
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1996

Network management and security for Unix Network management and security for Unix

Doddy Vamsi Bathanaih
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Bathanaih, Doddy Vamsi, "Network management and security for Unix" (1996). Graduate Student Theses,
Dissertations, & Professional Papers. 3074.
https://scholarworks.umt.edu/etd/3074

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by University of Montana

https://core.ac.uk/display/267574313?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F3074&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/3074?utm_source=scholarworks.umt.edu%2Fetd%2F3074&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Maureen and Mike

MANSFIELD LIBRARY

The University of MONTANA

Pennission is granted by the author to reproduce this material in its entirety,
provided that this material is used for scholarly purposes and is properly cited in
published works and reports.

** Please check "Yes" or "No" and provide signature **

Yes, I grant permission
No, I do not grant permission

Author's Signature

Date ^ j

Any copying for commercial purposes or financial gain may be undertaken only witl
the author's explicit consent.

Network Management and Security for Unix

by

Doddy Vamsi Bathanaih

B.Tech. Jawaharlal Nehru Tech University, India. 1993

presented in partial fulfillment of the requirements

for the degree of

Master of Science

The University of Montana

February 1996

Approved by:

Chairperson ,

Dean, Graduate School

Date

UMI Number: EP36238

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these wiil be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMT

UMI EP36238

Published by ProQuest LLC (2012). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Bathanaih, Doddy Vamsi, M.S., February 1996 Computer Science

Network Management and Security for Unix (63 pp.)

r-

Director: Ray Ford

Computer networks have revolutionized our use of computers. As the computer
networks developed vastly, the need for their management and security became noth­
ing but essential. To deal with the multivendor environment a network management
system is needed that is based on standardized network management protocols and
applications. The users should be allowed access to the services only after they are
authorized and authenticated to do so. This paper investigates how to manage the
UNIX networks using SNMP and also how to deal with security of UNIX machines
using Kerberos and firewall. It also discusses about IP spoofing and hijacking and
some design decisions to take in order to avoid those attacks.

11

Table of Contents

1 Introduction 1

1. Introduction 1

2 Linux 7

1. Introduction 7

2. Summary 11

3 Simple Network Management Protocols - Version 1 and 2 14

1. Introduction 14

2. Network Management Architecture 15

3. MIB structure 20

4. SNMP Formats 22

5. Transmission of an SNMP message 23

6. Receipt of an SNMP message 24

7. Overview of SNMPvl 24

7.1. Limitations of SNMPvl 26

8. Overview of SNMPv2 26

8.1. GetRequestPDU 27

8.2. GetNextRequestPDU 28

8.3. GetBulkRequestPDU 29

8.4. SetRequest PDU 30

8.5. SNMPv2 Trap PDU 30

8.6. InformRequest PDU 31

9- SNMP Installation under Linux 32

10. Summary 34

iii

4 Kerberos 35

1. Introduction 35

2. Kerberos Authentication and Security 36

3. How Kerberos works 37

4. Kerberos Encryption 38

5. The Kerberos Ticket . . . 38

6. Application request and response 39

7. Obtaining additional tickets 42

8. Protecting application data 43

9. Infrastructure and Cross-Realm Authentication 44

10. Other approaches for improving security 45

11. One-time passcodes 45

12. Public-key Cryptography 46

13. Limitations of Kerberos 47

14. Kerberos Installation under Linux 48

15. Summary 50

5 Firewalls 51

1. Introduction 51

2. What can a firewall protect against ? 52

3. What can't a firewall protect against ? 53

4. Design Decisions 54

5. About Proxy Servers 55

6. Internal Components of a Firewall 55

7. Typical Screened Host Gateway 56

8. Typical Screened Subnet 58

IV

9- IP spoofing 59

10. Hijacking tools 60

11. Solutions 61

12. Summarj' 63

V

List of Figures

3.1 Protocol context of SNMP 18

3.2 MIB2 Object Groups 21

3.3 SNMP Formats 23

5.1 Typical Screened Host Gateway 57

5.2 Typical Screened Subnet 58

VI

Chapter 1

Introduction

1. Introduction

Linux is a freely distributable UNIX clone for personal computers. It was originally

developed by Linus Torvalds[l]. The system now consists of parts contributed by

dozens of individual developers.lt currently runs on Intel 386, 486 and Pentium ma­

chines and it is now being ported to other architectures such as Motorola 680x0,

DEC/Alpha and MIPS processors. Linux can coexist with other operating systems

such as MS-DOS, OS/2 and so forth. Linux uses its own drive partitions and therefore

does not interfere with other operating systems in anyway. The Linux boot manager

is used to select which operating system to load at the boot time.

The idea of networking is as old as telecommunications itself. A network is a collection

of hosts that are able to communicate with each other by relying on the services of a

number of hosts that relay data between the participants. Network communication

is impossible without some sort of standard language or code. In computer networks

these are collectively referred to as protocols. The two important protocols for the

work described here are TCP and UDP. TCP, for transmission control protocol, is a

1

2

connection oriented protocol meaning that participants should establish connection

before transmitting. This provides reliable, full duplex, stream service on which many

application protocols depend. In contrast UDP, for user datagram protocol, is a con­

nectionless protocol meaning that there is no actual connection between participants

before transmitting. This provides unreliable, full duplex service[5].

A port is an attachment point for a network connection, used by a transport pro­

tocol to distinguish among multiple destinations within a computer. Ports are used

as for network connections. If an application running on a host wants to offer a certain

service over the network, it attaches itself to a port and waits for clients, in the form

of service requests from other hosts. A client that wants to use a service allocates a

port on its local host and connects to the server's port on the remote machine. An

important property of a port is that once a connection has been established between

the client and the server, the port becomes free so that another copy of the server

may attach to the server port and listen for more clients. This permits, for instance,

several concurrent telnet service requests to be active on the same host, all connected

using the same port. Both TCP and UDP name their ports by numbers from 7 to

2401. Though they use the same numbering scheme, these numbers do not conflict.

TCP port 513, for example, is different from UDP port 513. In fact, these ports serve

as access points for two different commonly offered services, namely rlogin[TGV) and

rw;/io(UDP)[4].

As more and more machines are networked together the need for network manage­

ment and network security becomes increasingly important. The most commonly

used mechanism for network management is SNMP, which stands for Simple Network

Management Protocol[8]. The most important network security mechanism used in

3

Unix systems is Kerberos[2]. A brief overview of these facilities follows.

The components of SNMP include a network management system (NMS), network

agents, protocol data units, the management information base (MIB) and the struc­

ture of management information (SMI). The NMS monitors and controls the SNMP

agents found within devices. It provides information to a human network manager

who uses the machine to issue commands and interpret statistical information gath­

ered from a network. Network agents are devices such as routers or bridges that are to

be managed on an SNMP network. These agents monitor network information such

as the number of connections, packets transmitted, or error conditions at their spe­

cific location. The agents provide this information to network management stations,

which use the User Datagram Protocol to communicate with them. Agents and man­

agers communicate with protocol data units. Generally all mangers send commands

and receive responses from the agents. The management information base (MIB) is

a repository that contains information about network objects, such as modems and

routers, and the management attributes of these objects. The structure of manage­

ment information (SMI) is the rule book for SNMP's management information base.

Its function is similar to that of a set of grammar rules that define the way to build

sentences. The SMI defines how management protocols get information about the

objects which represent the network devices. The SNMP agents and stations commu­

nicate through standard messages, where each message is a single packet exchange.

Because of this, SNMP is implemented using UDP as the layer 4, or transport layer,

protocol according to William Stallings[8]. UDP uses connectionless service, so SNMP

does not have to maintain a connection between an agent and station to transmit a

message.

4

Kerberos is a trusted third party authentication service based on the model developed

by Needham and Schroeder[10]. This project was started at M.I.T in 1983 and its

goal was to create a network security environment. It is now in its fifth version. The

basic Kerberos protocol contains a client and a collection of servers. The version 5

implementation of Kerberos contains three types of servers and one type of client.

The client program prompts the user for login requests and passwords. The three

servers are the authentication server, ticket granting Server (TGS) and the actual

service provider, such as FTP. The authentication server checks whether the user

exists in a database. If the user exists the server sends a message with a ticket which

gives permission for the client to communicate with the TGS. The client then sends

a message to the TGS which includes its ticket. If the ticket is accepted, the TGS

returns a message to the client with a different ticket to an end-server. This ticket

grants the client access to that particular end-server and so the client starts com­

municating with the end-server using that ticket. Kerberos also creates temporary

secret keys, called session keys, which are given to client and server and no one else.

A session key is used to encrypt messages between the two parties, during the session.

After the session, the session key is destroyed.

Thus, Kerberos provides three different levels of protection. It provides authentica­

tion at the beginning of a network connection, after which all further communications

are assumed to come from the authenticated entity. It also provides authentication

for each message sent from one entity to another. Finally, it provides both authenti­

cation and encryption for each message sent from one entity to another.

A firewall is a special host that sits between the outside network and internal network[19].

This host does not send any information regarding routing within the internal network

5

to the outside, thereby making the internal network invisible to the outside world.

The firewall machine should not mount any file systems via NFS or RFS. Password

security must be rigidly enforced on a firewall. Only users who require access to

outside networks and users who must log into the system should have accounts on

the machine. Anonymous FTP and other similar services should only be provided

by the firewall machine. The /etc/ftpusers and /etc/shells files are used to restrict

the access. Services that are not needed should be disabled in /etc/inetd.conf. The

syslog on the firewall machine is configured to log all information to a remote host

which prevents an intruder from deleting information from the log files. Compilers

and loaders should be deleted from the firewall machine. This will prevent hackers

from compiling programs there thereby stopping programs like Internet worm. The

main purpose of the firewall is to prevent attackers from accesing other hosts in the

internal network.

The project described here involves the application of SNMP, Kerberos and fire­

wall facilities in Linux. Also I include comments on DES, Data Encryption Standard,

which is a standard encryption procedure used in Kerberos.

Briefly summarized, the work involved in this project includes:

. Installation of Linux on a IBM compatible personal computer

. Installation of SNMP under Linux, by porting a public domain SNMP implemen­

tation

. Installation of Kerberos under Linux, by porting a public domain Kerberos imple­

mentation

. Analysis of the use of firewalls in the resulting system to prevent spoofing attacks

6

from being succesful.

