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William D. Bain, Jr., MS 2000 Computer Science

A comparison of three machine learning algorithms for automated feature 
extraction from digital images (pp. 48)

Director: David Opitz, Ph.D.

Extracting specific cartographic features such as roads or buildings from digital 
images has become an increasingly important problem. Traditional approaches are (1) to 
extract the features manually and (2) to create custom tailored computer programs for 
specific tasks. The problem with the former approach is that it is tedious and expensive, 
and the problem with the latter is that it is not flexible enough to apply to a variety of 
problems. The approach that we use in this thesis is to model the feature extraction 
process using statistical and machine learning techniques, specifically: artificial neural 
networks (ANN), K-nearest neighbor (KNN), and naive Bayesian (NB) classifiers. Each 
experiment compares a baseline input representation -  a moving, square pixel window 
mapped directly to learning algorithm inputs -  against a foveal representation -  high 
pixel resolution at the center surrounded by regions of successively lower resolution. We 
apply these techniques to three different types of problems: (1) recognizing a specific 
linear feature (roads), (2) recognizing a landform object (volcanoes) and (3) ground cover 
classification.

Results indicate that machine learning can be used to model road extraction and 
classification of ground cover types effectively. It is not currently quite as effective at 
extracting large, complex objects such as volcanoes. In addition, we demonstrate that 
ANN and KNN classifiers are substantially more accurate for each type of problem than 
do NB classifiers, although ANNs are computationally more efficient than KNNs.
Finally, our experiments show that foveal input representation provides results similar to 
those of baseline representation in most cases, while requiring less learning and 
classification time.
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1. In t r o d u c t io n

Automating the time-consuming task of extracting features from images has become an 

increasingly important problem. Researchers in diverse fields are finding that their 

ability to collect image data is rapidly outpacing their ability to analyze this data. For 

example, a major bottleneck in the data flow from digital images to geographic 

information system (GIS) applications is the extraction of specific cartographic features 

such as roads or buildings.

One traditional approach to feature extraction from images is to employ an expert to 

digitize images by hand. This poses many problems, including excessive cost, a 

considerable investment of time and inconsistent results. To catalog the one million or so 

small volcanoes pictured in synthetic aperture radar (SAR) images of Venus, for 

example, would require approximately ten years of mundane work by planetary 

geologists (Burl et al. 1994, Smyth et al. 1995). Another traditional approach is to 

employ a computer analyst to create a computer program that is custom tailored to the 

task at hand. However, this approach suffers from the fact that it is not flexible to 

changing conditions under which the imagery was acquired. For instance, one may need 

to rewrite a road finding algorithm that works well with images taken in springtime in 

order to find roads in exactly the same area in autumn.

An alternative and more recent approach is to model the feature extraction process using 

statistical and machine learning techniques rather than explicitly encoding the feature
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concept (Maloof et al. 1998, Burl et al. 1998). The idea behind this approach is that the 

user provides to the learning algorithm (or classifier) a sample of extracted features from 

the image. The classifier then automatically develops a model that correlates known data 

(e.g., pixel values from images, stacked terrain data, etc.) with targeted outputs (i.e., the 

extracted features). The learned model then automatically classifies and extracts the 

remaining features. Of course, this relatively new approach to image recognition still 

requires the services of experts in the particular problem domain of interest. However, 

substantially less time is required of these experts when providing training examples than 

would be spent in manually classifying entire data sets. Researchers have used machine 

learning for many years for data mining and model induction in non-image-oriented 

problem domains, but its use for image recognition is new. This study presents an 

empirical comparison of three learning algorithms applied to automated image 

recognition -  artificial neural networks (ANN), K-nearest neighbor (KNN), and naive 

Bayesian (NB) classifiers (Rumelhart et al. 1986, Rumelhart et al. 1995, Mitchell 1996).

Concise problem representation for a learning algorithm is critical when creating accurate 

models. When learning to recognize objects in images, a typical difficulty with problem 

representation is taking into account spatial information without overwhelming the 

classifier. We address this challenge with the use of foveal input patterns. In foveal 

vision, there is high resolution at the center of the field of view and low resolution at the 

periphery. We test foveal input mappings with each of the three learning algorithms on 

three different problems -  identifying volcanoes on Venus, roads in Montana’s Helena



Valley, and five mutually exclusive ground cover classes in San Francisco’s Presidio 

military base. The results of this study demonstrate the potential of this new type of 

image learning representation.
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2. Ba c k g r o u n d

Two central issues when applying machine learning to a problem domain are: (1) which 

type of learning algorithm provides the appropriate inductive bias for the learning task, 

and (2) what input representation is most appropriate for effective learning. This section 

introduces these concepts and discusses their importance in image learning.

2.1 Learning Algorithms

A system that learns from a set of labeled examples is an inductive learner. The set of 

labeled examples given to a learner is the training set. A teacher provides the output for 

each example. The goal of inductive learning is to generate from the training set a 

concept description that correctly predicts the output of all future examples, not just those 

from the training set. Many previous studies have shown the effectiveness of inductive 

learning algorithms, primarily for use in learning non-image-oriented concepts (Quinlan 

1986, Rumelhart et al. 1986). These algorithms differ both in their concept 

representation language and in their method (or bias) for constructing a concept within 

this language. These differences are important since they determine which concepts a 

classifier will induce. For instance, some are more robust to noisy input data, some are 

well suited for real-valued inputs, and so on. The user should be able to choose the type 

of learning algorithm to match the task at hand. This thesis presents results from ANN, 

KNN and NB learning algorithms (refer to Appendix B).
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Artificial, feed-forward neural networks consist of nodes interconnected by weighted 

links. These networks propagate a set of input signals (representing an example’s feature 

values) forward into a set of output signals that serve as the prediction of the network. 

