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Fowle, Suzanne C., M.S., July 1996 Wildlife Biology

The Painted Turtle in the Mission Valley of Western Montana (101 pp.)

Director: Dr. Daniel H. Pletscher

I monitored a population of painted turtles in the Mission Valley’s prairie pothole 
region from May to August 1995. I trapped turtles with basking traps, funnel traps, dip 
nets, and seine nets in 16 permanent and 7 temporary pothole wetlands. Road-killed 
turtles were collected along a 7.2 km section of US Highway 93 adjacent to the Ninepipe 
National Wildlife Refuge. Additional information was gathered from turtles dead on 
secondary roads in the area. Femurs were removed from each dead on the road (DOR) 
turtle for laboratory age determination (sectioning at Matson's Lab, Milltown, MT).

I found that males reach sexual maturity at 93 mm plastron length, and females at 166 
nun plastron length. The nesting season lasted from 31 May to 12 July, and average 
clutch size was 9.8 (SD=3.9). Sex ratios varied by pond, although the overall ratio was 
1.9:1 (males to females). I developed an age-predicting regression model using the 
relationship between shell measurements and ages determined by counting annuli on femur 
cross sections from road-killed turtles. The regression models were based on the shell 
measurements most highly correlated with age: plastron width for adult males (R^O.80, 
P<0.01, n=30); plastron width for adult females (R^O.50, P=0.01, n=13); and plastron 
length for juveniles (R^O.94, P<0.01, n=20). Plastron length was more powerful than 
number of shell annuli as a predictor of juvenile age. Turtles >18 years old were the most 
variable in size.

In response to local concern about intense turtle mortality on US Highway 9 3 ,1 
examined the effects of roadkill mortality on the JÆssion Valley turtle population. Turtle 
mortalities spanned the monitored section of US 93 and occurred throughout the field 
season. A total of 205 turtles were found DOR. Additional turtles were probably killed 
but did not remain on the road for collection; others were killed outside of the field 
season. The DOR turtles ranged from 0 to 26 years old (x=10.1, SD=6.3, n=125). Of the 
DOR turtles, 43% were adult males, 26% were adult females, and 31% (including 
juveniles) could not be sexed. Seven gravid females were found DOR (13% of the 
females). I found that ponds farther from the road consisted of higher percentages of 
adult turtles (>12 years old) than ponds adjacent to the road. In addition, I estimated 
population densities in these ponds and found that population density increases with 
distance from the highway (R^O.57, P=0.03). Growth rates were significantly higher in 
ponds adjacent to the highway (F ratio=28.6, P<0.01), possibly in response to decreased 
population density. Management recommendations were suggested based on roadkill data 
and literature review.
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INTRODUCTION

The painted turtle {Chrysemyspicta bellif) is the only turtle species native to 

western Montana. The common snapping {Chelydra serpentina) and spiny softshell 

(Trionyx spiniferus) turtles occur east of the Continental Divide. No documented studies 

exist for any turtle population in Montana. Because declines in turtle populations — and 

populations o f other long-lived organisms with delayed onset of sexual maturity — often 

go undetected until recovery is difBcuit, careful monitoring is essential to their 

conservation. Due to life history strategies characteristic o f long-lived, iteroparous 

organisms, turtle population stability is easily disrupted by increased mortality, especially 

o f  adults and older juveniles.

This project was initiated by public concern for road-killed painted turtles on the 

Flathead Indian Reservation in western Montana. The acute level o f concern was 

especially apparent at several public scoping meetings held to solicit comments on a 

Montana Department of Transportation proposal to widen US Highway 93, which runs 

north-south through the Reservation.

Chapter 3 directly addresses the issue of conservation o f painted turtles in the 

Mission Valley o f the Flathead Indian Reservation, while Chapters 1 and 2 provide 

baseline information and an aging technique necessary for future monitoring and 

investigation. Specifically, Chapter 1 describes life history traits of the Mission Valley

1
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painted turtle population. Chapter 2 provides a model for predicting turtle ages, and 

Chapter 3 discusses the effects of roadkill mortality on the Mission Valley population.

/
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CHAPTER I 

DESCRIPTION OF LIFE HISTORY TRAITS

INTRODUCTION

Several authors have examined life history traits o f  western painted turtles 

(Chrysemyspicia bellif) and geographic variation among populations (Christiansen and 

Moll 1973, Hart 1982, MacCulloch and Secoy 1983, Lindeman 1988, Frazer et al. 1991, 

Frazer et al. 1993, Iverson and Smith 1993, St. Clair et al. 1994, Lindeman 1996). These 

authors suggested that variation is due to differences in latitude, elevation, diet, and length 

and average temperature of growing seasons. For example, increased sizes and ages o f 

sexual maturity at northern latitudes, where the growing season is too short to allow more 

than one clutch per year, result in larger clutch sizes (Christiansen and Moll 1973, Hart 

1982, MacCulloch and Secoy 1983, St. Clair et al. 1994). Because painted turtle 

populations can vary so widely, these traits cannot be projected from one population onto 

another, even within the same subspecies (Gibbons 1990a).