Chapter 2

Linux

1. Introduction

Linux was originally developed by Linus Torvalds. Linux is a complete UNIX ca­

pable of running X windows, TCP/IP, Emacs, UUCP, mail and lots of other unix

utilities. Almost all of the major free software packages are ported to Linux. Linux

is a complete multitasking, multiuser operating system meaning that many users can

be logged into the same machine at the same time running multiple programs simul­

taneously. Linux supports virtual consoles which allows the user to switch between

multiple login sessions from the system console in text mode. The kernel can emu­

late 387 FPU instructions so that the systems without a math coprocessor can run

programs that require floating point math instructions [4].

Linux currently supports systems with an Intel 80386, 486 and Pentium processors.

This includes all variations on this CPU type such as the 386SX, 486SX and 486DX.

The system motherboard must use ISA or EISA bus architecture but not MCA ar­

chitecture.

7

8

Linux requires very little memory to run compared to other operating systems. A

system with only 2 MB of memory can run the Linux operating system. Linux sup­

ports all IDE, ESDI and RLL controllers. It also supports a number of popular

SCSI drive controllers although the support for SCSI is more limited because of wide

range of controller interface standards. SCSI controllers like Adaptec AHA1542B,

AHA1742A, AHA1740, TMC850, TMC950, Seagate ST02 are all supported by Linux.

Linux supports all standard Hercules CGA, EGA, VGA and Super VGA video cards

and monitors for the default text based interface. CDROM drives like Sony CDU541,

Mitsumi are all supported by Linux. Linux supports the standard ISO 9660 filesystem

for CDROMs. Linux supports a complete range of parallel printers and modems[4].

Linux supports various filesystem types for storing data. The most widely used filesys-

tems are Minix, Xenix, ext2fs, IS09660 and MS-DOS. The MS-DOS filesystem allows

the user to access MS-DOS files directly by mounting an MS-DOS partition or floppy.

Linux provides a complete implementation of TCP/IP networking which includes de­

vice drivers for many popular ethernet cards, SLIP, PLIP, PPP and NFS. Almost all

of TCP/IP services are supported.

The Linux kernel uses the special protected mode features of the Intel 80x86 and

Pentium processors. Linux supports demand-paged-loaded executables. That is only

those segments of a program which are actually used are read into memory from

disk. Also copy-on-write pages are shared among executables, meaning that if several

instances of a program are running at once then they will share pages in physical

memory, thereby reducing overall memory usage. In order to increase the amount

of available memory, Linux also implements disk paging. When the system requires

more physical memory it will swap out inactive pages to disk. Executables use dy­

9

namically linked shared libraries, meaning that executables share common library

code in a single library file found on disk. This allows the executable files to occupy

less space on disk, especially those that use many library functions. Also debugging

facilities are provided in Linux environment.

Linux provides a complete UNIX programming environment including all of the stan-

KU ; —™„;i—„ n i j i uaiu iiuidiics, jpiu^idiiiiiiiiig luuio, ciiiu. ucuug^^cia. ucsiucs diiu

many other compiled and interpreted programming languages have been ported to

Linux, such as Smalltalk, Fortran, LISP and Scheme. Also scripting languages like

Perl and Tcl/Tk are ported to Linux. The X window system is the standard graphics

interface for UNIX machines, and standard X applications like xterm and xclock are

supported. The only major caveats with X windows are the hardware and memory

requirements. A 386 with 4 MB of RAM is capable of running X windows but 8 MB

or more RAM is needed to run it efficiently.

Most TCP/IP networks use ethernet as the physical network transport. Linux sup­

ports many popular ethernet cards and interfaces for personal computers. Linux also

supports SLIP (Serial Line Internet Protocol) which allows the users without ethernet

to connect to the Internet via modem. UUCP (Unix to Unix Copy) is an older mech­

anism used to transfer files, electronic mail and news between UNIX machines. If

there is no SLIP access then the Linux system can be configured to work with UUCP.

Many popular ethernet cards like 3com, ec503, Novell NEIOOO, Novel NE2000, West-

ernDigital WD8003 are supported by Linux.

Linux systems are structured like traditional Unix systems, rc files are system wide

configuration scripts executed at boot time by init which starts up all of the basic sys-

10

tern daemons such as cron, sendmail. init also configures things such as the network

parameters, system hostname and so on. rc files are usually found in the directory

/etc/rc.d[l\. Usually there are two files in this directory. One of them configures the

network while the other starts various servers used by the TCP/IP suite.

All Linux operating systems run a super server that creates sockets for a number

of services and listens on all of them simultaneously. When a remote host requests

one of the services, the super server notices it and spawns the server specified for that

port. The commonly used super server is inetd which is started at the boot time.

Linux also supports NIS, the Network Information System. NIS provides generic

database access facilities that can be used to distribute information such as that con­

tained in the passwd and groups files to all hosts on your network which makes the

network appear as a single system.

SLIP and PPP are widely used protocols for sending IP packets over a serial link.

No hardware modifications are necessary to run SLIP or PPP because any serial port

can be used. Apart from a modem and a serial board equipped with a FIFO buffer

no hardware is needed. Just like SLIP, PPP is a protocol to send datagrams across a

serial connection. PPP overcomes some of the deficiencies of SLIP. It lets the commu­

nicating sides negotiate options such as the IP address and the maximum datagram

size at start up time and also it provides client authorization. Linux also supports

NFS which is the most prominent network service that uses RPC. NFS allows the

users to access files on remote hosts in exactly the same way as local files.

11

2. Summary

Linux can be installed on a PC either through CDROM or floppies. Briefly there

are five steps in installing Linux: disk partitioning, booting from Linux installation

media, creating Linux partitions, creating filesystems and swapspace, and installing

the software on the new filesystems.

1. Partition the Hard drive: The hard drive must be partitioned to create space

for Linux. Usually other operating systems like DOS exist on the hard drive before

Linux is installed. The partitioning process allows Linux and other operating systems

to co-exist and hence allows users to have access to all operating systems.

2. Linux installation boot media: Each distribution of Linux has some kind of in­

stallation media (usually a boot floppy) to start installing the software. There are

many kinds of boot diskettes. A specific boot diskette must be selected to match the

hardware configuration of the machine, particularly the type of hard disk and the

CD driver. The boot diskette is made olf-line (typically under DOS) by copying the

appropriate parts and drivers using a special program called "rawrite". If the diskette

is made using normal DOS "copy", it will not work.

3. Create Linux partitions: After repartitioning to allocate space for Linux, Linux

partitions are created on the empty part of the hard drive. The best way to do this

is to use the Linux "fdisk" program. Device drivers are found in the directory "/dev"

and they are used to communicate with devices on the system. Two partitions are

created, one of Linux native and the other for Linux swap partition. Usually all the

executables and libraries for Linux are installed in Linux native partition. The ideal

12

space needed for Linux is around 150 MB. As noted above, the Linux partitions can

co-exist with DOS/Windows partitions that were "saved" on the disk when the hard

drive was set up.

4. Create filesystems and swap space: One or more filesystems must be created

to store files on the newly created partitions. There are several types of filesystems

for Linux. Each filesystem type has its own format and set of characterestics such as

filename length, maximum file size and so on. The most commonly used filesystem

type is "Second Extended File System" or "ext2fs". After the filesystems are created,

a swap space is created, then the filesystems are enabled.

5. Install the software and configure network: Finally, Linux must be installed on

the newly created filesystems using a installing program called "setup". Prior to in­

stallation the source device (like floppies or CDs) must be selected. Then the software

components to be installed must be selected and installed. After installing Linux, the

network must be configured. An IP address must be given for the machine, along with

a hardware network connection. The completed Linux system can be booted using

LILO (Linux Loader), located in the directory /etc/lilo. Prior to booting Linux, the

lilo configuration file /etc/lilo/config must be edited to make changes appropriate to

the local configuration. Then lilo can be executed.

As noted above, multiple operating systems can co-exist on the hard disk. The first

operating system listed in the configuration file becomes the default operating system.

That is, if Linux is listed first, it is the default operating system that comes up when

the machine is powered on. However, during booting process other installed operat­

ing systems can be selected to boot instead by typing their names at the appropriate

13

prompt. The detailed description of this process is given in Appendix A.

Chapter 3

Simple Network Management

Protocols - Version 1 and 2

1. Introduction

Many network management protocols have been implemented over the years. ICMP,

for Internet Control Management Protocol, is one which was used extensively in the

early days of networking. On Internet Protocol data networks, network engineers

used ICMP Echo and Echo Reply messages to gather limited information useful for

network management [6]. Originally intended for sending control messages informa­

tion between two network devices, most ICMP messages are not easily interpreted by

humans. These messages work as follows. A host device on a network that receives

an ICMP Echo must return an ICMP Echo Reply to the source host. A reply not

received by the sending host can, but not always, indicate a lack of network connectiv­

ity between the two hosts. For example, an application called ping (Packet InterNet

Groper) tests network connectivity to a remote device by sending an ICMP Echo to

the device, then waiting for the ICMP Echo Reply. Unfortunately the echo/reply

protocol has lot of drawbacks, such as unreliable delivery, need for polling and lim­

14

15

ited information return. Because of these drawbacks a standard network management

protocol offering a better set of services was needed. Consequently, Simple Network

Management Protocol, SNMP, was developed. SNMP is now the most widely used

network management protocol. SNMP was developed to provide a basic, no-frills

service for TCP/IP based environments. TCP/IP now dominates the interoperable

communications software market, so SNMP dominates the interoperable network-

management software market.

In order to manage today's systems and networks effectively, and to plan intelligently

for the future of network management systems, the system manager needs an under­

standing of the general technology of network management and a thorough grasp of

the details of the existing and evolving standards. SNMPv2 is a new proposed version

of SNMP intended to remove many deficiencies of the original SNMP and to broaden

its applicability to include OSTbased networks as well as TCP/IP-based networks.

In this section we review the general network management architecture and facilities

in the original SNMP. We discuss problems and deficiencies in SNMP, then describe

SNMPv2 and how this proposed version addresses the existing deficiencies. Finally,

we discuss the process of porting a version of SNMP to a Linux host.

2. Network Management Architecture

The model of network management that is used for TCP/IP network management

includes as the key elements a management station, a management agent, a manage­

ment information base (MIB), a network management protocol, and a structure of

management information[8].

