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Fajardo-Yanez, Alex, Ph.D., December 2005 Forestry

Linking spatial patterns to forest ecological processes by using spatial statistical methods 

Chairman: John M. Goodbum

While spatial patterns have long been recognized as important aspects of forest 
vegetation and site factors, the task of explaining patterns in relation to underlying 
processes has been more difficult. Advances in spatial statistical analysis are offering 
ecologists new strategies for examining spatial patterns that have the potential to better 
link observed patterns to processes. This dissertation project applied multiple methods of 
spatial statistical analysis to four field studies conducted in Montana (USA) and Chile 
(South America), including some novel approaches for examining causal factors and 
extending the utility of plot-based data. In the first study of natural stands of Nothofagus 
glauca in south-central Chile, analysis using Ripley’s Z-function indicated that the 
ecological status of N. glauca may vary from pioneer to gap strategist depending on site 
and stand conditions. On harsh sites, N. glauca seedlings displayed positive spatial 
associations with overstory trees, suggesting facilitation. To further examine bivariate 
associations observed between regeneration and overstory trees I studied ponderosa 
pine/Douglas-fir forests of western Montana. A new index was developed that quantifies 
the strength of association between canopy layers. This index considers the ratio between
the value (Z  1.2(t)) of the bivariate Z-function and the corresponding confidence envelope 
at a specified distance (t). Larger index values indicate greater departures from the 
hypothesis of no spatial association, prompting further ANOVA comparisons among 
groups of plots differing in moisture availability. Seedlings of both ponderosa pine and 
Douglas-fir tend to be positively associated with overstory trees in drier sites, and 
negatively associated on moister sites. In a third study examining pine plantations in 
Patagonia, an effort to further discriminate between multiple factors influencing spatial 
patterns at different scales utilized a semivariogram approach to formulate stand 
development models for even-aged populations. In the fourth study, data from ponderosa 
pine restoration treatments in a randomized block design were weighted using a spatial 
ANOVA model to control for spatial auto-correlation, allowing expansion of the original 
design to examine age classes separately. This case study indicated that old trees 
responded positively to release from competition via harvesting, but that spring broadcast 
burning may reduce both growth and vigor. These various studies emphasize the 
importance of both spatial pattern description and the utility of statistical strategies for 
examining potential causal factors.
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Chapter 1

BACKGROUND, BASIC ANALYTICAL TOOLS, AND POTENTIAL OF SPATIAL 

PATTERN ANALYSIS FOR E X A M IN IN G  FOREST STAND DYNAM ICS

“Everything is related with everything else, but near things are more related than distant

things” (Tobler, 1970)

“We must find ways to quantify patterns of variability in space and time, to understand 

how patterns change with scale, and to understand the causes and consequences of

patterns” (Levin, 1992).

1.1 SPATIAL STATISTICS APPLICATIONS TO PLANT ECOLOGY

Plant ecology has a long history of addressing patterns in vegetation at various scales, 

ranging from large-scale classification of terrestrial formation types in relation to climate 

down to individual plant responses to variation in microsites. Clements (1916; 1936) in 

his theory of successional dynamics stressed temporal dynamics but did not emphasize 

spatial patterning. However, Gleason (1917; 1926) did state that spatially heterogeneous 

patterns were important and should be interpreted as individualistic responses to spatial 

gradients in the environment (Gurevitch et al., 2002). A reconsideration of vegetation 

patterns in space and time and their relationship with underlying processes was presented 

by Watt (1947). The primary contribution of Watt is the view of the plant community as

1
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a mosaic of patches at different stages in a similar cycle of events, driven by the same 

processes. It follows that the spatial pattern of this mosaic can be used to generate 

hypotheses about the underlying processes and/or suggest the mechanisms that have 

given rise to it (MacArthur, 1972; Dale, 1999). The fundamental point of this 

conceptualization is that direct relationships can be identified between observed spatial 

patterns of vegetation and the processes occurring in forest ecosystems, such as seed 

dispersal, growth, competition, or senescence (Watt, 1947).

1.1.1 Recognizing the importance of pattern and process in plant communities 

Both physical and biological variables in nature have been found to display spatial 

patterns (Legendre, 1993; Dale, 1999; Legendre et al., 2002). We can view natural 

vegetation as formed by mosaics of patches of different kinds. The size and spacing of 

these patches are important characteristics of any plant community (Burton and Bazzaz, 

1995). Indeed, one of the few generalizations we can make about vegetation is that it is 

spatially heterogeneous (Dale, 1999). Depending on scale, plant species exhibit different 

spatial patterns (Greig-Smith, 1979; Legendre and Legendre, 1998). The study of such 

spatial patterns can be used as a means of inferring simple explanations of complex 

interspecific processes (MacArthur, 1972). Thus, we expect that ecological processes 

might give rise to spatially recognizable structures. With the setting of proper a priori 

hypotheses linking process and pattern, we can potentially infer the processes from the 

analysis of detected patterns (Watt, 1947; Greig-Smith, 1979; Underwood et al., 2000; 

Kikvidze et al., 2005; Stoll and Bergius, 2005). In this framework, spatial patterns can be 

used as a surrogate for underlying processes. However, the opposite is also true. The 

detection of spatial structures has also been used to enhance the understanding of how

2
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patterns of environmental heterogeneity influence ecological processes (Legendre and 

Fortin, 1989; Turner, 1989; O'Neill et al., 1991; Turner et al., 2001).

We can describe a spatial pattern whenever patchiness is present in our system, so that 

it can have a certain amount of predictability and hence it can be described quantitatively 

(Dale, 1999). The spatial pattern of a tree community in a stand, for example, may occur 

and be analyzed at more than one scale, local and global scales (Legendre, 1993; Wagner, 

2004). Local-scale spatial effects deal with the spatial nature of biotic interactions such 

as seed dispersal, clonal growth, competition, or patchy environment (i.e., heterogeneous 

distribution of soil nutrients and moisture availability). These biotic interactions lead to a 

statistical phenomenon known as spatial autocorrelation (see below). Global-scale spatial 

effects deal with the spatial structure of the environment in general (i.e., resource 

gradients), for which some environmental variable displays a spatial dependency on some 

biotic variable (Manly, 1986; Legendre, 1993; Goreaud et al., 1999; Wagner, 2004).

Spatial analysis applied to a plant community is typically undertaken as a two-step 

process. First, the analysis needs to give a clear and objective description of whether and 

on what spatial scale aggregation of plants occurs (the spatial scale over which patterns -  

or processes- remain constant). Second, it needs to be described how this aggregation 

alters the interactions between species (Ford and Renshaw, 1984; Dale, 1999; Stoll and 

Prati, 2001; Turner et al., 2001). Descriptive field observations deal with the first step; 

however they are unable to link the identified spatial pattern with potential causes (Rees 

et al., 1996). So far, the quantification of pattern has received considerable attention, but 

we are still able to quantify better pattern than to understand its underlying causes 

(Turner et al., 2001). While the detection of a contagious spatial structure confirms that
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non-random processes are operating, various processes could be contributing to the 

generation of the observed non-random spatial patterns in any plant population or 

community (Cale et al., 1989; Wyszomirski et al., 1999). It is important to note that 

coincidence of spatial patterns and processes does not imply causality, but rather suggests 

a reason to test for causal mechanisms involved (Turner et al., 2001). However, in a field 

such as forest ecology, where there might be limited opportunities for large-scale 

manipulative experiments, descriptive studies still have great potential value and 

predictive power (Underwood et al., 2000).

1.1.2 Spatial patterns in relation to plant interactions and vegetation dynamics 

Local spatial patterns have been shown to correlate with the direction and strengths of 

plant interaction (Choler et al., 2001; Tirado and Pugnaire, 2003; Kikvidze et al., 2005). 

In a forest ecosystem, the local spatial structure of individuals plays a key role in the 

stand dynamics (Duncan and Steward, 1991; Chen and Bradshaw, 1999). These plant 

interactions generate spatial patterning even under homogeneous environmental 

conditions (Turner et al., 2001). For instance, the spatial pattern of local competition 

determines the local environment of each tree, and thus, through competition/facilitation 

processes, its ability to develop and grow carbon allocation or its probability of dying. 

Overstory spatial pattern also influences the likelihood of seedling establishment by 

affecting both seed dispersal and seedbed conditions (Goreaud et al., 1999; He and 

Duncan, 2000; Goreaud et al., 2002).

During the development of a forest stand, the distribution of trees should reflect the 

ability of individuals to survive competition and dominate the initial patches (Lorimer et 

al., 1988; Oliver and Larson, 1996). For example, the spatial pattern established for trees
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within a patch commonly appears to shift from a clumped to a random distribution with 

increases in size, probably due to self-thinning (Peet and Christensen, 1987; Kenkel, 

1988; Veblen, 1992; Szwagrzyk and Czerwczak, 1993). Barot and Gignoux (2003) 

stated that an initial and relatively easy way to detect neighborhood effects is to analyze 

plant spatial patterns. They argued that i f  a spatial distribution deviates from a random 

distribution, a neighborhood effect can be hypothesized. Every individual tree modifies 

its immediate habitat to a greater or lesser extent, and hence influences the habitat for its 

immediate neighbors. This influence varies through both the individual’s life and its 

demands on the resources of the habitat. The fact that individuals primarily interact with 

their immediate neighborhood allows us to link the observed patterns to local processes 

that may be operating on the plant community (Tilman and Kareiva, 1997).

1.1.3 Dealing with the analysis of spatially autocorrelated data

Contrary to experimentation, where sampling may be designed in such a way that 

observations are independent of each other, ecological data are often autocorrelated 

(Legendre, 1993; Legendre et al., 2004). Spatial autocorrelation can be simply defined as 

the correlation of the value of any variable with itself through space. I f  the values of this 

variable, at pairs of sites a short distance apart, tend to be more similar than expected for 

randomly associated pairs of observations, it indicates a positive spatial autocorrelation 

associated with the variable (Legendre, 1993; Turner et al., 2001). Alternatively, i f  these 

values tend to be less similar, we are in the presence of negative spatial autocorrelation 

(Legendre and Legendre, 1998). When spatial autocorrelation is present, it indicates a 

lack of independence among observations, which violates one of the key assumptions for 

using classical statistical tests (Sokal and Rohlf, 1995; Dale, 1999; Keitt et al., 2002). In
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cases of non-spatial independence, many statistical analyses and inferences may not be 

appropriate. In particular, if  we ignore the non-independence of the observations, then 

we will likely obtain incorrect and often over-stated probability estimates (Lennon, 2000; 

Shipley, 2000).

I f  the observations are spatially autocorrelated, the estimates obtained from the 

correlation coefficient, ordinary least squares regression (OLS) or analysis of variance 

(ANO VA) will tend to be biased and over estimate treatment effects. When positive 

spatial autocorrelation is present at short scales, the use of classical statistical analyses 

will often lead to correlations, regression coefficients, or differences among groups being 

significant, when in fact they may not be (high probability of Type I errors) (C liff and 

Ord, 1981; Legendre and Fortin, 1989; Legendre, 1993; Legendre and Legendre, 1998; 

Turner et al., 2001).

1.2 PROJECT OBJECTIVES

In this thesis I  will provide empirical evidence that supports the current and potential 

utility of spatial pattern analyses in forest ecological studies. To this end, my efforts have 

been directed toward furthering our fundamental understanding about spatial patterns and 

how these patterns can give us sounder links to the way ecological processes operate and 

interact at the stand level. M y main hypothesis is that spatial patterns of tree and stand 

dynamics are key to a more complete understanding of the underlying ecological 

processes. For this research project I worked in managed and natural forest ecosystems, 

in both the Rocky Mountains of Western Montana, United States, and in Chile (central- 

south and in Patagonia). In three of the four chapters I worked with ponderosa pine as
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the dominant species; the other chapter (Chapter 2) was based on Mediterranean 

Nothofagus forests in central-south Chile.

My central proposition is that spatial analysis can help us to better describe the 

structure of a forest stand and to define more appropriate hypotheses on species 

coexistence and stand dynamics. This was the main objective of the first study (Chapter 

2), where the spatial analysis, based on the Ripley’s L-fimction, helped me to better 

define the ecological role of Nothofagus glauca in the Mediterranean ecosystems of 

central Chile. In the second study (Chapter 3), I worked in a managed uneven-aged 

ponderosa pine/Douglas-fir stands on the Flathead Indian Reservation, in western 

Montana. For this investigation, I also made use of the Ripley’s L-function; however 

with the main purpose of linking species recruitment composition, spatial associations 

between different cohorts and different species, to a moisture-level gradient. I  used a 

novel strategy to numerically measure the strength of spatial association. I  placed 

particular interest on whether the degree of spatial association (or disassociation) between 

saplings and overstory was correlated with relative moisture availability. In the third 

study (Chapter 4), I worked with ponderosa pine plantations in Patagonia, Chile. The 

main purpose of this study was three-fold; 1) to evaluate whether a proposed model of 

stand development occurred similarly in all the sites; 2) to examine the timing and 

strength of microsite effects relative to competition; and 3) to apply a common 

geostatistical tool to disentangle microsite effects from competition processes in these 

young populations. M y primary objective in this study was to test a priori hypotheses 

concerning two different processes (microsite and competition) using a semivariogram 

approach. Finally, in a fourth study (Chapter 5), I worked in a restoration field
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experiment at the Lick Creek Area in the Bitterroot National Forest, where ponderosa 

pine dominates the species composition. For this last chapter, my objective was two

fold: 1) to examine and document the effects of restoration practices on growth, 

performance and recruitment after the application of treatments; and 2) to evaluate the 

response of different age classes separately, in particular to more closely assess the 

response of older trees to restoration treatments. For the latter objective, I  developed a 

spatial ANOVA model that incorporated the spatial autocorrelation in growth and 

performance among individual trees into the covariance structure of the general AN O VA  

model. By utilizing this spatial ANOVA model at the individual tree-level, I was able to 

consider tree age-class as a separate factor in the analysis.

8
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Chapter 2

EFFECTS OF NATURAL AND HU M A N DISTURBANCES ON THE DYNAMICS  

AND SPATIAL STRUCTURE OF Nothofagus glauca (Phil.) Krasser IN  SOUTH- 

CENTRAL CHILE

“Understanding the distribution, history and ecology of the genus Nothofagus is clearly 

key to understanding the historical plant geography and modem vegetation patterns of the

Southern Hemisphere” (Veblen et al., 1996c).

2.1 INTRODUCTION

A general model has been proposed for describing variation in the regeneration dynamics 

of Nothofagus species in southern Chile including disturbance regime, site conditions and 

the shade-intolerance characteristics of each species (Veblen et al., 1996a; Pollmann and 

Veblen, 2004). Nothofagus species are located either at sites with environmental 

conditions restrictive for other tree species (high latitudes, high elevations, or edaphically 

sub-optimal sites) or at more favorable sites with periodic disturbances that vary in 

magnitude (Veblen and Ashton, 1978; Read and Hill, 1985). Patterns of stand 

development in Chilean Nothofagus forests are relatively well known for the southern 

area of the country, and are the result of both coarse-scale catastrophic disturbances 

(primarily mudslides, windstorms and tectonic activity) producing whole-stand 

replacement and small tree-falls resulting in fine-scale gap dynamics (Donoso, 1993;
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Veblen et al., 1996a; Pollmann and Veblen, 2004). In order to improve the 

representational range of this genus, more evaluation and testing of this general model are 

needed for the different Nothofagus forest types. There is little information, for example, 

on the diversity of Nothofagus forests located at their northernmost distribution in Chile; 

the Mediterranean zone (Donoso, 1996). We need to know if  these forests are a result of 

catastrophic or chronic disturbances, and understand the nature of competitive 

relationships between dominant species. For instance, it is unclear i f  Mediterranean 

Nothofagus species require large disturbances for regeneration, or whether or not it can 

retain dominance after tree-fall gaps are created.

Among the Nothofagus species occurring in the Mediterranean zone of Central Chile, 

Nothofagus glauca is considered one of the dominant tree species (Donoso, 1996). 

Nonetheless, N. glauca has been classified as a vulnerable species (Benoit, 1989) due to 

the many human-influenced transformations of its habitat conditions, particularly through 

logging and conversion to Pinus radiata plantations (Donoso, 1993). Once again, there is 

little information on the structure and dynamics of these forests, and therefore it has been 

difficult so far to develop effective conservation and sustainable management strategies 

for this species (Donoso, 1996; Litton and Santelices, 1996; Amigo et al., 2000).

Recent work in northern temperate forests emphasizes the key role that spatial 

structure can play in providing insights to the complex processes of stand establishment 

and species interactions following disturbances (Ford and Sorrensen, 1992; Tilman and 

Kareiva, 1997). During the development of a stand, for example, the distribution of trees 

should reflect the ability of individuals to survive competition and dominate the initial 

patches (Lorimer et al., 1988; Oliver and Larson, 1996). While it may be difficult to infer
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ecological processes from these observed spatial patterns (Cale et al., 1989), these data 

can provide a basis for generating hypotheses about underlying processes (Liebhold and 

Gurevitch, 2002); such as species coexistence, the quantification of overstory-understory 

relationships, and the importance of competitive/facilitative interactions. We know for 

example that mature N. glauca forests are richly diverse and include a complex 

understory structure (Amigo et al., 2000). However, it is unclear how these spatial 

structures are established or maintained in N. glauca forests.

Furthermore, one of the greatest challenges facing ecologists and silviculturists, in 

general, lies in elucidating and modeling the factors determining vegetation pattern and 

ecosystem processes of native forests at the landscape scale. One of the first basic pieces 

of information needed for management and/or conservation of any forest is to determine 

patterns of forest dynamics and their relation to disturbance agents. Available descriptors 

of disturbance regimes are only partial and usually deal with a single type of disturbance, 

i.e., tree-fall or fire (Veblen, 1992). To understand the role of disturbance on the forest 

dynamics of a specific tree species, the full range of disturbances affecting it should be 

considered. Quantitative forest structure data relative to disturbance factors affecting 

Nothofagus species dynamics are scant in the Mediterranean zone of south-central Chile.

In this study, I characterized and compared tree composition, structure, and spatial 

patterns of Nothofagus glauca second-growth stands with three contrasting disturbance 

histories, with the aim of obtaining an understanding of how this species develops under 

the impact of different disturbance agents, and how its spatial structure (particularly, with 

other species) can help to better define hypotheses on species coexistence and stand 

dynamics. The first stand corresponds to a mature stand (120-140 years old); the second
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stand has developed after logging and fire application (occurred around 20 and 40 years 

ago); and the third stand developed after catastrophic disturbance (a landslide occurred in 

1936). With this variety of disturbance histories, I was interested in answering the 

following questions: 1) Do Nothofagus glauca regeneration dynamics and stand 

development fit the general model developed for southern Nothofagus species? 2) Do 

these forests have episodic or chronic regeneration patterns? 3) Does the presence of N. 

glauca influence the occurrence of tree and understory species? 4) What is the effect of 

different disturbance agents on the current composition and structure of these stands? 5) 

What is the successional status of N. glauca?

2.2 METHODS

2.2.1 Study area

The study was carried out in the “Bullileo” sector (36°35’ S, 71°28’ W), San Fabian de 

Alico, in the southern limit of the Mediterranean-climate zone, which is just north of 

Nuble River, Nuble Province (Region V III)  in the Andean foothills of south-central 

Chile. This sector also constitutes the southern limit of N. glauca (Amigo et al., 2000). 

This area belongs to the Mesomediterranean belt with per-humid climatic conditions that 

are characterized by mild winters and dry summers (Donoso, 1996; Amigo and Ramirez,

1998), with almost 80% of the annual precipitation of 1051 mm occurring between May 

and September. Monthly mean minimum temperatures range from 3.8°C in July to 11°C 

in January, and monthly mean maximum temperatures range from 12.3°C in July to 

28.4°C in January (Estacion Meteorologica Universidad de Concepcion, Chilian; 180-m
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a.s.l., and 70 km from the study sites). The soils are shallow with a predominance of 

volcanic material including andesitic and basaltic materials (Donoso, 1996).

2.2.2 Field methods

Two 0.12-0.14 ha plots were located randomly within each of the three disturbance type 

sites (hereafter denoted as mature, logged, and landslide sites) where N. glauca was the 

dominant species. The exact locations of the plots were chosen at random within stands 

that were reasonably accessible. Species nomenclature follows Marticorena &  Quezada 

(1985). I  inferred stand development and disturbance history from population age and 

size structures of the different plots. I also used the spatial location of trees to infer the 

interactions among species and size-classes.

In each plot all trees greater than 50-cm tall were mapped and measured. The 

coordinates of the estimated center of each tree and sapling (<5-cm dbh, and taller than 1- 

m) stem were recorded by a handheld laser range finder (Forest Pro, Laser Technology, 

Colo., USA) and a digital compass, which estimate the distance and azimuth to the center 

of each tree (>0.5 m tall) to the nearest 1-mm. The field measurements were converted to 

coordinates using trigonometric functions. For each mapped tree stem, the species, 

height and dbh (diameter at 1.35-m above the ground) were measured. Heights were 

measured with a clinometer. To determine ages, we worked with all the tree cores of one 

plot per site (Mature site plot 1, and Landslide site plot 2), and more than 50% of the 

trees in the Logged site plot 1. Tree cores were dried and mounted in grooved wooden 

boards and sanded with successively finer grades of sand paper to reveal annual rings. 

Annual rings were hard to read, so we used phloroglucinol to stain rings and used a 

dissecting microscope to count rings (Patterson, 1961). For cores that missed the pith of
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the tree, procedures described by Duncan (1989) were used to estimate the number of 

missing rings. No correction was applied for time required to grow to coring height (20- 

cm).

I assessed canopy density and projected leaf area index (LA I) for the different plots 

with fisheye lens canopy digital photographs. Twelve photographs were taken per plot in 

February 2004 with a 7-mm Nikon f7.4 fish-eye lens, mounted on a Nikon® Coolpix 950- 

digital camera. The lens has an orthographic projection of 180° angle of view. The 

camera was mounted 30-cm above the ground on a tripod, leveled and oriented to true 

north, looking upwards through the canopy. We used the GLA (Gap Light Analyzer V2) 

software (Frazer et al ., 2000) to process the photographs, and to compute percent canopy 

openings and LAI.

2.2.3 Data analysis

Stand structure was determined from stem diameter and age distributions at each plot. 

Stem density and basal area (BA) were scaled up to one hectare. For each tree species, a 

relative importance value (R IV ) was computed as an average of the relative density and 

relative dominance (BA) (Orwig et al., 2001; Pollmann, 2002). Diameters of trees were 

grouped into 10-cm size classes for N. glauca and for all species combined in each plot. 

Similarity between size- or age-class mean values and distributions of these variables 

among plots were measured with Mann-Whitney U- and Kolmogorov-Smimov tests 

respectively using ranks (Sokal and Rohlf, 1995). Spearman’s rank correlation analyses 

(diameter and age data were not normally distributed -Kolmogorov-Smimov 1 test) were 

performed to determine i f  there were significant correlations between tree diameter and age 

for N. glauca. To test for significant differences among plots for canopy opening and LAI,
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the data obtained were analysed by a one-way ANOVA; multiple comparisons were 

conducted using Scheffe’s test (Sokal and Rohlf, 1995). The canopy opening values were 

log-transformed and the LA I values were square-root-transformed to achieve homogeneity 

of variances. All these analyses were carried out with SPSS (2000).

Shannon’s Diversity Index was used to estimate species and structural diversity by 

grouping species abundance (BA) by height class. Shannon’s index, H \  is defined as 

follows:

H ’ = - ^ p i x L n x p i
1=1

where p, is the proportion of individuals in the /th species, S is the number of species (e.g. 

McCune &  Grace (2002)), and Ln is the natural logarithm. This index basically measures 

the “information content” for a sample unit in terms of uncertainty; the more uncertainty 

one has about the species of an individual, the higher the diversity of the community. First, 

we used Shannon’s index to estimate species diversity per plot, by accounting for the 

proportion of N. glauca represented as the number of individuals per 2-m height class (p,). 

Second, we used Shannon’s Diversity Index to estimate structural diversity by using the 

proportion of basal area per hectare ip, -relative basal area, RBA) per species (S) 

(Staudhammer and LeMav, 2001).

2.2.3.1 Spatial pattern analysis

In analysing regeneration processes, it is often useful to account for spatial patterns of 

trees by mapping individual trees at different scales (Veblen, 1992). Coordinate data 

(x,y) were collected for every tree to determine the univariate spatial pattern 

(distribution) for each species, and the bivariate spatial pattern (association) between
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species and tree-classes at each plot using a modified version of Ripley’s AT-function 

(Lotwick and Silverman, 1982).

To analyse spatial point patterns, under the assumption of stationarity (the process 

must be invariant under translation) and isotropy (invariance under rotation), we chose

the Z-function, L(t) = ^{K{t) l  k ) - 1 proposed by (Besag, 1977), which is a linearized 

version of the Ripley’s Af-function (Ripley, 1977), and is preferred for interpretation. The 

original Ripley’s A'-function is based on the variance (second-order analysis) of all point 

to point distances in a two-dimensional space, and gives a description of spatial structure 

at different scales at the same time (Cressie, 1993). The Z-function is estimated as:

L(t) = yj(K(t)/  7t) - 1 . The Z-function transformation makes K(t) linear in t (distance),

and scales its variance to facilitate testing against the null hypothesis of complete spatial 

randomness (CSR; i.e. it is assumed that all points are distributed independently). The 

linearized function has an expectation of zero for any value of t when the pattern is 

random. The spatial pattern can then be described as clumped, random, or regular at any 

distance t up to about half the length of the shortest rectangular plot side i f  the calculated 

L(t) is greater, equal or lower than the 99% confidence envelopes, respectively (Dixon, 

2002). For this analysis, N. glauca individuals were divided into three categories: 

saplings, juveniles (dbh between 5 and 15-cm), and adults (dbh >15-cm). The statistical

significance of the departure of L(t) from zero was tested using Monte Carlo-confidence 

envelopes based on the random repositioning of all points in the plot. In this study, we 

computed a 99% confidence interval by running 99 simulations at intervals of 1-m from 1 

to 16-m (half the length of the shortest side of the plot). The Cramer-von Mises test was 

used to account for significance (Haase, 2002). Since edge effects become a concern at
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greater distances, we used weighted edge correction methods to account for this effect 

(Haase, 1995).

Table 2-1. Site characteristics of each plot sampled at Bullileo location (36°35’ S, 

71°27’W), San Fabian de Alico, Chile. For canopy opening and projected LA I (leaf area 

index), the mean and standard error (in parentheses) are presented.

Plots Altitude

(m)

Aspect Slope

(%)

Plot size 

(m2)

Canopy 

opening (%)

LAI (m2/mz) Shannon

index*

Mature 1 850 E 40 1200 16.18(0.67) 2.06 (0.087) .443

Mature 2 710 NE 15 1200 15.63 (0.84) 2.12(0.094) 1.189

Logged 1 700 S 12 1400 14.65 (0.91) 2.63 (0.088) .437

Logged 2 680 S 15 1350 21.09(1.01) 1.59(0.078) .045

Landslide 1 680 S 10 1200 22.67(0.50) 1.51 (0.036) .489

Landslide 2 660 S 10 1200 29.92(1.72) 1.11(0.088) .043

* Shannon index was applied for stand structural diversity based on basal area per species.

To estimate the spatial association between species and tree-classes at each plot, we 

used the bivariate spatial function, K 1,2 ft) (a derivation of the univariate spatial function), 

which characterizes the relative location of one type or class (e.g., species or size class 1) 

with respect to another (class 2). Following the logic used above, we used the modified 

Ly.2(7)-function (Lotwick and Silverman, 1982), whose classical estimator is

A I /*. A

L i.2(7)= -)(K\.2(t)l x ) - t  . L \,2(t) provides evidence of spatial association between

species 1 and 2: i f  the value of L 1.2(t) is not significantly different from zero, the null 

hypothesis that the two species have independent spatial distributions cannot be rejected 

(Goreaud and Pelissier, 2003). Monte Carlo simulations were used to evaluate the 

statistical evidence of spatial independence; we built 99% confidence intervals from 99 

random shifts of one class of trees with respect to the other. Values of L 1.2(f) greater, 

equal or lower than 99% confidence envelopes indicated significant positive spatial 

association (attraction) at distance t, spatial independence, and significant negative spatial
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association (repulsion) between the two tree-classes analysed, respectively (Dixon, 2002; 

Goreaud and Pelissier, 2003). The spatial statistics program SPPA.EXE (Haase, 2002) 

was used for both univariate and bivariate spatial analyses.

2.3 RESULTS

2.3.1 Stand structure

All of the Nothofagus glauca-dominated study sites have a diverse size structure, 

particularly for the mature and logged sites. These two sites included abundant saplings, 

generally with declining numbers of individuals in successively larger diameter classes, 

exhibiting a negative exponential or reverse-J pattern, typical of uneven-aged forests 

(Kolmogorov-Smimov 1-sample test; Fig. 2.1a and 2.1c). For instance, in the mature 

site, stems <5-cm dbh accounted for ca. 46 and 76% of the plot 1 and 2 populations, 

respectively. In contrast, the two plots from the landslide site exhibited a normal-shape 

diameter distribution, accounting for ca. 42 and 79% of their stems in middle size-classes 

(9.5-15-cm dbh), for landslide site plots 1 and 2, respectively (Kolmogorov-Smimov 1- 

sample test; Fig. 2.1b). Age-DBH relationships were highly significant for all three sites 

(R =0.93, 0.73 and 0.67 for mature, logged and landslide sites, respectively; results not 

shown). Hence, I considered size data sufficient to explain stand structure for all the 

sites. Donoso et al. (1984) and Veblen (1985) found highly correlated age-DBH 

relationships for temperate rain forests. Across the different sites, N. glauca also 

represented an all-aged population, forming the oldest tree-cohorts; recruited ca. 1860 

(mature site plot 1), 1880 (mature site plot 2), 1960 (logged site plot 1), 1987 (logged site 

plot 2), and 1940 (landslide site). The basal area across most of the study sites was
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moderate (21.4-37.8 m2/ha), and low for the logged site plot 2 and the landslide site plot 

2 (9.34 and 14.3 m2/ha, respectively).

(a)

Mature 2 (n=4i0)

t
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Figure 2-1. Diameter size class frequency distribution for the three sites; a) mature stand; 

b) logged stand; and c) landslide stand, in Bullileo sector, San Fabian de Alico, Chile.
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Table 2-2. Density (trees/ha), basal area (m2/ha), relative density (RD), and relative basal 

area (RBA) for trees larger than 5-cm dbh, for all the plots in Bullileo sector, San Fabian 

de Alico, Chile. Relative importance values (R IV ) were calculated as: (relative density + 

relative basal area)/2.

Plot Density RD Basal Area RBA RIV
mature 1
iV. glauca 850 88.7 29.3 88.5 88.6
N. obliqua 8.3 0.1 1.1 3.3 1.7
N. leoni 16.7 1.7 2.4 7.3 4.5
G. avellana 66.7 7.0 0.2 0.6 3.8
A. serrata 8.3 0.1 0.02 0.1 0.1
P. lingue 8.3 0.1 0.02 0.1 0.1
Totals 958 33.1

mature 2
N. glauca 841.7 49.7 13.8 64.6 57.2
N. obliqua 100 5.9 3.5 16.4 11.1
N. leoni 66.7 3.9 0.7 3.3 3.6
G. avellana 241.7 14.3 0.9 4.2 9.2
A. serrata 91.7 5.4 0.3 1.4 3.4
P. lingue 25 1.5 0.2 0.9 1.2
C. alba 266.7 15.8 1.7 8.0 11.9
L. dentata 41.7 2.5 0.2 0.9 1.7
A. pmctatum 16.7 1.0 0.06 0.3 0.6
Totals 1692 21.4

logged 1
N. glauca 2957.1 88.8 32.4 85.8 87.3
G. avellana 321.4 9.7 5.1 13.6 11.6
A. serrata 50.0 1.5 0.3 0.7 1.1
Totals 3329 37.8

logged 2
N. glauca 1770 99.2 9.3 99.3 99.2
G. avellana 7 0.4 0.01 0.1 0.3
A. serrata 7 0.4 0.05 0.6 0.5
Totals 1784 9.34

landslide 1
N. glauca 1308 77 21.0 88.2 82.6
G. avellana 208 12.3 1.7 7.2 9.7

L. caustica 58 3.4 0.2 1.0 2.2
L. hirsuta 100 5.9 0.6 2.7 4.2
L. dentata 18 1.0 0.2 0.8 0.8
C. alba 8 0.4 0.02 0.1 0.2
Totals 1700 23.72

landslide 2
N. glauca 1083 95.0 13.6 99.2 97.1

A. chilensis 8.3 5.0 0.7 0.7 2.9
Totals 1092 14.3
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2.3.2 Stand composition

At all three study sites, N. glauca was the dominant tree species (highest RIV, Table 2.2). 