Nodes that are neither input, nor output nodes are called hidden nodes and their sole 

function is to help map input values to output values. The nodes in the network contain 

an activation function that allows the network to make a non-linear prediction. Training 

a network consists of modifying the interconnection weights via a learning algorithm 

such as backpropagation. Previous studies have successfully applied neural networks to a 

variety of real-world domains (e.g., Pomerleau 1991, Roscheisen et al. 1991), making 

neural nets a logical choice for consideration for the task of learning features in digital 

images.

A Bayesian classifier calculates probabilities of various classifications according to 

Bayes theorem. The calculation involves (1) the prior probability of each class, (2) the 

probability that each class occurs in conjunction with the observed data, and (3) the 

probability that the observed data occurs, independent of the classification. One can 

easily estimate the latter two quantities based on the measured frequency of similar 

instances in the training set.

Bayesian learning is computationally efficient at training and classification, but it has its 

limitations. The number of attributes is often quite high, and some combinations of 

attributes may be rare in the training data. Because of this, the population of similar 

training set examples is often not adequate to provide a good estimate of the probability
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of each new instance. For example, if a particular combination of attributes never occurs 

in the training set, then a Bayesian classifier will return an estimated probability of zero 

for that instance.

Hence, in practice, a nai've Bayesian (NB) classifier -  which makes the naive assumption 

that attributes are probabilistically independent -  is more useful. This means that the 

probabilities of each attribute value/class conjunction can be multiplied together (along 

with the prior probabilities of the attribute values) to estimate the probability that the 

entire set of attributes would lead to the given classification. The inductive model simply 

selects the most probable outcome. Despite these somewhat unrealistic assumptions, NB 

classifiers are quite effective for a variety of problems (Domingos & Pazzani 1996).

For many problems, it is not possible to calculate prior probabilities of the occurrence of 

each attribute value. In this case, one can make the simplifying assumption that the prior 

probabilities for each attribute value are uniform. In addition, one can significantly 

reduce the number of probability calculations using position-independent probabilities 

(Joachims 1996).

Nearest neighbor classifiers, unlike neural networks and Bayesian classifiers, do not 

create an explicit model of the function. Instead, they simply store the training instances 

and postpone generalization beyond these examples. The learning algorithm then 

classifies each new instance by examining its relationship to the stored training examples. 

For instance, K-nearest neighbor gives each new instance the most common classification
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of the k nearest training instances, using a distance measurement such as Euclidean 

distance. Distance-weighted KNN is a special variant that weights the votes of the k 

nearest neighbors, usually in inverse proportion to their squared distance from the new 

input. This variant is robust to noisy training data and is effective for many practical 

problems (Duda & Hart 1973).

2.2 Problem Representation

For machine learning in general, representing the problem meaningfully to the learning 

algorithm is of the utmost importance. While an ANN, for example, can theoretically 

learn complex concepts, in practice only well-represented inputs provide useful results. 

The obvious approach of mapping individual pixel values to ANN input units might not 

be sufficient, especially where the objects to be recognized are of differing sizes and 

orientations. Volcanoes, for example, come in varying sizes and are recognized (at least 

by the human eye) by the shadows and highlights of not only the crater, but also of the 

cinder cone surrounding the crater. Real world images always contain noise and artifacts 

that can confuse the classifier, so in many cases, smoothing or blurring of portions of the 

image may be beneficial to the learning process. While it may take maximum resolution 

to recognize a small crater, the much larger surrounding cinder cone is more easily 

discemable at lower resolution; hence, a variable resolution or multi-scale approach to 

recognition seems appropriate.



Figure 1 illustrates our baseline approach for problem representation -  directly mapping 

pixel values from a square, moving window on the image to classifier inputs. To train the 

classifier, the algorithm clips a square region surrounding an example feature from the 

image and scales the pixel values to an appropriate interval. The learning algorithm 

processes this scaled pixel data and compares the output against the appropriate pixel in a 

target image mask that reflects the locations of the features of interest. This baseline 

method is simple, but for large features (more than a few pixels across) the number of 

inputs required can overwhelm the classifier. In addition, this baseline representation 

does nothing to reduce the effect of noisy pixel data that can make the feature extraction 

concept difficult to induce.
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Figure 1: Example o f  baseline input representation

Figure 2 presents examples of our alternative input representation model: recursive, 

foveal window patterns. Foveal vision, exhibited by humans and other animals, involves 

the use of high densities of optic nerves at the center of the field of view, and lower 

densities at the periphery. Aside from the evolutionary advantages of this ocular 

arrangement, it seems ideally suited for image classifiers that must necessarily examine
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small regions of an image at a time. The user is generally interested in whether a 

particular object is centered on the location in question. If the exact size of the feature is 

a priori unknown, then some blurring at the periphery of the window ought to make the 

recognition task easier.

cm□□□
□COJ U L"flF

9 x 9  pixels, 17 inputs 27 x 27 pixels, 25 inputs

Figure 2: Example fo vea l input patterns

Foveal window representation is a type of multi-scale approach that offers numerous 

distinct advantages over the baseline method. First and foremost, foveal representations 

allow the classifier to take into account some spatial characteristics of the image without 

overloading it with too many irrelevant features. Second, any noise in an image at 

maximum resolution often disappears at lower resolution. Third, a classifier that 

recognizes small objects at one resolution ought to be able to recognize larger objects as
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it zooms out on the image, hence this representation can be inherently more scale

invariant.
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3. Objec tiv es

The general objective of this study is to demonstrate that machine learning can simplify 

feature extraction from images. By this, we simply mean that machine learning can 

provide classification accuracy comparable to that of human experts while requiring far 

less time and effort than traditional approaches. Extracting cartographic features from 

aerial or remotely sensed images ought to be generally amenable to learning by example, 

and if so, would certainly be much more easily and quickly accomplished with machine 

learning than by expert or custom software methods. This is not to suggest that all 

machine learning approaches can be successfully adapted to image recognition tasks. 