16

The management station is typically a stand-alone device but may be a capabil­

ity implemented on a shared system. In either case, the management station serves

as the interface for the human network manager in the network management system.

The management station will have, at minimum, a set of management applications

for data analysis and fault recovery, an interface by which the network manager can

monitor and control the network, the capability of translating the network manager's

requirem.ents into the actual monitoring and control of remote elements in the net­

work, and a database of information extracted from the MIBs of all the managed

entities in the network.

The other active element in the network management system is the management

agent. Hardware platforms such as hosts, bridges, routers and hubs can be equipped

with SNMP, to allow them to act as management agents. A management agent re­

sponds to requests for information and requests for actions from the management

station and can asynchronously provide the management station with important in­

formation. A management station monitors the network by retrieving the values of

MIB objects. A management station can cause an action to take place at an agent

or can change an agent's configuration settings by modifying the value of specific

variables.

The resources of the network are represented as objects. Each object is, essentially,

a data variable that represents one aspect of the managed agent. The collection of

objects is referred to as a management information base. The MIB functions as a

collection of access points at the agent for the management station. These objects are

standardized across systems of a particular class (e.g., bridges all support the same

management objects).

17

The management station and agents are hnked by the network management protocol.

The protocol used for the management of TCP/IP networks is the simple network

management protocol, SNMP. There are no specific guidelines in the standards as to

the number of management stations or the ratio of management stations to agents.

In general, it is prudent to have at least two systems capable of performing manage­

ment station functions, to provide redundancy in case of failure. An other issue is

the practical one of how many agents a single management station can handle. As

long as SNMP remains relatively simple, that number can be quite high, certainly in

the hundreds.

SNMP is designed to be an application level protocol that is a part of the TCP/IP

protocol suite. It is intended to operate over the user datagram protocol (UDP) as

illustrated in Fig 3.1[8]. For a stand-alone management station, a manager process

controls access to the central MIB at the management station and provides an inter­

face to the network manager. The manager process achieves network management by

using SNMP, which is implemented on top of the layers: UDP, IP, and the relevant

physical network control protocols for ethernet, FDDI, etc. Thus, each agent must

implement SNMP, UDP and IP. In addition, there is an agent process that interprets

the SNMP messages and controls the agent's MIB. For an agent device that supports

applications that are based on TCP protocols, TCP must also be supported on the

agent. The following figure provides a somewhat closer look at the protocol context

of SNMP.

From a management station, four types of SNMP messages can be issued on behalf

of a management application: GetRequest, GetNextRequest, GetBulkRequest and

18

Management
Application

Application
manages
objects

Managed
Resources

Managed
Objects

SNMP
PDUs

SNMP
PDUs

'

S N M P Manager SNMP Agent S N M P Manager
SNMP
messages

SNMP Agent

UDP
SNMP
messages UDP

IP IP

Network Protocols Network Protocols

network or
Internet

Figure 3.1: Protocol context of SNMP

19

SetRequest. The first three are variations of the "get" function. All four messages

are acknowledged by the agent, who sends a GetResponse message back to the man­

agement application. In addition, an agent will issue a Trap message in response to

an event that affects the MIB and the underlying managed resources. Because SNMP

relies on UDP, which is a connectionless protocol, SNMP is itself connectionless. No

ongoing connections are maintained between a management station and its agents.

Instead, each exchange is a separate transaction between a management station and

an agent.

As with any network management system, the foundation of a TCP/IP based network

management system is a database containing information about the elements to be

managed. In both the TCP/IP and OSI environments, the database is referred to as

a management information base (MIB). Each resource to be managed is represented

by a MIB entry, encapsulated as an object. The MIB is a structured collection of

such objects. Every agent in the system maintains an MIB that reflects the status

of the managed resources at that node. A network management entity monitors the

resources at that node by reading the values of objects in the MIB and controls the

resources at that node by modifying those values. To support interoperability and

improve access a common scheme of representation must be used. The structure

of management information provides this representation standard. The structure of

management information, SMI, defines the general framework within which an MIB

can be defined and constructed. The SMI identifies the data types that can be used in

the MIB and how resources within the MIB are represented and named. The philoso­

phy behind SMI is to encourage simplicity and extensibility within the MIB. Thus, the

MIB can store only simple data types: scalars and two dimensional arrays of scalars.

The SMI does not support the creation or retrieval of complex data structures. This

20

philosophy is in contrast to that used with OSI management, which provides for the

complex data structures and retrieval modes required to support greater function­

ality. SMI avoids complex data types to simplify the task of implementing basic

interoperability.

3. MIB structure

Associated with each type of object in an MIB is an identifier of the ASN.l type

OBJECT IDENTIFIER. The identifier serves to name the object. In addition, be­

cause the value associated with the type OBJECT IDENTIFIER is hierarchical, the

naming convention also serves to identify the structure of object types. An object

identifier is an unique identifier for a particular object type. Its value consists of a

sequence of integers. The set of defined objects has a tree structure, with the root of

the tree being the object referring to the ASN.l standard. Starting with the root of

the object identifier tree, each object identifier component value identifies an arc in

the tree. The MIB-II object groups are structured as shown in the Fig 3.2[8|.

MIB-II has been proposed as a superset of MIB-I, adding some additional objects and

additional groups[8]. The MIB-II objects are subdivided into the following groups:

. system - overall information about the system

. interfaces - information about each of the interfaces from the system to

a subnetwork

. address translation - describes address translation table for internet-to-

subnet address mapping

. ip - information related to the implementation and execution experience

of IP on this system

. icmp - information related to the implementation and execution expe-

21

iO(1)

J org(3) !

dod(6)

J internet(1)

directory{1)

M interfaces{2)

i at(3)

ip(4)

egp(8)

I j transmission(IO)

private(4)

snmp(11)

icmp(5)

mgmt(2)

tcp(6)

mib2(1)

enterprises(l)

udp(7)

system(1)

experimental(3)

Figure 3.2: MIB2 Object Groups

rience of ICMP on this system

. tcp - information related to the implementation and execution experi­

ence of TCP on this system

. udp - information related to the implementation and execution experi­

ence of UDP on this system

. egp - information related to the implementation and execution experi­

ence of EGP on this system.

. snmp - information related to the implementation and execution expe­

rience of SNMP on this system

Many users tend to have unrealistic expectations about what can be accomplished

with SNMP. A common expectation is that SNMP will enable users to do resource

administration and overall system management. But the scope of SNMP is limited by

the objects available to manage, namely the MIB or MIB-II. Even MIB-II essentially

supports network monitoring and management only from the transport layer down,

dealing with how connections get established, how packets are routed, and similar

issues. To manage resources such as mail servers and printers, the MIB needs to

be further enhanced. SNMP and MIB-II provide a base for gaining experience in

doing multivendor network management as well as a limited set of generally useful

management features.

4. SNMP Formats

With SNMP, information is exchanged between a management station and an agent

in the form of an SNMP message. Each message includes a version number, indicating

23

Version Community SNMP PDU

PDU type I request-id 0 0 variable-bindings

PDU type request-id i error-status error-index { variable-bindings

Figure 3.3: SNMP Formats

the version of SNMP, a community name to be used for this exchange, and one of

five types of protocol data units (PDUs) as illustrated in Fig 3.3[8].

5. Transmission of an SNMP message

As described by Stallings[8], a SNMP entity performs the following actions to transmit

PDUs to another SNMP entity.

1. The PDU is constructed, using the ASN.l structure defined in RFC

1157.

2. This PDU is then passed to an authentication service, together with

the source and destination transport addresses and a community name.

The authentication service performs any required transformations for this

exchange, such as encryption or the inclusion of an authentication code,

and returns the result.

3. The protocol entity then constructs a message, consisting of a version

24

field, the community name, and the result from step 2.

4. This new ASN.l object is then encoded, using the basic encoding rules,

and passed to the transport service.

6. Receipt of an SNMP message

As described by Stallings[8], a SNMP entity performs the following actions upon

receipt of a SNMP message.

1. The syntax of the message is checked and the message is discarded if

it fails.

2. The version number is verified and if there is a mismatch it is discarded.

3. The protocol entity then passes the user name, the PDU portion of

the message, and the source and destination transport addresses to an

authentication service. If authentication fails, the authentication service

signals the SNMP protocol entity, which generates a trap and discards the

message. If authentication succeeds, the authentication service returns a

PDU in the form of an ASN.l object that conforms to the structure defined

in RFC 1157.

4. The PDU is checked for the syntax and if it passes the check an

appropriate SNMP access policy is selected and the PDU is processed

accordingly. The community string in the message acts as a password to

authenticate the SNMP message.

7. Overview of SNMPvl

The PDUs supported by version 1 of SNMP are GetRequest PDU, GetNextRequest

PDU, SetRequest PDU, Trap PDU and GetResponse PDU. The detailed description

25

of those are as follows.

The Get Request PDU is issued by a network management station and in response

it gets GetResponse PDU. The GetRequest PDU contains a request-id and variable

bindings fields. The variable bindings field contain a list of the object instances whose

values are requested. The GetResponse PDU contains the same request-id and it con­

tains the values of the object instances requested. The GetRequest PDU operation

is atomic in nature, i.e, either all the values are retrieved or none are. So if the

responding entity is able to provide values for all the variables in incoming variable

bindings list then the GetResponse PDU includes the variable bindings field with a

value supplied to each variable. If at least one of the variable values is not supplied,

then no values are returned.

The GetNextRequest PDU is almost identical to the GetRequest PDU. It has the

same PDU format and exchange pattern as the GetRequest PDU. The only difference

is that in GetRequest PDU the value requested is returned while in GetNextRequest

PDU the next value in the lexicographic order is returned. The GetNextRequest

PDU is also atomic in nature similar to GetRequest PDU. This PDU provides an

efficient mechanism for searching a table whose entries are unknown.

The SetRequest PDU is issued by a network management station. This has the

same PDU exchange pattern and format as the GetRequest PDU. The difference be­

tween them is that the SetRequest PDU is used to write an object value rather than

to read one. The GetResponse PDU contains the request-id and the variable bindings

list similar to the other PDUs mentioned above. This is also atomic in nature. Before

this PDU is executed the MIB is checked to see whether the object whose value is to

26

be set has permissions to write. If it does not have appropriate permissions then an

error is returned in GetResponse PDU.