Life history characteristics of painted turtles have never been documented in 

western Montana’s Mission Valley (near the northern edge o f the western painted turtle’s 

range). Geographically, the closest population studied was in northwest Idaho (Lindeman 

1988, Lindeman 1996). I examined data from the Mission Valley turtle population to 

estimate population parameters and compare them to other studies. I examined whether
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average clutch size and age/size at sexual maturity correlate with latitudinal predictions, 

i.e. whether these traits for a western Montana population fit into the latitudinal gradient 

suggested by other studies. I also documented the onset and termination of the nesting 

season and the sex ratios in various ponds in the Mission Valley. I estimated these 

parameters fi'om road-killed painted turtles, live turtles trapped in the Valley’s pothole 

wetlands, and anecdotal observations. The information provided contributes to future 

monitoring of this population, especially important in light of the number of turtles killed 

on the highway.

Study Area

I examined a population of painted turtles in the Mission Valley, on the Flathead 

Indian Reservation, in western Montana. Although surrounded by mountains (the Mission 

Range) and buttes (the Moiese Hills), the valley floor resembles the prairie pothole region 

of the Dakotas and central Canada. One section of the valley, near Ninepipe National 

Wildlife Refuge, consists of an especially high concentration of over 2,000 pothole 

wetlands in a 30 mi* (77.8 km^) area. US Highway 93 bisects this network of ponds along 

a 4.5 mi (7.2 km) stretch. Both the potholes and the road itself made up the study area; 

live turtles were trapped in the ponds, and road-killed turtles were collected. A 13 5 mî  

(17.3 km^) area of the concentrated pothole region was examined, in the middle o f which 

passed Highway 93 (see Figure 3.1, Chapter 2). However, dead turtle specimens were 

collected anywhere in the pothole region and were not restricted to the area of highly 

concentrated wetlands.

/
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M ETHODS

D ata collection occurred from 17 May to 24 August, 1995. We collected DOR 

turtles on the Highway 3 mornings per week. (A thorough description o f recording 

roadkill locations is in Chapter 3.) We also collected any other dead turtles found in the 

pothole region, including those found on secondary roads and a group o f 15 turtles that 

had been shot in 2 potholes next to Kicking Horse Dam. We determined the sex o f  each 

specimen, took  5 measurements on the shell (if it was sufBciently intact), and collected a 

femur for age estimation (by Matson’s Lab, Milltown, Mont.). The shell measurements 

w ere taken to develop an age-predicting model based on the relationship between turtle 

size and lab-estimated age (see Chapter 2). Turtles were aged by counting growth annuli 

on cross sections o f the femurs, assuming an October birthday for all turtles.

W ith these data, I could estimate the age/size o f  female sexual maturity for the 

M ission Valley population. I used the age of the youngest gravid female found as an 

estimate o f  age o f sexual maturity. I considered one DOR female without eggs as a gravid 

female because she had recently finished nesting, as indicated by the mud caked on her 

posterior carapace (Legler 1954, Tinkle et al. 1981). I used plastron length and width to 

estimate size o f  females at sexual maturity.

I determined the average clutch size for this population o f painted turtles by 

examining females found DOR because I was usually able to count the number o f  eggs.

( I f  the eggs had been destroyed by traffic or predators, I could only detect the presence of 

eggshells and yolks.) I also counted the number o f  eggs laid by a nesting female and the
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number of eggs found in a gravid female that had been shot. I estimated the end of the 

nesting season by the day we found the last gravid DOR female. The beginning of the 

nesting season was estimated from the first female observed attempting to nest.

We trapped live turtles in 16 permanent ponds mostly using basking traps, which 

were left in the ponds throughout the field season and usually checked every 2 days. We 

supplemented the basking traps with funnel traps, dip nets, and seine nets when possible 

(see Chapter 2). We sexed each turtle captured and took the same 5 measurements on the 

shells that we took on the dead specimens.

I estimated the age and size of males at sexual maturity from captured turtles. 

Male painted turtles develop secondary sex characteristics (elongated foreclaws and 

elongated preanal region of the tail) just before they reach sexual maturity (Frazer et al. 

1993). Juvenile turtles could not be sexed because they were not sexually dimorphic 

before males developed these characteristics. The youngest male with secondary sex 

characteristics was taken from a sample of 640 male turtles trapped, and ages were 

predicted by the model developed from this study (see Chapter 2). Minimum size 

(plastron length and plastron width) of sexually mature males was estimated in the same 

way, consistent with MacCulloch and Secoy (1983),

I also estimated the sex ratio in each pond from trapping data. Because 77% of all 

turtle captures (n=1,048, not including recaptured turtles) were in basking traps, and most 

of the ponds were sampled only with this method, I first tested whether the basking traps 

were biased for one sex. Assuming dip nets and seine nets captured an accurate ratio of 

males to females, I compared the sex ratios of turtles caught in seine nets and dip nets to

i
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the ratio o f  turtles caught in the basking traps. In Pond 365, we caught 32 adult turtles in 

dip nets and 50 in basking traps, so I used this pond to compare sex ratios o f these two 

capture techniques. I compared basking trap and seine net sex ratios using data from 

Pond 345, in which we captured 27 adults in seine nets and 121 adults in basking traps. I 

also compared the sex ratios o f adults caught in funnel traps to that o f basking traps in 

Pond 886, in which we captured 16 adult turtles in funnels and 29 in basking traps.
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RESULTS

Age and Size at Sexual Maturity 

Gravid female ages ranged from 7 to 17 (Tablé 1.1). However, the 7 year old was 

not the smallest gravid female. The smallest gravid female in plastron length was 166 mm, 

and the smallest in plastron width was 82 mm (Table 1.1). According to femur annuli 

counts, these turtles were 11 and 9 years old respectively. The youngest males with 

secondary sex characteristics were 2 years old. The minimum plastron length was 93 mm, 

measured on a 4 year old, and the minimum plastron width was 49 mm, measured on a 3 

year old.