At sapling level, N. glauca had densities of 300-2042 saplings/ha (relative densities of 

17.9-48.9%; Table 2.3). Plant species composition was markedly different among the 

study sites, especially for saplings (Fig. 2.2). Within the tree stratum, the mature site plot 

2 exhibited the greatest overall diversity, particularly for shade-tolerant species (highest 

Shannon’s Diversity index (1.7), Table 2.1 and 2.2). Gevuina avellana was well 

represented in the mature sites, logged site plot 1, and landslide site plot 1 (RTV of 4.5, 

9.2, 11.6, and 9.7%, respectively); Cryptocaria alba had the highest R IV  (11.9%) after N. 

glauca in mature site plot 2 (Table 2.2). The landslide site presented the lower diversity 

for the tree stratum (Shannon’s Diversity index = 0.043). At the tree sapling-shrub 

stratum, Azara serrata, Pernettya mucronata, and Sophora macrocarpa dominated in the 

mature site plot 1; G. avellana, Sophora mayu, and Chusquea cumingii dominated the 

mature site plot 2. For the logged site plot 1, the most frequent saplings were G. avellana 

and A. serrata, and for the logged site plot 2, S. mayu, Baccharis confertifolia, and 

Lithraea caustica were the most common. B. confertifolia and L. caustica dominated the 

shrub layer in the landslide site (Table 2.2).

2.3.3 Canopy structure

The logged site plot 1 had a significantly lower canopy opening (14.65%) and higher 

projected LA I (2.63 m2/m2) when compared with the rest of the sites (p<0.005, Table 2.1 

vs. Table 2.4). The opposite was found for the landslide site plot 2; a significantly higher 

canopy opening (29.92%) and lower projected LA I (1.11 m2/m2; Table 2.1) than the rest 

of the sites (p<0.01; Table 2.4). At the other sites (mature and logged) there were no
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significant differences in canopy structure within a site, but between these two sites we 

found a significant difference in canopy opening and projected LAI. The upper canopy 

layer was dominated by N. glauca for most of the sites (N. obliqua for the mature site 

plot 2), achieving maximum heights in the mature site plot 1 of ca. 19-m. These heights 

are below the maximum heights documented by Donoso (1996), which are close to 30-m. 

The Mature site plot 2 presented the highest structural diversity (highest Shannon’s 

values through height -Fig. 2.2), while the Logged site had the lowest values.

Table 2-3. Saplings (>l-m  tall and <5-cm dbh) abundance (stems per hectare) within 

study sites in Bullileo sector, San Fabian de Alico, Chile. Values in parentheses are 

relative densities.

Species mature 1 mature 2 logged 1 logged 2 landslide 1 landslide 2
Nothofagus glauca 2042 (43.0) 1108(17.9) 614.3 (29.4) 2160.3 (48.9) 591.7(18) 300 (22.5)
Nothofagus obliqua 50(0.8)
Nothofagus leonii 66.7(1.1)
Gevuina avellana 333.3 (7.0) 541.7 (8.8) 635.7(30.4) 223 (5.1) 300 (9.1)
Azara serrata 491.7(10.4) 166.7(2.7) 535.7(25.6) 369.3 (8.4) 108.3(3.3) 50(3.8)
Pemettya mucronata 558.3(11.8)
Cryptocaria alba 91.7(1.5) 8.3 (0.6)
Lomatia dentata 75(1.6) 25 (0.4) 64.3(3.1)
Bacharis spp. 141.7(3.0) 691.7 (21) 208(15.6)
Sophora mayu 741.7(15.6) 391.7 (6.3) 128.6 (6.1) 1351.9(30.6) 450(13.7) 258(19.4)
Chusquea cumingii 341.7 (7.1) 3692 (59.8) 139.4(3.2) 16.7(0.5)
Persea lingue 25 (0.5)
Luma apiculata 8.3 (0.1)
Lithraea caustica 16.7(0.3) 14.3(0.7) 41.8(1.0) 866.7 (26.3) 450 (33.7)
Maytenus boaria 16.7(0.3)
Lomatia hirsuta 92.9(4.4) 132.4(3.0) 258.3 (7.9) 50 (3.8)
Quillaja saponaria 8.3 (0.6)
Aristotelia chilensis 7.1 (0.3)
Austrocedrus chilensis 8.3 (0.3)

Total 4750 6175 2092.9 4418 3292 1333

2.3.4 Spatial pattern distributions and associations

The spatial distribution of N. glauca tree stems differed by size classes in most of the 

sites (Table 2.5), displaying mostly random spatial distributions for trees larger than 15- 

cm dbh. The logged site plot 1, however, resulted in a clumped spatial distribution
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through all N. glauca size classes. For smaller dbh classes (5 and 15-cm) and saplings, 

the spatial distribution was significantly clumped for most distance classes (p<0.01). 

Companion species showed significant dumpiness across all distance classes for both 

trees and saplings. Overall, I  found strong evidence for a positive association between 

saplings and adult trees of N. glauca belonging to the dbh class 5-15-cm. For overstory 

trees larger than 15-cm dbh, the association pattern is not clear, having some positive 

association at larger scales; near 10-m for the mature site plot 2, logged site plot 1, and 

landslide site, respectively (Table 2.6). At the mature site plot 2, both adult trees and 

saplings of N. glauca were independently associated with N. obliqua and N. leoni 

(p>0.05).

The predominant companion species were G. avellana and C. alba, which exhibited 

negative spatial associations with all the size classes of N. glauca (p<0.01; Table 2.6) at 

the mature plot 2, logged site plot 1, and landslide site plot 1 (G. avellana), and mature 

site plot 2 (C. alba). At the mature site plot 1, I found that the bamboo species C. 

cumingii was negatively associated with saplings of N. glauca only (p<0.01; Table 6), 

while P. mucronata was negatively associated with adult trees of A. glauca (p<0.01), but 

not with saplings. I also found that saplings of G. avellana were positively associated 

with adult trees of N. glauca (p<0.01), but negatively associated with its saplings 

(p<0.01). At the mature site plot 2, the spatial association of C. cumingii with N. glauca 

trees of 5-15-cm dbh and saplings was negative at all distances (p<0.01; Table 6), but 

positive in the first 6-m when compared with adult trees larger than 15-cm dbh (p<0.01). 

Finally, at the landslide site plot 2, I found that L. caustica had a negative spatial
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association with N. glauca saplings (p<0.01), and no spatial association with adult trees 

ofN. glauca (p>0.05; Table 6).

M a tu re 1 
M a tu re 2

2 0

1 5

1 0

5

0
0 0 0 .5 1.0 1.5 2 . 0

S h a n n o n ' s  I n d e x

Figure 2-2. Relationship between Shannon’s Diversity index for species diversity by 

height class using species abundance data across all the Nothofagus glauca stands at 

Bullileo sector, San Fabian de Alico, Chile.

2.4 DISCUSSION

Like many other mesophytic temperate forest ecosystems, Nothofagus forests in southern 

Chile are often products of large disturbance events, including landslides, mudslides, 

windstorms, and fire (Veblen and Ashton, 1978; Veblen et al., 1996a; Pollmann and 

Veblen, 2004). By contrast, some Nothofagus species (e.g. N. antarctica, N. nitida, N. 

pumilio) located in harsh habitats, subalpine or wet microsites tend to exhibit greater 

adaptations towards gap replacement (Rebertus and Veblen, 1993; Fajardo and de Graaf, 

2004; Gutierrez et al., 2004). Nothofagus glauca-dominated forests, as reported here,
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develop in a distinctive manner since they typically retain open patchy canopies even 

more than 140 years following disturbance. Nothofagus glauca had population structures 

indicative of continual recruitment across the oldest study site, constituting a steady-state 

population (Veblen, 1992). In addition, I found that the most diverse structure and 

species composition occurred in this oldest site. All of these factors together suggest that 

N. glauca, even under good growing conditions, is growing in such a tough moisture 

limited environment that it is behaving like southern Nothofagus species growing on the 

most marginal of site conditions.

Table 2-4. Differences between (Log transformed) canopy opening (above the squares) 

and projected (square root transformed) LA I (leaf area index, below squares) based on 

Scheffe multiple comparison significance values among the plots. Bold figures indicate 

significant differences (p<0.05).

Plots mature 1 mature 2 logged 1 logged 2 landslide 1 landslide 2
mature 1 -.018 .106 .114 .149 .264
mature 2 .020 .123 .132 .167 .282
logged 1 .159 .179 .008 .044 .158
logged 2 .173 .193 .014 .035 .150
landslide 1 .204 .224 .045 .031 .115
landslide 2 .387 .406 .228 .213 .183

2.4.1 Mature stand; composition, structure, and succession

While the mature site was sufficiently open to allow regeneration throughout the stand it 

nevertheless showed a strong pattern of clumping of saplings. Various processes can lead 

to a clumped pattern of the youngest cohorts. For example, natural or mechanical soil 

disturbances may create patches of favorable seedbed; proximity to seed source or 

obstructions to seed movement, or patches of increased resource availability as might be 

associated with canopy gaps (Veblen, 1992; Franklin et al., 2002). The pattern of sapling
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clumps in the sites is consistent with models of canopy-gap or patch dynamics stand 

development (Pickett and White, 1985; Peet and Christensen, 1987).

Table 2-5. Patterns of spatial distributions based on the univariate L-function for tree- 

classes of N. glauca and a group of companion species through all the study sites in 

Bullileo sector, San Fabian de Alico, Chile.

N. glauca, dbh > 15-cm N. glauca, dbh 5 - 15-cm
Plots n Distance t (m)* n Distance t (m)

1 2 3 4 5 6 7 8 9 10 U  12 13 14 15 Pt 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 p
m ature 1 33 0.720 65 c c c c c c c c c c c c c c c 0.001
m ature 2 23 0.289 78 c c c c c c c c c c c c c c 0.001
logged 1 87 c c c c c c c c c c c c c c c 0.001 325 c c c c c c c c c c c c c c c 0.001
logged 2 1 254 c c c c c c c c c c c c c c c 0.001
landslide 1 53 0.220 104 c c c c c c c c c c c c c c 0.001
landslide 2 31 0.981 102 c c c c c c c c c c c c c c c 0.001

Companion species, dbh > 5-cm N. glauca saplings, dbh < 5-cm
Distance t (m) Distance t (m)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 p 1 2  3 4 5 6 7 8 9 1011 1213 14 15 p

m ature 1 103 C C C C C C C C C C C C C C C 0.001 244 c c c c c c c c c c c c 0.001
m ature 2 160 c c c c c c c c c c c c c c c 0.001 131 c c c c c c c c c c c c c c c 0.001
logged 1 62 c c c c c c c c c c c c c c c 0.001 83 c c c c c c c c c c c c c c c 0.001
logged 2 0 310 c c c c c c c c c c c c c c c 0.001
landslide 1 45 c c c c c c c c c  c c c c 0.001 70 c c c c c c c c c c c c c c c 0.001
landslide 2 54 c c c c c c c c c c c c  c c 0.002 34 c c c c c c c c c c c c c 0.013

Understory species, dbh > 5-cm
Distance t (m)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 p

m ature 1 108 C C C C C C C C C C C C C C C 0.001
m ature 2 463 C C C C C C C C C C C C C C C 0.001
logged 1 202 c c c c c c c c c c c c c c c 0.001
logged 2 277 c c c c c c c c c c c c c c c 0.001
landslide 1 324 c c c c c c c c c c c c c c c 0.001
landslide 2 61 c c c c c c c c c c 0.001
* The symbol c indicates a significant clumped distribution; u means a regular distribution at distance t, 
based on the Z,(rJ-function values distribution. An empty cell indicates a random distribution (= means not 
applicable).
t  Significance is using a 99% confidence interval (999 simulations) with a 1-m step. The Cramer-von- 
Mises test was used for overall significance of patterns over the complete range of t. Bold figures mean the 
spatial dispersion is highly significant at the 0.01 level.

The oldest site had the most open canopy of all the study sites (lowest LA I and highest 

percent canopy opening values), so that the presence of discrete gaps was rather difficult 

to define (Lieberman et al., 1989) and therefore might not be the principal cause of 

regeneration patchiness. Regarding the other processes, proximity to seed sources (seed
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shadow) might be a plausible cause for regeneration dumpiness, since seeds of this 

species appear to have limited mobility (largest seed size in the genus, 2000 seeds/kg, 

(Donoso, 1996)), and therefore dispersal can be confined to spots near parent trees. 

However, positive spatial associations between saplings and larger trees (>15-cm dbh) 

were not found, at least not at closer distances (<10-m). The presence of Chusquea (C. 

cumingii Nees) might also play a role in regeneration patchiness, in as much as it has 

been reported to effect the rate, timing, and composition of tree regeneration in tree-fall 

gaps, particularly in Southern Chile Nothofagus forests (Gonzalez et al., 2002; Fajardo 

and de Graaf, 2004). The negative spatial association between N. glauca saplings and the 

bamboo species may reflect competition processes, which have developed in niche 

differentiation displayed by the spatial patterns observed. It is not clear, however, what 

the competition source would be. Further studies on resource partitioning and niche 

differentiation between N. glauca regeneration and C. cumingii are needed, since these 

bamboo can become a threat for successful regeneration in Nothofagus forests (Veblen et 

al., 1996a; Gonzalez et al., 2002).

Mature stands of N. glauca have been reported to have open canopies with large gaps, 

which may explain their rich and diverse multi-layered understory (Amigo et al., 2000). 

Companion species, particularly shade-tolerant species, were more abundant in this site 

than in the rest. The presence of C. alba, a shade tolerant species (Chacon and 

Bustamante, 2001), as well as P. lingue and A. punctatum, and the facultative shade- 

tolerant G. avellana (Figueroa and Lusk, 2001), could suggest a shift from shade- 

intolerant to shade-tolerant tree species dominance. Studies in mixed forests have shown 

that shade-intolerant Nothofagus species do not regenerate in undisturbed old-growth
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forests (Veblen et al., 1981; Pollmann, 2002). Nonetheless, along with what Pollmann 

(2002) has already suggested for N. alpina, the presence of tree-fall gaps (with reduced 

competitive effects), in general, along with increased light levels (high canopy openings), 

in particular for this study site, may be responsible for the continuous recruitment of N. 

glauca. On the other hand, there was not a clear spatial pattern when these species were 

compared with N. glauca size classes; positive association in mature site plot 1 for G. 

avellana and negative in mature site plot 2 for G. avellana and C. alba. These spatial 

patterns may be indicative of a mix of ecological factors influencing these patterns 

including species ecological tolerance, historical factors and/or biotic interactions.

The spatial pattern established for N. glauca trees appeared to shift from clumped to a 

random distribution with increases in size (hence age). This pattern is consistent with the 

interpretation that stand development consists of episodic tree establishment in small 

groups followed by self-thinning (Peet and Christensen, 1987). This pattern is in 

accordance with what Fajardo &  de Graaf (2004) reported for N  pumilio stands in two 

different localities of southern Chile, and for many other temperate forests around the 

world (Kenkel, 1988; Read and Hill, 1988; Stoll et al., 1994; Mast and Veblen, 1999). 

The large variety of horizontal and vertical structures within the stand is also consistent 

with a history of continuous recruitment.

2.4.2 Effects of disturbances on stand structure and dynamics

In the logged site it is clear that N. glauca is following a catastrophic regeneration mode 

with vigorous young trees of similar age showing evidence of competitive interactions 

and lower rates of regeneration (Veblen, 1992; Oliver and Larson, 1996). Human- 

disturbances in N. glauca stands have been occurring primarily in the form of clearing
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forest patches of one to three hectares. The timber is cut for charcoal, and debris is 

burned (a term locally called “roce”). Later, the site is abandoned and forest succession 

proceeds. I f  the logging has not created serious soil disturbances, N. glauca vigorously 

re-sprouts from stumps (Donoso, 1993), and forms a dense even-aged second-growth 

stand. The sprouting nature might be the explanation for a significant clumped 

distribution among the size-classes of N. glauca at this site.

Historically speaking, the disturbance-regeneration model just depicted is the one 

applicable to our study site. Litton &  Santelices (2002) have also corroborated this 

disturbance-regeneration model for the Coastal range. However, San Martin &  Donoso 

(1997) noted that anthropogenic degradation of N. glauca in the Coastal range can 

produce local shifts to dominance by sclerophyllous species, and more severe 

disturbances have resulted in invasions by exotic shrubs that often prevent forest 

regeneration. An intriguing, but as yet untested hypothesis is that these disparate 

responses to human disturbance might be influenced by the size and degree of 

fragmentation of the landscapes within which these stands occur (perhaps, at larger scale, 

between the Coastal and the Andean range).

The landslide study site provides an interesting contrast in response to disturbance, 

since, although older than the Logged site, it still represents an early successional state 

and a stem initiation stand development phase, after Oliver’s model (Oliver and Larson, 

1996). It also followed a catastrophic regeneration mode (Veblen, 1992); where N. 

glauca is the dominant species and there is continuous recruitment. Hence, the particular 

nature and intensity of the disturbance make this site appear structurally different from 

the Logged site. LA I and BA are much lower than in the logged site. These stand
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characteristics along with the presence of extremely rocky soil {personal observations) 

lead to a prediction of low stand productivity. The landslide occurred in 1936, and since 

then there have been pulses of regeneration of N. glauca, followed by other shade- 

intolerant sclerophyllous species like L. caustica (Anacardiaceae) and L. hirsuta 

(Proteaceae). All these characteristics provide evidence that N. glauca is a pioneer and a 

shade-intolerant tree species. A prompt colonization of Nothofagus species after 

catastrophic disturbances has commonly been reported to occur in Southern Chile and 

Argentina; including N. alpina in the Malleco province (Pollmann, 2002), and Npumilio 

in Tierra del Fuego (Rebertus and Veblen, 1993). Nothofagus glauca has many unique 

morphological adaptations to help deal with high temperatures and droughty soils in these 

extreme environments including thick bark and tough coriaceous leaves (Donoso, 1996; 

Ramirez et al., 1997), providing an advantage over other Nothofagus species in the area 

(i.e., N. obliqua).

Saplings were mainly associated with adult trees, likely due to the harsh characteristics 

of the site, even though N. glauca is a shade-intolerant tree species. In this moisture- 

limited site we might expect to see a reduced spatial association between regeneration 

and canopy openings since canopy openings might be less hospitable to new germinants 

because of excessive temperatures and moisture stress. Some authors have argued that on 

more xeric habitats, reduced moisture stress under adult tree canopies may explain the 

increased sapling abundance beneath their canopies (Callaway, 1992; Bertness and 

Callaway, 1994). This positive spatial association may result from a facilitative 

relationship of larger “nurse plants” providing shelter to seedlings by buffering physical 

stresses, especially high temperature. Bertness &  Callaway (1994) suggested that
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facilitation could potentially play a more important role than competition in resource- 

limited environments.

2.5 CONCLUSIONS

In comparison with studies on dense Nothofagus rain forests in southern Chile, this study 

suggests that the regeneration of N. glauca is not necessarily dependent on large 

disturbances. Low canopy density allowed for diverse understory species in all sites. 

These findings support the model of Nothofagus regeneration dynamics, which states that 

Nothofagus species occur in sites experiencing coarse-scale disturbances and/or in harsh 

site conditions (for its potential competitors). Nothofagus glauca can be both a pioneer 

on harsh sites as well as a gap strategist in mature forests. In these harsh sites the greatest 

amount of species, the densest canopies and the most diverse structures occur in the 

oldest forests.

According to Amigo et al. (2000), the sites under study belong to the Bomareo- 

Nothofagetum glaucae phytosociological association. In this association N. glauca is the 

dominant tree species, and the presence of companion tree species will depend on the 

water availability status of the area (Donoso, 1996). I found that N. glauca occurred with 

some tree species belonging to the Mediterranean sclerophyll forest, such as C. alba, L. 

caustica, and Q. saponaria (landslide site), but also found N. glauca accompanied by tree 

species more characteristic of southern Chilean rain forests such as A. punctatum (mature 

site). The wide variety of plant associations in a small geographic area provides evidence 

of the transitional nature of vegetation characteristics in this zone (San Martin and 

Donoso, 1997).
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Table 2-6. Patterns of specific spatial association based on the bivariate Li,2-function 

between N. glauca size-classes and species through all the study sites in Bullileo sector, 

San Fabian de Alico, Chile.

Sites Distance t  ( m) ______________________________________________
Mature 1 m/n2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15__________g_______

N.g. >15 vs. N.g. saplings 33/244 - . . .  0.024
N.g. 5-15 vs. N.g. saplings 65/244 - - 0.053
N.g. >15 vs. C. cumingii 33/38 + + + 0.339
N.g. >15 vs. P. mucronata 33/70   0.001
N.g. >15 vs. G. avellana 33/49 + + +  + + + + + + + + + + 0.002
N.g. >15 vs. C. alba 33/92 0.768
N.g. 5-15 vs. C. cumingii 65/38 0.888
N.g. 5-15 vs. P. mucronata 65/70   0.001
N.g. 5-15 vs. G. avellana 65/49   0.001
N.g. 5-15 vs. C. alba 65/92 0.076
N.g. saplings vs. C. cumingii 244/38   0.009
N.g. saplings vs. P. mucronata 244/70 + + + 0.011
N.g. saplings vs. G. avellana 244/49   0.001
N.g. saplings vs. C. alba 244/92 + +_______________________________________ 0.295_____

__________________________ Mature 2 ______________________________________________________
N.g. >15 vs. N.g. saplings 23/131 + + + 0.007
N.g. 5-15 vs. N.g. saplings 78/131 + + +  + + + + + + + + + + + + 0.001
N.g. >15 vs. N. obliqua 23/15 0.506
N.g. >15 vs. N. leoni 23/16 - + 0.283
N.g. >15 vs. C. cumingii 23/416 + + + + + + 0.001
N.g. >15 vs. G. avellana 23/87   0.001
N.g. >15 vs. C. alba 23/42   0.001
N.g. 5-15 vs. N. obliqua 78/15 0.460
N.g. 5-15 vs. N. leoni 78/16 0.515
N.g. 5-15 vs. C. cumingii 78/416   0.001
N.g. 5-15 vs. G. avellana 78/87   0.001
N.g. 5-15 vs. C. alba 78/42   0.001
N.g. saplings vs. N. obliqua 131/15 0.726
N.g. saplings vs. N. leoni 131/16 0.585
N.g. saplings vs. C. cumingii 131/416   0.001
N.g. saplings vs. G. avellana 131/87   0.001
N.g. saplings vs. C. alba 131/42   0.001________

__________________________ Logged 1 ______________________________________________________
N.g. >15 vs. N.g. saplings 87/83 + + + + + + + 0.002
N.g. 5-15 vs. N.g. saplings 325/83 + + +  + + + + + + + + + + + + 0.001
N.g. >15 vs. G. avellana 87/45   0.004
N.g. 5-15 vs. G. avellana 325/45   0.012
N.g. saplings vs. G. avellana 83/45 . . . .  ............................ 0.020

__________________________ Logged 2 ______________________________________________________
N.g. 5-15 vs. N.g. saplings 254/310 + + +  + + + + + + + + + + + + 0.001
N.g. 5-15 vs. understory 254/324 + + + + + +  0.093

________________________ Landslide 1
N.g. >15 vs. N.g. saplings 53/70 + + + 0.002
N.g. 5-15 vs. N.g. saplings 104/70 + + +  + + + + + + + + + + + + 0.001
N.g. >15 vs. G. avellana 53/26 - - . . . .  0.412
N.g. 5-15 vs. G. avellana 104/26   0.001
N.g. saplings vs. G. avellana 70/26   0.001________

________________________ Landslide 2 ______________________________________________________
N.g. >15 vs. N.g. saplings 31/34 + + + + + + 0.003
N.g. 5-15 vs. N.g. saplings 102/34 + + 0.246
N.g. >15 vs. L. caustica 31/56 0.056
N.g. 5-15 vs. L. caustica 102/56 0.944
N.g. saplings vs. L. caustica______________ 36/56 - - - -__________________________ 0.004_____

* The symbol + means a significant positive association; - means a significant negative association at 
distance t, based on the LL2(t)~function. An empty cell indicates an independent association. Significance 
is using a 99% confidence interval (999 simulations) with a 1-m step. The Cramer-von-Mises test was used 
for overall significance of patterns over the complete range of t. Bold figures mean the spatial association 
is highly significant at the 0.01 level.
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Basal area and density values differed according to site, obviously due to different 

stand development stages. Maximum BA values were found in the second-growth stand 

following logging (logged site plot 1: 37.8 m2/ha) and in the mature stands (mature site 

plot 1: 33.1 m2/ha). Nothofagus glauca has lower BA values when compared with other 

Nothofagus species of southern Chile; Pollmann (2002), working in the Malleco Province 

(38° 13’S), found maximum BA values of 110 m2/ha for N. alpina. In old growth stands 

of N. pumilio, Fajardo &  de Graaf (2004) found BA values of 68 and 61.9 m2/ha in sites 

located in the Nuble Province (36° 60’S) and the Coyhaique Province (45° 52’ S), 

respectively. The data suggest that the productivity levels of these N. glauca stands are 

well below Nothofagus species located in southern Chile. I suggest that Mediterranean 

climatic conditions, characterized by long droughts plus thin rocky soils (in the current 

study), in contrast to wet climates in the south, explain these low productivity rates 

(Kalin-Arroyo et al., 1995; Mooney et al., 2001).

The current study gives preliminary information on this particular Nothofagus forest 

type. Further studies on the links between regeneration behavior, primary productivity, 

nutrient cycles and ecophysiology for these three origin disturbance stands are needed 

(Veblen et al., 1996a). Another important field of study to explore is the landscape 

connectivity that these Andean foothills share with the fragmented forests of the Coastal 

range. Finally, I want to add that extensive stand degradation and decreasing range size 

are serious concerns for N. glauca. Based on this work, effective conservation of this 

species must include both an understanding of the landscape context and the spatial 

pattern of associated species.
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Chapter 3

SPATIAL PATTERNS OF REGENERATION IN  M ANAGED UNEVEN-AGED  

PODEROSA PINE/DOUGLAS-FIR FOREST OF WESTERN M O NTANA

.. critical tests of logically derived hypotheses about ecological patterns are valid as 

experimental science, including studies that are observational (or mensurative) rather

than manipulative” (Underwood et al., 2000)

3.1 INTRODUCTION

The two-dimensional spatial pattern of individual trees in a stand can influence 

competition levels, growth rates, and understory development (Duncan and Steward, 

1991; Chen and Bradshaw, 1999; Goreaud et al., 1999). The establishment, development 

and composition of recruitment is determined in large part by the spatial pattern of larger 

trees, along with the variation in biophysical site factors, particularly in natural 

ecosystems (Duncan, 1991; Haase et al., 1996; Goreaud et al., 1999; Mast and Veblen, 

1999; Szwagrzyk et al., 2001). Furthermore, studies based on local spatial association 

patterns have shown correlations with the direction and strength of plant interactions, 

giving insight into processes such as the nurse effects and niche limitations (Choler et al., 

2001; Kikvidze et al., 2005). In this context, spatial patterns can be studied as a means of 

inferring explanations of interspecific processes (MacArthur, 1972), given that ecological 

processes may be expected to give rise to spatially recognizable structures that can be
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examined with spatial statistical analysis (Watt, 1947; Greig-Smith, 1979; Kikvidze et al., 

2005; Stoll and Bergius, 2005).

Spatial patterns of forest regeneration are the result of seed dispersal, seed 

germination, and seedling survival in relation to the distribution of parent trees, 

competing vegetation, and seedbed conditions. These interactions are in turn affected by 

disturbances and environmental variables across a range of scales (Nathan and Muller- 

Landau, 2000). In forest types where small-scale disturbances predominate, the 

recruitment of young trees into the overstory can occur primarily within canopy openings 

(Runkle, 1981). Such canopy gap disturbances often result in patches of similar-aged 

trees, though more variable-aged cohorts of advanced regeneration may be released in 

many forest types (Brokaw, 1985; Uhl et al., 1988; McClure et al., 2000; Webster and 

Lorimer, 2005). The size and spatial configuration of canopy openings have long been 

reported to potentially influence both the amount and species composition of 

regeneration, particularly for more light-demanding tree species in mesic forests 

(Minckler and Woerheide, 1965; Brokaw, 1985; Gray and Spies, 1996; Fajardo and de 

Graaf, 2004). In moisture-limited forests, however, the spatial pattern of regeneration 

might not be as clearly associated with canopy openings, particularly i f  establishment of 

new germinants is facilitated by the greater moisture availability under larger nurse plants 

(Nieringetal., 1963; Callaway, 1992).

In recent years, there has been increased interest in the application of uneven-aged 

silvicultural systems (both single-tree and group selection) in western North American 

forests (Fiedler et al., 1988; Guldin, 1996; O'Hara, 1996), particularly in lower elevation 

ponderosa pine (Pirns ponderosa Dougl.) and Douglas-fir (Pseudotsuga menziesii var.
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glauca (Mirbel) Franco) forests. Uneven-aged management can pose difficult 

silvicultural challenges, however, in part because selection harvests must consider both 

the recruitment of a new age class and the maintenance of vigorous growth on the reserve 

growing stock (i.e., the older cohorts). While identifying suitable allocation of growing 

space among different age cohorts to meet both considerations remains an active area of 

silvicultural research (O'Hara, 1996; Seymour and Kenefic, 2002), few studies have 

considered the actual spatial distribution of trees in different cohorts (Woodall, 2000; 

Kunstler et al., 2004; Rock et al., 2004; Paluch, 2005). Under the single-tree selection 

system, managers emulate natural gap phase replacement and implicitly consider the 

spatial structure of a stand by assuming that canopy gaps constitute potential growing 

space for new cohorts (Smith et al., 1997; Nyland, 2002). However, it is unclear to what 

extent regeneration occurs in clumps in managed ponderosa pine/Douglas-fir forests, and 

whether these two species tend to occur together or in separate microsites. Under low 

reserve basal area on moisture-limited sites within these forests, the spatial pattern of 

regeneration may not be as clearly associated with canopy openings. Previous studies in 

natural ponderosa pine stands have indicated that younger trees tend to be clumped, while 

larger trees tend to become more randomly dispersed over time (Cooper, 1961; Harrod et 

al., 1999; Mast and Veblen, 1999; Woodall, 2000).

While point pattern analyses (Dale, 1999) of a single species or bivariate spatial 

analyses between different groups do not directly identify causal factors involved in stand 

dynamic processes, they could enhance our understanding of competitive and spatial 

relationships among different tree species and age classes. Moreover, such analyses of 

spatial patterns may be used to identify possible underlying processes and to generate
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hypotheses (Szwagrzyk, 1990; Legendre, 1993; Liebhold and Gurevitch, 2002). For 

instance, a positive spatial association between two species may suggest that they share 

similar environmental site requirements, or that the species are somehow dependently 

linked to each other. Alternatively, a negative association may imply that one species is 

excluding the other (Dale, 1999), or that the species may differ in resource use, dispersal 

and germination mechanisms, or reproductive strategies (Bazzaz, 1990). In addition, new 

statistical strategies that attempt to quantify the strength of spatial associations may allow 

us to strengthen inferences from spatial pattern analyses.

Over the last several years, methods based on Ripley’s L(t)-function, and particularly 

Ripley’s Zy^-function, have undergone rapid development and are now being widely 

used in plant ecology (Duncan, 1991; Haase et al., 1996; Barot et al., 1999; Goreaud et 

al., 1999; Mast and Veblen, 1999; Camarero et al., 2000; He and Duncan, 2000; 

Szwagrzyk et al., 2001; Call and Nilsen, 2003; Goreaud and Pelissier, 2003; Wiegand 

and Moloney, 2004). My argument in favor of Ripley’s L\,2(t)~ function is that it uses the 

information from all inter-point distances between observed units, and therefore provides 

more information on the scale of the pattern than do statistics that use nearest neighbor 

distances only (i.e. Diggle’s nearest neighbor functions G or F (Diggle, 1983; Barot et al.,

1999)). Second, the function describes the characteristics of the point pattern over a 

range of distance scales, and can therefore detect mixed patterns (e.g. association at 

smaller distances and repulsion at larger distances). This is an important property 

because virtually all ecological processes are scale dependent and their characteristics 

may change across scales (Levin, 1992; Gustafson, 1998; Wiegand and Moloney, 2004). 

However, this qualitative determination of association or disassociation based on
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significance testing makes it difficult to quantitatively compare different cases, and 

further to evaluate hypotheses regarding the underlying processes involved. I propose the 

use of an index of association based on the relative strength of positive or negative 

association present in a particular bivariate point pattern at a particular distance.