The Trap PDU is issued by a network management agent and it is used to pro­

vide the management station with an asynchronous notification of some significant

event. The format of Trap PDU is quite different from the other PDUs. It contains

different fields like agentaddr, generic trap and timestamp. The ageniaddr is the IP

address of the object generating the Trap. The generic trap is the type of trap like

ColdStart, linkDown^ linkUp etc. The timestamp is the time at which the trap was

generated. Unlike the other PDUs, the Trap PDU does not expect a response from

the server.

7.1. Limitations of SNMPvl

There are many limitations for the SNMPvl [8]. SNMP is not suitable for retrieving

large volumes of data such as an entire routing table. SNMP traps are unacknowl­

edged. The SNMP MIB model is limited and it does not support applications that

are complicated. SNMP does not support manager-to-manager communication, so

there is no mechanism that allows a management system to learn about the devices

and networks mananged by another management system.

8. Overview of SNMPv2

The SNMPv2 was proposed to overcome the deficiencies of SNMPvl[8] . The key

enhancements to SNMPvl are provided in protocol operations, SMI and manager-to-

manager communication. The SMI was changed to accomodate complex structures in

the database, so complicated applications can be easily supported in the new version.

27

The most noticeable change in protocol operations is the inclusion of two new PDUs.

The GetBulkRequest PDU enables the manager to efficiently retrieve large blocks of

data. The InformRequest PDU enables two managers to talk to each other. Two

MIBs are defined as a part of SNMPv2 specification. The SNMPv2 MIB contains ba­

sic information, which is analogous to the SNMPvl MIB-II. The manager-to-manager

(M2M) MIB is provided to support M2M communication. Another important change

included in SNMPv2 is that the get operations are not atomic, i.e, partial results are

allowed.

The PDUs supported by SNMPv2 are GetRequest PDU, Get Next Request PDU, Get­

BulkRequest PDU, SetRequest PDU, SNMPv2 Trap PDU and InformRequest PDU.

The detailed description of these PDUs follows.

8.1. GetRequestPDU

The SNMPv2 GetRequest PDU is identical to the SNMP GetRequest PDU in format

and semantics. The only difference is in the way which responses are handled. The

Version 1 operation is atomic in nature, i.e, either all the values are retrieved or none

are. If the responding entity is able to provide values for all the variables listed then

the response contains the value supplied for each variable. If one of the requested

values is not supplied then no values are returned; instead, an error response is sup­

plied. In contrast, in SNMPv2, a variable bindings list is prepared even if values

cannot be supplied for all variables. In SNMPv2, a Response PDU is constructed by

processing each variable in the incoming variable list, according to the following rules.

1. If the variable does not have an OBJECT IDENTIFIER prefix that exactly matches

the prefix of any variable accessible by this request, then its value field is set to No-

28

SuchObject.

2. If the variable's name does not match the name of a variable accessible by this

request, then its value field is set to NoSuchlnstance.

3. Otherwise, the value field is set to the value of the named variable.

If the processing of a variable name fails then no values are returned. Instead, the

responding entity returns a R,esponse PDU v/ith an error status of genErr and a value

in the error index field that is the index of the problem object in the variable bindings

field.

8.2. Get Next RequestPDU

The SNMPv2 "GetNextRequest" PDU is identical to the SNMP "Get Next Request"

PDU in format and semantics, except for the fact that Version 1 is atomic while Ver­

sion 2 is not. In SNMPv2, a "Response" PDU for a "GetNextRequest" is constructed

by processing each variable in the incoming variable list, according to the following

rules.

1. The variable is located that is next in lexicographic order to the named vari­

able. The resulting variable binding pair is set to the name and value of the located

variable.

2. If no lexicographic successor exists, then the resulting variable binding pair consists

of the name of the variable in the request and a value field set to endOfMibView.

29

8.3. GetBulkRequestPDU

One of the major enhancements provided by SNMPv2 is the "GetBulkRequest" PDU.

The purpose of this PDU is to minimize the number of protocol exchanges required

to retrieve a large amount of management information. The "GetBulkRequest" PDU

allows an SNMPv2 manager to request that the response be as large as possible

given the constraints on message size. The "GetBulkRequest" operation uses the

same selection principle as the "Get Next Request" operation; that is, selection is al­

ways the next object instance in lexicographic order. The difference is that, with

"GetBulkRequest", multiple lexicographic successors can be selected. In essence, the

"GetBulkRequest" operation works as follows. The "GetBulkRequest" includes a list

of N variable names in the variable bindings list. For each of the first N names, re­

trieval is done in the same fashion as for "GetNextRequest". That is, for each variable

in the list the next variable in lexicographic order plus its value is returned. If there

is no lexicographic successor then the named variable and a value of endOfMibView

are returned.

If the processing of a variable name fails for any reason other than endOfMibView,

then no values are returned. Instead, the responding entity returns a "Response"

PDU with an error status of genErr and a value in the error index field that is the

index of the problem object in the varible bindings field. If the size of the message

that encapsulates the generated "Response" PDU exceeds a local limitation or the

maximum message size of the request's source party, then the response is generated

with a lesser number of variable binding pairs.

The "GetBulkRequest" operation removes one of the major limitations of SNMP,

30

which is its inability to efficiently retrieve large blocks of data. Moreover, the use of

this operation can actually enable a reduction in the size of management applications

that are supported by the management protocol, realizing further efficiencies. There

is no need for the management application to concern itself with some of the details

of packaging requests. For example, it need not perform a trial-and-error procedure

to determine the optimal number of variable bindings to put in a request PDU.

8.4. SetRequest PDU

The SNMPv2 "SetRequest" PDU is identical to the SNMP "SetRequest" PDU in

format and semantics. The only difference is in the way in which responses are

handled. The variable bindings are conceptually processed in two phases. In the first

phase, each variable binding pair, which constitutes an individual set operation, is

validated. If all variable binding pairs are valid, then each variable is altered in the

second phase i.e; each individual set operation is performed in the second phase. If no

validation errors are encountered, then an attempt is made to update all the variables

in the "SetRequest" PDU.

8.5. SNMPv2 Trap PDU

The SNMPv2 Trap PDU is generated and transmitted by an SNMPv2 entity acting

as an agent when an unusual event occurs. This PDU fulfills the same role as the

SNMP Trap PDU, but with a different format. The SNMPv2 Trap PDU uses the

same format as all other SNMPv2 PDUs except "GetBulkRequest". As with the

SNMP "Trap" PDU, no response is issued to an SNMPv2 "Trap" PDU.

31

8.6. InformRequest PDU

The "InformRequest" PDU is sent by an SNMPv2 entity acting as a manager on

behalf of an application to another SNMPv2 entity acting as a manager to provide

management information. This PDU is sent to the destinations specified in the SN-

MPv2 EventNotifyTable which is defined by manager-to-manager MIB. The PDU

includes a variable bindings field with the following elements.

1. The first variable is sysUpTime.O, as defined in MIB-II.

2. The second variable is SNMPv2EventID.i, which is defined in the manger-to-

manager MIB and which contains the object identifier of the event type.

When an "InformRequest" PDU is received, the receiving SNMPv2 entity first deter­

mines the size of a message encapsulating a "Response" PDU with the same values

in its request-id, error-status, error-index, and variable bindings fields as the received

"InformRequest" PDU. If this size exceeds a local limitation or the maximum mes­

sage size of the request's source party, a "Response" PDU is constructed with an

error status of tooBig, an error index of 0 and an empty variable bindings field.

If the incoming PDU is not too big, the receiving SNMPv2 entity passes its con­

tents to the destination application and generates a "Response" PDU with the same

values in its request-id and variable bindings fields as the received InformRequest

PDU, with an error status field of noError and with a value of 0 in its error index

field.

32

9. SNMP Installation under Linux

The SNMP which was ported to the Linux host was obtained from a ftp site in

Carnegie-Mellon. Version "cmu-snmp2.1.2.tar.Z" is a lot different from the previous

versions. The changes are briefly described as follows[9].

1. Now ipNetToMediaType distinguishes between static and dynamic entries.

2. Man pages are added for all snmp commands.

3. snmpnetstat bugs are fixed.

4. Host resources MIB is added.

5. MIB-II snmp group is added.

6. ipNetToMedia and udpEntry are added to MIB.

7. /etc/snmpd.conf is added which enables setable location and contact.

The important steps during installing SNMP are: basic setup, compile source files,

install config files and start daemon at boot time.

1. Basic setup-. First, the emu-snmp2.1.2.tar.Z distribution is uncompressed and

then untarred to get the source files. The asn.l compiler is installed automatically

during this process. Abstract syntax notation one (asn.l) is a formal language de­

veloped and standardized by CCITT and ISO. asn.l is used to define the structure

of application and presentation protocol data units (PDUs). It is also used to define

the MIB for SNMP. The asn.l compiler parses the asn.l notation and converts it

into verbose form. For example, something like 1.3.6.1.2.1.6.13 is converted to object

tcpConnTable.

2. Compile source files: The "configure" script file is used to create "Makefile". The

33

"configure" script can be used to change the installation path. If it is run without

any parameters, then the current directory is taken as the installation path. Then the

"Makefile" is run to produce the desirable executables. Needless to say, everything

must be done with root privileges. Problems such as missing "include" and "source"

files often appear at this point. The installer must determine what files are missing,

why they are required, where they should be present, etc. In my case, I had to search

the Internet to find those files. I got those files in the patches for this version from

a ftp site at the University of North Carolina. As this version is quite new, patches

are available separately. Also I have to change some "source" files because of syntax

errors. The errors occurred where the source files did not include the "include" files

appropriately. Following these changes the compilation worked succesfully, producing

binary files like snmpd, snmpwalk, snmptranslate, snmpget, snmpset, snmpnetstat and

snmptrapd.

3. Install config files: A default set of config files is installed in "/etc" directory

by running "installconf" script file. The configuration files installed in "/etc" are

snmpd. conf, acl.conf, context.conf, party, conf a.nd view.conf.

4. Start up at boot time: The /etc/rc.d/rc.inet2 file must be changed so that sn­

mpd., a daemon that responds to all snmp requests, is started at the boot time. At

the boot time, the kernel spawns the process /etc/init. init is a program which reads

the configuration file /etc/inittab and spawns other processes based on the contents

of this file. In this process it executes /etc/rc.d/rc.inet2 script which starts daemons

like syslogd, inetd, snmpd.

