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Controls on Thermal Discharge in Yellowstone National Park, Wyoming 
 
Director:  Nancy W. Hinman 
 
  Significant fluctuations in discharge occur in hot springs in Yellowstone National Park 
on a seasonal to decadal scale (Ingebritsen et al., 2001) and an hourly scale (Vitale, 
2002). 
 
  The purpose of this study was to determine the interval of the fluctuations in discharge 
and to explain what causes those discharge patterns in three thermally influenced streams 
in Yellowstone National Park.  By monitoring flow in these streams, whose primary 
source of input is thermal discharge, we were able to find several significant patterns of 
discharge fluctuations.  Patterns were found by using two techniques of spectral analysis.  
The spectral analyses completed involved using the program “R” as well as Microsoft 
Excel, both of which use Fourier transforms.  The Fourier transform is a linear operator 
that identifies frequencies in the original function. 
 
  Stream flow data were collected using a FloDar open channel flow monitor.  The flow 
meter collected data at15-minute intervals at White Creek and Rabbit Creek for a period 
of approximately two weeks each during the Fall.  Flow data were also used from 15-
minute data interval from a USGS gaging station at Tantalus Creek.   
 
  Patterns of discharge fluctuation were found in each stream.  By comparing spectral 
analysis results of flow data with spectral analysis of published tide data and barometric 
pressure data, connections were drawn between fluctuations in tidal and barometric-
pressure patterns and flow patterns.  Also, visual comparisons used to identify potential 
correspondence with earthquakes and precipitation events. 
 
  At Tantalus Creek, patterns were affected only by barometric pressure changes.  At 
White Creek, one pattern was attributed to barometric pressure fluctuations, and another 
pattern was found that could be associated with earth-tide forces.  At Rabbit Creek, these 
patterns were absent. A pattern at 8.55 hours, which could not be attributed to barometric 
pressure or earth tide forces, was found at Rabbit and White Creeks.     
 
  The 8.55 hour pattern in discharge found at both Rabbit and White Creeks may suggest 
a physical link between the sites, which are close (2.5 km).  The time pattern could be a 
result of a shared hydrothermal aquifer, convectively heating and discharging at both 
streams. However, the common time pattern could also be the result of independent 
factors, which coincidentally caused a similar time pattern.
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1.0  Introduction 

 

Yellowstone National Park (YNP) holds half of the Earth’s geothermal features including 

geysers, mud pots, fumaroles, and hot springs.  These 10,000+ features are fed by water 

and steam heated at a variety of depths by a shallow magma plume sitting between 3 km 

to 5 km below the surface (Eaton et al., 1975; Iyer et al., 1981; Lehman et al., 1982; 

Smith and Braile, 1984; Benz and Smith, 1984; Miller and Smith, 1999; Finn and 

Morgan, 2002; Husen et al., 2004; Waite et al., 2005; Waite et al., 2005; Farnetani and 

Samuel, 2005; Yuan and Dueker, 2005).  An abundant supply of recharge in the form of 

snow melt infiltrates the hydrothermal system in the Yellowstone caldera and is heated to 

~ 350◦C where it then rises through an extensive fracture network (Fournier, 1989; 

Fournier et al., 1994).   

 

Hydrothermal water discharged from surface features can infiltrate back into the nearby 

subsurface and return to deep reservoirs recharging the system.  However, much of the 

water discharged flows out of YNP in streams and rivers.  Approximately 100 million 

metric tonnes of water are discharged by YNP hot springs annually (Fournier et al., 1976; 

Norton, 1989).  Allen and Day first studied thermal discharge in YNP (1935).  A better 

understanding of deep thermal water-rock interactions came through studies of hot-spring 

chemistry (Allen et al., 1935, White et al., 1975; Ingebritsen et al., 1993), which also 

serves to assess potential volcanic activity (Farrar et al., 1985; Sorey et al., 1991; Waite, 

2002; Lowenstern et al., 2006) and  to generate environmental baseline data in 

anticipation of possible future off-site geothermal development and other anthropogenic 
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influences (Sorey et al., 1991; Ingebritsen et al., 1988; Norton et al., 1989; Friedman, 

2000).  In these studies, many interesting phenomena have been reported, such as strong 

seasonal discharge pulses and decadal cyclical trends in discharge.  In addition to pulses 

in water flux, changes in heat discharge and chemical discharges (chloride and arsenic) 

were also observed (Ingebritsen et al., 1993).  Recent studies have suggested that shorter 

term daily cyclical patterns in discharge occur at Rabbit Creek in YNP (Vitale, 2002).  

Rabbit Creek’s primary source of water comes directly from discharging hot springs that 

share a hydrothermal aquifer (Vitale, 2002).  The hydrothermal reservoir is likely 

sensitive to pressure changes, as has been shown in several studies of subterranean 

aquifers (Bredehoeft, 1967; Freeze and Cherry 1979; Gieske et al., 1987; Hsieh et al., 

1987; Furbish, 1997; Inkenbrandt et al., 2005).   

 

1.1  Purpose of Research 

 

This study’s primary goals were to document temporal patterns in discharge cycles from 

two confined hydrothermal aquifers and to understand what causes these fluctuations.  

Our hypothesized controls include effects from earth tides, barometric pressure, seismic 

activity, and precipitation.  To quantify fluctuations in discharge, we continuously 

monitored flow rates in two streams with inputs that were assumed to come primarily 

from hydrothermal discharge.  Streams influenced heavily by geysers might show 

unpredictable pulses of water discharge related to geyser activity, and streams influenced 

heavily by shallow cold water aquifers would likely mask fluctuations caused by changes 

in hydrothermal discharge. 
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1.2  Geologic Setting of Yellowstone National Park 

 

The stratigraphy of YNP provides the framework for an extensive and complex 

hydrothermal system.  The Yellowstone Plateau covers an area of about 6,500 km2 or 

roughly twice the size of the state of Rhode Island (Fenneman, 1931; Smith, 2000; 

Christiansen, 2001).  Development of the plateau began ~ 100 to 50 million years ago 

(mya) with the collision of the North American and Pacific Ocean plates forcing uplift of 

the Rocky Mountains (Fenneman, 1931; Cohee, 1962; Thornbury, 1965).  At 50 ma, 

volcanism started in central Idaho and southwestern Montana (Obradovich, 1992).  

Eruptions from these events deposited significant layers of andesite lava flows, basalt 

flows, and airfall ash (Boyd, 1961; Perkins and Nash, 2002).  These eruptions were 

fueled by an upper crustal magma body (Blackwell, 1969; Eaton et al., 1975; Iyer et al., 

1981; Lehman et al., 1982; Smith and Braile, 1984; Benz and Smith, 1984; Miller and 

Smith, 1999; Finn and Morgan, 2002; Husen et al., 2004; Waite et al., 2005; Waite et al., 

2005; Farnetani and Samuel, 2005; Yuan and Dueker, 2005) that has produced 

approximately 142 caldera-forming eruptions as the continental plate moved over a hot 

spot (Perkins and Nash, 2002).  The third most recent caldera-forming eruptions took 

place ~ 2.5 ma and were the first to occur in the greater YNP area (Obradovich, 1992; 

Christiansen 2001).  Each caldera eruption followed three similar stages. However the 

magnitude of each caldera eruptive cycle differed significantly.  During the first stage in 

the eruptive cycle an upwelling magma plume blistered and finally fractured the earth’s 

surface (Figure 1A).  This was followed by the second phase of the eruptive cycle, which 
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consisted of an explosive release of welded-ash flows that partially drained the upwelling 

magma chamber (Figure 1B).  Nearly 3300 cubic kilometers of welded-ash were released 

during the 2.5 ma eruption (Christiansen, 2001).  The drained portion of the upwelling 

magma chamber collapsed and formed a large caldera (Figure 1C).  Finally, more lava, 

mostly rhyolite, flowed out, partially filling the caldera depression (Figure 1.D) 

(Christiansen, 2001).  By comparison, the 2.5 ma caldera eruptive cycle deposited nearly 

ten thousand times more debris then erupted during the 1980 Mount St. Helens eruption 

(Fritz, 1985).  Volcanic rocks of the 2.5 ma event are the Snake River Butte Rhyolite, the 

Huckleberry Ridge Tuff, and the Big Bend Ridge Rhyolite (Powers et al., 1958; 

Christiansen, 2001).   

  

Figure 1.  Illustration of  
sequence of caldera  
eruptions in Yellowstone  
National Park. Magma  
expands and pushes upwards 
(A.), gas and ash erupt (B.), 
surface collapses (C.), and  
finally lava lifts roof and  
flows out cracks filling the 
caldera (D.) modified from 
Fritz, 1985. 
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Two additional caldera eruptions followed this first eruptive sequence, one at 1.3 ma, and 

another at ~640 thousand years ago (ka) (Obradovich, 1992, Christiansen, 2001, 

Lanphere et al., 2002).  The second eruptive cycle followed a similar series of eruptions 

and deposited a total of approximately 280 cubic kilometers of volcanic debris including 

a welded-ash, rhyolite and small amounts of basalt (Christiansen, 2001). This event was 

significantly smaller then the first and occurred inside the southwest corner of the 2.5 ma 

caldera (Figure 2).  Layers deposited during this eruption from oldest to youngest include 

the Mesa Falls Tuff, and Island Park Rhyolite (Powers et al., 1958, Christiansen, 2001, 

2002 et al., 1972, Lanphere et al., 2002).  Strata from the second caldera event have been 

dated at ~1.2-1.3 ma using reverse paleomagnetic polarity and K-Ar techniques 

(Lanphere et al., 2002).  

 

The third and most recent eruptive cycle occurred ~ 640 ka and was located near the 

center of what is now Yellowstone National Park (Christiansen et al., 1972; Obradovich, 

1992, Christiansen, 2001) (Figure 2).  This series of eruptions is following a similar 

pattern to the previous two eruptive cycles and has so far produced a total of about 1000 

cubic kilometers of volcanic material (Christiansen, 2001); the current caldera may be in 

the hydrothermal phase, which is near the end of the caldera-eruption cycle and precedes 

final basaltic eruptions, or it may still be capable of erupting in another series of the 

explosive caldera-forming events (Christiansen, 2001). Smith and Brailey (1968) 
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designated this final phase as stage VII.  Layers formed during this third event are, from 

oldest to youngest, Lewis Canyon and Mount Jackson Rhyolite, Lava Creek Tuff, and 

Plateau Rhyolite (Powers et al., 1958; Christiansen et al., 1972).  The dominant 

stratigraphic layer, Lava Creek Tuff, has been dated at 640 ka using 40Ar/39Ar isotope 

age dating (Lanphere, 2002).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 2.  Geology of Yellowstone National Park courtesy of the U.S. Geological Survey 
(from http://www.usgs.gov, 2007). 
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Since the last major caldera eruption, there have been two significant periods of 

glaciation in YNP (Licciardi et al., 2001).  The first, the Bull Lake stage, occurred 

between 160 and 130 ka, and the more recent, Pinedale stage, took place between 70 and 

13 ka (Richmond, 1986, Licciardi et al., 2001).  At the peak of the last ice age, massive 

sheets of ice covered most of the park to a depth of thousands of meters thick (Pierce et 

al., 1991).  Glaciers in the YNP area have all been alpine as opposed to continental 

(Richmond, 1986).  Ice cap glaciers developed throughout the park and fed outlet glaciers 

extending in many directions. Figure 3 shows the extent of glaciation during the Pinedale 

stage.  Arrows indicate direction of ice flow (Baker, 1984).  

 

 

 

 

 

 

Figure 3.  

Extent of Pinedale  
Glaciation in YNP  
(from Baker, 1984) 
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1.3  Hydrothermal Aquifer Structure 

 

Caldera eruptive cycles and recent glaciation define the framework for YNP’s unique 

hydrothermal system.  The overall hydrothermal system varies greatly in character 

throughout the Park in its geochemical composition. A schematic of the structure of the 

system illustrates the pertinent and common features of hydrothermal systems (Figure 4).  

Cool meteoric surface water recharges the hydrothermal system through fracture 

networks (Kharaka, 2002).  18O/16O and 2H/1H isotopic analysis of thermal and non-

thermal waters and snow revealed that recharge for the system originates as meteoric 

water (Kharaka et al., 1990, 1991).  In the deepest layers of the system, hypersaline brine 

and gas with high concentrations of CO2 and sulfur compounds permeates fractures just 

above the semi-molten magma plume at a depth of about 3 to 5 km (Kennedy et al., 1985; 

Kharaka et al., 1992; Fournier, 1989) (Figure 4.).  This brine is a product of fluids being 

liberated from crystallizing magma (Fournier and Pitt, 1985).  The brine does not appear 

to mix with other portions of the hydrothermal aquifer (Fournier and Pitt, 1985).  