Under the assumption that processes generate patterns, I tested links between patterns 

of spatial association among saplings and overstory trees and relative moisture 

availability in managed uneven-aged ponderosa pine/Douglas-fir forest stands in western 

Montana. I examined the spatial pattern of overstory and understory trees on stem- 

mapped plots in these managed stands. The Z/O-fimction (Besag, 1977), a transformation 

of the original Ripley’s £(7)-function (Ripley, 1977), was used to evaluate the univariate 

spatial pattern of individual species and size classes (i.e., clumped, uniform, or random), 

while the intertype function LL2(t) (Lotwick and Silverman, 1982; Diggle, 1983) was 

used to evaluate bivariate spatial association between species and size classes. Statistics 

summarizing of univariate and bivariate spatial patterns were evaluated to test the 

following hypotheses: 1) the spatial distributions of young cohorts of ponderosa pine and 

Douglas-fir in the understory are clumped; 2) saplings of ponderosa pine and Douglas-fir 

are negatively associated with each other (i.e., the two species are utilizing different 

microsites or one species might be excluding the other); and 3) the saplings of these 

species are negatively associated with older cohorts (i.e., positively associated with 

canopy openings). In addition, I utilized a novel strategy to numerically measure the 

strength of spatial association between tree size-classes in order to evaluate potential 

causal factors for such associations. I used this “index of association” to examine 

whether some of the variation in the degree of spatial association (or disassociation)
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between saplings and overstory trees could be explained by minor differences in relative 

moisture availability among our study sites.

3.2 METHODS

3.2.1 Study area

The study area was located in western Montana, approximately 170-km northwest of 

Missoula, on the Flathead Indian Reservation (FIR) of the Salish and Kootenai Tribes 

(Sanders County). The mean annual precipitation in the lower elevation forests examined 

for this study is between 400-520 mm (1999). The soils are formed from residual and 

colluvial materials eroded from Precambrian metasedimentary rocks (Belt formations), as 

well as unconsolidated tills deposited by glaciers. Ponderosa pine and Douglas-fir are the 

dominant tree species in the study area, along with scattered western larch (Larix 

occidentalis Nutt.) and lodgepole pine (Pinus contorta Dougl. ex. Loud). The natural 

disturbance regime in these forests had historically been dominated by low-severity 

ground fires with a return interval of 5-30 years (Habeck and Mutch, 1973; Amo, 1980; 

Fisher and Bradley, 1987; Amo et al., 1995b).

There is a longer history of uneven-aged management using single-tree selection on 

the Flathead Indian Reservation (FIR) than for most ownerships in Western Montana. 

Stands selected for this study on the FIR represented typical uneven-aged management 

regimes currently being recommended and implemented for ponderosa pine forests in the 

Northern Rockies region (Fiedler et al., 1988; Becker, 1995). Over the past forty years, 

the current study stands have been managed by some form of selective harvesting on a 

cutting cycle of -20-25  years. The most recent harvest entry in study stands occurred
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between 14-18 years ago (1987-1991). Guidelines for individual tree selection system 

targeted a relatively low post-harvest basal area of 11-13 m2/ha across stands, to be 

distributed among three to five age classes. However, basal area stocking levels sampled 

within ten 0.1 ha study plots approximately fifteen years after selection harvest ranged 

between 12.2-39.1 m2/ha (Table 3.1).

Table 3-1. Stand structural characteristics for the 10 sampled stands on the Flathead 

Indian Reservation, Western Montana, sampled in 2002.

Basal Area 
(m2/ha)

Density large trees 
(#/ha) U

Density saplings 
(trees/ha)

Plot PP§ DF WL Total PP DF WL Total PP DF WL Total
1 13.1 4.7 0.0 17.8 100 155 0 255 532 3222 0 3754
2 17.5 6.5 0.0 24.0 146 119 0 265 202 440 0 642
3 3.6 10.0 6.9 20.5 18 229 91 338 73 2387 64 2524
4 24.9 0.0 0.0 24.9 881 0 0 881 624 0 0 624
5 10.1 2.1 0.0 12.2 294 36 0 330 367 54 0 421
6 16.0 1.5 0.0 17.5 247 54 0 301 1257 367 9 1633
7 8.2 16.9 0.2 25.3 82 321 9 413 192 1055 9 1256
8 9.1 18.5 0.0 27.6 431 431 0 862 275 238 0 513
9 37.0 2.1 0.0 39.1 358 91 0 459 725 1836 0 2561
10 22.9 1.8 0.0 24.7 440 100 0 540 2488 1286 0 3774

1 Large overstory trees represent trees with a DBH larger than 30-cm; Saplings represent small trees with a 
DBH smaller than 5-cm and a height larger than 0.5-m
§ PP = ponderosa pine (Pinus ponderosa)-, DF = Douglas-fir (Pseudotsuga menziesii); W L = Western larch 
(Larix occidentalis).

3.2.2 Field sampling

In each of the ten study stands, I  randomly established one 33 x 33 m square plot (-0.11 

hectare), allowing that locations including the presence of perennial streams, rock 

outcrops, roads, or log yarding areas within plot boundaries were to be relocated. The 

azimuth and distance (to nearest mm) from the plot center to the center of each tree > 0.5 

m tall was estimated using a handheld laser range finder (Forest Pro, Laser Technology, 

Colo., USA) and a compass. These field measurements were later converted to Cartesian 

coordinates using trigonometric functions. For each mapped tree, I recorded the species 

and measured diameter at breast height (DBH, 1.37 m) for classification into different
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size classes used in the spatial pattern analyses. Understory trees taller than 0.5 m but 

less than 5 cm DBH were classified as saplings, while those with bole diameters between 

5-15 cm DBH were classified as small poles. Trees in the size range of 15-30 cm DBH  

were referred to as medium overstory trees, and all individuals exceeding 30 cm DBH as 

large overstory trees. In order to avoid overlap between size classes in the bivariate 

analysis of spatial pattern, I  excluded the small pole size class from the analyses and 

instead focused on the relationship between saplings to medium and large overstory trees.

3.2.3 Habitat type designation

All of the stands sampled in this study are located on low to moderate productivity sites 

within a relatively narrow range of habitat types (Pfister et al., 1977) in the Douglas-fir 

series (i.e., they support Douglas-fir as the late-successional dominant in the absence of 

disturbance). There are slight differences in moisture availability across the sites, 

however, which are reflected in the floristic composition, including whether or not they 

will support western larch. In order to evaluate the effect of relative moisture availability 

on bivariate spatial patterns among saplings and overstory trees with our index of 

association strength, I used the Pfister et al. (1977) floristic habitat type classification 

system as a surrogate for site moisture level and stratified the ten sites into three habitat 

type groups. Such grouping of assemblages of habitat types with similar environmental 

regimes, responses to disturbance, and potential species composition and stand structure 

have been widely used in Western Montana as a coarse filter for ecological delineation of 

different vegetation response units in a management area (Chew et al., 2004). The three 

habitat type groups for this analyses are referred to simply as dry, moderate, and moist, 

though it is recognized that these are relative terms and that most all sites at this elevation
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in Western Montana experience some level of moisture stress during the growing season 

of most years.

3.2.4 Spatial pattern analysis

To simplify stand spatial structure, I focused on the two-dimensional location of stems in 

the stand. Therefore, the sampled area is represented by the horizontal plane bounded by 

plot borders, and each tree is represented by a point, defined by coordinates (x,y). The 

stem-mapped plot is thus reduced to a finite set of points, called a point process, the 

properties of which describe the horizontal spatial structure of the forest stand for each 

species and tree size class. Two types of null hypotheses concerning the type and 

intensity of the spatial distribution of tree stems were assessed using univariate and 

bivariate Ripley’s A'-functions and the related A-function (Besag, 1977; Ripley, 1981). 

The first null hypothesis for univariate spatial analysis is that there is no deviation from a 

distribution of complete spatial randomness (CSR). The second null hypothesis for 

bivariate spatial analysis is that the distribution of size-class of trees (or species) is 

independent of other size-classes (or species) in the sampled community (Goreaud and 

Pelissier, 2003).

The Ripley’s Af-function is defined so that X*K(t) is the expected number of neighbors 

in a circle of radius t centered at an arbitrary point of the pattern (Ripley, 1977), under the 

assumptions of stationarity (invariance of the process under translation) and isotropy 

(invariance of the process under rotation) (Haase, 1995; Dale, 1999; Goreaud et al., 

1999). To simplify interpretation, it has become popular to use a linearized version of

K (t): L(t) = s](K(t)/7t) - t  proposed by Besag (1977) and estimated as:
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L(t) = ^ ( K ( t ) / x ) - t ,  where K( t ) is the estimated Ripley’s K-function. This 

transformation makes K(t) approximately linear in i, and scales its variance to facilitate 

comparison against the null hypothesis of complete spatial randomness (CSR) (Skarpe, 

1991). The linearized function has an expectation of zero for any value of t when the 

pattern is random. The statistical significance of the departure from zero was tested using 

a Monte Carlo procedure that randomly repositions all points in the plot and generates 

L(t) functions (Upton and Fingleton, 1985). In this study, I computed 99% confidence 

bands for L(t) by running 99 simulations at intervals of 1 m from 1 to 16 m (half the 

length of the shortest side of the plot). The Cramer-von Mises test was used to test for 

significance (Haase, 2002). Since edge effects become a concern at greater distances, I 

used the weighted edge correction factor proposed by Ripley (1981) to account for this 

effect (Haase, 1995). I f  the deviation of the sample statistic, L(t),  from zero expectation 

(CSR) is significantly positive or negative, a clumped or over-dispersed distribution of 

the sampled trees can be asserted, respectively (Diggle, 1983; Haase et al., 1996).

To test the second null hypothesis, that of spatial independence between different 

species or size-classes of trees, I  used the modified Li 2(t)-function (Lotwick and 

Silverman, 1982; Diggle, 1983). The classical estimator for this function is

* I A  *

L i.2(t)=yj(K] 2{ t ) l x ) - t ,  where K h2(t) is the standard estimator of the intertype

Ripley’s K-function K u(t) proposed by Lotwick and Silverman (1982). O f particular 

interest was to examine whether the spatial distribution of saplings was independent of 

overstory trees. For this I  assumed that the spatial patterns of the two different size- 

classes (or species for similar tests) were generated by two independent processes (e.g., 

different dispersion process periods, different species); hence, the null model of
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independence was adopted (Dixon, 2002; Goreaud and Pelissier, 2003; Wiegand and

Moloney, 2004). The L 1.2ft) function quantifies the degree and type of spatial

association between size-class (or species) 1 and 2. I f  the value of L 1,2ft) is not 

significantly different from zero, the null hypothesis that the two species have 

independent spatial distributions cannot be rejected (Kenkel, 1988; Goreaud and

Pelissier, 2003). A value of L 1.2ft) significantly larger or smaller than 0 indicates spatial 

attraction or repulsion, respectively, between the two size-classes at range t. Monte Carlo 

simulations were used to evaluate the statistical evidence of a departure from zero, where 

each simulation consisted of randomly assigning new coordinates to only one size-class, 

while the coordinates of the other size-class remain unchanged (Haase, 2002; Goreaud 

and Pelissier, 2003). The spatial statistics program SPPA.EXE (Haase, 2002) was used 

for the computations of both univariate and bivariate analyses.

3.2.5 Strength of association

In the case of the bivariate Ripley’s L 1.2ft)-function, the null hypothesis being tested was 

that there was no spatial association between two size-classes of trees. I f  the value of 

L 1.2ft) deviates significantly from 0, up to a distance t, this indicated spatial attraction or 

repulsion between the two size-classes up to that distance t. From this analysis we could 

answer preliminary questions about the observed patterns, such as whether the saplings 

had a negative spatial association with overstory trees, but we could not compare 

different plots. My approach to quantifying the relative strength of positive and negative 

associations is rather intuitive, in that it considers the ratio between the value of L 1.2ft) 

and the corresponding (upper or lower) confidence envelope (CE) at a specific distance t
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(IA  (t) =  L  i.2^/C E ; Fig. 1). For a particular distance t, larger index values (in absolute 

value) indicate greater departures from the independence hypothesis. This index of 

association (IA ) might logically represent the numerical strength of the point process up 

to a distance t  (given the cumulative nature of the original function), and becomes useful 

when comparing groups of plots belonging to different ecological site types (e.g., habitat 

type groups). When comparing means, I aggregated plots to three different habitat type 

groups as described above to characterize minor differences in moisture availability 

(labeled dry, moderate, and moist) and assigned an IA  value to each plot for distances t  =  

5 m and t = 10 m. These distances were selected assuming that 5-m was a fair 

representation of crown extension, and that 10 m extended far beyond crown influence 

(though perhaps not beyond the influence zone of roots). This allowed me to test the 

hypothesis that the strength of spatial association between saplings and overstory trees 

(medium and large) was not related to the habitat type group (i.e., moisture availability) 

of the site. Comparisons of IA  for individual associations (i.e., ponderosa pine saplings 

vs. large trees) among different habitat type groups (moisture levels) were conducted 

using one-way ANOVA. These analyses were carried out with SPSS (2000).

3.3 RESULTS

3.3.1 Spatial distribution of natural regeneration

The mean density of naturally regenerated saplings (> 0.5 m tall, < 5 cm DBH) on the ten 

study stands was 1775 trees/ha (range of 421 -  3774), with approximately 31% 

ponderosa pine and 68% Douglas-fir (Table 3.1). Saplings of both species exhibited 

clumped distributions in the understory o f these managed uneven-aged stands. Ponderosa
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pine saplings appeared clumped in all ten plots. For the nine plots where at least 20 

saplings were present, this clumped pattern was significant across all distance classes (t) 

between 1 and 12-m (Table 3.2). Douglas-fir saplings were similarly consistent in 

displaying a clumped distribution across the range of distances examined (Table 3.2). 

For eight of ten plots with at least 20 Douglas-fir saplings present, all were significantly 

clumped, and seven plots exhibited this clumped pattern for all distances up to at least 9- 

m.

2

IA (5 ) = 1.391 .5

1.22
upper CEl

0.8B

0 .5

0
lag distance (m )

0 .5

low er CEl

1 .5

2

Figure 3-1. Index of association (IA ) as a relative measure of the strength of association

between two classes of points based upon the bivariate L \_2(t) function and the

confidence envelopes (CE) associated with it. The IA  is the ratio of the L \.2(t) value to 

the corresponding confidence band for a specific lag distance t (i.e., upper confidence 

band in the case shown).

There was no evidence in the data to support the bivariate hypothesis that saplings of 

ponderosa pine and Douglas-fir were negatively associated. A negative spatial 

association was not found in any plot at any scale. Instead, I  found a positive spatial 

association for saplings of these two species in all but one of the plots where both were
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present (Table 3.2). In five of the seven plots where at least 20 saplings of each species 

were present, a significant positive spatial association was found at both small scales (up 

to 5-m) and at larger scales (10-m or greater).

Table 3-2. Patterns of spatial dispersion and association for saplings (taller than 0.5-m 

and less than 5-cm DBH) in 10 stands of ponderosa pine and Douglas-fir in Western 

Montana. Data for each stand are from a 33 x 33 m stem-mapped plot.

Plot Ponderosa pine saplings Douglas-fir saplings
Distance t (m) * Distance t (m)

n§ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 Pi n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 p
1 58 c c c c c c c c c c c c c c c c 0.01 351 c c c c c c c c c c c c c c c c 0.01
2 22 c c  c c c  c c c c c c  c c 0.01 48 c c c c c c c c c c c c c c c c 0.01
3 8 c c c c c 0.10 260 c c c c c c c c c 0.01
4 68 c c  c c c  c c c c c c  c c  c c c 0.01 0
5 40 c c  c c c  c c c c c c  c c  c c c 0.01 6 0.76
6 137 c c  c c c  c c c c c c  c c 0.01 40 c c c c 0.01
7 21 c c  c c c  c c c c c c  c c  c c c 0.01 118 c c c c c c c c c c c c c c c c 0.01
8 30 c c  c c c  c c c c c c  c 0.01 26 c c c c c c c c c c c c c c c 0.01
9 79 c c  c c c  c c c c c c  c c  c c c 0.01 201 c c c c c c c c c c c c c c c c 0.01
10 140 c c  c c c  c c c c c c  c c  c c 0.01 271 c c c c c c c c c c c c c c c 0.01

Ponderosa pine vs. Douglas-fir saplings
Distance t (m)

N l/n2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 p
1 58/351 4 4 4 4 4 4 4 4 4 4 4 4 4 4 .01
2 22/48 4 4 4 4 4 4 4 4 .01
3 8/260 4 4 4 4 .03
4 68/0 . . .

5 40/6 4 4 4 4 4 .01
6 137/40 4 4 4 4 4 4 4 4 4 4 4 4 4 4 .02
7 21/118 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 .01
8 30/26 + + +  + + + +  + + +  + + + + 4 .01
9 79/201 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 .01
10 140/271 4 4 4 .08

§ n represents the number of individuals in the plot subjected to analysis; ni stands for the number of 
individuals in the plot belonging to the first size-class under analysis; n2 corresponds to the second size- 
class
*  The symbol c indicates a significantly clumped distribution; u indicates a regular distribution at distance 
t, based on the distribution of Lfrj-function values. No symbol indicates a random distribution. The 
symbol + indicates significant positive association between both species; - indicates significant negative 
association at distance t, based on Ij.ifO-function. No symbol indicates independence.
H Significance is evaluated using 99% Monte Carlo confidence intervals (99 simulations) with a 1-m step. 
The Cramer-von-Mises test was used to test for overall significance of patterns over the complete range of 
t, with p-values reported in the column titled “p”.
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Figure 3-2. L \.2(t) function and the confidence envelopes (CE) associated with it for the 

spatial association between medium-sized overstory trees (15-30-cm DBH) and (a) 

ponderosa pine saplings and (b) Douglas-fir saplings in plot 6. The association between 

the two size-classes in this example tends to be positive (attraction).

3.3.2 Association of saplings with overstory trees

In these managed multi-aged stands, the pattern of bivariate spatial association between 

saplings of ponderosa pine and Douglas-fir and overstory trees depended upon the level 

of discrimination among different overstory size classes. When the ponderosa pine 

saplings (< 5-cm DBH) were compared against the medium-sized overstory trees (15-30- 

cm DBH), two plots exhibited a significant positive spatial association at scales less than
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10 m (Figure 3.2a), while two other plots had a significant negative spatial association at 

the same scales (Figure 3.3a). In the other six plots there was no particular association 

evident. Similarly, there was no consistent trend in bivariate association between 

ponderosa pine saplings and large overstory trees (>30-cm DBH). While five of the ten 

plots exhibited a significant negative association between pine saplings and large 

overstory trees at larger scales, two plots displayed a positive association for comparable 

distances between 6 to 11-m (Table 3.3).

Mixed results were also observed for the bivariate association between Douglas-fir 

saplings and medium and large overstory trees. For the nine plots in which Douglas-fir 

saplings were present, they were negatively associated with medium sized trees in four 

plots (Figure 3.3b) and positively associated in three other plots (Figure 3.2b). Spatial 

association of Douglas-fir saplings with large overstory trees was likewise mixed, though 

a greater proportion of plots exhibited a negative association. I  found a significant 

negative association between Douglas-fir saplings and large trees in four plots, whereas 

two plots had a positive association (Table 3.3).

3.3.3 Sapling-overstory associations in relation to habitat type groups 

The analysis of variation in the “index of association” (IA ) among different habitat type 

groups indicated that some of the above variation in the spatial association between 

saplings and overstory trees could be related to site differences in moisture availability 

(Table 3.4). Particularly for the association between saplings and medium sized 

overstory trees at short scales (up to 5-m); there appeared to be a shift from positive 

association on drier sites to a negative association on somewhat moister sites. For 

Douglas-fir, this same relationship was found to be significant in the A N O VA  showing

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



clear differences between the dry and moist habitat type groups (Table 3.5; Figure 3.4b). 

For Ponderosa pine, the same trends were evident, but were not significant (p- 

value=0.06) (Table 3.5; Figure 3.4a). A similar shift in the association between saplings 

and medium size overstory trees from positive on drier sites to negative on more moist 

sites was evident at the 10-m distance as well for both species, but the ANOVA results 

were not statistically significant (Table 3.5; Figure 3.5). For bivariate associations 

between saplings and large overstory trees, there were no significant differences among 

the different habitat type groups (results not shown).

a ) M e d iu m  o v e r  s t o r y  t r e e s  v s . P P  s a p l in g s  u p  t  o

L1.2(t)

3

2

1

0
1

2

•3

•4

la g d is ta n c e (m )

b )  M e d iu m  o v  e r  s t o r y t r e e s v s .  D F s a p l in g s  u p  t o  5 ' m

L1 2(1)

3

2

1

0
1

2

3

la g d is ta n c e (m )

Figure 3-3. L 1.2(f) function and the confidence envelopes (CE) associated with it for the 

spatial association between medium-sized overstory trees (15-30-cm dbh) and (a) 

ponderosa pine saplings and (b) Douglas-fir saplings in plot 7. The association between 

the two size-classes in this example tends to be negative (repulsion).
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Table 3-3. Patterns of spatial association for sapling size trees and both medium (15-30 

cm DBH) and large (> 30 cm DBH) overstory trees, by species within stem mapped plots 

of ten managed, uneven-aged ponderosa pine/Douglas-fir stands in Western Montana.

Plot Ponderosa pine saplings vs. Plot Douglas-fir saplings vs. medium
medium overstory trees overstory trees

Distance t (m) * Distance t (m)
n l/n 2 § 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 P i n l/n 2 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 P

4 68/32 .41 4 0/32 —
5 40/13 + + ++ + +  + + + + + * .01 5 6/13 + + + + + .05
10 140/9 .12 10 271/9 .86
1 58/11 .06 1 351/11 + + +  + + ++ + + + + + .01
2 22/7 .88 2 48/7 .01
6 137/9 + + ++ + + + + .01 6 40/9 + + + .12
8 30/25 + + .11 8 26/25 + + + + + .08
3 8/14 .42 3 260/14 .............. .01
7 21/16 .01 7 118/16 .01
9 79/20 ........................ + + .01 9 201/20 .01

Ponderosa pine saplings vs. large Douglas-fir saplings vs. large
overstory trees overstory trees

Distance t (m) * Distance t (m)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

4 68/10 + + - - .03 4 0/10 —
5 40/7 + + + + .01 5 6/7 + .18
10 140/13 - - .12 10 271/13 .01
1 58/7 + ++  + + +  + + + + + .01 1 351/7 + + .20
2 22/12 - - - - .03 2 22/12 + + + + + + .01
6 137/6 .01 6 40/6 - .13
8 30/8 .01 8 26/8 .01
3 8/9 - - - - .05 3 260/9 - - .01
7 21/13 - - - .06 7 118/13 ............................... .01
9 79/19 - - - - .01 9 201/19 + + + + + + + + + .01

§ rii stands for the number of individuals in the plot belonging to the first size-class under analysis; n2 
corresponds to the second size-class.
* The symbol + indicates significant positive association; - indicates significant negative association at 
distance t, based on L;./f)-function. No symbol indicates independence.
1 Significance is evaluated using 99% Monte Carlo confidence intervals (99 simulations) with a 1-m step. 
The Cramer-von-Mises test was used to test for overall significance of patterns over the complete range of 
t, with p-values reported in the column titled “p”.
Plots 4, 5 and 10 are classified as drier; plots 1, 2, 6 and 8 are classified as moderate; and plots 3, 7 and 9 
are classified as wetter.

3.4 DISCUSSION

Spatial pattern analysis of regeneration in ten managed uneven-aged stands selected for 

this study indicated that saplings of both ponderosa pine and Douglas-fir tend to be 

spatially clumped, though such aggregations are not necessarily associated with canopy 

openings. This finding of clumped regeneration patterns is similar to results reported for
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ponderosa pine occurring as even-aged patches in natural stands (Cooper, 1961; Mast and 

Veblen, 1999; Woodall, 2000). Each harvest in stands managed by single-tree selection 

may open up over 25% of the canopy area, and there is the potential for a fairly dispersed 

pattern of regeneration across the stand (Nyland, 2002). However, aggregated 

regeneration patterns in managed stands are likely driven by many of the same factors as 

found under natural stand dynamics. Various processes can lead to clumped patterns of 

recruitment, e.g., natural or mechanical soil disturbances creating patches of favorable 

seedbed, or increased resource availability within patches, as might be associated with 

canopy gaps (Veblen, 1992; Franklin et al ., 2002). Clumped distributions of regeneration 

have likewise been reported in managed stands of Picea abies, Abies alba, and Fagus 

sylvatica (Frohlich and Quednau, 1995) and in Ailanthus altissima and Robinia 

pseudoacacia (Call and Nil sen, 2003).

I  found little evidence to suggest that saplings of ponderosa pine and Douglas-fir 

occupy separate spatial locations in these stands. The bivariate analyses for sapling 

distributions showed a general positive spatial association between these two species. 

Szwagrzyk (1992) reported a similar positive association between recruitment of two 

sympatric species, Pinus sylvestris and Fagus sylvatica. The existence of positive 

interactions between species has been reported to be common in many environments 

(Callaway, 1995; Holmgren et al., 1997). However, these positive associations have 

generally been reported for different layers or life forms (e.g., seedlings of one tree 

species and adults of another shrub species -Callaway (1992)) rather than species 

belonging to the same life form (e.g., trees only).
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Table 3-4. Index of association (IA ) values from the L \.i(t) function up to 5 and 10-m 

(short and larger scale, respectively) for the spatial association between saplings and 

overstory trees in 10 plots (33x33-m) of ponderosa pine and Douglas-fir in Western 

Montana.

5-m 10-m 5-m 10-m
PP§ DF PP DF PP vs. 

DF
PP vs. 

DF
Habitat

Type
Plot Medium

1
Large Medium Large Medium Large Medium Large

Dry 4 -.109 -1.145 -.268 1.134
Dry 5 .1656 -.257 1.216 -.185 1.081 1.541 -1.245 .142 1.157 .921
Dry 10 .772 -.777 .387 -1.528 .781 -.632 .922 -2.270 .530 .331

Moderate 1 .228 .070 .445 -.505 .246 1.072 3.110 .205 2.760 1.979
Moderate 2 .010 .462 -.309 1.331 -.165 -.878 -1.251 -.848 1.351 .714
Moderate 6 1.455 -.746 1.648 -.264 1.950 -1.506 .574 -1.111 1.845 1.071
Moderate 8 .309 -2.321 .687 -1.508 .782 -1.897 1.091 -1.585 3.093 1.941

Moist 3 -.019 -.202 -1.079 -.192 .082 -.302 .723 -.222 -.166 -.304
Moist 7 -1.029 -.340 -3.743 -5.353 -2.204 -.419 -2.750 -.788 2.319 1.757
Moist 9 -2.054 -1.960 -1.199 .579 -.348 -.044 -1.202 1.320 4.115 3.094

§ For saplings only: PP = ponderosa pine (Pinus ponderosa)-, DF = Douglas-fir (Pseudotsuga menziesii)-, 
W L = Western larch (Larix occidentalis)
f  Large overstory trees represent trees with a DBH larger than 30-cm; Medium overstory trees are trees 
with a DBH between 15-30-cm; Saplings represent small trees with a DBH smaller than 5-cm and a height 
larger than 0.5-m.

Whereas the spatial association of ponderosa pine and Douglas-fir would be easily 

explained if  they were found to occur together in canopy gaps, I did not find that saplings 

were consistently clumped and separated from overstory trees (i.e., in gaps). In general, 

ponderosa pine and Douglas-fir saplings were either positively associated with medium

sized overstory trees (15-30 cm DBH) or independently distributed in more than half of 

the sample plots. In moisture-limited sites, like those examined in this study (400-520 

mm/year), we might expect to see a reduced spatial association between regeneration and 

canopy gaps. In such sites, canopy openings are potentially less hospitable to new 

germinants susceptible to excessive surface temperatures and moisture stress. 

Germinants may recruit throughout the stand wherever available seed falls on suitable 

seedbeds, but survival on dry sites may be favored by the shade provided by close
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proximity to overstory trees. It has been argued that on more xeric habitats, reduced 

moisture stress under adult tree canopies may explain the increased sapling abundance 

beneath their canopies (Niering et al., 1963; Callaway, 1992; Bertness and Callaway, 

1994). This positive spatial association may result from a facilitative relationship of 

larger “nurse plants” providing shelter to seedlings by buffering physical stresses, 

especially high temperature. Bertness and Callaway (1994) suggested that facilitation 

can potentially play a more important role than competition in stressed and resource- 

limited environments. These findings support this explanation when considering 

medium-sized but not necessarily larger overstory trees (>30-cm DBH) (see below). 

However, a positive association between regeneration and adult trees might be expected 

to shift over time as greater resource requirements of larger regeneration leads to more 

direct competition with the overstory layer (Holmgren et al., 1997). While a positive 

association between regeneration and adult trees may be important for establishment at 

early development stages, once the new seedlings become established, they are likely to 

experience a more competitive relationship with overstory trees.

In order to further investigate bivariate associations in relation to slight differences in 

moisture availability between study sites, I introduced an intuitive approach to 

characterize the strength of association patterns that I termed the index of association 

(IA). This approach to quantifying the degree of spatial association can be used to 

examine the correlation between observed patterns and potential causal factors, thereby 

extending the utility of spatial pattern analysis. These analyses (ANO VA) relating the 

strength of spatial association to the three habitat type groups (i.e., moisture availability 

levels) indicated significant differences according to habitat type in the bivariate
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association between saplings and medium-sized overstory trees (15-30-cm DBH) at small 

scales. Saplings were positively associated with these medium-sized overstory trees in 

plots belonging to dry and moderately dry habitat type groups, while negatively 

associated in plots belonging to moist habitat types. When considering larger overstory 

trees (>30-cm DBH), there were no such differences between IA  values for bivariate 

association of saplings and overstory trees among different habitat type groups for 

saplings when compared to overstory trees. Regarding “nurse plant” effects, I  can 

speculate that on drier sites, saplings may experience reduced desiccation and higher 

survival rates when located in close proximity to taller trees. However, this “nurse plant” 

effect was detected for spatial associations between saplings and medium-sized overstory 

trees only, and not when larger overstory trees (> 30-cm DBH) were compared. Two 

explanations can be proposed for this difference between overstory size classes. First, the 

positive association for saplings and medium-sized overstory trees could be related to a 

common dispersal process; such that saplings are later arriving recruits (or similar aged, 

but suppressed individuals) from the same regeneration event as larger pole sized trees 

and therefore continue to be spatially associated. But having anticipated the potential 

confounding effect of such an overlap in adjacent size classes, I had decided to avoid 

bivariate analysis of saplings (< 5-cm DBH) with small poles (5-15-cm DBH), and 

instead to examine only associations with overstory tree size classes > 15-cm DBH. A  

second explanation for the difference between overstory size classes would be that 

medium-sized trees may be effectively providing more shelter to saplings than large 

overstory trees due to their having lower crown heights. It is possible that the 

ameliorating effect of larger “nurse trees” on temperature and moisture stress could be
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more pronounced for trees having the base of their live crown in closer proximity to the 

regeneration, such that the shade cast over young recruits is effective at short distances 

(i.e., smaller 5-m scale in our spatial analyses).

(a ) M edium  overstory trees vs. PP saplings up to  5 -m

o 1 
2 
'8 i moist (a)

dry (a)

I plots 4, 5, 10 
) plots 1, 2 , 6, 8 
I plots 3, 7, 9

moderate (a)

(b ) Medium overstory trees vs. DF saplings up to 5-m

1
moist (b)

dry (a)
moderate (a)

I plots 5, 10 
I plots 1, 2 , 6, 8 
I plots 3, 7, 9

Figure 3-4. Index of association (IA ) among the three habitat-type groups at 5-m lag 

distance for the spatial association between medium overstory trees (DBH between 15- 

30-cm) vs. (a) ponderosa pine (PP) and (b) Douglas-fir (DF) saplings. Letters in 

brackets, when different, indicate significant differences between habitat type groups 

(p=0.05).
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The results of this study have some interesting silvicultural implications for the 

establishment and release of regeneration in ponderosa pine/Douglas-fir forests managed 

under the individual tree selection system. While I  found seedlings of both ponderosa 

pine and Douglas-fir tended to be clustered in patches, their establishment did not appear 

to be closely associated with locations under canopy gaps. It is one of the tenets of 

uneven-aged management under the selection system that recruitment of new age classes 

should be secured at each cutting as growing space is freed up by the harvested trees 

(Smith et al., 1997; Nyland, 2002). The available growing space is often conceptualized 

as being primarily within canopy openings (and associated root gaps) created by the 

removal of one or more mature trees, particularly when considering shade intolerant 

species that may require large gaps for successful recruitment into the overstory (Runkle, 

1982; Canham and Marks, 1985; McClure and Lee, 1993). However, under the low 

reserve stocking levels typical of individual tree selection guidelines for various 

intolerant pine species (Fiedler et al., 1988; Baker et al., 1996; Shelton and Cain, 2000; 

Palik et al., 2002), initial establishment of regeneration is often more diffuse across the 

stand. In western Montana, reserve basal area stocking levels for uneven-aged 

management of ponderosa pine are typically targeted between 9-13 m2 ha'1, a level which 

local permanent plot data suggest will capture the site’s growth potential while allowing 

for consistent regeneration of serai pine and larch (Fiedler et al., 1988; Becker, 1995). 