After compiling and configuring everything, other errors can still surface. As an

34

example, in mj' installation the error ''needs newer library Version than Hhc.4-5.2''

occured when the SNMP binaries were first executed. To remove this error I had

to get a new version of the library libc.4.7.2, install it, and create symbolic links to

point to the new library. When I rebooted the system I found that the symbolic

links were still pointing to the old library. Finally, 1 found information on an Inter­

net newsgroup that helped me to get around this problem. I got a new version of

the loader Id.so.4,7.2^ with new configuration files Id.so.cache and Id.so.config. I exe­

cuted Idconfig to update the configuration files, then rebooted the system and found

that the effective symbolic links now pointed to the new library. This completed

the installation of SNMP. The detailed description of the installation and how the

executables are used are given in Appendix B. I installed both daemon and client

executables on the same machine. It would be interesting to see how the daemon and

client executables would work when they are installed on different machines.

10. Summary

The SNMPv2 framework is a set of specifications for a second generation SNMP

framework. The SNMPv2 SMI provides for more elaborate specification and docu­

mentation of managed objects and MIBs. Much of the new material codifies existing

SNMP practices. This also includes new macros for defining object groups, traps,

compliance characteristics and capability characteristics. This version is available for

installation on a range of systems, including the public domain version installed under

Linux.

Chapter 4

Kerberos

1. Introduction

Modern computer systems provide service to multiple users and require the ability

to accurately identify the user making a request. In traditional systems, the user's

identity is verified by checking a password typed during login; the system records the

identity and uses it to determine what operations may be performed. The process of

verifying the user's identity is called authentication. Password based authentication

is not suitable for use on computer networks. Passwords sent across the network can

be intercepted and subsequently used by eavesdroppers to impersonate the user[ll].

Authentication is the verification of the identity of a party who generated some data,

and of the integrity of the data. A principal is the party whose identity is verified.

The verifier is the party who demands assurance of the principal's identity. Data

integrity is the assurance that the data received is the same as generated. Authen­

tication mechanisms differ in the number of verifiers: some support a single verifier

per message, while others support multiple verifiers.

35

36

Other security services include confidentiality and authorization. Confidentiality is

the protection of information from disclosure to those not intended to receive it.

Most strong authentication methods optionally provide confidentiality. Authoriza­

tion is the process by which one determines whether a principal is allowed to perform

an operation. Authorization is usually performed after authentication which is based

either on information local to the verifier or on authenticated statements by others.

In authentication by assertion an application simply asserts the identity of the user

to the server, and the server believes it. While more convenient for the user, authen­

tication by assertion hardly qualifies as authentication at all. Such authentication

is easily thwarted by modifying the application. Although this requires privileged

access to the system, this access is easily obtained on PCs and personal workstations.

Stronger authentication methods base on cryptography are required. Unfortunately,

strong authentication technologies are not used as often as they should be, although

the situation is gradually improving.

2. Kerberos Authentication and Security

Kerberos is a distributed authentication system intended to be used in a large envi­

ronment. It gives a means for providing service to users from unattended and hence

untrusted workstations. It provides integrity and confidentiality for data sent between

the client and server. In the Kerberos environment there are three types of hosts.

They are client, servers and Kerberos key distribution server. Kerberos was devel­

oped at MIT as part of Project Athena and now it is in its fifth version[3]. Kerberos

uses DES, a symmetric encryption system. Kerberos was developed before public key

37

cryptography came into existence. Public key systems have the advantage that it

is easier to manage large sets of users using public key cryptography than by using

symmetric key systems.

3. How Kerberos works

All the machines in the network using Kerberos rely on it to identify whether the

users are "trusted" or not. The primary part of Kerberos is a master database which

maintains a list of its users and their private keys. These keys are known only to the

Kerberos authentication server. Kerberos uses two types of credentials, called tickets

and authenticators. Both are based on private key encryption technology. A ticket

is used to uniquely identify a user to whom it is issued. The ticket also contains

information that can be used to verify the user using it. The authenticator contains

additional information, which when compared to the information in the ticket proves

that the user who has the ticket is the one to whom the ticket was issued[10j.

Generally, a ticket is only good for a single service request. Thus each time a new

service is requested a new ticket must be obtained. However, in order to reduce net­

work traffic, tickets can be sometimes reused. Timeouts are used to prevent replay

by which an attacker steals tickets from the network and then retransmits them at a

later time. All the tickets are deleted when the user logs out. If the user stays logged

in past a ticket timeout the password must be entered again for authentication. The

most obvious problem with Kerberos is that it relies on standard passwords[10]. If

the intruder gets access to the password then Kerberos cannot distinguish between

the real user and the intruder.

38

An attacker does not gain any information that would enable him to disguise if au­

thentication based on cryptography was used. Kerberos is the most commonly used

example of this type of authentication technology.

4. Kerberos Encryption

Though conceptually, Kerberos authentication proves that a client is running on be­

half of a particular user, a more precise statement is that the client has knowledge of

an encryption key that is known by only the user and the authentication server. The

user's encryption key is derived from password in Kerberos. Similarly each applica­

tion server shares an encryption key with the authentication server.

Encryption in the present implementation of Kerberos uses the data encryption stan­

dard (DES). It is a property of DES that if ciphertext (encrypted data) is decrypted

with the same key used to encrypt it, the plaintext (original data) appears. If dif­

ferent encryption keys are used for encryption and decryption, or if the ciphertext is

modified, the result will be unintelligible, and the checksum in the Kerberos message

will not match the data. This combination of encryption and the checksum provides

integrity and confidentiality for encrypted Kerberos messages.

5. The Kerberos Ticket

Initially the client and server do not share an encryption key. The client relies on the

authentication server to generate a new encryption key when it authenticates itself.

This new encryption key is called a session key and the Kerberos ticket is used to

distribute it to the verifier.

39

The Kerberos ticket is a certificate issued by an authentication server and it is en­

crypted using the server key. The ticket contains a random session key which is used

for authentication of the principal to the verifier, the name of the principal to whom

the session key was issued and an expiration time after which the session key is not

valid. The ticket is not sent directly to the verifier, but is instead senf to the client

who forwards it to the verifier as part of the application request. Because the ticket

is encrypted in the server key, knov/n only by the authentication server and intended

verifier, it is not possible for the client to modify the ticket without detection.

6. Application request and response

Kerberos executes in following manner to authenticate the user and to give permission

to the user to the end server[3]. First, the user enters the login name in response to

the Unix login prompt. Then a message is sent across the network to the Kerberos

authentication server before the password prompt. This message contains the login

name along with the name of that Kerberos server, the Kerberos ticket granting server

(TGS).

message — {login name, TGS name}

Since this mesage contains only two names, it is not encrypted. Names are not con­

sidered secret since everyone know those names to communicate. So names are the

only entities that are exchanged in cleartext between the workstation and Kerberos.

Everything else is encrypted.

The authentication server next checks the login name. If the name is found in the

database, the server gets the associated service name. The encryption keys used

by Kerberos are used as one-way encrypted passwords, similar to what is stored in

40

the password field entry of the normal Unix password file. The authentication server

forms a response to send back to the login program on the workstation. This response

contains a ticket that grants the user access to the requested TGS server. Tickets are

always sent across the network encrypted. This ticket is a 4-tuple as follows

ticket = {login name, TGS name, Workstation address, TGS session key}

The workstation address is the Internet address of the workstation. The TGS session

key is a random number generated by the authentication server. The authentication

server then encrypts this ticket using the encryption key of the TGS server which

produces a sealed ticket. A message is then formed consisting of sealed ticket and the

TGS session key as follows

message = {TGS session key, sealed ticket}

This message is encyrpted using the encrypted password contained in the database.

The login program receives the encrypted message and then it prompts for the pass­

word. The clear text password entered is encrypted using standard Unix one way

encryption function, like crypt(), which is the user's encryption key- It is used to

decrypt the message that was received. Then the clear text password is erased from

the memory- All the workstation have now is the sealed ticket that was encrypted
o

using the TGS encryption key along with the TGS session key. This sealed ticket is

incomprehensible to the workstation since it was encrypted using the TGS encryption

key which is known only to the TGS and Kerberos. At this point the workstation

saves a copy of the sealed ticket and the TGS session key. Every workstation contains

similar information, a sealed ticket for the ticket granting service along with the cor­

responding random TGS session key. Even though all the sealed tickets are encrypted

using the same encryption key, since each ticket contains the name of the user the

ticket was granted to, the workstation address, a different random TGS session key.

41

each one is different.

The workstation builds a message to be sent to the ticket granting service. This

message is a 3-tuple as follows

message = {sealed ticket, sealed authenticator, end server name}

The authenticator is created by the workstation and it is a 3-tuple as follows

authenticator = {login name, Workstation address, current i^me}

The authenticator is sealed using the TGS session key obtained from the TGS server.

The ticket granting service receives the message and then it decrypts the sealed ticket

using the TGS encryption key. From the unencrypted ticket the TGS gets the TGS

session key. It uses this session key to decrypt the sealed authenticator. There are

lots of items for the TGS to check for validity. They are the login name in both the

ticket and the authenticator and the TGS server name in the ticket. Also it checks the

network address in the ticket and the authenticator. Finally, it compares the current

time in the authenticator to check whether the message was in the valid time range.

This requires that all the workstations and servers maintain their clocks within some

prescribed tolerance. The TGS now gets the end server name from the message in

the Kerberos database. It also gets the encryption key for the specified service. Then

the TGS forms a new random session key and then creates a new ticket based on the

requested end service name and the new session key as follows

ticket — {login name, end server name, Workstation name new session key}

This ticket is sealed using the encryption key for the requested end server. The TGS

forms a message as follows

message = {new session key, sealed ticket}

This message is then sealed using the TGS session key and sent to the client work­

station. The client decrypts this using the TGS session key. The client builds an

42

authenticator as follows

authenticator = {login name, Workstation name, current time}

It seals this using the new session key. Then it builds a message as follows

message = {sealed ticket, sealed authenticator, end server name}

This message is not encyrpted as both the ticket and the authenticator are already

sealed and the other one is just the end server name. The end server receives this

message and decrypts the sealed ticket using its encryption key. It then uses the new

session key contained in the ticket to decrypt the authenticator. Then it does some

validation like checking the login name, the workstation address and the current time.

Then if everything is valid, it communicates with the client.