Overlying the brine is a series of deep, local reservoirs sandwiched between layers of 

more and less permeable rhyolite (Fournier, 1989) (Figure 4).  Water in these local 

reservoirs reaches temperatures of 350ْْ C - 430ْْ C (Fournier, 1989).  These aquifers 

receive some meteoric recharge, and water from these aquifers can mix with higher 

aquifers as it rises through fracture networks (Fournier, 1989) (Figure 4).  Water rises 

until it reaches highly-fractured rubble layers at the bottom and top of thick, silica-rich 

rhyolite flows (Fournier, 1989) (Figure 4).  Meteoric water also recharges this main 

aquifer and can reside at this layer for relatively long periods of time at nearly constant 



 9

temperature, reaching chemical equilibrium with the surrounding rock (Kharaka et al., 

1989; Fournier, 1989).  Water in this aquifer ranges in temperature throughout the Park 

from 180ْْ C to 350ْْ C (Fournier, 1989).  Some water continues to rise convectively in the 

system as it is forced into a network of fractures (Fournier, 1989) (Figure 4).  The water 

decompresses as it rises towards the surface.  Thermal waters commonly reach the 

surface where fractures cut across topographic lows, and hydrothermal features tend to 

also be more common at fault intersections (White et al., 1988).  As thermal water moves 

upward, adiabatic boiling generates a steam phase, which can separate from the liquid 

phase along different paths through cracks and fissures to the surface (Henley, 1984) 

(Figure 4.).  The steam phase may contain gases including H2S, which oxidizes to H2SO4 

when it comes into contact with oxygenated shallow ground water (Henley, 1984).  These 

heated acidic, sulfate-rich waters reach the surface as acidic hot springs and mud pots. 

 

 

 

 

 

 

 

 

 

 
Figure 4:  Hypothetical cross-section of the geothermal systems, YNP (created using Henley, 
1984, Fournier and Pitt, 1985, White et al., 1988, Fournier, 1989, Kharaka et al., 1989) 
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1.4  Confined Aquifer Controls 

 

An aquifer is defined as a geologic unit that can store and transmit water at a rate fast 

enough to be economically viable (Fetter, 2000).  A confined aquifer is any aquifer or 

fully water-saturated earth material found to have a water table above its upper boundary 

(Fetter, 2000).  A confined aquifer is usually pressurized due to the presence of a 

confining bed at its upper boundary.  Because of this pressure, water levels in wells or 

water escaping through fractures in the confining layers rise to a level higher than the top 

of the aquifer. This level defines the potentiometric surface (Fetter, 2000).  If the 

potentiometric surface for a given point in an aquifer is above land surface then water in a 

well or other natural conduit is able to discharge at the surface.  In YNP, hot springs and 

geysers are good examples of water escaping confined aquifers through natural conduits.  

Interpreting well drillers logs for the local geologic stratigraphy is usually the easiest way 

to determine if an aquifer is confined.  If drillers’ logs are absent, interpreting known 

information about the local geology is the next best option.  By knowing the stratigraphy 

and the permeability of the earth materials, aquifer properties and boundaries can be 

estimated (Fitts, 2002).  In YNP, aquifers exist at more then one depth (Figure 4), and 

with the exception of the shallow cold-water aquifer, other aquifers are typically located 

beneath thick layers of low-permeability rhyolite (Fournier, 1989).  Water trapped below 

rhyolite layers can build up immense pressure as it is heated, forcing liquid up through 

fracture networks (White et al., 1975).     
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Several factors have been shown to control pressure changes in confined aquifers.  In a 

flowing well or spring, pressure changes in the aquifer translate to fluctuations in 

discharge at the surface (Fetter, 2000). We can extrapolate from concepts of pressure 

control in confined aquifers to hypothesize what factors may be controlling pressure 

changes in thermal aquifers.  Factors affecting pressure changes in non-thermal aquifers 

include earth tides (Robinson, 1939, 1971; Bredehoeft, 1967; Gieske et al., 1985; Hsieh 

et al., 1987; Fitts, 2002), barometric pressure (Jacob, 1940; Clark, 1967; Pascal, 1973; 

Rojstaczer, 1988; Spane, 1999; Toll et al., 2007), earthquakes (Vorhis, 1955, 1964; Todd, 

1980; Husen et al., 2004), and precipitation (Zarriello, 2001, Fleming, 2006). 

 

Earth tides are induced stress and pressure changes that occur as a consequence of the 

daily revolution of the Earth in the gravitational fields of the Moon and Sun (Kvale, 

2006). Generally, tidal effects are most easily observed on large, unbounded water 

bodies, such as the ocean or the Great Lakes (Kvale, 2003). Tidal forces can cause elastic 

deformation of solid and liquid earth bodies within the Earth’s crust such as volcanic 

magma chambers and semi-elastic consolidated rock such as fractured limestone or other 

rock types (Robinson, 1939, 1971; Bredehoeft, 1967; Gieske et al., 1985; Hsieh et al., 

1987; Fitts, 2002; Jaggar, 1924; Brown, 1925; Hamilton, 1973; Dzurisin, 1980; Davis, 

1981; Berrino et al.,  1988, 1991; Fadeli et al., 1991; Jentzsch, 1995).  Two theories have 

been developed to understand tides and tidal processes, the equilibrium theory and the 

dynamic theory.  The equilibrium theory of tides uses universal laws of physics as 

applied to a water-covered Earth (Kvale, 2006).  It explains tides and tidal processes in an 

idealized Earth completely covered by deep water of uniform depth that is capable of 
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instantaneously responding to changes in gravitational forces (MacMillan, 1966).  The 

dynamic theory of tides expands on the basic concepts of the equilibrium theory to 

include harmonic analysis of individual tidal constituents.  The movements and angular 

speeds of the Moon and Sun relative to the Earth can be modeled as a combination of 

effects of a series of forces (Pugh, 1987).  In short, the dynamic theory helps explain 

complexities of real world ocean tides.   

 

On an idealized Earth, gravitational forces from the Moon and Sun combine with 

centripetal forces of the rotation of Earth about an Earth-Moon-Sun center of mass and 

produce oceanic bulges on opposite sides of the Earth (Figure 5A).  The rotation of the 

Earth through each of these bulges produces semidiurnal tides.  In the idealized Earth, 

intensity of tides can vary a number of ways.  Spring tides, or maximum high tides and 

low tides, occur every 14.76 days when the Earth, Moon, and Sun are nearly aligned at a 

new or full Moon (Figure 5B.).  The period of time from one full moon to the next is 

termed a synodic month and has a period of 29.53 days.  Neap tides occur when the 

Moon and Sun are at right angles relative to the Earth.  At this time, gravitational forces 

from the Moon and Sun oppose each other, in part resulting in smaller then average 

differences between high and low tides.  Because the lunar orbit with the Earth and the 

Earth’s orbit with the Sun are both slightly elliptical, perigee (closest approach to Earth) 

and apogee (farthest distance from Earth) periods can also have an affect on tidal 

amplitudes.  For the Moon, the period of time perigees is 27.55 days (Figure 5C).  During 

this time there are two spring tides and two neap tides often of unequal magnitudes.  
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Tidal amplitude is greater when spring tides occur near a time of lunar perigee and 

apogee.   

 

 

 

 

 

 

 

 

 

Figure 5.  Model of idealized equilibrium theory of tides  (modified from Kvale, 2006) 

The dynamic tidal theory helps explain complexities of the real world ocean tidal system.  

By decomposing the harmonic tidal signal of an extended series of hourly tidal height 

measurements at a given tidal station, individual tidal constituents can be estimated (Ray 

and Cartwright, 2007).  A tidal constituent is the result of gravitational effects from either 

or both the Sun and Moon at a particular position relative to the solar system.  Each tidal 

constituent is modeled to generate its own tide with associated amplitude, period, and 
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tidal response time or phase angle (Ray and Cartwright, 2007).  Tidal constituents are 

commonly reported in terms of alphanumeric terms.  For example, S2 symbolizes the 

principal solar tidal constituent at the 12-hour period.  Although there can be over one 

hundred tidal constituents extracted from harmonic analysis of actual tides, seven 

represent over 80% of the variability recorded in tidal analyses (Defant, 1961) (Table 1).  

Each tidal constituent corresponds to its own tidal wave that moves around an 

amphidromic point.  Amphidromic points are areas where the tidal range is almost zero 

(Kvale, 2006).  They are a function of basin geometries and the Coriolis Effect deflecting 

oceanic currents to the right in the Northern Hemisphere and to the left in the Southern 

Hemisphere (Kvale, 2006).  Tidal potential for any point in an ocean is a result of a series 

of tidal constituents specific to that location (Ray and Cartwright, 2007).  Major tidal 

cycles are a function of harmonic convergence and divergence of certain tidal 

constituents (Ray and Cartwright, 2007).  Timing for these cycles can be determined by: 

[360o/(σ1-σ2)] 24-1 = days     where 360 o represents one complete rotation of the wave 

around the amphidromic point, and σ1 and σ2 represent the rotational speeds (o/h) of the 

two tidal constituents of interest (Kvale, 2006) (Table 1).   

 

 

 

 

 

 

Table 1.  Principal tidal constituents from the dynamic tidal theory (from Kvale, 2006).
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Synodic neap and springs tides can be generated when the M2 and S2 tidal constituents 

come into phase (every 14.77 days) (Ray and Cartwright, 2007).  Diurnal inequalities 

exist because O1 and M2 are in phase only once a day.  If either O1 is greatly diminished 

or M2 is very small, diurnal inequalities will be very small (Ray and Cartwright, 2007).  

Table 2 and Figure 6 show interesting ranges of tidal stations and associated constituents 

(Kvale, 2006).  Shown are stations from Do Son, Vietnam; Manila, Philippines; San 

Francisco, USA; and Immingham, England.  Do Son and Manila are dominated by K1 and 

O1 and as a result, their tides are dominantly diurnal.  In San Francisco, M2, K1 and O1 

dominate tides while S2 has relatively little impact resulting in a predominately 

semidiurnal tide.  At Immingham tides are dominated by the S2 constituent resulting in a 

purely semidiurnal tide.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6.  Tidal curves from Do Son, Vietnam, Manila, Philippines, San Francisco, USA 
Immingham, England (from Kvale, 2006). 
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Table 2.  Dominant tidal constituents and their amplitudes for 4 tidal stations (from 
Kvale, 2006). 
 

The dynamic tidal theory explains real world variability in ocean tides. However the 

effects of earth tides on solid and liquid earth bodies within the Earth’s crust are better 

explained by the traditional equilibrium theory (Arabelos et al., 2003).  If tides had an 

affect on these earth bodies, expected timing and magnitude would follow those of the 

equilibrium theory (Arabelos et al., 2003).  Figure 7 shows well water level responding to 

influence from earth tides (Kaczmarek, 2007).  The well penetrates a confined aquifer in 

central Montana (Kaczmarek, 2007).  The tidal data shown in the figure were collected at 

six-minute intervals at a tidal gauging station of similar latitude in Seattle, Washington 

and then was corrected to Mountain Time Zone (Kaczmarek, 2007).  Earth tides cause 

pressure changes in semi-elastic solid bodies of some, but not all, confined aquifers 

(Bredehoeft, 1967; Gieske et al., 1985; Hsieh et al., 1987; Fitts, 2002).  These pressure 

changes can cause fluctuations in well water levels.  Rinehart (1972) hypothesized that 

earth tides may cause pressure changes in hydrothermal aquifers as well.  These pressure 

changes would result in fluctuations in discharge at the surface.   
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Figure 7. Well with earth tide effect in central Montana. (Kaczmarek, direct 
correspondence 2007). 
 

Additionally, water-level fluctuations inversely correspond to barometric pressure 

changes in wells penetrating confined aquifers (Jacob, 1940; Clark, 1967; Pascal, 1973; 

Rojstaczer, 1988; Spane, 1999; Rush et al., 2002; Toll et al., 2007); as barometric 

pressure increases, water levels in observation wells decrease.  This inverse relationship 

is observed when water levels are measured while the well cap is off showing the effect 

of barometric pressure directly on the water surface (Kaczmarek, 2007).  With the well 

cap on, water levels can be measured with a downhole pressure transducer.  Because the 

water surface in the well is isolated from the direct effect of atmospheric pressure, the 

pressure transducer may record water levels that directly relate to barometric pressure 

because it will show the effects of atmospheric pressure loading on the aquifer itself 

rather than the effects on well water-surface (Kaczmarek, 2007).  The effect of 
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barometric pressure on confined wells is apparent in Figure 8.  As atmospheric pressure 

drops, a corresponding drop in water level is observed.  The change in water level is due 

to elastic deformation of the aquifer in response to barometric pressure changes.  Figure 8 

shows that as barometric pressure changes, hydrostatic pressure and compressive stress 

on the aquifer also change.   

