process is 

implemented to reduce the possibility of unexpected effects at the boundary, and is a 

commonly applied approach in CFD modeling. 
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H. Lateral Relaxation boundary 

Along the lateral edges of the spatial domain a relaxation boundary condition similar to 

that at the end is implemented. 

Fuels inputs 
Surface fuels consisted of a homogeneous grass layer described with a fuel bed depth of 

0.5 m, a fuel load of 0.45 kg m-2, and a surface area to volume ratio of 4000 m-1. This 

surface fuel layer is thus similar to the fuel model 3 (tall grass, Anderson 1982) but with a 

slightly lower fuel load, and fuel bed depth. Surface fuel moistures were set at ten percent 

of dry weight.  For crown fuels, a base case forest was established consisting of 2000 

individual, identical, trees randomly located within the entire domain. Trees were 

modeled as parametric volumes, consisting of two paraboloids, in which fuels are 

concentrated toward the outside edges (Figure 3-4) (Linn et al 2005). For each tree, the 

crown is confined to a volume described as : 
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where H is the tree height, C is the height to crown base, and R is the maximum radius of 

the crown. All trees were identical, and values of 15, 3, and 2.5 were used for H, C, and 

R, respectively. The variables h and d correspond to the height of the upward facing 

bottom part of the crown and the downward facing top part of the crown, respectively. 

Within this volume, bulk density of crown fuel is modeled as: 
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where the maximum fuel density for any given cell, ρmax , was set to a value of 0.48 kg m-

3( Linn et al 2005). This limit is intended to mimic shade intolerance, where the total 

amount of foliage in any particular cell is limited by available light.  
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Figure 3- 4 The parametric description of tree and shrub canopies used to represent individual tree 
crowns in all simulations. The crown is envisioned as a double paraboloid in which the quantity of 
fuel increases smoothly towards the outer edge. 
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Generating forests with different spatial configurations 
Four clumping groups were defined: random, small, medium and large. The first one had 

no explicit clumping; all trees were simply randomly located as in the base case forest. 

The other three clumping groups were each defined with a number of clump centroids 

and a specified radius. To generate the different clumping patterns, the trees located 

within the zone of fuel modification in the base case forest were randomly assigned to 

one of these centroids and their coordinates were translated to a new position randomly 

determined within the specified radius of that centroid. In each case the same set of 

simulated tree crowns was rearranged into clumps randomly. Fuels for each tree were 

partitioned among the appropriate set of three-dimensional cells (voxels) within which 

the volume of the tree crown was found. Cells located at the overlap of one or more trees 

received fuels from all contributing trees. However, if the total fuel in a given cell 

exceeded the allowable maximum value, ρmax, that cell was set to the maximum. This 

prevented unnaturally high densities from occurring, and resulted in differences in overall 

crown bulk density between cluster groups. Output simulated forests ranged in overall 

bulk density from 0.007 to 0.0148 kg m-3; this is  generally lower than most values 

reported for ponderosa pine in other studies (Reinhardt et al 2007, Cruz et al 2003) but 

differences in how void spaces between trees are accounted for make direct comparison 

difficult. 

 

Simulation output 
Simulations were run on a supercomputer at the Los Alamos National Laboratory, using 

typically 32 processors. A number of variables are output by the model at each time step; 

however due to the difficulties of transporting large volumes of data only a relatively 
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small subset of the data produced by the model was used. This data, which is what is 

typically used by most model users, included the U, V, and W components of the wind 

fields (corresponding to flow velocities along the x,y, and z axes, respectively), the 

potential temperature, theta,  and fuel density rho. The potential temperature is the 

temperature that a parcel of fluid (or air) would have if adiabatically (no heat lost or 

gained) brought to a standard reference pressure of 1000 millibars. Potential temperature 

is preferred over actual temperature in many atmospheric science applications because it 

conveys more about the flow dynamics and is more straightforward to describe since 

interactions with pressure are eliminated by use of a constant reference pressure. All 

variables were output as binary 3D arrays with an output time step of every 2 seconds of 

simulation time. Data used in subsequent analyses comprised about 1.5 GB per 

simulation, for a total of 42 GB of data.  

 

Analysis  

quantifying spatial pattern of variability  
I quantified the variability in the spatial pattern in the tree crowns for each simulation 

with the lacunarity curve (Plotnick et al 1993, Fraser et al 2005). Lacunarity is a scale 

dependent statistical measure of spatial heterogeneity, or texture. It can be thought of as 

describing the distribution of gap sizes across scales. In these calculations all tree crowns 

were identical, so the primary interest in capturing spatial variability was in the horizontal 

plane. Fuel density was thus summed vertically to create a two dimensional array of 

continuous (non integer) values representing the sum of fuel biomass in the vertical 

column of volume cells associated with that cell. Lacunarity was then calculated on the 
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80x 80 cell (160x160 m) square, two dimensional array of these cells containing the zone 

of fuel modification, for each simulation. Lacunarity was calculated at each box size, r, 

from r = 1 .. 80, using the gliding box algorithm (Plotnick et al 1993) as modified by 

Fraser et al. 2005, to accommodate continuous, rather than binary data: 
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where Λ(r) is the lacunarity statistic for boxes of size r, r is the size of each box,  ( )rQ
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is the sample variance associated with boxes of size r, and ( )( )r  is the mean of th

frequency distribution (calculated in a histogram binning type operation) of the fuel being 

summed for box size  r.   
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The logarithm of the lacunarity statistic is plotted against the logarithm of the box size to 

graphically represent the spatial variability across a range of spatial scales. 

 

Assessing differences in spread rate between simulations 
I examined differences in the overall spread rate between clumping groups, and in the 

nature of the distributions of incremental spread rates.  

 

 171



 

To test whether there were significant differences in the overall spread rate between the 

different clumping groups I used the Kruskal-Wallis test. The Kruskal-Wallis test is a non 

parametric equivalent to the classical one way Analysis of Variance (ANOVA), designed 

to compare samples from two or more groups. The test compares the medians of each 

group and calculates the probability for the null hypothesis that all samples are drawn 

from the same distribution. The Kruskal Wallis test assumes that all samples come from 

distributions with similar shape (but possibly different location or scale parameters).  

 

To characterize the variability in surface spread rates within a simulation, it was 

necessary to calculate incremental spread rates. The calculation of incremental spread 

rates consisted of several steps. First, the maximum x coordinate where the fire had 

burned the surface fuels was extracted from each simulation output time step (every 2 

seconds) by comparing the surface fuel values with the original, unburned state. Any 

surface cell in which fuel quantities had diminished by a minimum threshold value (0.005 

kg/m3) was considered to have burned. The cell with the maximum x coordinate thus 

identified represented the farthest point of spread at that time step. 

 

Once each time step was associated with a particular position along the x axis 

representing the farthest point of spread at that point in time, incremental spread rates 

were calculated from the arrays of time and position. Due to the discretization of the 

spatial domain to 2 meter cells in x and y, it is possible that the fire may have more than 

one timestep associated with a particular coordinate in x. Similarly, because simulation 

outputs are written to files at a fixed interval (every 2 seconds) it is possible that between 
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output time steps the fire may have spread more than one cell. Incremental rates of spread 

were thus measured as the distance traveled (at least one cell) divided by the time taken. 

Each incremental rate of spread was recorded in an array for subsequent analysis.  