However, we presume that if the machine learning approach holds any promise, then at 

least one of the most common types of machine learning algorithms will probably 

succeed. Hence, our specific objectives are:

• Develop learning software to permit automated feature extraction from digital 

images using three learning algorithms, namely: artificial neural network 

(ANN), K-nearest neighbor (KNN) and Naive Bayes (NB).

• Compare the classification accuracy of these three learning algorithms with 

two types of input representation on three different types of feature extraction 

problems: roads, volcanoes and complete, five-way ground cover 

classification.
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4. Gen e r a l  M eth o d s

The baseline input representation -  mapping pixel values directly to learning algorithm 

inputs -  is simple and sufficient for certain rudimentary image processing applications 

(e.g., edge detection). However, it is probably not sophisticated enough to be used for 

extracting large or complex features from images. Because of the possible shortcomings 

of the baseline approach, this study also investigated foveal patterns as a possible 

improvement to baseline representation. In creating foveal input patterns, the input value 

for each cell in the window was equal to the average of the pixel values in the cell. Since 

the sliding window scheme employed in the experiment necessitates repeatedly re

sampling the same image coordinates, we gained some speed (at the expense of increased 

memory requirements) by applying an area-averaging convolution filter to entire image 

rasters. We temporarily stored these filtered rasters so that entire foveal cells could be 

accessed with a single pixel index and without need of further arithmetic.

In each experimental treatment, we chose the input window size roughly to match the 

expected width of the target features. To assess the effectiveness of a foveal 

representation, we tested each foveal pattern against baseline patterns having (1) a similar 

number of inputs to the learning algorithm and (2) a similar size, wherever practicable.

Each of the three learning algorithms -  ANN, KNN and NB -  were tested on each of 

three diverse feature extraction problems -  road detection, volcano detection, and ground 

cover classification. This study used typical machine learning algorithms almost
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verbatim from the literature (e.g., Mitchell 1996), but for maximum efficiency in 

processing large images, we re-implemented each one in our Visual Learning System 

(VLS -  refer to Appendix A).

The wide scope and inherent complexity of our experimental design complicated the 

determination of an optimal set of learning parameters. Three types of learning, two 

types of input representation and three problem domains require 18 separate experimental 

treatments. To optimize at least two parameters per classifier would have required 

multiplying the number of treatments by another factor of nine, which would have been 

prohibitively time and memory consuming. Because the purpose of this experiment is 

not to explore algorithm sensitivity to choice of learning parameters, we tried a range of 

parameters initially for each learning algorithm. We then used the apparent best ones for 

the remainder of the experiment.

ANNs used a learning rate = 0.05, momentum = 0.1 and a single hidden layer topology. 

The number of hidden nodes was equal to the square o f the average of the square roots of 

the input and output layers. For binary classifications (e.g., road versus not road), each 

ANN used a single output node. For N-way classification (as in the Presidio experiment), 

the number of outputs was equal to the number of classes and the maximum output value 

determined the class. The number of epochs was initially set at 100 and increased until 

test set accuracy appeared to level off.
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Each KNN classifier used k = 5 neighbors, with inverse squared distance weighting. We 

applied no scaling to the axes of the input space. Because KNNs do not derive a concise 

model of the learned concept from the training examples, they require more time than the 

other classifiers. By simply storing the entire training data set as the model, they are 

instantaneous to train, but slow to classify new instances. To classify each pixel, the 

learning algorithm compares distances from the input vector for that pixel to each of the 

training example input vectors, and then selects the closest K of these examples to 

classify the pixel. While this was not as time consuming as sorting the entire set of 

distances, it was still slow in comparison to ANN and NB classification. This lazy 

classification scheme was computationally intensive enough that the classifier could 

accommodate relatively few training examples. For this reason, we used no more than 

one percent of the pixel data for training.

For all but the NB classifiers, we sampled a small subset of the pixel data for training. In 

the Helena Valley road data set and the Magellan Venus data set, the targeted features 

comprised a small proportion (less than one percent) of the image. In these cases, we 

selected for training all of the available positive instances plus a randomly sampled one- 

percent of the negative instances in the training image tile set. In the case of complete 

classification of the Presidio data set, we trained on a randomly sampled one-percent of 

the available training data.

Due to the inherent efficiency of NB classifiers, they used a much larger training set than 

did the other learning algorithms. Physical memory was the only practical limit on the
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size of the training data. A NB classifier can accommodate all the data in a mega-pixel 

image in about the same time required for an ANN to learn on one percent o f the same 

image and then classify it. Even when training on entire images, there were usually so 

many attributes and possible attribute values that there was a high incidence of zeros 

among the calculated attribute value/target pairs, resulting in biased underestimates of the 

actual probabilities. For this reason, we clustered the attribute values linearly, from the 

original 256 values per band down to 16 values, and used an m-estimate of probability 

(with uniform prior probabilities). In each case, the equivalent sample size m was equal 

to the number of clustered attribute values.

Each image learning experiment involved a “leave one out” type of cross validation. For 

training, we left out each image tile in turn, and the resulting trained classifier was then 

used to classify the left-out tile. In this way, a classifier never classified its own training 

data.
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5. Pr o b l e m -spec ific  M eth o d s  & Resu l t s

The three problem domains that this thesis explores differ from one another in the type of 

data available and the goal of the experiment. To elucidate these differences, the results 

comprise three sections, each of which describes a single problem domain. Each of these 

three sections begins with (1) a subsection describing the particular issues pertinent to the 

data set and ends with (2) a subsection that presents the accuracy and effectiveness of 

image learning in the problem domain.