The current analysis suggested that the regeneration established under this management 

regime was no more likely to be found under canopy gaps than in association with 

overstory trees, particularly on drier sites. Given this potential for diffuse distribution, 

managers should plan for any site preparation treatments promoting natural regeneration
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(e.g., mechanical or prescribed fire) to be conducted throughout the stand, rather than 

limiting their focus to canopy openings. Moreover, since the number of sapling recruits 

needed at each cutting cycle is relatively small (<100 ha'1), securing broad distribution 

(i.e., full stocking) of desirable regeneration may be more important than the absolute 

density of saplings established (Becker, 1995).

Table 3-5. F-values and probability values from the one-way AN O VA between the index 

of association (IA ) and the habitat type groups. The IA  values are from the L \,2(t) 

function up to 5 and 10-m (short and larger scale, respectively) for the spatial association 

between saplings and overstory trees in 10 plots (33x33-m) of ponderosa pine and 

Douglas-fir in Western Montana.

Distance 5-m 10-m 5-m 10-m
Species PP

§
DF PP DF PP vs. 

DF
PP vs. 

DF
Overstory tree 
size-class

Medium
1

Large Medium Large Medium Large Medium Large

F-value 4.189 0.035 6.361 0.400 2.422

P-values

1.667 3.587 0.911 0.755 0.459

General 0.064 0.966 0.033 0.687 0.159 0.256 0.094 0.451 0.510 0.652

Comparisons 
HT1 vs. HT2 
HT1 vs. HT3 
HT2 vs. HT3

0.682
0.033
0.047

0.906
0.898
0.799

0.849
0.028
0.018

0.742
0.688
0.405

0.822
0.128
0.076

0.111
0.318
0.523

0.962
0.087
0.047

0.815
0.282
0.299

0.279
0.360
0.875

0.432
0.409
0.919

§ For saplings only: PP = ponderosa pine {Pinus ponderosa); DF = Douglas-fir (Pseudotsuga menziesii)', 
W L = Western larch (Larix occidentalis)
K Large overstoiy trees represent trees with a DBH larger than 30-cm; medium overstory trees are trees 
with a DBH between 15-30-cm; saplings represent small trees with a DBH smaller than 5-cm and a height 
larger than 0.5-m
* HT1: dry level habitat type group; HT2: moderate moisture level habitat type group; HT3: moist level 
habitat type group.

Whereas our analysis of the distribution of sapling occurrence indicates that 

establishment may not be tied to canopy gaps, such openings are very likely important for 

the release of saplings once established. The microsite conditions that are suitable for 

initial establishment clearly differ from optimal conditions for sustained sapling growth, 

in part because the shade tolerance of tree seedlings tends to decrease with increasing size
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(Givnish, 1988; Messier et al., 1999). Any positive association we observed between 

young regeneration and adult trees would be expected to shift over time as the greater 

resource demands of larger saplings lead to more direct competition with the overstory 

layer (Holmgren et al., 1997). Subsequent selection harvests offer opportunities for 

releasing some of the saplings established in the previous cutting cycle. Given a diffuse 

distribution of regeneration across the stand, it may be more appropriate to consider 

canopy openings as areas where previously established saplings can be released, rather 

than as sites for establishing new regeneration. In locating new canopy openings, the 

presence of desirable saplings needing release would be taken into account along with 

which overstory trees might be selected for harvest.

One of the limitations of the current study is the focus on regeneration density within 

broad size classes. Regeneration in these analyses included saplings ranging from 0.5-m 

tall up to large saplings at 5-cm DBH. We might arrive at different conclusions about 

spatial association between regeneration and medium-sized and overstory trees i f  we look 

at very small first year germinants versus well-established advance regeneration. In 

addition, we did not evaluate the effects of overstory tree competition on the growth rates 

of regeneration, or the potential for faster growth rates in canopy gaps to lead more 

rapidly to reduced density of regeneration due to natural self-thinning. Further work is 

needed, beyond descriptions of spatial point patterns, to examine the effects of spatial 

patterns on individual tree-growth performances (i.e., mean annual increment, survival, 

and growth efficiency) as well as on stand-level growth given different growing space 

allocation among cohorts (Woodall, 2000).

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a ) Medium overstory trees vs. PP saplings up to 10-cm

3

2

co
«3 1

moist (a)

moderate (a)dry (a)

plots 4, 5, 10 
plots 1 2, 6, 8 
plots 3, 7, 9

•2

■3

(b ) Medium overstory trees vs. DF saplings up to lO 'm

4

3

c  2 -I0

1 l" ro o
Z
s  - i  

9
■a - 2

-3 - 

-4

jL
dry (a)

I plots 5, 10 
I plots 1, 2, 6, 
I plots 3 , 7 , 9

moderate (a)

moist (a)

Figure 3-5. Index of association (IA ) among the three habitat-type groups at 10-m lag 

distances for the spatial association between medium overstory trees (DBH between 15- 

30-cm) vs. (a) ponderosa pine (PP) and (b) Douglas-fir (DF) saplings. Letters in 

brackets, when different, indicate significant differences between habitat type groups 

(p=0.05).

3.4.1 Conclusions

Given that this is a descriptive study, we cannot draw definite conclusions about causal 

relationships for the observed patterns; many possible variables may affect plant-plant 

interactions and thus be responsible for the observed patterns discussed above (Bazzaz, 

1990; Barot et al., 1999; Wyszomirski et al., 1999). However, i f  we ignore spatial 

interactions, we may risk being unable to accurately predict the dynamics of even a very
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simple ecological system, regardless of how accurately we measure the underlying 

demographic rates (Hastings, 1993). Strategies such as quantifying the strength of 

association may allow us to extend inferences from observed patterns of spatial 

associations. The index of association strength introduced in this paper should be 

assessed in other studies involving bivariate spatial pattern analyses. We expect that this 

or comparable indices could be useful for evaluating hypotheses regarding potential 

causes for observed spatial associations and thereby help to link functional and structural 

components of forest communities.
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Chapter 4

DISTINGUSHING MICROSITE AND COMPETITION PROCESSES IN  TREE 

STAND DEVELOPMENT: AN A PRIORI SPATIAL M ODELING  APPROACH

“Competition arises from the reaction of one plant upon the physical factors about it and 

the effect of these modified factors upon its competitors. In the exact sense, two plants, 

no matter how close, do not compete with each other as long as the water content, the 

nutrient material, the light and heat are in excess of the needs of both. When the 

immediate supply of a single necessary factor falls below the combined demands of the

plant, competition begins”(Clements et al., 1929).

“Competition, which varies with tree size and stand density and directly influences tree

vigor and growth, is very difficult to quantify.”

(Korol et al., 1995).

4.1 INTRODUCTION

One of the challenges of understanding plant population development is to determine the 

causes of size variation through time (Harper, 1977; Weiner, 1990; Pfister and Stevens, 

2003). Variability in tree size reflects differences in the distribution of resources at a site 

(e.g., microsite variability) and the results of biological processes (e.g., competition) 

(Weiner, 1988). However the link between these factors affecting size and the observed 

patterns in the field is not fully understood. Size variability in plants is a consequence of 

first, a deterministic growth pattern that relates individual growth rate to current plant 

size, and second, stochastic growth patterns that represent variation in growth rates due to
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microsite heterogeneity, genetic variation and neighborhood effects (Hara, 1984; Bonan, 

1988). These effects are normally confounded in long-lived species because experiments 

to distinguish these would require decades and for many questions may be impossible 

(e.g., manipulation of competition at age 10, independent of competition status at age 5 is 

not possible). In this study, I present a novel application of a standard spatial statistical 

tool to separate the confounded “stochastic” factors affecting forest stand development: 

microsite and competition. With these factors separated, I present an updated general 

model of forest stand dynamics.

In even-aged monospecific tree stands, at least two processes can be important in 

accounting for the observed spatial structure in tree size through time, competition and 

microsite variability. Competition, by definition, involves a struggle to pre-empt limiting 

resources such as light, water, and nutrients that, together, determine rates of carbon 

acquisition (Harper, 1977; Grime, 2001). Commonly, tree competition has been thought 

to be asymmetric: larger trees have a disproportionate competitive advantage (for their 

relative size) over smaller trees, suppressing their growth (Thomas and Weiner, 1989; 

Weiner, 1990; Schwinning and Weiner, 1998). I f  two trees are growing next to each 

other, competition will tend therefore to create a negative spatial autocorrelation in size 

among neighboring trees (Yoda et al., 1957; Bachacou and Decourt, 1976; Franco and 

Harper, 1988; Magnussen, 1994; Fox et al., 2001; Shi and Zhang, 2003). Microsite 

accounts for the heterogeneity in resource availability (e.g., soil type, moisture levels, 

nutrient availability) across a relatively small range that can alter the competition status 

among trees (Yastrebov, 1996; Wyszomirski et al., 1999; Bullock and Burkhart, 2005). 

However, microsite resource variation in space has mostly been assumed to be
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homogeneous when competition is analyzed (Gurevitch et al., 2002), or left as a 

stochastic process (Hara, 1984). The effect of microsite variation is often observed in 

young, pre-canopy closure stands and in older senescent stands (Bachacou and Decourt, 

1976). Microsite processes will tend to create a positive spatial autocorrelation in size 

among neighboring trees; similar-sized trees surround other trees (Bachacou and Decourt, 

1976; Bullock and Burkhart, 2005). The effect of microsite heterogeneity may also last 

longer in the development of the stand; however, it is believed that with time competition 

becomes more important at the population level, with trees suffering more from growing 

with large neighbors than they gain from being in a good patch (Stoll et al., 1994; 

Bullock and Burkhart, 2005).

These two processes, namely competition between trees and microsite effects, will 

create spatial structures in stand features, such as relative growth rate (RGR), that can be 

described by semivariograms. Theoretical semivariogram models (e.g., exponential, 

wave, spherical, etc.) can be fit to empirical semivariograms of RGR allowing the 

investigator to obtain parameters of the theoretical semivariogram and relate the observed 

structure to hypothesized generating processes (Bachacou and Decourt, 1976; Legendre, 

1993; Kint et al., 2003). I  propose that microsite processes usually differ in scale (range 

of semivariogram) and always in quality (shape of semivariogram) from competition 

interactions, and these differences in scale and quality can permit us to distinguish both 

processes. Therefore, we expect the spatial signatures of annual growth for the two 

processes to be different. In light of Chalmers’s “sophisticated falsification” (Chalmers, 

1999) I  distinguish the two processes by making “bold” or precise conjectures. This 

conjecture states competition will create a spatial pattern best fit by a wave

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



semivariogram: neighboring trees differ greatly in size and performance (Reed and 

Burkhart, 1985). Around a dominant tree there is usually a ring of suppressed trees. In 

turn, trees in the next concentric ring behave as dominants and so on (Law et al., 2001). 

The overall effect can be described by a density wave that damps down with distance, 

propagating in all directions from every tree. Furthermore, for a wave spatial structure to 

represent competition, the range parameter (see methods) must be at the spatial scale of 

the neighboring tree-tree distance (2-4m in our sites). A spatial pattern best fit by a wave 

semivariogram but with a range parameter greater than the nearest tree does not represent 

competition. Thus, in contrast to standard ecological model fitting where only the model 

form determines the model, here, both the model form and a strict range of parameter 

values represent the biological process of interest. In contrast to competition, microsite 

processes will be best fit by monotonic increasing semivariograms (exponential or 

spherical types). When large individuals have similar large neighbors, it is often 

considered evidence for homogeneous spatial resource availability (Figure 4.1).

Overall, this methodology of having the spatial pattern of a measurable variable 

(RGR) represent the value of an unmeasurable variable (competition or microsite effects) 

is called using space-as-a-surrogate (Mclntire, 2004). It differs from a similar approach 

of examining the outcome of a process to infer characteristics of the process, known as 

inverse modeling, because I  cannot directly measure the outcome of tree-tree 

competition. I can, however, quantify and analyze the spatial pattern of a measurable 

variable, and from this infer the process. This is an inference strategy that relies on 

linking biological mechanisms to spatial patterns, and is not simply an analysis tool.
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Here, accepting that I can separate competition effects from microsite effects in 

developing forest stands, I  introduce a generalized stand development model to include 

the influence of microsite and intraspecific interactions on growth. I  considered 5 a 

priori hypotheses that tie directly to the two ecological processes that create the 

population structure (competition between trees and microsite effects) from soon after 

planting until 2004 (sampling year). Assuming that seedlings varied in size but, 

nonetheless, were planted at random, I expected that at early stages in stand development, 

RGR should show no spatial pattern (stochastic variation); it is too early for any spatial 

“manifestation” in plant RGR from specific differences in resource availability and 

competition (root or crown overlapping among trees is not probable). To the extent that 

the young stand develops prior to canopy closure, I  expected that spatial differences in 

resource availability may appear, showing relatively “better” microsites, where trees 

share better growth rates and similarities in size (positive spatial autocorrelation). Once 

crown overlapping begins, I expected the onset of competition, which over time would 

express a short-scale size-hierarchy between neighbors with spatial discontinuity between 

such groups. After thinning is practiced ( if  any) and i f  it were randomly applied (which 

is not necessarily true), I would expect the model to start over again: no spatial pattern, 

site effect, and then competition.

In summary, I simultaneously tested three key elements: first, whether the proposed 

model of early stand development (i.e., initiation-no-interaction, microsite effect, 

followed by competition and (self) thinning) occurs, and whether it occurs similarly in all 

sites; second, how the timing and relative strength of microsite effects versus competition 

compare in early even-aged stands; and third, the application, evaluation and testing of a
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common geostatistical tool to disentangle these previously confounded processes. To 

evaluate the success of this approach, I used three separate assessments: first, the use of 

Ripley's K  statistic to determine the presence and scale of microscale heterogeneity on 

the younger sites; second, whether I detect the typical stand development trajectory 

(initiation, growth, self thinning); and third, whether I avoid nonsensical results (such as 

high competition at time of planting, or random growth at time of self-thinning). I  tested 

these elements in three ponderosa pine plantation stands of different ages, located in 

Patagonia, Chile.

4.2 METHODS

4.2.1 Study area and sampling

The plantation stands are located in the surroundings of Coyhaique city (lat. 45° 52' S and 

long. 72° 00' W; 900 m above sea level), Coyhaique province (Region X I), in the east- 

Andean foothills of Patagonia, Chile. This zone belongs to the supra-temperate belt with 

humid climatic conditions (Amigo and Ramirez, 1998). The annual precipitation falls 

mainly as snow, and is approximately 1100 mm in Coyhaique (Mirador and Condor 

stands), and 600 mm for Coyhaique Alto (Flamenco stand) (CONAMA, 1998). The soil 

is mainly derived from aeolian volcanic ash deposits. Ponderosa pine (Pirns ponderosa 

Dougl. Ex Laws) constitutes the most widely planted exotic species in the Patagonian 

Andes region of Chile and Argentina, where it grows vigorously and without any serious 

pest problems.

In January 2004, I  randomly located two 0.17-0.35 ha plots within each of the three 

stands (Condor, Mirador and Flamenco), where ponderosa pine was the only species
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planted. The initial density of these plantations was 1666 trees per hectare (2 x 3-m 

arrangement). The three stands differed in plantation age, site quality and current density 

(more details in Table 4.1). In each plot I mapped and measured all trees. I  estimated the 

coordinates of each tree stem center by using a hand-held laser range finder (Forest Pro, 

Laser Technology, Colo., USA) and a digital compass, which estimate the distance and 

azimuth to the center of each tree to the nearest 1-mm. The field measurements were 

converted to coordinates using trigonometric functions. For each mapped tree stem, I 

measured diameter at breast height (DBH; 1.35 m). For trees whose DBH was greater 

than 10 cm, I  extracted one core to the pith at approximately 20-cm of height using an 

increment borer. When trees were larger than 20-cm DBH, I extracted two cores. 

Heights were measured with the laser range finder. I  mapped, measured and cored a total 

of 1173 trees across the three stands. At the lab, I dried the tree cores, mounted them in 

grooved wooden boards, and sanded them with successively finer grades of sand paper to 

reveal annual rings. For each tree core, I measured radial annual width using a 

microscope mounted on a dendrochronometer with a Velmex slide. For cores that missed 

the pith of the tree, I followed procedures described by Duncan (1989) to estimate the 

number of missing rings. No correction was applied for time required to grow to coring 

height.

4.2.2 Relative growth rate

Analysis of growth rates for individual plants provides insights into the nature of size 

variation in even-aged monocultures. Since absolute growth is clearly a function of the 

initial size of a plant (Ford, 1984), growth rates are commonly expressed in relative 

terms. Relative growth rate (RGR) is usually the most appropriate measure of plant
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performance for use in a neighborhood analysis when plant size is incorporated into a 

measure of local interference. In particular, I  used RGR because it does not necessarily 

minimize spatial dependencies among the data in the analysis (Stoll et al., 1994; Wagner 

and Radosevich, 1998), and because it is a measure of efficiency: an increment of unit of 

size per unit time (Gurevitch et al., 2002). Whatever the distribution of RGR, the mean 

RGR over an interval of 1-year is defined as:

RGR = (InBAt+i -  InBA,) * 100 

where BAt+i is the basal area (in cm2 at the base of the stem) at the end of the time 

interval (1 year) and BAt is the BA at the start of the time interval (Hunt, 1990). 

Correspondingly, BAs were computed as:

BAt = * rt2

where rt is the radius of the cross section at year t, based on the actual core length (from 

pith to annual ring). This simple BA computation is based on two assumptions relative to 

young pine tree plantations: first, the pith approximately represents the centroid of the 

cross section; and second, the stem cross-section is approximately circular. In regular 

spaced plantations, these assumptions are expected to be valid under most conditions.

4.2.3 Spatial autocorrelation and multiple hypothesis testing

Geostatistics is a collection of statistical methods for use in the presence of spatially 

autocorrelated data. Spatially autocorrelated data represent any variables that are 

distributed continuously in space, i.e., regionalized variables (Goovaerts, 1997; Wagner,

2004). Geostatistical analyses require response values that need to be labeled with the 

spatial coordinates at which measurements are collected. The basic principle of 

geostatistics is that correlation between values of a regionalized variable Z will decrease
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as distance between the sample points increases. I  chose a geostatistical approach instead 

of using some standard competition index, because of the potential for geostatistical tools 

to better represent the link between spatial patterns and processes, by relying on the 

dependencies among observations. Competition indices based on regression analyses 

usually consider dependent observations, which violate standard statistical assumptions 

of independence of data points (Bullock and Burkhart, 2005): a tree may be a subject tree 

and a neighbor tree in the same regression analysis. A common alternative to this 

procedure is to use subject trees that are far apart; however, such methods ignore large 

amounts of data.

The variogram is the variance of the difference between random variables at two units 

(locations), given by: Var (Zi -  Zj) for two sites i and j. The empirical semivariogram is 

one half the estimated variogram, and is defined as .

m  = 1 / 2  ■ (A) £  [z(x,) -  z(x, + A)]! ,
i

where: h is the distance lag between sampled trees, N(h) is the number of paired 

comparisons at lag h, z(Xj) and z(x, + h) are the observed tree variable values at location x, 

and Xi + h, respectively (Webster and Oliver, 2001). Under a typical spatial dependence 

model, two units that are close together will have a smaller variance of the difference. As 

units get further apart, their differences get larger and usually the variance of the 

difference gets larger as well. The semivariogram is used to examine the degree of 

spatial continuity in data at various lags or distances of separation (Isaaks and Srivastava, 

1989; Cressie, 1993). Nonetheless, wave semivariograms, as explored in this research, 

behave differently (see below).
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Generally, single theoretical models are used for modeling empirical semivariograms 

that are close enough in shape to one of the basic admissible models, or for the 

approximate fitting of complex structural functions. In the case of spatial interpolation 

(e.g., kriging), the choice of the semivariogram model does not matter greatly as long as 

the model fits the data reasonably (Zimmerman and Harville, 1991; ver Hoef and Cressie, 

2001). Here, however, I  have two alternate ecological processes that will create different 

spatial signatures. To test this, I selected 5 different theoretical semivariogram models to 

analytically depict the spatial autocorrelation of RGR shown in the empirical 

semivariograms (Figure 4.1). In describing local microsite effects, I  used two theoretical 

models that describe positive spatial autocorrelation continuity. These are the 

exponential and spherical models. I provide two different model forms for to represent 

microsite to allow for alternate shapes in the positive spatial autocorrelation. For 

competition among trees I  used the “wave” model, which depicts a discontinuity in 

spatial autocorrelation at a short scale (neighboring trees differ greatly). The competition 

process is assumed to decay with distance so that the wave model captures the continued 

indirect effects of competition through many individuals. In addition, as described 

above, when fitting the wave variograms, I  only accepted local optima for the range 

parameter that fall between 2 and 4-m, reflecting the inter-tree minimum distance. Note 

that it is not the wave theoretical variogram that is competition; it is a particular form of 

the wave function that represents competition. In many cases I  can expect that both 

processes (competition and microsite) interact forming a complex structural function. 

For this, I built and tested a nested model that was a mixture between the wave and 

exponential model, and can detect competition occurring alongside microsite effects.
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Finally, I  also considered the “nugget” model (pure nugget effect) to test for a lack of 

spatial autocorrelation (stochastic variation). The nugget model suggests there is no 

spatial pattern or the scale at which the process is acting is smaller than the distance 

between two trees.

In a semivariogram, the estimated semivariance ( / ( h ) )  is plotted on the y-axis against 

lag distance (h) on the x-axis. The lag distance is the step-size used, and the active lag is 

the largest distance considered between points in the semivariance data set, though the 

whole data set is included in the analysis (Isaaks and Srivastava, 1989; Rossi et al., 

1992). I  computed semivariances and then fit curves to the semivariograms using the 

different models described above (Cressie, 1985). I used a minimum lag distance of 1-m, 

and active lag of 20-25-m on average (i.e., half of the minimum plot dimension). In 

obtaining the model fits, I  had to set the active nugget, sill and range parameters using an 

iterative approach. The nugget is the amount of variance not accounted for in the model 

due to measurement error plus residual variation at distances less than the shortest 

sampling interval. The sill, or total sample variance, is the ordinate value at which the 

semivariogram becomes flat. The range represents the distance beyond which samples 

are spatially independent (Isaaks and Srivastava, 1989; Webster and Oliver, 2001). 

Nonetheless, the range for the wave semivariogram rather represents the distance beyond 

which samples are having a negative autocorrelation. The range, nugget and sill for each 

year and site were determined from each model. We obtained and analyzed a total of 72 

semivariograms.
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Figure 4-1. (a) Empirical semivariograms representing competition and microsite

processes along with parameters used to define the model, (b) Depiction of the 

phenomenon among trees.
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Non-linear regression (weighted least squares) with weights proportional to N (/i) (the 

number averaged for each lag h in the semivariogram equation) was used to fit the 

different theoretical semivariogram models to the empirical semivariogram (Cressie, 

1985). Since I  used non-linear regression, least squared solutions can be sensitive to 

initial parameter values. Because of this, I iterated through many initial parameter values 

for each semivariogram, keeping the best model that has biologically meaningful 

parameters values for the nugget, sill and range (i.e., we rejected negative or extremely 

large parameter values). In cases where no least squared minimum existed within 

biologically meaningful parameter values (e.g., a positive nugget), I  interpreted this as 

there being no good fit of the data to that model. In addition, each empirical RGR 

semivariogram was fit to the five theoretical semivariograms and relative fit was assessed 

using Akaike’s Information Criterion (AIC) for small samples (AICc) (Webster and 

Oliver, 2001; Burnham and Anderson, 2002). Because results depended on the entire set 

of candidate models, models should be identified before data analysis. Relative fit using 

information-theoretic statistics minimize some of the pitfalls of traditional analyses that 

lead to weak inference in non-experimental studies (Anderson and Burnham, 2002). A  

small sample version of AIC, AICc, was calculated for each model with the algorithm: 

AICc = - 21og(L(0)) + 2K + (2K (K  +1)/(« -  K  -1 ))

where log(L(#)) is the maximized log-likeli hood value, K  is the number of parameters, 

and n is the sample size (Burnham and Anderson, 2002). Nominally, the information 

criterion estimates the amount of information lost when using a particular model to 

approximate reality, relative to other candidate models (Welch and MacMahon, 2005): 

better models lose less information. It is always convenient to re-scale the AICc values
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such that the model with the minimum AICc has a value of 0. Thus, information-criterion 

values can be re-scaled as simple differences,

Ai — AICc; “ AIC cmin

Then we have an estimate of the size of the increments of information loss for the 

various models compared to the estimated best model (the model with the minimum 

AICc). Where A,<2, there is equal statistical support for the models (Burnham and 

Anderson, 2002). Here, I present the best and second best models. I  also computed 

normalized Akaike weights (w,), where each w, provides the weight of evidence that 

model i is the best model (Burnham and Anderson, 2002). Empirical variograms were 

estimated using the “geoR” package (Ribeiro and Diggle, 2001) of the statistical software 

R (R-Development, 2004), as well as other model fitting in R (for variogram fitting).

4.2.4 Microsite heterogeneity: Ripley’s K

In addition to the semivariogram analysis, I  used the bivariate version of Ripley’s K- 

fiinction and its derived variable Z,^-function (Ripley, 1977; Lotwick and Silverman, 

1982), with the edge correction given in Diggle (1983). With this spatial statistic 

designed to estimate the spatial scale of clustering or it’s opposite (repulsion), i f  any, I  

offer an alternate and pre-established method estimation of the scale of microsite 

variability. To do this, I assessed the spatial relationship between the lower and the upper 

20% (quintile) of the annual RGR for sites Condor 1 and 2, separately (“lower” and 

“upper” data sets). For this L 12(d) statistic, two null hypotheses are commonly used: 

random labeling and population independence (Goreaud and Pelissier, 2003). Since the 

same species is concerned, the former hypothesis was tested by comparing L 12(d)
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against a 99% Monte Carlo envelope defining randomness between the two classes of 

trees. This procedure relied the simulated removal of trees at random from the combined 

(“lower” and “upper” trees) data set. The simulation was done by removing the same 

number of individuals as there were from the “lower” category, for example, and

A /s
determining values of L 12(d) for the remaining individuals. L 12(d) values above the

envelope indicate spatial attraction and values below indicate spatial repulsion (i.e., 

spatial separation) between the two classes of trees (Lotwick and Silverman, 1982). The 

spatial statistics program SPPA.EXE (Haase, 2002) was used.

4.3 RESULTS

4.3.1 General stand characteristics and spatial autocorrelation

Basal area at breast height (BA) varied among sites from 5.36 to 29.38 m2*ha_1 (Table 

4.1). I  found a striking difference in BA and mean height between the Mirador and 

Flamenco stands. This difference was accentuated by considering that the Flamenco 

stand was planted 6 years earlier than the Mirador stand. From these results I  can suggest 

the existence of a marked difference in site quality between the Flamenco (poor site) and 

Mirador stands. Although the Condor 1 and 2 sites have not experienced artificial 

thinning, their densities have decreased from the original 1666 trees per hectare ( 3 x 2  

planting arrangement) by approximately 10 and 30% in Condor 1 and 2, respectively. 

The densities after thinning also varied in the other sites. Flamenco 1 and 2, for example, 

had approximately 60% of density decreasing. Spatial autocorrelation of individual tree 

RGR was strongly detected across all sites as most of the semivariograms obtained were 

significantly different from just nugget spatial effects (but see the early years in the
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Mirador and Flamenco stands). At least one of the semivariogram models proposed 

explained well the spatial RGR variability (Table 4.2).

t r e e - t r e e  i n t e r a c t i o n  m o d e l

competit ion  

s ite-com petit ion  

site 

random

tim e (years )

Figure 4-2. General model proposed to depict tree-tree interaction processes through 

time (stand development) inferred from spatial patterns in uneven-aged mono-specific 

plantations. Discontinuous line in bold represents the eventual application of thinning.

Table 4-1. Stand descriptions corresponding to 2004 by site for even-aged ponderosa 

pine plantations in Patagonia, Chile. One-unit standard errors for height are in 

parenthesis.

Sites Planting
year

Thinning
year

BA (nf/ha) Mean height 
(m)

Density
(#/ha)

Condor 1 1993 9.62 4.2 (0.05) 1382
Condor 2 1993 5.36 3.7(0.06) 1139
Mirador 1 1987 2001 22.92 6.0 (0.06) 906
Mirador 2 1987 2001 29.38 6.6 (0.08) 933
Flamenco 1 1981 1998 8.57 4.9 (0.08) 414
Flamenco 2 1981 1998 12.59 5.2(0.11) 532

Note: BA stands for basal area at breast height.

4.3.2 The intraspecific interaction model

In general, spatial patterns of individual-tree RGRs followed the predicted model for 

intraspecific interactions in the three tree populations. Early years exhibited no spatial
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patterns (lack of autocorrelation), followed by microsite effects (except in the Mirador 

sites). In addition to these two patterns, the competition model was supported in all the 

sites, both combined with microsite effects and/or as pure competition effects. Artificial 

thinning broke this competition signal, which developed either towards a lack of 

autocorrelation (Mirador 2, Flamenco 1 sites) or microsite effects (Mirador 1, Flamenco 2 

sites). As expected, the unthinned sites presented significant differences in RGR from 

the thinned ones, likely due to both the thinning practice applied, and the stand 

development stage they represented, and perhaps differences in site quality (Figure 4.3). 

For the Mirador sites, there was evidence of strong competition just before the site was 

thinned (particularly for Mirador 2). Surprisingly, there was also support for early 

competition at both Mirador sites (around 1994). This event was followed by a release 

from competition. The Flamenco 1 site exhibited a succession of effects that matched 

very well with the predicted population development model. Even though the Flamenco 

2 site showed competition effects just before thinning, I  found a strong prevalence of 

microsite effects for periods both before and after thinning. For some particular years, an 

overlap between the best and the second best model depicting the prevailing process of 

such a year was detected (Figure 4.3). This may suggest the existence of a transitional 

period between the prevalence of microsite and competition processes or simply model 

uncertainty (Burnham and Anderson, 2002).

4.3.3 Microsite heterogeneity: Ripley’s K

I  found that individual trees belonging to the “lower” data set had a negative spatial 

association when compared to the upper quintile annual RGR, particularly for later years 

in the two unthinned sites (Table 4.4 and Figure 4.4). For the Condor 1 site, this spatial
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distinction between both RGR classes is consistent throughout all scales. For the Condor 

2 site, the scale of repulsion reached a maximum of 10-m. This clear spatial distinction 

between extreme-case performances corroborates the existence of microsite patches that 

differ in quality. These results also match the range values for spherical semivariogram 

models (microsite), corroborating the scale of patches.

Table 4-2. Summary of AIC selection models, Akaike differences, and Akaike weights 

(w/) for describing tree-tree interactions in ponderosa pine plantations.