 

The distribution of incremental spread rates within each simulation was described with 

skewness (described below), and a Kruskal-Wallis nonparametric test was used to 

compare these skewness values between clumping groups. Skewness is a nondimensional 

measure of the degree of the asymmetry in the shape of a distribution (Press et al. 1996), 

defined as   
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Eqn. 3- 4 

  

where σ is the standard deviation of the distribution, xj   , (J= 1..N) are the individual 

incremental spread rates, N is the total number of spread rate values, and x  is the 

average spread rate. Distributions that are symmetrical will have a skewness value close 

to zero; higher values greater than zero indicate a right tail, or high extreme values. 

Skewness should be interpreted with caution at low sample sizes, as even truly 

symmetrical data can have a non-zero skewness (Press et al 1996); here, distributions of 

incremental ROS had at least 50 observations in all cases.   
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Case study: comparison of two simulations  
A case study was made of two runs from the same clumping group which had different 

overall rates of spread The objective of this case study was to explore the data in more 

depth to better understand the causal mechanisms behind the difference in spread rates. 

As a first step, I plotted the cumulative distance traveled by each fire over time to 

determine the time period when the two simulations diverged in spread rates. Once this 

period was identified, I extracted information from both simulations before the 

divergence in spread rates occurred and reconstructed what occurred through an iterative 

process of data exploration and visualization.  

RESULTS 

Quantifying spatial pattern of crown fuels 
The approach used in generating different random fuel patterns was simple but effective. 

Figures 3-5, 3-6, 3-7 and 3-8 illustrate, with two examples each, spatial patterns typical 

of each of the four clumping scenarios. The lacunarity curves plotted for each group in 

Figure 3-9(a) illustrate that, although each replicate has a unique spatial configuration, 

the overall spatial structure within each clumping group is quite similar, with the curves 

by group falling very closely together.  The small and medium clumping groups were the 

most similar to each other in their spatial structure.   
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Figure 3- 5 Example spatial pattern of fuels in the RANDOM clumping scenario, in which no explicit 
clumping was imposed on the trees. 
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Figure 3- 6 Example spatial pattern from two different cases of the SMALL clumping group. The 
trees within the zone of fuel modification were translated in x and y according to membership in 
randomly determined small clumps. 
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Figure 3- 7 Example spatial pattern from two different cases of the MEDIUM clumping group. The 
trees within the zone of fuel modification were translated in x and y according to membership in 
randomly determined medium sized clumps. 
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Figure 3- 8 Example spatial pattern from two different cases of the LARGE clumping group. The 
trees within the zone of fuel modification were translated in x and y according to membership in 
randomly determined large clumps clumps. 
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Figure 3- 9 Lacunarity curve plots which statistically describe the spatial variability in the fuel layers 
across spatial scales for the random (red), small(green), medium(blue) and large(black) clumping 
groups. Bottom: Bar charts of total canopy fuels in each simulation within the zone of fuel 
modification. Within group variability is low for both spatial pattern and fuel, while between group 
variability is fairly high. The small and medium clumping groups are quite similar in both spatial 
structure and fuel quantity. 
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Statistical tests assessing differences in median overall spread 
rates between clumping groups 
Substantial variability was observed in the overall average spread rate across the 28 

simulations (Figure 3-10). The average spread rate was 0.858 m/s (1.92 mph), with a 

standard deviation of 0.043 m/s (0.097 mph) and a coefficient of variation of 0.05. Within 

group variability (i.e., differences between unique spatial fuel configurations of the same 

kind) was higher than between group variability (i.e., random vs small clumping); no 

significant differences in the median overall spread rates were detected by the Kruskal 

Wallis test (Table 2, below). Variability was  lower for the random clumping groups than 

for the others.     

 

Table 3- 2 Results of Kruskal-Wallis non parametric comparison of differences in median overall 
spread rate between clumping groups. 

Source      SS df MS Chi-sq Prob>Chi-sq 

Groups 148.64 3 49.5476 2.22 0.5287 

Error 1661.86 24 69.244   

Total 1810.5 27    

Analysis on incremental spread rates  

Description of incremental spread rates 
When considered not just as overall averages but as a series of incremental spread events, 

variability was considerably higher. The mean incremental spread rate across all 

simulations was 0.93 m/s (2.08 miles per hour), with an overall coefficient of variation of 

0.545, an order of magnitude larger than the coefficient of variation calculated on the 

overall average spread rate. The higher variability at this scale is to be expected since the 

average spread rate is a measure of central tendency of the incremental spread rates. It is 
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important to remember, however, that what firefighters experience on a fire is not an 

overall average spread rate but the incremental spread rates.   

 

Comparison of distributions of incremental spread rates 
The nature of the variability in incremental spread rates, described with the skewness, 

was significantly different between clumping groups (Kruskal-Wallis p-value 0.0089), 

with more symmetrical distribution shapes for the random clumping groups than for the 

small, medium or large clumping groups, and the least symmetrical distributions for the 

medium clumping group (Figure 3-11). This suggests that, while the spatial structure of 

the fuels may not affect the median spread rate (as was found above), it may affect the 

predictability of spread rates; symmetrical patterns of variability, as observed in the 

random clumping group, are more easily described and accounted for because they are 

more similar to a Gaussian, or normal, distribution of errors.  
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Figure 3- 10 Box plot illustrating distribution of overall average rates of spread between the four 
clumping groups. The blue box specifies the lower and upper quartile values, while the red line 
indicates the median value. The black lines show the extent of the rest of the data. 
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Figure 3- 11 Box plot illustrating that the nature of variability in incremental spread rates, described 
with skewness, varies between clumping groups (Kruskal-Wallis, p-value 0.0089). Each clump group 
consisted of seven different simulations. For each simulation, the distribution of incremental spread 
rates was extracted from the progression of the fire over time, and was described with the skewness,  
a nondimensional measure of degree of asymmetry in a distribution.  Skewness values near zero are 
highly symmetrical; higher positive values of skewness indicate more extreme high values within the 
distribution. 
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Figure 3- 12 Initial fuel configurations for the L7 (top) and L3 (bottom) simulations described in the 
case study comparison. 
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The case study  
The two runs selected for more in-depth examination were the seventh and third 

simulations in the large clumping group, hereafter referred to as L7 and L3. Figure 3-12 

resents an oblique view of the spatial configurations of the two simulations near the 

beginning of the simulation.  These two runs had the largest difference in overall spread 

rate, with 0.9872 (L3) and 0.8162 m/s overall (L7) (2.2 and 1.8 miles per hour, 

respectively). Examination of these runs provides useful insights into the mechanisms of 

variability in rate of spread.  Animation files illustrating the progression of both 

simulations, as well as from a similar pair of simulations from the small clumping group 

(S3 and S6) are presented in Table 3-1. 

The two simulations had identical spread rates for the first half of the simulation duration, 

until roughly t = 6000 (total time two minutes). (Figure 3-13 and Figure 3-14) . At t = 

5500, L7 had traveled a few cells farther than L3. Between t =6000 and t=6500 (a period 

of ten seconds) L3 (blue line) caught up with and then passed L7.    Over the next 40 

seconds, between t=6500 and t=10500, L3 generally maintains a higher rate of spread 

than L7, resulting in a significant gap in total distance traveled.  