Nesting Season and Average Clutch Size 

The nesting season started on 31 May, when the first female was observed digging 

a nest. It extended through 12 July, when the last gravid female was found DOR. The 

average clutch size for painted turtles in the Mission Valley was 9.8 (SD=3.9, n=8). 

Clutch sizes ranged from 6 to 18 (Table 1.1).

Sex Ratios and Evaluation o f  Trapping Techniques 

The sex ratio of turtles caught in basking traps was similar to that o f turtles caught 

in dip nets and seine nets. The comparison of dip net to basking trap sex ratios (1.5:1 

versus 1.8:1, males to females) was not significant (Pond 365, Pearson value=0.18. 

P=0.67, n=82), nor was the comparison with the seine net sex ratio (Pond 345, 4 . 4  j

/
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basking versus 3.3:1 in seines, Pearson value=0.27, P=0.60, n=I48). The sex ratios in 

basking traps (1-4:1) and funnel traps (3:1) also did not differ significantly (Pond 886;
r

Pearson value=1.21, P=0.27, n=45). Therefore, I pooled adult turtles caught in all trap 

types to  calculate sex ratios for each pond. The sex ratios varied among the 16 ponds 

sampled (Table 1.2). The overall sex ratio was 1.9:1 (males to females) when the sex 

ratios o f  all ponds were pooled together.
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Table 1.1. Ages, plastron lengths, and clutch 
sizes (x=9.8, SD=3.9) of gravid female painted

Age Plastron 
width (mm)

Plastron 
length (mm)

Clutch
size

7 91 187 12

9 82 link unk

9 87 187 9

10 88 181 8

11 link 166 unk*

11 link 176 unk

13 93 185 18

14 85 176 6

14 91 186 unk

IS link 203 9

17 unk link 10

unk’’ unk 182 6
a=Tetumimg firom nesting, no eggs 
b=observed nestin

Table 1.2. Sex ratios of adult turtles from permanent ponds sampled and found DOR in 
the Mission Valley.____________

Pond
no.

sex
ratio
{m:f)

DOR 72 168 345 363 613 621 839 877 886 945 1720

1.6:1 0.9:1 2.1:1 3.4:1 1.8:1 3.2:1 2.2:1 5.1:1 1.1:1 1.7:1 i .9 ;i  ̂g i

142 113 55 151 89______ 38______ 51______ 67______ 68______ 56 3g 36
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DISCUSSION

Âge and Size a t Sexual M aturity

The youngest roadkill gravid female (7 years old) was a reasonable estimate o f  age 

o f  sexual maturity; this age is consistent with results from other western painted turtle 

studies (Legler 1954, Christiansen and Moll 1973, MacCulloch and Secoy 1983, Iverson 

and Smith 1993, Lindeman 1996). The female age o f  sexual maturity may have been 

younger than 7 and still remained consistent with other populations (5 to 10 years old. 

Table 1.3), however, my data could neither confirm nor disprove this.

The gravid females with the smallest plastron width (82 mm) and length (166 mm) 

w ere 9 and 11 years old. Size rather than age may determine the point at which female 

painted turtles reach sexual maturity (Cagle 1954, Gibbons 1968, MacCulloch and Secoy 

1983, Christens and Bider 1987, Iverson and Smith 1993, Lindeman 1996). Lindeman 

(1996) compared 2 ponds in Idaho and Washington (at similar latitudes) with different 

grow th rates. He found that males and females in both ponds reached sexual maturity at 

similar sizes, but the turtles in the pond with the faster growth rate reached these sizes at 

earlier ages. Therefore, the estimate for female age o f sexual maturity in the Mission 

Valley may be high. Since the youngest gravid female (7 years old) was not the smallest, 

she probably reached sexual maturity at age 5 or 6. Body size and clutch size have been 

shown to be positively correlated (MacCulloch and Secoy 1983, Schwartzkopf and 

B rooks 1986, Lindeman 1988, Gibbons and Greene 1990, Iverson and Smith 1993, 

St.Clair et al. 1994, Lindeman 1996), so size may be more important than age to a
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female’s ability to reproduce.

Size and age of sexual maturity may also be positively correlated with latitude and 

elevation (Christiansen and Moll 1973, Hart 1982, MacCulloch and Secoy 1983, 

Lindeman 1988, St. Clair et al. 1994). Christiansen and Moll (1973) found that turtles 

grow faster at northern latitudes and reach sexual maturity later and at larger sizes than at 

southern latitudes. According to this trend. Mission Valley estimates o f female age/stzeof 

sexual maturity are slightly high (Table 1.3).

The earliest we found a 2 year old male with secondary sex characteristics was on 

23 July, indicating that 2 year old males probably show signs of incipient sexual maturity 

and actually become sexually mature at age 3 (Gibbons and Greene 1990, Frazer et al. 