Model Support
Wave (3) Nested (5) Spherical (3) Exponential (3) Nugget (1)

Site A, w, A, W; Ai w, A, w, Ai
Condor 1 2003 0.000 0.892

2002 1.269 0.203 0.000 0.382 1.083 0.223
2001 0.355 0.414 0.000 0.494
2000 0.000 0.484 1.784 0.198
1999 1.847 0.190 0.000 0.479 0.738 0.331
1998 0.000 0.558 1.242 0.300
1997 0.000 0.656 1.650 0.287

Condor 2 2003 0.000 0.512 1.250 0.274
2002 0.000 0.738
2001 1.859 0.171 0.000 0.434 0.382 0.359
2000 0.000 0.946
1999 0.378 0.287 0.134 0.325 0.000 0.347
1998 0.000 0.989
1997 0.000 0.999

Mirador 1 2003 1.466 0.152 0.234 0.281 0.000 0.316
2002 1.845 0.115 0.000 0.291 0.323 0.248
2001 0.000 0.708
2000 0.000 0.481 0.979 0.295 1.701 0.205
1999 0.000 0.616
1998 0.000 0.462 0.955 0.286
1997 0.000 0.685
1996 0.000 0.459 0.633 0.335
1995 0.000 0.406
1994 0.000 0.413 0.976 0.253 0.777 0.280
1993 0.460 0.386 0.000 0.485
1992 0.000 0.611

Mirador 2 2003 1.746 0.215 0.000 0.516 1.338 0.264
2002 0.000 0.674
2001 0.000 0.321 0.575 0.240 0.699 0.226
2000 0.000 0.685
1999 0.000 0.464 1.769 0.192
1998 0.000 0.345 0.401 0.282 0.505 0.268
1997 1.607 0.213 0.000 0.476
1996 0.000 0.887
1995 1.389 0.295 0.000 0.590
1994 0.000 0.614 0.282 0.173
1993 0.180 0.401 0.000 0.438
1992 0.000 0.474

Flamenco 1 2003 0.000 0.503 0.740 0.348
2002 0.000 0.548
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Flamenco 2

2001 0.000 0.870
2000 0.000 0.870
1999 1.080 0.294 0.000 0.504
1998 0.348 0.331 0.000 0.394
1997 0.000 0.667
1996 0.000 0.489 0.300 0.421
1995 1.639 0.185 0.000 0.419 0.113 0.3%
1994 0.000 0.945
1993 0.704 0.283 0.503 0.313 0.000 0.403
1992 0.000 0.645
1991 0.000 0.376 0.225 0.337
1990 0.479 0.388 0.000 0.493
1989 0.000 0.733
1988 0.000 0.999
1987 0.000 0.999
2003 0.000 0.424 0.410 0.345
2002 0.415 244 0.428 0.242 0.000 0.300
2001 0.000 0.448 1.547 0.206 0.734 0.310
2000 0.585 0.260 0.000 0.349 0.065 0.337
1999 0.000 0.546 1.430 0.267
1998 0.000 0.727
1997 0.487 0.346 0.000 0.441 1.776 0.182
1996 0.000 0.561 1.935 0.214
1995 0.000 0.697
1994 0.000 0.938
1993 0.000 0.815
1992 0.000 0.858
1991 0.000 0.860
1990 0.000 0.755
1989 1.750 0.205 0.052 361 0.000 0.371
1988 0.000 0.413
1987 0.000 0.891

4.4 DISCUSSION

This study demonstrated that stochastic patterns can be usefully decomposed in more 

deterministic causes, named competition and microsite, which led us to determine when 

these processes prevail based on the spatial individuals’ performance (and variation) in a 

population. The distinction and quantification of these processes’ strength in time and 

space might be of the greatest importance for decreasing inaccurate predictions in 

individual-based modeling (Pfister and Stevens, 2003) and hence, improving population 

projections. These results suggest that competition, expressed as an abrupt difference in 

annual RGR between neighboring trees, was detected to occur mostly after microsite 

resource effects had been accounted for as the prevalent process. Based on these results,
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the stand development model worked well for the relatively young ponderosa pine 

plantations used to test it, where: first, I was able to corroborate the presence and scale of 

microsite variability (based on L-function); second, each site progressed through a 

reasonable sequence of patterns; and third, it nearly perfectly detected the presence of 

artificial thinning (we could tell from our analysis when thinning occurred, without 

external knowledge).

Table 4-3. Weighted semivariogram range coefficients for the 5 models, representing the 

spatial pattern of tree-tree interactions in even-aged ponderosa pine populations, 

Patagonia, Chile.

Site Year Ranges
Nested-wave Nested-exp Exponential Spherical Wave Best model

Condor 1 1 1.18 4.09 13.46 19.50 2.76 Nested
2 2.66 10.97 7.49 16.81 Spherical
3 2.63 9.76 3.72 15.24 2.63 Nested
4 2.63 4.11 2.40 9.58 1.96 Nested
5 1.77 4.19 4.99 11.46 1.17 Spherical
6 5.47 6.95 2.00 8.02 1.55 Spherical
7 1.13 4.12 4.98 Spherical

Condor 2 1 3.54 4.69 13.76 12.69 Nested
2 3.05 8.41 3.97 12.65 13.17 Nested
3 4.61 4.91 17.20 16.79 Spherical
4 4.26 2.21 3.33 10.88 2.32 Nested
5 1.13 11.22 9.37 17.18 1.12 Exponential
6 2.91 Spherical
7 3.05 1.52 Nugget

Mirador 1 1 5.13 23.32 4.78 9.37 1.85 Exponential
2 1.40 3.55 2.93 7.24 1.23 Spherical
3 2.46 2.94 8.58 10.39 2.45 Nested
4 18.01 19.37 0.93 Wave
5 1.86 4.53 7.65 16.36 1.88 Nested
6 4.25 2.37 4.84 12.07 1.13 Nested
7 2.36 15.05 36.20 18.59 0.10 Nested
8 7.67 16.47 2.95 Spherical
9 2.23 5.38 3.73 Nugget
10 3.71 0.84 5.80 1.37 Wave
11 2.24 4.81 5.35 1.16 Nugget
12 2.93 1.48 3.22 9.84 Nugget

Mirador 2 1 2.62 1.93 2.60 8.12 1.33 Spherical
2 2.15 2.42 Nugget
3 8.02 11.16 2.66 Wave
4 1.29 5.31 1.21 Wave
5 3.56 1.14 4.35 2.63 Wave
6 2.05 25.44 36.11 32.26 Nested
7 2.51 2.57 3.44 2.51 Spherical
8 3.21 0.82 2.31 3.18 Nested
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9 2.71 1.18 2.00 1.21 Nugget
10 2.73 2.81 2.61 7.36 2.72 Wave
11 2.18 5.18 6.75 0.69 Nugget
12 3.07 16.89 11.26 1.33 Nugget

Flamenco 1 1 26.19 29.99 Spherical
2 1.84 29.97 30.82 31.16 Spherical
3 4.55 Nugget
4 96.89 Nugget
5 1.70 6.21 Nugget
6 1.19 5.41 30.33 Nested
7 1.28 20.49 68.15 35.24 3.70 Nested
8 1.60 29.03 41.32 29.21 Spherical
9 3.54 28.80 54.54 39.08 Spherical
10 2.20 29.67 34.98 33.03 1.18 Nested
11 2.18 21.46 22.98 30.61 Exponential
12 3.05 9.69 10.41 23.44 0.57 Exponential
13 1.21 8.89 22.23 24.56 Spherical
14 3.65 1.23 1.16 Nugget
15 Nugget
16 Nugget
17 Nugget

Flamenco 2 1 2.73 1.84 1.60 7.38 Spherical
2 1.38 1.39 2.94 10.71 Exponential
3 2.78 4.59 4.83 16.40 Spherical
4 1.29 5.45 2.44 6.21 2.61 Spherical
5 2.58 17.45 14.67 25.93 3.19 Spherical
6 2.40 1.10 2.40 Wave
7 1.19 4.20 8.11 18.94 Spherical
8 2.66 8.24 6.58 17.96 Spherical
9 1.17 7.08 11.40 22.28 2.62 Spherical
10 1.46 5.01 6.33 16.75 Spherical
11 0.45 7.09 9.43 20.92 2.23 Spherical
12 7.96 19.85 Spherical
13 11.23 22.87 3.24 Spherical
14 1.19 5.42 7.64 18.43 Spherical
15 3.78 9.25 14.63 25.16 Exponentiall
16 2.62 1.41 1.96 7.42 2.62 Nugget
17 2.28 2.29 5.13 Nugget

Note. A ll range semivariogram coefficients that are not showed were biologically meaningless.

As evident in Figure 4.3, some overlap between both microsite and competition 

processes could be detected. This event was expected, given that more than one 

underlying process may be operating simultaneously (Wyszomirski et al., 1999), which in 

ecology is very plausible (Hilbom and Steams, 1982; Burnham and Anderson, 2002). 

Furthermore, these overlapping processes may represent a transitional period during 

which both processes can be operating. During these transitional periods we can expect
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that trees belonging to different RGR classes will be at different stages in the competition 

process (Reynolds and Ford, 2005), because of microsite differences between “good” and 

“worse” patches (see Figure 4.4 for Condor 1 and 2). The existence of microsite patches 

in the resource availability was detected (spatial point pattern analysis), in which varying 

degrees of competition intensity may have been occurring. The development of size 

hierarchies have mostly been attributed to asymmetric competition (Stoll et al., 2002), 

however, at stand or plot level, they may also be the result of a patchy resource 

distribution (Wilson and Gurevitch, 1995). Thus, microsite variation is an important 

factor altering process development. It is often assumed that site (but not microsite) 

quality can determine the outcome of competition, provided that multiple resources limit 

growth, and that competitive hierarchies change across a gradient of resource availability. 

Nonetheless, this assumed trend for competition delay, in the case of poor quality sites 

(Grime, 2001), can also be detected at smaller scales, i.e., at the plot level, where there 

may be poorer resource-quality spots for tree growing. For example, we found a clear 

negative spatial association between the upper and lower quintile of annual RGR at both 

unthinned sites Condor 1 and 2. This pattern indicated the existence of two different 

zones in the plots: one where the lower quintile of annual RGR individuals is located, and 

another where the upper quintile of annual RGR individuals is located. It is possible that 

trees belonging to the upper quintile of annual RGR started to compete among 

themselves earlier than trees of the lower quintile. I f  this is the case, this phenomenon 

may potentially obscure the appearance of the expected spatial pattern (i.e., competition) 

for a specified sample unit size. Additionally, the scale at which these two RGR-classes 

were negatively associated was in accordance with the range values found for the
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spherical models (Table 4.3 and 4.4). These similar results coming from two different 

spatial approaches show the importance of considering microsite patches. I  also found 

that this spatial distinction between extreme RGR-class trees was based on microsite 

quality differences only, and not related to competition processes per se\ competitive 

interactions experienced by an individual occur at a very local scale (Benjamin and 

Hardwick, 1986; Huston and DeAngelis, 1987; Hara, 1988; Gurevitch et al., 2002). 

Therefore, it is improbable that a mean lower quintile RGR tree is being outcompeted by 

a tree belonging to the upper quintile RGR. Tree-interactions typically are restricted to a 

subset of neighboring individuals and the likelihood that two plants will interact can be 

viewed as a decreasing function of the distance between them (Stoll and Weiner, 2000). I 

found that competition and microsite (nested model) were the prevalent processes 

observed (Figure 3); however the level or intensity of the competition process may vary 

depending on the quality of the microsite. Prior to the current study, it has been very 

difficult to separate the effects of these two processes (Turkington and Aarssen, 1984) in 

leading to the repulsion of upper and lower RGR trees.

As the model predicted, the evidence for spatial interactions between neighbors 

depended strongly on the population development stage (Gurevitch et al., 2002), which 

accentuates the importance of having a dynamic overview of the interaction process 

rather that static one (snap-shot-like). Oliver (1981) described and formulated a tree 

population development model for natural even-aged tree populations that follows stand- 

replacement disturbances events. His model established four main sequential stages in 

stand development: first, initiation; second, exclusion or self-thinning; third, understory 

reinitiation or mature; and fourth, old-growth. Plantations with fast-growing tree species
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in favorable sites (e.g., ponderosa pine in Patagonia) may represent a synthetic 

representation of Oliver’s model in time. Further studies would be necessary to evaluate 

whether this intraspecific tree interaction model based on the spatial autocorrelation 

approach performs well in natural forest populations.

Table 4-4. Patterns of spatial association between the lower and upper quintile of annual 

RGR, for trees at sites Condor 1 and 2 of ponderosa pine plantations in Patagonia, Chile.

Site Condor 1 C6ndor 2
Lower vs. upper quintile of annual 

RGR
Lower vs. upper quintile of annual 

RGR
Year ni/n2 Distance t (m) * ni/n2 Distance t (m)

t
1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16

pH
1 2 3 4 5 6 7 8 9 10 11 121314 15 16

P
2003 58/58 .01 38/38 .04
2002 .01 .03
2001 .01 .02
2000 .92 .05
1999 .92 -  - .15
199S -  -  -  - .42 .71
1997 .05 .37

f  ni stands for the number of individuals in the plot belonging to the lower 20% annual RGR; n2 
corresponds to the upper 20% annual RGR. They are similar for all the years.
* The symbol + indicates significant positive association; - indicates significant negative association at 
distance t, based on L! 2(t)-function. No symbol indicates independence.
K Significance is evaluated using a 99% Monte Carlo confidence interval (99 simulations) with a 1-m step. 
The Cramer-von-Mises test was used to test for overall significance of patterns over the complete range of 
t, with p-values reported in the column titled “p”.

4.4.1 Thinning scenario

One of the tests of the success of the current approach was to assess whether I  was able to 

reproduce the timing of the known artificial thinning events. The model successfully 

detected competition before thinning and an abrupt loss of competition at all sites 

following thinning. This was detected even though I was only able to consider the 

remnant trees (i.e., many of the stand level data were lost in the thinned trees). Thus, the 

biological processes emerged in the spatial patterns in spite of the loss of data due to 

thinning.
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Condor 1 Mirador 1

c o m p e t i t i o n

s t t e - c o m p e t l t l o n

o t h e r s

Condor 2 Mirador 2

c o m  p e t i t i o n  

s l t e - c o m  p e t i t i o n

o t h e r s

t im e (years)

c o m  p e t i t i o n  

s l t e - c o m  p e t i t i o n

F l a m  e n c o  2

tim e (years )

Figure 4-3. Tree-tree interaction models obtained from spatial patterns (using 

semivariograms) found in even-aged ponderosa pine plantations in Patagonia, Chile. 

Thick stripes represent the best model (lowest AICc). Thinner stripes represent the 

second best model within a range of 2 units. Dotted lines in bold represent the time when 

thinning was applied.

Because of the biological inference gained in this study, I  was able to infer the actual 

type of thinning that occurred (as I did not know before this study if  the thinning was 

applied in a random way or targeted just towards small size classes). Thinning that
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resulted in microsite-specific growth (e.g., Flamenco 2) suggests that thinning targeted 

smaller trees, breaking up tree-tree interactions, but not the underlying microsite effects 

that are most prominently detected by the dominant trees. Thinning that creates a random 

spatial pattern (e.g., Flamenco 1) implies that the thinning broke up tree-tree interactions, 

as well as microsite-specific growth, suggesting that thinning was more random.

4.4.2 Final remarks

Overall, the current semivariogram approach based on the a priori intraspecific tree 

interaction process hypotheses performed as expected, and therefore may provide 

guidance and insights as to when and how individual variation is altered by different 

processes. I was able to disentangle both competition and microsite effects based on the 

spatial pattern signature of the tree RGRs exhibited. Few other attempts have been 

conducted toward this end. Bachacou and Decourt (1976) were pioneers in incorporating 

a geostatistics approach based on DBH semivariograms to tease potential processes apart. 

However, they used just a couple of years to account for the dynamics of their Douglas- 

fir stands, and they did not use an objective criterion (e.g., A IC) to distinguish among 

multiple competing models. By using RGR, I chose a rather conservative measure to 

detect competition (Ford, 1984; Hunt, 1990; Gurevitch et al., 2002). Since there were 

likely initial differences in seedlings size, therefore the use of an absolute measure (BA, 

DBH) would have biased the interpretation of actual competition: detecting competition 

where there was not interaction. A possible drawback of this analysis technique is the 

added effort and expense that is required to obtain the spatially referenced data. This is a 

common drawback of distance-dependent, individually-based models and competition 

indices (Wimberly and Bare, 1996; Courbaud et al., 2001). However, I  consider this
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approach to be an improvement relative to individual-tree models based on competition 

indices only, because it incorporated microsite heterogeneity as an important component 

explaining individual tree growth. Besides, competition indices generally do not account 

for the spatial dependency of observations.

The approach I present here, analyzing the spatial pattern of a measurable feature (e.g., 

growth rate) as a surrogate for direct measures of an ecological process (e.g., 

competition), provides a potential analysis approach whenever researchers cannot directly 

measure the process of interest. As most ecological data are not spatially independent 

(Legendre, 1993), ecologist can model the spatial variability that characterizes each set of 

data and attach to specific processes. Even though, there is a limited set of 

semivariogram models, like the linear, the spherical, the exponential, the Gaussian, to 

name only those that are most frequently used, with further processing (the nested model) 

and constraints (in the range parameter), we can still represent a fair number of ecological 

processes.

Ultimately, the establishment of general patterns that relate resource availability and 

competition intensity has been controversial in population and community ecology 

(Gurevitch et al., 2002; Boyden et al., 2005). It has been stated that an improvement in 

the representation of intraspecific interactions is needed (Reynolds and Ford, 2005). 

Such an improvement will require the use of individual-based models that explicitly 

represent size variation, resource acquisition, two-dimensional stand distribution, and 

dynamic (rather than static) stand or individual resource utilization (Reynolds and Ford,

2005). I  believe that with this semivariogram approach I have explicitly incorporated the 

main components required for a better understanding of the observed performance
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variation, dynamic relationships between microsite variation and competition onset, 

under a spatial and temporal framework in a plant population.

(a)
Condor 1

(b)

•  upper R GR qulntfle 
o lo m r  RGA qu ln tile

5 10 15 20 25 30 35

•  upper RGR qulntile 
o lower RGRqulnttte

10 15 20 25 30

Figure 4-4. Stem-maps for the upper and lower RGR quintile (20%) at (a) Condor 1 and

(b) Condor 2 in even-aged ponderosa pine plantations in Patagonia, Chile.
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Chapter 5

M ID -TER M  RESPONSES OF FOREST RESTORATION PRACTICES ON THE  

GROWTH, VIG OR AND RECRUITMENT OF PONDEROSA PINE IN  THE LICK  

CREEK EXPERIMENTAL AREA, BITTERROOT NATIO NAL FOREST, M O NTANA

“The practice of ecological restoration has been identified as providing ideal 

experimental settings for tests of ecological theory; restoration was to be the ‘acid test’ of

our ecological understanding” (Young et al., 2005).

5.1 INTRODUCTION

In recent years, large scale stand-replacing wildfires have played an increasing role in 

influencing the structure and function of temperate coniferous forests across the Inland 

Northwest (Smith et al., 2005; Smithwick et al., 2005). However, prior to Euro- 

American settlement, natural disturbance dynamics of lower elevation ponderosa pine 

forests in the Rocky Mountains were primarily driven by frequent but low intensity 

surface fires that tended to maintain open, multi-aged, and biologically diverse stands 

(Amo, 1988; Agee, 1993; Covington and Moore, 1994; Mast et al., 1999). In the 

northern Rockies, understory bums limited more shade-tolerant competitors, particularly 

Douglas-fir, from developing in the understory and eventually replacing ponderosa pine 

(Thomas and Agee, 1986; Fiedler, 2000; Hartwell et al., 2000). In the last century, 

however, fire exclusion practices have changed the dynamics of these forest ecosystems.
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An increase in understory biomass dominated by shade-tolerant species, along with a 

decrease of ground flora structure and diversity have been cited as the most striking 

changes (Amo et al., 1995a; Mast et al., 1999; Moore et al., 1999). The increased 

stocking levels (particularly in the understory) have increased competition for resources, 

the risk of insect and disease outbreaks, and the potential for stand replacing fires (Fule et 

al., 1997; Feeney et al., 1998; Keane et al., 2002). Because of these adverse effects, 

active management using prescribed fires and harvest/thinning are increasingly used to 

partially restore historical conditions and reduce the risk of stand replacing crown fires 

(Amo et al., 1995a; Powers and Reynolds, 2000; Fiedler et al., 2003; Smith et al., 2005). 

Managers have justified this decision by assuming that presettlement conditions and 

processes may best represent factors that shaped the evolution of these forest 

communities (Covington et al., 1997; Moore et al., 1999). How these ponderosa pine 

forests will respond to restoration practices is sometimes difficult to predict.

Various studies have dealt with restoration response, but the conclusions have been 

somewhat contradictory (Suding et al., 2004). Practices such as thinning and prescribed 

fires have been evaluated based on tree growth and mortality (Fiedler, 2000), as well as 

on changes in nutrient cycles and understory vegetation structure (Amo et al., 1996; 

Monleon et al., 1997; Kaye and Hart, 1998; Busse et al., 2000; DeLuca and Zouhar, 

2000; Gundale et al., 2005; Sala et al., 2005; Smithwick et al., 2005). In some studies, 

thinning followed by bums has resulted in increased soil water availability and improved 

physiological performance for second-growth (Skov et al., 2004; Sala et al., 2005) and 

old-growth ponderosa pine (Feeney et al., 1998). However, in other studies a reduction 

of growth rates and increased mortality have also been reported following prescribed
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bums (Swezy and Agee, 1991; Landsberg, 1994; Busse et al., 2000). Most of these 

studies were conducted in second-growth stands and therefore did not specifically 

evaluate the response of different age cohorts to restoration practices (but see McDowell 

et al. (2003) and Skov et al. (2005)).

Current ponderosa pine restoration practices are often conducted in part to reduce 

catastrophic fire hazard, but another objective has been to improve individual tree vigor, 

particularly for the conservation of older trees left in the stand (McDowell et al., 2003; 

Skov et al., 2005). Improvement in vigor can potentially decrease the vulnerability of 

these older trees to attacks by insects and pathogens (Mitchell et al., 1983; Coyea and 

Margolis, 1994). One useful index of tree vigor is the physiologically-based measure of 

growth efficiency, which is the amount of stemwood production per unit leaf area 

(Waring, 1983; Coyea and Margolis, 1994). Growth efficiency (GE) reflects the average 

capacity of a tree crown to assimilate carbon, assuming that allocation to stemwood 

occurs as a lower priority than other allocations to defensive compounds and starch 

storage (Waring and Running, 1998). Growth efficiency has also been examined to 

measure intensity of competition among individual trees (Mitchell et al., 1983; Waring 

and Running, 1998), and has been increasingly applied in studies related to tree and stand 

growth (Smith and Long, 1989; O'Hara, 1996; Seymour and Kenefic, 2002). It has 

generally been found that GE decreases with increasing tree size and age (Maguire et al., 

1998; Waring and Running, 1998; Seymour and Kenefic, 2002), but this also varies with 

stand structure and the crown class of individual trees (Maguire et al., 1998; Binkley et 

al., 2002; Woodall et al., 2003). Little is known, however, regarding the potential for
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restoration practices to promote the growth and vigor in treated stands, particularly in 

older individuals (Latham and Tappeiner, 2002; Skov et al., 2005).

In ponderosa pine forests that historically experienced frequent, low-intensity surface 

fires, restoration efforts aimed at conserving older trees generally take uneven-aged 

silvicultural approaches (Smith et al., 1997). Multi-aged silvicultural practices (i.e., 

selection harvests) consider both the maintenance of vigorous growth on the reserve 

growing stock (e.g., older trees) and the recruitment of a new age-class (O'Hara, 1996; 

Smith et al., 1997). Few studies have examined how individual tree selection and 

subsequent prescribed burning affect the species composition of regeneration (Bailey and 

Covington, 2002). I f  one of the goals of these practices is to restore presettlement forest 

composition, recruitment of serai ponderosa pine regeneration following treatments is 

another key measure for assessing success of restoration efforts. Better quantitative data 

on recruitment of desirable regeneration could help in the evaluation of alternative 

treatments and promote the adoption of effective restoration practices (Brandeis et al., 

2001).

In this study, my general aim was to examine the effects of restoration treatments on 

growth, tree vigor and post-treatment seedling recruitment in low-elevation ponderosa 

pine in western Montana. Specifically, I compared basal area increment and growth 

efficiency of overstory trees, as well as the abundance of recruited seedlings 10 years 

after the implementation of two restoration treatments, relative to an untreated control. 

Restoration treatments were conducted using modified selection cutting with and without 

prescribed burning. I addressed the following questions: 1) Is there a significant growth 

response of reserve trees following restoration treatments, both in terms of increased
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basal area increment and improved tree vigor (as indexed by growth efficiency)? 2) What 

is the effect of including Spring prescribed bums with restoration thinning on the growth 

and vigor of reserve trees? 3) Do various age-classes of trees respond differently to 

restoration treatments? 4) Can restoration harvests be effective at increasing vigor of 

older trees? 5) Does the addition of spring prescribed bums to restoration harvests 

increase the relative abundance of serai ponderosa pine? 6) Are seedling recruitment 

levels spatially associated with local stand and site characteristics?

5.2 STUDY AREA AND METHODS

5.2.1 Study site and restoration experimental design

The study was undertaken in the Lick Creek Experimental Area in the Bitterroot National 

Forest of western Montana (46°5' N, 114°15' W), at an elevation of ca. 1500 m. The 

annual precipitation in this area averages 500 mm, about half of which falls as snow 

(Gruell et al., 1982). The site is dominated by ponderosa pine that range in age from 20 

to 250 years of age, with a small component (<10% of total basal area) of interior 

Douglas-fir (Pseudotsuga menziesii var. glauca (Mayr) Franco) that tended to be younger 

in age.

Restoration treatments were applied in 1992 and 1993. Trees were harvested using 

single-tree selection harvests in the fall o f 1992 and randomly selected units were 

broadcast burned in the spring of 1993 (DeLuca and Zouhar, 2000). Nine study units, 

one hectare each, were established in three blocks (replicates) adjacent to each other in a 

completely randomized experimental design of two treatments and one control. Six units 

received a stand basal area reduction treatment via selection harvests; prescribed burning
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was applied to three of these (Harvest-Bum), while the other three remained unbumed 

(Harvest-only). Three units were left un-harvested and unbumed to serve as controls 

(Control). Restoration targets for these stands were based on investigations of old- 

growth ponderosa pine in western Montana. Modified, single-tree selection harvests 

reduced pretreatment stocking levels from 23 m2*ha_1 (in trees >10-cm) to a target 

reserve basal area of 11 m2*ha‘1 for each of the six 1-ha treatment units. In all units, trees 

intended to remain were tagged. Within uncut controls, these tagged trees provided a 

comparable set of reserve trees to those left in treated units, in terms of initial size and 

crown class distribution. The total basal area (BA) within the ~0.3-ha sampled plots of 

the treated units (Harvest-only and Harvest-Bum) ranged from 6.9 to 12.7 m2*ha_1 (Table 

5.1). Tagged trees within the 0.25-ha untreated Control units had similar range (9.1 to

10.3 m2*ha_1), while total basal area of all trees ranged from 14.2 to 20.3 m2*ha'1. The 

tree density varied from 127 to 237 trees*ha"1 for plots in Harvest-only and Harvest-Bum 

units, and from 110 to 152 tagged trees*ha'1 in Control units (312 to 348 trees*ha'1 total).

5.2.2 Field data collection

In summer 2003,1 established one square plot (50x50 to 60x60-m) in the center of each 

experimental unit for stem mapping all trees > 10-cm in diameter at breast height (DBH; 

1.37-m high). For stem maps, the distance and azimuth to the center of each tree (>1.37- 

m tall) within experimental units were measured using a laser rangefinder (Impulse™) 

equipped with a MapStar™ electronic compass module (Laser Technology Inc.) leveled 

on a surveyor tripod. These field measurements were converted to Cartesian coordinates 

using trigonometric functions. For all trees > 10-cm DBH, we measured DBH and 

extracted an increment core to the pith at DBH using an increment borer. For trees larger
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than 20-cm DBH, two such cores were extracted. Sapwood-heartwood boundaries were 

visually identified on each increment core in the field. When the boundary was difficult 

to determine, bromecresol green was used to stain the sapwood (Kutscha and Sachs, 

1962).

Table 5-1 Summary of stand characteristics by experimental unit in the Lick Creek 

Experimental Area of western Montana 10 years after treatments were applied. Basal 

area and density correspond to residual trees only (see footnote). Data for > 0.25-ha plots 

were scaled up to per hectare basis. Seedlings represent seedlings recruited after 

treatments were applied.

Basal Area (m2*ha ') Density (trees*ha') Seedlings (#*ha_1)
Block Treatment Young Mature Preset. Total Young Mature Preset. Total PP DF Total

1 H I 1.11 4.87 2.48 8.46 140 83 13 236 33 127 160

HB 0.11 8.41 3.05 11.57 11 125 8 144 67 156 222

C 0.17 7.04 5.12 10.33 24 84 24 132

c * 0.20 11.42 7.21 18.83 28 248 52 328 7 117 123

2 H 0.49 8.82 1.65 10.96 25 114 6 145 86 8 94

HB 0.36 5.98 0.64 6.98 27 110 3 140 87 97 183

C 0 5.51 3.63 9.14 0 120 20 140

c * 0.12 9.23 4.95 14.30 4 272 36 312 4 8 12

3 H 0.20 3.92 5.36 9.48 7 73 47 127 33 87 120

HB 0.25 7.55 4.90 12.70 11 100 26 137 47 50 97

C 0.57 3.93 5.09 9.59 32 80 40 152 3 10 13

c * 1.01 5.60 13.74 20.35 72 128 148 348 3 10 13
1 H = Harvest-only; HB = Harvest-Bum; C = tagged trees only within uncut Controls; C * = all trees within 

uncut Control. Trees were tagged within uncut Control at time of treatments to provide a comparable set of 

reserve trees (i.e., size and crown distribution) to those left in treated units.

In the lab, increment cores were mounted on grooved boards and hand polished with 

fine sandpaper. I  estimated tree age at breast height by reading annual rings from the 

cores. Sapwood width, inside-bark bole radius, and annual radial increment of the last 20 

years were measured to the nearest 0.01 mm. I  made these measurements using a 

microscope mounted on a dendrochronometer with a Velmex sliding stage and Accurite
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measuring system. I computed inside-bark basal area (BA), sapwood basal area (SA), 

and 5-, 10- and 20-year basal area increment (BAInc5, BAInclO and BAInc 20, 

respectively) by considering DBH and bark thickness at breast height. BAInclO 

represented the gain in growth since treatments were applied. I  calculated growth 

efficiency (GE) as an index of tree vigor. Growth efficiency has been defined as the 

individual tree’s stemwood increment per unit of foliage or leaf area (Waring, 1983). 

However, SA was used as a surrogate for leaf area, based on the established allometric 

relationship between these two variables (Seymour and Kenefic, 2002; Woodall et al., 

2003). In computing GE, I divided the basal area increment of the last 5 years (BAInc5) 

by the current sapwood basal area (SA). Furthermore, I classified trees into three age- 

classes: trees older than 100 years (Presettlement), trees between 50 and 100 years old 

(Mature), and trees younger than 50 years (Young). The designation of trees older than 

100 years as “Presettlement” was intended to reflect the disruption of historic fire 

disturbance regimes that took place with the onset of significant fire suppression efforts 

initiated circa 1900 (Amo et al., 1995a).

Each square plot (50x50 to 60x60-m) was further divided into 5x5-m sub-plots to 

census seedling abundance. To assess post-treatment seedling recruits, I  only considered 

trees less than 10 years old, based on field examination of annual intemodes. I  also 

visually estimated the percent cover of shrubs, grasses and woody debris to the nearest 

10%. These local stand variables, along with basal area at breast height (BA) and 

sapwood basal area at breast height (SA) were used in the analysis of spatial correlation 

described below. I made use of stem maps to compute BA and SA within each 25-m2 

sub-plot.
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5.2.3 Data analysis

5.2.3.1 Analysis of treatment effects using classical ANOVA

I compared differences in the response variables (BAInclO, GE and abundance of 

recruited seedlings) among Harvest-only, Harvest-Bum and Control treatments using a 

randomized block design with the plot-level means. Distributional assumptions of 

ANOVA were graphically assessed and heteroscedasticity of variances was tested using 

Levene’s statistic (Sokal and Rohlf, 1995). I found heteroscedasticity in BAInclO and 

GE, for which I used square-root transformations. Additionally, I  conducted an A N O VA  

for BAInc for the 10-year period prior to treatment application. I  found non-significant a 

priori differences among the treatments (p=0.434), and therefore assumed pretreatment 

similarities across experimental units. Mean comparisons among treatments were 

performed with a Tukey post-hoc procedure (a=0.05). All statistical analyses comparing 

treatments to Controls (using standard ANOVA) were conducted based on the tagged 

trees only in Controls.

5.2.3.2 Analysis of age and treatment effects using spatial ANOVA: Statistical 

background

One difficulty with including age-class as a covariate in my analysis is that the 

experimental unit is actually not a tree, but a plot. In classical ANO VA this means that 

we have a sample size of 9 units (3 plots for each treatment) for examining differences 

between the treatments, even though there are 409 trees on which measurements have 

been made. I f  I were to conduct the analysis as i f  our sample size was the 409 trees, I  

would be committing what Hurlbert (1984) described as “pseudo-replication”, by
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incorrectly considering the trees as the experimental units when treatments were actually 

applied at the plot level. In this experiment, blocks were first grouped according to 

similarities among habitat characteristics to primarily account for any spatial structure. 

Afterwards, the three treatments (Harvest-only, Harvest-Bum, and Control) were 

randomly assigned to each block. This is a classic randomized block experiment leading 

to a randomized block design (RBD) with model given by:

y y  =  p  + a ,  +  f i j  +  £ j j ,

where the a,’s (/ = 1; 2; 3) represent the 3 treatment effects and the fi/s  (j -  1; 2; 3) 

represent the 3 block effects.