 

Figures 3-15 through Figure 3-21 present oblique views of the two simulations 

progressions between t=5000 and t=11000. Throughout this narrative, refer to Figure 3- 

13 and Figure 3-14 to see a clearer picture of the distance each fire traveled over time.  

At t = 5000 (Figure 3-15), the fires in both simulations have entered the zone of fuel 

modification and appear to have similar shape. In L3 (bottom panel) the distance between 

the fire and the clumps of trees is much shorter than in L7 (top panel).  At t = 6000 

(Figure 3-16) L3 has burned through the short gap between the unmodified random 
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forest and the tree clumps in the zone of fuel modification. The fire in L3 has actively 

engaged the trees within the clumps as evidenced by the tall flame structures visible in 

the lower panel. Simulation L7 meanwhile is burning in the homogeneous grass layer 

with a much lower intensity fire; there is some distance still remaining before it reaches 

its respective clumps of trees. 

 

 

Figure 3- 13 Comparison of distance traveled over time by the fire in simulation L7 (red line) and the 
fire in simulation L3 (blue line), over the whole simulation duration of 4 minutes.The dashed box 
indicates the region of the graph shown in the next figure, which represents a period of time in which 
the two simulations diverged in their behavior. 
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Figure 3- 14 A closer look at the distance over time plot shown in the previous figure, for the time 
period in which the two simulations, L3 and L7, diverged from each other. 
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Figure 3- 15 Oblique view of fires in simulation L7 (top) and L3(bottom) at t=5000. 
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Figure 3- 16 Oblique view of fires in simulation L7 (top) and L3(bottom) at t=6000. 
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Figure 3- 17 Oblique view of fires in simulation L7 (top) and L3(bottom) at t=7000. 
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Figure 3- 18 Oblique view of fires in simulation L7 (top) and L3(bottom) at t=8000. 
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Figure 3- 19 Oblique view of fires in simulation L7 (top) and L3(bottom) at t=9000. 
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Figure 3- 20 Oblique view of fires in simulation L7 (top) and L3(bottom) at t=10000. 
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Figure 3- 21 Oblique view of fires in simulation L7 (top) and L3(bottom) at t=11000. 
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At t = 7000 (Figure 3-17) the fire in simulation L3 (bottom panel) is substantially 

enganged in the crown of the tree clumps and can be seen to extend slightly into the 

homogeneous grass fuel near the right edge of the tree clumps. The fire in simulation L7 

(top panel) has not yet reached its tree clumps and is still moving through the grass fuels. 

At t= 8000 (Figure 3-18), the fire in simulation L3 (bottom panel) has extended well into 

the homogeneous grass fuel and had a wide flaming front. The fire in simulation L7 

meanwhile has engaged the tree crowns in its tree clumps, but with generally less energy 

than was seen when L3 began burning the crowns of its tree clumps.  

 

At t =9000 (Figure 3-19) simulation L3 (bottom panel) has burned across the wide area 

of grass fuels and has engaged the unmodified random forest on the other side. 

Simulation L7 is more engaged in the crowns of its tree clumps but does not appear to 

have significantly entered the grass fuels on the other side.  At t=10000 (Figure 3-20) 

simulation L3 (bottom panel) has expanded its perimeter both laterally and farther into 

the unmodified random forest, and has an intense flame structure at the head of the fire. 

At t=11000 (Figure 3-21), the fire in simulation L3 has reached the damping layer in the 

last ten cells before the far side boundary and is thus prevented from moving further; this 

can be seen as a flattening out of the distance over time curve for that simulation in 

Figure 3-13 (blue line). The fire in simulation L7 has entered the unmodified random 

forest on the other side of the zone of fuel modification.  

 

This progression certainly shows variability in the forward spread rate and fire behavior 

in general, but it is not readily apparent why the two simulations might have such 
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differences in spread rate. The macroscopic spatial structure of the two simulations is 

very similar (as demonstrated by the lacunarity curves) as is the total quantity of fuel. 

Both simulations had the same, identical wind flow entering the spatial domain as well as 

the same ignition. The two spatial configurations are even similar, with a small gap 

between the random forest and the tree clumps on one side and a large gap on the other; if 

the fuels within the zone of fuel modification for simulation L7 were moved to the left, 

the two spatial configurations would be almost identical. Why, then, do the two 

simulations diverge in forward spread to such a degree?  

 

Figures 3-22 through 3-32 shed light on this question. These figures present the same 

two simulations, again over time. The perspective has changed from an oblique angle to a 

planimetric view; the trees are shown with a higher transparency such that three 

dimensional cones representing a horizontal slice of the wind field at z = 3 m are 

emphasized.  

Figure 3-22  begins at t=1000; this is only 20 seconds after the fire has initiated and has 

not yet advanced more than a few meters beyond the ignition strip. The fire is visible in 

the figures only through its effect on the windfield, which manifests itself with larger, 

reddish cones that (if you were to look at the figure with more magnification) are oriented 

more vertically, reflecting the buoyancy in the air induced by the heat of the fire. At this 

time the fire is clearly quite similar if not completely identical between the two 

simulations. However, some subtle differences exist. Note that the wind cones, which get 

larger, and change in color from blue to red with increasing magnitude, are visible mostly 

down the centerline of simulation L3, while there is a lull in the wind field down the 
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centerline in simulation L7; the windfield in L7 is more horseshoe shaped towards the left 

side of the domain. The lull in the winds extends through the center of the gap between 

the random forest and the tree clumps for L7. A small lull is also visible in L3 in its gap, 

but the wind cones indicate that the windfield has some magnitude near the center of the 

tree clumps and extending across the larger gap.  

 

At t = 2000, (Figure 3-23), the lull in the winds in simulation L7 has gotten more 

pronounced; in L3, the centerline winds are still weak in magnitude but are clearly 

present.  At t = 3000, (Figure 3-24) more activity from the fire is visible; the lull centered 

on the gap between the random forest and the tree clumps in L7 has gotten smaller but 

still exists in the vicinity of the center. In L3 (bottom panel), the wind flow has moved 

down from the centerline (negative in the y direction) to align with a gap between the tree 

clumps.  

 

At t=4000, (Figure 3-25) the fire in both simulations has progressed to close to the edge 

of the zone of fuel modification. It is clear from the wind cones in the area of the fire that 

some subtle differences now exist between the two fires; the windcones near the center of 

the fire in L3 (bottom panel) are larger, indicating somewhat greater magnitude of 

velocity. The lull in the wind field  is still present in L7. In L3, a stronger windfield has 

arisen extending in a curve near the bottom of the figure (around y = -60) upwards 

towards the centerline. In L7, the windfield has strengthened somewhat but is less 

coherent than in L3.  So far this progression has still been earlier in time than the 

 197



 

sequence we saw in the oblique views (with the flames) in figures 15 to 21. Starting at t= 

5000, we will see the same progression that we saw in figures 15 to 21. 

 

At t = 5000 (Figure 3-26), the fires in both simulations have much stronger flames as 

evidenced by the larger red wind cones. The lull in the winds in L7 is quite small but still 

exists and is right at the centerline of the fire.  In both simulations we see some increased 

wind velocities at the edges of the spatial domain. At t= 6000 (Figure 3-27), the fire in 

L7 has a much stronger wind field than the fire in L3. Recall from figure 14 that at 

t=6000, L7 (red line) had progressed slightly farther than L3 (blue line).  