5.1 Helena Valley Experiment

5.1.1 Helena Valley Methods

Figure 3 shows an eight-bit panchromatic image of the Scratch Gravel region of 

Montana’s Helena Valley at 5-meter resolution. The goal is to extract the primary road 

network in this valley.
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Figure 3: Excerpt from  Helena Valley road data se t Figure 4: N om inal ground truth classification
o f  road image

At the given resolution, most roads appeared only about three to five pixels wide. Hence 

we selected the smallest recursive foveal input window: a 3 x3 square of single pixels 

surrounded by eight 3 x 3  pixel regions (17 inputs total -  see Figure 2). The resulting 

pattern is nine pixels wide -  more than wide enough to span the entire road and to include 

the edges of the road for context. For comparison, we chose the baseline window with 

the most similar number of inputs: 5 x 5  pixels (25 inputs). This choice of baseline 

pattern spans a smaller pixel width than the foveal pattern, yet results in a greater number 

of inputs to the learning algorithm. To control for effects of input window size, we also 

used a 9 x 9 baseline representation (81 inputs). We applied each of the three input 

representations in conjunction with each of the three learning algorithms. Finally, we 

filtered the output of each classifier using a popular hierarchical aggregation scheme 

known as Merge (Ford et al. 1997). We determined the optimum to-be-merged (TBM)



-  18 -

tolerance experimentally. For road detection, we found that a 20-pixel TBM tolerance 

was optimal.

Ground truth was not available for the image data. Instead, we used our best guess at a 

true classification of road pixels, produced by hand-digitizing two tiles cropped from the 

original image, each approximately 1109 pixels wide by 778 pixels high (8.63 x 105 

pixels). Since the edges of the roads appeared indistinct, we made no effort to digitize 

the full road width. Instead, ground truth consisted only of the centermost single pixels 

along each roadway (see Figure 4). To make the results unambiguous, we eliminated 

from consideration any positively classified pixels within a two-pixel region surrounding 

the centerline pixel set before analysis.

The road finding experiments used two-fold cross validation: a classifier trained on 

examples from the first of the two tiles, classified the second tile, then trained on the 

second and classified the first.

5.1.2 Helena Valley Results

Figure 5 through Figure 8 show examples of our best experimental results for locating 

roads. ANN and KNN results are similar; each type of learning algorithm correctly 

located the majority of the roads, with few false positives (i.e., reported road locations 

where there is no road). The ANN learning algorithm provided slightly better accuracy 

than did the KNN, and for both types of learning algorithms, foveal representation is 

comparable to the baseline representation. The NB classifier performed poorly. While it
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has a low false negative rate (i.e., it did not miss very many of the roads), it has an 

extremely high false positive rate, erroneously reporting some cultivated areas as roads.
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Figure 5: Typical ANN results on road image Figure 6: Typical ANN results on road image
using 5 x 5  baseline representation using 9 x 9 fo vea l representation.
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Figure 7: Typical KNN results on road image Figure 8: Typical NB results on road image
using 9 x  9 fo vea l representation. using 9  x  9 fo vea l representation.

Figure 9 compares overall accuracy of the various learning algorithms for road detection. 

Because the costs of misclassification are unknown, we present the results as Receiver 

Operating Characteristic (ROC) curves (Swets 1988). These curves show true positive 

rate versus false positive rate over a range of costs. True positive rate (TPR) is the 

number of true positives (found road centerline pixels) divided by number of true 

instances (all road centerline pixels). False positive rate (FPR) is the number of false 

positives (noise) divided by number of false instances (non-road pixels). The cost 

parameter in this case is the threshold applied to the outputs.
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Figure 9: R O C  com parison o f  road classifiers by learning algorithm  and input representation

For the purposes of this experiment, a true positive is coincident with a roadway 

centerline pixel. Since most roadways appear to be about three to five pixels wide at the 

given resolution, any positives within two pixels of a road centerline pixel (but not on the 

centerline) were eliminated from consideration. Positives further than two pixels from a 

centerline pixel are false positives (errors of comission). Any centerline pixels that are 

classified negative are false negatives (errors of omission).

The ROC curve illustrates the inescapable tradeoff between effectiveness at locating a 

high proportion of the roads, and accuracy in reporting only road pixels with a minimum 

of false positives (noise). With a low threshold applied, a classifier generally returns a
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large portion of the image as positive. While this reduces the chance of missing actual 

roads, it generally results in a high FPR. With a high threshold, almost nothing is 

classified positive. This gives a low FPR, but also a low TPR (i.e., misses many actual 

roads). An ideal classifier would find all the roads (TPR = 1) and nothing else (FPR = 0). 

Hence, the better classifiers are ones whose curves push toward the upper left comer of 

the chart. Since the cost of misclassification is unknown, the best way to compare 

classifiers across a range of costs is to compare their areas under the ROC curve, as 

shown in Figure 10.

Approximate Area Under ROC Curves for Road Classifiers

ANN KNN NB

Learning Algorithm

□  Baseline 5 x 5  
E  Baseline 9 x 9  
■  Foveal 9 x 9

Figure 10: Approxim ate area under R O C  curves fo r  road  classifiers  
by learning algorithm  and input representation
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Surprisingly, the small, 5 x 5  baseline representation, which barely spans the roadways, 

provides slightly better results than do the others. One possible reason for this may be 

that an overabundance of confounding data offset any potential value of spatial context 

surrounding the road. Machine learning researchers call this effect the curse of 

dimensionality, and nearest neighbor classifiers are especially susceptible to it (Mitchell 

1996). The NB classifier scored lower than the ANN and KNN, primarily because of the 

high number of false positives. The false positive rates reported here are perhaps slightly 

higher than actual, since the nominal “ground truth” classification that we used is 

probably not quite complete; when manually digitizing questionable roads, we chose to 

err on the conservative side.