7. Obtaining additional tickets

The basic Kerberos authentication protocol allows a client with knowledge of the

user's password to obtain a ticket and session key for and to prove its identity to

any verifier registered with the authentication server. The user's password must be

presented each time the user performs authentication with a new verifier. This is

cumbersome and hence instead the system should support single sign-on where the

user logs into the system once and subsequent authentication occurs automatically.

The obvious way to support this is to cache the user's password on the workstation.

However this is dangerous. Though a Kerberos ticket and the key associated with it

are valid for only a short time, the user's password can be used to obtain tickets, and

to impersonate the user until the password is changed. Hence, Kerberos caches only

tickets and encryption keys, collectively called as credentials which work only for a

limited period.

43

The ticket granting exchange of the Kerberos protocol allows a user to obtain tickets

and encryption keys using such short-lived credentials, without re-entry of the user's

password. When the user first logs in, an authentication request is issued and a ticket

and session key for the ticket granting service is returned by the authentication server.

This ticket, called a ticket granting ticket, has a relatively short life. The response is

decrypted, the ticket and session key are saved, and the user's password forgotten.

Subsequently, when the user wishes to prove its identity to a new verifier, a new

ticket is requested from the authentication server using the ticket granting exchange.

The ticket granting exchange is identical to the authentication exchange except that

the ticket granting request has embedded within it an application request, authen­

ticating the client to the authentication server, and the ticket granting response is

encrypted using the session key from the ticket granting ticket, rather than the user's

password.

8. Protecting application data

As described so far, Kerberos provides only authentication: assurance that the au­

thenticated principal is an active participant in an exchange. A by-product of the

Kerberos authentication protocol is the exchange of the session key between the client

and the server. The session key may subsequently be used by the application to pro­

tect the integrity and privacy of communications. The Kerberos system defines two

message types, the safe message and the private message to encapsulate data that

must be protected, but the application is free to use a method better suited to the

particular data that is transmitted.

44

9. Infrastructure and Cross-Realm Authentication

In a system that crosses organizational boundaries, it is not appropriate for all users

to be registered with a single authentication server. Instead, multiple authentication

servers must exist, where each is responsible for a subset of the users or servers in

the system. The subset of the users and servers registered with a particular authen­

tication server is called a realm (if a realm is replicated, users will be registered with

more than one authentication server). Cross-realm authentication allows a principal

to prove its identity to a server registered in a different realm.

To prove its identity to a server in a remote realm, a Kerberos principal obtains

from its local authentication server a ticket granting ticket for the remote realm.

This requires the principals's local authentication server to share a cross-realm key

with the verifier's authentication server. The principal next uses the ticket granting

exchange to request a ticket for the verifier from the verifier's authentication server,

which detects that the ticket granting ticket was issued in a foreign realm, looks up

the cross-realm key, verifies the validity of ticket granting ticket, and issues a ticket

and session key to the client. The name of the client, embedded in the ticket, includes

the name of the realm in which the client was registered.

With Kerberos Version 4, it was necessary for an authentication server to register

with every other realm with which cross-realm authentication was required. This was

not scalable because complete interconnection required the exchange of keys where

n was the number of realms.

In contrast. Version 5 supports multi-hop cross-realm authentication, allowing keys to

45

be shared hierarchically. With V5, each realm shares a key with its children and par­

ent. For example, the UMT.EDU realm shares a key with the EDU realm which also

shares keys with MIT.EDU, USC.EDU and UMN.EDU. If no key is shared directly by

UMT.EDU and MIT.EDU, authentication of the client vamc@UMT.EDU to a server

registered with the MIT.EDU realm proceeds by obtaining a ticket granting ticket for

EDU from the UMT.EDU authentication server, using that ticket granting ticket to

obtain a ticket granting ticket for the MIT.EDU realm from the EDU authentication

server and finally obtaining a ticket for the verifier from the MIT.EDU authentication

server.

The list of realms that are transmitted during multi-hop cross-realm authentication

is recorded in the ticket and the verifier accepting the authentication makes the final

determination about whether the path that was followed should be trusted. Short­

cuts through the hierarchy are supported and can improve both the trust in and the

performance of the authentication process.

10. other approaches for improving security

Kerberos is not a complete solution to network security problems. There are some

other tools which provide partial solutions to the network security problems and when

combined with Kerberos they provide stronger security. Among these other tools are

one-time passcodes and pub lie-key cryptography [12].

11. One-time passcodes

A one-time passcode authentication mechanism uses a different passcode each time

authentication is required. Kerberos does not protect against the theft of a password

46

through a Trojan horse login program on the user's workstation, but if the user's

password were to change each time it was entered, a password stolen in this manner

would be useless to an attacker. One-time passcode authentication methods typically

use a credit card sized device that either displays a time varying password (called

a passcode), or returns a passcode when a challenge is entered on a small keypad.

Some methods use a printed list of passcodes that can be used one after another.

When a user logs in using one of these devices, the user is prompted for the passcode.

Depending on the style, the prompt may include the challenge that is to be typed

into the device. The user enters the passcode from the device in much the same way

as a normal password.

One-time passcode methods can be combined with Kerberos so that knowledge of

both the passcode and a password-based encryption key are required to successfully

complete the initial authentication exchange. Commercial products that combine

one-time passcodes with Kerberos are available.

12. Public-key Cryptography

In public-key cryptography, encryption and decryption are performed using a pair of

keys such that knowledge of one key does not provide knowledge of the other key in

the pair. One key is published and is called the public key, and the other key is kept

private. This second key is called the private key, not to be confused with a secret

key which is shared by the parties to communication in a conventional cryptosystem

(it takes two to share a secret, but once you tell something to anyone else it is no

longer private). Public-key cryptography has several advantages over conventional

cryptography when used for authentication[14]. These include more natural support

47

for authentication to multiple recipients and the elimination of secret encryption keys

from the central authentication server.

While public-key encryption is well suited for use in authentication by store and for­

ward applications such as electronic mail, and it is required by applications where a

signature is verified by many readers, performance is a problem for high-performance

servers that perform many authentication operations. With the USA algorithm, the

most accepted algorithm for public key cryptography, the private key operation (sign­

ing or decrypting a message) is expensive.

Lots of work has also been done to add public key support to Kerberos where it

can be confined to the initial request for a ticket granting ticket. Subsequent ex­

changes uses normal cryptography for better performance. PubHc key encryption can

also be used by authentication servers to exchange conventional cross realm keys.

13. Limitations of Kerberos

There are several problems associated with Kerberos [15]. One of the most serious

problems is that the Kerberos master authentication server must store all the keys in

plain text. So if the security of the master authentication server is compromised then

the entire Kerberos system is compromised. Also the Kerberos is not secure against

replay attacks. This is because authenticators have time outs associated with them

which are large enough to accomodate machines with slightly unsynchronized clocks.

This could be solved by maintaining a cache of all used authenticators so that no time

outs are necessary.

48

In particular, Kerberos is not effective against password guessing attacks; if a user

chooses a poor password, then an attacker guessing that password can impersonate

the user. Similarly, Kerberos requires a trusted path through which passwords are

entered. If the user enters a password to a program that has already been modified by

an attacker (a Trojan horse), or if the path between the user and the initial authenti­

cation program can be monitored, then an attacker may obtain sufficient information

to impersonate the user

14. Kerberos Installation under Linux

The version of Kerberos ported to Linux was obtained from a ftp site at MIT. The

important steps during installation of Kerberos are: set up, configuration, build, and

installation[13].

1. Set up: In order to build and install Kerberos approximately 60-70 MB of disk

space is needed. The exact amount varies depending on the platform and whether the

distribution is compiled with debugging options or not. The first step is to guarantee

that the required space is available to unpack the source distribution. The Kerberos

V5 distribution comes in two compressed tar files. The first file, which is generally

named krb5.src.tar.gz, contains the sources for all of Kerberos except for the crypto

library, which is found in the file krb5.crypto.tar.gz.

2. Configuration: There are a number of options to "configure" to control how the

Kerberos distribution is built. Options like compiler, flags and root directory are

configured before compiling the source files. Here the "gcc" compiler is used and all

the default set of "gcc" compiler flags are used. The files to be configured are "os-

49

conf.h", "config.h", "krb.conf" and "krb.realms", "osconf.h" and "config.h" are two

configuration files which should be edited to control various compile time parameters

in the Kerberos distribution. Several things like pathname to the file which defines

the known realms, pathname to the file which assigns hosts to realms and pathname

to the database that maps authentication names to local account names are defined in

"osconf.h". Several error messages are defined in "config.h". These "configure" files

are generated using "autoconf" which is found in the "/src/util/autoconf" directory

in the distribution. The "krb.conf" file is used to specify a system's default Kerberos

realm and locations of the Kerberos servers. Here the realm name is "UMT.EDU".

All the realms and the mapped hosts are mentioned in "krb.realms" file. All hosts

which uses Kerberos should have certain ports defined in the system's "/etc/services"

file.

3. Build: The build is performed using standard "make" tools. After configuring

all the files, the supplied "Makefile" is executed which should produce all the ex-

ecutables required for the Kerberos system. There are lots of syntax errors in the

source code and they are fixed by me during compiling process.

4. Installation: The realm name must be chosen to specify the system's administra­

tive domain. Usually the realm name is the Internet domain name in capital letters.

Kerberos realm names are case-sensitive. For example, if the Internet domain name is

umt.edu^ then the Kerberos realm name should be "UMT.EDU". In my installation,

I discovered several specific problems after first installing the software. When I tried

to run the test program it did not work in the way it is supposed to. These problems

had also been reported when Kerberos was ported to Ultrix 4.3 machines[20], and

were traced to the file "src/lib/crypto/descrc.c". Internet sources[20] provided infor­

50

mation on how to fix these problems. Also I had problems because the realm name

was not recognized by the Kerberos database. This is also fixed with help from the

Internet sources[20]. After all these fixes, Kerberos works fine on the Linux machine.

15. Summary

The Version 5 Kerberos is the latest available version of a "standard" public domain

authentication service used to verify users. This version is available for installation

on a range of systems. Kerberos can be used with SNMP to provide more security to

the SNMP system.

Chapter 5

Firewalls

1. Introduction

A firewall is a term derived from a part of a car. In cars, firewalls are physical objects

that separate the engine block from the passenger compartment. They are meant to

protect the passenger in case the car explodes. A firewall in computers is a logical

device that limits communication between two networks[7].