 

At t = 7000 (Figure 3-28), the fire in simulation L3 is engaged in the crowns of the tree 

clump, resulting in a strong wind field. A small lull in the wind field has appeared in L3 

above the centerline and past the edge of the tree clumps, but the windfield near the gap 

between the tree clumps is fairly strong. In L7 (top panel) the fire is nearly at the tree 

clumps but has not reached them yet;  the overall flow appears somewhat stronger than in 

L3 but the effects of the fire on the wind field are less pronounced. 

 

At t= 8000 (Figure 3-29) we see a significant difference between the two simulations. L3 

(bottom panel) shows a much stronger wind field at the outer edge of the tree clumps at 

the edge of the fire; a coherent flow pattern extends from within the gap between the 

random forest and the tree clumps, through the gap between clumps and into the larger 

grass fuel area to the right. The coherent flow appears to be funneled by interactions with 

the canopy, resulting in a higher velocity. Meanwhile, in simulation L7, the windfield has 
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lost intensity; the fire has entered the tree clump but is small. Small lulls are found in the 

wind field below the centerline in the gap between the random forest (to the left) and the 

tree clumps as well as in the smaller gap between the tree clumps and the random forest 

(to the right).  

 

At t= 9000 (Figure 3-30) the coherent flow through the gap in the tree clumps in 

simulation L3 (bottom panel) has gotten much stronger as the fire runs across the grassy 

fuels and enters the random forest on the other side with force. The wind field is the 

strongest yet. In L7 (top panel) there is a lull near the centerline and the flow is split into 

two parts that go around the lull to either side; the fire seems to be oriented more towards 

the top of the figure (toward the y = 80 boundary).  

 

At t = 10000 (Figure 3-31), the fire in simulation L3 is engaged in the crowns of the 

random forest near the right edge of the spatial domain. It has a coherent windfield 

behind it across most of its width and is mostly symmetrical. The fire in L7 is strongest 

towards the top edge (where y = 80) and is asymmetrical. There is a large lull in the wind 

field to the left of the tree clumps, as well as somewhat of a lull along the centerline 

extending into the random forest at the right.  

 

Finally, at t = 11000 (Figure 3-32), the windfields for both fires have dropped in 

magnitude. The fire in simulation L3 is engaged with the majority of the random forest at 

the right edge of the spatial domain while the fire in L7 is entering the upper portion of 

that forest. 
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Figure 3- 22 Overhead perspective emphasizing differences in the wind fields between case study 
simulations L7 (top) and L3 (bottom) at t=1000. 
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Figure 3- 23 Overhead perspective emphasizing differences in the wind fields between case study 
simulations L7 (top) and L3 (bottom) at t=2000. 
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Figure 3- 24 Overhead perspective emphasizing differences in the wind fields between case study 
simulations L7 (top) and L3 (bottom) at t=3000. 
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Figure 3- 25 Overhead perspective emphasizing differences in the wind fields between case study 
simulations L7 (top) and L3 (bottom) at t=5000. 
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Figure 3- 26 Overhead perspective emphasizing differences in the wind fields between case study 
simulations L7 (top) and L3 (bottom) at t=5000. 
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Figure 3- 27 Overhead perspective emphasizing differences in the wind fields between case study 
simulations L7 (top) and L3 (bottom) at t=6000. 
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Figure 3- 28 Overhead perspective emphasizing differences in the wind fields between case study 
simulations L7 (top) and L3 (bottom) at t=7000. 
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Figure 3- 29 Overhead perspective emphasizing differences in the wind fields between case study 
simulations L7 (top) and L3 (bottom) at t=8000. 
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Figure 3- 30 Overhead perspective emphasizing differences in the wind fields between case study 
simulations L7 (top) and L3 (bottom) at t=9000. 
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Figure 3- 31 Overhead perspective emphasizing differences in the wind fields between case study 
simulations L7 (top) and L3 (bottom) at t=10000. 
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Figure 3- 32 Overhead perspective emphasizing differences in the wind fields between case study 
simulations L7 (top) and L3 (bottom) at t=11000. 
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DISCUSSION 
The case study reveals that, despite similarities in the macroscopic spatial structure of 

fuels (as demonstrated by the nearly identical lacunarity curves and sum quantities of 

fuel), the significant differences that arose between the two simulations can be attributed 

to subtle fire-fuel-atmosphere interactions that occurred throughout the simulation. These 

interactions produced substantial differences in both incremental spread rates and in the 

overall spread rate.  

In many cases these interactions developed over longer time and space scales but then 

manifested themselves in relatively short, discrete events. A significant turning point for 

the L3 simulation appears to have taken place around t=8000 where the wind field was 

accelerated by the burning crowns and channeled through the gap between the tree 

clumps. This event resulted in an accelerated incremental rate of spread that was more 

than three times the overall spread rate. For firefighters, an unexpected acceleration in 

fire spread can mean life or death; such an acceleration would not be addressed by 

operational fire models because the nature of their prediction of fire spread is only for a 

overall average rate of spread. 

 

The fundamental problem with the overall average rate of spread used in operational fire 

models is that, without some knowledge of the variability around the average, and the 

spatial scale at which the average is expected to manifest itself, the overall average 

spread rate may be too vague to be of any value.  In the approach used in operational 

models neither a characterization of the variability nor some description of the spatial 

scale in presented. This is a result of the approach used in constructing the Rothermel 

model, which required a reformulation of empirical results to a format more amenable to 
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use in fire danger indices (Rothermel 1972). It is curious to note, however, that an 

estimation of the variability around the average spread rate could be derived simply from 

the actual empirical data used in the development of the model. For example, a study 

detailing a large number of wind tunnel test burn experiments in four fuel types reported 

a coefficient of variation of 30% in the within-fire spread rate (Catchpole et al 1998). 

 

It is important to realize that physical fire behavior models do not predict outcomes, but 

rather, they model the progression and observe the outcome. The dynamic factors 

involved belie prediction beyond generalizations which may or may not prove to be true 

given the potential impact of seemingly transient factors. In other words, physical 

models, given a set of initial and boundary conditions, are self-determining: they model 

fire behavior as it happens. It is not part of their architecture to concern themselves with 

what will happen: by their dynamics based nature they are capable of addressing what 

happens when it occurs. The overall spread rate is not stated in advance as a prediction 

but rather determined after the simulation is complete. Similarly, if given a detailed 

description of what happened in a given fire, a physical fire model could be used to 

determine why it happened. For this reason a simulation with a physical fire model is 

more akin to an actual test burn because no definitive expectation of results is explicitly 

stated beforehand.  

 

A key finding of this study was that within-stand spatial variability in the fuels, which is 

currently not considered in any operational fire model, significantly influences the 

magnitude and nature of variability in fire spread rates. Variability in spread rates was 
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smallest, and most easily accounted for (i.e., normally distributed), when the fuels were 

not spatially clumped. As the spatial scale of clumping increased, variability in spread 

rates increased and the nature of the variability, measured with the skewness, changed. 