5.2 Presidio Experiment

5.2.1 Presidio Methods

Figure 11 is an excerpt from a mosaic of four-band images of the Presidio, a former 

military base in San Francisco. A near infrared (NIR) band was included along with the 

red, green and blue (RGB) image data (shown here in grayscale). For this image data set, 

the task is to classify each pixel as belonging to one of the following five classes:
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• Low structure (roads and parking lots)

• High structure (buildings and bridges)

• Low vegetation (grass, dirt and sand)

• High vegetation (trees and shrubs)

• Water

Figure 12 illustrates the true classification provided by the NASA Jet Propulsion 

Laboratories (JPL) for the five classes listed above. There are obvious discrepancies 

between the image and the classification. For example, artifacts of the mosaic 

construction of the image make some features appear to have shear discontinuity in the 

original image (e.g., the large building, right side, just above center). Curiously, the 

classification shows no such artifacts. Regardless, the nominal ground truth provided is 

sufficiently accurate for training purposes. Opitz et al. estimated the error in this data set 

to be about 10%. Machine learning, by its very nature, is able to accommodate a certain 

degree of error in the training data. ANNs in particular are robust to noisy data.

For the Presidio images, we used relatively small input representations. The reason for 

this is that the image data pixel depth was greater here (red, green, blue, and near 

infrared) than in the other data sets (single band, grayscale). The greater pixel depth 

would have made larger input representations too computationally intensive for timely 

learning and classification.
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L e g e n d  | l o w v e g .  | |low struct.
|  high struct. high veg. Q  water

Figure 11: Excerpt from  Presidio image Figure 12: Nominal ground truth classification
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Based on the above consideration, the Presidio experimental treatments started with the 

smallest of the recursive foveal representations ( 9 x 9  pixels, 17 inputs). To control for 

number of inputs, a 5 x 5 pixel baseline representation (25 inputs) was used and to 

control for window size, a 9 x 9 pixel baseline representation (81 inputs) was included.

The Presidio image data originally comprised a single mosaic approximately 9000 pixels 

wide by 6000 pixels high (approximately 45 million pixels total). This volume of image 

data is about ten times greater than what VLS can accommodate at one time on a modem 

high-end desktop PC (e.g., a 500 MHz Pentium IE with 256 MB RAM). For our 

experiment, we cropped out two adjacent mega-pixel image tiles, each containing 

representative proportions of the five classes, for two-fold cross validation. We then 

applied a range of thresholds to the output, and finally used the Merge algorithm with a 

40-pixel TBM tolerance to filter noise from the resulting classification.

5.2.2 Presidio Results

Figure 13 through Figure 16 show typical results obtained from each of the three types of 

learning algorithms.
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Figure 13: Typical Presidio ANN results 
using 9  x  9 fo vea l representation

Figure 14: Typical P residio AN N  results 
using 9 x 9  baseline representation
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Figure 15: Typical Presidio KNN results 
using 9  x  9 fo vea l representation

Figure 16: Typical P residio NB results 
using 9 x 9  fo vea l representation
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Figure 17 compares overall classification accuracy obtained from each of the three types 

of learning algorithm. We define accuracy as the proportion of the classification 

comprising the true positives of all five classes (i.e., the sum of the diagonals in a 

confusion matrix analysis).

Accuracy of Presidio Classifiers

1 0 0  -t

90 - 

80 -

Legend

□ Foveal 9 x 9

■ Baseline 5 x 5

■ Baseline 9 x 9

ANN KNN NB

Learning Algorithm

Figure 17: O verall accuracy o f  Presidio classification by learning algorithm  and input representation

Results were far better for ANN and KNN than for NB classifiers. The ANNs performed 

better the more inputs they had, while the KNN classifiers were insensitive to the type of 

input representation. The erratic results from the NB classifiers are most likely due to 

insufficient training data to estimate probabilities accurately and imbalances in the data. 

Despite the use of equivalent sample sizes and m-estimates of probability, the NB 

classifiers would often completely ignore one or two of the five classes. If the NB
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classifier happened to recognize one of the majority classes (e.g., low vegetation or low 

structure), then the overall accuracy increased, albeit still significantly lower than for the 

other two learning algorithms.

5,3 Magel lan Venus Experiment

5.3.1 Magellan Venus Methods

Figure 18 shows an example of the grayscale, synthetic aperture radar (SAR) images of 

the surface of Venus that NASA’s Magellan space probe collected as it circled the planet. 

The entire data set collected during the mission comprises approximately 30,000 images, 

each 1024 pixels square (approximately one million pixels) with a pixel resolution of 75 

m. For the purposes of this experiment, NASA JPL provided only four images. The task 

is to be able to locate each of the volcanoes, but to reject the impact craters, which are 

superficially similar in appearance.

NASA JPL provided the coordinates and sizes for the circles shown in the figure, which 

represent the “ground truth” classification. The extent of each circle indicates the extent 

of the cinder cone surrounding each volcanic crater. Since actual ground truth on Venus 

may not be available for some time, this nominal ground truth is actually the consensus 

among planetary geologists who digitized these image tiles by hand. Although not 

visible in the figure, each of the examples were classified according to level of certainty: 

(1) definitely a volcano, (2) probably, (3) possibly, and (4) only a pit is visible. The last
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class was used to label non-volcanic impact craters; hence, the specific learning goal is to 

locate all instances of the first three classes listed above.

Figure 18: Excerpt from  M agellan Venus data set, with volcanoes circ led  in white and im pact craters
(negative exam ples) circled  in black

We initially chose a foveal window size of 81 x 81 pixels (33 inputs) to match the typical 

size of the targeted volcanoes. However, a baseline representation of this size would
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have resulted in far too many inputs for practical experimentation, so we made a tradeoff 

between size and number of inputs. A 9 x 9 square window (with 81 inputs, about as 

large as practicable), although significantly smaller in area than the foveal window, still 

results in more than twice as many inputs to the learning algorithm. To control for the 

effect of window size, we also compared the 9 x 9 baseline representation with a 9 x 9 

foveal representation (17 inputs). By comparing these three input representations, we 

hoped to explore the tradeoff between window area and number of inputs to the learning 

algorithm.

