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INTRODUCTION

The results of this thesis center around the idea
of metric density and its relation to approximate limits.
The concept of metric density and approximate limits
originated in approximately 1915, and is due largely to
Denjoy. The ideas and theorems in this thesis have been
developed for Buclidean n-space, for the most part, by
Denjoy, de laValle? Poussin, and Klintchine.

In chapter I, R will denote a metric space, with
metric e > S will be a subset of R, X, will be a 1limit
point of S, and f will denote a real-valued function with

domain S. In this chapter we define 1lim inf f(x) and

- X
X }&o

lim sup f(x), the limit inferior and limit superior of
X =X
o

f at X5 and develop properties of these concepts.

In chapter II, it is further assumed that R is a
measure space, with a measure m defined on a cg-algebra c;’.
It is further assumed that R, as a metric space, is sepa-
rable and dense - in - itself. (Further assumptions are
listed in chapter II.) If x_eR, and if Se X , we define
Ls(xo) and Us(xo), the lower and upper metric densities
of S at X,+ If these are equal, we say that the metric
density of S exists at X5 and the common value is denoted
by DS(XO). If DS(XO) = 1, x, is called a point of density
of 3, and if DS(XO) = 0, x_ is called a point of dispersion

1
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of S. Properties of upper and lower metric density

and metric density are established.

If Se af, if £ is a measurable real-valued
function with domain S5, and if X, is not a point of dis-

persion of 8, we define lim ap inf f(x) and

- 3
X }xo

lim ap sup f(x), the approximate limit inferior and
X =X
o

limit superior of f at Xy If these are equal, we
say that the approximate limit of f exists at Xy and

we denote the common value by 1lim ap f(x). If x

-
x X,

&

is in 8 and is a point of dispersion of S, we say that

f(x) is approximately continuous at X,- If x_ ie in &
and is not a point of dispersion of 3, we say f(x) is

approximately continuous at x  in case 1lim ap f(x) = f(xo).
X - X
o)

In Chapter II, similarities between approximate
limits and ordinary limits, approximate continuity and
ordinary continuity, and approximate derivatives and
ordinary derivatives are discussed. It will also be
pointed out where these concepts differ. Interspersed
in this chapter are many examples illustrating the afore
mentioned concepts.

Chapter III will be devoted to proving analogues
of the classical Vitali and Lebesgue density theorems.
These theorems will be proved for the measure space R,

end it will again be assumed that R, as a metric space, is
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-3
separable and dense - in - itself. Also S will again
denote a measurable subset of R, and f will denote a
measurable real-valued function with domain S.

In the thesis we will often use braces, { ]},
to indicate sets. In most cases, lower case Latin letters
are used to indicate points and upper case Latin letters
are used to indicate sets. OScript letters are often used
to denote collections of sets. We will also frequently
encounter the following sets:
N*(p,6) = {xl|xeR, e (p,x) < 8} - {p} s
N(p,b)
Q(p,8) = {x|xeR, e (p,x) < 8} .

{x|xeR, e (p,x) < 8} ; and
Also we frequently use (a,b) to denote {xla < x < b}

and [a,b] to denote {xla < x < v} ; [a,b) and (a,b] are

defined in the obvious manner.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1
Section 1

In this chapter it is recalled that R is a metric
space, S is a subset of R, f is a real-valued function de-

fined on S, and X, is a 1limit point of S.

Definition 1-1. We define the limit superior of

f at the point x_, written lim sup f(x), to be

xa4>xo
lim sup f(x) = g.l.b. l.u.b. f£(x)
X > X e>0 xeSUN*(x_,e)

where the g.l.b. is taken with respect to all >0 and
N*(xo,e) is a deleted open spherical &€ - neighborhood of

X Similarly we define limit inferior of f at X, to be
lim inf f(x) l.u.b. g.1.b. £(x)
X = X >0 szﬂN*(xO,s)
Let Al(g) = 1.u.b. f(x)
xeSNN*(x_,€)

B(e) g.1.b. f(x) .

xeSNN*(x_,€)

]

An immediate consequence of definition 1-1 is

1im inf f(x) < 1lim sup f(x).
X €>xo X %>xo

Suppose this were not the case. Suppose

C = l.u.b. B(eg) > g.1.b. A(e) = D.

>0 e>0
Since D < 952 < C, there exists €4 > 0, En > O, such that
C+D C+D

B(el) > == and A(e,) < == . Let €3 = min(sl,ag);
85.5 e, and 63,5 €s . B(e) is a decreasing function of e,
T
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-5
so that B(el) 5.3(55)° On the other hand, A(.) is an in-
creasing function of €, so that A(e,) 2.A<€5)' Now since
A(SB) 2_3(83), we have A(eg) Z_B(el), a contradiction.

Therefore 1lim inf f(x) < 1lim sup f(x).
X > X, X =X,

Before going to the first theorem, let us remark

upon the extended real number system. This system consists

of the real numbers El and the two entities + ®and - ®
which have the following properties:
l) - o< + ®;

2) if xeEl, then - ®< x < + ® ; and
1

3) if xeB~, x + (+ ® = + ®+ X = + ®and
x +(-® =-o+xX=-®.
Theorem 1-1. lim sup f(x) = + ®if and only if

X =X
for all € > O and for all rRal M, there exists an Xj, such

that x sN*(xo,s)ﬂS and f(xl) > M.

1
Proof: To prove the sufficiency, suppose M is

given and for each € > O there exists an xlsSﬂN*(Xo,s)

such that f(xl) > M. BSuppose g,> O. A(81> > M. But

this is true for every M, hence A(sl) =+ ®. But g, was

arbitrary, therefore g.l.b. A(e) = 1lim sup f(x) = + ® .
e>0 X 4>x0

For the necessity, suppose M is real, € > O, and

lim sup f(x) = + @ . Then A(sl) = + @ for every ¢
X €>xo

which implies for any € > O and for any real M, there
exists an xlsN*(xo,s)nS such that f(xl) > M.

Examgle 1-1. Let R = 8 = reals. Define
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1
f(X) = -)-C- ifx,éO,
O if x = 0O .
Then 1lim sup f(x) = + @ . Suppose € > 0 and M is real.
x =0

We may suppose M > O. Let 6 = min(s,%&. Let x; = 6/2.

2 i
Then x,el*(0,6) = SNN*(0,e) and £(x;) = 51/—2 -E>2M >,

so 1lim sup f(x) = + @ .
x =0

A similar result may be proven with regard to
limit inferior, namely

Theorem 1-2. lim inf f(x) = - @ if and only if
X 4>XO

for all € > O and for all real M, there exists an
Xq€ N*(xo,e)ns such that f(xl) < M.

Proof: Suppose M is real and for every € > O
there exists an XlEN*(XO,s)ﬂS such that f(xl) < M.

Suppose &,> 0. Then B(sl) < M. But this is true for

every M, hence B(al) = — @ . Further for any € > O,
B(eg) = = @ . Therefore 1l1lim inf f(x) = - o .
X - X
)
Conversely, suppose 1lim inf f(x) = - @ . Then
X = X
o
B(g) = - @ for every € > 0, i.e., g.1.b. f(x) = - o,

szﬂN*(xo,s)
hence for any € > O there exists xlsN*(xo,s)ﬂS such that
f(xl) < M.
It is clear that the statement and proof of
theorem 1-2 is analogous to that of theorem 1-1; hence-
forth theorems and proofs will be éiven for limit superior

only.
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Theorem 1-3. lim sup f(x) = - ®if and only if
X —->X
for every real M there exis®s an £ > O such that if
XlsN*(xo,e)nS, then f(xl) < M.
Proof: To prove the sufficiency suppose M is real

and there exists € > O such that if xlsN*(xo,s)ns, then

f(xl) < M. x; is arbitrary, so g.l.b. ACe) < A(e) < M.

>0
However, M is arbitrary; thus 1lim sup f(x) = - @
X =X
o}
On the other hand suppose 1lim sup f(x) = - .
X - X
o
Suppose M is real. Then g.l.b. A(e) < M. This implies
e>0

there exists e;> O such that A(el) <M, i.e., if
XlsN*(xo,e)ﬂS, then f(xl) < M.

Theorem 1l-4. Suppose L is real. lim sup f(x) = L

X - X
o

if and only if the following two properties are satisfied
for all € > O:
(1) £(x) <L + € for all x in some neighborhood
N*(xo,b)ﬂs; and
(2) f(x) > L - € for some x in every neighborhood
N*(xo,b)ﬂs.
Proof: Suppose € > O and properties (1) and (2)
are satisfied. By (1), f(x) < L + ¢ for all x in some

N*(xo,é)ﬂs, hence A(8) < L + €. Thus g.1l.b. A(®) < L + ¢
5>0 -

for all € > O and hence 1lim sup f(x) < L. Applying
X - X
o)
condition (2) we have A(®) > L - € for every & > O, i.e.,

L - € is a lower bound for A(®) for all &. Therefore
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g.1.b. A(8) > L - € ; however € > O is arbitrary, so

6>0
lim sup f(x) > L. This last inequality combined with
X =X
o
the above gives us a sufficient condition for ..lim sup f(x):
X - X
o

To prove the necessity, rather than suppose

lim sup f(x) > L, consider 1lim sup f(x) > L and

X %»xo X %»xo
lim sup f(x) < L separately. If 1lim sup f(x) > L,
X 4>XO Jcé>xb

then for all & > O there exists an x in each

N*(xo,é)ﬂs such that f(x) > L - € since 1lim sup f(x)

->
X X,

= g.l.b., A(8). This is precisely condition (2). Now

suppose 1lim sup f(x) < L, i.e., g.1l.b. A(®) <L <L + ¢.
X = X 6>0

4]
But this means L + € is not a lower bound for all A(B);
thus there exists 8; > O such that A(él) <L + ¢g. Hence
for all x in N*(xc,él)ns, f(x) < L + g, which is condition
(1).
In proving theorem 1-4 we have actually established

a somewhat stronger theorem, namely

Theorem 1-5. lim sup f(x) < L if and only if
X 4>xo

for all € > O there exists a neighborhood N*(xo,b) such
that for all st*(xo,b)ﬂS, f(x) <L + & ; and,

lim sup f(x) > L if and only if for all € > 0, & > O,
X =» X
o
there exists XlsN*(xo,é)ﬂS such that f(xl) >L ~ €.

Example 1-2. Let R = S = reals. Show
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lim sup cos %-: 1. Suppose € > 0. Clearly condition
x -0

(1) of theorem 1-4 is satisfied, since cos %-< l+e for all
xe N*(0,8), if & > O. On the other hand if & > O, then
there exists a positive integer N such if n > N, then

1 . 1
e < 0, i.e., pEp € N*(0,86), and
1
cos Z%E = ¢cos 2nm = 1 > 1l-e and condition (2) of theorem

1-4 is satisfied. .°. 1lim sup cos %'= 1.
x =0

Section II

Before considering further results let us recall

the following definition.

Definition 1-2. Suppose {xn} is a sequence of

points in R. Then lim X, = x if and only if for all
n-—-ao

€ > O there exists N such that if n > N, then €>(xn,x) < g.
If {x,} is a sequence of extended real numbers

we define 1lim X, = + o (- ® if and only if for every real
n - @

M there exists N such that if n > N, then x, > M (xn < M).
In this section we will discuss some theorems on

limit superior and limit inferior in relation to sequences.

Theorem 1-6. lim sup f(x) = + o if and only if
X ~-» X
o
there exists {xn} with x €S, X, # > S n¥i?af = x, and

lim f(xn) = + .
n - w

Proof: BSuppose there exists {xn} with xnaS,
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x_ + x 1im x_ = x_ and lim f(x_ ) = + ®. Suppose M

n 0,‘x->cn n © n - @ n

is real. Since 1lim f(xn) = + ®, there exists N such that
n - @®

if n > N, then f(xn) > M. Further, for every & > O there
exists P such that if m > P, then xmsN*(xo,&)ﬂS. Let
m > max(N,P). Then f(xm) > M. Therefore by theorem 1-1,

lim sup f(x) = + @.
X - X
o)
On the other hand suppose 1lim sup f(x) = + .
X 4>XO

Again using theorem 1-1, we know that for all 6 > O, for
all real M, there exists XlsN*(xo,é)nS such that f(xl) > M.

Let &, = 1, M = 1; there exists xlsN*(Xo,l)ﬂS such that

£(x;) > 1. Let 6, = %, M = 2; there exists x,eN¥(x_,5)NS

such that f(xg) > 2. In general let 6n = %5 M = n; there
. 1
exists anN*(XO,EJnS such that f(xn) > n.
In this manner we obtain a sequence {Xn} such

that x €S, x_ ¢ x_and 1lim x_ = x_. Also we see if n > M,
n n 0 < > o o

then f(xn) >n > M so that 1lim f(xn) = + ™.
n - o

For an illustration of this theorem, refer to

example 1-1 and let the sequence {xn} be {%&} .

Theorem 1-7. 1lim sup f(x) = - ® if and only if
for all {x,} such that x eS8, x_ + x, and lim x_ = x_,
n - @ ©

lim f(xn) = —

n-—->w
Proof: The proof of the sufficiency will be by

contradiction. Suppose
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lim sup f(x) =L, L ¢ - o

-
x X,

We want to show that there exists {xn]. such that

1im X, = X5 X, ¢ Xq and {f(xn)} does not converge to -~ a
n->w
If L = + @, then by theorem 1-6 there exists ‘{Xn}
such that 1lim x_ =x_., x. £+ x_, and 1lim £f(x_ ) = +
n->@ B 0> "n o’ n>wm B

Thus suppose L is real. Suppose & > O. By theorem 1l-4,

for every & > O there exists xlsN*(xo,b)nS such that

f(xl) > L - 1. Consider those 6's of the form %u For

every n there exists anN*(xo,%JnS such that f(xn)> L - 1.