The higher skewness in the distributions of incremental spread rates in the more clumped 

fuels is problematic because it is less predictable. While the number of simulations in this 

study, and the duration of these simulations was too limited to broadly generalize, future 

testing with a larger sample size may reveal a stronger link between the spatial scale of 

fuel variability and variability in the spread rate. This suggests that it would be beneficial 

to begin developing a means for including some characterization of fuel spatial variability 

in maps of fuels. The lacunarity curve used here is appropriate for description of both 

landscape scale (Plotnick et al 1993) and within stand spatial variability (Fraser et al 

2005); as it can easily be applied to remote sensing data, it shows some promise as a 

parsimonious measure of spatial variability which could be applied to wildland fuels. 

Further numerical and related field experiments are needed to explore these issues 

further. 

 

The findings of this study have important implications for the role of modeling in fire 

management. Prediction of rate of spread has been the central emphasis in operational 

fire behavior for some time. The results of this study illustrate that prediction of rate of 

spread is of limited value without some characterization of the expected variability in that 

prediction. If prediction of rate of spread continues to be the focus, a paradigm shift may 

be needed in which greater emphasis is placed on the identification of the relative impact 

of different factors and on the range of potential outcomes that might arise. The results 
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presented here illustrate that ensemble or replicated simulations with physical fire models 

could be used to determine the magnitude of acceleration effects and their primary 

drivers, and thus identify the primary sources of variability in fire spread. The detailed 

mechanisms of fire behavior described by physical fire models could then provide 

guidance to simpler and computationally faster operational models which could leverage 

this information, statistically, to better account for variability in outcomes.  
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APPENDIX A. LIST OF SYMBOLS AND THEIR MEANING, 
FOR THE FUEL3D MODEL 
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Table A- 1 List of Symbols and their meanings for the FUEL3D model. 

Symbol Description 
tree parameters 

A0 Stem cross sectional area at tree base 
A1 Stem cross sectional area at breast height 
A2 stem cross sectional area at crown base 
A3 minimum stem cross sectional  

ABT sum of all branch basal cross sectional areas 
ABp cross sectional area  of a parent segment 
ABi cross sectional area of a particular child segment at a branching node 
D0 Diameter at tree base 
D1 Diameter at breast height, cm 
D2 Diameter at crown base 
D3 Minimum stem diameter 
DB diameter at base of a branch 
H1 breast height, = 1.37m 
H2 Height to live crown base,m 
H3 Crown length 
HT Tree height,m 
xi tree stem x coordinate for tree i 
yi tree stem y coordinate for tree i 
zi tree stem z coordinate for tree i 
  

Species and site parameters 
ρ average wood material density 
ρf average foliar material density 
γ ratio of child segment length to parent segment length 
n number of child branches at a branching node 
C1 coeff for folbm / xsa_hcb 
C2 coeff of sum branch xsa / xsa_hcb 
C3 crown heartwood taper form coefficient  
C4 crown stem wood taper form coefficient  
C5 Starter segment length / estimated total branch length 
C6 sum cross sectional area of child segments/ parent  cross sectional area 
C7 proportion of biomass allocated dominant child at a branching node 
ρ average wood density 

MF foliar biomass 
M1 woody biomass below crown base 
M2 woody biomass above crown base 
M2s stem wood portion of woody biomass above crown base 
M2b branch wood portion of woody biomass above crown base 
M2bi branch biomass assigned to a particular branch 
Mfi foliar biomass assigned to a particular branch 
V1 Volume of wood below crown base 
V2 Volume of wood above crown base 
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V2s Volume of stem wood portion of crown 
V2b Volume of branch wood portion of crown 
LT predicted total branch length 
lo initial segment length  
l a segment length 
ℜ  rotation matrix 
  

Needle and foliar clump measurements 
needle length length of needle 
needle radius radius of needle 
needle angle angle between needles in a clump 

n_needle number of needles in a clump 
fol_dens material density of foliage 

max_needle 
vertang 

highest angle (where 90 is perpendicular to branch) 

min needle 
vertang 

smallest angle a needle has off the stem 

between clump 
dist h 

spacing of needle clumps along circumfrence  

between clump 
dist v 

spacing between whorls along the length of the branch 

  
Branching control measurements 

vert_nbr n branches in a whorl on main stem 
min_vertang minimum vertical angle of branch, off stem 
max_vertang maximum vertical angle of branch, off stem 
branch_angle angle between branches 

minr2 Lower limit on branch diameter 
minr1 Diameter below which no branching occurs. 
angvar variability in angles 
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APPENDIX B: ANALYTICAL SOLUTION FOR THE 
DETERMINATION OF THE COEFFICIENTS OF THE 
QUADRATIC POLYNOMIAL FUNCTION DESCRIBING THE 
RADIUS OF THE TREE BOLE ABOVE THE CROWN BASE 
AS A TAPERING COLUMN. 
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The stem above the base of the tree crown is modeled separately from the branches in 

FUEL3D to facilitate flexibility in modeling of variability in branch size and geometry. 

This flexibility is essential in enabling the model to represent different species as well as 

for the representation of within-species variability in crown structure. Stem wood above 

the live crown base is modeled as a tapering column in which the change in radius over 

its length (from the base to the top) is described with a quadratic polynomial equation 

(Kozak et al 1969, Goulding and Murray 1975) of the form: 

 

 

cbxaxr ++= 2  

Eqn. B- 1 

         

 

where r is the radius of the tree bole, x represents height above height of the crown base 

and a, b, and c are coefficients of the polynomial. This is the same equation as presented 

in Chapter I, Equation 1-14. It is presented again here for the convenience of the reader. 

 

The volume of stem wood above the crown base, to be modeled as a tapering column, is 

estimated by the equation below:  
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Eqn. B- 2 
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This equation is the same as in Chapter I, Equation 1-15. It is also presented here again 

for convenience. Since all inputs to the equation above are known, V2s is determined. We 

rename V2s as v here for convenience. 

 

We then describe the volume v, in terms of the polynomial, above   
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22πν  

Eqn. B- 3 

   

 

in which we integrate the circular cross section of the tree bole described by the circle 

with radius function r (described above, Equation B-1) over the crown length, h.  

 

The radius at the base of this tapering column is known because the tapering column 

begins at the base of the live crown. This corresponds to the intercept coefficient, c. 

 

We assume that the radius at the top of the tree, corresponds to a minimum radius defined 

as a species level parameter and determined from field sampling. We call this radius at 

the top of the tree rh. 

 

We thus know 1) the radius at the bottom of the column, c, 2) the radius at the top of the 

column, rh, and the length between them, h. 

 222



 

 

We can then substitute these values into the equation for the polynomial and 

rearrange that equation such that parameter b is described in terms of rh, c,h (all of which 

are known), and a (still unknown):  
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Eqn. B- 4 

 

 

As we know polynomial coefficient c, and we have rewritten coefficient b in terms of 

coefficient a, we need only to determine the value of polynomial coefficient a.  