The simplest form of firewall would be the following.

1. Take a computer that has routing capabilities, such as a system running Unix.

2. Put in two interfaces, eg., serial ports, ethernet, token ring, etc.

3. Connect one network to each interface.

4. Impose a selective form of network layer forwarding to link traffic between the two

networks.

The purpose of a firewall is to provide a point of defense which controls access to

services. This requires a mechanism for selectively permitting or blocking traffic be­

tween two networks. Most firewalls use a combination of proxying and packet filtering.

51

52

Proxying is done using "proxy servers". A proxy for a network protocol is an appli­

cation that runs on a firewall host and connects specific service requests across the

firewall acting as a gateway. The proxy protects the firewall host by eliminating the

need for the user to log into the firewall. Packet filtering is a process through which

the firewall host selectively allows packets to pass through the firewalls. All the net­

work traffic is analyzed in the form of network layer packets in the filtering gateway.

Each packet is examined to match a set of filtering rules and dealt accordingly. Gen­

erally, packets are allowed to pass freely from the internal network to the outside

world, but packets from the outside world are filtered out of the traffic visible to the

internal network. There are two types of firewalls. They are internal firewalls and

external firewalls. An external firewall is placed in between the external network and

the internal network while the internal firewall is placed in between internal network

of non-sensitive systems and internal network of sensitive systems.

2. What can a firewall protect against ?

Some firewalls permit only Email traffic to pass between networks, thereby protect­

ing the protected network against any attacks other than attacks against the Email

service. Other firewalls provide less strict protections, and block services that are

known to be subject to security problems.

Generally, firewalls are configured to prevent any access of internal services from

the "outside" world. This, more than anything, helps prevent rouges from logging

into machines on a protected network from the outside. More elaborate firewalls block

traffic from the outside to the inside, but permit users on the inside to communicate

freely with the outside.

53

Firewalls are also important since they can provide a single "choke point" where

security and audit can be imposed. Unlike in a situation where a computer system

is being attacked by someone dialing in with a modem, the firewall can act as an

effective "phone tap" and tracing tool.

3. What can't a firewall protect against ?

Firewalls can't protect against attacks that don't go through the firewall. Many cor­

porations that connect to the Internet are very concerned about proprietary data

leaking out of the company through that route. Unfortunately for those concerned,

a magnetic tape can just as effectively be used to export data. Firewall policies must

be realistic, and reflect the level of security in the entire network. For example, a

site with top secret or classified data doesn't need a firewall at all: they shouldn't

be hooking up to the Internet in the first place, or the systems with the really secret

data should be isolated from the rest of the corporate network.

Firewalls can't protect very well against things like viruses[17]. There are too many

ways of encoding binary files for transfer over networks, and too many different ar­

chitectures and viruses to try to search for them all. In other words, a firewall cannot

replace security-consciousness on the part of a network's users. In general, a firewall

cannot protect against a data-driven attack - attacks in which something is mailed

or copied to an internal host where it is then executed. For example, this form of

attack has occurred in the past against various versions of Sendmail, and once a user

on the protected network has accepted such a mail message, the attack has by-passed

the firewall security.

54

4. Design Decisions

In configuring a firewall, the major design decisions with respect to security are often

already dictated by corporate or organizational policy. Specifically, a decision must

be made as to whether security is more important than ease-of-use, or vice versa.

There are two basic approaches that summarize the conflict;

1. That which is not expressly permitted is prohibited

2. That which is not expressly prohibited is permitted

The importance of this distinction cannot be overemphasized. In the former case,

the firewall must be designed to block everything, and services must be enabled on

a case-by-case basis only after a careful assessment of need and risk. This tends to

impact users directly, and they may see the firewall as a hindrance. In the second

case, the systems administrator is placed in a reactive mode, having to predict what

kinds of actions the user population might take that would weaken the security of the

firewall, and having to prepare defenses against them. This essentially pits the firewall

administrator against the users in an endless arms race that can become quite fierce.

Users can generally compromise the security of their login if they try or aren't aware

of reasonable security precautions. If the user has an open access login on the firewall

system itself, a serious security breach can result. The presence of user logins on the

firewall system tends to magnify the problem of maintaining the system's integrity.

A second important statement of policy is implicit in the that which is not expressly

permitted is prohibited stance. This stance is more "fail safe", since it accepts that

the administrator is ignorant of what TCP ports are safe, or what holes may exist in

the manufacturer's kernel or applications. Since many vendors are slow to publicise

55

security holes, this is clearly a more conservative approach. It is an admission of the

fact that what you don't know CAN hurt you.

5. About Proxy Servers

Firewalls inhibit the access to the Internet from the private network. Programs like

Netscape, which require a direct Internet connection, will not work in normal mode

from behind the firewall. Being unable to ftp directly to your computer is another big

problem, requiring a two step, Internet to firewall and firewall to protected computer

setup. These problems can be overcome by using a Proxy Server.

In a proxy server the data is handled at an application level rather than at the

packet level. A proxy server looks and acts like a real server from the client's point

o
of view and as a real client from the real server's point of view. For example, pro­

grams like Netscape can be configured to use a proxy server so that they also allow

the addition of strong user authentication which is not possible in packet filtering

gateways. One of the new mechanisms provided by proxy servers is "caching". The

caching mechanism is disk based and persistent which means that it survives restarts

of the proxy server as well as the server itself. The proxy caching provides "virtual

bandwidth".

6. Internal Components of a Firewall

The important internal components of a firewall are the screening router and bastion

/jos^[18]. A screening router is a basic component of most firewalls. A screening

router can be a commercial router or a host-based router with some kind of packet

filtering capability. Typical screening routers have the ability to block traffic between

56

networks or specific hosts, on an IP port level. Some firewalls consist of nothing

more than a screening router between a private network and the Internet. The term

bastion originally referred to the highly fortified parts of a medieval castle, i.e., a point

that overlooks critical areas of defense and usually has stronger walls, room for extra

troops, and the occasional useful tub of boiling hot oil for discouraging attackers. A

bastion host is a system identified by the firewall administrator as a critical strong

point in the network's security. Generally, bastion hosts will have some degree of

extra attention paid to their security, will undergo regular audits, may have modified

software, and may have restrictions on the way it is used. The bastion hosts should

also be physically secure.

7. Typical Screened Host Gateway

Possibly the most common firewall configuration is a screened host gateway. This

is implemented using a screening router and a bastion host as illustrated in Figure

5.1 [18]. Usually, the bastion host is on the private network, and the screening router

is configured such that the bastion host is the only system on the private network that

is reachable from the Internet. The bastion host thus needs to maintain a high level of

host security. Often the screening router is configured to block traffic to the bastion

host on specific ports, permitting only a small number of services to communicate

with it. There are some disadvantages to this architecture. The major one is that

if the attacker manages to break in to the bastion host, then there is nothing left

in the way of network security between the bastion host and the rest of the internal

hosts[21].

External Network

Screening Router"

FIREWALL
Bastion,
Host

Internal Network

Figure 5.1: Typical Screened Host Gateway

58

Outside Network

Exterior
Router

Bastion
Host

Perimeter Network FIREWALL

Interior
Router

Internal Network

Figure 5.2: Typical Screened Subnet

8. Typical Screened Subnet

In some firewall configurations, an isolated subnet is created, situated between the

Internet and the private network. This adds an extra layer of security to the screened

host architecture. Typically, this network is isolated using screening routers, which

may implement varying levels of filtering. Generally, a screened subnet is config­

ured such that both the Internet and the private network have access to hosts on the

screened subnet, but traffic across the screened subnet is blocked. Some configurations

59

of screened subnets will have a bastion host on the screened network, either to support

interactive terminal sessions or application level gateways as illustrated in Fig 5.2[18].

The two main culprits attacking firewalls are IP spoofing and hijacking tools, and

combinations of both. Generaly, intruders use IP spoofing to gain root access for

some purpose. Similarly, they can hijack terminal connections regardless of their

method of gaining root access.

9. IP spoofing

To gain access, intruders create packets with spoofed source IP addresses, attempting

to exploit applications that use authentication based on IP addresses. IP spoofing

thus leads to unauthorized user and possibly root access on the targeted system. It is

possible to route packets through filtering-router firewalls if they are not configured

to filter incoming packets whose source address is in the local domain. It is important

to note that IP spoofing attacks are possible even if no reply packets can reach the

attacker.

Examples of configurations that are potentially vulnerable include

1 - routers to external networks that support multiple internal interfaces

2. routers with two interfaces that support subnetting on the internal network

3. proxy firewalls where the proxy applications use the source IP address for authen­

tication

Familiar services that are vulnerable to the IP spoofing attack include SunRPC and

NFS, X windows exchange protocols, and all other applications that use source IP

60

addresses for authentication.

10. Hijacking tools

Once the intruders have root access on a system, they can use a tool to dynamically

modify the UNIX kernel. This modification allows them to hijack existing terminal

and login connections from any user on the system [20].

In taking over the existing connections, intruders can bypass one-time passwords

and other strong authentication schemes by tapping the connection after the authen­

tication is complete. For example, a legitimate user connects to a remote site through

a login or terminal session. The intruder hijacks the connection after the user has

completed the authentication to the remote location, and the remote site is now com­

promised.

Currently, hijacking tools are most often used on SunOS 4.1.x systems due to the

wide number of these systems available and the fact that there are well known secu­

rity leaks on these systems that allow unauthorized root access. However, the system

features that make this type of attack possible are not unique to SunOS.

Intruder activity based on IP spoofing source IP addresses can lead to unauthorized

remote root access even to systems behind a filtering-router firewall. After gaining

root access and taking over existing terminal and login connections, intruders can

also gain access to remote hosts.

61

11. Solutions

The first step in "solving" or avoiding IP spoofing problems is simply to detect these

attacks when they occur[20]. If packets are monitored using network monitoring soft­

ware such as netlog and if a packet on the external interface has both its source and

destination IP addresses in the local domain then the system is under attack. Another

way to detect IP spoofing is to compare the process accounting logs between systems

on the internal network. If the IP spoofing attack has succeeded, a log entry on the

victim machine showing a remote access is found on the apparent source machine and

there will be no corresponding entry for initiating that remote access.