1993). The Mission Valley estimate for male age at sexual maturity is low for its latitude 

and elevation, however, male size at sexual maturity (93 mm plastron length) is within the 

range of sizes reported in the literature (Table 1.4). Frazer et al. (1993) found that male 

painted turtles matured one year earlier in the late 1980s than in the early 1980s 

(attributing this to warmer annual temperatures in the late 1980s) while the size at sexual 

maturity remained constant. Lindeman (1996) also found sexual maturity to be size, rather 

than age, dependent. Mission Valley turtles therefore may be growing at faster rates than 

others at similar latitudes and reaching size at sexual maturity earlier (Frazer et al. 1993, 

Lindeman 1996). Recent growing seasons in the Mission Valley may have been 

significantly longer and/or warmer, causing an increase in growth rate and subsequent 

early sexual maturity (Frazer et al. 1993). This phenomenon would also apply to females 

because most painted turtle studies suggest that female sexual maturity is size-dependent
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Table 1.3. Latitudinal and elevational comparison o f  western painted turtle populations;

Age Plastron 
length (mm)

Average 
clutch size

Location, latitude, and 
' elevation (m)

Reference

5-6 132 9.0
(n=46)

New Mexico 
34.0 
1120

Christiansen & Moll 
1973

5 148 13.9
(n=221)

Nebraska
42.0
1165

Iverson & Smith 1993

unk 160 8.8
(n=13)

Minnesota
44.5
310

Legler 1954

7 136' 10.2
(n=28)

Wisconsin
45.0
420

Christiansen & Moll 
1973

7-8 160 15.8
(n=20)

Idaho
46.5
790

Lindeman 1996

7 166' 9.8
(n=8)

Montana
47.5
946

this study

9-10 160 13.4
(n=10)

Washington
47.5
700

Lindeman 1996

unk 150 19.8
(n=5)

Saskatchewan
50.5
570

MacCulloch & Secoy 
1983

Age=youngest sexually mature female; Plastron Length (PL)=smallest mature female; Average Clutch Size (CS)=meaii clutch size for the 
population, indicated with sample size; a=ininimum age and minimum PL not from the same turtle. All o f the authors listed determined 
minimum age o f  sexual maturity by counting annuli on the plastron, except for this study where we used annuli counts from the femur.
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Table 1.4. Minimum ages and sizes o f sexually mature male

Age Plastron 
length (mm)

Location Reference

unk 65 Louisiana* Hart 1982

3 88 New Mexico Christiansen and Moll 1973

4-6 75 Michigan Frazer et al. 1993

4-5 96-100 Wisconsin Christiansen and Moll 1973

3 93 Montana this study

unk 100 Manitoba* Hart 1982
a-not western subspecies

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

(Cagle 1954, Gibbons 1968, MacCulloch and Secoy 1983, Christens and Bider 1987, 

Iverson and Smith 1993, Lindeman 1996). This is consistent with Caswell’s (1983) and 

Steam s and Koella’s (1986) conclusions that phenotypic plasticity in life history traits is 

advantageous in the face of environmental variability.

Plastron width may be a better measure o f female size at sexual maturity than 

plastron length. I found that width was more highly correlated with age (see Chapter 2). 

However, all other studies used plastron length to discuss size at sexual maturity, so I 

used length to compare Mission Valley turtles to other populations. In developing the 

age-predicting model for males (Chapter 2), I found plastron width to be only slightly 

m ore highly correlated with age than length was with age, so I was able to clearly compare 

male size at sexual maturity to other studies, all o f which used plastron length.

Average Clutch Size 

Painted turtle clutch sizes increase with latitude and elevation (Christiansen and 

M oll 1973, MacCulloch and Secoy 1983, Lindeman 1988, Iverson and Smith 1993). 

MacCulloch and Secoy (1983) calculated a mean clutch size of 19.8 for a painted turtle 

population in southern Saskatchewan. They concluded that larger clutch sizes in northern 

latitudes may occur to compensate for the shorter growing season, which precludes 

multiple clutches (Christiansen and Moll 1973). Christiansen and Moll (1973) compared 

populations in Wisconsin and New Mexico and found a larger mean clutch size in 

Wisconsin, although the difference was not significant. Lindeman (1988) developed a 

linear model for predicting average clutch size from latitude and elevation. For Flathead
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County, Montana, adjacent to and north of the Mission Valley (Lake County), Lindeman 

predicted an average clutch size of 17.0, considerably higher than our observed average 

clutch size of 9.8.

With an average clutch size of 9.8 (SD=3.9), the Mission Valley population of 

painted turtles is more similar to populations monitored in Wisconsin and New Mexico 

where Christiansen and Moll (1973) found average clutch sizes o f 10.2 and 9.0, 

respectively (Table 1.3). Mean clutch size in the Mission Valley is smaller than those 

found in western Nebraska (x=13.9, Iverson and Smith 1993), southern Saskatchewan 

(x=19.8, MacCulloch and Secoy 1983), and Idaho (x=15.3, Lindeman 1988) (Table 1.3). 

My sample size of 8 may not have been large enough to accurately estimate average clutch 

size. In addition, other factors that play a part in average clutch size, such as length and 

average temperature of growing season, and degree of camivory (MacCulloch and Secoy 

1983, Lindeman 1996), were not measured in the Mission Valley. Further investigation of 

these variables will help explain geographic variation in clutch size.

Nesting Season

Nesting occurred from 31 May to 12 July in the Mission Valley. Although the 

female that was observed attempting to dig a nest on 31 May did not lay her eggs, I 

assumed this date was the best estimate because human interference may have been the 

only reason why she did not continue nesting. My estimate o f nesting season for the 

painted turtle population in the Mission Valley (May 31 to July 12) roughly correlates 

with those found in other studies. Lindeman (1988) found a combined nesting season
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lasting from 29 May to 1 July in 2 populations o f  western painted turtles in Washington 

and Oregon. Iverson and Smith (1993) reported a nesting season occurring from 19 May 

to 17 July in western Nebraska.