 

To do this we expand out the volume equation (Equation B-3), squaring the contents of 

the parentheses and combining like terms: 
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Eqn. B- 5 

 

We then integrate this equation 
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Eqn. B- 6 

 

Substituting known quantities, rh for x, and the known volume for the left hand side v,  

and rearranging the equation to solve for a gives us: 
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Eqn. B- 7 

     

 

At this point the polynomial function describes the radius of the tree in question from the 

base of the tree to the tree top, and subject to the constraints of measured species 

parameters such as wood density and minimum observed branch radius. This allows a 

precise determination of the volume, and associated woody biomass in any section 

described by lower limit h1 and upper limit h2 of this tapering column as 
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Eqn. B- 8 

 

as well as the cross sectional area of the bole at any given height, x. 
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( )22 cbxaxarea ++= π  

Eqn. B- 9 
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APPENDIX C: FIELD AND IMAGE PROCESSING BASED 
MEASUREMENT OF GEOMETRIC PARAMETERS. 
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DESCRIPTION OF FIELD STUDY 

A field study was carried out at Ninemile on the Lolo National Forest near Missoula, 

Montana in July 2007 characterizing the whole tree and within branch geometry and 

allometric relationships needed for the FUEL3D model. This study was designed to 

complement an earlier study, called the crown fuels study (Scott and Reinhardt 2002, 

Reinhardt et al 2007), which emphasized biomass estimation but did not measure many 

geometric parameters. The 2007 field study was specifically designed to provide data 

needed to estimate geometric parameters.  The field study consisted of destructive 

sampling of ten ponderosa pine trees, whole tree measurements, measurements on the 

whorls and branches.  

 

Destructive sampling of trees 

Ten Ponderosa pine trees were selected from the same stand. Several criteria came into 

play in the selection of these trees. A professional arborist assisted in the selection of all 

trees. First, all trees selected were qualitatively representative of the surrounding stand. 

An attempt was made to span a range of diameters but in general the stand was fairly 

homogeneous; the trees were thus of generally similar diameter and height Second, 

because the intention was to destructively sample the trees quickly but with minimal 

damage to the crown, each tree selected had to have at least one adjacent trees from 

which a restraining system (described below) could be established. Third, to minimize the 

aesthetic impacts of the tree removal, it was desirable that the trees removed be 

reasonably spaced from each other. When not in conflict with other criteria more central 
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to the study, trees were selected for removal such that other trees could be expected to 

benefit. 

 

Once trees were selected, a professional arborist supervised the felling of the trees. Each 

tree was felled using a restraining system in which ropes and pulleys connecting the tree 

in question to one or more adjacent trees could be used to control the rate at which the 

tree came down. For additional control the cuts were made in such a way that a good deal 

of holding wood was left. This also slowed the trees fall. In several cases the trees 

descended slowly and did not actually hit the ground but were instead suspended from the 

ropes a short distance from the ground. The trees which were not suspended came to the 

ground slowly and with minimal impact. These careful measures ensured that the tree 

crowns were accessible for further measurement and processing but were undamaged. 

Direct measurements 

Once the trees were close to the ground, total tree height and height to the base of the live 

crown were directly measured on the tree with a tape held level and taut. Using the same 

tape, the height of each whorl was measured and tree diameter was measured, at breast 

height and at each whorl, with a standard metric diameter tape. The crown of each tree 

was then cut into smaller more workable sections one to three meters long, numbered and 

laid out in order.   
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Whorl measurements 

On each section, measurements relating to the pipe model and allometric relationships 

were taken at each whorl. These measurements included the stem diameter below the 

whorl, the number of first order branches (which branch of the main tree stem), basal 

diameter of each branch, and the diameter of the stem above the whorl, angle from the 

vertical tree stem to each branch, total branch length, and the length on each branch 

between the branch base and the first branching node. Branch diameters were taken with 

metric digital calipers and angles were measured with transparent plastic angle gauges.  

Branch measurements 

Every third branch was cut off at the base, labeled and laid out in order on a tarpaulin for 

additional measurement and processing. These branch level measurements included 

counts of second order branches and of foliage clumps, branching angles and diameters at 

randomly selected branching nodes, and diameters at which foliage appeared on the 

branch.   

 

Measurements made from digital images 
These measurements served as a straightforward set of direct utility in the 

parameterization of the model. However, in many ways it is difficult to convey the whole 

pattern of a branching structure from just a few measurements. It is also prohibitively 

slow to carry out a great number of direct measurements on individual branches in the 

field.  For this reason an apparatus was set up to facilitate recording using high resolution 

digital imagery (Figure C-1), and subsequent post field processing to aid in the 

quantification of  branching patterns using semi-automated image processing procedures.  

 229



 

 

At the field site a 6 foot tall portable scaffold was leveled and secured with guy wires on 

a flat location.  
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Figure C- 1 Scaffold used to set up a downward facing digital camera for image processing based 
measurements of tree branch geometry. 
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Figure C- 2 An example branch image collected with the digital camera for the purpose of image-
based branch measurements. 
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Figure C- 3 Example branch following clipping of foliage. 
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Securely clamped to the top of the scaffold was a device extending another 2 feet higher, 

and three feet outward from the scaffold, which was designed to hold a digital camera 

such that the camera is oriented directly downward (normal to the ground). A Canon 

PowerShotG5, 5.0 Megapixel digital camera was set on this device, leveled in two planes 

with carpenters levels, and also secured with guy wires to prevent lateral movement. A 

large canvas structure was set up to protect the equipment from the elements and to shade 

the area of the camera’s view from direct sunlight. The camera was connected to a laptop 

computer via a USB cable and specialized software developed for use with the camera, 

PSRemote v1.54 (BreezeSys Software 2007 REF), was installed on the laptop. The 

specialized software allowed the camera to be operated remotely, including zoom and 

other adjustments, from the laptop, where what would be seen in the viewfinder would 

appears on the laptop screen. This arrangement was important to the image capture 

process because it enabled the field of view of the camera to be modified without having 

to climb up on the scaffold. A white canvas backdrop was set out on the flat area directly 

under the camera, and a dry erase board was used to include the appropriate labeling 

information in each branch image captured. Attached to the dry erase board was a high 

contrast ruler such that subsequent measurements made on the image could be calibrated 

to a known distance. 

 

Before the branch was set up for digital image capture, it was stripped of moss. The 

backdrop was swept clean after each branch. Each sampled branch was then placed on 

the backdrop. A preview image of the branch was taken using the remote controlled 

digital camera and laptop to ensure that the branch was fully contained in the camera’s 
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field of view. Two images were then taken for each branch. In the first image nothing 

was removed, so the entire pattern of foliage and material in the branch could be seen 

(Figure C-2). Then, holding the branch in the same position, foliage was clipped off, as 

well as any branches which extended vertically (towards the camera) (Figure C-3). 

Because material that extends vertically can result in distortions in image-based 

measurements (because the distance between the object and the camera is not consistent), 

branches that were retained were partly cut when necessary such that they could lie as flat 

as possible. In general no material extended vertically above the backdrop by more than 

10 centimeters.  

 

Subsamples of the branches were subjected to additional processing. Thirty smaller 

branches were placed in paper bags, labeled and taken in their entirety back to the lab. 

These samples were oven dried in the lab for 72 hours at 95 degrees Celsius, then 

weighed to determine dry weight of wood and foliage.  Sections of woody components of 

these samples were cut into cylindrical pieces, the ends were sanded, and weighed. 

Measurements of all dimensions were made with digital calipers, two measurements for 

each of length, outside diameter at both ends and inside diameter at both ends (to 

determine bark thickness). The bark was then peeled off and the woody segments were 

then re-weighed and material density was calculated for wood directly and for bark by 

subtraction from the original volume. 

 

Fifteen smaller branches which consisted of single woody section and a foliage clump 

were cut longitudinally such that the remaining foliage in the clump laid flat. Detailed 
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digital images were taken of these cut clumps, with the camera zoomed in to just a small 

area, for the description of needle dimensions and other properties of terminal structures, 

using the same general approaches as described above.  