Thus we have a sequence {xn} such that 1lim x

== Xo,
n -aom

n

X £ X However f(xn) does not converge to - o, a

o.
contradiction.

For the necessity suppose 1lim sup f(x) = - o,

>
b4 X,

X , X €S, Xx_ #x_ and lim x_ = x_.. Let M be real.
{, ﬁ} n-" "n o] n>o 2 o)

M is not a lower bound for A(d) for all &, therefore there
exists 61 > O such that A(&l) <M, If xeN*(xo,bl)ﬂS,

then f(x) < M. There exists N such that if n > N, then
e(xh,xo) < &y, x,€5. Therefore if n > N it follows that
f(xn) < M and the proof is complete.

Theorem 1-8. lim sup f(x) = I if and only if
X X
o)
(1) there exists {Xn} such that x eS8, x  # x_,

lim x = x, and 1lim f(xn) =L ; and
n -—-o n =

(2) for every sequence {xn} for which x €8, x  # x_,
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nlj;mco x, = X, and for which {f(xn)} converges,

then lim f(xn) < L.
n-->wo

Proof: Condition (1) implies li»m sup f(x) > L.
X X
o
Since 1lim x_ = x_, all but a finite number of terms of
n-—->auo n ©

{Xn} are in N¥(x_,6) for every & > 0. Suppose & > O.
Then there exists n such that anN*(xo,é)ﬂS and
f(xn) > L - £, since 1lim f(xn) = L. Therefore A(®) > L
n-—->o
and 1lim sup f(x) = g.l.b. A(®&) > L.
X —->xo 5>0
On the other hand condition (2) implies

lim sup f(x) < L. Suppose this were not the case, i.e.,
X =X
o

lim sup f(x)

X =X
o]

not a lower bound for all the A(®)'s, so there exists

1
6 such that Q < A(én) <Q + F . We may suppose & <

for if not, then there exists a &' such that &' < %l- and

Q > L. A(8) > Q for all 6. Q + %-is

1
'ﬁa
A(B') < A(&n) < Q + % (Note that A(®) is an increasing
function). Thus f(x) < Q + %l- for all st*(xO,én)ﬂS.
1 .

A(én) > Q - %=, therefore there exists anN*(XO,E)n) NS such
1
-ﬁ'. Now

1

If(xn) - ql < =

that f(x_ ) > Q -

and further e (xo,xn) < %1' We obtain a sequence {Xn}

with x #Zx , 1limx_ = x_and 1lim f(x_ ) =Q > L, a
n °© n ->con © n - n ’
contradiction to condition (2). .-. lim sup f(x) < L
X =X -
o)
as claimed and hence 1im sup f(x) = L.
X —>XO
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To prove the necessity, let us suppose

lim sup f(x) = L. By theorem 1-4 there exists &' ,

>
X XO

0 < 8'_ < & such that if xeN*(x,,6' )NS, then £(x) < L + =

Also by theorem 1-4, for each & > O, € > O, there exists

xaN*(xo,é) such that f(x) > L - €. In particular, for

6L5 1, € = 1, there exists xlsN*(xo,él)ﬂS such that

f(xl) >L - 13 for 6, Sﬁ%, £ = %3 there exists

XESN*(xo,ée)nS such that f(xz) > L —-% ; and in general

%3 E = %3 there exists xneN*(xo,an)nS such that
1

f(x,) > L - =. Thus there exists a sequence {xnj} ,

for &, <

limx_ =x_, X £ x , x &8 and 1lim f(x_ ) = L, so con-
n->ol ° n © n n - o n

dition (1) holds.
To show condition (2) is implied, suppose {xh}
is such that lim x = x_, X, # X, X €S and {f(xn)}
n ->o
converges. Suppose 1lim sup f(x) < L, i.e.,
X ;’Xo

gél.b. A(8) <L <KL + €. Then there exists a &' > 0 such
>0
that A(6') < L + € and f{(x) <L + £ for all xeN*(xo,b')ﬂS.

There exists N such that if n > N, xnsN*(xo,b')ﬂS. But
then f(xn) <L + . Therefore if {f(xn)} converges,

lim f(xn) < L as we wanted to show.
n-o

As in the case of theorem 1-4, we have proved a
stronger theorem in the proof of theorem 1-8, namely

Theorem 1-9. lim sup f(x) < L if and only if
X - X
o
condition (2) in theorem 1-8 holds; and 1lim sup f(x) > L
X - X
o
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if and only if there exists {xn} with x €S such that

lim x_ = x X £ x and 1lim f(x_) = Q > L.
n-écpll °’ "n o° n-—-w n
Section IIL
Definition 1-3. ©Suppose y is real. Define
c(y) = {xlxes, £(x) > v} and

D(y)

"

{xlxes, f(x) <y} .

Definition 1-4. Define

G(x,) = {vly is real, x €R and x_ is a limit point of C(yi}.
Similarly define ‘
P(x, ) = !y is real, x eR and x_ is a limit point of D(y)} .

Theorem 1-10. If y; < yp, then C(ye) < C(yl) and
D(yy) = D(y5).

Proof: If xeC(y,), then f(x) > y, > ¥y, therefore
xaC(yl). If st(yl), then f(x) < ¥y1 < ¥o, SO xeD(y5) .

Theorem 1-11. If y; < y, and ygsG(Xo), then ylaG(xo)

Proof: 1If ygsG(xo), then x_ is a limit point of
C(y>). But by theorem 1-10, C(ys) = C(yl). Therefore x
is a limit point of C(yl), i.e., ylsG(xO).

A similar result can be established for P(xo).

It follows readily from thecrem 1-11 that G(xo) is
characterized as exactly as one of the following:

(1) the set of all reals;

(2) ¢ ;

(3) (- o, r), r realy;

(4) (- o, r], r real.
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Theorem 1-12. lim sup f(x) = 1l.u.b. G(xo).

x -
XO

Proof: Let H = l.u.b. G(xo). Suppose € > 0. H
is the least upper bound of G(xo), so H-e is not an upper
bound. There exists k such that H -¢ < k and ksG(xO).
By theorem 1-11, (H—s)aG(xo) and thus x_ is a limit point
of C(H-e). C(H—s)ﬂN*(xo,b)ﬂ is not empty for all &>0,
so there exists xlsC(H—e)nN*(xo,é). Now xlsN*(xo,ﬁ)ﬂS,
and f(x,) > H-e, therefore, by theorem 1-5, xli?x sup f(x) >
On the other hand, since H is an upper bofind for
G(xo), (H + §J¢G(xo) and x, is not a limit point of C(H + 5).
Thus there exists a neighborhood N*(xo,é) such that
C(H + g)nm(xo,e) = 0. Thus if xeN*(x_,5)NS, then
f(x) <H + §-< H + €. Appealing to theorem 1-5 again we

see that 1lim sup f(x) < H. Combining this result with
X =X
o
the above, we get 1lim sup f(x) = H.

X >
XO
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CHAPTER 1l

Section I

Definition 2-1. Suppose R is any set and &(Dis

any o-algebra of subsets of R. Let m be a countably
additive, non-negative extended real-valued function de-
fined on the sets of af’, i.e., let m be a measure on azo.

Then we say that R, ;Zg , and m form a measure space.

In this chapter and the following chapter we will
be working with a particular kind of measure space; R will
be a separable, dense-in-itself metric space and Jf will
be a o-algebra of subsets of R such that if XOER, >0,
then N(xo,s), an open spherical neighborhood of x_, is &
set of £ . S will denote a fixed measurable subset of R.
Two additional assumptions which are made is first that
if >0, x_eR, then O < m(Nko,s)) < + ®, and second,

m( {xo} ) = 0. It is immediately seen that m(d) = O, .
since m(¥x _,€)) = m(N(xo,s)U®) = m(N(xo,s)) + m(d). It

is also seen that E{%ﬂOmCN(XO,e)) = 0, which follows from

e >0
the well known result in measure theory , that if

{An} is a decreasing sequence of sets and m(Ak) < + @

®
for some k, then 1lim m(An)-= m(NA_).
n - o n=1%

When assumptions additional to those above are
required, they will be explicitly stated.

We remark at this point on the requirement that
R be separable and dense-in-itself. We assume this to

~16-
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insure that spherical neighborhoods do not reduce to points,
in keeping with our requirement that m(N(xo,s)) > 0,

m( {x,} ) = 0. R separable implies that if G =R, G open,
then Ge &£ .

Definition 2-2. Suppose R is a separable, dense-

in-itself metric space and S is a measurable subset of R,

i.e., Se X . Then we define

x eN(p,56) P>
0<H< A
peR

where the least upper bound is taken with respect to all
& > 0 and peR for which & < A and xOsN(p,é). Similarly we
define

1s(x,, A) = g.1,b. B 8))
% eN(p,5) P>

0<8< A
PeR

Theorem 2-1. Els(xo,.X) g_us(xo,,X) for A> O.
Definitionv2+3. We define

U (x,) = %Viéb' us(xo,.A),

where the greatest lower bound is taken with respect to

all A> O, to be the upper metric density of S at the point

X_. Analogously we define

O
L (x,) = 1X26b° 1.(x,, A)

to be the lower metric density of S at the point oo

Since SNN(p,&)c<N(p,d),
n(SNN(p,8)) < m(N(p,8)) + O, and

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-18-

m(SNN(p,8))
0 < BN < b

from which it follows that O < 1.(x_,A) < 1 and
0L us(xo,)\).g 1. Also as a direct consequence we get
0 g_Ls(xo) <1and O 5-Us(xo> < 1.
Theorem 2-2. If ’\l < )\2, then
u (x , Ay) < uglxgs Ap) and 1 (x,, Ap) < 1 (x, A,

i.e., u_ is an increasing function of A and lS is a de-

S
creasing function of A .
Theorem 2-3. If & > O, ¥ > O, then
1,(x,,0) <ug (x,,¥).
Proof: Suppose o > O such that & > «, 3 > o.
Then by theorem 2-2,
1.(x,,8) £ 1 (x .00 < U (x ,0) < U (x,,¥).

Corollary. O S_Ls(xo) S-Us(xo)-i 1.

Definition 2-4. The metric density of S is said
to exist at a point x_ provided LS(XO) = Us(xo),and we use
Ds(xo) to denote the common value in case Ls(xo) = Us(xo).
Ds(xo) is called the metric density of S at X,

Theorem 2~4. Suppose k is a real number. Then
Us(xo) > k if and only if for all € > O, and all A > 0,
there exists & > O and peR such that & < A, xoaN(p,ﬁ),

SNN(p,5))
dMTNT_P-ST%_> k-g.
an o D, e

Proof: Suppose € > 0. US(XO) > k implies k is
a lower bound for u_(x , A) for all A> O. But

m(SNN(p,5))
us(xo,,X) = %ég.b. N 2 2 k

XOEN(p,é)
0<6< A
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implies there exists &' > O and peR such that &' < A,

m(SNN(p,&') _
XOEN(p,ﬁ'), and —éTNtéggryyl > k-e .

On the other hand, suppose for all € > 0 and for

all A > O, there exists & > O and peR such that & < A,

x eN(p,6) and m(SON 6)) > k-g. Then
0 m(N(p, .

_ n(SNN(p,5)) _
us(xo, A) = lﬁgﬁb‘ UGN ID > k-g,

XOSN(P,b)
0<6< A

but € > O is arbitrary, therefore uS(XO,JA) 2 k. But,
further, A > O is arbitrary, so g.l.b.u (x ,A) = U.(x.) > k
A>O S o] s o -—
Theorem 2-5. Suppose k is real. Us(xo>~i k if and

only if for all € > o, there exists A' > O such that if

m(SNN 5))

< k+g.
m P,

0 < &< A', peR, x,eN(p,86), then

Proof: Suppose £ > 0 and US(XO) < k. Then
g.l.b.us(xo, A) <k <k + €, so k+te is not a lower bound
A>0
for all us(xo, A). Hence there exists A' > O such that

u (x_ , A') < k+e which implies l.uﬁb. mmSﬂN 80) < i4c.
pE ’

x eN(p,5)

0<H< A
m(SNN 6))
m b,

such that 0 < & < A' and XOEN(p,é).

But this implies < k+g for all & and a2ll peR

Conversely, suppose for all &£>0 there exists

A > O such that if 0 < & < )\', peR, XOEN(p,é), then

m{(SNN 5))
W—é%-r < k+g. Then
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'y L m(SNN(P,8)) . 1,
vg(xo N = dausb BNoEy3” < kee

x eN(p,8)
0<d< A

1.b. u_(x_, A) < k+e. But £>0
>0 550 -

is arbitrary, therefore Us(xo) < k.

Therefore US(XO) = %{

Theorem 2-6. Suppose k is real. Then LS(XO).z k

if and only if for all & > O there exists A' > O such

. . m(SNN(p,6)) -
that if O < & < A', peR, x_eN(p,d), then OGP > k-g.

The proof is similar to that of theorem 2-5 and will
be omitted.