Sex Ratios

Gibbons (1990b) cautioned that sex ratios o f  freshwater turtle populations vary 

from population to population, and they vary within the same population, depending on 

the time o f  year and the recorders’ consistency in distinguishing between adult females and 

juveniles (both o f which lack male secondary sex characteristics). The results from the 

Mission Valley confirm the variability in sex ratios among freshwater turtle populations 

because the ratios ranged from 0.9:1 to 5.1:1 (males to females) in the ponds sampled 

(Table 1.2).
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CONCLUSION

Because turtle populations are extremely sensitive to increases in mortality (Doroff 

and Kieth 1980, Brooks et al. 1991, Dodd 1983, Congdon et al. 1993, Congdon et al. 

1994, Garber and Burger 1995), further investigation into their life history traits is 

essential to their conservation. My results provided baseline information about the 

Mission Valley population’s life histoiy traits, however, future monitoring is necessary to 

document characteristics that can help explain population dynamics and population trends. 

For example, an understanding of reproductive rates requires study of nest success, clutch 

frequency, and proportion of females breeding each year as well as further investigation 

into average clutch size. In addition, documentation o f life history traits of turtles in the 

Mission Valley will contribute to describing geographic variation among turtle populations 

and separating that from environmental causes o f variation.
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A MODEL FOR PREDICTING TURTLE AGES FROM SHELL

MEASUREMENTS

INTRODUCTION

Estimating the ages o f turtles is essential to examination o f population parameters 

and trends. The best method for aging painted turtles is long-term monitoring o f known- 

age turtles (e.g. those with known hatch years) (Dunham and Gibbons 1990, Zug 1991), 

however, their longevity makes this difficult. More expedient methods may be necessary 

to detect declines in some populations before recovery becomes difficult or impossible 

because such long-lived organisms are extremely vulnerable to mortality increases (Doroff 

and Keith 1990, Brooks et al. 1991, Congdon et al. 1993, Congdon et al. 1994). Several 

authors have suggested that adult and juvenile survival are far more important to turtle 

population stability than nest success or hatchling survival and these rates may have to be 

substantially higher for turtles than for many other vertebrates (Crouse et al. 1987, 

Congdon et al. 1993, Congdon et al. 1994, Cunnington and Brooks 1996). Estimation of 

survival rates requires age- or stage-determination.

Painted turtles exhibit growth annuli on their shells, but older annuli wear off as a 

result o f  ecdysis, and turtles older than 5 cannot be reliably aged this way (Sexton 1959, 

Lindeman 1988, Dunham and Gibbons 1990, Zug 1991). Several other methods have
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been attempted for aging turtles; von Bertalanffy growth curves (Frazer et al. 1991), 

logarithmic and linear age-size relationships (Gibbons 1968, Wilbur 1975b), age-annuli 

length relationships (Sexton 1959), and skeletochronology (Hammer 1969, MacCulloch 

and Secoy 1983, Zug et al. 1986). All of these methods are complicated by highly variable 

growth rates. Environmental sources of variation that have been documented for Emydid 

turtles include degree o f camivory and nutrients in the diet (Gibbons 1967, Knight and 

Gibbons 1968, MacCulloch and Secoy 1983, Lindeman 1988 and 1996), average 

temperature and length of the growing season (Frazer et al. 1991 and 1993), population 

density (Gibbons 1967, Wilbur 1975b, Dunham 1980, Hart 1982, MacCulloch and Secoy 

1983, Dunham and Gibbons 1990), and water and basking temperatures (MacCulloch and 

Secoy 1983). Emydid turtle growth rates also vary by sex (Cagle 1946, MacCulloch and 

Secoy 1983, Dunham and Gibbons 1990, Mitchell and Pague 1990) and age (Cagle 1946, 

Sexton 1959, Wilbur 1975b, MacCulloch and Secoy 1983, Dunham and Gibbons 1990, 

Mitchell and Pague 1990) within populations and by latitude and elevation between 

populations (Hart 1982, MacCulloch and Secoy 1983, Lindeman 1988, St. Clairet al. 

1994, Lindeman 1996). Because these factors affect populations differently and vary 

temporally, these methods and models cannot be easily applied to turtles outside of the 

population or time period on which they were based.

Several authors have found skeletochronology to be a reliable estimate of reptile 

and amphibian ages: MacCulloch and Secoy (1983) for western painted turtles; Hammer 

(1969) for snapping turtles {Chelydra serpentina)-, Zug et al. (1986) for loggerhead sea 

turtles (Caretta caretta)', and Russell et al. (1996) for long-toed salamanders (Ambystoma
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macrodactylum krauseî). I used skeletochronology to  develop a size-based model for 

predicting painted turtle ages because I had access to  over 200 road-killed turtles in 

western Montana, where temperate climate ensures clear growth rings in the cross 

sections o f long bones (Zug 1991). (US Highway 93 is a 2-lane federal highway that has
f

been a recent topic o f  public concern due to the number o f painted turtles killed while 

attempting to cross. See Chapter 3). I used femurs from these turtles to estimate their 

ages and tested the age-predicting power o f various straight-line measurements taken on 

the specimens’ shells.