Ideally, a classifier would locate each volcano by its center and report the corresponding 

coordinates. To aid in learning this specific target concept, we provided only positive 

training examples in which a volcano is centered in the input pixel window. To this end, 

we began by scaling each target circle from the nominal “ground truth” classification 

down by a factor of eight. The resulting target regions are only a few pixels in diameter 

and correspond roughly to just the volcanic craters. We randomly sampled positive 

training examples from among these regions with equal probability. We randomly 

sampled negative training examples from the remainder of each image.

As with the other two problem domains, we found that different sampling rates were 

appropriate for the different learning algorithms. Selecting all of the positive examples 

and a random one-percent of the remainder of the images (negative examples) worked 

well for ANNs and trained the networks in a reasonable amount of time. Due to the 

inherent inefficiency of the KNN algorithm, we were only able to train using 10 percent
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of the positives and 0.1 percent of the negatives. Although speed is not an issue for NB 

classifiers, physical memory constraints limited us to the same sampling rates as we used 

for the ANNs.

With the four images available to us, we conducted four-fold, leave-one-out cross 

validation experiments. As a final step, we applied the Merge algorithm with a 20-pixel 

TBM size to filter out noise in the resulting classification.

5.3.2 Magellan Venus Results

Figure 19 through Figure 22 show our results for locating volcanoes on Venus. In each 

of the figures, the dark regions indicate the reported positives, and the light background 

areas are the negative class. The black circles on the images indicate the consensus on 

where volcanoes are actually located in the images. The light gray circles mark the 

consensus location of impact craters. We did not specifically sample impact craters as 

negative examples, but left the classifier to deduce that impact craters are negative based 

only on the training data.



Figure 19: Typical ANN results using 81 x  81 fovea l representation (33 inputs). 
Black circles mark consensus volcano locations, gray circles m ark im pact craters.
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Figure 20: Typical ANN results using 9 x 9  baseline representation (81 inputs). 
Black circles mark consensus volcano locations, gray circles mark im pact craters.
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Figure 21: Typical KNN results using 81 x  81 fovea l representation (33 inputs). 
Black circles mark consensus volcano locations, gray circles m ark im pact craters.
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Figure 22: Typical NB results using81 x 81 fo vea l representation (33 inputs).
B lack circles mark consensus volcano locations, gray circles mark im pact craters.

In most cases, the various learning algorithms were unable to discern the difference 

between volcanoes and impact craters effectively. In fact, the two types of craters are 

difficult to distinguish in these images by the human eye as well. Typically, a planetary 

geologist would distinguish between them by the presence or absence of a cinder cone
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surrounding the crater. Due primarily to computer memory and processor power 

constraints, only the larger of the two foveal input patterns in this experiment provided 

enough spatial context to detect the surrounding cone.

Figure 23 compares the accuracy and effectiveness of the various learning algorithms and 

input representations. Again, we use ROC curves to illustrate the tradeoff between 

locating a high proportion of the true targets and keeping the number of false positives to 

a minimum over a range of costs.

ROC Comparison of Volcano Classifiers

CC 0.6

© 0.4

Legend

-A — ANN, Baseline 9 x 9  

• A- - ANN, Foveal 9 x 9  

A -  ANN, Foveal 81 x 81 

-O— KNN, Baseline 9 x 9  

•©--KNN, Foveal 9 x 9  

KNN, Foveal 81 x 81 

-□ — NB, Baseline 9 x 9  

■ H- - NB, Foveal 9 x 9  

■-■NB, Foveal 81 x 81

0.3 0.4 0.5 0.6

False Positive Rate

Figure 23: R O C  com parison o f  volcano classifiers by learning algorithm  and input representation
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As explained above, each ROC curve represents a series of thresholds applied to the 

output of the learning algorithm in a particular experimental treatment. The better 

classifiers are ones whose curves push toward the upper left comer of the chart. Again, 

the cost of misclassification is unknown, so the best way to compare classifiers across a 

range of costs is to compare their areas under the ROC curve. Figure 24 summarizes the 

effectiveness of each type of learning algorithm and input representation by comparing 

the areas under their ROC curves.

Area Under ROC Curves for Volcano Classifiers

Legend
□  Baseline 9 x 9

□  Foveal 9 x 9  

■  Foveal 81 x 81

ANN KNN NB

Learning Algorithm

Figure 24: Approxim ate area under RO C curve by learning algorithm  and input representation.

The large size and complexity of the volcano features required a large baseline 

representation ( 9 x 9  pixels, 81 inputs) resulting in very time consuming training and
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classification. Even with so many inputs though, the baseline representation was slightly 

less effective than the foveal. The KNN appeared to perform a little better overall than 

the ANN. Although the NB was by far the fastest of the three types of learning 

algorithms, it was able to locate only a few of the volcanoes successfully and returned 

many spurious non-volcanic features, including impact craters.
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6. D is c u s s io n  & F u t u r e  W o r k

In the absence of ground truth, planetary geologists agree approximately 80% in their 

expert classification of volcanoes on Venus (Burl et al. 1994). Our automated 

classification system shows promise of achieving that level of accuracy. When results 

are based on flawed ground truth classifications -  as in the case of the Presidio data and, 

to a lesser extent, the Helena Valley data -  the accuracy and effectiveness metrics appear 

less impressive than they otherwise would. For example, Opitz et al. found that when 

learning results are compared against a carefully hand-digitized ground truth 

classification instead of the noisy version used in this study, accuracy improved by about 

10%. This suggests that machine learning may achieve better accuracy in some cases 

than can humans.