Theorem 2-7. Suppose k is real. Then Ls(xo) <k
if and only if for all € > O and for all A > O, there
exists & > O and peR such that & < A, XOSN(p,é) and

m(SNN 6))
BT ETss < kre-

Again the proof will be omitted since it is similar
to that of theorem 2-4. With the aid of theorems 2-5 and
2-6 we get the following theoren.

Theorem 2-8. The metric density of S exists at
x and is equal to k if and only if for all € > O there

o
exists A' > O such that if 0 < & < A', peR, x eN(p,8),

then k-g < SO 5)) < k+e.
m b,

Before going on, consider the following three
examples.

Example 2-1. Consider the metric space R to be
Euclidean 1- space and let 8 = (O, + @). Let m be the

usual Lebesgue measure. Let X, = O. Then as a conseqguence
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of theorem 2-4, u (0, A) = 1 for all A > 0, and U_(0) = 1.
But on the other hand, by theorem 2-7, 1S(o,A) = O for alil
A> O, and LS(O) = O and hence the metric density of
(0, + @ does not exist at O,

Example 2-2. Let R be Buclidean l-space, let
S = (-1,1), and let X, = 0. Let m be Lebesgue measure.

As in the preceding example US(O) = 1, but also we find,
Ls(O) = 1. Therefore DS(O) exists and is equal to one.

The next example is one in which the metric density
exists, but is not equal to 1 or O. We will be more able
to appreciate the significance of this example after we
have had the Lebesgue density theoren.

Before discussing this next example however, let

us first establish the following

Lemma. Let p, r >0, g, s > O, Where-§ < %-.
Then-—g-grs-gp—

Proof: Suppose~§ g=<%. Then rq < ps implies
rq + I's < PS + IS and~§ < q:g . Similarly
rq+pq§ps+pqand%—i—§§%.

Example 2-3. Let R be Euclidean 1~ space and m

ordinary Lebesgue measure. Let %0 = 0. Form ScR in the
2 2 2
following way. Define 8; = (-Z , - ZF+3 u (F -5, Z)
2 n-1 2 n
. 1 L8 1 1
and in general S_ = ( - = + .5, =5, - & + T, = - =
2 n 1 1 2 n-1
U(B' 2 + -51_1. . G - kzl k2) Il=2,3,-~
ot . . e
Let S = [U;S . Define intervals I; = (o, 7?),
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n2 n-1 1
I, = (0 =y D205 B = 2.3,
m(SNI ) , ® 1 1
Now we observe —mn-—)— == rEn == = T
T 1
r=n ;2'

for every n. We will use the intervals In together with

1
theorem 2-8 to show DS(O) =5 .

Denote the right hand endpoint of In by Ins

= BTl @
Iy = m(In) =z - 5 =z - Zp ;2 . Note that 0 < y_ 1< ¥p;
and lim I = O. BSuppose € > 0. Choose N such that
n ->o
@
1 1 T

v 1. 1 .
N >E o Let )\ =2‘YN =2-rN-x? . Consider any

& > 0 such that & < A' . Let T = (p-8, p+d6) where

-5 < p < & so that OeI. Define I' = (p-d,0) and
I'" = (O,p+6). m(I) = m(I') + m(I'"). There exists n >N
such that Tn+l < p+d < Tq- Now
m(sprm (BSML) 0, @ S N WA N
m(L'") — m(In+1> 2 r=n ;2' 2 ;2' r=R+1 ;2
© 1 @
_ 1
1 r,§+l ;2 r=n§l ;Z
1 -2
-"—2‘(11- n
@®
™ 1
r=n+lr
1 2 .
<-2'(l+-ﬁ')
1 2 1 1
52-(1+N-)=2-+N<2-+E.
1 2 .
Note that - < o Since
n
@
1
%
r=n+1l ;2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



® b
1 ® 1 . P 1 . 1
z > dx = lim [ dx = 1lim (- =)
r=n+l_r—2 n+l ;{'2' b > m® n+l 2 b>m» % n+l
g
1 n n+l 2
= 3T - Thus o 1<? S_H.
L =
r=n+l 1
"
At the same time, however, méSﬂI ) > %—- £ ,
since m(SAL) > m(SﬂIn+l) = %_Cg J?
m(1l") - m(In) ren+l T
®
1
-
r=n I
5 5 5
= I > - > .. >%(1-N2-)>%—s.
1 + -y 1+-ﬁ- l"l"ﬁ'
n
43}
1
2
r=n+l T

"
E%%%%Tl- < %-+ €. A similar argument

m(sSnI'y .1
Tm(I') 2

Thus we have‘% - e <

1

shows-z - € < + £. But these last two

inequalities, together with the lemma, give us

~% - £ < Eé%%§) <-% + €

whenever I is an open interval with radius less than A'

1
and OgI. Thus DS(O) =5 .

Theorem 2-9. If R is a metric space and XOSR,
then DR(XO) = 1.

Proof: Suppose & > 0. Suppose XOSN(p,é).
RAN(p,5) = N(p,b6), therefore

m(RN(p,8)) _ m(N(p,8)) _ 4
m(N(p,0)) n(N(p,5)) ~

and it follows that DR(XO) = 1.
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Theorem 2-10. If S is a measurable subset of R,
XeR, then Us(x) + LesCx) = 1 and Ls(x) + U&S(X) = 1.
Further, if Ds(x) exists, then DGS(X) exists, and
Ds(x) + Dcs(x) = 1.

Proof: Suppose peR. Then
N(p,86) = (SnN(p,®8))u(&€sSnN(p,d)). Since
(8nN(p,8))n( £€SNN(p,5)) = O, we have

m(SNN(p,5)) + m ( %SﬂNggjé)) -1
n(N(p,0)) m(N(p, - K

therefore
SNN(p,5)) m( CSNN{(p,5))

l.u.b. L = .u.b. - 2
o m(N(D,8); Lougee b - T sy
x eN(p,5) x,eN(p,5)
0<d< A 0<&< A

peR P

x,eN(p,8))

0<&H< A
-1 - g.1.b. 2 sng( &) |

pPeR ?

x, eN(p,5)

0<8< A

Thus we have us(xo, A) =1 - lcs(xo,,h).
But U (x. ) = g.1.b. u_(x

=1 - 1l.u.b. 1
A>0

cs(xo’
Similarly LS(XO) + Ues(xo) = 1, since ch(xo) + Lg(ss)(xo)zl’
from the preceding result.

Theorem 2-11. For any peR, A> O,

u, (P> A) Luyle, A) +uglp, M.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-25-
Proof: Suppose peN(a,d), 0 < & < A . Then

m((AUB)ﬂNEgsﬁn _ m(ANN(a,8)Uu(BNN(g,56))
m(NCq, - m{N(q,0))

< m(AﬂNég,&)) + m(BﬂN§q§6;2

- m 9, m q, )

As a further consequence we have UAUB(p) E.UA(p) +IJB(P)-

For suppose this were not the case, i.e.,

UAUB(P) > UA(p) + UB(p). Then there exists a > 0 such

that g.l.ba, a(P, A) - « > g.1.b.u,(p, A) + g.1.b.ux(p, \)
A>o  AUB A>0 A §>O B ’

and hence there exist Al’ Ag such that

g/ii:éb. uAuB(P, )\) > uA(Pa )\1) + uB(PlnAg)- Let

A% = min( Ay, A,). Then
1 2

uAUB(P’ A*) > gxiéb'uAUB(Pa /\) > uA(p’ A*’) + U-B(Pa /\*)s
a contradiction.

Some further observations we are able to make are
that if DA(XO), DB(XO), and DAUB(XO) exist, then
DAUB(XO) S'DA(XO) + DB(XO). To see this we need only
Observe that
DAUB(XO) = UAUB(Xo) E-UA(XO) * UB(X0> = DA(XO) + DBCXO)'
Further, under the same conditions,

LAUB(XO) E.LA(XO) + LBFXO).

Theorem 2-12. Suppose A, Be & and ANB = ¢.
Suppose DA(XO) and DB(XO) exist and are equal to a and b
respectively. Then DAUB(XO) exists and is equal to a + b.

Proof: Suppose g > 0. Since DA(xo) = a, by
theorem 2~-8 there exists 'Al > 0 such that if peR,
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xosN(p,é), and
0 <& < Al’ then
a-§ < BAMROD ., 5.
Similarly, since DB(XO) = b, there exists .22 > 0 such that
if peR, XOEN(p,b), and 0 < & < Ag, then

e _ m(BAN 5))
b -5 < = P

Let A= min Al"AE)' Then if & < A , we have

(a+b) - & < mginNggzag) . méBﬂNéggé))
AUB)NN(p,b
=%)—)<(a+b)+€.

Therefore by theorem 2-8, DAUB(XO) = a+b.

<b +‘§ .

Another useful result is the following

Theorem 2-13., Suppose A,Bs«f, AcB, and
DA(XO) = a and DB(XO) = b. Then DB~A(X0) = b-a.

Proof: Since B = AU(B-A), we have
BNN(p,5) = (ANN(p,&)) U((B-A)NN(p,5)), and hence
m(BON(p,8)) _ m(AON(p.8)) _ m((B-ANN(p.5))
mn(N(p,0)) n{N(p, n(N(p,d))

Using theorem 2-8, we can find a A> O such that if

0<8& <A, peR, xoeN(p,b), then

(b-a) - € < m(é%§?gNg§36)) < (b-a) + &, and thus

DB—A(XO) = b-a.

Theorem 2-14. Suppose F,Bstzg, S = FUB, and
FNB = ¢. Suppose DS(xo) = k. Then DF(xo) exists and
DF(XO) = k if and only if DB(XO) exists and DB(xo) = 0.

Proof: Suppose DF(XO) exists and DF(XO) = k.
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Since B = S-F and FeS, DB(XO) = s_F(xo) = DS(XO) - DF(XO)
= k~-k = O. Conversely, suppose DB(XO) exists and DB(XO) = 0.
Since F = S-B and B=S, we have Dp(x ) = Dg_g(x,)
= DS(XO) - DB(XO) =k - 0 = k.

At some point in the preceding discussion, one
might ask the following question: If DA(XO) exists and
DB(XO) exists, does it necessarily follow that DAUB(XO)
exists? The answer, suprisingly enough, is no. To see
that this is the case, let us appeal again to example 2-3,

Let A = 5 and define
B = {xlxeA, x > 0} U {xlxe A, x < 0} . Then we have
D,(0) =& , Dg(0) = % . However, U, 5(0) = 1 and
LAUB(O) ='% , so that the metric density of AUB does not
exist at O.

Theorem 2-15. Every point is a point of dispersion
of O. |

Proof: If xeR , then DR(X) = 1, and

DR(X) + D(DCX) = 1, so Dd)(X) = 0.

Theorem 2-16. If p is a point of dispersion of
S, then p is a point of density of &S and conversely.

Proof: This is a direct consequence of definition
2-5 and theorem 2-10.

In the remaining theorems of this section some
properties of points of density and dispersion will be
given in relation to unions, intersections, and inclusions

of sets of ;f .
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Theorem 2-17. Suppose peR and A and B are sets
of X . 1If D,(p) = O and Dg(p) = O, then D, x(p) = O.

Proof: Suppose peR, .X> O. Then

uAUB(P’ /\> S_uA(P, )\) + uB(P, A)'
Suppose € > O. There exist \; > O and A, > O such that
uA(p, Al) <-§ and uB(p, AB) < Su Let A5 = min,Al, Ag .
Recalling that us is an increasing function of A we have
5Py Az) < w, (o, )\3) +up(p, )\3) <5+ % =c¢c. There-
fore UAUB(p) = .iéb. UAUB(P"A) < g. But £ is arbitrary,

hence UAUB(p) = O and the conclusion is DAUB(p) = O as
was desired.

Corollary. ©Suppose peR. If Aiegfiand
DAi(p) =0, 1i=1,2,---,n, then D {}(P) = O.

i=1"1

Proof: The proof may be accomplished by induction.

Theorem 2-18. Suppose peR and A, Bsclf. If
DA(p) = 1 and DB(p) = 1, then DAnB(p) = 1.

Proof: If p is a point of density of both A and
B, then by theorem 2-16 p is a point of dispersion of both

G A and EB. By theorem 2-17, p is a point of dispersion

of £AUCB = G(ANB). Applying theorem 2-16 again, we see
that p is a point of density of ANB, i.e., DAnB(p) = 1.

Corollary. Suppose peR. If Aie Jf, and

D,;(p) =1, i =1,2,-—-,n, then DiglAi(p) = 1.

Proof: The proof is by induction and is analogous

to the proof of the corollary of theorem 2-17.
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Consideration of the following example will show
that theorem 2-17 does not hold for countably infinite
unions. Suppose R is the set of all reals and suppose m

is Lebesgue measure and peR. Define

1 1 1
An=[P-'5ﬁ:l,P—§;3U[P+2—n,P+E;{:1]
@®
For each n, DAn(p) = O; however U,A = (p~1, p+1] - {p}
@
and p is a point of density of nglAn'

Similarly if we define A = p - %3 P + %J, we

see that D, (p) = 1 for each n but that DL , (p) = O,
An nglA'n

@

since nnlAn = p . Thus we see that theorem 2-18 does

not hold for countable intersections.

Theorem 2-19. Suppose peR and A, BeX. If
ASB, then UB(p) S.UA(p) and LB(p)'i LA(p). Hence if
DA(P) = O, then DB(p) = 0, while if DB(p) = 1, then
D,(p) = 1.