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Example of a highly barometric efficient aquifer.  (Kaczmarek direct 
correspondence, 2007). 
 

Barometric efficiency of an aquifer is the ratio of change of hydraulic head in an aquifer 

to the change in barometric pressure.  It can be calculated as B = γ dh / dpa where B is 

barometric efficiency, γ is the specific weight of water (density multiplied gravitational 
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acceleration, at 5°C the specific weight of water on Earth is 9807 Nm−3), dh is the 

change in piezometric level, and dpa is the change in atmospheric pressure.  Most 

aquifers showing a response to barometric pressure will have barometric efficiency 

values ranging from 20% to 70%, higher efficiencies are observed in aquifers with a 

greater degree of barometric pressure influence.  Atmospheric pressure forces (dpa) load 

the upper aquifer confining layer, increasing pore water pressure (dpw) and compressive 

stress of the aquifer (dsc) (Figure 9). 

 

 

 

 

 

 

 

 

Figure 9. Distribution of forces at the upper boundary of confined aquifer (from Fitts, 
2002). 
 

Earthquakes have also been shown to effect water-level fluctuations in wells penetrating 

confined aquifers (Vorhis, 1955, 1964).  Compression and expansion of semi-elastic 

confined aquifers caused by the passage of primary seismic waves produce water-level 

fluctuations in wells (Todd, 1980).  Longevity of effects due to earthquakes are generally 

short lived depending on magnitude, but usually last less then 20 minutes (Igarashi, 

1991).  At best, discrete data recorders may only record one or two noticeable water-level 

changes.  Continuous data recorders log the complete effect of earthquakes.  Little is 
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known about the correspondence of earthquake magnitude and location and the 

corresponding effect on water levels in aquifers.  Earthquakes can cause dramatic water-

level changes in wells, but to the influences are not related to location and magnitude of 

the epicenter in a predictable manner (Todd, 1980).  For example, on 27 March 27 1964, 

a large earthquake (8.4 to 8.8 on the Richter scale) near Anchorage, Alaska caused well 

water fluctuations around the world. However, the most dramatic effect was observed in 

South Dakota where water-level changes exceeding 7.0 m in an observation well tapping 

a confined aquifer (Vorhis, 1967).  

 

Precipitation can affect aquifers several ways.  Most aquifers depend on precipitation for 

recharge, which could lead to increases in discharge. However, a commonly overlooked 

effect of precipitation is direct system loading (Sophocleous et al., 2004).  Significant 

weight can be added to the system from a large precipitation event.  Similar to effects 

observed from earth tides and barometric pressure, precipitation loading to the aquifer 

may increase pore-water pressure and compressive stress of the aquifer, resulting in 

increased discharge in flowing springs. 

 

1.5  Hydrothermal Aquifers   

 

Hydrothermal aquifers exist at more than one level in the overall hydrothermal system in 

YNP (Truesdell and Fournier, 1976, White et al., 1988, Fournier, 1989) Truesdell and 

Fournier (1976) suggest a large hydrothermal aquifer may feed local shallow 

hydrothermal aquifers.  The depth of this larger aquifer may lie is approximately 3 ±1 km 
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and is constrained by the volcanic stratigraphy of the Yellowstone Caldera (Truesdell and 

Fournier, 1976).  Thermal aquifers in the hydrothermal system commonly occur in highly 

fractured contact zones between different volcanic strata (Fournier, 1989).  Low 

permeability strata providing confining layers (Fournier, 1989).  Heat from a relatively 

shallow magma source heats the aquifer water further pressurizing the system with 

expanding heat energy (White et al., 1988).  Water rises through fracture networks and 

discharges at the surface.  

 

Many investigations on the chemistry and hydrology of geothermal waters and gasses of 

YNP have taken place ( e.g. Gooch and Whitfield, 1888, Allen and Day (1935), Rowe et 

al. (1973), Thompson et al. (1975), Thompson and Yadaw (1979), Fournier (1989), 

Norton et al., (1989), Fournier et al. (1994), Thompson and Demonge (1996), Friedman 

and Norton (2000)).  Recently, Ingebretson et al. (2001) reported temporal variations in 

hydrothermal discharge at several sites in the western United States including sites in 

YNP.  They collected discharge data for several years and used these data along with data 

collected by others (Allen and Day, 1935, Waring, 1965, Norton and Friedman, 1991) to 

find frequencies of hydrothermal discharge and heat flux at each site.  Many sites showed 

strong seasonal frequencies, but few showed long-term trends, and none showed decadal-

scale trends. They analyzed discharge fluctuations using daily average values reported at 

USGS gaging stations and they also analyzed heat discharge variations using Cl 

concentrations.  Data for the Ingebretson et al. (2001) study were compiled from many 

sources (Allen and Day, 1935, Waring, 1965, Norton and Friedman, 1991).  Sampling 

frequency for Cl concentrations was weekly, limiting the analysis to seasonal or longer 
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periods.  Responses to major regional tectonic events, such as earthquakes or 

inflation/deflation cycles, were analyzed by visually analyzing Cl-flux data to check for 

anomalies before and after a major event.  From this analysis, they determined that 

relative steadiness of the Cl flux in the major YNP streams since 1966 shows that the 

overall hydrothermal system shows little to no response from major regional tectonic 

events.   

 

A study by Husen et al. (2004) suggested a 2002 Alaskan earthquake (magnitude 7.9 on 

the Richter scale) caused changes in YNP geyser eruption timing and frequency.  They 

suggested that dynamic stress on the hydrothermal system may induce changes in 

permeability of aquifer material.  The dynamic system-wide stress caused by the passage 

of surface waves from the Denali earthquake opened existing fractures that were 

previously obstructed with mineral precipitates thereby changing the geyser activity.  

They also suggested that redistribution of hydrothermal fluids and locally greater pore 

pressures trigged several smaller magnitude local earthquakes further propagating the 

effects on the local hydrothermal system.  In their study, they monitored eruption times of 

22 geysers by placing temperature sensors in runoff channels.  Of the 22 monitored 

geysers, eight displayed statistically significant changes in their eruption timing 

 

Variations in geyser eruptive cycles have been suggested to be influenced by seismic 

activity, earth tides, and/or barometric pressure changes (White, 1967; Rinehart, 1972; 

Marler and White, 1977; Hutchinson, 1985; Silver and Vallette-Silver, 1992; Streepey, 

1996; Ingebritsen et al., 1996). However, a recent study by Ingebritsen et al. (2001 
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showed that changes in geyser eruption timing are much less sensitive to elastic 

deformation than previously hypothesized.  In their study of geysers in the upper geyser 

basin of YNP, Ingebritsen et al. (2001) found no identifiable influences of earth tides or 

seismicity, and only minor influences from barometric-pressure changes of 5 mBars (500 

Pa) or greater.  Using a computer program called HYDROTHERM, they developed 

multiphase geothermal-simulation models to solve finite-difference approximations.  By 

simulating different aspects of geyser systems, they were able to reproduce observed 

changes in eruption cycles.  As an example, by altering conduit area and holding basal 

heat input constant, they were able to simulate a given change in eruption timing.  They 

suggested that variations in geyser periodicity may be governed by the internal dynamics 

of geysers rather than external influences.  In their study, they found that variations in 

eruption interval were significantly influenced by neighboring and distant geysers.  Every 

geyser monitored was influenced by at least one other geyser.  They suggested that these 

relationships indicate that the reservoir(s) supplying water to the geysers are generally 

connected by highly permeable pathways.   



 24

2.0  Description of Study Site 

 

Streams dominantly fed by hot springs were selected for study.  Streams influenced 

heavily by shallow non-thermal aquifers were not selected because they would not 

provide an accurate measure of hydrothermal discharge.   Rabbit Creek and White Creek 

are two streams dominantly recharged by hot springs in Yellowstone National Park 

(Figure 10).  Discharge data were also analyzed for Tantalus Creek, which drains the 

Norris Geyser Basin, Yellowstone National Park (Figure 10) even though the stream does 

have some geysers in its drainage.  Tantalus Creek is composed entirely of thermal 

discharge from the Norris Geyser Basin.   

 

 

 

 

 

 

 

 

 

 

 

Figure 10.  Yellowstone National Park Site Map (NPS, 2006) 
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2.1  Rabbit Creek 

 

Rabbit Creek (UTM 44.516610° -110.819469°), approximately 6.3 km north of the Old 

Faithful Geyser Basin in the Upper Geyser Basin of YNP, drains a small basin of 

approximately 3.5 km2 (Figure 11).  The basin is roughly 2,225 m (7,300 ft) above sea 

level.  Water input to Rabbit Creek comes primarily from discharging hot springs 

draining one or more hydrothermal aquifers. Four hot spring clusters occur in the basin. 

The western and central clusters are aligned east-west, while the other two clusters are 

aligned northwest-southeast (Figure 12).  In total, Rabbit Creek flows for approximately 

2 km from scattered hot springs sources to the confluence with the Firehole River in a 

general east west direction.  The study site for Rabbit Creek was located approximately 

1.5 km upstream from the confluence (Figures 12). 

 

The Rabbit Creek basin lies within the most recent Yellowstone Caldera (caldera III) 

which in this area overlaps caldera I.  A research drill hole, Y-5, (1967) was drilled in the 

southwest portion of the basin to a depth of 166 m (White et al., 1975; Keith et al., 1978) 

(Figures 11, 12).   Glacial deposits of approximately five meters consisting of sand, 

gravel and silica precipitates, cover an extensive volcanic stratigraphy (Figure 13).  

Volcanic layers comprising the youngest breccia layer are encountered at depths between 

5 and 10 m.  Underlying the volcanic breccia, the Lava Creek Tuff extends from 10 m to 

below the deepest drilled depth of 166 m. The Lava Creek Tuff is densely-welded 

vitrified tuff.   Hydrothermal fluid was encountered throughout drilling. However an 

abrupt rise in pressure was encountered at 74 m, which was interpreted by White et al. 
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(1975), as the presence of a major aquifer at this depth.  Water pressure measured 

throughout drilling placed the static water level for the aquifer well above ground level, 

meaning water is confined and pressurized confirming that the aquifer is confined (White 

et al., 1975).   

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
Figure 11.  White Creek and Rabbit Creek with location of research well Y-2 and Y-5 
(NPS, 1998). 
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Figure 12.   Rabbit Creek Basin withlocation of research well Y-5 (NPS, 1998). 
 
Figure 13. Stratigraphy of 
Research hole Y-5 and Y-2. 
(White et al., 1975) 
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2.2  White Creek 

 

White Creek (UTM 44.534139°, -110.799134°) is located in the Lower Geyser Basin of 

YNP and is approximately 2.5 km north-northeast of Rabbit Creek (Figure 11). White 

Creek drains a basin that is roughly 2,225 m (7,300 ft) asl (Figure 14).  The basin is 

approximately 7 km2 and is longer then it is wide (Figure 14).   The primary source input 

is hot springs discharge, although there is a small but unquantified cold-water input above 

the highest hot spring that mixes with the thermal water (Gibson, 1999).  In total, White 

Creek flows for approximately 4.8 km from the source to the confluence with the 

Firehole River.  The study site for White Creek was located approximately 240 m 

upstream from Firehole Lake Drive (Figure 14).   

 

Research drill hole, Y-2 (1967) is located near Hot Lake, a small hot lake approximately 

1.25 km to the northeast of White Creek (Bargar and Beeson, 1980) and is the closest 

well to White Creek (Figure 11). Although it is 1.25 km to the northeast, it is the nearest 

location of known stratigraphy as to interpret what may exist beneath White Creek.  The 

well was drilled to a depth of 157.4 m and plugged with cement and abandoned shortly 

thereafter (Figure 14).  The upper 10.2 m comprises siliceous-sinter interbedded with thin 

layers of travertine.  Deposits from the Pinedale Glaciation are observed from 10.2 to 

31.7 m (Waldrop and Pierce, 1975).  Rounded clasts of volcanic debris are included in 

the glacial deposits (Bargar and Beeson, 1981).  Volcanic rhyolite from the Elephant 

Back flow dominated between 31.7 and 122.8 m (Christiansen and Blank, 1974; White et 

al., 1975).  Mallard Lake (Third Caldera Cycle) rhyolite occurred between 122.8 and 
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157.4 m at the bottom of the borehole (White et al., 1975).  The deepest rocks were dated 

at 150 ka using the K-Ar dating technique (Obradovich and Christiansen, USGS, unpub. 

data 1973). 