I f  I  still want to consider the individual trees as experimental units, my inferences will 

be limited to the population of 9 plots used in the experiment. I would then need to treat 

this study as a case study. Nonetheless, through the use of similar experiments producing 

consistent results, such findings can contribute to a larger scope of inference regarding 

the process being studied.

5.2.3.3 Spatial autocorrelation and spatial ANOVA model

With the trees as experimental units, I  must further consider that these trees are not likely 

to be independent in terms of the response variables I might measure on them, such as 

BAInc and GREFF. In fact, the values of these variables may be the result of a 

combination of microsite, local competition and other highly spatially autocorrelated 

factors (Legendre, 1993). Due to these potential spatial correlations, I  needed to alter the 

covariance structure on the residuals of the RBD ANOVA at the tree-level to reflect these 

inherent spatial correlations. This is done through the use of a spatial AN O VA model.
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To characterize the spatial autocorrelation present in the response variables among the 

trees within a plot, I  computed empirical semivariograms (see below). These 

semivariogram models can then be used to estimate the covariances between the response 

variable values for any two trees. These covariances are then formed into a matrix of 

covariances among all the 550 trees (tagged and not tagged in the Control unit). For 550 

trees, such a matrix is 550x550, where the ( i,j) th entry represents the covariance between 

the ith and j th tree response values. Denoting this matrix V and treating the ANOVA  

model as a regression model, we obtained the following linear model with age-class as a 

covariate for the scenario described:

J V  =  A ) +  P \ Z \ j k  +  P i ^ i j k  +  P W n k  +  P W n k  +  P s A k  +  P 6 A k  +  P i Z \ j k w \ k  +  P s Z \ j k w i k

P ^ l j i W x k  ■*" P w ^ l j x f f l l k  P \ \ Z \ j k A k  P \ 2 ^ \  j k A k  P l l A l  j k A k  P \ 4 ^ 2  j k A k  ^ i j k  ’

/ = 1,2,3; y = 1,2,3, where:

y ijk = the k!h response for the ith treatment in the f h block;

f 1 if  Harvest -  only1 (l if  Harvest -  Burn 1

ijk [0 if  Control \  2jk [0 if  Control J ’

J l if  block 2 j  f l  i f  block 3)
nk [0 if  block I f  ,2k [0 if  block!)

f 1 i f  age = Mature 1 [ 1 if  age = Younger 1

[0 i f  age = PresettlementJ [0 if  age -  PresettlementJ

= the i ,h parameter value to be estimated; and 

s  = the vector o f residuals, where e ~ N(0, V).

This generalization of the covariance matrix to include the spatial covariances present 

affects the parameter estimates, their variances and covariances, and hence all estimated 

contrasts, ANO VA sums of squares, confidence intervals, and significance tests.
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I used semivariogram models to estimate the covariances between the response 

variable values for any two trees. The estimated semivariogram is defined as:

K h) = 1/2 • N(h) £  [z(x,) -  z(x, +h)]2,
i

where h is the lag distance between sampled trees, N(h) is the number of paired 

comparisons at lag h, and z(xj  and z(xj) are the observed tree variable values at location x, 

and Xj, respectively (Webster and Oliver, 2001). Under a typical spatial dependence 

model, two units that are close together will tend to have a smaller variance of the 

difference. As units get further apart, their differences become larger and usually the 

variance of the difference becomes larger. In a semivariogram, the semivariance (y(h)) is 

plotted on the y-axis against lag distance (h) on the x-axis. The lag distance is the step- 

size used, and the active lag denotes the largest distance considered between points in the 

semivariance data set, though the whole data set is included in the analysis (Isaaks and 

Srivastava, 1989; Rossi et al., 1992). I used a minimum lag distance of 1-m, and active 

lag of 25-35-m on average (i.e., half of the minimum plot dimension). Empirical 

semivariograms were computed for BAInclO and GREFF for each treatment.

I considered single spherical theoretical models for modeling empirical 

semivariograms, with three parameters known as the nugget, sill, and range. The nugget 

is a measure of the microscale variation in the response. The sill, or total sample 

variance, is the ordinate value at which the semivariogram becomes flat. The range 

represents the distance beyond which samples are spatially independent (Isaaks and 

Srivastava, 1989; Webster and Oliver, 2001). I used an iterative non-linear weighted 

least squares procedure with weights proportional to N(/?) to fit the variogram model to 

the empirical semivariograms (Cressie, 1985). Each empirical semivariogram was
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modeled with biologically meaningful parameters (i.e., non-negative or extremely large 

parameter values).

Table 5-2 Classical AN O VA results for basal area increment of the last 10 years 

(BAInclO), growth efficiency (GE), abundance of recruited seedlings per hectare for 

ponderosa pine (PP) and Douglas-fir (DF), and seedling ratio (PP density/DF density) 10 

years after the application of treatments in the Lick Creek Experimental Area, western 

Montana.

Sources df SS MSS F-value Pr (>F)
Sqrt (BAInclO) 

Treatments 2 0.4739 0.2369 10.511 0.0256
Blocks 2 0.0897 0.0448 1.989 0.2514
Residuals 4 0.0902 0.0225

Sqrt (GE) 
Treatments 2 0.0243 0.0121 8.8566 0.0339
Blocks 2 0.0029 0.0014 1.0498 0.4301
Residuals 4 0.0055 0.0014

PP seedlings 
Treatments 2 6301.61 3150.82 11.59 0.022
Blocks 2 1513.60 756.81 2.79 0.174
Residuals 4 1087.82 271.90

DF seedlings 
Treatments 2 4648.75 2324.32 2.18 0.229
Blocks 2 16248.73 8124.36 7.62 0.043
Residuals 4 4266.71 1066.71

Seedlings ratio 
Treatments 2 21.66 10.83 0.94 0.462
Blocks 2 26.72 13.36 1.16 0.401
Residuals 4 46.09 11.52
Species codes, ponderosa pine: PP; Douglas-fir: DF.

5.2.3.4 Analysis of new seedling recruitment

Because seedling abundance data often exhibit spatial autocorrelation, statistical 

assumptions of independence would be violated i f  we were to consider each of our 5x5-m 

subplots as being an independent sample (Legendre, 1993). I therefore used a partial 

Mantel test (Mantel, 1967) to examine the partial correlation of seedling abundance for 

both species (ponderosa pine and Douglas-fir) with local stand characteristics. The
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partial Mantel statistic measures the correlation between two variables in space while 

controlling for the spatial autocorrelation. In this case the test controls for spatial 

autocorrelation in the two variables of interest (seedling abundance and one of the local 

stand variables). To conduct this partial Mantel test, the correlation is computed between 

three n by n difference matrices, A, B, and C, where one matrix might represent spatial 

distances between trees, and the other two would represent differences between seedling 

abundance and BA among subplots, for example. The test statistics are computed by 

constructing a matrix of residuals, A, for the regression of A on C, and another matrix of 

residuals, B, for the regression of B on C (i.e., A and B are proper variable difference 

matrices, while C is a proper distance matrix). The two residual matrices A and B are 

then compared by a standard Mantel test, where the null hypothesis is that the observed 

relationship between the two matrices could have been obtained by any random 

arrangement in space of the observations through the study area (Cressie, 1993; Fortin 

and Gurevitch, 2001). For each 25-m2 subplot, I recorded BA (cm2), SA (cm2), and 

percent cover (%) of shrubs, grasses, and woody debris. I considered the (x,y)- 

coordinates of the subplot center as the spatial location of all the variables. Partial 

Mantel tests, classical and spatial A N O VA’s, and semivariogram modeling were 

conducted using the statistical software “R” (R-Development, 2004).

5.3 RESULTS

5.3.1 Treatment effects on individual tree growth and vigor

The alternative restoration treatments (Harvest-only and Harvest-Bum) differed in their 

effect on the growth increment and vigor of residual trees. The harvest-only treatment
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had the effect of nearly doubling mean basal area increment (BAInclO, 136.58 cm2) 

relative to the untreated Control units (75.23 cm2) (p<0.05; Table 5.2 and 5.3; Figure 

5.1a). Mean BAInclO values were also higher following the Harvest-Bum treatment 

(106.57 cm2), a 41% increase over tagged trees in the untreated Control. These 

intermediate values in the Harvest-Bum units were not significantly differerent from 

either Harvest-only or Control units (p>0.05; Table 5.2, 5.3; Figure 5.1a).

Table 5-3 Treatment effects on basal area increment of the last 10 years (BAInclO), 

growth efficiency (GE), recruited seedling abundance per hectare for ponderosa pine (PP) 

and Douglas-fir (DF), and seedling ratio (PP/DF) ten years after treatments were applied 

in the Lick Creek Experimental Area, western Montana. Data are means with SE in 

parenthesis (n=3). Within a row, means with different letters differ at P < 0.05.

Treatments
Harvest-only_______Harvest-Bum_________ Control

BAInclO (cm2*tree ’*last 10-years'1) 
GE (cm2*cm2)
PP seedlings (#*ha ')
DF seedlings (#*ha ')
Seedlings ratio (PP/DF)

136.576 (19.935) a 
.2107 (0.0313) a 
50.93 (17.59) a 
73.89 (34.75) a 
3.80 (3.48) a

106.571 (7.053) ab 
0.1453 (0.0069) ab 

67.30 (11.00) a 
101.22 (52.21) a 

0.76 (0.17) a

Blocks

75.231 (2.433) b 
0.1044 (0.007) b 

4.89 (0.89) a 
45.56 (35.57) a 
0.30 (0.13) a

1 2 3
BAInclO (cm2*tree'‘*last 10-years'1) 
GE (cm2*cm'2)
PP seedlings (#*ha ’)
DF seedlings (#*ha ')
Seedlings ratio (PP/DF)

90.458 (5.731) a 
0.1774 (0.0485) a 

35.56 (17.36) a 
132.96 (11.66) a 

0.25 (0.11) a

108.733 (20.929) a 
0.1407 (0.0252) a 
58.93 (27.46) a 
37.67 (29.50) b 
4.05 (3.35) a

119.188 (26.667) a 
0.1423 (0.0231) a 
28.64 (13.08) a 
50.03 (21.57) b 

0.56 (0.20) a

Our measure of tree vigor, mean growth efficiency (GE), displayed similar trends 

among the alternative treatments. Mean GE of trees in the Harvest-only treatment (0.211 

cm2*cm'2) was significantly greater than Control (0.104 cm2*cm‘2) (p<0.05; Table 5.2 

and 5.3; Figure 5.1b), whereas GE values in the Harvest-Bum treatment units (0.145 

cm *c m ') were intermediate between Harvest-only and Control (p>0.05; Table 5.2, 5.3;
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Figure 5.1b). Block effects were not significant for either BAInclO or GE (Table 5.2 and 

5.3).

5.3.2 Variation in basal area increment and growth efficiency with tree age (spatial 

model)

After adjusting group means to account for autocorrelation with the spatial ANO VA  

model analysis, similar trends were again detected among the treatments means. In this 

analysis, mean BAInclO values were again highest in Harvest-only units and intermediate 

in Harvest-Bum, but differences were significant between all treatments (Table 5.4 and 

5.6; Figure 5.2a and b). For the analysis of tree vigor, values for mean GE were 

intermediate in Harvest-Bum units, and significantly lower than in Harvest-only.

I  also detected significant age-class effect (p<0.0001; Table 5.4 and 5.5) for both 

BAInclO and GE. Growth rates (BAInclO) were highest in the oldest age class, with 

higher mean values observed for Presettlement trees across all treatments relative to 

postsettlement trees (Table 5.5; Figure 5.3a). There was not a significant interaction of 

age-class and treatment for BAInclO (Table 5.4). All three age classes followed the same 

trend observed for all trees of greatest growth increment in Harvest-only and intermediate 

values in Harvest-Bum (Figure 5.3a). Mature trees displayed the greatest difference in 

BAInclO among alternative treatments. Mean values for basal area increment in Harvest- 

only were more than double rates in the Control (Table 5.5, Figure 5.3a). Mean BAInclO 

for Harvest-Bum treatment units was over 40% higher than in untreated Control. The 

Youngest age class showed the least response in BAInclO to restoration treatments. 

Means separation tests indicated no significant differences in Young tree BAInclO 

among treatments.
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Harvest-only Harvest-Bum Control 

Treatments

Figure 5-1 Mean treatment effects for (a) basal area increment in the last 10 years 

(BAInclO), and (b) growth efficiency (GE) of individual trees in the Lick Creek 

Experimental Area, western Montana. The same letter above the bar indicates no 

significance differences (i.e., p>0.05) among treatments. Error bars represent one 

standard error (n=3).

In the analysis of growth efficiency (GE), significant effects of both age-class and an 

interaction of age-class and treatment were detected (Table 5 .4). Mean GE values as a 

measure generally decreased with age. GE values were consistently lowest for
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Presettlement trees across all treatments. While GE did increase over Controls for both 

restoration treatments (almost double), these differences were not statistically significant 

(Table 5.5 and 5.6; Figure 5.3b). For Mature trees, mean GE values were significantly 

higher in Harvest-only relative to both Harvest-Bum (p=0.0022) and Control (p=0.0001). 

Growth efficiency of Young trees was consistently higher than the other age-classes 

across all treatments (p<0.0001; Table 5.5 and 5.6).

Table 5-4 Results of spatial ANOVA for general treatment, block, and age-class effects 

on basal area increment of the last 10 years (BAInclO) and growth efficiency (GE) for all 

individual trees in the Lick Creek Experimental Area, western Montana.

BAInclO d.f. SS MSS F-value Pr (>F)
Intercept 1 1085.13 1085.13 1156.9506 <0.0001
Treatments 2 87.59 43.79 46.6924 < 0.0001
Blocks 2 7.08 3.54 3.7740 0.0238
Age-class 2 53.23 26.61 28.3740 <0.0001
Tmt. X  Blocks 4 6.52 1.63 1.7370 0.1410
Tmt. X Age-class 4 5.62 1.41 1.4991 0.2017
Residuals 394 369.54 0.94

GE
Intercept 1 533.85 533.85 1219.6007 <0.0001
Treatments 2 28.79 14.39 32.8832 <0.0001
Blocks 2 3.23 1.77 4.0353 0.0184
Age-class 2 82.84 41.42 94.6275 <0.0001
Tmt. X Blocks 4 2.85 0.71 1.6260 0.1669
Tmt. X  Age-class 4 5.36 1.34 3.0633 0.0167
Residuals 394 172.46 0.44

5.3.3 Recruitment patterns

Recruitment of seedlings was generally higher in the Harvest-only and Harvest-Bum 

treatments than in the Control (Table 5.1). Density of new recruited ponderosa pine (PP) 

seedlings ranged from 33-87 ha'1 in treated units. The mean seedling density of PP 

varied among treatments (p<0.05; Table 5.2, Figure 5.4a). Recruited seedlings were 

approximately 20% higher in Harvest-Bum when compared with Harvest-only, and more
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than 10 times higher when compared with Control (Table 5.3). On the contrary, the mean 

abundance of recruited DF seedlings did not vary significantly among treatments 

showing high variation within treatments (p>0.05; Table 5.2, Figure 5.4b). Block effects 

were significant for DF seedling abundance only (Table 5.3). I found that the ratio of 

PP:DF recruited seedlings did not vary substantially among treatments, and it was highly 

variable in Harvest-only (p>0.05, Table 5.2 and 5.3), indicating that this ratio is not a 

stable measure.

The partial Mantel correlation analysis of our field data did not identify significant 

relationship of new seedling recruitment with any of the local stand characteristics except 

one (Table 5.7). I did not detect any significant Mantel correlation between overstory 

competition variables, BA and SA, with the occurrence of new seedlings (p>0.05). 

Similarly, percent cover of shrubs and grasses, which represented competition from 

understory, did not correlate with seedling abundance after treatments were applied 

(p>0.05). The only variable that did display positive significant correlation with the 

abundance of both PP and DF was the percent cover of woody debris. This variable was 

significant in both Harvest-only and Control treatments (p<0.05), but not in the Harvest- 

Bum treatment.

5.4 DISCUSSION

5.4.1 General growth and tree performance following restoration treatments 

At the Lick Creek Experimental Area, ponderosa pine responded positively to restoration 

treatments in the 10 years after treatments were applied, in terms of greater basal area 

growth increments and improved vigor (i.e., higher growth efficiency). Studies on
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second-growth ponderosa pine forests have reported significant and positive responses in 

growth increments following restoration treatments (Kolb et al., 1998; Nagel and O'Hara, 

2001; Skov et al., 2004). Positive response in growth increment for ponderosa pine has 

been related to reduced competition and increased resource availability (Latham and 

Tappeiner, 2002; McDowell et al., 2003). In means separation tests among treatments, I  

generally found that only the Harvest-only restoration treatment had significantly higher 

mean BAInclO values than to the Control, BAInclO values for the Harvest-Bum 

treatment were at an intermediate level, not significantly higher than Control. Previous 

growth studies have reported similar conclusions (Fiedler, 2000), implying that 

prescribed bums may reduce or delay tree growth response, relative to harvest without 

burning. While surface fire was a frequent natural disturbance in these ponderosa pine 

forests of the northern Rocky Mountains, historically such bums typically occurred 

during late summer and early fall (Agee, 1993). Prescribed bums in these forests, 

however, are most commonly applied during spring months under cooler, more moist 

conditions weather conditions for various reasons including lower risk of escape and 

better smoke dispersal (Sala et al., 2005). Negative effects of our Spring bum treatments 

may perhaps be related to crown scorching of reserve trees or damage to tree roots near 

the surface (Hart et al., 2005). Wyant et al. (1983) found that scorching of lower crown 

foliage reduced the transpiration surface area, and consequently photosynthetic capacity. 

Grier (1989) found that early-season Spring bums, conducted while tree root 

physiological activity is high, can lead to dramatic reductions in fine root biomass on the 

order of 60%. Hart et al. (2005) also reported that repeated burning (2-yr intervals) 

reduced fine root length and biomass, and mycorrhizal root biomass relative to unbumed
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controls in northern Arizona. A reduction in growth rates and increase in mortality 

relative to unbumed trees has also been found in other studies of ponderosa pine (Swezy 

and Agee, 1991; Landsberg, 1994; Busse et al., 2000). On the contrary, when prescribed 

bums were conducted in the fall, some studies have reported no delayed growth response 

(Feeney et al., 1998).

Tree vigor as indexed by growth efficiency (GE) was also highest in the Harvest-only 

treatments, with intermediate levels observed in the Harvest-Bum treatment. GE is 

affected by stand structure and light environments within the canopy (Roberts et al., 

1993; O'Hara, 1996; Woodall et al., 2003), and trees in Control units presumably 

experienced higher levels of competition, leading to a reduction in vigor. The fact that 

we did not find significant differences between the Harvest-Bum and the Control 

treatments may again be reflecting negative effects of burning. In addition to the 

potential negative effects of fire on scorched foliage and shallow roots, a decline in 

nitrogen availability in the mid-term (-10  years) might be another mechanism explaining 

the difference in GE between Harvest-only and Harvest-Bum (see below). I  can 

hypothesize that the release from competition may have been neutralized by the potential 

alteration of physiological functions caused by fire (mentioned above), as has been stated 

in other studies (Sutherland et al., 1991; Swezy and Agee, 1991). Furthermore, the 

potential alteration of physiological functions may also concern the concentration of 

mineral soil nitrogen, which can affect photosynthetic capacity levels. Although some 

studies have shown short-term increases in mineral soil nitrogen concentration after fire 

(Monleon et al., 1997; DeLuca and Zouhar, 2000; Choromanska and DeLuca, 2001), 

several indices of nitrogen availability and transformation rates have exhibited a decline
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in the mid-term (-10  years) after fire (Monleon et al., 1997; Wright and Hart, 1997; 

DeLuca and Zouhar, 2000; Kaye et al., 2005). Because leaf nitrogen content directly 

impacts leaf properties and photosynthetic capacity (Reich et al., 1997), direct and 

indirect effects of different management practices on soil nitrogen availability may have 

lasting consequences for the physiological performance of ponderosa pine.

5.4.2 Age-class effects on growth increment and growth efficiency 

All three age-classes appeared to benefit from restoration treatments relative to the 

untreated Control for both growth increment (BAInclO) and individual tree vigor (GE). 

The same trend highest values for Harvest-only, intermediate for Harvest-Bum, and 

lowest for Control. Such differences were not significant among treatments for BAInclO 

of Young trees, nor for GE of Presettlement trees. Contrary to long-held assumptions 

that tree growth rate is limited by age (Kira and Shidei, 1967; Weiner and Thomas, 

2001), and hence old trees may not respond to reductions in competition, I  found that 

Presettlement trees did positively respond to Harvest-only treatments for BAInclO. 

These findings agree with those of a few other studies dealing with old ponderosa pine 

trees (Fiedler, 2000; Latham and Tappeiner, 2002; McDowell et al., 2003). McDowell et 

al. (2003) found that stand density reductions resulted in increased growth of old 

ponderosa pine trees due to changes in water availability and stomatal conductance. 

Latham and Tappeiner (2002) reported significant growth responses after thinning for 

old-growth trees of both ponderosa pine and Douglas-fir in western Oregon. However, in 

northern Arizona, Skov et al. (2005) found a lack of short term growth response to 

thinning for their older “presettlement” trees (150-450 years old) three years after 

treatment. I  concur with Latham and Tappeiner (2002) that the idea that old trees do not
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respond to release treatments is due to the fact that most studies on these trees have been 

focused on stand volume growth rather than individual tree growth.

However, growth efficiency (GE) of Presettlement trees did not increase in to 

restoration treatments to the same extent that BAInclO did. While there was a slight 

increase in GE observed in restoration treatments relative to Control units, the differences 

were non-significant. Across all treatments, GE of Presettlement trees was lower than for 

younger age classes. Lower GE for Presettlement trees might be associated with various 

proposed causes of growth decline in older trees, including increasing allocation foliar 

respiration and to belowground storage parts (Ryan et al., 2004). Furthermore, our 

estimates of growth efficiency based on SA do not account for a potential shift in toward 

greater ratio of SA per unit foliage area in older trees to compensate for hydraulic 

limitations imposed by tree height (Ryan et al., 2004). While younger age classes had 

higher GE values generally, Mature and Young age-class trees appeared to be more 

negatively affected by bums. Lower crown trees may have been scorched during bums, 

losing some productive capacity with any reduction in foliage biomass (Wyant et al., 

1983). In some cases, managers may wish to conduct prescribed bums in such a way as 

to control flame lengths to reduce the probability that crowns of Mature and Young trees 

will be scorched.

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ta
bl

e 
5-

5 
R

es
ul

ts
 o

f 
m

ul
tip

le
 c

om
pa

ris
on

s 
am

on
g 

tr
ea

tm
en

ts
 f

or
 b

as
al

 a
re

a 
in

cr
em

en
t 

o
f t

he
 l

as
t 

10
 y

ea
rs

 (
B

A
In

cl
O

) 
an

d 
gr

ow
th

 

ef
fic

ie
nc

y 
(G

E
) 

by
 a

ge
-c

la
ss

 a
cc

ou
nt

in
g 

fo
r 

sp
at

ia
l 

au
to

co
rr

el
at

io
n,

 
10

 y
ea

rs
 a

fte
r 

tr
ea

tm
en

ts
 w

er
e 

ap
pl

ie
d 

in
 t

he
 L

ic
k 

C
re

ek
 

Ex
pe

rim
en

ta
l A

re
a,

 w
es

te
rn

 M
on

ta
na

. 
A

ge
-c

la
ss

es
 a

re
 Y

ou
ng

 (
< 

50
 y

ea
rs

), 
M

at
ur

e 
(b

et
w

ee
n 

50
 a

nd
 1

00
 y

ea
rs

), 
an

d 
Pr

es
et

tle
m

en
t 

(>
 

10
0 

ye
ar

s)
 tr

ee
s.

 
Fo

r 
m

ul
tip

le
 c

om
pa

ris
on

s 
se

e 
Ta

bl
e 

6.
 

D
at

a 
ar

e 
m

ea
ns

 w
ith

 S
E 

in
 p

ar
en

th
es

is
 (

/; 
va

rie
s 

by
 tr

ea
tm

en
t 

an
d 

ag
e-

cl
as

s)
. 

W
ith

in
 a

 r
ow

, 
m

ea
ns

 w
ith

 d
iff

er
en

t 
up

pe
r-

ca
se

 le
tte

rs
 d

iff
er

 a
t P

 <
 0

.0
5 

fo
r 

tre
at

m
en

ts
. 

W
ith

in
 a

 c
ol

um
n,

 m
ea

ns
 w

ith
 d

iff
er

en
t 

lo
w

er


ca
se

 le
tte

rs
 d

iff
er

 a
t P

 <
 0

.0
5/

3 
(B

on
fe

ro
ni

 c
or

re
ct

io
n)

 fo
r 

ag
e-

cl
as

se
s.

B
A

In
cl

O
n

H
ar

ve
st

-o
nl

y
n

H
ar

ve
st

-B
um

n
C

on
tr

ol
Yo

un
g

M
at

ur
e

Pr
es

et
tle

m
en

t

16 11
3

13

70
.2

81
 (

11
.2

85
) 

A
a 

16
1.

68
2 

(7
.3

88
) 

A
b 

17
4.

60
0 

(1
5.

86
0)

 A
b

53 88 20

45
.2

04
(1

6.
51

2)
 A

a 
11

2.
15

2 
(6

.4
52

) B
b 

14
2.

15
8 

(1
9.

58
3)

 A
B

b

18 71 21

34
.3

05
 (

14
.6

46
) A

a 
79

.2
88

 (
6.

42
8)

 B
b 

94
.9

87
(1

1.
74

0)
 B

b

49
.9

30
 (

8.
26

3)
 a

 
11

7.
70

8 
(3

.9
09

) b
 

13
7.

24
8 

(9
.2

67
) 

b
To

ta
l

G
E

14
2

13
5.

52
1 

(6
.6

65
) 

A
16

1
99

.8
38

 (
8.

77
3)

 B
10

6
69

.5
26

 (
6.

70
6)

 C

Y
ou

ng
M

at
ur

e
Pr

es
et

tle
m

en
t

0.
30

04
 (

0.
02

18
) 

A
a 

0.
20

20
 (

0.
01

44
) 

A
b 

0.
08

59
 (

0.
03

06
) 

A
c

0.
20

08
 (

0.
02

49
) B

a 
0.

14
26

 (
0.

01
28

) B
ab

 
0.

07
90

 (
0.

03
41

) A
b

0.
16

24
 (

0.
02

08
) B

a 
0.

12
40

 (
0.

01
33

) B
a 

0.
04

14
 (

0.
01

81
) 

A
b

0.
22

12
 (

0.
01

30
) 

a 
0.

15
62

 (
0.

00
78

) b
 

0.
06

88
 (

0.
01

64
) 

c
To

ta
l

0.
19

61
 (

0.
01

35
) 

A
0.

14
08

 (
0.

01
60

) B
0.

10
92

 (
0.

01
31

) B

No
te

: C
on

tro
l i

nc
lu

de
s 

ta
gg

ed
 tr

ee
s 

on
ly

 w
ith

in
 u

nc
ut

 C
on

tro
ls.

11
2b



(a)
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rT *  100

2  80 £
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20 

0
Harvest-only Harvest-Bum Control

Treatments

(b)

0.25 

0.20 

§ 0.15

1 010 O

0.05 

0.00
Harvest-only Harvest-Bum Control

Treatments

Figure 5-2 Mean treatment effects for (a) basal area increment in the last 10 years 

(BAInclO), and (b) growth efficiency (GE) of individual trees considering the spatial

autocorrelation of all the individual trees for each treatment in the Lick Creek

Experimental Area, western Montana. The same letter above the bar indicates no 

significance differences (p>0.05/3) among treatments. Error bars represent one standard 

error (n varies by treatment and age-class).
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(a)
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Harvest-only Harvest-Bum Control

Treatments

(b)
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«  0 1 5 -
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Harvest-only Harvest-Bum Control 
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Figure 5-3 Mean treatment effects by age-classes on (a) basal area increment in the last 

10 years (BAInclO) and (b) growth efficiency (GE) considering the spatial 

autocorrelation of all the individual trees for each treatment in the Lick Creek 

Experimental Area, western Montana. Error bars represent one standard error (n varies 

by treatment and age-class). Age-classes are Young (< 50 years), Mature (between 50 

and 100 years), and Presettlement (> 100 years) trees. For multiple comparisons see 

Table 5.6.
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5.4.3 Recruitment of ponderosa pine

Our results suggest that seedlings of ponderosa pine (PP) and Douglas-fir (DF) were 

adequately recruited during the first ten years after the restoration treatments were 

applied. Recruitment of PP seedlings increased following restoration treatments relative 

to Control, with highest levels of both PP and DF recruitment occurring in the Harvest- 

Bum treatment. These results supported the importance of both a reduction in overstory 

and understory competition and the reintroduction of surface fires have for conifer 

regeneration. I  did not find any abundance difference between species 10 years after 

treatment application. The fact that PP seedling recruitment was not more abundant than 

DF may be explained in that a shift of recruitment dominance can be expected only after 

periodic fires reduce DF survival rates. I could also speculate that the ponderosa pine 

system may be resilient to traditional restoration practices. Suding et al. (2004) stated 

that strong feedbacks between the biotic and the physical environment can alter the 

efficacy of successional-based restoration efforts. To evaluate whether or not this 

explanation applies to the current study, further research is necessary. It is plausible to 

expect that PP regeneration follows masting periods of seed production and dispersal, and 

therefore the time framework of our study may be too short to capture the processes 

involved. In northern Arizona, PP recruitment has been associated with climatic 

conditions. There, regeneration success is promoted by warm and moist conditions in the 

several years prior to a good seed year, as well as in the first year after. However, these 

conditions have occurred rarely in the last century (Savage et al., 1996). Tree 

regeneration rates also depend on cone/seed production periodicity, predation, seed 

viability, seedbed conditions, and germinant survival among others. In northern Arizona,
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Bailey and Covington (2002) documented that a sufficient supply o f seeds is available for 

new ponderosa pine regeneration only once or twice per decade.

(a)

*  100

CJ> 80

(b)

Harvest-only Harvest-Bum Control 

Treatments

Harvest-only Harvest-Bum Control 

Treatments

Figure 5-4 Treatment effects on the mean abundance of seedlings (per hectare) recruited 

post-treatment (<10 years old) for (a) ponderosa pine (PP) and (b) Douglas-fir (DF) in the 

Lick Creek Experimental Area, western Montana. The same letter above the bar 

indicates no significant differences (i.e., p>0.05) among treatments. Error bars represent 

one standard error (n=3).
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Table 5-6 Partial Mantel coefficients P-values for the multiple comparison contrasts 

based on the spatial ANOVA

Contrast BAInclO GE
Harvest-only vs. Harvest-Bum <0.0001 <0.0001
Harvest-only vs. Control <0.0001 <0.0001
Harvest-Bum vs. Control 0.0001 0.1874

Young vs. Mature <0.0001 <0.0001
Young vs. Presettlement <0.0001 < 0.0001
Mature vs. Presettlement 0.0671 <0.0001

Harvest-only vs. Harvest-Bum for Young 0.2107 0.0028
Harvest-only vs. Control for Young 0.0524 <0.0001
Harvest-Bum vs. Control for Young 0.7220 0.7617

Harvest-only vs. Harvest-Bum for Mature <0.0001 0.0022
Harvest-only vs. Control for Mature <0.0001 0.0001
Harvest-Bum vs. Control for Mature 0.0494 0.8208

Harvest-only vs. Harvest-Bum for Presettlement 0.1987 0.8809
Harvest-only vs. Control for Presettlement 0.0001 0.2116
Harvest-Bum vs. Control for Presettlement 0.0665 0.7901

Young vs. Mature under Harvest-only <0.0001 0.0001
Young vs. Presettlement under Harvest-only <0.0001 <0.0001
Mature vs. Presettlement under Harvest-only 0.4630 0.0005

Young vs. Mature under Harvest-Bum 0.0002 0.0186
Young vs. Presettlement under Harvest-Bum 0.0002 0.0036
Mature vs. Presettlement under Harvest-Bum 0.1461 0.0675

Young vs. Mature under Control 0.0052 0.0565
Young vs. Presettlement under Control 0.0011 <0.0001
Mature vs. Presettlement under Control 0.2452 <0.0001

I  found greater post-treatment seedling abundance than reported by Bailey and 

Covington (2002) for northern Arizona, although the time-frame is different. They found 

only 18-41 seedlings*ha'1 in treated areas (thinning) in the absence of fire, and only 12 

seedlings*ha'1 1-yr after burn treatments were applied. In my study, the recruitment of 

both species appeared to benefit from Harvest-Bum (in absolute terms), and was locally 

associated with the percent cover of woody debris in Harvest-only and Control
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treatments. Successful tree establishment has been reported to depend on the creation of 

a “safe site” such as the ash bed of a consumed log, where seedlings could establish and 

grow (Dieterich, 1980; Smith et al., 1997). Additionally, in the absence of fire, the 

presence of woody debris can also benefit the establishment of PP and DF. Woody 

debris may reduce high temperatures near the soil and increase humidity levels. 