Proof: Suppose peN(q,8&), geR. Since
ANN(q,8) = BNN(q,5) and

EL%%%%%?g%% > Ei%g%é%g%%l , it follows that
u (p. A) = 1l.u.b. BANNCG,8)) u.b, D{BANCa,6))
A(p U. 6) _g_(vrﬂam psN(q 6) m q,

P eN( q 9
0<8< A 0<8<L

= U.B(p, A).
Hence UA(p) < Ug(p). Similarly LA(p) Z.LB(P)'
Therefore if DA(p) = O, it follows that DB(p)

On the other hand, it is also easily shown that
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if DB(p) = 1, and if B<A, then DA(p) = 1.

Theorem 2-20. Suppose xoaR and S and A are
measurable subsets of R. If Ds(xo) = 1 and DesuA(xo) =1,
then DA(XO) =1, i.e., DGSUA(XO) =D s(xo) + DA(xo)
provided DGSUA(XO) = DS(xo) = 1.

Proof: Suppose DGSUA(XO) = 1. Ds(xo) = 1
implies D¢S(Xo) = 0. Since ESU(ANS) = £SUA and
€¢sn(Ans) = ¢, by theorem 2-12 we have

Pesual®o) = Dgsucans)(¥o) = Dgslg) + Dypglxy)
But ANScA. Therefore DA(xo) = 1.
Theorem 2-21. Suppose A,Be L . Suppose X, is
not a point of dispersion of B. Suppose DA(XO) = 1.
Then UAnB(xo) > 0, i.e., x, is not a point of dispersion
of ANB.
Proof: Since DA(XO) =1, LA(xo) = 1 and
U&A(XOD = 0. Also since E€ANB= ¢A, UﬁAnB(xo) = 0. By
assumption, Xq is not a point of dispersion of B, so
UB(XO) > 0. But now since B = (ANBYU(GANB),
0 < UB(XO).i UAﬂB(XO) + U@AﬂB(Xo) = UAnB(xo). Therefore

UAnB(xo) > 0 as was desired.
Section II

Definition 2-5. Suppose Se L , peR. Then p is

said to be a point of density of S if the metric density

of S exists at p and is equal to one. If the metric
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density of S exists at p and is equal to zero, p is said

to be a point of dispersion of S.

In the remainder of this chapter and in chapter III,
it is again recalled that S is a measurable subset of R,
and that f is a real-valued measurable function defined
on S, i.e., {xl|xes, £(x) > a} € K for all real a. One
can show that the following conditions on f are equivalent
to measurability:

(1) dxlxes, £f(x) < a} € K for all real a;

(2) {xlxes, £(x) > a} e L for all real a;

(3) {xlxes, f(x) <

Definition 2-6. Suppose y is real. Define

a}l € Z for all real a.

J(XO) = {y,ly real, Xq is not a point of dispersion of
C(yi} (recall, for y real, C(y) = {slssS, £f(x) >Y§);
and I(x& = '{y,ly real, x, is not a point of dispersion of
D(y}} (recall, for y real, D(y) = {xlxes, £f(x) < y}).

Theorem 2-22. Suppose a and b are real.

(1) If b < a and asJ(Xo), then baJ(xo) and (2), if
a < b and asI(xo), then bsI(xo).

Proof: (1) Suppose b < a and aeJ(xo). Then
C(b)=C(a). If x, is not a point of dispersion of c(a),
then x, is not a point of dispersion of C(b), i.e., if
asJ(xo), then st(xo).

The proof of (2) is similar to the proof of (1).

It is seen by the above result that J(xJ and I(xo)

are characterized the same as G(xo) and P(xo) respectively,
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where we recall that for x_eR, G(x)) = {yly real, x, is
a limit point of C(y)} , and P(xo) = §yly real, x, is a
limit point of D(yﬂ . In particular J(XO) assumes
exactly one of the following forms:

(1) (- » »;

(2) ¢ ;

(3) (- o,v), r realy or

() (- @, r], T real.

An analogous characterization holds for I(xo).

Theorem 2-23. Suppose peR and p is not a limit
point of 5. Then p is a point of dispersion of S, and
hence J(xo) c G(xo).

Proof: Suppose € > O, If p is not a limit point
of S, there exists an open spherical neighborhood N(p, A)
such that N(p,‘A)nS contains at most one point. Suppose
5 < %-, qeR, and peN(q,5). Then N(q,5)cN(p, A). We also

have m(N(q,5)NS) = O and hence mﬂé‘g&f’g?ﬁ) = 0.
Thus u (P,A) - 1l.u.b. BSONCG,8)) _ o ang u (p) = O.
SEa)) peN(q.6) m{N(q,0)) S

0<6<4

This implies that DS(p) exists and is eqgual to zero,
since O E.LSCP) S.Us(P) = 0. Hence p is a point of
dispersion of S. Equivalently, if p is not a point of
dispersion of S, then p is a limit point of S. 1In

particular, if S = C(y), then J(XO)CG(XO).
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Section III

In this section we will again suppose R is a
separable, dense-in-itself metric space, S is a measurable
subset of R, and f is a real-valued measurable function

defined on S.

Definition 2-7. Suppose XOBR and X, is not a
point of dispersion of S. We define l.u.b. {yﬂ y real,xo
is not a point of dispersion of C(y)}, i.e., l.u.b. J(XO),

to be the approximate limit superior of f(x) at x, and

write 1lim ap sup f(x). Similarly we define
X =%
o

g.1.b. {yl ¥y real,x  is not a point of dispersion of D(y)}-,

i.e., g.l.b. I(xo), to be the approximate limit inferior

of f(x) at x_ and write 1lim ap inf f(x).

o}
X = X
o

Definition 2-8. Suppose X, is not a point of

dispersion of S. If 1lim ap inf f(x) and 1lim ap sup f(x)

X = X = X
Xo o)

are equal, then the approximate limit of f(x) is said to

exist at Xo and is defined to be the common value. We

write 1im ap f(x) for the approximate limit of f at X

- X
X s}

if it exists.
By considering the following function, we will
find that the approximate 1limit may exist, while the

ordinary limit does not exist. Let R = S = [0,1]. Let
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and let m be Lebesgue measure. Define

N+

3L =
O

1 if x is rational, xel0,1],
f(x) =
O if x is irrational, xe[0,1] .

The ordinary limit of f(x) as x 4»% does not exist, since

lim sup f(x) = g.l.Db. l.u.b. f(x) = 1, and
5 >k 5>0 xel0,1] ‘
z2 1
st(-Z,E))
lim inf f(x) = 1l.u.b. g.l.b. = O.
x >4 5>0 xel[0,1]
z 1
XEN(Z,é)

However 1im ap sup f(x) = l.u.b. J(XO = l.u.b.( - ®»0) = 0,
X > 5

and limlap inf f(x) = g.1l.b. I(xo) = g.1.0.(0,@ = O.
Therefore 1lim ap f(x) = O.
x >
It is an immediate consequence of theorem 2-16
that 1im ap sup f(x) < 1lim sup f(x). Analogously it
X =» X X - X
o o
may be shown that lim ap inf f(x) > 1lim inf f£(x).
X 4>xo X ;’Xo

Theorem 2-23%. BSuppose f is defined on S and X

is not a point of dispersion of S. Then 1lim ap inf f(x)

X = X
o)

< l1lim ap sup f(x), i.e., g.l.b. I(XO) < l.u.b. J(xo).

X 4>xo
Proof: Deny the theorem, i.e., suppose
g.l.b. I(xo) > l.u.b.J(xo). Let g.l.b.I(xO) = X and
l.u.b.J(xO) = Y. Let a and b be real numbers such that

Y < a<b<X.
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Since aiJ(xo), x_ 1is a point of dispersion of

o)

c(a). Also b&I(xO), so x_ is a point of dispersion of

o
D(b). Now C(a)uD(b) = S, and since x, is a point of

dispersion of both C(a) and D(b), it is also a point of
dispersion of the union, and hence of S. This is a con-
tradiction and thus the theorem is verified.

Theorem 2-24. Suppose X, is not a point of dis-

o
persion of S. If 1lim f(x) exists, then lim ap f(x)
X - X X > X
o) o)
exists and is equal to 1lim f(x).
X - X
o
Proof: Since 1lim f(x) exists we have
X - X
o
lim ap sup f(x) < 1lim sup f(x) = 1lim inf f(x)
X - X X =X X > X
o o o
< lim ap inf f(x).
X =X
o
In the next few theorems 1lim ap sup f(x),
X - X
o
lim ap inf f(x), and 1lim ap f(x) will be characterized
X 4>xo X'4>XO

in terms of the sets C(a) and D(B).
Definition 2-9. Define E(y,e) = {Xlan,lf(x)~y|<s},

where y is real
From this definition it is seen that
E(y,e) = D(y+e)nC(y-€).
Theorem 2-25. Suppose A is real and DS(XO) = k>0.

Then Xliyxap f(x) = A if and only if DE(A,S)(XO) = k
o

for all £>0.
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Proof: Suppose £>0. Suppose DS(XO)=k and lim apf(x)=A

x:é>x0
Now A + §~&J(xo), so x_ is a point of dispersion of
£ . .
C(A+29, i.e., DC(A+§J(X0) = 0. Similarly DDC&-§$X6) = 0.
= O.

But S - E(A,&:)CD(A—-S-)UC(A+-§), therefore DS-E(A 8)(::0)

On the other hand DS—E(A,E)(XO) = DS(XO) - DE(A,E)(XO)’
therefore DE(A,S)(XO> = k.

Conversely, suppose A real, DS(XO) = k, and
DE(A,E)(XO)= k for all €>0. Then DS_E(A,E)(XO) = 0. Now
(8 - E(A,e))=D(A-e)UC(A+e) and hence DD(A _8)(X0>
= C(A‘+€)(Xo) = O. Therefore A +€ ¢ J(xo),

A-¢ ¢ I(XO), and hence 1lim ap f(x) = A.
X =X
o
Corollary. ©Suppose A is real and X, is a point
of density of S. Then 1lim ap f(x) exists and is equal
X = X
o

to A if and only if x_ is a point of density of E(A,E)
for every €>0.

Definition 2-10. Define

K(xo) = {BIB<R, Be , and x, is a point of density of B} .

Theorem 2-26. Suppose X is a point of density of

0
S. Then 1im ap sup f(x) < A if and only if
X =X
o
D(A+s)sK(xo) for all e>0.
Proof: Suppose 1lim ap sup f£(x) < A.

X =X
l.u.b. J(xo) < A, so A is an 8pper bound for J(xo). Thus

A+ /2 € J(xo) for all £>0 and x is a point of dispersion

of C(A+e/2). C(A+e/2)> D(A+g)NS, therefore x, is a point
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of dispersion of ED(A+e)NS and a point of density of
G (8N €b(A+e)), and hence, by theorem 2-20, a point of
density of D(A+e), i.e., D(A+s)sK(xo) for all £, and the
necessity is proved.
Conversely, suppose D(A+s)K(xo) for all &>0.

D(A+e)=C C(A+e) and we conclude x_ is a point of dispersion

0
of C(A+g) for all €>0. A+e ¢ J(xo), therefore

lim ap sup f(x) = l.u.b. J(XO) < A+e,
X =X
o)
and 1lim ap sup f(x) < A.
X - X
o)
A result analogous to the preceding theorem is:
lim ap inf f(x) < A if and only if C(A—s)eK(xo) for all
X =X
o

e>0, assuming x_ is a point of density of S.

0
Theorem 2-27. Suppose Xq is a point of density

of S. Then 1lim ap sup f(x) > A if and only if whenever
X - X

o

GeK(x_ ), €>0, it follows that SNGNC(A~e) + 0.
Proof: Let us first deny the necessity, i.e.,

suppose there exists GEK(XO), g>0, and suppose
SNGNC(A-e) = ®. Suppose x,eSNG. Then x,¢C(A~€), so
X € C(A-g); hence GNS= EC(A-e)NS. Now x, is a point of
density of each set on the left, hence it is a point of
density of ©C(A-e£)NS and a point of dispersion of C(A-g).
Therefore A-t ¢ J(xo) and A-e is an upper bound for J(xo)
which implies

lim ap sup f(x) < A-e < A,

->x -
X (e}
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a contradiction. This proves the necessity.

For the sufficiency, let us again deny the result.
Suppose for all GeK(x,) and all £>0, GNSNC(A-€) + ¢ and

suppose lim ap sup f(x) < A. Choose £>0 such that
X = X
o
lim ap sup f(x) < A-2¢. Then A-c & J(xo). Therefore
X = X
o

x, is a point of dispersion of C(A-e) and a point of
density of &©C(A-eg). Thus (§C(A—E)SK(XO). Therefore
SN GC(A-e)NC(A-e) £ O, a contradiction, and

lim ap sup f(x) > A as asserted.
X =X

o

In a similar manner we can prove the following
two theorems.

Theorem 2-28. Suppose N is a point of density

of 3. Then 1lim ap sup f(x) 2 A if and only if whenever
X =X

o}

GeK(x ), €>0, >0, it follows that SNN(x,,5)NGNC(A-e) + O.

Theorem 2-29. Suppose X, is a point of density
of S. Then 1lim ap sup f(x) > A if and only if whenever
GEK(XO), €>O? g;g? it follows that SﬂN*(xo,é)nGﬂC(A—s) £ 0
(recall N*(xo,b) is a deleted spherical b-neighborhood of
Xo).