 

While drilling, water was encountered at a depth of one meter, however hot water was 

not encountered until approximately 40.8 m in Y-2 (White et al., 1975), and a distinct rise 

in water pressure occurred at 107 m.  White et al. (1975) speculated that this hot water is 

likely just up-flowing thermal water rising through fractures from a larger confined 

aquifer but did not assign this to a confined hydrothermal aquifer because water pressure 

of the aquifer was assumed to be much greater then what was encountered during 

drilling.  However the occurrence of static water levels of 20 m above ground surface 

from this over-pressured hot water suggests a confined aquifer.   



 30

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. White Creek Basin (NPS, 1998) 
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2.3  Tantalus Creek 

 

Tantalus Creek (UTM 44.733044°, -110.713617°) is hydrothermal in origin and drains 

Norris Geyser Basin, which is approximately 3.34 square kilometers (1.29 square miles) 

at an elevation of 2,273 m (7,460 feet) asl (White et al., 1988) (Figure 10,15).  The 

stream is continuously monitored by a gaged weir box located about 100 m above the 

streams confluence with the Gibbon River.  Data (gage height, discharge, precipitation, 

and water temperature) are available on the USGS website (http://waterdata.usgs. 

gov/nwis/uv?06036940). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 15. 
Norris Geyser 
Basin and 
Tantalus Creek 
USGS Gaging 
Station (NPS, 
1998). 
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Norris Geyser Basin is located at the intersection of several large faults, which produce 

numerous thermal features (White et al., 1988) (Figure 2.).  One major fault runs south 

from the Mammoth Hot Springs area and crosses another running from the Hebgen Lake 

area (White et al., 1988).  This major fault intersection further adds to the area’s 

hydrothermal potential by creating a complex fracture network (White et al., 1988).  The 

waters of Norris Geyser Basin are alkaline chloride-type waters with high concentrations 

of Na and K (Table 3.) (White et al., 1975, White et al., 1988, Fournier, 1989), and 

analysis of data suggests the hydrothermal reservoir to be approximately 300°C (Kharaka 

et al., 1990, 1991). 

White et al. (1988) suggest mineral precipitates in the geyser basin (montmorillonite and 

siliceous-sinter) are formed from near neutral pH waters with high concentrations of Cl 

and quartz (SiO2).   

 

Two research wells were drilled in Norris 

geyser basin; Y-9, and Y-12 drilled 

between 1967-68 (Figure 16).  These 

wells followed the Carnegie wells drilled 

between 1929-1930 (drilled by Allen, Day 

and Fenner in 1929-1930 (1935)).  

 
 
 
 
Table 3. Norris Geyser Basin   
Geochemistry (Fourier, 1989). 
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Hole Y-9 was located in the basin in hopes of finding the hottest water in the Park by 

drilling through the thick Lava Creek Tuff.  However, after drilling 250 m, there was no 

evidence that they were even half way through the unit so drilling ceased (White et al., 

1975).  Upwelling hydrothermal fluids prevented delineation of aquifer boundaries.  Y-12 

was completed at 330 m, and encountered similar units to those encountered in Y-9.  At a 

depth of 330 m, 294 m of Lava Creek Tuff had been drilled with no sign of nearing the 

bottom contact of the unit.  Highly permeable ground interpreted to be the hydrothermal 

aquifer was expected at the base of the Lava Creek contact. However the potential of 

uncontrollable fluid pressure forced cessation of drilling.  Static water levels were 75 m 

above land surface (White et al., 1975) indicating the presence of an over-pressured and 

possibly confined aquifer. 

 

 

 

 

 

 

 

 

 

Figure 16.  Research holes Y-9, C-11, Y-12 at Norris Geyser Basin (White et al., 1975). 
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3.0 Methods 

 

Field work for this study was performed between August, 2006 and November, 2006.  

Stream water velocity and depth were measured using a discrete sampling recorder to 

estimate discharge and compared with discrete measurements at the time of deployment. 

Water temperature and GPS locations were taken during deployment.  Additional 

information was provided by permanent U. S. Geological Survey (USGS) weir box 

gaging stations (http://waterdata.usgs.gov/nwis/uv?06036940), National Oceanic and 

Atmospheric Administration (NOAA) weather station (http://www4.ncdc.noaa.gov/cgi-

win/wwcgi.dll?wwDI~StnSrch~StnID~20023004), Utah State University (USU) seismic 

monitoring stations (http://www.seis.utah.edu/), and verified tidal data from Depoe Bay, 

OR (http://tidesandcurrents.noaa.gov/station_info.shtml?stn=9435827+Depoe+Bay+%2C+OR).  

Tidal data from Depoe Bay, OR were selected because the station provides historic 

verified six-minute water level data which could easily be time corrected to Mountain 

Standard Time, and because it lies at similar latitude as our study sites.  Tidal generating 

forces are experienced equally at similar latitudes around the globe, and by finding 

station data at similar latitude a time correction can be made to show at what approximate 

time high and low tidal effects should be observed.   

 

3.1  Field Measurements 

 

Field work started in the summer of 2006 and ended in November 2006.  Discharge was 

measured using a Marsh McBierney (Loveland, CO) FloDar unit, which measures 
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velocity using radar, measures water depth using ultrasound, and calculates flow rate 

using a simply continuity equation of volume multiplied by velocity equals flow rate with 

an error of ±5% (FloDar, 2006).  It also gives the user an option to multiply the flow by 

some factor determined from channel shape and roughness.  Given an average flow rate 

at Rabbit Creek of 0.0857 m3/s (3.03 cfs) during the study time, the FloDar could 

accurately measure changes in flow with a precision of ± 0.00428 m3/s (0.151 cfs).  At 

White Creek the average flow rate was 0.117 m3/s (4.12 cfs) meaning the FloDar could 

accurately measure changes in flow with a precision of ± 0.00583 m3/s (0.206 cfs).  

FloDar data were recorded using a data logger connected to the monitoring unit.  Data 

were transferred from the data logger to a laptop computer.  The FloDar can operate at a 

water depth precision of ± 0.635 cm under subaerial or submerged conditions, at air or 

water temperatures between -10ْْ C (14ْْ F) to 52ْْ C (125ْْF) and in water depths between 

0.634 cm to 569 cm. Further, it measures discharges between 0.0210 to 0.566 m3/s, 

velocity changes of 0.5% with an error of ±0.03 m/s, and level changes of 1% with an 

error of ±0.64 cm (Flo-Dar, 2006).  Factory calibration and a new internal lithium battery 

were installed in September of 2006.  Initially the FloDar was deployed at Rabbit Creek, 

YNP, and was set to sample discharge (cfs later converted to m3/s, 1.00 cubic foot/second 

= 0.0283 cubic meter/second) and water height (inches, later converted to centimeters, 

1.00 in. = 2.54 cm.) every 15 minutes for 15 days.  Discharge of Rabbit Creek was 

measured between October 13th, 2006 and October 29th, 2006.  Discharge of White Creek 

was measured between October 29th and November 11th.  Flow data for Tantalus Creek 

were downloaded for the time period of September 9th, 2006 to October 10th, 2006 

(http://waterdata.usgs.gov/nwis/uv?06036940).   The 15-minute sample interval was 
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originally selected for several reasons.  A physical constraint to our data collection was 

the FloDar’s level of precision which allowed us to accurately measure any changes in 

hot springs discharge greater then 5%.  Hypothesized factors that could be analyzed using 

the spectral analyses (tides, barometric pressure, heating cycles) were expected to vary on 

at a time interval of hours to days.  Although heating cycles in the confined aquifer may 

force discharge of thermal water at higher frequencies, these discharge changes must be 

greater then 5% of the average flow in order to be accurately measured by the FloDar.  

Conceptually, it was suspected that major discharge changes greater then 5% of the 

average stream flow rate were absent in short time periods.  Therefore sampling at a finer 

scale then 15 minutes was thought to be unnecessary.  Spectral analysis of discrete data at 

a 15-minute sample interval can illuminate time patterns of 30 minutes or more according 

to the Nyquist-Shannon sampling theorem and would, therefore, be adequate for 

determination of tidal and barometric effects.  The Nyquist-Shannon sampling theorem 

(discussed further in methods 3.2b) states that in order to accurately determine time 

patterns, the sample interval must be two times greater then the shortest time pattern in 

the continuous period.  Another reason for originally selecting a 15-minute sample 

interval was that reported values for the Tantalus Creek gaging station are given at a 15-

minute interval, so our 15-minute sample interval would allow direct comparison.  

Finally, we selected a 15-minute sample interval to optimize battery power over the two-

week period.  Weak, or dead batteries found at the end of the study period could have 

compromised the entire data set.  For this reason, the FloDar recorded battery power for 

each sample.   
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In the field, the FloDar hung over the center-most portion of the stream from a survey 

tripod using an adjustable rock climber’s grade-spectra sling (Figure 17).  The devise was 

leveled and locked in place as securely as possible.  A long data cable connected the 

FloDar and the data logger.  The data logger was labeled, sealed, and secured under a 

large log to camouflage it and secure it from any large curious mammals (LNT brochure, 

2005).  The cable was threaded through a 2 ½” flexible, black, PVC pipe to prevent 

damage from rodents and coyotes (Figure 17). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.  FloDar set up at Rabbit Creek 5 gallon storage tote for scale.  Photo by Jacob 
Mohrmann, 2006 
 
Field measurements including water temperature, air temperature, and barometric 

pressure were taken during deployment and retrieval for quality assurance including real-
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time measurements from the FloDar to check for proper function.  Water and air 

temperature measurements were taken using a Fluke 51 II thermometer. 

 

3.2  Methods of Data Analysis  

 

Data were analyzed using two methods: (1) visual or graphical representation of data and 

(2) analytical spectral analysis or a time-series frequency analysis to interpret data.  

 

Two spectral analyses of each dataset were completed.  Each used a fast Fourier 

transform (FFT) algorithm to complete a discrete Fourier transform (DFT) of each 

discrete data set (described further in 3.2 B.).  Appendices A and B contain a detailed 

description of the steps used to analyze the data. 

 

3.2 A.  Graphical Analysis 

 

Graphical analysis of data was done with one objective in mind, to visualize fluctuations 

in water discharge and compare those fluctuations with barometric pressure changes, 

earthquake occurrence, and rainfall events.  Graphs were created that displayed stream 

discharge, observed tides from Depoe Bay corrected to Mountain Time zone, barometric 

pressure, precipitation, and earthquake occurrence.  All data used are in electronic 

appendix (attached CD).  Stream flow data were from FloDar measurements at Rabbit 

and White Creeks or from the USGS gaging station at Tantalus Creek 

(http://waterdata.usgs.gov/nwis/uv?06036940). Tidal data were from measured ocean 
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tides at the Depoe Bay, Oregon NOAA station due to its similar latitude to our test sites. 

(http://tidesandcurrents.noaa.gov/station_info.shtml?stn=9435827+Depoe+Bay+%2C+OR).  

Barometric pressure data from Norris Geyser Basin were provided by Dr. Henry Heasler 

(Yellowstone Center for Resources, NPS).  Precipitation values came from Old Faithful, 

YNP, NOAA monitoring station (http://www4.ncdc.noaa.gov/cgi-

win/wwcgi.dll?wwDI~StnSrch~StnID~20023004).  Earthquake data were from the 

University of Utah’s seismic monitoring program (http://www.seis.utah.edu/).   

 

Static visualization is a commonly used tool when trying to understand overall trends and 

general relationships between data items (Card, 1999, Kaki, 2000, Ingebretsen, 2001).  

For this study, graphical representation of data was the only method used to determine a 

correspondence between precipitation and fluctuations in discharge and between 

earthquakes and fluctuations in discharge. 