 

Image processing 

The branch images with foliage were generally not used quantitatively as the foliage 

tended to obscure the structure of the branches. However, these images proved to be very 

useful in qualitative assessment of the overall geometry and pattern of the branches.  

 

A semi-automated process was developed by which detailed measurements could be 

made from the digital images of the clipped branches. The process consisted of three 

stages: pre-processing, in which the digital images were prepared for the measurement 

process, basic measurements, and post processing, in which more involved measurements 

were assembled from the basic measurements. 

Image preprocessing 

The objective of preprocessing was to convert the full color field photos taken of 

individual tree branches to clean binary images which could then be analyzed more 

easily. Forested environments present challenges for any kind of photography because 

there is significant variability in the nature and quality of light, ranging from bright spots 

where sunflecks hit the forest floor to deep shadows. This variability in light intensity can 

be reduced by taking pictures at particular times of day, such as in the early morning, but 

it is not always feasible to restrict image capture to relatively narrow windows in time. 
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Images were taken in this study during daytime hours and under variable sunlight, so a 

number of preprocessing steps had to be done before the quantitative measurements could 

be done consistently on the images.  

The first preprocessing step was to calibrate the image such that measurements made in 

pixel distances (i.e., some number of pixels between two points) could be converted to 

standard distance units (centimeters). This was done with on-screen digitization, by 

displaying the image on the computer, zooming in on the high contrast ruler located on 

the dry erase board,  and interactively measuring the distance along the edge of the ruler 

(Figure C-4). 
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Figure C- 4 Calibration of distance in pixels on the image to distance in standard units (centimeters). 
Green plus signs indicate the portion of the image which was zoomed in interactively to facilitate 
precise on-screen digitization of the refererence scale. 
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Next the image was cropped to a smaller rectangle including the branch; this helped to 

improve the processing time as the overall image size was reduced. The image was then 

converted from 24-bit color to an unsigned 8-bit grayscale image by discarding 

information describing the hue and saturation of the image while retaining the luminance. 

Contrast was enhanced with a standard histogram stretching procedure. The cropped, 

higher contrast image was then converted to a binary (0’s and 1’s) image with a common 

thresholding procedure (Otsu 1979). The image was then reversed, such that the branch 

had a value of 1 (white) and the background was 0 (black).  Speckling within the branch 

portion of the image was removed using the morphological reconstruction method (Soille 

1999) (Figure C-5). 
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Figure C- 5 Example binary image of tree branch used in semi-automated image processing based 
measurement of tree branch geometry. 
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Finally, the edge pixels of the black and white image of the branch were smoothed out to 

eliminate fine scale features such as the scales in the bark. Earlier tests of the algorithm 

had determined that these small irregularities were problematic for processing because 

they made it more difficult to consistently identify branching nodes. This smoothing was 

accomplished with a two-stage dilation / erosion approach, in which the perimeter of an 

object in the image is iteratively expanded out (dilation) and then eroded inward (van den 

Boomgaard and van Balen 1992). When used in this manner, this approach does not 

affect the overall geometry or dimensions of objects in the image but the perimeter is 

smoother and easier to work with. The cells comprising the smoothed perimeter were 

extracted for use in image measurement algorithm, described below. 

 

Algorithm for basic image measurements 

The automated measurement process of the image begins at the cell on the perimeter 

closest to the upper left corner of the image. The algorithm deals with one perimeter cell 

and other cells in its local spatial context, then moves the calculation in a counter 

clockwise direction to another cell along the perimeter.   

As the algorithm cycles through the cells along the perimeter, it tests for whether the cell 

in question can be considered as part of a branching node or not. This test is done by 

evaluating the intersection of an annulus (figure comprised of an outer and inner ring, 

like a tire or a donut) centered on the perimeter cell in question with the cells on the 

branch in the vicinity of the annulus. The cell in question is classified as being one of 
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three cases, based on the number of discrete regions identified by the annulus. The first 

case is a branch tip, in which there is only one region within the annulus. The second case 

is that of a point along the length of a branch, in which two regions are identified from 

the annulus intersection. The third case, a branching node, is identified if more than two 

distinct regions are found to intersect the annulus. The outer and inner dimensions of the 

annulus are set as a user specified parameter.  

If the cell in question is identified as being a point along the length of the branch, the 

width of the branch (from the cell in question across to the other side of the branch) is 

measured. To do this a set of nearby cells along the perimeter and on the same side of the 

cell in question are sampled (a total number of such cells and an interval between them 

are specified by the user). The equation for the line best representing the coordinates and 

passing through  the cell in question is determined by least squares. This fitted line 

represents a straight line generally parallel to the edge of the branch and which is tangent 

to the cell in question. From this line the equation for the line perpendicular to this line is 

determined. The algorithm then searches for the intersection of the cells comprising the 

perimeter and this perpendicular line. The coordinates of the closest intersection are 

recorded, and from these coordinates the width of the branch along that perpendicular 

line is calculated. A midpoint is determined between the two points and is saved in an 

array for processing in subsequent steps. This process is repeated until the entire 
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perimeter is spanned. 

 

Figure C- 6 Example branch image processed with the following features identified: green – portions 
along the length of a branch where diameter measurements can be made. Blue: portions near branch 
ends where diameter measurements may be suspect. Red: portions near branching nodes where 
diameter measurements are likely to be suspect. For the most part the automated process correctly 
identified these regions; erroneous identifications, such as the branching nodes (red) on the lower two 
second order branches, were later removed manually. 

 

inventory of branching nodes 

Before proceeding further, the algorithm assembles a list of the perimeter coordinates 

which qualified as being portion of a branching node. The algorithm then assigns a 

temporary identifier to each set of perimeter cells which are spatially contiguous. 
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Subsequent steps consolidate these sets into groups which together lie around a common 

node and assign a unique node identifier to those cells. Additional testing is done to 

eliminate false nodes which can arise due to the peculiarities of the geometry of a branch 

(Figure C-6).  

A centroid coordinate is calculated from the perimeter cells common to each branching 

node.   

Calculation of angles and lengths 

Angles are calculated between each set of three midpoints. Angles between such 

midpoints along the length of the branch are used to estimate curvature, while angles in 

the vicinity of branching nodes are used to estimate angles between branches.   

Similarly, lengths are calculated over each branch section (between branching node 

centroids, and farthest branch tip cells). Angles and lengths are assembled in an array for 

further analysis in post processing. 

post processing 

In the post processing stage each branching node is associated with a group of 

measurements, including angles, lengths and widths. Altogether these assembled 

branching nodes then describe ‘branching objects’ used as basic building blocks in the 

FUEL3D model. 
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Determination of geometric parameters from field and image 

processing based measurements 

Once the measurements were assembled from direct measurement and from the image 

processing based measurements, most of the parameters are simple ratios or other basic 

calculations made from those measurements. The majority of parameters were simply 

determined with simple descriptive statistics (i.e mean, μ and standard deviation, σ) of 

those calculations over a number of sample measurements.  