Detecting the use of hijacking tools involves the following steps. When the intruder

attaches to an existing terminal or login connection, users may detect unusual activ­

ity, such as commands appearing on their terminal that they did not type or a blank

window that will no longer respond to their commands. Users should be encouraged

to inform any such activity to system administrator. In addition particular attention

should be paid to connections that have been idle for a long time. Once the attack

is completed, it is difficult to detect. However, the intruders may leave remnants of

their tools. For example, a kernel streams module designed to tap into existing TCP

connections can be found.

The next step is the implementation of preventive measures designed to reduce the

chance that attacks of all types will be succesful. The best method of preventing

the IP spoofing problem is to install a filtering router that restricts the input to an

external interface, known as an input filter. This technique does not allow a packet

through if it has a source address from internal network. In addition, outgoing pack­

62

ets that have a source address different from the internal network are filtered in order

to prevent a source IP spoofing attack originating from the site. Several vendors have

reported support for this feature; including Bay Networks/Wellfleet routers (Version

5 and later), Cabletron - LAN Secure, Cisco - RIS software (all releases of Version

9.21 and later), and Livingston (all Versions)[20].

If a vendor's router does not support filtering on the inbound side of the interface or

if there is a delay in incorporating the feature in the system, the spoofed IP packets

can be filtered by using a second router between external interface and the outside

connection. This second router is configured to block all the packets that have a

source address in the internal network. To serve this purpose a filtering router or a

Unix system with two interfaces that supports packet filtering can be used.

There is no specific way to prevent use of hijacking tools other than preventing in­

truders from gaining root access in the first place. If there is a root compromise that

permits a hijacking recovery following the attack can be done as follows.

1. Disconnect from the network or operate the system in single-user mode during the

recovery- This will keep users and intruders from accessing the system.

2. Verify system binaries and configuration files against the vendor's media. Do not

rely on timestamp information to provide an indication of modification. Do not trust

any verification tool such as cmp(l) located on the compromised system as it too

may have been modified by the intruder. In addition, do not trust the results of the

standard UNIX sum(l) program, as intruders have been known to modify system files

in such a way that the checksums remain the same. Replace any modified files from

the vendor's media, not from backups.

3. Search the system for new or modified setuid root files.

63

find / -user root -perm -4000 -print

If the type of filesystem is NFS or AFS, use ncheck to search the local file systems,

ncheck -s /dev/sdOa

4. Change the password on all accounts.

5. Don't trust backups for reloading any file used by root.

12. Summary

In this chapter a brief description of what the firewalls are and what they can and

cannot do are provided. Also IP spoofing and ways to overcome it are described.

Presently, there are no standard public domain firewall systems that can easily be

installed and tested in a Linux environment. As a result, I did not implement any

firewall installation. Proxy servers are discussed which allow direct access to the

Internet from behind a firewall. Firewalls can be used with SNMP or Kerberos to

provide additional security to the system.

Bibliography

Kirch, Olaf. Linux Network Administrator's Guide, O'Reilly and associates Inc.

Curry, David. UNIX system security-A guide for users and system administra­
tors, Addison Wesley Professional computing series.

Stevens, Richard. Unix network programming, Prentice Hall.

Linux Networking Manual, Slackware Inc., California.

Comer, Douglas. Internetworking with TCP/IP, volume J, Prentice Hall.

Comer, Douglas, David Stevens. Internetworking with TCP/IP, volume 2, Pren­
tice Hall.

Hunt, Craig. TCP/IP networking. O'Reilly and Associates.

Stallings, William. SNMP, SNMPv2 and CMIP, The practical guide to network
management standards, Addison Wesley computing series.

SNMP notes from Carnegie Mellon.

Needham and Shroeder. Kerberos Authentication system.

Neuman, Clifford and Ts'o, Theodore. An Authentication Service for Computer
Networks, IEEE Communications, 32(9):33-38. September 1994.

Zorn, Glen and Neuman, Clifford. One-time passwords with Kerberos, Internet
Draft ietf-cat-kerberos-passwords-01, April 1995.

Kerberos notes from MIT.

Wray, Neuman and Tung. Public key Cryptography for Initial Authentication in
Kerberos, Internet Draft ietf-cat-kerberos-pk-init-00, March 1995.

Bellovin and Merritt. Limitations of the Kerberos Authentication System. Pro­
ceedings of the Winter 1991 Usenix Conference. January 1991.

Garfinkel, Simson and Spafford, Gene. Building Internet Firewalls, O'Reilly and
Associates, June, 1991.

Cheswick, William and Bellovin Stephen. Firewalls and Internet Security: Re­
pelling the Wily Hacker. Addison-Wesley, Spring 1994.

64

65

[18] Ranum, Marcus. Thinking About Firewalls, Proceedings of Second International
Conference on Systems and Network Security and Management(SANS), April,
1993.

[19] Ranum, Marcus. An Internet Firewall, Proceedings of First International Con­
ference on Systems and Network Security and Management(SANS), November,
1992.

[20] Sources on Internet.

[21] Chapman, Brent and Zwicky, Elizabeth. Building Internet Firewalls, O'Reilly
and Associates.

Appendix A

Linux Installation

The hard drive is partitioned using the fdisk program as follows, under Linux

fdisk /dev/sda

where /dev/sda is the drive name. This gives a menu as follows.

Command (m for help): m

Command action

a toggle a bootable flag

d delete a partition

I list known partition types

m print this menu

n add a new partition

p print the partition table

q quit without saving changes

t change a partition's system id

u change display/entry units

V verify the partition table

w write table to disk and exit

X extra functionality

Here n is selected to create a new partition. This gives the following menu.

Command (m for help): n

Command action

e extended

66

67

p primary partition (1-4)

Primary partition is created by selecting p.

The partition number 2 is entered, because the first partition is already used by DOS.

The amount of space required is mentioned by me.

The swap partition is created similarly-

Now the swap partition is activated as follows.

mkswap -c /dev/sdaS 10336

After formatting the swap space it is enabled as follows.

swapon /dev/sdaS

The filesystem is created as follows.

mke2fs -c partitionname size

where partitionname is the name of the partition and size is the size of the partition in

blocks. Now the system is ready for the installation of Linux. The "setup" program \s

used to install Linux where the source and specific software to be installed are selected.

The network is configured using the netconfig command. The IP address and netmask

are defined here which are added to the /etc/hosts file. The system is loaded by the

Linux loader (lilo). The system has to be configured to tell the loader which operating

system to load while booting. After configuring the system the file /etc/lilo.conf is

produced. In order to activate the system /etc/lilo is executed. The system can be

rebooted by using either reboot or shutdown -r now.

Appendix B

SNMP Installation

The SNMP ported to Linux host was obtained from a ftp site in Carnegie Mellon.

First, the cmu-snmp2.1.2.tar.gz is uncompressed and untarred to get the source files

as follows.

gzip -d cmu-snmp2.1.2.tar.gz

tar -xvf cmu-snmp2.1.2.tar

The asn.l compiler is installed automatically during this process.

The configure script file is used to create Makefile. To compile make is executed.

Only client or server part (agent) can be installed by executing make installclient or

make installagent. The configuration files are installed in /etc directory by running

installconf as follows.

/etc/installconf hostname ipaddress

The configuration files installed in /etc &ve snmpd.conf, acl.conf, context.conf, party, conf

and view. conf.

The executables produced after compiling are snmpwalk, snmptranslate, snmptrapd,

snmpget, snmpnetstat, snmpd and snmpset. All these binaries are kept in /usr/sbin

directory. The /etc/rc.d/rc.inet2 file must be changed so that snmpd, a daemon that

responds to all snmp requests, is started at the boot time as follows.

if [-f /usr/sbin/snmpd]

then

echo -n "snmpd"

68

69

/usr/sbin/snmpd &

else

echo ''snmpd not found"

exit 1

fi

The SNMP executables are used as described below, snmpget is used as follows.

snmpget [-v 2] hostname noAuth ohjectID [objectID]...

For example,

snmpget darkstar.umt.edu noAuth system.sysName.O

retrieves the variable system.sysName.O.

snmpnetstat is used as follows.

snmpnetstat hostname noAuth -[airp]

For example,

snmpnetstat darkstar.umt.edu noAuth -a

displays the state of all sockets.

snmpnetstat darkstar.umt.edu noAuth -i

displays the state of all interfaces.

snmpnetstat darkstar.umt.edu noAuth -r

displays the routing tables.

snmpnetstat darkstar.umt.edu noAuth -p

displays the statistics about a particular protocol.

snmpset is used as follows.

snmpset darkstar.umt.edu noAuth system.sysContact.O

70

sets the variable system.sysContact.O.

snmptranslate is used as follows.

snmptranslate -[n d]

For example,

snmptranslate -n sysdescr

translates sysdescr to actual form like system.sysDescr.

snmptranslate -d sysdescr

prints description of the object.

snmpwalk is used as follows.

snmpwalk darkstar.umt.edu noAuth system

retrieves all the variables under system in the MIB. This is like SNMP GetBulk request

of SNMPv2.

Appendix C

Kerberos Installation

The Kerberos V5 distribution consists of two files krbS.src.tar gz smd krb5.crypto.tar.gz.

Both files are uncompressed and untarred as follows.

gzip -d hrb5.src.tar.gz

tar -xvfkrb5.src.tar

There are a number of options to configure to control how the Kerberos distribution

is built. Options like compiler, flags and root directory are configured before compil­

ing the source files. The files that are configured are osconf.h, config.h and krb.conf.

The krb.conf file is used to specify the Kerberos realm and locations of the Kerberos

servers. It also specifies the time to live of the ticket. The file is as follows

ticket-time 6000

realm-name UMT.EDU

UMT.EDU^{

adminserver darkstar.umt.edu

kdc darkstar.umt.edu

realm UMT.EDU }

The build is performed using standard make tools. After configuring all the files,

the Makefile is executed which should produce all the executables required for the

Kerberos system.

The kdb5-edit program is used to add new users to the database as follows.

kdh5-.edit

71

72

which prompts for the user name and the password. This password is further used

while obtaining tickets. This password is encrypted using some crypt programs. Also

the data is encrypted while transferring from client to servers.

The kinit is used to obtain credentials in order to communicate with the key dis­

tribution server as follows.

kinit username

Then it prompts for the password and the ticket is issued only when the password is

validated.

The klist program is used to list the contents of the ticket file as follows.

Mist

	Network management and security for Unix
	Let us know how access to this document benefits you.
	Recommended Citation

	ProQuest Dissertations