 

3.2 B.  Spectral Analysis 

 

Microsoft Office Excel 2003 was used for a variety of tasks as was Golden Software’s 

Grapher 5.0.  Bell Laboratories’ R Project for Statistical Computing or simply “R” was 

used as well to perform spectral analysis using a Fast Fourier Transform (FFT).  R was 

also used to graph results of its spectral analysis and to determine statistical significance 

of frequencies found.  
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Spectral analysis refers to an analysis that mathematically evaluates a series of discrete 

sequential numbers to find recurring frequencies (Brigham, 1988).  Two different spectral 

analyses were completed, one using Excel and the other using R, and each method used 

the principle of Fourier transforms (FT’s).  The Fourier transform was named after 

Joseph Fourier, who first introduced the idea of decomposition of a function in terms of a 

sum of sinusoidal base functions, or the functions frequencies (Brigham, 1988).  The 

decomposed function can be pieced back together to find the original function.  This 

process of decomposition and re-composition was originally termed Fourier analysis and 

Fourier synthesis (Stein and Weiss, 1971).  The term Fourier transform refers to the linear 

operator that transforms the original function into coefficients of the sinusoidal base 

function, or its frequencies (Brigham, 1988).  The overall analysis has been called several 

things including: Fourier analysis, harmonic analysis, and spectral analysis (Brigham, 

1988).  The transform has applications in several scientific studies including: signal 

processing, probability theory, statistics, acoustics, oceanography, optics and diffraction 

(Rockmore, 1999).  The Fourier transform can be evaluated for continuous or discrete 

data sets and is commonly evaluated using a computer to compute the continuous or 

discrete Fourier transform (DFT) (Dutt and Rokhlin, 1993, 1995).  Computers are used to 

calculated the DFT using a fast Fourier transform algorithm.  Several algorithms are used 

to the DFT, the most popular being the Cooley-Tukey FFT algorithm (Cooley and Tukey, 

1965).  Each algorithm uses slightly different mathematical formulas and most were 

created for specific applications.  The Cooley-Tukey FFT algorithm is the most popular 

due to its stability and use in multiple applications (Rockmore, 1999).  
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The DFT is defined by the formula:  Xk = N-1ΣN=0 Xne-2πi/N(nk) where Xk is the returned 

complex number, and k is an integer ranging from 0 to N − 1 (Oppenheim et al., 1999). 

The Cooley-Tukey FFT algorithm divides the equation in two at N/2 and first computes 

the DFT for the even discrete-data series numbers em=x2m (x0,x2,…,xn-2) and then the odd 

data series numbers om=x2m+1 (x1,x3,…xn-1).  When combined with the original DFT 

formula we can write M= N/2 and denote the DFT of even-series numbers em by Ej and 

the DFT of odd-series numbers om by Oj  (M=0, … M – 1, j=0, …, M -1) (Oppenheim et 

al., 1999). It then follows:   

 

 

 

When computed the algorithm combines the two results to produce the Fourier transform 

of the whole data sequence.  Because the data is divided and transformed in two pieces 

the algorithm is limited to evaluating N at a power of two.  Results of the computed 

algorithm are complex numbers relating to magnitude of each frequency (1/total 

sampling time).  

 

Because the data sets are not composed of continuous samples but rather discrete 

samples, the Nyquist-Shannon sampling theorem must be considered.  The theorem states 

that uniformly spaced, discrete samples are a complete representation of the signal if its 

bandwidth is less than half the sampling rate (Shannon, 1949).  The bandwidth (B) is a 

measure of the frequency range of a sample (fs) (Shannon, 1949).  The theorem states that 

in order to accurately represent the continuous time signal, the sampling frequency must 
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be greater than twice the signal bandwidth (fs > 2B) (Shannon, 1949).  The Whittaker-

Shannon interpolation formula states that under certain limiting conditions, a function 

(x(t)) can be reconstructed exactly from its samples (x[n]= x(nT)), by the formula 

(Whittaker , 1915):    

 

Where T=1/fs is the sampling interval, fs is the sampling rate, and sinc(x) is the 

normalized sinc function ( ).  Some degree of error in the 

reconstruction process is inevitable as it, in theory, requires summing an infinite number 

of terms, however we are limited to a finite number of terms (Marks, 1991).  Some 

approximation is necessary.  Error introduced in the approximation is referred to as 

interpolation error (Marks, 1991).  Also, a signal that is temporally limited can never be 

fully bandlimited or reconstructed to be exactly that of the original signal (Marks, 1991).  

Error introduced from bandlimiting is termed aliasing (Marks, 1991).  If under sampling 

occurs (fs < 2B) some frequencies may overlap.  The overlapped frequencies will create 

an aliased signal of the same frequency but with different phase and amplitude (Marks, 

1991).  If aliased signals are present in our data analysis, statistically significant 

frequencies found may actually be a result of higher frequencies occurring at less then 

two times our sampling interval of 15 minutes.   

 

Two methods can be used to avoid aliasing, first increasing the sampling rate to above 

twice the highest frequency, or second introduce anti-aliasing filters in the sampling 

process to restrict any undesirable frequencies (Venkataramani, 2000).  Anti-aliasing is 
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the process of removing signals with higher frequencies than can be properly recorded by 

the recording device, in our case, the FloDar (Venkataramani, 2000).  Generally anti-

aliasing filters used to restrict undesirable frequencies are used in applications such as 

optics and harmonics, however for spectral analysis increasing the sampling rate is 

typically the only anti-aliasing method used (Venkataramani, 2000).  The removal of 

unwanted frequencies is done before sampling at a lower resolution.  If it is not done, 

under sampling may cause undesirable results. 

 

A statistical signal processor was used to eliminate some noise in the results of our 

spectral analysis in order to magnify important frequencies.  The statistical signal 

processor used in this study was a running average smoothing technique in the R program 

(Appendix B).  The technique was used to smooth data using a running average of results 

of the Fourier transform.  R was also used for calculation of statistical significance of 

frequencies (Appendix B).  The smoothing filter minimizes noise that has corrupted 

signals, but does make an assumption that the signals are stochastic processes with 

known spectral characteristics.  Figure 18 shows two graphed results of the spectral 

analysis using R.  The first graph is the raw output data plotted, while the second is the 

data smoothed using the running average kernel command “daniell” (Shumway, 2006). 
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Figure 18. Example of smoothing technique to minimize noise in the frequency analysis. 
A is original output graph and B. is the graph with data that have been smoothed with the 
“daniel” kernel. 
 

The “daniell” command uses the following formula beginning at time t = 0:  

so = xo        st = αxt + (1 - α ) st – 1         where s = output of the smoothing algorithm, x = 

the raw data sequence, and α is the smoothing factor and 0 < α < 1  (Shumway, 2006).  

The smoothing technique assumes the analyzed processes are random, and therefore, 

even though starting, ending, and midpoints are known, there are more possible outcomes 

that may occur, but that certain outcomes are more probable than others.  Maintaining 

this assumption and using the program R, we were able to identify whether or not certain 

peaks were statistically significant results of the Fourier transform with 95% confidence.  

 

Both R and Excel use the Cooley-Tukey FFT algorithm to compute the discrete Fourier 

transform (DFT). However, R completes the operation with fewer steps by the user.  R is 
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a Linux based program and operates by commands entered by the user.  With the proper 

command string, R is able to process a large amount of data, display the numeric 

transformed results, and graph these results all in a single step almost instantaneously.  

Statistical significance and data smoothing can also be calculated quickly.  The biggest 

limitation to the program is the patience and accuracy of the user, as long strings of 

command are required to complete certain operations.  (Please refer to Appendix B. for 

detailed description of how R was used).   

 

The Fourier Transform used by Excel takes a sequence of linear discrete numbers and 

returns a complex number and its inverse for each number in the sequence.  These 

complex numbers correspond to each frequency interval (fs) in the period (T). fs = 1/T 

The complex number (ni) returned from the Excel FT function must be normalized and 

assigned a power: the normalized number = ni * 1/N,  where N is the total number of 

samples  (Shumway, 2006).   

 

The power is assigned to better reflect the relative contribution of each frequency.  

Higher powers represent more significant frequencies.  The power is determined by 

taking the absolute value of normalized numbers and multiplying this by the square root 

of 2.  The power is then graphed against its corresponding frequency to visualize 

frequency distribution.  (Appendix A).   

 

The Cooley-Tukey FFT algorithm computes the DFT exactly (Welch, 1969), so no 

additional error is introduced into the analysis beyond that which is present from the 
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physical constraints of our measuring devise, the FloDar.  Given that our sampling period 

of 15 minutes (900 seconds) in a total analyzed time of 15,360 minutes (921600 seconds), 

each frequency interval (fs) in the total period (T) becomes 1.085069 *10-6 Hz ( Hz is 1 fs 

per second) from the equation (fs = 1/T). 
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4.0  Results and Interpretation 

 

4.1 Graphical Analysis 

 

Graphical analyses of datasets were done with the goal of visualizing changes in each 

dataset and visually inspecting plotted data to see if any correspondences exist.  Graphs 

of data for Rabbit Creek revealed no correspondence between changes in flow and 

changes in precipitation or barometric pressure (Figure 19).  Comparing plotted tidal 

records to changes in flow also showed no correspondence.  Further, earthquakes did not 

appear to influence changes in flow (Figure 19). 

 

Graphed data for White Creek did not show a correspondence between changes in flow 

and earthquakes, or precipitation over the entire sampling period (Figure 20, 21).  

However, a correspondence appears between flow changes and barometric pressure 

changes for certain narrow time periods (Figure 21). Nevertheless, the correspondence is 

absent for the majority of the test period (Figure 20).  Tidal records showed no 

correspondence with flow changes at White Creek. 

 

The Tantalus Creek hydrograph did not appear to respond to precipitation events or 

earthquakes (Figure 22).  Changes in barometric pressure corresponded to fluctuations in 

discharge (Figure 23).  Tidal records did not correspond to changes in flow at Tantalus 

Creek. 
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These graphs were created to visualize correspondence of indicators of hypothesized 

controls and observed fluctuations in discharge. However with the exception of Tantalus 

Creek discharge and barometric pressure changes, graphical analysis proved to be too 

simplistic to understand what controls hydrothermal discharge.  A spectral analysis was 

the next step in understanding what controls discharge. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 19.   Visual representation Rabbit Creek hydrograph, flow rate, marine tide at 
Depot Bay, barometric pressure, precipitation and local earthquakes as a function of time 
over three days. Flow error at Rabbit creek is ±4.28 x 10-3 cms, which is below the 
resolution of the graph. 
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Figure 20.   Full hydrograph record of White Creek. Datasets included on separate Y-
axes:  Flow rate, tides, barometric pressure, precipitation and earthquakes.  Each set 
shares the same x-axis of time in date format. Flow margin of error at White creek is 
±5.83 x 10-3 cms 
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Figure 21.   Short record hydrograph of White Creek.  Datasets included on separate 
Y-axes:  Flow rate, tides, barometric pressure, precipitation and earthquakes.  Each set 
shares the same x-axis of time in date format. Flow margin of error at White Creek is 
±5.83 x 10-3 cms 
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Figure 22.   Tantalus Creek Full Record Hydrograph. Datasets included on separate Y-
axes:  Flow rate, tides, barometric pressure, precipitation and earthquakes.  Each set 
shares the same x-axis of time in date format.  
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Figure 23.   Tantalus Creek short record hydrograph. Datasets included on separate Y-
axes:  Flow rate, tides, barometric pressure, precipitation and earthquakes.  Each set 
shares the same x-axis of time in date format 
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4.2  Spectral Analysis 
 

Spectral analyses of datasets were done with the goal of determining frequencies in 

discrete data sets.  Comparisons between similar frequencies found in datasets would 

help support or refute our hypothesized controls on hydrothermal discharge, but not 

provide absolute causal proof of controls based on this limited test of our hypotheses. 

 

Total error at the end of the spectral analysis can be defined as the sum of data collection 

error, and interpolation error, or error introduced in the data analysis.  Initially, an error 

of 5% was introduced by our data collection device, the FloDar.  Error introduced by the 

FloDar resulted from calculation of flow, or the volume of water per time that passed a 

specific point in the stream.  Some additional error is introduced in the spectral analysis 

process and is called interpolation error (Makrs, 1991).  Each frequency interval (fs) is 

calculated from the equation fs = 1/T where T is the total sampling time.  Given that our 

total sampling time (T) was 15,360 minutes (921600 seconds), each frequency interval 

(fs) was equal to 921600-1 or 1.085069 *10-6 Hz (Hz is 1 fs per second).  Recall that the 

first step of the spectral analysis is to use the Cooley-Tukey FFT algorithm to computer 

the Discrete Fourier Transform (DFT).  This step essentially takes the discrete dataset and 

outputs a non-real number that represents magnitude of each frequency interval.  