Study Area

I examined a population o f turtles on the Flathead Indian Reservation o f western 

Montana. Turtles inhabit a network of highly-concentrated pothole wetlands on the floor 

o f  the Mission Valley, in the central section o f the Reservation. I collected femurs from 

turtles found dead on US Highway 93, a 4.5 mi (7.2 km) section o f which bisects the 

Valley’s pothole area, and on secondary roads in the region. More detailed descriptions of 

the pothole region are in Chapters 1 and 3.
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METHODS

Femur Collection and Aging 

We collected road-killed turtles 3 mornings per week from 17 May to 24 August, 

1995, along Highway 93. We sexed each specimen (see “Methods,” Chapter 3), removed 

a femur, counted the number of annuli visible on the plastron, and took 5 measurements 

on the shell. The 5 measurements included; carapace length, plastron length, plastron 

width, plastron “height,” and length of the most recent annulus on the right abdominal 

lamina (Figure 2.1). All of these measurements were straight-line lengths, measured with 

calipers to the nearest 0.05 mm. The number o f annuli was the maximum number of 

annuli we could see on any one lamina of the plastron. Many o f the turtles found dead on 

the road (DOR) were not suflSciently intact to collect all measurements.

Matson’s Laboratory (Milltown, Mont.) estimated the ages o f DOR turtles from 

cross sections of the femurs. Bone annuli were counted under the following assumptions 

(G. Matson, Matson’s Laboratory Director, pers. commun.): all turtles hatched in 

October; annuli formed during the winter; and the first annulus, broadly spaced from the 

resorption core, represents the second winter o f life and an age of 1 year and 3-5 months. 

Turtle ages were recorded with 3 categories o f certainty, ranging from Level A, ±0 years, 

to Level C, +4 years, and varying according to the age o f the turtle (Table 2.1), These 

levels were determined by evidence of resorption o f early annuli, signs of bone damage, 

and distinctiveness of growth layers (G Matson, pers. commun ).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



23

B

Figure 2.1 Illustration o f shell measurements: a) carapace length; b) plastron length; c) 
plastron width; d) plastron height; e) annulus length.

Table 2 .1. Levels of certainty subjectively 
applied to each femur annuli count by Matson’s 
Laboratory (Milltown, Mont.).

Determined turtle 
age (years)

Certainty code 
(years)

B

1-7 ±0 ±1 ±2

8-15 ±1 ±2 ±3

16-1- +2 +3 -t-4
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Age-Size Regression Analysis 

Although Emydid juveniles of both sexes appear to grow at similar rates, adult 

growth slows when sexual maturity is reached (Gibbons 1968, Hart 1982, MacCulloch 

and Secoy 1983, Dunham and Gibbons 1990, Mitchell and Pague 1990, Frazer et al. 

1993). The rates and sizes/ages at which growth slows are different for males and females 

(Hart 1982, MacCulloch and Secoy 1983). Therefore, 1 analyzed age-size relationships 

separately for adult males, adult females, and juveniles. The adult male model was based 

on males >93 mm in plastron length, and the female model was based on turtles >160 mm 

in plastron length, consistent with Lindeman (1996), because these are approximate sizes 

at sexual maturity (see Chapter 1), at which point growth slows (Wilbur 1975b, Hart 

1982, MacCulloch and Secoy 1983). All turtles that were sexed as juveniles, as well as 

males and females younger than these ages, were entered into the juvenile model. I 

linearized the data using a natural log transformation on both the dependent (age) and 

independent (measurements) variables to achieve homogeneity of variance. Because some 

juveniles were age 0 ,1 transformed juvenile age by taking the natural log o f (age +1).

I used SPSS software to perform a backward regression (Model II) using 3 

independent variables: plastron length (PL), plastron width (PW), and the product of PL 

and PW. These were more highly correlated with age than any other straight-line 

measurements and ratios of the measurements (e.g. carapace length to plastron length). 

Because older turtles (>18 years old) tended to be smaller in all measurements, I based the 

adult models on turtles less than 18 years old. This allowed greater accuracy overall but 

increased the degree to which older turtle ages were underestimated. Because the model
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was based on size, these smaller, older turtle ages would be underestimated regardless of 

the ages chosen for building the model (Figure 2.4a).

Regression analysis to determine which shell measurement was the most powerful 

predictor o f age resulted in different measurements selected for adults and juveniles, so I 

based each model on the measurement that was most highly correlated with age (Table 

2.2). For juvenile turtles, I also included the number o f shell annuli in the independent 

variables to test whether number o f annuli was a better predictor of age than any o f the 

shell measurements. Shell annuli were not tested for adult painted turtles because they 

lose their plastral annuli due to ecdysis. I also examined the correlation between number 

o f  bone annuli (e.g. the age determined by the Lab) and the number o f shell annuli in 

juveniles to determine whether the 2 methods produced the same age estimates.
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RESULTS

Reliability o f Femur Aging M ethod 

Out of 181 femurs aged, 81% of the estimates were determined at reliability Level 

A, 18% at Level B, and 2% at Level C For juveniles, number o f shell annuli and age 

were significantly correlated (Spearman corre!ation=0.84, P<0.01, n=23). However, only 

37% of the age estimates exactly equaled the number o f shell annuli counted (n=43) 

(Figure 2.2).

Age-Size Regression Analysis 

Plastron width (PW) and plastron length (PL) were both significantly correlated 

with adult male age (Pearson correlation=0.90 and 0.89 respectively, both P<0.01, n=28). 