We see that in theorem 2-29 we have a result

analogous to the result found in chapter I for

lim sup f(x) > A. Namely, 1lim sup f(x) > A if and only
X =~ X X =X -
o) o
if for every e>0, >0, it follows that SNN*(x_,8)NC(A-g) + 0.

Theorem 2-30. Suppose A is real and f is a
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measurable function. Suppose there exists k, 1 < k < + wm,
such that if qeR, then m(Ng,5r)) < km(N(q,r)). Suppose

Dg(x ) = f > 0. Then 1lim ap f(x) = A if and only if there

X = X
o
exists F such thatiFs&f:FCS, and DF(XO) =,[ and lim f(x)=A.
X —» X
o
xel

Proof: Let us first prove the sufficiency.

Suppose there exists F such that DF(XO) = £ and 1lim f£(x)=A.
X X
xeF ©

For every e£>0 there exists a >0 such that if XsN(xo,ﬁ)ﬂF,

then |f(x)-A|l < €. Thus N(x 8)NF<E(A,e)=S. We first

observe that DFﬂN(xo,b)(Xo) = / . For, DN(xo,é)(xo) =1,

S0 DcN(XO,é)(Xo) = O and hence DFﬂGN(xo,é)(xo) = 0. But

now £ = Dplx,) = DFﬂN(xo,é)(Xo)+DFﬂ N(xo,b)(xo)

= DFﬂN(xo,ﬁ)(Xo)'

Next we observe that DE(A,E)(XO) = f , since

Ug(a,e) (%) S Ug(x,) = { ena Lg(a,e) (%) z-LFﬂN(xo,é)(Xo)=‘Q'
Therefore by theorem 2-25, 1lim ap f(x) = A.

-
X Xo

On the other hand suppose 1lim ap f(x) = A. By
X - X

o
Theorem 2-25, DE(A,E)(XO> = ﬁ for all €>0. In particular,
D 1\(x_ ) = f for every positive integer n. For each n
E(A’H) O

there exists o, > O such that if peR, 0 < & < a , x,eN(p,b)

1
m(B(A.n )W(p,6)) , g_ 1
n

then BLELtRIghea0)

Define a decreasing sequence ?Yn} by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



40~

= min(al,———,an). Define the sequence {Bﬁ} by

Y
1 . .
By = =, - It is easily shown that {B_ } has the

following properties:
(1) {Bn} is a strictly decreasing sequence,

Bn§ Yngocn.

(2) lim Bn = 0.
n - @

(3) If 0 < A< B, if peR, and if x eN(p, A),
then

1
m(B(A,B)MN(p, A)) 5y _ L
n(N(p, A )) "

Associated with the sequence {Bn} is the sequence

{Myn} where m . = m(N(x_ ,B )). {M,] is a decreasing

sequence with Mn > 0, and 1lim T\n.= 0. For every &£>0
n - @®

there exists a >0 such that 1f O < p < 6, then
n(N(x_,n)) < €. For each n there exists p_, with p__ >4,

such that m(N(x_,p )) < ;%ﬁ— , and hence

m(N(xg,b))  nyp 1
BN(x,,B,)) kn/ln "k

Define F, = (N(xo,Bn) - N(Xo,p

1
n+l))ﬂE(A,H) and

1F,- We first show 1lim f(x) = A. Suppose &£>0.
X = X
xeF

8

F =
n

c

&)

Choose N so tha < eg. Let 6 = More ~Suppose XSN(xo,b)

1
by
and xeF. If N > n, then O < Pe1 S u and XéFn, i.e.,

n+l
e (X,XO) < Hpg1s Hence there exists an n > N such that

xeF . Therefore XEE(A,%J. Therefore

|£(x)-Al << §<e, i.e., Llim £(x) = A.
) X =X
xel °
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It remains to show DF(XO) =,,€. Suppose €>0
is given. Choose N so that %-<-§ . Let & = 7? . Suppose

xosN(p, A), 0 <4X< 6. There exists an m such that

Bm+l< )\<Bm dm>N. By the triangle i 1it
——= < = and m > N. y the triangle inequality,

N(p, A)CN(XO,Bm). Hence,
FAN(p, A)=F NN(p, A)

= (N(x,,By) - N(x )INE(A,)NN(p, A)

o’Hm+1
1

= (N(p, A) = N(x_, k1 ))NECA,2).

Also we have

N(p, A)NE(A,E

< {IN(p, M) - N(x DINE(A, D)} UNCx, i, 1)

o *Mm+

= (F N(p, A)IUN(x_,b ;).
We now observe that N(xO,B YeN(p,3 )), so

m+1-
n(N(x,,Bp,1)) < n(@(p,3 A)) < km(N(p, A)).
Now 1
0 -1 n((p, AJNE(A D))
m m(N(p, A J)
. n(F,MN(p, A )) . ROGrg,ep,g))
— m(N{(p, A)) m(N(p, A ))
Also
m(N(Xo’p“ntwl)) m(N(Xo’5m+l)) m(I\I(Xo’ﬁm-l-l))
o(N(D, AJ) © K@+l 3
1 < 1
= m+l ¥ -

From these last two inequalities we find

m(F_NN(p, A))
m ? 1 1
m(N D, AJ) t 7 2 1 -~ § » and hence

FON(p, \)) m(F, AN(p, A)) 5
n mgﬁcp,)\n 2 TR, 3T > A - g > d--
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Finally lF(xo,é) > f— £, and so LF(XO) _>_ﬂ - €.
Since >0 is arbitrary, it follows that LF(XO) Z,,F .
At the same time, since FeS, Up(x ) < Ugq(x ) = ,ﬂ - Thus
Dp(x,) exists, Dp(x, ) = [, and the necessity is established.
Corollary 1. Under the conditions of the theoren,
if DS(XO) = 1, then 1lim ap f(x) = A if and only if there

X = Xg
exists F, such that FeS, FeK(x ), 1lim f(x) = A,
0
X =X
xeF ©

Corollary 2. Under the conditions of the theorem,

lim ap f(x) = A if and only if there exists BcS such that
X =X

o}
DB(X ) = 0 and 1lim f(x) = A.
o}
ch>xb
xeS~B

Proof: The proof is immediate. For the sufficiency,
since BcS and DB(XO) = 0, we have DS_B(XO) = ,p . Let

F of the theorem be S-B. Then 1lim f(x) = A and hence
X = X

xel ©

lim ap f(x) = A.

X = X
o)

A. Then we

Conversely, suppose 1lim ap f(x)
X = X
o
know there exists F such that Fc3, DF(XO) = )?, and
lim f(x) = A. Let B = S-F. Then Dp(x ) = 0, F = S-B,
o
X €>xo
xeF

and 1lim f(x) = A.
X 4>XO
xeS-B

We remark on the assumption made in the above

theorem concerning the existence of a k such that
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m(N(q,5r) < km(N(qg,r)). For the purpose of proving the
theorem, it would have been sufficient to assume there exists
k', 1 < k' < w, such that if geR, and if r>0, then such
that m(N(q,3r)) < k'm(N(q,r)). In chapter III, it will be
necessary to assume the existence of k, such that if geR,
and if r>0, then m(Nqg,5r)) < km(N(q,r)), and for this
reason, 5 was used rather than 3. '

Concerning the above remark, it is further pointed
out that either the existence of k' or k as described above

would be sufficient to prove the theorem.
. m(N(qg,9r)) ' mn(N(g,3r)) '
For since GECEiEHy S X' and mmEEyT S K

. m(N(g,5r)) m(N(g,9r)) 2
it follows that -m—.(ﬁ—q—:%yr S m(N(q,r)) _‘i k .
It is possible to establish the following stronger

Theorem 2-%1. Suppose A is real and f is a measur-
able function. Suppose there exists k, 1 < k < + m, such
that if qeR, then m(Ng,5r)) < km(N(q,r)). If X, is not a

point of dispersion of S, then 1lim ap f(x) = A if and only
X = X

if there exists B such that Be X, B=S , DB(xO) = 0, and
lim f(x) = A.
X 4>xo
xeS~-B
Section IV
This section will be devoted to theorems and
examples on approximate limits and approximate continuity.
There will in many cases be analogues with the theorems and

proofs for ordinary limits and continuity. For this reason,

many of the proofs of the theorems will not be given. However,as
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might be expected, we will be able to find many cases

where no analogue exists. For example, continuity on a
compact set implies boundedness, but approximate continuity
on a compact set does not insure boundedness.

As before, let us suppose R is separable, dense-
in-itself, Se ;f, f and g are measurable functions defined
on S, and that X, is not a point of dispersion of S.

Theorem 2-3%2. Suppose A and B are real and f and
g are defined on S. If X, is not a point of dispersion of

S, and if 1lim ap f(x) = A and 1lim ap g(x) = B, then
X = X X - X
0 o
lim ap (f(x) *+ g(x)) = A + B.

X = X -
o

Proof: Since the approximate limits of f(x) and

g(x) exist at x,, there exist sets G and H contained in

S such that DG(XO) = DH(XO) = 0 and

lim f(x) = A , lim g(x) = B.
X - X X = X
o o
xeS-G xesS-~-H
But (S-G)U(S-H) = S - (GUH) and 1lim (f(x)+g(x)) = A + B.
X %>XO
xeS-(GUH)

Further we note that DGUH(XO) = 0 and hence by theorem 2-31,

lim ap (f(x)+g(x)) = A + B.
X - X

(9]
A similar argument may be given for the case
lim ap (f(x)-g(x)).
X =X
o}
Theorem 2-33. Under the conditions of theorem 2-32,

if 1lim ap f(x) = A and g(x) = ¢f(x), then 1lim ap g(x)= cA.

-
X 4>Xo X XO
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Theorem 2-34. Under the conditions of theorem

2-32, if 1im ap f(x) = A and 1lim ap g(x) = B, then
X - X
o
lim ap f(x)g(x) = AB.

X -
Xo

Theorem 2-35. Under the conditions of theorem

2-32 and the assumptions g(x) + O, B ¢ O,

lim ap £(x) =-% .

g(x
x 4>xo

Definition 2-11. Suppose xosS. If x  is a point

of dispersion of S, we define f to be approximately

continuous at Xy It Xq is not a point of dispersion of

S we define f to be approximately continuuous at Xq in

case 1lim ap f£(x) exists and 1lim ap f(x) = f(xo).

> -
X XO X XO

In case DS(XO) /AN 0, x_eS and the conditions

of theorem 2-30 are satisfied, it is an immediate con-

sequence that 1lim ap f(x) = f(xo) if and only if there

Xq‘-xo
exists F=S such that 1lim f(x) = f(xo), and DF(xO) = ,? .
X ~» X
xelF ©O

Also, clearly, if DS(XO) = J?> O, if x &S, then f
is approximately continuous at X, if and only if there
exts B such that B=S, Be XL , DB(XO) = 0, and

lim £(x) = £(x_).

x >
XO

xeS-B
By utilizing theorem 2-31, one can establish that

the following theorem is true.
Theorem 2-%6. If x.,e5, and if there exists
k, 1} < k < + o, such that if qeR, m(N(q,5r)) < km(N(q,r)),
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then f is approximately continuous at x_ if and only if

o
there exists B such that Be X, B<S, DB(XO) = 0, and

lim f(x) = f(xo).
X =-» X

xs(S»B)U{xé}
Example. Let R = S ={x|x is real] . Let m be

ordinary Lebesgue measure. Define

O if x is rational,
f(x) =
1l if x is irrational.

Case 1. Suppose X, is irrational. Let

F = {xlxeR, ple irrationaig ; PeK(x, ).
limf(x) =1 = f(xo).

X - X

xeF o

Hence f(x) is approximately continuous at all irrational

points.
Case 2. Suppose x, is rational. Then 1lim f(x) = 1.
X =X
xeF ©
Thus 1lim ap f(x) = 1, but f(x ) = O + 1, and thus f(x)
X =X
o

is not approximately continuous at rational points.
This example illustrates that a function f(x)
may be approximately continuous at a point, although it
is not continuous there.
Theorem 2-37. Suppose Xg is not a point of
dispersion of S. If f(x) and g(x) are approximately

continuous at X, then the following functions are

approximately continuous at Xq*

(1) £ + 8GO, (2) e, (3 L providea
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g(x) ¢ 0, g(xo) L 0.
Proof: (1) Since f(x) and g(x) are approximately
continuous at Xy there exist sets G and H such that

DG(xO) = DH(xo) = 0 and 1lim (f(x) = f(xo), lim g(x) = g(xo).

X 4»xo x.4>xo
xesS-G xeS-H
Now 1lim (f(x)+g(x)) = 1lim f(x) + 1lim g(x) = f(x )IS(XO)'
X < x X =X X > X ©
xeS-(GUH) xeS-(GUH) xeS-(GUH)
Therefore 1lim ap (£f(x)+g(x)) = fx D+s(x_).
X 4>xo o o

The proofs of (2) and (3) can also easily be given.

It is not true under the conditions of the above
theorem that composition of approximately continuous
functions gives rise to an approximately continuous
function, as the following counterexample will show.