Frequency intervals start with the longest frequency of 1.085069 *10-6 Hz and add to that 

another frequency interval of 1.085069 *10-6 Hz, then another interval of 1.085069 *10-6 

Hz, and so on until the number of frequency intervals is equal to ½ of the total number of 

samples.  Recall the frequency of 1.085069 *10-6 Hz is equal to 921600 seconds 

(1.085069 *10-6 Hz-1), by adding an additional frequency interval of 1.085069 *10-6 Hz, 
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that frequency then becomes 2.17014 *10-6 Hz and is equal to 460800 seconds, a 

difference of 460800 minutes or 5.3 days.  Meanings, when the DFT was computed, and 

frequencies were assigned magnitudes, any trends occurring ½ way between each 

frequency are grouped to the closest frequency.  The error between those two smallest 

frequencies then becomes 2.67 days.  As the frequency intervals near the largest point, 

error becomes smaller.  For example the difference between the frequency intervals 

1.1002*10-3 Hz (908.88 seconds) and 1.1013*10-3 Hz (907.98 seconds) is 0.9 seconds, or 

an error of 0.45 seconds between those intervals. 

 

Spectral analysis in Rabbit Creek showed major changes in discharge with periods of 2.1 

days and 8.5 hours (Table 4, Figure 24).  Spectral analysis of tidal records from Depot 

Bay showed patterns with periods of 22.8 hours and 12.1 hours (Table 4, Figure 25).  

Spectral analysis of barometric pressure showed a pattern with a period of 7.1 days 

(Table 4, Figure 26).  Error for major changes in discharge periods was ±5.3 hours at the 

2.1 day period, and ±8.5 minutes at the 8.5 hour period. Error for observed tides was 

±1.28 hour at the 22.8 hour period and ±21.3 minutes at the 12.1 hour period.  Error for 

barometric pressure was ±2.97 days at the 7.1 days period. 

 

Excel spectral analysis in White Creek revealed patterns of changes in discharge at 7.1 

days, 23.3 hours, 8.5 hours, and 3.3 hours (Table 4, Figure 27).  Analyzing tidal records 

revealed patterns at 23.3 hours and 12.8 hours (Table 4, Figure 28).  Barometric pressure 

analysis revealed only one pattern, at 7.1 days (Table 4, Figure 29).  Error for major 

changes in discharge periods was ±2.97 days at the 7.1 days period, ± 64 minutes at the 
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23.3 hour period, and ±8.5 minutes at the 8.5 hour period. Error for observed tides was 

±1.28 hour at the 23.3 hour period and ±21.4 minutes at the 12.8 hour period.  Error for 

barometric pressure was ±2.97 days at the 7.1 days period. 

 

Excel spectral analysis in Tantalus Creek revealed only one pattern of change in 

discharge at 5.3 days (Table 4, Figure 30).  Analyzing tidal records revealed patterns at 

24.1 hours and 12.5 hours (Table 4, Figure 31).  Barometric pressure analysis revealed 

only one pattern, at 5.3 days (Table 4, Figure 32).  Error for major changes in discharge 

periods was ±1.78 days at the 5.3 day period. Error for observed tides was ±64 minutes   

at the 24.1 hour period and ±17.4 minutes at the 12.5 hour period.  Error for barometric 

pressure was ±1.78 days at the 5.3 days period. 

 

Many peaks appear that are not discussed.  By visual determination, the strongest peaks 

in each analysis were chosen.  Using the Excel method, there was not a convenient way 

to calculate statistical significance of each frequency observed, or to statistically smooth 

the data.  A smoothing technique and statistical significance calculation was performed 

using the ‘R’ method. 

Excel Spectral Analysis Results 
      
  Rabbit Creek White Creek Tantalus Creek 
Dates Analyzed  10/13-10/29/06 10/29-11/10/06 9/9-10/10/06 
        
Significant Discharge Patterns 2.13 days; 8.53 hours 3.6 days; 23.3 hours 5.3 days 
    8.53 hours; 3.3 hours   

Significant Earth Tide Patterns 
22.76 hours; 
12.05 hours 

23.3 hours; 
12.8 hours 

25.6 hours; 
12.8 hours 

        
Significant Barometric Pressure Patterns 5.3 days 5.3 days 5.3 days 
 
Table 4. Results of Excel Spectral Analysis.   
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Figure 24. Rabbit Creek Excel spectral analysis of discharge. 
 

 

 

 

 

 
 
 
 
 
 
 



 57

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 25. Excel spectral analysis of Depoe Bay observed tides during the Rabbit 
Creek test period. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 26. Excel spectral analysis of barometric pressure during the Rabbit Creek test 
period. 
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Figure 27. White Creek Excel spectral analysis of discharge. 
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Figure 28. Excel spectral analysis of Depoe Bay observed tides during White Creek 
study period. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 29. Excel spectral analysis of barometric pressure during White Creek study 
period. 
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Figure 30. Tantalus Creek Excel spectral analysis of discharge.
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Figure 31. Excel spectral analysis of Depoe Bay observed tides during Tantalus 
Creek study period. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 32. Tantalus Creek Excel spectral analysis of barometric pressure during 
Tantalus Creek study period. 
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A second spectral analysis was performed using R in order to boost confidence of results 

attained through the Excel.  R proved to be much quicker, yet similar results were 

achieved negating a need for further methods. 

 

R is a Linux based program and requires the user to input command codes in order to 

process data, create graphs, or to perform any of the other things it is capable of.  Recall 

the sampling frequency (fs) is equal to 1/total time, and the magnitude is calculated from 

the DFT (described in Methods 3.2a).  Periods of significant frequencies has been 

calculated (fs x total time = period) and is displayed on each graph.  R was also used to 

find statistical significance of frequencies.  Using the commands “U=qchisq(0.0125,df); 

L=qchisq(1-0.0125,df) (.0125 relates to our confidence interval of 95%)”  we are able to 

calculate statistical significance with 95% confidence (Broman, 2006).  Data smoothing 

was done once using the “daniel” command at a 95% confidence interval (described in 

Methods 3.2b).  Observed tide data, and barometric pressure data were not smoothed due 

to the limited variability in the output data.   

 

R’s spectral analysis in Rabbit Creek revealed patterns of changes in discharge at 2.1 

days and 8.5 hours (Table 5, Figure 33).  Analyzing tidal records revealed patterns at 22.8 

hours and 12.1 hours (Table 5, Figure 34).  Barometric pressure analysis revealed only 

one pattern, at 4 days (Table 5, Figure 35).  Error for major changes in discharge periods 

was ±5.3 hours at the 2.1 day period, and ±8.5 minutes at the 8.5 hour period. Error for 

observed tides was ±1.28 hour at the 22.8 hour period and ±21.3 minutes at the 12.1 hour 

period.  Error for barometric pressure was ±1.4 days at the 4 day period. 
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R’s spectral analysis in White Creek revealed significant patterns of changes in discharge 

at 3.6 days, 23.3 hours, 8.5 hours, and 3.3 hours (Table 5, Figure 36).  Analyzing tidal 

records revealed patterns at 22.8 hours and 12.8 hours (Table 5, Figure 37).  Barometric 

pressure analysis revealed only one pattern, at 5.3 days (Table 5, Figure 38).  Error for 

major changes in discharge periods was ±16 hours at the 3.6 day period, ± 64 minutes at 

the 23.3 hour period, ±8.5 minutes at the 8.5 hour period, and ±1.3 minutes for the 3.3 

hour period. Error for observed tides was ±1.28 hour at the 22.8 hour period and ±21.4 

minutes at the 12.8 hour period.  Error for barometric pressure was ±1.78 days at the 5.3 

day period. 

 

R’s spectral analysis in Tantalus Creek revealed one significant patterns of changes in 

discharge at 5.3 days (Table 5, Figure 39).  Analyzing tidal records revealed patterns at 

25.6 hours and 12.8 hours (Table 5, Figure 40).  Barometric pressure analysis revealed 

only one pattern, at 5.3 days (Table 5, Figure 41).  Error for major changes in discharge 

periods was ±1.78 days at the 5.3 day period. Error for observed tides was ±1 hour 9 

minutes at the 25.6 hour period and ±17.4 minutes at the 12.8 hour period.  Error for 

barometric pressure was ±1.78 days at the 5.3 days period. 
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R Spectral Analysis Results 
      
  Rabbit Creek White Creek Tantalus Creek 
Dates Analyzed  10/13-10/29/06 10/29-11/10/06 9/9-10/10/06 
        

Significant Discharge Patterns 
2.1 days; 8.5 
hours 3.6 days; 23.3 hours 5.3 days 

 (95% confidence)   8.5 hours; 3.3 hours   

Significant Tide Patterns 
22.8 hours; 12.1 
hours 

22.8 hours; 12.8 
hours 

25.6 hours; 12.8 
hours 

 (95% confidence)       
Significant Barometric Pressure Patterns 
(95% confidence) 4 days 5.3 days 5.3 days 

 
Table 5.   Results of R Spectral Analysis.   
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Figure 33. Rabbit Creek “R” Spectral Analysis of Discharge. Dashed vertical lines 
represent frequencies determined to be statistically significant.  Horizontal dashed lines 
correspond with statistical significance calculation.   Graph A. is initial graphed output of 
Fourier Transform, while B. is a once smoothed version of graph A. at 95% confidence.   
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Figure 34.  “R” Spectral Analysis of Depoe Bay observed tides during Rabbit Creek 
study period. Dashed vertical lines represent frequencies determined to be statistically 
significant.  Horizontal dashed lines correspond with statistical significance calculation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 35.  “R” Spectral Analysis of barometric pressure from Rabbit Creek study 
period.  Dashed vertical lines represent frequencies determined to be statistically 
significant.  Horizontal dashed lines correspond with statistical significance calculation. 
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Figure 36. White Creek “R” Spectral Analysis of Discharge. Dashed vertical lines 
represent frequencies determined to be statistically significant.  Horizontal dashed lines 
correspond with statistical significance calculation.   Graph A. is initial graphed output of 
Fourier Transform, while B. is a once smoothed version of graph A. at 95% confidence.   
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Figure 37. R” Spectral Analysis of Depoe Bay observed tides during White Creek 
study period. Dashed vertical lines represent frequencies determined to be statistically 
significant.  Horizontal dashed lines correspond with statistical significance calculation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 38. “R” Spectral Analysis of barometric pressure from Rabbit Creek study 
period.  Dashed vertical lines represent frequencies determined to be statistically 
significant.  Horizontal dashed lines correspond with statistical significance calculation. 
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Figure 39. Tantalus Creek “R” Spectral Analysis of Discharge. Dashed vertical lines 
represent frequencies determined to be statistically significant.  Horizontal dashed lines 
correspond with statistical significance calculation.   Graph A. is initial graphed output of 
Fourier Transform, while B. is a once smoothed version of graph A. at 95% confidence.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 40. R” Spectral Analysis of Depoe Bay observed tides during Tantalus Creek 
study period. Dashed vertical lines represent frequencies determined to be statistically 
significant.  Horizontal dashed lines correspond with statistical significance calculation. 
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Figure 41. “R” Spectral Analysis of barometric pressure from Tantalus Creek study 
period.  Dashed vertical lines represent frequencies determined to be statistically 
significant.  Horizontal dashed lines correspond with statistical significance calculation. 
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5.0  Discussion 
 

5.1 Graphical Analysis 

 

Graphical analysis at Rabbit Creek did not show a visual correspondence between 

changes in flow and any of the hypothesized controls.  Precipitation during the study 

period at Rabbit Creek was minimal (Figure 19).  Discharge did not appear to change as a 

result of precipitation (Figure 19). However we cannot state that meteoric recharge does 

not affect discharge; only that in our study with minimal precipitation, we saw no 

noticeable changes in discharge caused by any precipitation event.  No influence from 

earthquakes was observed (Figure 19). However with sample intervals of 15 minutes, if 

an earthquake did affect discharge we most likely missed recording the effect due to the 

short lived nature of earthquakes.  In our study, if earthquakes did affect discharge, the 

effect was not lasting.  Barometric pressure did not affect discharge.  Aquifers have 

varying degrees of barometric efficiencies, or the degree of ability to be elastically 

compressed and contracted due to the effects of barometric pressure.  The barometric 

efficiency of an aquifer is determined by its hydrologic properties (Fetter, 2000), ie. 

porosity, size, physical constraints.  The aquifer feeding springs that discharge to Rabbit 

Creek could either have a very low barometric efficiency, or barometric pressure 

fluctuations during the study time were not powerful enough to cause noticeable 

fluctuations in discharge (Figure 19).  Similarly with earth tides, no noticeable 

correspondence between discharge and tidal stage was observed (Figure 19).  Reasons for 

an apparent lack of influence from earth tides are similar to those of barometric pressure, 

the aquifer is either simply not significantly affected by earth tide forces, or the forces 
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experienced during the test period did not fluctuate greatly enough to cause noticeable 

changes in discharge.  The physical properties of the aquifer such as the aquifers porosity, 

depth, size, could be such that earth tides simply do not provide sufficient pressure 

differentials to cause noticeable changes in discharge. 