Our results indicate that machine learning can be used to model road extraction and 

classification of ground cover types effectively. However, in its present form our method 

is less effective at extracting large, complex objects such as volcanoes. In addition, we 

demonstrate that ANN and KNN classifiers perform substantially better for each type of 

problem than do NB classifiers. The use of attribute position independence, better 

estimates of prior probabilities, etc. may improve NB performance in the future. Finally, 

our experiments show that foveal input representation performs equal to or slightly better 

than baseline representation in most cases, while requiring less learning and classification 

time.
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This study demonstrates the possibilities for applying machine learning to automatic 

image recognition, but we need to refine our approach further. The remainder of this 

section briefly describes some alternative approaches.

Interactive learning: Due to the barely discemable distinction (even by the human eye) 

between impact craters and volcanic craters, we expected that learning to automatically 

differentiate between them will require multiple, interactive learning iterations. Iterative 

training set refinement would be particularly valuable, because the user generally does 

not know a priori which examples will prove most useful to the classifier. By 

interactively augmenting the training set, the user would be able to nudge the classifier 

toward increasingly accurate concepts.

Hierarchical learning: Recognition tasks that do not yield to the simple representations 

may succumb to a hierarchical approach. Volcanoes come in a wide range of sizes, and 

rather than relying on the classifier to learn scale invariance implicitly, we could instead 

start by scaling the images by various factors. We would use these scaled images to train 

the classifier, and then use the outputs of these initial passes as inputs to a next layer of 

learning.

Concept Drift and “Local M ode” Classification: Learning to classify homogeneous 

images taken from near the training data source is generally more successful than trying 

to classify heterogeneous images taken from some distance away. This is known in the 

machine learning literature as concept drift and is one of the motivating influences for



-43 -
image learning by example. Figure 25 compares overall accuracy obtained from the 

various learning algorithms when classifying image data located very near to the training 

examples (“Near”) versus image data sampled from the far side of the image data set 

(“Far”). The ANN and KNN results show the expected drop in accuracy when the 

training data is spatially further removed from the new instance to classify. In such 

cases, the classifier is suited only to use in what Burl et al. refer to as “local mode,” and 

will need to be retrained for each new region of interest. In future studies, we need to 

explore further the robustness of various image learning approaches to concept drift.

Presidio Class ification Accuracy

Learner type

Legend

□  Near 
■  Far

Figure 25: Accuracy o f  Presidio classification by learning algorithm  and training/classification proximity.
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N-Way versus Binary Classification: Some classifiers learn a binary concept (e.g., road 

versus not road, or volcano versus not volcano), while other classification problems 

involve an N-way classification (e.g., structure versus water versus vegetation). In this 

latter type of problem -  of which the Presidio problem is a good example -  the multitude 

of simultaneous decisions that it must make overwhelm the classifier. Hence, a more 

effective approach to learning N-way concepts might be to learn each class separately, as 

a binary concept, and then to combine the results.

Code Optimization: If the VLS software were ever to be adapted for a production 

environment, some optimization would be appropriate. For example, the KNN 

classification scheme might benefit from the use of a modified Quick Sort to partition the 

k nearest neighbors from the more distant ones. The current version of the software 

employs an inefficient selection sort. In addition, VLS could accommodate larger images 

via the following:

• A non-graphical, batch classification module

• The new Java Advanced Imaging API (in addition to the Java 2D API that is 
currently used)

• Optional tradeoffs between speed and memory requirements (instead of 
always being set for speed)

On-the-Fly Learning: The user interface might benefit, too, by inclusion of interactive 

features to make training set selection easier and faster. It could incorporate on-the-fly
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learning that could predict obvious training examples based on the user’s recent actions, 

allowing the user to concentrate on determination of the more subtle examples.
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7. C o n c l u s io n s

In this thesis, we looked at the effectiveness of a variety of machine learning techniques 

in extracting features from various types of digital images.

We found that machine learning can be practical for road extraction and ground cover 

classification. At this point, it is less effective at locating large, complex objects like 

volcanoes. We showed that ANN and KNN classifiers achieve higher accuracy for each 

type of problem than do NB classifiers, and that ANNs are computationally more 

efficient than KNNs. Finally, our experiments show that foveal input representation is 

about as effective as baseline representation, while requiring less learning and 

classification time.

In summary, this study takes an important step forward by demonstrating the promise of 

machine learning for image recognition.
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A p p e n d ix  A: S o f t w a r e  D e v e l o p m e n t

The sheer volume of data involved with digital images suggested that a specialized 

graphical user interface (GUI) would be helpful in setting up the learning problems. It 

does not suffice to define a particular combination of pixel values as positive (e.g., a 

volcano) or a negative (e.g., an impact crater) numerically. The user needs to be able to 

specify with the click and drag of a mouse the approximate extent of the geographical 

feature of interest. By selecting entire regions of an image at once, one can generate a 

multitude of training examples with minimal time and effort. In addition, we perceived a 

need for a suite of image transformation utilities for the purposes of pre-processing the 

images before learning, and post-processing the output of the classifiers.

To complicate matters, many available satellite images data sets are multi-spectral -  that 

is, they include information from parts of the radiation spectrum that are invisible to the 

human eye. In addition to the red/green/blue (RGB) or hue/saturation/brightness (HSB) 

color components typically used in digital imaging, some satellite images include 

infrared, ultraviolet and even ancillary data such as digital elevation values. Typical 

graphics software does not provide adequate support for visualizing and manipulating 

image data of such pixel depth. In addition, highly optimized code could rapidly generate 

the millions of input patterns and provide them to the learning algorithms. For all the 

above reasons, we created a software package known as Visual Learning System (VLS).

- A l -
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YLS allows non-technical computer users to view and manipulate image data of arbitrary 

pixel depth; more importantly, it allows point-and-click selection of targeted features and 

assignment of them to arbitrary feature type classes. A user may select and each machine 

learning algorithm from a drop-down menu and configure it using standard graphical 

controls.