Let R = S = reals. Let X, = O and m be Lebesgue

measure. Define

1 . 1 1 .
-2—171' if x e [ 2n+l ’ on D, n = 0,1.2.-—=}
f(x) =
O otherwise.
Define
. 1
g(x) _ 1l if x = —2—.{1- sy I = 0,172,-——-—;

O otherwise.
Now f(x) is approximately continuous at x = O, and in

fact is continuous at x = 0, since 1lim +f(x) =0 = lim‘f(xl
x =0 x =0

and hence limf(x) = £{(0) = O.
x -0

We next show g(x) is approximately continuous at
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x = O. First we have 1lim ap sup g(x) = l.u.b. J(0)
x -0
= l.u.b. {y|0 is not a point of dispersion of C(yz}
= l.u.b.(- ®, 0) = 0. Similarly, 1lim ap inf g(x) = g.1.b.I(0)
x =0
g.1.b. {yIO is not a point of dispersion of Dﬁyﬂ

]

g.1.b.[0,® ) = 0. Therefore 1lim ap g(x) = 0 = g(0),
x = 0

so g(x) is approximately continuous at x = O. But now

we find

1l if xe(0,1); and
g(f(x)) = {:

O otherwise
is not approximately continuous at x = 0. To see this

we need only note that 1lim ap sup f(x) = l.u.b. {le is
x -» 0

not a point of dispersion of C(yi} = l.u.b.(- @ 1) = 1,
while g(£f(0)) = g(0) = 0 and we cannot possibly have

lim ap g(f(x)) = 0. Thus we conclude that g(f(x)) is not
x -0

approximately continuous at x = 0O, even though g is
approximately continuous at f(0) and f is continuous at
0.

It is pointed out here that the above example‘can
be modified so that f is continuous everywhere, and so that
g is approximately continuous at O and continuous every-
where else, but yet g(f(x)) is still not approximately
continuous at O.

It is natural to ask the following question:

If f(x) is approximately continuous at every point of a

compact set ScR, is f(x) bounded there? We know the
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answer to this question is yes if f(x) is continuous;
however, the following counterexample will show that
approximaﬁe comtinuity is not a sufficient condition for
f(x) to be bounded on S, even if S is compact.

Example. Let R be the reals and 8 = [0O,1].
Let m be Lebesgue measure. Define f(x) (see figure 1.)
on [0,1] in the following way:
(O if x = O;

. 1 1 1 .

0 if xe(Z , 7T ~ 32n )3
f(x) = {
3n+1 (n+l),, _~n+l 1 1 1 1 ]
2 X + 2 (l 2 ) for XE[ -1 o0 An—1 dn‘f‘l),
2 2 2 2

n+l 2(n+l) 1 1 1

K\—E X + 2 for X8[2n-—l - 2211+1 ] 211_]_:[

It is easily seen that f(x) is continuous on (0,1],
and hence approximately continuous on (0,1]. Further f(x)
is approximately continuous at O, as the following argument
will establish.

We want to show 1l1lim ap f(x) = O. Consider
x = 0O

{yly real, O is not a point of dispersion of C(y)}

]

J(0)

If y = 0, ¢(y) = [0,1] - £5({0}). We will show O is

a point of dispersion of [0,1] - f"l([O}), so that 0&J(0).
We first note that D[O,l]—f"l({o})(o) = 0, since if n is

an arbitrary positive integer, then for any open interval

I, with OeI and m(I) < =, it follows that
2

1
m((£0,11-£71(foh))nD) . ® 3%

—_t
2n+l

|
OV L

1
"TRT
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Thus 0£J(0).
If y < O, then C(y) = [0,1] and O is not a point
of dispersion of [0,1], thus yeJ(0) if y < O. Therefore

lim ap sup f(x) = 1.u.b. J(0) = 1.u.b.(~ ®»,0) = O.
x =0

Let us now consider
I(0) = {ylO is not a point of dispersion of D(y)} .
If y < O, then D(y) = ¢ so that y¢I(0) if y < O. There-

fore 1lim ap inf f(x) > O. Thus we conclude the approxi-
X =X
o

mate limit exists at O and 1lim ap f(x) = O = £(0),
x = 0

i.e., f(x) is approximately continuous at O and hence on
[0,1]. However it is clear f(x) is not bounded on [0,1],

since at the midpoint of any interval of the form

1 1 1 . 1 1 _
[5=T - &% > == -+ @F FTT - SzawT o We have
n . 1 1 n

In a similar manner, one may construct an
approximately continuous function f which is bounded on
a compact subset SR, but for which

g.1l.b. £f(t) < f(x) < l.u.b. £f(t) for each xeS, in other
tes teS

words, f does not assume a maximum or minimum on S. In
fact, by modifying the above example, we can show that a
function can be approximately continuous and bounded on
[0,1], but not have a maximum there.

Define (see figure 2.)
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(0 if x = 0

_ 1 1 1 ..
g(}() = O if XE[2D s 2n_l - 2211]3

_ 1 1 y
22n’ 2n~l ?

(——T)C—— f(x) for XS[

kwhere f(x) is as in the precedlng example.

We see that the maximum obtained by g(x) on the interval

L ___1 1
211-1 221’1 ? 211-1

] is E%T . Thus g(x) is bounded above

by 1, and in fact, 1l.u.b. g(t) = 1. Also g(x) is approxi-
te[0,1]

mately continuous on [0,1]. But, g(x) does not have a
maximum on [0,1].

Remark. In chapter III, it will be shown that
if f is a measurable function on a measurable subset
S of R satisfying suitably restricted conditions, i.e.,
the conditions of the Lebesgue density theorem, then f
is approximately continuous almost everywhere on S, i.e.,
approximately continuous everywhere on S except for a set
of measure O.

It will be convenient to have a theorem which
gives a necessary and sufficient condition for a measur-
able function to be approximately continuous at a point
X, Wwhen examining the theorem of the above remark. This
is the content of the following

Theorem 2-38. Suppose x €S, DS(XO)=,€>>O.

Then a measurable function f(x) is approximately con-
tinuous at x, if and only if for every pair of real

numbers k, and k, such that ky < f(x ) < k,, the set
0

{xﬂxes, ky < f(x) < kg} has metric density',é at x .
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Proof: Suppose D{X‘XSS,kl<f(X)<ké} (XO) = /F
for all k

k, for which k; < f(xo) < ky. By theorem

1°? 1
2-25, it will suffice to show DE(f(XO),E)(XO) =,ﬁ for all
e>0. Suppose £>0. Let ki = f(xo) - €, ko= f(XO) + E.
Then D{xlsz,lf(x)—f(xo)!<e}(xo> = ‘F - But

{xlsz,|f(X)—f(xo)l<s}

il

E(f(XO),E), i.e., DE(f(XO),E)(XO)zj

and hence 1lim ap f(x) = f(xo).
X =X
o
Conversely suppose 1lim ap f(x) = f(xo) and suppose
X =X

o
klgf(xo)<k2' Then D{Xlx€8,|f(x)~f(xo)l<g}(Xo) = ’p for

all €20, since Dyp(y j ¢)(%,) = A . Let

£ = min(k2 - f(xo), f(xo) - kl). Then

{xlxes, flx) - e<f(xI<f(x ) + e)

ot {XIXES, kl<f(x)<k2} , SO Lﬁxlxes,kl<f(x)<k2}(xo> > Jﬂ .
However at the same time, {XIXES, kl<f(x)<ké}cs, SO

U{xlxss,kl<f(x)<k2}(xo) S J?’ SO

,/ . Thus this theorem yields

i

D{XIXES,k1<f(X)<k2}(XO)
a criterion for approximate continuity.

Another question which arises is: If f is
approximately continuous on a connected set, does f
have the intermediate value property? This guestion can
be answered affirmatively if our metric space R is the
reals and m is Lebesgue measure. This somewhat surprising
result and its elegant proof were first given by de la

’ .
Vallee Poussin.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



- 54~

We remark that it can easily be shown for
Buclidean l-space and Lebesgue measure, that metric
density is the same if closed spherical neighborhoods
are used in the definition, rather than open spherical
neighborhoods. In the remainder of this chapter, and in
chapter II1, we will find it convenient to use this re-
mark. In chapter III, we prove this remark for our
measure space R.

In proving the above mentioned result we will
use the following

Lemma. Suppose E is a measurable set contained
in [a,b] and m is Lebesgue measure. Define
g(x) = m(Bnla,x]) for xela,bl. Suppose xos(a,b). If
DE<XO) = k, then g“(xo) = k and conversely.

Proof: Suppose £>0 and DE(XO) = k. There exists
6>0 such that if I is a closed interval, XOEI, and

m(I)<d, then

k-s<m7gE%-)- <k + €.
Consider the difference quotient
g(xo) - g(x) m(Eﬂ[a,XO]) - m(Bnla,x])
X, - X X, - X
For convenience suppose x_ > x. Let I = [x,XO].
Since [a,x_ 1 = [a,X]U[x,XO] and

Enla,x 1 = (Eﬂ[a,x])U(Eﬂ[x,xo]), we have
m(Eﬂ[a,Xo]) - m(Bnla,x]) = m(Eﬂ[X,XO]) = m(ENI).

m(Enla,x 1) - m(Bnla,x]) w(ENI)

T = Taln

Therefore
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and we conclude g'(xo) = k. It is clear that if x < x,
the result is the same. Thus if DE(XO) = k, then

8'(XO) = k. Conversely it is seen that g'(xo) = k implies

DE(XO) k.

Theorem 2-39. If f(x) is approximately continuous
on [a,b] and if f(a) < 0, f(b) > O, then there exists
ce(a,b) such that f(c) = O.

Proof: The proof is by contradiction. ILet f,
measurable, be an approximately continuous function on
[a,b] such that f(a) < 0, £f(b) > 0, and f(x) 4+ O for any
xe(a,b). Define
ixlxela,bl, £(x) < O},

B = {xlxe(a,bl, £(x) > 0} ;

A

]

A, Be X, AUB = [a,bl, and ANB = 0.
‘ The following claim is made: if xosAﬂ(a,b), then

DA(XO) = 1, and hence DB(XO) = 0. Since f is approximately

continuous at X5
E(f(xo),s) = (Xlxs[a,b], |f(x) - f(xo)|<5} sK(XO) for all
e>0. Let € = - f(XO) > 0. Then
E(f(x ), - £(x)) = {xlxa[a,b],lf(x) - f(xo)l<~f(xo)}
= {Xlxs[a,b], 2f(xo)<f(x)<0} <A. Therefore DA(XO) = 1
and DB(XO) = O for x_eA as claimed. A similar claim
holds for x_eBN(a,b), that is, xosBﬂ(a,b) implies
Dp(x,) = 1 and D,(x_) = O.

Let g(x) = m(Anla,x]) for xela,bl. If xeAn(a,b),

then g'(x) exists and g'(x) = 1 by the lemma, while if

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-56-

xeBN(a,b), then g'(x) exists and g'(x) = 0. We will
show this leads to a contradiction of the mean value
theorem for derivatives, namely, that if g(x) is con-
tinuous on [a,b] and differentiable on (a,b), then there
exists ce(a,b) such that g'(c) = g(b)b—_gga) . We will

show in particular that 0 < g(b% - g(a)

< 1, contradicting
g'(c) = Oor g'(e) =1 for all points ¢ in (a,b).
It is observed that A = D(0O) and B = C(0). Since
- _ g(b) - g(a) _ m(A)
g(a) = 0 and g(b) = m(A), we have T = T
Suppose m(A) = O. Then m(B) = m(C(0)) = m([a,b]) = b-a.

The claim is made that a is not a point of dispersion of

C(0), and hence OeJ(a). Consider an open interval I

with a as its midpoint. Then m(gg%%nI) =-% and

1 . . . .
UC(O)(a) 25 - Thus a is not a point of dispersion of

C(0), so 0eJ(a). But then 1lim ap sup f£f(x) > 0 in con-
X = a ‘

tradiction to the facts that f is approximately con-
tinuous at a and f(a) < O.

In a similar fashion, if we suppose m(B) = O,
we are led to a contradiction, and hence m(B) > O.

Therefore i1t follows that

0 < méfa - g(b% = g(a) <1

and the proof is complete.

Theorem 2-40. BSuppose f(x) is bounded and

Lebesgue measurable on [a,b]. Let F(x) = J f(t)at,
La,
Where[ S ]f(t)dt is the Lebesgue integral. If xos(a,b)
a,x
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and f is approximately continuous at x_, then F(x) has
a derivative at x, and F'(XO) = f(xo).