 

Similar results were observed at White Creek to those at Rabbit Creek.  Visual 

correspondences were not observed between flow and any of the hypothesized controls 

(Figure 20, 21).  Precipitation, again, was minimal during the study interval, and 

influence from earthquakes, if any, were not lasting.  Effects from both barometric 

pressure and earth tides both were absent visually. 

 

Precipitation did not cause correspond with noticeable fluctuations in discharge in 

graphical analysis of Tantalus Creek data (Figure 22, 23).  However we cannot state that 

meteoric recharge does not affect discharge, only that in our study with minimal 

precipitation, we saw no noticeable changes in discharge due to precipitation.  Changes in 

barometric pressure and fluctuations in flow visually corresponded at Tantalus Creek 

(Figure 23).  Barometric pressure changes inversely corresponded with flow changes.  As 

barometric pressure increased, flow subsided.  As barometric pressure fell, flow 

increased.  The response shows convincing evidence that atmospheric loading on the 

aquifer is causing marked changes in discharge.  This effect observed in hot springs 

discharge appears consistent with that of an open well tapping a confined aquifer.  

Barometric pressure acts directly on water in the well, or in this case, fractures that 

conduct water upwards.  Earth tides, on the other hand, do not show a correspondence to 
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changes in flow.  Thus, although an aquifer may show signs of a barometric pressure 

influence, it does not necessarily mean the aquifer will also show a response to earth 

tides.  The magnitude of barometric pressure forces appears to be great enough to cause a 

noticeable impact on hydrothermal aquifer discharge.  The magnitude of earth tide forces 

appears to be too weak to cause noticeable discharge fluctuations.  Perhaps if the same 

type of study were done during a spring tide event (period when forces of high tide and 

low tide are at their greatest difference), a noticeable correspondence could be seen.  

 

5.2  Spectral Analysis 

 

By comparing results of spectral analysis of flow data, tide data, and barometric pressure 

data, correspondences can be drawn between fluctuation patterns seen in tide and 

barometric pressure and patterns found in flow data.  Similarities found between patterns 

in flow and patterns found in barometric pressure or tides would not prove, but may help 

explain controls on hydrothermal aquifers.  The link from correspondence to correlation 

between signals cannot be made absolutely. However by performing a visual and then, 

statistical analysis of patterns found, we can state with a certain degree of confidence that 

a correlation is likely or unlikely.  Although there is error introduced in data collection 

and analysis (discussed in 4.2 Spectral Analysis Results), each frequency, assigned a 

power by the Fourier Transform, can be statistically determined significant or not.   

 

Before discussing results of the spectral analysis, it is important to first discuss 

restrictions of the analysis.  A major unavoidable restriction was that sample intervals in 
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analyzed data must follow rules of the Nyquist-Shannon sampling theorem.  That is, the 

sample interval (fs) used in each data set was greater then two times the highest frequency 

(B) (fs > 2B) (Shannon, 1949).  Therefore with a sampling interval of 15 minutes, the 

smallest observable time pattern we could correctly identify would be a frequency with a 

period of 30 minutes.  If higher discharge frequencies existed, they would be aliased.  

Aliased frequencies would be shown in the spectral analysis by repeated patterns at even 

frequency intervals.  For example, if a high frequency with a time period of 2 minutes 

were present, we would see a spike in our graph at 30 minutes, 60 minutes, 90 minutes 

and so on, representing the 2 minute pattern.  As our FloDar devise collected data, it 

would not see this 2 minute change in discharge at its first 15 minute sample,  it would 

catch it at 30 minutes, miss it at 45 minutes, catch it at 60, and so on.  Frequencies that 

could be aliased would have a time period at anything less then 30 minutes.  Lower 

frequencies that would be aliased, would be represented by longer time periods.  For 

example, a signal that repeated every 29 minutes would show up as a spike on our graph 

every 7 hours 15 minutes. 

 

The 15-minute sample intervals would be sufficient to capture any affects earth tides may 

have on the hydrothermal aquifers.  The highest tidal frequency (S2) has a time period of 

around 12 hours.  As oversampling does not create a problem in data analysis, the sample 

interval for tides has been well documented and generally accepted that using a two hour 

sample interval is sufficient for earth tide analysis (Ray and Cartwright, 2007).  

Nevertheless, many studies still use a one-hour sample interval, a 45-minute interval, and 

some even use less down to a six-minute time interval (Arabelos et al., 2003; Ray and 
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Cartwright, 2007).  Analyzing six-minute time interval data collected at Depoe bay in this 

study was thought to be more then sufficient to reconstruct a continuous time sample 

from a discrete dataset as described by the Whittaker-Shannon interpolation formula 

(described in methods 3.2). 

 

Barometric pressure analysis can be a bit more complicated as changes in barometric 

pressure are a result of atmospheric trends (Arabelos, 2001).  A one-hour sample interval 

has been accepted as sufficient in order to properly reconstruct the continuous time 

sample from the discrete dataset. However many choose to err on the side of caution and 

sample at a smaller time interval such as 5 minutes (Arabelos, 2001).  Analyzing 

barometric pressure data at a time interval of five minutes was also thought to be 

sufficient to prevent aliasing of a barometric signal.    

 

Rabbit Creek 

 

Spectral analysis of Rabbit Creek flow data revealed statistically significant (confidence 

interval of 95%) time patterns at 2.13 days and at 8.5 hours, neither of which 

corresponded to patterns in tides and barometric pressure.  Assuming sampling intervals 

for tides (Arabelos, et al., 2003, Ray and Cartwright, 2007) and barometric pressure 

(Arabelos, 2001) were sufficient, we would expect to see similar time patterns of 

discharge in analysis of our recorded flow data.  If such influences were present in Rabbit 

Creek, expected time patterns from earth tidal influence would be approximately 12.5 

hours and 23 hours as determined by the spectral analysis of tidal data collected at Depoe 
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Bay during the same time period.  Analysis of barometric pressure data during the Rabbit 

Creek study time revealed that if influence from barometric pressure were present, there 

should be a related time pattern in discharge data at around 4 days.  As these time 

patterns are absent in the discharge data, it appears that neither of these hypothesized 

controls are present at Rabbit Creek.  Statistically significant patterns found may be a 

result of aliased shorter time period patterns. However if earth tides and barometric 

pressure did have an influence on the aquifer, we would still expect to see statistically 

significant patterns at similar time intervals as were found in analysis of those datasets.   

 

White Creek 

 

Spectral analysis of White Creek flow data revealed statistically significant (95 % 

confidence) time patterns at 3.6 days, at 23.3 hours, at 8.5 hours, and at 3.3 hours.  

Statistically significant time patterns revealed in analysis of Depoe Bay observed tides 

were at 23 hours and 12.1 hours.  Analysis of barometric pressure revealed a statistically 

significant time pattern at 5.3 days.  Similar time patters exist at approximately 23 hours 

between stream-flow analysis and in observed tide analysis.  This similarity suggests one 

of two things.  Either there is some influence from earth tides on the aquifers feeding 

White Creek, or this similar time pattern is a coincidence. 

 

White Creek and Rabbit Creek are relatively close geographically; however one major 

difference between the two streams is that White Creek has a small amount of cool, 

shallow ground water (not quantified) input at its source (Gibson, 1999).  Why White 
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Creek may be showing some influence from earth tides while Rabbit Creek does not may 

be due to White’s cool shallow ground water source.  Earth tides may be acting on it, 

creating regular pulses in discharge, while the deeper thermal aquifer is not affected. 

 

The difference between the observed tidal pattern at 23.3 hours and the normal tidal 

period (P1) of 24.07 hours can be explained by the dynamic tidal theory (described in 

section 1.4 confined aquifer controls) where the complexities of the real world ocean tidal 

system often reveal observed timing to be slightly different then hypothesized.   

Tantalus Creek 

 

Spectral analysis of Tantalus Creek flow data revealed one statistically significant (95 % 

confidence) time pattern at 5.3 days.  Observed tide analysis during the Tantalus Creek 

study time revealed time patterns at 12.8 hours and 25.6 hours.  Barometric pressure 

analysis revealed a time patterns at 5.3 days.  The similarity between patterns observed in 

barometric pressure fluctuations and fluctuations in discharge in Tantalus Creek suggest 

that the aquifer discharging to Tantalus Creek may be influenced by barometric pressure.  

This similarity helps to support the hypothesis of a barometric pressure control. However 

this similarity could simply be a coincidence.  The 5.3 days pattern is not an aliased 

signal.  If undersampling and aliasing had occurred, we would see in our spectral analysis 

more then one significant pattern.  For example, if a major pattern occurred every 13 

minutes and our sampling interval was 15 minutes, we may expect to see patterns in our 

analysis at 3 hours 15 minutes, another at 7 hours 30 minutes, another at 10 hours 45 

minutes and so on, every 3 hours and 15 minutes we would catch the 13 minute pattern.  
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Aliased higher frequencies would show patterns at shorter periods.  For example, if a 

pattern in discharge were present every two minutes, we would see major patterns more 

often, at 30 minutes, 60 minutes, 90 minutes, and so on.  Aliased longer frequencies 

would show patterns at longer periods.  For example, if a pattern in discharge were 

present at 29 minutes, we would see major patterns every 7 hours 15 minutes.  Scatter in 

the spectral analysis graph may show some minor aliased signals, however the one major 

frequency observed at Tantalus Creek suggests that no major patterns in discharge were 

aliased.    

 

8.5 hour time pattern at Rabbit and White Creek 

 

Analysis of both Rabbit and White Creek revealed statistically significant (95 % 

confidence) time patterns at 8.5 hours.  This pattern cannot be related to either earth-tide 

influences on the aquifer or to barometric-pressure influences as each influence would 

have shown time patterns of hours to days longer.   

 

If this time period were related to an under sampled shorter time pattern we would expect 

to see similar strength patterns at 4 hours 15 minutes and other strong patterns at longer 

time periods associated with a 17-minute discharge pattern.  As patterns are not seen at 

those times, we can state that the 8.5-hour pattern observed is not a result of an aliased 

signal.   
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The similarity in occurrence at each site suggests the possibility of a connection between 

the sites on some level.  The common time pattern could also be the result of independent 

factors at work in each site, coincidentally causing a similar time pattern.  

 

One explanation might be that this pattern is related to the hot springs discharging into 

each of these streams.  The aquifer(s) feeding the hot springs may be controlled by a 

similar factor.  A shared hydrothermal aquifer convectively heating and discharging fluid 

at surface springs may offer an explanation.  As hydrothermal fluids are heated, they rise 

in plumes and discharge at the surface.  Once the superheated fluids leave the aquifer, 

cooler recharge enters the aquifer, is slowly heated, and begins to become more 

pressurized by the expanding heat 

energy until at about 8.5 hours 

another plume is pushed up through 

fractures to again discharge at the 

surface. 

Table 6. Geochemical data for 
waters of White Creek and Rabbit 
Creek.  Values are averaged from 
seasonal sampling, and from 3 sites 
near the study area. Units are mg/l 
(Gibson, 1999; Vitale, 2002). 
 

If the hot springs discharging into these streams do in fact share the same aquifer, similar 

geochemical compositions of fluid might be expected.  However the only similarities 

observed are that both streams have fairly high pH and show similar values of SO4 (table 

3).  All other measured constituents differ. 
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Variations in Cl and alkalinity (CaCO3) can result from varying degrees of cooling, 

decompressional boiling and mixing with shallow groundwater (Fourier, 1989). The 

geochemical data do not support the hypothesis that a shared aquifer is feeding the two 

sites. However even if the streams share the same source aquifer, geochemistry of the 

waters can vary significantly over a distance of 2.5 km (Fourier, 1989).  As the 

hydrothermal fluids circulate they react with local parent rock to dissolve minerals 

(Fourier, 1989).  Upon reaching the surface, hydrothermal fluids cool and precipitate 

some minerals previously dissolved (Si, CaCO3).  Y-5 and Y-2 drill logs showed that 

stratigraphy in each area does differ, which may also explain some differences observed 

in the geochemical compositions. Y-5 drilled in the Rabbit Creek basin penetrated the 

Lava Creek Tuff while Y-2 drilled in the White Creek area penetrated the Elephant Back 

Rhyolite.   Another factor potentially contributing differences in geochemistry could be 

the shallow cool groundwater source feeding White Creek, diluting the hydrothermal 

fluid.  If shallow groundwater mixing was diluting the geochemistry of White Creek, we 

may still see proportionately similar ratios of certain chemicals, however no two of the 

values listed in table 6 have a similar ratio.     