 

A table presenting these straightforward measured values, as well as more detailed 

descriptions of calculations made in the parameterization of the model for ponderosa pine 

is presented in Appendix D, below.  
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APPENDIX D: MODEL PARAMETERIZATION FOR 

PONDEROSA PINE 
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The FUEL3D model requires  parameters describing the geometry of each species. The 

model was parameterized for Ponderosa pine from measurements made in two separate 

studies. The first study, known as the Crown Fuels Study, took place from 2000 to 2002 

and consisted of destructive sampling of all trees within sample plots in five locations in 

the western United States.  This study is described in detail in several publications (Scott 

and Reinhardt 2002, Reinhardt et al 2007). Of the five locations, three had data for 

ponderosa pine (Flagstaff, AZ,, Ninemile, MT, and Blodgett, CA). Data from the 

Flagstaff and Ninemile locations in the in the early stages of development of the 

FUEL3D model, as well as for parameterization of several important quantities and 

relationships, described below. The second study was carried out in Montana in 2007 and 

was designed to provide information not available from the Crown Fuels Study needed to  

parameterize geometry of Ponderosa pine trees. 

 

Parameterization from Crown Fuels Study  
 

Prediction of total branch length 
FUEL3D requires an empirical equation for the total branch length, LT, as a function of 

the basal diameter of a branch, DB (here in cm). Initial inquiries with this data, consisting 

of 2207 individually measured branches on 78 trees determined this relationship as a 

power function  relationship of the form  
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99.047.0 BT DL =  

Eqn. 1- 33  R2 = 0.77 

 

However subsequent work determined that a number of the branches used in that analysis 

were dead or otherwise unsuitable; analysis on more refined data determined a  

relationship with improved fit as  

 

8909.06369.0 BT DL =  

Eqn. 1- 34 R2 = 0.968 

 

 

Beta parameters describing the distribution of branch basal 
diameters 
The Beta distribution is used in FUEL3D to allow flexibility in the number and size of 

branches on a tree, so the parameters used in the model serve as a user input. To 

determine a range of reasonable values for the Beta distribution, maximum likelihood 

estimation procedures were used to fit the Beta distribution to the distribution of branch 

diameters on each tree (Hahn and Shapiro, 1994).  The parameter values were variable 

and appear to vary with the competitive status of the tree (i.e. dominant, suppressed). 

Average values for the v and w parameters, of 2.35 and 74.1, respectively, are used as 

default values for the model.    
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Site level parameters 
Additionally, the detailed biomass estimation from that study was used to determine two 

site level parameters, C1 and C2, which relate the foliar biomass MF, and the sum branch 

cross sectional area, to the cross sectional area at the base of the live crown, A2 , 

respectively. For each tree, the individual values of parameters C1 and C2, C1i and C2i, 

were calculated as follows: 
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Eqn. 1- 35 

   

 

where MFi was the total foliar biomass from the tree (from destructive sampling), A2i was 

the estimated cross sectional area at the base of the live crown for that tree,  and ABTi is 

the total branch cross sectional area for that tree.  

 

 For the Flagstaff site the average value of C1 was 519.34;  for the Ninemile crown fuels 

site this value was 612.8, reflecting a higher site productivity at that location. Both values 

are similar to those reported in other studies for loblolly pine (Valentine et al 1994) and 

Scots pine (Berninger and Nikinmaa 1997). The value of C2 for the two sites was 1.366 

for the Flagstaff site and 1.582 for the Ninemile site. 
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Parameterization of tree geometry 
The crown fuels study emphasized biomass estimation but did not address branch 

geometry. A second study was carried out at Ninemile on the Lolo National Forest near 

Missoula, Montana in July 2007 characterizing the whole tree and within branch 

geometry and allometric relationships needed for the FUEL3D model. The procedures 

used in collecting this data are new, and required development of a semi-automated 

image processing based system for measurement of branches.  

 

 

Table D- 1 Parameters describing Ponderosa pine geometry for the FUEL3D model determined from 
field data. 

 

 

Parameter / Symbol Description μ σ source 

     

 Site Parameters    

C1 foliar biomass to cross sectional area at 

base of live crown coefficient 

519.

6 

9.1 1 

C2 sum branch cross sectional area to cross 

sectional area at base of live crown 

coefficient 

1.38 0.15 1 

     

 Species Parameters    

C3 crown volume heartwood taper form .5  -- 3 
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coefficient 

C4 crown stem wood taper form coefficient 1.26 0.16 2 

     

C5 length to first 2nd order branch, as 

proportion of total branch length 

0.2 0.03 2 

C6 ratio of sum child segment cross 

sectional area to parent segment cross 

sectional area 

1.06 0.14 2 

C7 proportion of sum child segment cross 

sectional area allocated to dominant 

branch 

0.65 0.04 2 

n Number of child segments at a 

branching node (see below) 

2  -- 2 

branch_angle angle between branches at a branching 

node 

76 7.1 2 

min_ diam1 Smallest branch diameter on a tree (cm) 0.41 0.04 2 

min_diam2 Branch diameter below which no 

branching occurs(cm) 

0.94 0.11 2 

n branch_whorl Number of branches at a whorl (see 

below) 

2 -- 2 

min_ang_whorl Smallest angle (vertical) of branch off 

stem at whorl 

10 3.4 2 

max_ang_whorl largest angle (vertical) of branch off 110 12.1 2 
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stem at whorl 

d_whorl distance between whorls, m 0.14

8 

0.04 2 

     

 Foliage Clump Parameters    

n_needle_clump Number of needles in a fascicle 3 -- 2 

needle_length Length of a needle, cm  15 1.1 2 

needle_radius radius of a needle, mm 0.51 0.02 2 

needle_angle Angle between needles within a fascicle 5 0.4 2 

min_v_angle minimum angle of faciscle off stem of 

needle clump 

10 0.4 2 

max_v_angle maximum angle of fascicle off stem of 

needle clump 

75 5 2 

clump_dist_h distance between fascicles along branch 

circumference (mm)  

4.1 0.3 2 

clump_dist_v distance between needle whorls (cm) 1.3  2 

 

Source: 1 Crown fuels study (Scott and Reinhardt 2002) 2 Field study July 2007, detailed in Appendix C. 3 

From literature: Makela and Valentine 2006 

 

n: number of child branch segments at a branching node  

At each branching node the number of child segments was counted. A histogram was 

then assembled over all branching objects. From this histogram a probability distribution 
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function was determined. FUEL3D uses this probability distribution function l to 

determine how many child branching segments to insert at each branching node. The 

number of child segments with the greatest frequency was 2.  

nbranch_whorl: number of branches at a whorl, including the 

continuing mains stem.  

Similar to the parameter, n, above,  a histogram was assembled describing the number of 

branches at each whorl. FUEl3D uses this histogram to determine the number of branches 

at a whorl.  

 

Coefficient C4: Crown stem taper form coefficient 

The crown stem taper form coefficient, C4, was determined from the whorl data collected 

in the 2007 field study. This coefficient describes the ratio of the volume of a tapering 

column, extending from the base of the live crown, to the top of the tree, and described 

with a quadratic polynomial, to the ratio of a truncated cone with the same end radii. The 

analytical solution for the quadratic polynomial taper is described in detail in Appendix 

B. This was calculated for each of the ten trees sampled in 2007. A quadratic polynomial 

taper was fit to the diameters measured at each whorl, and the resulting polynomial was 

then integrated to determine the volume. The coefficient C4, was determined by dividing 

that volume by the volume of a truncated cone with the same base and top areas.  
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