However, further work is needed to understand the causal relationship between woody 

debris and establishment and growth of seedlings. In this study of regeneration ten years 

after restoration treatments I was unable to discern effects of local competition effects on 

seedling abundance at the scale examined; no correlation was found between seedlings 

abundance and local stand characteristics for either species. Fajardo et al. (in press) 

found that the spatial association between saplings of PP and DF and the overstory trees 

depended on the size of overstory trees and the moisture-level of the site under study.

5.4.4 General implications

Few studies in the northern Rockies have examined ponderosa pine response to forest 

restoration. M y results indicate that the growth and performance of ponderosa pine 

respond positively to these restoration practices, particularly for harvest without bums. I 

can suggest that burning, which negatively affected mainly Mature and Young trees, 

should be applied carefully in restoration treatments so that surface fires do not reach the 

crowns. However, harvest with burning appeared to favor new recruitment, particularly 

ponderosa pine. I can expect a trade-off of management goals when dealing with bums; 

i f  growth and performance of residual trees are our objectives, burning may be a 

detrimental practice; i f  recruitment is our main goal, burning may become beneficial.
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Table 5-7 Partial Mantel coefficients of correlation and probability values for abundance 

of recruited seedlings (<10-years old) and local site variables (basal area (BA), m2*m'2; 

sapwood (SA), cm2*m'2, and percent cover of shrubs, grasses and woody debris cover) in 

the Lick Creek Experimental Area, western Montana. BA and SA were scaled up to m2 

relative to the size of the 25-m2 subplots.

Ponderosa pine seedlings Douglas-fir seedlings
Treatment Variable r Pr (> F) R Pr (> F)
Harvest BA -0.0134 0.2557 -0.0125 0.2677

SA -0.0086 0.3357 -0.0072 0.3676
Shrub 0.0085 0.2867 0.0085 0.2797
Grass 0.0088 0.2807 0.0089 0.2527
Woody Debris 0.0298 0.049 0.0314 0.0439

Bum BA -0.0111 0.3087 -0.0106 0.2657
SA -0.0062 0.3906 -0.0051 0.4056
Shrub 0.0122 0.1728 0.0121 0.1988
Grass 0.0064 0.3197 0.0069 0.3037
Woody Debris 0.0204 0.1049 0.0219 0.1189

Control BA -0.0102 0.3277 -0.0092 0.3447
SA -0.0037 0.4136 -0.0022 0.4915
Shrub 0.0040 0.3946 0.0041 0.3716
Grass 0.0103 0.2587 0.0100 0.2617
Woody Debris 0.0331 0.0467 0.0343 0.0370
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Chapter 6

GENERAL CONCLUSIONS

6.1 OBJECTIVES ACCOMPLISHED

In Chapter 2 “Effects of natural and human disturbances on the dynamics and spatial 

structure of Nothofagus glauca (Phil.) Krasser in south-central Chile”, I  used spatial 

statistical analysis through the Ripley’s L-function, from which I  obtained a sound 

structural description for the different stands under study. This structural description 

along with some complementary analyses (e.g., dendrochronology and diversity indices) 

helped me to characterize the dynamics of each individual stand, and to compare them 

among sites of different disturbance-origin and by that to test the Nothofagus 

regeneration model (objective Ch. 2a). Nothofagus glauca occurred in both sites 

experiencing coarse-scale disturbance and harsh site conditions (objective Ch. 2b). In 

particular, I found that the composition, structure and spatial association of N. glauca 

relative to companion species can all vary as a function of the disturbance origin of the 

site (objectives Ch. 2c and 2d). I concluded the chapter stating that the description of 

spatial association among different species should be considered a required first step to 

account for species coexistence under different stand structures. The clear positive 

association between seedlings and overstory trees at the landslide site (the harshest site) 

in contrast to the other sites where such a trend was not observed, along with the pioneer 

nature of this species (objective Ch. 2e), exemplified the additive role spatial analysis has 

in descriptive studies.

In Chapter 3, “Ponderosa pine and Douglas-fir regeneration spatially associated with 

moisture-level in managed uneven-aged forests of western Montana, U.S.A.”, I  found
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that saplings are distributed in clumps across all sites (objective Ch. 3a), that ponderosa 

pine and Douglas-fir are not spatially disassociated with one another (objective Ch. 3b), 

and that the spatial association between saplings and older cohorts is relative to the size- 

class of overstory trees (objective Ch. 3c). I  used an index of association based on the 

bivariate version of Ripley’s /.-function. By using this index of association (LA), I  was 

able to numerically distinguish different spatial associations between saplings and 

overstory trees (objective Ch. 3d). By including this novel methodological strategy (i.e., 

the index of association), I made an extension in the scope of the same spatial analysis 

used in Chapter 2. Beyond a qualitative observation of the spatial pattern, but I  assigned 

a quantitative value to the degree of association. This examination allowed me to 

compare various sample plots in separate groups, and thereby find particular support for a 

specific competition/facilitation model under differing levels of moisture availability.

In Chapter 4 “Distinguishing microsite and competition processes in even-aged tree 

populations by using spatial autocorrelation analysis”, I separated two tree-tree 

interaction processes (i.e., microsite versus competition effects) that were previously not 

clearly distinguished for tree populations (objective Ch. 4b). The assignment of a 

dominant driving process of plant interaction at a given time led me to hypothesize a 

population development model based on the predominance of competition and/or 

facilitation effects on neighbor trees through time. The stand development model worked 

well for young ponderosa pine plantations (objective Ch. 4a). Furthermore, given 

logically derived a priori hypotheses, I  showed that it is possible to accurately determine 

causal factors for field measured data. I  used geostatistics (i.e., semivariograms) to 

depict and discriminate the spatial autocorrelation of a tree variable, an approach used
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only once before (Bachacou and Decourt, 1976). This semivariogram modeling approach 

resembles the index of association (IA ) introduced in Chapter 3, for it allows us first of 

all to numerically account for the spatial observed pattern, and secondly to make 

analytical comparisons among different cases. This improvement in the strategic use of 

spatial statistical tools offers better insights in how we can depict and interpret ecological 

patterns (objective Ch. 4c).

Finally, in Chapter 5 “Growth, performance and recruitment response of ponderosa pine 

to restoration practices in Lick Creek Experimental Area”, I dealt in particular with two 

key topics, 1) effectiveness of ecological restoration treatments, and b) the response of 

old trees to release from competition. Utilizing a field experiment established to evaluate 

alternative restoration practices of comprehensive thinning with and without subsequent 

broadcast burning (objective Ch. 5a), I developed a spatial analysis methodology (Spatial 

ANOVA) that included all the observations (trees) located in each experimental unit as a 

covariate. For this it was necessary to recognize and incorporate into the spatial AN O VA  

model the intrinsic spatial autocorrelation (i.e., dependency of observations) of the tree 

variable under study. Additionally, by using this more correct approach, I  was able to 

add the tree age-class as a separate factor to the spatial ANOVA model (objective Ch. 

5b). Particularly, this approach allowed me to interpret the effect of restoration 

treatments on old trees, and to account for both their positive response to the release from 

competition and potentially negative effects of spring burning (objective Ch. 5c). 

Ponderosa pine seedling recruitment was also affected by restoration treatments 

(objective Ch. 5d), and positively correlated with the percent cover of woody debris 

(objective Ch. 5e).
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6.2 GENERAL DISCUSSION

The complexity of the forest system, involving intra- and/or interspecific plant 

interactions along with the influence of abiotic factors, creates a mosaic of patterns that is 

not always explicitly interpretable. I have taken this complexity as a challenge and 

sought to disentangle the many questions forest ecosystems present to us, and attempted 

to determine and interpret the causal factors explaining observed patterns. For this 

reason, I  have worked through the chapters of this thesis on empirical evidence to 

develop the general objective of linking spatial observed patterns and underlying forest 

ecological processes by using spatial statistical tools. The relationship between observed 

spatial pattern and responsible process is not always easiliy established. The lack of a 

clear link between pattern and process can be succinctly explained in three ways: 1) 

various processes may create the same pattern (Cale et al., 1989; Wyszomirski et al., 

1999); 2) causality may not be fully straightforward (Rees et al., 1996; Turner et al., 

2001); and 3) processes may also be the result of specific patterns (Turner, 1989). In the 

different chapters of this thesis I have dealt with this research issue by both elaborating 

spatial analysis strategies to cope with autocorrelated data, and by testing logically 

derived hypotheses about ecological patterns. The findings from this work, which have 

resulted from the application of spatial pattern analyses in various forest ecosystems, hold 

promise on the general scope and effectiveness, and particularly on the flexibility these 

methodologies have to cope with field data. With these results I have demonstrated that 

particular research questions can be solved solely by using spatial pattern analyses, and 

not only in a complementary fashion.
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6.2.1 New contributions

The use of spatial patterns to assess underlying process is not new in forest ecology; it is 

actually the very seminal approach of early ecologists to understand plant systems 

(Gleason, 1926), i.e., to describe a pattern and generate hypotheses on the causation of it 

(Turner, 1989). However, the novelty of my study has to deal with the new strategies 

adopted to make sounder inferences on the links between pattern and process. These new 

strategies included the index of association, the semivariogram approach, and the spatial 

ANO VA model in forest field experiments. These strategies represent real and new 

contributions to forest ecology and management.

In Chapter 2, the study of spatial associations between the dominant tree species 

Nothofagus glauca and its companion species can give a preliminary understanding on 

ecological requirements of this particular species and on interactions with other species. 

Nothofagus glauca belongs to a climatic and ecological transitional area, highly 

populated, in central-south Chile and it has been poorly studied so far (Donoso, 1996; 

Veblen et al., 1996b). These characteristics make any attempt to describe its ontogeny 

and its relation with disturbances a helpful background to create and develop ways to 

manage and protect this forest type resource.

In Chapter 3, the spatial association found between saplings and overstory, which 

depended on the moisture-level of each site, can lead to important consequences on the 

expectations we can hold regarding selection harvests. For example, the creation of gaps 

for stimulating seedling arrivals in dry sites can be seen as an erroneous target practice 

for these ponderosa pine and Douglas-fir forests. Furthermore, selection harvests 

appeared to favor the recruitment of both ponderosa pine and Douglas-fir.
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In Chapter 4, the use of semivariogram models to separate the two distinct processes 

of competition and microsite effects during the early development of tree populations 

could contribute to understanding the role and timing that each process has on the 

dynamics of such populations. The importance of microsite in shaping growth and 

interactions among trees has been largely overlooked. The assumption of resource 

availability homogeneously distributed in the field can be viewed as a naive perspective 

that obscures the actual picture of tree-tree interactions. Even though the recognition of 

microsite importance can have consequences on the timing of thinning, I  anticipate 

logistical and economic constraints to practicing thinning on local-scales based on 

microsite differences. Thinning is an activity also based on a cost-benefit economical 

relationship, and consequently is typically practiced at stand level or larger scales.

In Chapter 5, the evaluation of restoration efforts by measuring growth and vigor of 

residual trees and seedling recruitment can have enormous implications into future 

management planning. First, evaluations of restoration efforts are still scarce, 

particularly for forest communities. Second, the results obtained are not only helpful for 

restoration purposes but for general silvicultural practices for this uneven-aged forest 

type. Third, ecologically speaking, the evaluation of restoration practices constitute a test 

for major ecological theories, particularly for those based on successional-driven 

communities (Bradshaw, 1987; Suding et al., 2004). Regarding old trees, by using a 

novel analysis approach (i.e., spatial ANOVA) for forest field experiments, I  was able to 

corroborate that old trees do respond to release of competition. This finding, along with 

the ones from other studies, highlights the importance of old trees to structure and
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dynamics in forest stands, particularly in terms of carbon sequestration (Carey et al., 

2001).

6.2.2 Future studies

Finally, the lines of investigation that this study can promote are diverse. One of them 

might be related to the formal incorporation of spatial patterns and spatial autocorrelation 

into forest stand modeling. Many forest stand models are distance-dependent-based, 

which means they have some measure for tree competition incorporated, e.g., an index of 

competition or and index of clustering. However, both indices are not particularly 

dynamics in time, and may also carry some spurious correlation due to the lack of 

observation dependency (e.g., competition indices). Another line of research would deal 

with the development of spatial relationships between patterns and processes by using 

additional techniques that can result in sounder causal inference, e.g., path analysis and 

structural equations. In this respect the development of logically derived a priori 

hypotheses based on well-planned observational studies is necessary. One additional line 

of research that could be followed relates to an inter-scale approach. The interpretation 

of patterns relies on the scale the study is conducted (Greig-Smith, 1979; Legendre and 

Legendre, 1998; Dale, 1999). It is also expected that the relationship between pattern and 

process changes through different scales. For example, in the field of landscape ecology 

it is expected that patterns can also influence process (Turner, 1989). It is also important 

to consider microscale patterns at individual tree level. These patterns can potentially be 

related to ecophysiological processes. The importance of heterogeneity in spatial pattern 

heterogeneity across different scales should be emphasized in terms of biodiversity and 

environmental factors.

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 7

LIST OF REFERENCES

Agee, J. K., 1993. Fire ecology of pacific northwest forests. Island Press, Washington, 
D C .

Amigo, J., Ramirez, C., 1998. A bioclimatic classification of Chile: woodland 
communities in the temperate zone. Plant Ecology 136, 9-26.

Amigo, J., San Martin, J., Garcia Quintanilla, L., 2000. Estudio fitosociologico de los 
bosques de Nothofagus glauca (Phil.) Krasser del centro-sur de Chile. 
Phytocoenologia 30, 193-221.

Anderson, D. R., Burnham, K. P., 2002. Avoiding pitfalls when using information- 
theoretic methods. Journal of Wildlife Management 66,910-916.

Amo, S. F., 1980. Forest fire history in the Northern Rockies. Journal of Forestry 78, 
460-465.

Amo, S. F., 1988. Fire ecology and its management implications in ponderosa pine 
forests. Pages 133-140 in Baumgartner, D. M., Lotan, J. E., editors. Ponderosa 
pine: the species and its management. Washington State University Coop 
Extension, Spokane and Pullman, WA.

Amo, S. F., Harrington, M. G., Fiedler, C. E., Carlson, C. E., 1995a. Restoring fire- 
dependent ponderosa pine forests in western Montana. Restoration Management 
Notes 13, 32-36.

Amo, S. F., Harrington, M. G., Fiedler, C. E., Carlson, C. E., 1996. Using silviculture and 
prescribed fires to reduce fire hazard and improve health in ponderosa pine 
forests. Pages 114-118 in Proceedings of the 17th annual Forest Vegetation 
Management Conference.

Amo, S. F., Scott, J. H., Hartwell, M. G., 1995b. Age-class structure of old growth 
ponderosa pine/Douglas-fir stands and its relationship to fire history. U.S. Forest 
Service, Research Paper INT-RP-481, Intermountain Research Station, Ogden, 
UT.

Bachacou, J., Decourt, N., 1976. Study on the competition in regular plantations using 
variograms. Ann. Sci. Forest. 33, 177-198.

Bailey, J. D., Covington, W. W., 2002. Evaluating ponderosa pine regeneration rates 
following ecological restoration treatments in northern Arizona, USA. Forest 
Ecology and Management 155, 271-278.

Baker, J. B., Cain, M. D., Guldin, J. M ., Murphy, P. A., Shelton, M . G., 1996. Uneven- 
aged silviculture for the loblolly and shortleaf pine cover types. USDA Forest 
Service, General technical report SO-118.

Barot, S., Gignoux, J., 2003. Neighbourhood analysis in the savanna palm Borassus 
aethiopum: interplay of intraspecific competition and soil patchiness. Journal of 
Vegetation Science 14, 79-88.

Barot, S., Gignoux, J., Menaut, J. C., 1999. Demography of a savanna palm tree: 
predictions from comprehensive spatial pattern analysis. Ecology 80, 1987-2005.

Bazzaz, F. A., 1990. Successional environments: plant-plant interactions. In: Grace, J. B., 
Tilman, D., (Eds.), Perspectives on plant competition. American Press Inc., Pages 
139-263.

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Becker, R., 1995. Operational considerations of implementing uneven-aged management. 
In: O'Hara, K. L., (Ed.), Uneven-aged management: opportunities, constraints and 
methodologies. School of Forestry, The University of Montana, Pages 67-81.

Benjamin, L. R., Hardwick, R. C., 1986. Sources of variation and measures of variability 
in even-aged stands of plants. Annals of Botany 5 8 ,757-778.

Benoit, I., 1989. El libro rojo de la flora terrestre de Chile. CONAF, Santiago, Chile.
Bertness, M. D., Callaway, R. M., 1994. Positive interactions in communities. Trends in 

Ecology and Evolution 9, 187-191.
Besag, J., 1977. Contribution to the discussion of Dr. Ripley's paper. Journal of the Royal 

Statistical Society, Series B 39, 193-195.
Binkley, D., Stape, J. S., Ryan, M. G., Barnard, H. R., Fownes, J., 2002. Age-related 

decline in forest ecosystem growth: an individual-tree, stand-structure hypothesis. 
Ecosystems 5, 58-67.

Bonan, G. B., 1988. The size structure of theoretical plant populations: spatial patterns 
and neighborhood effects. Ecology 69, 1721-1730.

Boyden, S., Binkley, D., Senock, R., 2005. Competition and facilitation between 
Eucalyptus and Nitrogen-fixing Falcataria in relation to soil fertility. Ecology 86, 
992-1001.

Bradshaw, A. D , 1987. Restoration: the acid test for ecology. In: Jordan, W. R., Gilpin, 
M. E., Aber, J. D., (Eds.), Restoration ecology: A  synthetic approach to ecological 
research. Cambridge University Press, Pages 23-29.

Brandeis, T. J., Newton, M., Cole, E. C., 2001. Underplanted conifer seedling survival 
and growth in thinning Douglas-fir. Canadian Journal of Forest Research 31, 302- 
312.

Brokaw, N. V. L., 1985. Gap-phase regeneration in a tropical forest. Ecology 66, 682- 
687.

Bullock, B. P., Burkhart, H. E., 2005. An evaluation of spatial dependency in juvenile 
loblolly pine stands using stem diameter. Forest Science 51, 102-108.

Burnham, K. P., Anderson, D. R., 2002. Model selection and multimodal inference: a 
practical information-theoretic approach, Second edition. Springer-Verlag, New  
York.

Burton, P. J., Bazzaz, F. A., 1995. Ecophysiological responses of tree seedlings to 
invading different patches of old-field vegetation. Journal of Ecology 83, 99-112.

Busse, M. D., Simon, S. A., Riegel, G. M., 2000. Tree growth and understory responses 
to low severity prescribed burning in thinned Pinus ponderosa forests of central 
Oregon. Forest Science 46, 258-268.

Cale, W. G., Henebry, G. M., Yeakly, J. A., 1989. Inferring process from pattern in 
natural communities. Bioscience 39, 600-606.

Call, L. J., Nilsen, E. T., 2003. Analysis of spatial patterns and spatial association 
between the invasive tree-of-heaven (Ailanthus altissima) and the native black 
locust (Robiniapseudoacacia). The American Midland Naturalist 150, 1-14.

Callaway, R. M., 1992. Effect of shrubs on recruitment of Quercus douglasii and 
Quercus lobata in California. Ecology 73, 2118-2128.

Callaway, R. M., 1995. Positive interactions among plants. The Botanical Review 61, 
306-349.

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Camarero, J. J., Gutierrez, E., Fortin, M.-J., 2000. Spatial pattern of subalpine forest- 
alpine grassland ecotones in the Spanish Central Pyrenees. Forest Ecology and 
Management 134,1-16.

Canham, C. D., Marks, P. L., 1985. The response of woody plants to disturbance: 
patterns of establishment and growth. In: Pickett, S. T. A., White, P. S., (Eds.), 
The ecology of natural disturbance and patch dynamics. Academic Press.

Carey, E. V., Sala, A., Keane, R., Callaway, R. M., 2001. Are old forests understimated 
as global carbon sink? Global Change Biology 7, 339-344.

Chacon, P., Bustamante, R., 2001. The effects of seed size and pericarp on seedling 
recruitment and biomass in Cryptocarya alba (Lauraceae) under two contrasting 
moisture regimes. Plant Ecology 152, 137-144.

Chalmers, A. F ,  1999. What is this thing called science?, Third edition. Hackett 
Publishing Company, Inc., Indianapolis, IN.

Chen, J., Bradshaw, G. A., 1999. Forest structure in space: a case study of an old growth 
spruce-fir forest in Changbaishan Natural Reserve, PR China. Forest Ecology and 
Management 120, 219-233.

Chew, J. D., Stalling, C., Moeller, K., 2004. Integrating knowledge for simulating 
vegetation change at landscape scales. Western Journal of Applied Forestry 19, 
102-108.

Choler, P., Michalet, R., Callaway, R. M., 2001. Facilitation and competition on 
gradients in alpine plant communities. Ecology 82, 3295-3308.

Choromanska, U., DeLuca, T. H., 2001. Prescribed fire alters the impact of wildfire on 
soil biochemical properties in a ponderosa pine forest. Soil Science Society of 
America Journal 65, 232-238.

Clements, F. E., 1916. Plant succession: an analysis of the development of vegetation. 
Carnegie Institute Washington Publication 242.

Clements, F. E., 1936. Nature and structure of the climax. Journal of Ecology 24, 252- 
284.

Clements, F. E., Weaver, J. E., Hanson, H. C., 1929. Competition in cultivated crops. 
Carnegie Inst. Landscape and Urban Planning 398, 202-233.

Cliff, A. D., Ord, J. K., 1981. Spatial processes -Models and applications. Pion, London.
CONAMA, 1998. Aysen Reserva de Vida. Texto de Apoyo para la Education Ambiental 

Regional, First edition. Corporation Nacional Medioambiental, Santiago, Chile.
Cooper, C. F., 1961. Pattern in ponderosa pine forests. Ecology 42, 493-499.
Courbaud, B., Goreaud, F., Dreyfus, P., Bonnet, F. R., 2001. Evaluating thinning 

strategies using a tree distance dependent growth model, some examples based on 
the CAPSIS software "uneven-aged spruce forests" schedule. Forest Ecology and 
Management 145, 15-28.

Covington, W. W., Fule, P. Z., Moore, M. M., Hart, S. C., Kolb, T. E., Mast, J. N., 
Sackett, S. S., Wagner, M . R., 1997. Restoring ecosystem health in ponderosa 
pine forests of the southwest. Journal of Forestry 95, 23-29.

Covington, W. W., Moore, M. M ., 1994. Postsettlement changes in natural fire regimes 
and forest structure: ecological restoration of old-growth ponderosa pine forests. 
Journal of Sustainable Forestry 2, 153-181.

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Coyea, M. R., Margolis, H. A., 1994. The historical reconstruction of growth efficiency 
and its relationship to tree mortality in balsam fir ecosystems affected by spruce 
budworm. Canadian Journal of Forest Research 2 4 ,2208-2221.

Cressie, N. A. C., 1985. Fitting variogram models by weighted least squares. Journal of 
the International Association for Mathematical Geology 17, 563-586.

Cressie, N. A. C., 1993. Statistics for spatial data. Wiley, New York.
Dale, M. R. T., 1999. Spatial pattern analysis in plant ecology. Cambridge University 

Press, New York.
DeLuca, T. H., Zouhar, K. L., 2000. Effects of selection harvest and prescribed fire on 

the soil nitrogen status of ponderosa pine forests. Forest Ecology and 
Management 138, 263-271.

Dieterich, J. H., 1980. Chimney Spring forest fire history. U.S. Forest Service Research 
Paper RM-220, Rocky Mountain Forest and Range Experiment Station, Fort 
Collins, CO.

Diggle, P. J., 1983. Statistical analysis of spatial point patterns. Academic Press, New  
York.

Dixon, P., 2002. Ripley's K-fiinction. In: El-Shaarawi, A. H., Piergorsch, W. W., (Eds.), 
The encyclopedia of environmetrics. John Wiley &  Sons Ltd., Pages 1796-1803.

Donoso, C., 1993. Bosques templados de Chile y Argentina: variacion, estructura y 
dinamica. EcologiaForestal. Editorial Universitaria, Santiago, Chile.

Donoso, C., 1996. Ecology of Nothofagus forests in Central Chile. In: Veblen, T. T., Hill, 
R. S., Read, J., (Eds ), The ecology and biogeography of Nothofagus forests. Yale 
University Press, Pages 403.

Donoso, C., Grez, R., Escobar, B., Real, P., 1984. Estructura y dinamica de bosques del 
tipo forestal siempreverde en un sector de Chiloe insular. Bosque 5, 82-104.

Duncan, R. P., 1989. An evaluation of errors in tree age estimates based on increment 
cores in Kahikatea (Dacrycarpus dacrydiodes). New Zealand Natural Science 16, 
31-37.

Duncan, R. P., 1991. Competition and coexistence of species in a mixed podocarp stand. 
Journal of Ecology 79, 1073-1084.

Duncan, R. P., Steward, G. H., 1991. The temporal and spatial analysis of tree age 
distributions. Canadian Journal of Forest Research 21, 1703-1710.

Fajardo, A., de Graaf, R., 2004. Tree dynamics in canopy gaps in old-growth forests of 
Nothofaguspumilio in Southern Chile. Plant Ecology 173, 95-106.

Feeney, S. R., Kolb, T. E., Covington, W. W., Wagner, M. R., 1998. Influence of 
thinning and burning restoration treatments on presettlement ponderosa pines at 
the Gus Pearson Natural Area. Canadian Journal of Forest Research 28, 1295- 
1306.

Fiedler, C. E., 2000. Restoration treatments promote growth and reduce mortality of old- 
growth ponderosa pine (Montana). Ecological Restoration 1 8 ,117-119.

Fiedler, C. E., Becker, R. R., Haglund, S. A., 1988. Preliminary guidelines for uneven- 
aged silvicultural prescriptions in ponderosa pine. In: Baumgartner, D. M., Lotan, 
J. E., (Eds ), Ponderosa pine. The species and its management. Washington State 
University.

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Fiedler, C. E., Keegan, C. E., Morgan, T. A., Woodall, C. W., 2003. Fire hazard and 
potential treatment effectiveness: a statewide assessment in Montana. Journal of 
Forestry 101, 7.

Figueroa, J. A., Lusk, C. H., 2001. Germination requirements and seedling shade 
tolerance are not correlated in a Chilean temperate rain forest. New Phytologist 
152, 483-489.

Fisher, W. C., Bradley, A. F., 1987. Fires ecology of western Montana forest habitat 
types. USDA Forest Service General technical Report INT-223.

Ford, E. D., 1984. The dynamics of plantation growth. In: Bowen, G. D., Nambiar, E. K. 
S., (Eds), Nutrition of plantation forests. Academic Press, Pages 17-52.

Ford, E. D., Renshaw, E., 1984. The interpretation of process from pattern using two- 
dimensional spectral analysis: modelling single species patterns in vegetation. 
Vegetatio 56,113-123.

Ford, E. D., Sorrensen, K. A., 1992. Theory and models of inter-plant competition as a 
spatial process. In: DeAngelis, D., Gross, L., (Eds.), Individual-based models in 
ecology: Populations, communities and ecosystems. Chapman and Hall, Pages 
363-407.

Fortin, M.-J., Gurevitch, J., 2001. Mantel Test. Spatial structure in field experiments. In: 
Scheiner, S. M., Gurevitch, J., (Eds.), Design and analysis of ecological 
experiments. Oxford University Press, Pages 308-326.

Fox, J. C., Ades, P. K., Bi, H., 2001. Stochastic structure and individual-tree growth 
models. Forest Ecology and Management 154,261-276.

Franco, M ., Harper, J. L., 1988. Competition and the formation of spatial pattern in 
spacing gradients: an example using Kochia scoparia. Journal of Ecology 76, 
959-974.

Franklin, J. F., Spies, T. A., van Pelt, R., Carey, A. B., Thorburgh, D. A., Berg, D. R., 
Lindenmayer, D. B., Harmon, M. E., Keeton, W. S., Shaw, D. C., Bible, K., Chen, 
J., 2002. Disturbances and structural development of natural forest ecosystems 
with silvicultural implications, using Douglas-fir forests as an example. Forest 
Ecology and Management 155, 399-423.

Frazer, G. W., Canham, C. D., Lertzman, K. P., 2000. Gap Light Analyzer (GLA), 
Version 2.0: Image processing software to analyze true-colour, hemispherical 
canopy photographs. Bulletin of the Ecological Society of America 8 1 ,191-197.

Frohlich, M., Quednau, H. D., 1995. Statistical analysis of the distribution pattern of 
natural regeneration in forests. Forest Ecology and Management 73, 45-57.

Fule, P. Z., Covington, W. W., Moore, M. M., 1997. Determining reference conditions 
for ecosystem management of southwestern ponderosa pine forests. Ecological 
Applications 7, 895-908.

Givnish, T. J., 1988. Adaptation to sun and shade: a whole-plant perspective. Australian 
Journal of Plant Physiology 15, 63-92.

Gleason, H. A., 1917. The structure and development of the plant association. Bulletin of 
the Torrey Botanical Club 43, 463-481.

Gleason, H. A., 1926. The individualist concept of the plant association. Bulletin of the 
Torrey Botanical Club 53, 7-26.

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Gonzalez, M. E., Veblen, T. T., Donoso, C., Valeria, L., 2002. Tree regeneration 
responses in a lowland Nothofagus-dominated forest after bamboo dieback in 
South-Central Chile. Plant Ecology 161, 59-73.

Goovaerts, P., 1997. Geostatistics for natural resource evaluation. Oxford University 
Press, New York.

Goreaud, F., Courbaud, B., Collinet, F., 1999. Spatial structure analysis applied to 
modeling of forest dynamics: a few examples. In: Amaro, A., Tome, M ., (Eds.), 
Empirical and process based models for forest tree and stand growth simulation, 
Pages 155-172.

Goreaud, F., Loreau, M., Millier, C., 2002. Spatial structure and the survival of an 
inferior competitor: a theoretical model of neighbourhood competition in plants. 
Ecological Modelling 158, 1-19.

Goreaud, F., Pelissier, R., 2003. Avoiding misinterpretation of biotic interactions with the 
intertype K12-function: population independence vs. random labeling hypotheses. 
Journal of Vegetation Science 14, 681-692.

Gray, A. N., Spies, T. A., 1996. Gap size, within gap position and canopy structure 
effects on conifer seedling establishment. Journal of Ecology 84, 635-645.

Greig-Smith, P., 1979. Pattern in vegetation. Journal of Ecology 67, 755-779.
Grier, C. C., 1989. Effects of prescribed springtime underbuming on production and 

nutrient status of a young ponderosa pine stand. In: Tecle, A., Covington, W. W., 
Hamre, R. H., (Eds ), Multisource management of ponderosa pine forests. USDA  
Forest Service, Rocky Mt. For. Range Exp. Stn. Gen. Tech., Pages 71-76.

Grime, J. P., 2001. Plant strategies, vegetation processes, and ecosystem properties, 
Second edition. John Wiley &  Sons, Chichester, UK.

Gruell, G. E., Schmidt, W. C., Amo, S. F., Reich, W. J., 1982. Seventy years of 
vegetative change in a managed ponderosa pine forest in western Montana - 
Implications for resource management. Gen. Tech. Rep. INT-130 USDA Forest 
Service, Intermountain For. Range Exp. Station, Ogden, UT.

Guldin, J. M., 1996. The role of uneven-aged silviculture in the context of ecosystem 
management. Eastern Journal of Applied Forestry 11,4-12.

Gundale, M . J., DeLuca, T. H., Fiedler, C. E., Ramsey, P. W., Harrington, M . G., 
Gannon, J. E., 2005. Restoration management in a Montana ponderosa pine 
forest: Effects on soil physical, chemical and biological properties. Forest 
Ecology and Management 213, 25-38.

Gurevitch, J., Scheiner, S. M., Fox, G. A., 2002. The ecology of plants. Sinauer 
Associates, Inc., Sunderland, MA.

Gustafson, E. J., 1998. Quantifying landscape spatial pattern: what is the state of the art? 
Ecosystems 1, 143-156.

Gutierrez, E., Armesto, J. J., Aravena, J. C., 2004. Disturbance and regeneration 
dynamics of an old-growth North Patagonian rain forest in Chiloe Island, Chile. 
Journal of Ecology 92, 598-608.