Proof: Since f is bounded on [a,bl, there exists
M such that |f(x)| < M on [a,bl. Suppose Xos(a,b) and
suppose f is approximately continuous at Xgye If >0,
E(f(xo),s)eK(xo). Let
J E(f(xo),s/Z) = {Xlxs(a,b],|f(x)—f(xo)|<8/2,} .
JsK(xo), SO LJ(XO) =1 > 1- ﬁﬁu Let Q(p,d) = {xlst,

P (p,x) < 6} . There exists N, such that

y;(xo’f%) =x§ééﬁg;6) Eé%%%%%g%%l > 1 - 5, i.e., if
c<B<
XOSQ(p,B) and m(Q(p,d)) = 286 < ﬁ-, then
n(InQ(p,8)) > (1 - PM(Q(p,5)) and
m(€INQ(p,8)) < gy m(Q(p,8)).
Let A = %-> 0. Suppose X < x < X, +.A ’
xela,b]. Then

- f(t)dat

F(x) - F(x,) L gt = S

TR - f(xo) = 2 TR, - f(XO)

S f(t)at

[xo,x]
- X - X, - £(x,)
X+X X=X

Let p = —5— and let & = —— . Then Q(p,5) = [XO,XJ

and XOEQ(p,b). Further, since x < x + A, X - X, < A ’

X=X, A 1
and & = - < - = TF -

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



F(x) - F(x,) ~ot- f( 6§<t)dt
Now X X - f(xo) = m o - f(XO)
S £(t)at - S fx_)dt
_ Q(p,8) Q(p,8) °
m{Q{p,0))
S (£(t) - £(x ))at I S l£(%) - f(xo)|dt
_ Q(p,d) < 8(p,5)
m(Q(p,5)) l~— m(Q(p,0))
S [£(t) - f(x)lat [ l£(t)-£(x ) 1at
- Q(p,8)0J ° . _Q(p,8)N6J
- m(Q(p,0)) mn(Q(p,0))
< %m(Q(p’é-)) 2Mm( JNQ(p.&))

m(Qlp,5)) m(Qlp,0))

< §-+ 2M°ﬁh-= €. Hence F(x) has a right hand derivative

at X, equal to f(xo). Thus F'(Xo) exists and F‘(xo) = f(xo).
In light of the preceding theorem, one might wonder

whether, if boundedness and measurability .re replaced by

summability, the theorem still holds true? Unfortunately

the answer is no, as the following counferexample illustrates.
Example. Let R be Buclidean l-gpace and let m be

Lebesgue measure. Let f be defined on [-1,1] as follows:

g

1
f(x) = t‘n for (gﬁ) - (52%119 E.XVE.EEa n=0,1,2--~-,
O otherwise.
We note first that f is summable on [-1,1], since

S o f(x)ax = lim [ (£GP ax + lim S (£(x))0dx
[-1,1] n - ol-1,1] © n->ol-1,1]
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13 5 -%E- 5.
= lim 5 + 0 = lim Z =T =1
n __> Fan) k—o 2 +l n - ® kxO 2k+ ’

n if f(x) > n,

f(x) if 0 < f(x) < n, and

where (f(x))g
0 if f£(x) < O,

- n if f(x) < - n,

f

and (£(x)) £(x) if - n < £(x) < 0, and
O if f(x) > O.
We further note that f(x) is approximately con-

tinuous at x = 0, For, if J is a closed interval such
1 1

that E-IT:T; M(J) __<_ Eﬁ- and OEJ, then
1 1
% 1 1 1

m(SNJ) _ k=n p2k+1 _ (3)(22n‘I) = = ( )

mTy = T = T 2 “on-c

2n+l 2n+I
< 0O as n - @
Define F(x) as before, i.e., F(x) = [ f(t)at
{-1,x]
for xel[-1,1]. Suppose first that 0 < x < 1. Then
S f(t)at - S £(t)dt
IF(x) - Plx))| . [-1,x] [-1,0]
x — 0 | X
S £(t)dt

= [O’Xi . There exists n such that

1 1
211‘1'-1 _S_ X __<_ -2-1-]-.- . Then

@® ok @ 1

S f{t)at Ik =T

[0,x] 5 ken+l 2°°%°  ken+l okl g

X =~ i = 1 -z
o oh
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Hence we see that if F has a right hand derivative,

it is at least %-, while £(0) = 0. Hence we see the theorem

does not hold true if boundedness and measurability are re-

pPlaced by summability.
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CHAPTER III

The principal results in this chapter are the
Vitali covering theorem and Lebesgue density theoren.

As before, R will be a separable, dense-in-itself metric
space, S a measurable subset of R, 55 a g-algebra of
subsets of R, m a measure defined on 55, and f a measur-
able function on S. There are some inherent problems
involved in proving these two theorems for a measure
space which do not arise in a Buclidean space. As an
example of such a problem, suppose x and x' are distinct
points in R. Generally m(N(x,86)) + m(N(x',8)). This
problem and others will be discussed in detail when they
arise.

When working with metric density in a Buclidean
space one often finds it convenient to know that if the
metric density exists at a point, then it is the same if
either open neighborhoods or closed neighborhoods are used
in the definition. It is recalled, in fact, that near the
end of chapter II we took the liberty of using this
convenience. For EBuclidean n-space it can readily be
shown that this is the case. This is also a desired con-
venience in the case of a measure space.

Define Q(XO,X) = {x|xeR, C(x,x,) S_A} . We
note that Q(x,, /\)Eaf , since Q(XO,X) = nc_Ig)lN(xo,)\-i- -]]:‘I-),

and m(Q(xO, A)) = li? m(N(xO,)\+ %J). Also,
n - ®

-6] -
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® 1 1
N(x_, M) = 2UQ(x,, A - ), where N is such that A > & ,

and n(N(x,,A)) = 1im m(Qlxy, A - ).
n @

Let uS(XO,,\) and US(X0> be defined as before.

Define ué(xo,,\} =  l.u.b. m(iﬂ (p,8)) . and
pER b,

»0
S5

Ué(XO) = .iéb. ué(xo,lk). Define lé(xo, ) and Lé(XO)

in an analogous fashion. If Lé(xo) = Ué(xo), let

Dé(xc) stand for the common value, i.e., Dé(xo) will stand
for the metric density of S, with respect to the closed
spherical neighborhoods Q(p,5), at the point X,

Theorem 3%-1. Let XOER and let S be a measurable
subset of R. Then Dé(xo) exists if and only if Ds(xo)
exists and Dé(xo) = DS(XO) if either exists.

Proof: Suppose uS(xo,4K) = k and £>0. There
exists 6>0 and peR such that XOEN(p,é), 0 < & < A, and

m(ﬁ?ﬁgg:ggg > k - €. There exists a > O such that

m(SNN(p,d))-a _

AQCIRID, > k €. We know that

lim m(sSnQ(p,x)) = m(SNN(p,d5)), so there exists &' such
o = b

x < &

that 0 < &' < & and m(SNN(p,5)) - m(sSnNQ(p,8')) < a, i.e.,
n(SNN(p,d)) - a < m(8nQ(p,&')). But now we have

m(sSnQ(p,8')) | m(8nQ(p,58')) , m(SAN(p.8))-a , . _ ..
n(Q(p,56")) = m(N(p,5)) n(N{p,0))

Therefore ué(xo,,X) > k - ¢ for every >0, so

wl(x ,A) 2k = uglx_,A).
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On the other hand, suppose ué(xo,,\) = k. Suppose
€>0. There exists >0 and peR such that xosQ(p,é), 0<8< A ,

and m(in (p ) >k - €. There exists b > O such that
3

m(SnN 3) . )

m( %§§37%% >k - €. B8Bince 1lim m(N(p,a)) = m{(Q(p,d)),

o = O
o > 06

there exists &' such that O < & < &' < A and
m(N(p,5')) - m(Q(p,8)) < b, i.e.,
n(N(p,5')) < m(Q(p,6)) + b. But now we have

n(SIN(p,&5'))  m(3n 5)) . m(SnQlp,5))
m(N(p,5 ) = m(N?'Q'é"TTp, 2 —m(Qlp,5))+6 ~ K~ &

Therefore uS(XO,,\) > k - € for every € > O, and hence

us(xo,)\) >k = ué(xo,/\). Hence uS(XO,/\) = ué(XO,A).
Since )\> O is arbitrary, we conclude that US(XO) = Ué(xo).

In a similar fashion it can be shown that
LS(XO) = Lé(xo), or alternatively it can be shown that
UéS(Xo) + Lé(xo) = 1, and since Ués(xo) = %S(xo) it
follows that Dg(x, ) = Lg(x,). Thus we see that D&(x,)
exists if and only if DS(XO) exists, and Dé(xo) = DS(xO)
if either exists. Henceforth we will use DS(XO) for the
metric density of S at > whether open neighborhoods, or
closed neighborhoods are used.

We will find the following lemma a useful aid in
proving the Vitali covering theoren.

Lemma. Suppose G is a bounded subset of R.
Suppose there is a positive real number t such that if
x, €G, A > O, then m(Q(xl,,\)) §.tm(Q(Xl, %D). Then, if

e>0, there exists &>0 such that if x,eG, ¥ >0, and

1
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m(Q(x, , 1)) < &, then Y < .
Proof: Since G is bounded, there exists XOEG

and a>0 such that GcQ(xo,a). If x.eG, then

1
Q(Xo,a)CQ(xl,Ea){ Let B = 2a. Then
m(Q(x,,B)) = m(Q(x, ,2a)) > n(Q(x, ,x)) = a > 0. Now
m(Q(Xl ,‘g)) > % m(Q(Xl,B)) > % Also

m(Q(Xl,é%J) 2,%'m(Q(le%))_Z-£% , and in general,
t
m(Q(x, ,;%n > 2.

0
Suppose &>0. There exists n such that i% < €.

Let & = i%u Then if m(N(xi} ) <8 = i%-, it ?ollows

that ¥ < -5%< e , for, if ¥ > -5%, then m(N(x,, ¥)) Zfﬁ

in contradiction to our choice of 6.

Definition %3-1. Suppose ScR. A collection.lVof

closed spherical neighborhoods forms a Vitali Covering

of S if whenever peS, >0, there exists a Qsﬁfsuch that
peQ and the radius of Q is less than . Denote the radius
of @ by rad(Q).

Theorem 3%-2. (Vitali). Suppose Se 3? and
ScG, G open and bounded. Suppose that there is a positive
real number t such that if XlEG, A:>CL then
m(Q(Xl,,X)) S_tm(Q(xl,éJ). Suppose that A is a Vitali
cover of S. Then either there exists 11’12’ ——— Ik
such that I;NT; = 0 if i + j, I ed and I,G, and
S:iglli, or else there exists I, ,~--, P it with

l'.'

INI; = o if 1 4 j, I,ed, I,=G, and such that, if £>0,
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k
there exists k such that m(S-—ag

Proof: Let W= {alac#/, ans + ¢, rada(I) < 1,
A= G }. H forms a Vitali covering of S. For, suppose
peS, €>0. We may suppose £<l. Since 4/ is a Vitali
covering of S, there exists B'e & such that peB' and
rad(B') < e. Further, we can choose this B' so that
B'cG. We are able to do this, since G is an open set
containing S, and hence there exists >0, 0 <6 < g,
such that N(p,5)cG. Since @A is a Vitali cover of S,
there exists Ae & , such that rad(A)<6/2, and peA. Also,
AcN(p,8)=G. Let this A be B'. Now we ohserve
that B'e W , since B'e & , B'ns + ¢, rad(B') < g, and
B'<G, thus ¥ forms a Vitali covering of S.

Choose Ils t{ so that for every Ae W,
2 rad(Il)>rad(A). We are able to do this because the
radii of the sets in N have a least upper bound. If
S=1,, we are done.

If there exists xeS-I,, then X&:@Il, which is

open, so there exists Ic™ such that I.NI = ¢. Choose

1

I, R such that I na = ¢, 2 rad(Ig) > rad(A). Suppose

1
11’12’--—’11{“1 have already been chosen, mutually disjoint,

IJ.E:W , J = 1,2,~-~,k-1, and such that 2 rad(I )> rad(A)
g~ l
for every Ae ¥ with AN( U T) = b, j = 2,3,———,k-1.
, k-1
Also, if Ae H , then 2 rad(l’l) > rad(4). If S=u;Iy,
) k-1

we are done. If there exists xe3 - Ulln, then x is in
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k-1
%glln’ which is open. Therefore there exists an open

. k-1
spherical neighborhood N(x,ﬁ)cw%glln such that

N(X,ﬁ)ﬂigiln = 0. There exists Ae } sughlthat xeA

and rad(4) < 8/2. Then A=N(x,8) and AN( U I ) = O.

Among these closed spherical neighborhoods A, there exists
one, call it I,, such that Erad(Ik) > rad(A) for all

k-1
Ae W with An( UiI ) = ¢. By finite induction, either

k
there exists k such that § - U I = ¢, in which case the

theorem is established, or else there exists a sequence
{In} , n=1,2,~—~,k,-~—~, of disjoint neighborhoods in
M such that if k is an integer, k > 2, and if Aec ¥
and if Aﬂ(igiln) = ¢, then 2 rad(I,) > rad(A). Also, if

Ae  , then 2 rad(I,) > rad(A).

Since G is bounded, S is bounded. Thus there
exists XOES and o>0 such that SCN(XO,Q). Let
M = N(Xo,a+2). Suppose xel, . Since I, NS i ¢, there exists
y such that yeI, NS. Then Q(Xc,y) < a. Also ¢ (x,y) £ 2,
since rad(Ik) < 1, and hence <?(Xo,x) < o + 2, so xeM,

@
Hence Ik;M and kglIch. Now we have

® ®
kglm(lk) = m(kglIk) < m(M) < + o (Note here, that M, as

an open sphere, has positive finite measure by assumption.)
Thus m(Ik) -0 as k = w .

Suppose £€>0. There exists n such that

i M8

(I, ) < €/t, where t is described in the statement of

k=n+1
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the theorem. If k is an integer, k >2n + 1, let A, be

k
the closed spherical neighborhood with the same center
as Iy, and such that rad(4,) = 5 rad(I,). Then

m(Ak) < tm(Ik). Also

a @
m( U 40 < 2 m(a) <t2 (T
k=n+1l

n n

As before, if xeS - U I,, then xe f{gllk’ which is open,
n

so there exists ¥ > O such that N(x, d )N 0,1, = ¢.

Choose Ae N with xedA, rad(4) < -g . Then AcN(x, ¥ ),

n
xeh, and AN(U,I,) = 0. But A is not disjoint from all

the Ik’ since rad(a) > 2 rad(Ik) for k sufficiently large.