PW was the independent variable used in the final model because the correlation was 

slightly higher (T ^Ie  2.2). The predictive equation was (R^O.80, P<0.01, n=30):

adult o' age = e ' "   ̂024 - ww))]

Adult females showed the greatest difference in correlation between age and the 2 

plastron measurements; PW was significantly correlated (Pearson correlation= 0.62. 

P=0.01, n=13) whereas PL was not significantly correlated at the 0.05 level (Pearson 

correlation=0.38, P=0.09, n=13). Although the relationship was significant, adult females 

showed the lowest percent (50%) of variance in age explained by size (R.^0.50, ?=o 01,
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n=13) (Table 2.2). The equation for predicting adult female age was:

adu lt?  age =

The juvenile model had greater predictive power than either o f the adult models 

(R^O.94, P<0.01, n=20) (Table 2.2). PL was most highly correlated with juvenile age 

(Pearson correlation=0.98, P<0.01, n=18), although PW was also significantly correlated 

with age (Pearson correlation=0.95, P<0.01, n=18). The regression model was based on 

PL (Figure 2.3b), using the following equation:

juvenile age = e _ j

I compared the correlation between juvenile age and PL to the correlation between 

juvenile age and number o f shell annuli. Although they were both significant, PL was 

more closely correlated with age, indicating that it may be a more powerful predictor of 

juvenile age (PL Pearson coirelation=0.97, shell annuli Pearson correlation= 0.80, both 

P<0.01, n=15).

Variation in Growth Rates

Turtle growth rates varied within the population, especially among older turtles 

(>18 years old). The plastron widths and lengths of different-aged turtles overlapped 

(Figures 2.3a and 2.3b) In addition, average size varied by pond (Figure 3.7).
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Figure 2.2. Comparison of shell and femur annuli counts taken from turtles found DOR in 
the Mission Valley (all turtles with <10 femur annuli). Numbers above points represent 
samples >1.

Table 2.2. Summarized results of regression model for

Group Plastral
measvorement*

R square F significance

juveniles length 0.94 0.000

adult
males

width 0.80 0.000

adult
females

width 0.50 0.007

a=measurement found to be most highly correlated with age.
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Figure 2.3b. Plastron length by age of juvenile turtles in the Mission Valley.
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DISCUSSION

M odel Reliability and Sources o f Variability in Size 

Like other methods used to determine painted turtle ages, my model operated on 2 

assumptions: 1) each annulus visible in femur cross sections represented one year of 

growth; and 2) distinct, non-overlapping size ranges (PL or PW) made up each age class. 

We did not have any way to test the first assumption, although 37% of femur and shell 

annuli exactly matched indicates that growth annuli can occur on the shell or long bones 

for reasons other than the non-growing winter season (Zug 1991), or that growth annuli 

are not always visible. Some of this variability may be a result o f our shell annuli counts. 

We counted the maximum number of ridges, and some o f thèse may have been shallower 

ridges (e.g. results of environmental stress during the growing season) that appeared to 

add a year onto the count (Zug 1991). Most of the shell counts that did not match femur 

counts were “undercounts” of shell annuli (Figure 2.2), possibly due to loss of outer layers 

o f the shell.

The second assumption was one made for most turtle aging methods, despite the 

many documented sources of variation in growth rates o f freshwater turtles. Several 

studies suggested that turtle growth was environmentally influenced by nutrient content in 

the diet (Knight and Gibbons 1968, Lindeman 1996), degree of camivory (Gibbons 1967, 

MacCulloch and Secoy 1983, Lindeman 1996), average annual temperature and length of 

the growing season (Frazer et al. 1991 and 1993), population density and availability of 

resources (Gibbons 1967, Wilbur 1975b, Dunham 1980, Hart 1982, MacCuUoch and
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Secoy 1983, Dunham and Gibbons 1990), and water and basking temperatures 

(MacCulloch and Secoy 1983). I found that turtles in ponds adjacent to the highway grew 

faster (Figure 3.7). Anthropogenic sources of pollution may increase turtle growth rates 

by increasing the nutrients in their diet (Knight and Gibbons 1968, Lindeman 1996). This 

may have been a source o f increased growth rates in the highway ponds. However,

Knight and Gibbons (1968) and Lindeman (1996) discovered this trend in sewage 

wastewater ponds, and the Mission Valley highway ponds are not subject to such high 

levels o f increased nutrients. Another factor that increases growth rate in amphibians and 

reptiles is decreased population density, resulting in increased availability o f resources 

(Gibbons 1967, Wilbur 1975b, Dunham 1980, Hart 1982, MacCulloch and Secoy 1983, 

Dunham and Gibbons 1990, Russell et al. 1996). Turtles in ponds near the highway may 

have been growing faster than those in ponds farther away in response to decreased 

density (see Chapter 3).

Older turtles showed the most variability in size, consistent with results from other 

painted turtle studies (Sexton 1959, Gibbons 1968, Wilbur 1975b, MacCulloch and Secoy 

1983, Frazer et al. 1991). Another consistency with these studies was that older turtles 

tended to reach asymptotic growth or actually be smaller than turtles 2-3 years younger 

(Figure 2.3). Frazer et al. (1993) found that a general warming trend during the 1980s was 

correlated with faster growth rates o f juvenile turtles in the late 1980s, as compared to 

juveniles in the same study area in the early 1980s. The same warming trend could explain 

the smaller sizes of older turtles in the Mission Valley. Alternatively, slower growth may 

be a life history strategy for increasing longevity, thereby increasing reproductive output
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(see Parma and Deriso 1990).