 

Although the geochemistry of the two steams does not outright support or refute a shared 

hydrothermal aquifer, the 8.5-hour discharge time pattern observed in each site may still 

be a sign of a similar aquifer control at Rabbit and White Creek.  This pattern may be a 

result of convective heating in a shared aquifer, but could also be a similar heat source 

heating separate aquifers of similar sizes, volumes, and depths.  If any one of those 
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factors were different, (ie. one aquifer is larger, or deeper, or holds a smaller volume of 

water) the heat source might still cause convective heating/discharge, but would do it at 

different rates in each aquifer.  The 8.5-hour time pattern may be a result of a similar 

aquifer control, or may be a coincidence.   

 

5.3  Further Study 

 

Time constraints restricted data collection to periods of convenience rather than periods 

of maximum likelihood of observing physical impacts of tidal or barometric forces on 

hydrothermal discharge.  When designing a similar future study, factors that should be 

addressed in the design process of the experiment include: study time selection, sample 

interval selection, and data acquisition.  Selection of study time should include selecting 

sampling periods that occur during maximum likelihood of hypothesized forces on the 

aquifer.  Sampling times should be selected that occur during springs tides (full moons) 

and neap tides (quarter moons).  Although it is hard to predict, it would be useful to select 

another sample period that occurred during periods of dramatic changes in barometric 

pressure and sample periods where dramatic precipitation events were shortly followed 

by times of no precipitation.  Selecting a sampling interval so that aliasing of signals is 

minimized is also important.  In order to do this, knowledge of the shortest time pattern is 

important.  A data recorder similar to a clock driven chart recorder used in several USGS 

gaging stations could be used to collect continuous flow data that could be analyzed to 

determine the shortest time patterns in flow changes.  Once determined, subtracting a 

conservative amount of time would provide the necessary time sampling interval so 



 81

aliasing would be minimized.  Over sampling does not pose a problem, however under 

sampling can lead to an unknown degree of uncertainty, as it did in this study.  Data 

acquisition in a future study should include adding barometric pressure loggers to the 

field station equipment in order to collect accurate local barometric pressure 

measurements.  Water temperature loggers should also be deployed with the FloDar to 

record fluctuations in heat discharge as well as flow discharge.  Although some 

geochemical data exist for each site, future studies may also focus on analyzing the 

previously collected data and analyzing new data to determine source temperatures, 

decompressional boiling rates for certain springs, and if any mixing with shallow 

groundwater existed.   
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6.0  Conclusion 

 

This study has shown that through both graphical analysis and spectral analysis, patterns 

found at Rabbit Creek did not appear to correspond to earth tides or barometric pressure.  

Graphical analysis of data for Rabbit Creek neither supports nor refutes the hypothesis of 

precipitation or earthquake influence on hydrothermal discharge.  At White Creek, 

barometric pressure and earth tides appear to possibly have a control on thermal fluid 

discharge.  Statistical correlation analysis was not performed for any of the data and 

therefore, the apparent control on discharge at White Creek from earth tides and 

barometric pressure can not be supported or refuted as the apparent similarities in time 

patterns may simply be coincidental. Graphical analysis for White Creek showed similar 

results to that of Rabbit Creek.  The hypothesized controls from precipitation and 

earthquakes can also not be supported or refuted due to the lack of occurrence during the 

sampling periods.  Spectral analysis of data for Tantalus Creek showed a correspondence 

between changes in flow and changes in barometric pressure.  Only one significant time 

pattern of discharge was found at Tantalus Creek.  This time pattern was similar to that 

found in analysis of barometric pressure, suggesting that barometric pressure does have 

an influence on discharge.  This similarity in time patterns may actually be cause-and-

effect, but also could simply be coincidental.  Graphical analysis appeared to reveal a 

correspondence between changes in barometric pressure and changes in flow.  Graphical 

analysis also appeared to show a response in flow changes due to precipitation, however 

as no further analysis was completed to determine whether or not the hydrothermal 

aquifer was responding due to the precipitation increasing the load on the land surface, or 
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if changes in flow observed were simply due to increased surface run off, the hypothesis 

of a precipitation control on hydrothermal discharge at Tantalus Creek cannot be 

supported or rejected.  The hypothesized influence of barometric pressure controlling 

discharge at Tantalus Creek is likely, however cannot be supported as again, it may 

simply be coincidental.   

 

A time pattern in discharge at 8.5 hours appears in both White Creek and Rabbit Creek.  

This pattern may be coincidental or it may represent an actual link between the sites.  A 

possible connection between the sites could be a shared hydrothermal aquifer 

convectively releasing plumes of thermal fluids that discharge at surface springs at the 

same time interval, or it could also simply be coincidental.  

 

In conclusion, the complexity of hydrothermal systems continues to provide potential for 

further research into this subject.  Controls on thermal discharge are important to 

understand as they provide yet another building block in the knowledge base of thermal 

features.   Understanding past and present variability in discharge can help predict future 

changes in the hydrothermal system.   
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 Appendix A 

 

 

Using Excel for Spectral Analysis 

 

By using Excel we are able to calculate the complex coefficients from the time series 

data.  Excel’s Fourier transform routine requires that the number of samples in the time 

series be a power of 2, i.e. n=2n.  Output data are 15 digit real and imaginary numbers.  

The first and last output numbers are real and represent the zero frequency.  Output data 

is duplicated around n/2 (the second ½ of data are a mirror of the first half).   

 

Step 1.)  Determine sampling parameters. 

Parameters of Sampling Explanation/Formulas 
N_points 1024  Total Number of sample points 

total_time 921600 seconds 
Total time represented by number of samples 
(=time_bin*N_points) 

time_bin 900 seconds Seconds Per Cycle (=15 minutes*(60 seconds/minute)) 

f_folding 0.000556 Hz 
Mid data Frequency, where data is mirrored (=N_points/2*total 
time) 

freq_bin 1.09E-06 Hz 
frequency value per output number (=2*f_folding/N_points) 
 

 

Step 2.) Process Data with Excel FT.  

 a.) Click “data analysis” under “tools” header, select “Fourier Analysis”  

 b.) Select Input and output range (remember number of input data must be a  

 power of 2.) 
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 Step 3.)  Normalize the Excel FFT output.  This step multiplies the Excel output number 

by 1 over the number of samples.  This is done to see better the relative contribution of 

each component.  The command “improduct” is used here to multiply a non-real number.   

The command is (=improduct(excel_output, 1/n_points)) 

 

Step 4.)  Determine magnitude of frequency.  Using the function IMABS we can find the 

absolute value of the non-real number.  By multiplying this by the square root of 2, we 

can find the magnitude of the Fourier coefficient.   

This command is (=sqrt(2)*IMABS(normalized_output)) 

 

Step 5.)  Determine Fourier Power of the frequency.  The power of each frequency is 

used to determine significant frequencies.   

 

If only the relative power of each frequency is required, normalization is not necessary, 

however allows us to compare magnitude of each frequency easier, and determine 

significance. 

 

Step 6.) Determine Frequencies.  In a separate column, begin with the zero frequency (the 

Excel FT assigned this frequency a real number output), in the next row, add 1 value of 

the frequency bin, in the next, add another value of the frequency bin, ect... 

0 This is the first frequency value 
1.09E-06 This is 1 frequency bin added to 0 

2.17E-06 
this is 2 frequency bins added to 0, or 1 to the previous 
frequency 

3.26E-06 ect.. 
4.34E-06 ect.. 
5.43E-06 ect... 
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Spreadsheet Example of Excel FT  
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Appendix B 

 

Using R for Spectral Analysis 

R is a language and environment of statistical computing and graphing.  R can provide a 
variety of statistical modeling, and spectral analyses.  R can produce user defined graphs 
of publication quality.  It is available as free software under the terms of the Free 
Software Foundation’s GNU General Public license.  The windows version is available 
for download at: http://cran.r-project.org/bin/windows/base/ 
 
To process data, the user must create a separate comma separated value spreadsheet with 
a single column of data points to be analyzed.  The number of data points analyzed does 
not have to be a power of two, as the program will automatically add zeros up to the next 
power of two. 
 
For each stream, a comma separated file (CSV) was created for tide data, another for 
barometric pressure data, and another for flow data. Using Microsoft Excel a single 
column of each data type was entered and then saved as a CSV file. This file must be 
located in a known folder and R must be told where to look for that file.  This is done by 
clicking “File”, then “Change Directory”. 
 
For additional information on coding, and time series analysis please refer to: 
Time Series Analysis and Its Applications: with R examples, 2nd ed. Shumway and 
Stoffer, 2006. 
 
An example of the command string used is as follows, with minor revisions of file names 
for each site. 
 
tctide<-
read.csv("tctide.csv",header=T) 
par(mfrow=c(2,1)) 
tctide.per=spec.pgram(tctide,tap
er=0,log="no",xlim=c(0,0.2),ylab
="Power",main="Tantalus Creek 
Spectral Analysis of Earth 
Tides",xlab="Frequency") 
abline(v=0.0078125,lty="dotted") 
abline(v=0.00390625,lty="dotted"
) 
#cbind(tctide.per$freq,tctide.pe
r$spec) 
 

 
Command Summary 
reads the file named “tctide.csv” and performs 
the FFT spectral analysis, and graphs results on a 
graph occupying 1/2 of page, dotted vertical 
lines are drawn at frequencies 0.0078125 and 
0.00390625 
 
The Pound character tells the program not to run 
a certain line, it can be removed to run the line.  
The Cbind command reveals data output from 
the previous step. 
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df=tctide.per$df 
U=qchisq(0.0125,df) 
L=qchisq(1-0.0125,df) 
tctide.per$spec[8] 
df*tctide.per$spec[8]/L 
df*tctide.per$spec[8]/U 
abline(h=df*tctide.per$spec[8]/L
,lty="dotted") 
tctide.per$spec[16] 
df*tctide.per$spec[16]/L 
df*tctide.per$spec[16]/U 
abline(h=df*tctide.per$spec[16]/
L,lty="dotted") 
 
 
tcflow<-
read.csv("tcflow.csv",header=T) 
par(mfrow=c(2,1)) 
tcflow.per=spec.pgram(tcflow,tap
er=0,log="no",xlim=c(0,0.2),ylab
="Power",main="Tantalus Creek 
Spectral Analysis of 
Discharge",xlab="Frequency") 
abline(v=0.001953125,lty="dotted
") 
#cbind(tcflow.per$freq,tcflow.pe
r$spec) 
df=tcflow.per$df 
U=qchisq(0.025,df) 
L=qchisq(1-0.025,df) 
tcflow.per$spec[2] 
df*tcflow.per$spec[2]/L 
df*tcflow.per$spec[2]/U 
abline(h=df*tcflow.per$spec[2]/L
,lty="dotted") 
 
k=kernel("daniell",1) 
tcflow.ave=spec.pgram(tcflow,k,t
aper=0,log="no") 
abline(v=0.00216,lty="dotted") 
abline(v=0.0108,lty="dotted") 
abline(v=0.0306,lty="dotted") 
 
k=kernel("modified.daniell",c(3,
3)) 
flow.smo=spec.pgram(flow,k,taper
=0,log="no") 
abline(v=0.00216,lty="dotted") 
abline(v=0.0108,lty="dotted") 
abline(v=0.0306,lty="dotted") 
 
 
 
 
 

Lines beginning at df=tctide.per and ending at L, 
lty=”dotted”), are the commands used to 
compute and draw statistical significance of 
certain frequency spikes.  
Spike frequencies were found using the “cbind” 
command earlier. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The K=kernel “daniell” command string 
smoothes the data from earlier graphs. Daniell 
command smoothes the data by doing a running 
average computation, and the daniell modified 
smoothes the data previously smoothed by the 
first daniell command. 
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tcbaro<-
read.csv("tcbaro.csv",header=T) 
par(mfrow=c(2,1)) 
tcbaro.per=spec.pgram(tcbaro,tap
er=0,log="no",xlim=c(0,0.1),ylab
="Power",main="Tantalus Creek 
Spectral Analysis of Barometric 
Pressure",xlab="Frequency") 
abline(v=0.0019531250,lty="dotte
d") 
#cbind(tcbaro.per$freq,tcbaro.pe
r$spec) 
df=tcbaro.per$df 
U=qchisq(0.025,df) 
L=qchisq(1-0.025,df) 
tcbaro.per$spec[2] 
df*tcbaro.per$spec[2]/L 
df*tcbaro.per$spec[2]/U 
abline(h=df*tcbaro.per$spec[2]/L
,lty="dotted") 
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