This follows from the fact that m(Ik) -0 as k - m,

and from the previous lemma, i.e., if &€ >0, there exists
>0 such that if xeG, M >0, and m(Q(x, 1)) < &, then
N<$ - Let m be the first positive integer such that

ANT_ 4 . Note that m>N. For this integer m,

rad(A) < 2 rad(I_). This follows since Ae ¥,

Aﬂ(zgilk) = ¢, and if rad(a) > 2 rad(Im), then I could

not join the sequence {Ik} . Since rad(A) < 2 rad(I)

and ANI +{ ¢, it follows that A<A . To verify that

AcA , suppose peA. Since ANI + 0, there exists qeANI ,

and e(p,q) < 2 rad(A) < 4 rad(Im). Let r be the center

of I (r is also the center of Am). Then

@ (g,r) < rad(I_). But now we have

e(p,r) < €(p,q) + €(q,r) < 4 rad(Im) + rad(Im)

= 5 rad(Im) = rad(Am). Therefore ACAm. Because XSAm

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-68—-

] @
and m > n, it follows that xe U Ak' Hence
k=n+1

n n @
S - U IkC U 4, and m(S - U Ik) < m( U Ak) < g.

k=1 k=n+l k=1 - k=n+1

In addition we also have

n(S- g)I ) = 0, si S (B I, <5 i I, f
k214’ = O, since k¥ Tk “xYqI, for all n, so

® n
m(S 'kgllk) < m(8 —kgllk) for all n. If n is sufficiently

W
fYee)

n
large, m(S -kgllk) < g, so m(8 - lIk) < g for all e>0.

Therefore m(S - 0.

@
kd1Tx) =

The Vitali theorem Jjust proved was not the most
general; we made important use of the fact that S was
contained in G, and that G was open and bounded. In the
next theorem it will be shown the conclusion of theorem 3-1
holds true when S is not necessarily bounded.

Theorem 3-3. (Vitali). Suppose R is separable
and dense-in-~itself. Suppose SR, Sg 3?, and suppose
there is a positive real number t such that if

A)).

xlsR, /\ > 0O, then m(N(Xl, A)) S.tm(N(Xl,?; Suppose A&7

is a Vitali cover of S. Then there exists a sequence {;n}
(possibly finite) of disjoint sets of £ such that
(s -U,I) =0
oS - 41,7 = 0.
Proof: Suppose x_eR. Let S; = N(xo,l)ﬂs.
Since 8, € 3? and SICN(XO,I), which is open and bounded,

by theorem 3%-2, there exist disjoint sets

ki

Iia I%, -—=, Iil %§.£7 , each contained in N(xo,l), and
- 1 1

such that m(Sl jgl Ij) <5 .
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Let S, = N(xo,2)ns "jgl
k
1 1
SQCN(XO,E) _jgllj’ which is open and bounded, so again by

theorem -2, there exist disjoint sets Ii, Ig, e Ii
2

2

k
of éj , each contained in N(XO,E) - 3 lI%, and such that
ks 2 Ky

_ 2 1 _ i
m(S, jgllj) < - TLet 55 = N(x_,3)n08 - ( Uy J.glIJ. .

I:JF . 8,6 X and

HCFJ

Applying the same reasoning to 85 as was applied to Sl
k
Jf m

and S,, 835 and SBCN(XO’3>

3 15 3
Il’ I - Ik

m :
(mgl nglj), and we find

5 . in.AV, mutually disjoint and contained in

k kz

- U TI.) K<
3 ,j:lJ

o
CB AN
o

N(XO,B) - (

n

il

Im), such that m(3
1j=19

for each
k

1™m m
1 4L T30

Using induction and continuing in this manner
n

k]
positive integer n we let S = N(x_,n)NS - (ng

k

1 IZY . which i ;
. an
1 3 37> whic is open a

Mgt

n-—
S,€ Jf and SncN(Xo’n) - (mg

bounded, so by theorem 3%-2, there exist disjoint sets

I?, Ig, -, IE of Aj, each contained in
n
n- km m kn n 1
N(x,.n) - (U7 j4;T5), and such that m(S, - §91T5) < e

We emphasize that this is true for each positive integer n.
We next observe the following point set identities.

For each positive integer n,
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a> I _m
(W(x,,n008 - ( Uy 591 J))c(N(x NS - () u j__gllj)),
and in particular, for t a positive integer, * 2 n,
@ m_m t m
W (xmIns - Uy S EH e, 008 - (8, jgilj ))
k k k
-1 m t t
[N(x_,t)0S ~ (U7 +U;I™)] -0 1% = (s, -.uID.
(IN(x,,b) & ST - 0T = (sy -0 I
Therefore,
a> k kt & 1

But since t is an arbltrary p051t1velgnteger greater than
or equal to n, m((N(xo,n)nS - ( Ul 54 Uy J))) = O. We note
that this last relationship holds for each positive
integer n.

Now, we observe S = Sn(

6 0] @
= U, (N(x,,n)ns), and § - (U

k
13

i
M=

(04N (x, ,n)NS)NE

m _m
= .U l(N(x ,n)nsncxmul 591 IJ))

k

@ m
nd1 U T30)

- o0y (WG, ,mI08 - (U

k k

® ® m _m
D) < m(,0, NG, 0008 = () 39D

a m
n¥1

(N(xo,n)ﬂs - (

Tt remains to show that I? n I? =0 ifmtn
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and j + i. Suppose m + n and m < n. Suppose XSI?.
Then, from the way in which I? was chosen,

n-1 km

m m .
xeN(x,,n) - (LU 32113)7 so X&Ij for any j = 1,2,---,k_,

and for any m < n. Conversely, if XEI?, then

k k
XéN(xo,n) - (igi jgzlﬁ), and since I?CN(xo,n) - (igi jgzlg),
i=1,2,~—, k_, xﬂ?. Also if m = n and j 4+ i, then
I? n I? = ®. Thus we have a sequence of disjoint sets,
call it {I_} , such that Ie A and m(S —nolzlln) = 0.

The remark is made at this time that if G is an
open subset of R, then Ge & . This is because R isg
separable, R has an enumerable dense subset A, and hence
an enumerable open base formed by taking all open spherical
neighborhoods of positive rational radii of all points acA.
Thus G may be written as an enumerable union of open
spherical neighborhoods, each of which is a measurable
set. Therefore G is measurable, as an enumerable union
of measurable sets.

Theorem %-4. If R is a separable dense-in-~itself
metric space and S is a measurable subset of R, and k is
any real number, then the set of points at which the lower
metric density of R is less than k is measurable.

Proof: We may suppose O < k < 1. Consider the

set Gnm of points of R which are contained in open
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neighborhoods of radius less than %3 in which the relative
measure of S is less than k - %3 where m and n are positive

integers. Gnm is an open set for all m and n, and hence

measurable.

We want to show the set of points at which the

O @

lower metric density of S is less than k ismgl anGnm‘

@
Suppose Xamgl anGnm‘ Then there exists m such that
xeG ., 0 = 1,2,-——, and there exists 6, > 0, p eR, such
( snN( 5_))
1 I\ 2HNA PR 20y 1
1 1
For each n, ].S(X,EJ <k -z
. 1 1
Also LS(X) = l.u.b. ls(x,é) = lim lS(x,EJ <k -=<k.

6>0 - = 0

B

® ®
Therefore Ls(x) < k for all xe U; 04G .
On the other hand, suppose LS(X) < k. Then

1

there exists m such that LS(X) < k - = .
1
LS(X) = l.u.b. ls(x,b), SO lS(X,%J < k - = for all n.
5>0
1y m(XON(p.6)) ., _ 1
But lS(X’n) - gﬁéﬁb' m(N(p,0)) K m °
xeN(p,6)
1
0<6§E
Thus for each n there exists an open spherical neighborhood
1
N(pn,bn) such that p €R, XsN(pn,én), 0 <86, <z, and
n(SNN(p,. ,6,))
n’"n 1
m(N(pn’én)) <k - oo Therefore Xanm for each n,
® @ @
and hence XEanGnm and xsmgl nglGnm' Thus
' ») @ | @ @ ]
n¥1 n01CGnm = {xIxeR, L (x) <k} . But 291 n016nm 18
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measurable as an enumerable union of enumerable intersections
of open sets, so 9 x!|xeR, Lg(x) < Kk} e Z .

Theorem 3-5. (Lebesgue density theorem).
Suppose R is separable and dense-in-itself and S is a
measurable subset of R. Suppose that for every >0 there
exists an open set G, such that ScG and m(G-S) < g£. Let
ﬁj be a Vitali covering of S, and suppose there is a
positive real number t such that if xeR, A > O, then
n(N(x, A )) < tm(N(x, é)). Then the metric density of S
exists and is equal to one at every point of S except for
a set of measure zero.

Proof: The proof is by contradiction. Suppose
the theorem is not true, i.e., suppose there is a measur-
able set SR, and suppose for every £>0 there exists an
open set G such that m(G-3) < g, and the set of points of
S at which the lower metric density is less than one has
positive measure.

Let T

{xlsz, Lg(x) < 1} . By theorem 3-4,

Te L, since T = SN {XlXER,L (x) < l} e L. By assumption,

i

1
m(T) > O. Define Tn = {x|sz, LS(X) <1 - Ef}. For some

@™ @™
) =k > 0, since THCT U, T = T, m(nngn) = m(T),

n, m(T ’ n=l"n

n

@ @
and O < m(nngn) S_nglm(Tn). We will show that

m(T ) = k > O for an integer n leads to a contradiction.

Let G be an open set containing S such that

k 1
m(G-8) < 5 - Suppose xsTn. Ls(x) <1 - E-for XETn, so
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15(x,8) <1 - % for every 6>0 and in particular for
those d's of the form %, m a positive integer. For each

m, there exists a closed sPherJ.cal nelghborhood me such

m(an’mx 1
that Q'meG’ XstX, rad(QmX) < 'I'ﬁ' , and = 1 - =.

For every xeT  we get such a sequence {mez » M = 1,2,~-——,

SnQ‘mx) 1
such that stmX, Q .G, and <1 - =, m 1,2,———,

T,

and 1lim rad( ) = 0. Let
m - @® me

4= {_melxeTn, m=1,2,~— }.
,Q covers Tn in the Vitali sense, i.e., Q, is a set of closed
apherical neighborhoods, and for every xaTn and every €>0,
there exists QeR such that xeQ and rad(Q) < e.

By the Vitali theorem, 'l‘n is covered except for

a set of measureO by a countable number of disjoint closed

spherical neighborhoods Py, Pp, ~-- in X. Let H _mUle.
Then H=G, since P &G, m =1,2,-——. Also, m(H) > k since H
covers all of Tn except for a set of measure O. Now
m(SNE,) 1 n(@sSnP ) 4
~CF_7_<1~E’forPSQ SOT)_->—&nd

@
m(GSﬂPm) > -1-1- m(Pm). Therefore m(8SNH) = m(m__L_ll(@SﬂPm))

O an
= 5m(EsnP ) >3

ml%m(P):i m(P)

m nml

1 k
= 'ﬁ'm(H) >3 . But, G=H, so

§SNG> €SNH and m( €SNG) > m( ESNH) > =,
i.e., m(G-8) > %— , a contradiction. Therefore the theorem

must be true.
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In the statement of the theorem we assumed the
existence of an open set GoS such that m(G-S) < g for
any €>0. We note that if S is open, the theorem is
trivially true, since in this case the metric desnity of
S is 1 at every point of S. If S is closed and xoeR,

define S = SﬂQ(XO,n) for each positive integer n. S

is closed and bounded. Suppose £>0. TFor each n there

st - £
exists G_, Gn open, such that SnCGn and m(Gn Sn) < 5
Let G = QlGn‘ G is open and S<G. Also

®
m(G-S) = m( 1G4 U

B
18

@®
n 1Sn) < m(pUy (G, - Sn))

= m(G s 3 £ i i

E-n:lm n - n) <n§lfﬁ = €. Thus again we can find an

open set G, such that Sc<G, and m(G-S) < =.

With the aid of the Lebesgue density theorem we
may establish the remark made in section IV of chapter II
concerning approximate continuity.

Theorem 3%-6. Suppose the conditions of the
Lebesgue density theorem are satisfied. Let f(x) be a
measurable function on S. Then f(x) is approximately
continuous at almost all points of S,

Proof: Let P be the set of points of 5 at
which f is not approximately continuous. For every

xoeP, there are rationals Ty and s such that

ry < f(Xo) < r, and {xlxes, ry < f(x) < rg} & K(xo).

Define P, .. = {Xlsz, ry < f{x) < TZ}" XosPr T and
12 12

> is not a point of density of Pr .

1¥2
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Define C = 1x|xeP P K . C
riTp {. XE T1Tp, ~TyTo ¢ (X>} XoE r1Tp-

Now Prlr2 E;Jf’ and Crlr2 sétgby theorem 3-4. By the
Lebesgue density theorem, m(Cr - )} = 0. Consider
1-2
T QI‘ Cr T As th tabl i b ts of
1°To 1To . e countable union of se

Ty-To rational

measure O, m( ) = 0. 1If xOsP, then there

C
rlgr2 T,
T1°T2rational
exists r,,r, rational, such that r; < f(xo) < r, and

P & K(x, ), so x eP_

rlr2 and XOECr . Therefore

1¥2 1T2

P and m(P) = O.

Lot C

I'1’1‘2 rational
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