From the user standpoint, a typical image learning session consists of:

• Drawing shapes on a few images (or portions thereof) to indicate examples of 
the target concept

• Specifying learning parameters

• Initiating training

• Using the trained classifier to classify other images

If the classifier does not adequately classify the new instances, then the user may provide 

more examples and re-train the classifier. When the classifier achieves adequate 

classification accuracy, the user can save its state for later classification of entire sets of 

images. In this way, one can classify large volumes of image data without further user 

intervention, presumably much more quickly than could be done by digitizing.

Figure A l illustrates the fundamental class structure of YLS. The VLS object represents 

the application window and is the executable object in the package. The VLS object 

contains a set of DocumentPane objects, each displayable in an internal frame. The name 

derives from the fact that each contains an image document, and each is a lightweight
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graphical component. The DocumentPane data structure consists of a series of image 

data rasters, one byte per pixel, called bands. Each pixel in an image document consists 

of a vector of reflectance values, one for each band, and can be arbitrarily deep.

VLS
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DocumentPane ImageLearner

NearestNeighborPattern Maker Learner

ImageBand

ImageSampler

NaiveBayes
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Figure A l:  Visual Learning System class structure

VLS can accommodate many ImageLearner objects at a time. Each one encapsulates a 

learning algorithm (a Learner object) and an input representation (a PattemMaker object) 

along with methods and objects (e.g. an ImageSampler object) for training on and 

classifying sets of image documents.
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Figure A2: Visual Learning System graphical user interface

Figure A2 shows an example of the VLS graphical user interface during a typical 

interactive training session. Features include a multiple internal frame layout, textual 

status pane, progress bar, floating tool bar, image band visualization panel, and image 

learner panel, each an extension of the Java Swing component library. VLS graphically
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represents both of the basic objects involved in image learning -  the image document and 

the learner (or classifier) -for easy manipulation.

VLS includes tools to support the hierarchical nature of image data. Images typically 

comprise rasters (two-dimensional arrays of data), often include multiple bands (a third 

dimension), and sometimes contain a color palette for visual interpretation. Images may 

of course be subsets of other images, cropped from a larger version or otherwise spatially 

related. Even when the image data of interest is provided in one large raster (as in the 

case of the Presidio) it is often more convenient or even necessary to tile the image into 

smaller, more manageable rasters. In such cases, one usually manipulates images in sets 

-  perhaps one small set for training, another for testing classification accuracy, and the 

remainder for bulk classification. For the above reasons, VLS implements a multiple- 

document interface (MDI) and images of arbitrary pixel depth in the popular 

ERDAS/LAN image format (widely used for GIS applications). Wherever possible, the 

image processing and learning tools are configurable to operate uniformly on multiple 

bands within multiple images at once.

To complicate matters, images are not the only type of document needed for image 

learning. The state of each instance of a learning algorithm, configured and trained for a 

particular task, may be stored for later retrieval, either for classifying more images or for 

further training. Since the typical user only deals with one classifier at a time, the 

graphical representation of the classifier does not appear in the same internal frame 

layout as is used for the images. Instead, a separate, modeless dialog panel represents the
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state of the classifier and its corresponding input pattern. Here, the user can directly 

manipulate the learning parameters and see the input pattern just as the classifier sees it, 

with a dynamic grid of boxes representing the sliding pixel window on the image.

VLS requires not only a complex GUI, but also efficient implementation of some 

computationally intensive machine learning algorithms. While Java is known for its 

strengths in rapid GUI prototyping, it is not particularly fast for extensive computation. 

When Java prototype implementations of the machine learning algorithms ended up 

running too slowly, it became necessary for us to use the C programming language to 

handle the image learning and other image processing tasks. In the end, all GUI code 

remained in Java, while we ported the computationally intensive modules to ANSI C, 

using the Java Native Interface (JNI) bridging the gap. Since both Java and C are 

available on most PC and workstation platforms, VLS sacrificed very little portability to 

realize the benefits of both programming languages.



A p p e n d ix  B: L e a r n in g  A l g o r it h m s

Artificial neural network

Each artificial neural network (ANN) used in this study employed standard 

backpropagation (Mitchell 1996) and the logistic (a.k.a. sigmoid) function to squash the 

output of each hidden and output node:

a(net) = (Eq. 1)
1 +  6

K-Nearest Neighbor

The k-nearest neighbor (KNN) classifiers used a Euclidean distance metric and weighted 

the contribution of each of the k nearest targets in inverse proportion to the distance:

w> B n ' ^ (Eq- 2)

Naive Bayes

A Bayes classifier returns the maximum a posteriori (MAP) classification given the 

attributes that describe the instance:

V M 4P  =  a f g  m a X  P ( V j  \ a i > a 2 • ■ • « „ )  ( E 9 -  3 )

- B1 -



- B2 -
We can express this in terms that are more useful by applying Bayes Theorem:

P ( a i > a 2 • '  ■ Q n  I V ) P { V j  )  / y ,  ^

v u a p  = arS max ----------- ------ (Eq. 4)„ ev P(ai ,a2...a„)

Because the prior probability of the attribute vector is independent of the classification, 

the term in the denominator is superfluous:

vaup = argm axP(a,,a2...a„\v )P(v ) (Eq. 5)

The prior probability of each class, P{yj), is easily estimated based on the occurrence of 

each class in the training set. However, accurately estimating the conditional 

probabilities in Equation 5 typically would require much larger training sets than are 

practicable. Hence, in practice, it is often more useful to naively assume that the 

attributes are conditionally independent. This assumption gives us the Naive Bayes 

classifier:

vm = arg max P(v . ) |"J  P(ai K  ) (Eq. 6)
VjBV j

The Naive Bayes classifier is often accurate even in cases where the attributes are not 

actually conditionally independent.
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