Haase, P., 1995. Spatial pattern analysis in ecology based on Ripley's K-function: 
Introduction and methods of edge correction. Journal of Vegetation Science 6, 
575-582.

Haase, P., 2002. SPPA EXE Statistical Program, in.

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Haase, P., Pugnaire, F. I., Clark, S. C , Incoll, L. D., 1996. Spatial patterns in two-tiered 
semi-arid shrubland in southeastern Spain. Journal of Vegetation Science 7, 527- 
534.

Habeck, J. F., 1988. Old-growth forests in the northern Rocky Mountains. Natural Areas 
Journal 8, 202-211.

Habeck, J. R., Mutch, R. W., 1973. Fire-dependent forests in the northern Rocky 
Mountains. Quaternary Research 3, 408-424.

Hara, T., 1984. A  stochastic model and the moment dynamics of the growth and size 
distribution in plant populations. Journal of Theoretical Biology 109, 173-190.

Hara, T., 1988. Dynamics of size structure in plant populations. Trends in Ecology and 
Evolution 3, 129-133.

Harper, J. L., 1977. Population ecology of plants. Academic Press, London.
Harrod, R. J., McRae, B. H., Hard, W. E., 1999. Historical stand reconstruction in 

ponderosa pine forests to guide silvicultural prescriptions. Forest Ecology and 
Management 114, 433-446.

Hart, S. C., Classen, A. T., Wright, R. J., 2005. Long-term interval burning alters fine 
root and mycorrhizal dynamics in a ponderosa pine forest. Journal of Applied 
Ecology 42, 752-761.

Hartwell, M. G., Alaback, P., Amo, S. F., 2000. Comparing historic and modem forests 
on the Bitterroot Front. Pages 11-16 in The Bitterroot Ecosystem management 
Research Project: What we have learned. USDA Forest Service, Rocky Mt. Res. 
Station, Missoula, MT.

Hastings, A., 1993. Complex interactions between dispersal and dynamics: lessons from 
coupled logistic equations. Ecology 74, 1362-1372.

He, F., Duncan, R. P., 2000. Density-dependent effects on tree survival in an old-growth 
Douglas fir forest. Journal of Ecology 88, 676-688.

Hilbom, R., Steams, S. C., 1982. On inference in ecology and evolutionary biology: the 
problem of multiple causes. Acta Biotheoretica 31, 145-164.

Holmgren, M., Scheffer, M., Huston, M . A., 1997. The interplay of facilitation and 
competition in plant communities. Ecology 78, 1966-1975.

Hunt, R., 1990. Basic growth analysis. Plant growth analysis for beginners. Unwin 
Hyman, London.

Hurlbert, S. H., 1984. Pseudoreplication and the design of ecological field experiments. 
Ecological Monographs 54, 187-211.

Huston, M. A., DeAngelis, D. L., 1987. Size bimodality in monospecific populations: a 
critical review of potential mechanisms. The American Naturalist 129, 678-707.

Isaaks, E. H., Srivastava, R. M., 1989. An introduction to applied geostatistics. Oxford 
University Press, Inc., New York.

Kalin-Arroyo, M. T., Zedler, P. H., Fox, M. D., editors. 1995. Ecology and biogeography 
of Mediterranean ecosystems in Chile, California, and Australia. Springer-Verlag, 
New York.

Kaye, J. P., Hart, S. C., 1998. Ecological restoration alters nitrogen transformations in a 
ponderosa pine-bunchgrass ecosystem. Ecological Applications 8,1052-1060.

Kaye, J. P., Hart, S. C., Fule, P. Z., Covington, W. W., Moore, M. M., Kaye, M . W., 
2005. Initial carbon, nitrogen, and phosporus fluxes following ponderosa pine 
restoration treatments. Ecological Applications 15, 1581-1593.

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Keane, R. E., Ryan, K. C., Veblen, T. T., Allen, C. D., Logan, J., Hawkes, B., 2002. 
Cascading effects of fire exclusion in Rocky Mountain Ecosystems: A literature 
review. Gen. Tech. Rep. GTR-91 USDA Forest Service, Rocky Mt. Res. Station.

Keitt, T. H., Bjomstad, O. N., Dixon, P. M., Citron-Pousty, S., 2002. Accounting for 
spatial pattern when modeling organism-environment interactions. Ecography 25, 
616-625.

Kenkel, N. C., 1988. Pattern of self-thinning in jack pine: testing the random mortality 
hypothesis. Ecology 69, 1017-1024.

Kikvidze, Z., Pugnaire, F. I., Brooker, R. W., Choler, P., Lortie, C. J., Michalet, R., 
Callaway, R. M., 2005. Linking patterns and processes in alpine plant 
communities: a global study. Ecology 86, 1395-1400.

Kint, V., van Meirvenne, M ., Nachtergale, L., Geudens, G., Lust, N., 2003. Spatial 
methods for quantifying forest stand structure development: A  comparison 
between nearest-neighbor indices and variogram analysis. Forest Science 49, 36- 
49.

Kira, T., Shidei, T., 1967. Primary production and turnover of organic matter in different 
forest systems of the western Pacific. Japanese Journal of Ecology 17, 70-87.

Kolb, T. E., Holmberg, K. M., Wagner, M. R., Stone, J. E., 1998. Regulation of 
ponderosa pine foliar physiology and insect resistance mechanisms by basal area 
treatments. Tree Physiology 18, 375-381.

Korol, R. L., Running, S. W., Milner, K. S., 1995. Incorporating intertree competition 
into an ecosystem model. Canadian Journal of Forest Research 25, 413-424.

Kunstler, G., Curt, T., Lepart, J., 2004. Spatial pattern of beech (Fagus sylvatica L.) and 
oak {Quercus pubescens M ill.) seedlings in natural pine (Pinus sylvestris L.) 
woodlands. European Journal of Forest Research 123, 331-337.

Kutscha, N. P., Sachs, I. B., 1962. Color tests for differentiating heartwood and sapwood 
in certain softwood species (US Forestry Products laboratory report No 2246). 
USDA Forest Service, Madison.

Landsberg, J. D., 1994. A review of prescribed fire and tree growth responses in the 
genus Pinus. Pages 326-346 in Proceeding of the 12th Conference on Fire and 
Forest Meteorology. Society o f American Foresters, Bethesda, MD.

Latham, P., Tappeiner, J., 2002. Response of old-growth conifers to reduction in stand 
density in western Oregon forests. Tree Physiology 22, 137-146.

Law, R., Purves, D. W., Murrell, D. J., Dieckmann, U., 2001. Causes and effects of 
small-scale spatial structure in plant populations. In: Silvertown, J., Antonovics, 
J., (Eds.), Integrating ecology and evolution in a spatial context. Blackwell 
Science, Pages 21-44.

Legendre, P., 1993. Spatial autocorrelation: Trouble or new paradigm? Ecology 74,1659- 
1673.

Legendre, P., Dale, M. R. T., Fortin, M.-J., Casgrain, P., Gurevitch, J., 2004. Effects of 
spatial structure on the results of field experiments. Ecology 85, 3202-3214.

Legendre, P., Dale, M. R. T., Fortin, M.-J., Gurevitch, J., Hohn, M., Myers, D., 2002. 
The consequences of spatial structure for the design and analysis of ecological 
field surveys. Ecography 25, 601-615.

Legendre, P., Fortin, M.-J., 1989. Spatial pattern and ecological analysis. Vegetatio 80, 
107-138.

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Legendre, P., Legendre, L., 1998. Numerical ecology, Second edition. Elsevier, 
Amsterdam.

Lennon, J. J., 2000. Red-shifts and red herrings in geographical ecology. Ecography 23, 
101-113.

Levin, S. A., 1992. The problem of pattern and scale in ecology. Ecology 73, 1943-1967.
Lieberman, M ., Lieberman, D., Peralta, R., 1989. Forests are not just Swiss cheese, 

canopy stereogeometry of non-gaps in tropical forests. Ecology 70, 550-552.
Liebhold, A. M., Gurevitch, J., 2002. Integrating the statistical analysis of spatial data 

ecology. Ecography 25, 553-557.
Litton, C., Santelices, R., 1996. Comparacion de las comunidades vegetales en bosques 

de Nothofagus glauca (Phil.) Krasser en la Septima Region de Chile. Bosque 17, 
77-86.

Litton, C., Santelices, R., 2002. Early post-fire succession in a. Nothofagus glauca forest 
in the Coastal Cordillera of south-central Chile. The International Journal of 
Wildland Fire 11, 115-125.

Lorimer, C. G., Frelich, L. E., Nordheim, E. V., 1988. Estimating gap origin probabilities 
for canopy trees. Ecology 69, 778-785.

Lotwick, C. G., Silverman, B. W., 1982. Methods for analyzing spatial processes of 
several types of points. Journal of the Royal Statistical Society, series B, 
Methodological 44, 406-413.

MacArthur, R. H., 1972. Geographic ecology: Patterns in the distribution of species. 
Princeton University Press, Princeton, NJ.

Magnussen, S., 1994. A method to adjust simultaneously for spatial microsite and 
competition effects. Canadian Journal of Forest Research 24, 985-995.

Maguire, D. A., Brissette, J. C., Gu, L., 1998. Crown structure and growth efficiency of 
red spruce in uneven-aged, mixed species stands in Maine. Canadian Journal of 
Forest Research 28, 1233-1240.

Manly, B. F. J., 1986. Randomization and regression methods for testing for associations 
with geographical, environmental and biological distances between populations. 
Researches on Population Ecology 28, 201-218.

Mantel, N., 1967. The detection of disease clustering and a generalized regression 
approach. Cancer Research 27, 209-220.

Marticorena, C., Quezada, M., 1985. Catalogo de la flora vascular de Chile. Gayana 42, 
1-157.

Mast, J. N., Fule, P. Z., Moore, M. M ., Covington, W. W., Waltz, A. E. M., 1999. 
Restoration of presettlement age structure of an Arizona ponderosa pine forest. 
Ecological Applications 9, 228-239.

Mast, J. N., Veblen, T. T., 1999. Tree spatial patterns and stand development along the 
pine-grassland ecotone in the Colorado Front Range. Canadian Journal of Forest 
Research 29, 575-584.

McClure, J. W., Lee, T. D., 1993. Small-scale disturbance in a northern hardwoods 
forest: effects of tree species abundance and distribution. Canadian Journal of 
Forest Research 23, 1347-1360.

McClure, J. W., Lee, T. D., Leak, W. B., 2000. Gap capture in northern hardwoods: 
patterns of establishment and height growth in four species. Forest Ecology and 
Management 127, 181-189.

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



McCune, B., Grace, J. B., 2002. Analysis of ecological communities. M jM  Software 
Design, Glededen Beach, OR.

McDowell, N., Brooks, J. R., Fitzgerald, S. A., Bond, B. J., 2003. Carbon isotope 
discrimination and growth response of old ponderosa pine trees to stand density 
reductions. Plant, Cell and Environment 26, 631-644.

Mclntire, E. J. B., 2004. Understanding natural disturbance boundary formation using 
spatial data and path analysis. Ecology 85, 1933-1943.

Messier, C., Doucet, R., Ruel, J.-C., Claveau, Y., Kelly, C., Lechowicz, M . J., 1999. 
Functional ecology of advance regeneration in relation to light in boreal forests. 
Canadian Journal of Forest Research 29, 812-823.

Minckler, L. S., Woerheide, J. D., 1965. Reproduction of hardwoods 10 years after 
cutting as affected by site and opening size. Journal of Forestry 6 3 ,103-107.

Mitchell, R. G., Waring, R. H., Pitman, G. B., 1983. Thinning lodgepole pine increases 
tree vigor and resistance to mountain pine beetle. Forest Science 29, 204-211.

Monleon, V. J., Chromack, K., Landsberg, J. D., 1997. Short- and long-term effects of 
prescribed underbuming on nitrogen availability in ponderosa pine stands in 
central Oregon. Canadian Journal of Forest Research 27, 369-378.

Mooney, H. A., Arroyo, M. T. K., Bond, W. J., Canadell, J., Hobbs, R. J., Lavorel, S., 
Neilson, R. P., 2001. Mediterranean-climate Ecosystems. In: Chapin HI, F. S., 
Sala, O. E., Huber-Sannwald, E., (Eds.), Global biodiversity in a changing 
environment. Scenarios for the 21st century. Springer-Verlag, Pages 157-200.

Moore, M. M., Covington, W. W., Fule, P. Z., 1999. Reference conditions and ecological 
restoration: A southwestern ponderosa pine perspective. Ecological Applications 
9, 1266-1277.

Nagel, L. M ., O'Hara, K. L., 2001. The influence of stand structure on ecophysiological 
leaf characteristics of Pinus ponderosa in western Montana. Canadian Journal of 
Forest Research 31, 2173-2182.

Nathan, R., Muller-Landau, H. C., 2000. Spatial patterns of seed dispersal, their 
determinants and consequences for recruitment. Trends in Ecology and Evolution 
15, 278-285.

Niering, W. A., Whittaker, R. H., Lowe, C. H., 1963. The saguaro: a population in 
relation to environment. Science 142, 15-23.

Nyland, R., 2002. Silviculture: concepts and applications, Second edition. McGraw-Hill 
Companies, Inc., New York.

O'Hara, K. L., 1996. Dynamics and stocking-level relationships of multi-aged ponderosa 
pine stands. Forest Science Monographs 33, 1-44.

Oliver, C. D., 1981. Forest development in North America following major disturbances. 
Forest Ecology and Management 3, 153-168.

Oliver, C. D., Larson, B. C., 1996. Forest stand dynamics. Wiley, New York.
O'Neill, R. V., Turner, S. J., Cullinan, V. I., Coffin, D. P., Cook, T., Conley, W., Brunt, 

J., Thomas, J. M., Conley, M. R., Gosz, J., 1991. Multiple landscape scales: an 
intersite comparison. Landscape Ecology 5,137-144.

Orwig, D. A., Cogbill, C. V., Foster, D. R., O'Keefe, J. F., 2001. Variations in old-growth 
structure and definitions: forest dynamics on Wachusett Mountain, Massachusetts. 
Ecological Applications 11, 437-452.

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Palik, B. J M itc h e ll, R. J., Hiers, J. K., 2002. Modeling silviculture after natural 
disturbance to sustain biodiversity in the longleaf pine (Pirns palustris) 
ecosystem: balancing complexity and implementation. Forest Ecology and 
Management 155, 347-356.

Paluch, J., 2005. Spatial distribution of regeneration in West-carpathian uneven-aged 
silver fir forests. European Journal of Forest Research 124,47-54.

Patterson, A. E., 1961. Distinguishing annual rings in diffuse porous tree species. Journal 
of Forestry 59, 126.

Peet, R. K., Christensen, N. L., 1987. Competition and tree death. Bioscience 37, 586- 
595.

Pfister, C. A., Stevens, F. R., 2003. Individual variation and environmental stochasticity: 
implications for matrix model predictions. Ecology 84,496-510.

Pfister, R. D., Kovalchik, B. L., Amo, S. F., Presby, R. C., 1977. Forest habitat types of 
Montana. US Forest Service, General Technical Report ENT-34, Intermountain 
Forest and Range Experiment Station, Ogden, UT.

Pickett, S. T. A., White, P. S., editors. 1985. The ecology of natural disturbances and 
patch dynamics. Academic Press, Orlando, FL.

Plan, C. S. a. K. T., 1999. Final environment impact statement. Flathead Indian 
Reservation, Pablo, MT.

Pollmann, W., 2002. Effects of natural disturbance and selective logging on Nothofagus 
forests in south-central Chile. Journal of Biogeography 29, 955-970.

Pollmann, W., Veblen, T. T., 2004. Nothofagus regeneration dynamics in South-central 
Chile: A  test of a general model. Ecological Monographs 74, 615-634.

Powers, R. F., Reynolds, P. E., 2000. Intensive management of ponderosa pine 
plantations: sustainable productivity for the 21st century. Journal of Sustainable 
Forestry 10, 249-255.

Ramirez, C., San Martin, J., Oyarzun, A., Figueroa, H., 1997. Morpho-ecological study 
on the South American species of the genus Nothofagus. Plant Ecology 130, 101- 
109.

R-Development, C. T., 2004. R: A Language For Statistical Computing. R Foundation for 
Statistical Computing, Vienna, Austria, http://www.R-project.org.

Read, J., Hill, R. S., 1985. Photosynthetic response to light of Australian and Chilean 
species of Nothofagus and their relevance to the rain forest dynamics. New  
Phytologist 101, 731-742.

Read, J., Hill, R. S., 1988. The dynamics of some rainforest associations in Tasmania. 
Journal of Ecology 76, 558-584.

Rebertus, A. J., Veblen, T. T., 1993. Structure and tree-fall gap dynamics of old-growth 
Nothofagus forests in Tierra del Fuego, Argentina. Journal of Vegetation Science 
4, 641-654.

Reed, D. D., Burkhart, H. E., 1985. Spatial autocorrelation of individual tree 
characteristics in loblolly pine stands. Forest Science 31, 575-587.

Rees, M., Grubb, P. J., Kelly, D., 1996. Quantifying the impact of competition and spatial 
heterogeneity on the structure and dynamics of a four-species guild of winter 
annuals. The American Naturalist 147, 1-32.

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.R-project.org


Reich, P. B., Walters, M. B., Ellsworth, D. S., 1997. From tropics to tundra: global 
convergence in plant functioning. Proceeding of the National Academy of 
Sciences of USA 94, 13730-13734.

Reynolds, J. H., Ford, E. D., 2005. Improving competition representation in theoretical 
models of self-thinning: a critical review. Journal ofEcology 93, 362-372.

Ribeiro, P. J., Diggle, P. J., 2001. geoR. a package for geostatistical analysis. R-NEWS 1, 
15-18.

Ripley, B. D., 1977. Modeling spatial patterns. Journal of the Royal Statistical Society 
Series B 39, 172-212.

Ripley, B. D., 1981. Spatial statistics. Wiley, New York.
Roberts, S. D., Long, J. N., Smith, F. W., 1993. Canopy stratification and leaf area 

efficiency: a conceptualization. Forest Ecology and Management 60, 143-156.
Rock, J., Puettmann, K. J., Gockel, H. A., Schulte, A., 2004. Spatial aspects of the 

influence of silver birch (Betula pendula L.) on growth and quality of young oaks 
(Quercus spp.) in central Germany. Forestry 77, 235-247.

Rossi, R. E., Mulla, D. J., Journal, A. G., Franz, E. H., 1992. Geostatistical tools for 
modeling and interpreting ecological spatial dependence. Ecological Monographs 
62, 277-314.

Runkle, J. R., 1981. Gap regeneration in some old-growth forests of the eastern United 
States. Ecology 62, 1041-1051.

Runkle, J. R., 1982. Patterns of disturbance in some old-growth mesic forests of the 
eastern United States. Ecology 63, 1533-1546.

Ryan, M. G., Binkley, D., Fownes, J. H., Giardina, C. P., Senock, R. S., 2004. An 
experimental test of the causes of forest growth decline with stand age. Ecological 
Monographs 74, 393-414.

Sala, A., Peters, G. D., McIntyre, L. R., Harrington, M. G., 2005. Effects of thinning, 
prescribed burning, and burning season on the physiological performance of 
ponderosa pine in western Montana. Tree Physiology 25, 339-348.

San Martin, J., Donoso, C., 1997. Estructura floristica e impacto antropico en el bosque 
maulino de Chile. In: Armesto, J. J., Villagran, C., Arroyo, M. T. K., (Eds.), 
Ecologia de los bosques nativos de Chile. Editorial Universitaria, Pages 153-168.

Savage, M., Brown, P. M., Feddema, J., 1996. The role of climate in a pine forest 
regeneration pulse in the southwestern United States. EcoScience 3, 310-318.

Schwinning, S., Weiner, J., 1998. Mechanisms determining the degree of size asymmetry 
in competition among plants. Oecologia 113, 447-455.

Seymour, R. S., Kenefic, L. S., 2002. Influence of age on growth efficiency of Tsuga 
canadensis and Picea rubens trees in mixed-species, multiaged northern conifer 
stands. Canadian Journal of Forest Research 32, 2032-2042.

Shelton, M. G., Cain, M. D., 2000. Regenerating uneven-aged stands of loblolly and 
shortleaf pines: the current state of knowledge. Forest Ecology and Management 
129, 177-193.

Shi, H., Zhang, L., 2003. Local analysis of tree competition and growth. Forest Science 
49, 938-955.

Shipley, B., 2000. Cause and correlation in biology. A  user's guide to path analysis, 
structural equations and causal inference. Cambridge University Press, 
Cambridge, UK.

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Skarpe, C., 1991. Spatial patterns and dynamics of woody vegetation in an arid savanna. 
Journal of Vegetation Science 2, 565-572.

Skov, K. R., Kolb, T. E., Wallin, K. F., 2004. Tree size and drought affect ponderosa pine 
physiological response to thinning and burning treatments. Forest Science 50, 81- 
91.

Skov, K. R., Kolb, T. E., Wallin, K. F., 2005. Difference in radial growth response to 
restoration thinning and burning treatments between young and old ponderosa 
pine in Arizona. Western Journal of Applied Forestry 20, 36-43.

Smith, D. M ., Larson, B. C., Kelty, M. J., Ashton, P. M. S., 1997. The practice of 
silviculture: applied forest ecology, 9th edition. Wiley, New York.

Smith, F. W., Long, J. N., 1989. The influence of canopy architecture on stemwood 
production and growth efficiency of Pinus contorta var. latifolia. Journal of 
Applied Ecology 26, 681-691.

Smith, J. E., McKay, D., Brenner, G., Mclnver, J., Spatafora, J. W., 2005. Early impacts 
of forest restoration treatments on the ectomycorrhizal fungal community and fine 
root biomass in a mixed conifer forest. Journal of Applied Ecology 42, 526-535.

Smithwick, E. A. H., Turner, M. G., Mack, M. C., Chapin III, F. S., 2005. Postfire soil N  
cycling in northern conifer forests affected by severe, stand-replacing wildfires. 
Ecosystems 8, 163-181.

Sokal, R. R., Rohlf, F. J., 1995. Biometry. The principles and practice of statistics in 
biology research, Third edition. W.H. Freeman, New York.

SPSS, 2000. SYSTAT SPSS Inc. in, Chicago, U.S.A.
Staudhammer, C. L., LeMav, V. M., 2001. Introduction and evaluation of possible 

indices of stand structural diversity. Canadian Journal of Forest Research 31, 
1105-1115.

Stoll, P., Bergius, E., 2005. Pattern and process: competition causes regular spacing of 
individuals within plant populations. Journal of Ecology 93, 395-403.

Stoll, P., Prati, D., 2001. Intraspecific aggregation alters competitive interactions in 
experimental plant communities. Ecology 82, 319-327.

Stoll, P., Weiner, J., 2000. A neighborhood view of interactions among individual plants. 
In: Dieckmann, U., Law, R., Metz, J. A. J., (Eds.), The geometry of ecological 
interactions. Cambridge University Press.

Stoll, P., Weiner, J., Muller-Landau, H., Muller, E., Hara, T., 2002. Size symmetry of 
competition alters biomass-density relationships. Proceeding of the Royal Society 
London B 269, 2191-2195.

Stoll, P., Weiner, J., Schmid, B., 1994. Growth variation in a naturally established 
population of Pinus sylvestris. Ecology 75, 660-670.

Suding, K. N., Gross, K. L., Houseman, G. R., 2004. Alternative states and positive 
feedbacks in restoration ecology. Trends in Ecology and Evolution 19, 46-53.

Sutherland, E. K., Covington, W. W., Andariese, S., 1991. A model of ponderosa pine 
growth response to prescribed burning. Forest Ecology and Management 44, 1 b i
n s .

Swetnam, T. W., Brown, P. M., 1992. Oldest known conifers in the southwestern United 
States: temporal and spatial patterns of maximum age. U.S. Forest Service 
General Technical Report RM-213, Rocky Mountain Forest and Range 
Experiment Station, Fort Collins, CO.

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Swezy, D. M ., Agee, J. K., 1991. Prescribed-fire effects on fine-root and tree mortality in 
old growth ponderosa pine. Canadian Journal of Forest Research 21, 626-634.

Szwagrzyk, J., 1990. Natural regeneration of forest related to the spatial structure of 
trees: A study of two forest communities in Western Carpathians, southern 
Poland. Vegetatio 89, 11-22.

Szwagrzyk, J., 1992. Small-scale spatial pattern of trees in a mixed Pinus sylvestris- 
Fagus sylvatica forest. Forest Ecology and Management 51, 301-315.

Szwagrzyk, J., Czerwczak, M., 1993. Spatial patterns of trees in natural forests of East- 
Central Europe. Journal of Vegetation Science 4, 469-476.

Szwagrzyk, J., Szewczyk, J., Bodziarczyk, J., 2001. Dynamics of seedling banks in beech 
forest: results of a 10-year study on germination, growth and survival. Forest 
Ecology and Management 141, 237-250.

Thomas, S. C., Weiner, J., 1989. Including competitive asymmetry in measures of local 
interference in plant populations. Oecologia 80, 349-355.

Thomas, T. L., Agee, J. K., 1986. Prescribed fire effects on mixed conifer forest structure 
at Crater Lake, Oregon. Canadian Journal of Forest Research 16, 1082-1087.

Tilman, D., Kareiva, P., 1997. Spatial Ecology. The role of space in population dynamics 
and interspecific interactions. Princeton University Press, Princeton, NJ.

Tirado, R., Pugnaire, F. I., 2003. Shrub spatial aggregation and consequences for 
reproductive effort. Oecologia 136,296-301.

Tobler, W. R., 1970. A computer movie simulating urban growth in the Detroit region. 
Economic Geography 46, 234-240.

Tribes, C. S. a. K., 2000. Flathead Indian Reservation Forest Management Plan: An 
ecosystem approach to Tribal Forest Management, Pablo, MT.

Turkington, R., Aarssen, L. W., 1984. Local-scale differentiation as a result of 
competitive interactions. In: Dirzo, R., Sarukhan, J., (Eds.), Perspectives on plant 
population ecology. Sinauer Associates Inc., Pages 107-127.

Turner, M. G., 1989. Landscape ecology: the effect of pattern on process. Annual Review 
ofEcology and Systematics 20, 171-197.

Turner, M. G., Gardner, R. H., O'Neill, R. V., 2001. Landscape ecology in theory and 
practice. Pattern and process. Springer, New York.

Uhl, C., Clark, K., Dezzeo, N., Maquirino, P., 1988. Vegetation dynamics in Amazonian 
treefall gaps. Ecology 69, 751-763.

Underwood, A. J., Chapman, M. G., Connell, S. D., 2000. Observations in ecology: you 
can't make progress on processes without undersatnding the patterns. Journal of 
Experimental Marine Biology and Ecology 250, 97-115.

Upton, G. J. G., Fingleton, B., 1985. Spatial data analysis by example. Point pattern and 
quantitative data. Wiley, New York.

Veblen, T. T., 1985. Forest development in tree-fall gaps in the temperate rain forests of 
Chile. National Geographic Research 1, 162-183.

Veblen, T. T., 1992. Regeneration dynamics. In: Glen-Lewin, D. C., Peet, R. K., Veblen, 
T. T., (Eds.), Plant succession: Theory and prediction. Chapman &  Hall, Pages 
135-145.

Veblen, T. T., Ashton, D. H., 1978. Catastrophic influences on the vegetation on the 
Valdivian Andes. Vegetatio 36, 149-167.

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Veblen, T. T., Donoso, C., Kitzberger, T., Rebertus, A., 1996a. Ecology of Southern 
Chilean and Argentinean Nothofagus forests. In: Veblen, T. T., Hill, R. S., Read, 
J., (Eds.), The ecology and biogeography of Nothofagus forests. Yale University 
Press, Pages 403.

Veblen, T. T., Donoso, C., Schlegel, F. M., Escobar, B., 1981. Forest dynamics in South- 
central Chile. Journal of Biogeography 8, 211-247.

Veblen, T. T., Hill, R. S., Read, J., 1996b. Introduction: Themes and concepts in the 
study of Nothofagus forests. In: Veblen, T. T., Hill, R. S., Read, J., (Eds.), The 
ecology and biogeography of Nothofagus forests. Yale University Press, Pages 1- 
10.

Veblen, T. T., Hill, R. S., Read, J., 1996c. Preface. In: Veblen, T. T„ Hill, R. S., Read, J., 
(Eds.), The ecology and biogeography of Nothofagus forests. Yale University 
Press, Pages vii-viii.

ver Hoef, J. M., Cressie, N. A. C., 2001. Spatial statistics: Analysis of field experiments. 
In: Scheiner, S. M., Gurevitch, J., (Eds.), Design and analysis of ecological 
experiments. Oxford University Press, Inc., Pages 289-307.

Wagner, H. H., 2004. Direct multi-scale ordination with canonical correspondence 
analysis. Ecology 85, 342-351.

Wagner, R. G., Radosevich, S. R., 1998. Neighborhood approach for quantifying 
interspecific competition in coastal Oregon forests. Ecological Applications 8, 
779-794.

Waring, R. H., 1983. Estimating forest growth and efficiency in relation to canopy leaf 
area. Advances in Ecological Research 13, 327-354.

Waring, R. H., Running, S. W., 1998. Forest ecosystems. Analysis at multiple scales, 
Second edition. Academic Press, San Diego, CA.

Watt, A. S., 1947. Pattern and process in the plant community. Journal of Ecology 35, 1- 
22 .

Webster, C. R., Lorimer, C. G., 2005. Minimum opening sizes for canopy recruitment of 
midtolerant tree species: a retrospective approach. Ecological Applications 15, 
1245-1262.

Webster, R., Oliver, M. A., 2001. Geostatistics for Environmental Scientists. John Wiley 
&  Sons, New York.

Weiner, J., 1988. Variation in the performance of individuals in plant populations. In: 
Davy, A. J., Hutchings, M. J., Watkinson, A. R., (Eds ), Plant population ecology. 
Blackwell Scientific, Pages 59-81.

Weiner, J., 1990. Asymmetric competition in plant populations. Trends in Ecology and 
Evolution 5, 360-364.

Weiner, J., Thomas, S. C., 2001. The nature of tree growth and the "age-related decline in 
forest productivity". Oikos 94, 374-376.

Welch, N. E., MacMahon, J. A., 2005. Identifying habitat variables important to the rare 
Columbia spotted frog in Utah (U.S.A.): an information-theoretic approach. 
Conservation Biology 19, 473-481.

Wiegand, T., Moloney, K. A., 2004. Rings, circles and null-models for point pattern 
analysis in ecology. Oikos 104, 209-229.

Wilson, S. D., Gurevitch, J., 1995. Plant size and spatial pattern in natural population of 
Myosotis micrantha. Journal of Vegetation Science 6, 847-852.

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Wimberly, M. C., Bare, B. B., 1996. Distance-dependent and distance-independent 
models of Douglas-fir and western hemlock basal area growth following 
silvicultural treatments. Forest Ecology and Management 89, 1-11.

Woodall, C. W., 2000. Growth and structural dynamics of uneven-aged ponderosa pine 
stands in Eastern Montana. The University of Montana, Missoula.

Woodall, C. W., Fiedler, C. E., Milner, K. S., 2003. Intertree competition in uneven-aged 
ponderosa pine stands. Canadian Journal of Forest Research 33, 1719-1726.

Wright, R. J., Hart, S. C., 1997. Nitrogen and phosphorus status in a ponderosa pine 
forest after 20 years of interval burning. EcoScience 4, 526-533.

Wyant, J. G., Laven, R. D., Omi, P. N., 1983. Fire effects on shoot growth characteristics 
of ponderosa pine in Colorado. Canadian Journal of Forest Research 13, 620-625.

Wyszomirski, T., Wyszomirska, I., Jarzyna, I., 1999. Simple mechanisms of size 
distribution dynamics in crowded and uncrowded virtual monocultures. 
Ecological Modelling 115, 253-273.

Yastrebov, A. B., 1996. Different types of heterogeneity and plant competition in 
monospecific stands. Oikos 75, 89-97.

Yoda, K., Kira, T., Hozumi, K., 1957. Intraspecific competition among higher plants. IX  
Further analysis of the competitive interaction between adjacent individuals. 
Journal of the Institute of Polytechnics, Osaka City, University Series D  8, 161- 
178.

Young, T. P., Petersen, D. A., Clary, J. J., 2005. The ecology of restoration: historical 
links, emerging issues and unexplored realms. Ecology Letters 8, 662-673.

Zimmerman, D. L., Harville, D. A., 1991. A random field approach to the analysis of 
field-plot experiments and other spatial experiments. Biometrics 47, 223-239.

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.


	Linking spatial patterns to forest ecological processes by using spatial statistical methods
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1461732696.pdf.o040a