Because the model was based on size (plastron width), it underestimates the ages 

o f older turtles. PWs of turtles >18 years old fit into the PW size range for 12-14 year 

olds (Figure 2.3a). This model (or any size-based model) cannot detect differences in ages 

between turtles with the same PW, or other measurement. Therefore, in using this model 

to predict ages, all turtles approximately 12+ years old should be regarded as one group.

Predictive Power o f Plastron Width vs. Length 

Other size-based aging models for painted turtles were based on PL (Gibbons 

1968, Wilbur 1975b, Frazer et al. 1991) or medial annulus length (Sexton 1959). 

However, I found that PL was not significantly correlated with adult female age. 

Comparison of the length-to-width ratios of males and females indicated that females 

continue to grow in width more than length in later years (e.g. the ratio o f length to width 

decreases) (Figure 2.4). This may be related to the positive correlation between clutch 

size and body size documented for this species (MacCulloch and Secoy 1983, Lindeman 

1988, Gibbons and Greene 1990, St. Clair et al. 1994, Lindeman 1996), and fiirther study 

could indicate whether clutch size is more highly correlated with PW than with PL. Adult 

female painted turtles in the Mission Valley tended to be rounder in carapace shape than 

adult males, which resembled a pear shape in comparison. Further investigation into the 

relationship between clutch size and PW, rather than PL, is necessary to understand why 

adult females tended to grow more in PW at older ages.
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Figure 2.4. Comparison of plastron length-to-width ratios in adult males and females from 
the Mission Valley study area.
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CONCLUSION

Because of the high degree o f inter- and intrapopulational variation in painted 

turtle growth rates, this model may be more powerful as a predictor of stages rather than 

yearly age classes when comparing turtle populations and subpopulations. More 

information is needed on all sources of growth rate variation before this model can be 

applied to other western painted turtle populations. In addition, further investigation into 

the covariation of growth rate with latitude and elevation (Hart 1982, MacCulloch and 

Secoy 1983, Lindeman 1988, St. Clair et al. 1994, Lindeman 1996, Russell et al. 1996) is 

also necessary to the applicability of this model to other populations. This requires long­

term interpopulational comparative studies as well as studies that distinguish 

environmental, temporal, and genetic sources of growth rate variation within the same 

region (Dunham and Gibbons 1990, Mitchell and Pague 1990).

1 found 2 problems in previously-used methods for age determination and growth 

measurement of Emydid turtles. First, the number o f annuli visible on the shell may not 

always represent years of growth. Second, plastron length is not always the best measure 

o f growth, especially in adult females. Further investigation into lateral growth o f the 

plastron and its potential relationship to clutch size is necessary to understand why 

plastron width might be a more powerful predictor o f age
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CHAPTER m  

EFFECTS OF ROADKELL MORTALITY

INTRODUCTION

Roads cause habitat fragmentation for many species by impeding movements, 

resulting in long and short term impacts. Over the long term, habitat fragmentation causes 

loss o f  genetic variability through inbreeding effects (Oxley et al. 1974, Diamond 1975, 

Bury 1982, Adams and Geis 1983, Reh and Seitz 1990) leading to increased risk of local 

extinctions and decreased ability to recolonize after such extinctions. Reh and Seitz 

(1990), for example, showed significant declines in genetic variability in common frog 

{Rana temporaria) populations separated by highways. Immediate effects of barriers and 

the construction of roads are loss of habitat and roadkill mortality. Rosen and Lowe 

(1994) found that snake populations adjacent to roads were declining due to roadkill 

mortality and had subsequently become population sinks. Snakes from populations farther 

away from the highway moved into the declining populations, probably responding to the 

decreased density and increased resources. I addressed the issue of roadkill mortality 

effects on the population of western painted turtles in the Mission Valley o f western 

Montana.

Although roads may be only semi-permeable barriers to many species, they become 

less permeable with increased traffic density and speed (van Gelder 1973, Rosen and
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Lowe 1994, Fahrig et al. 1995) and with increased "clearance," e.g. the width of the road 

or right o f  way (Oxley et al. 1974, Mader 1984). US Highway 93, a 2-lane highway, 

passes through a network of prairie pothole wetlands on the floor of the Mission Valley, 

and the number of road-killed painted turtles has raised public concern in recent years.

My objective was to describe the effects o f  roadkill mortality in terms of its 

differential impact on the sexes, age classes, and turtle densities in ponds at varying 

distances from Highway 93. The study was a cooperative effort between the Montana 

Department o f  Transportation (MDOT), the Confederated Salish and Kootenai Tribes, the 

Montana Department of Fish, Wildlife and Parks, and the University of Montana's 

Cooperative Wildlife Research Unit to respond to public concern apparent during scoping 

meetings in the winter of 1995. The MDOT held these meetings to allow public comment 

on a Draft Environmental Impact Statement that described options for widening the 

highway to accommodate increasing levels of traffic (USDT FHWA 1995).

Conservation o f Long-lived Organisms 

Life history characteristics of long-lived vertebrate species, such as late maturity 

and high adult survival rates, reduce their ability to withstand high mortality and chronic 

disturbances (Congdon et al. 1993). Among ectothermic vertebrates, these include sharks 

(NCAA 1991), crocodilians (Turner 1977), some fish (Roff 1981), snakes (Brown 1993), 

and several turtles (Doroff and Keith 1990, Brooks et al. 1991, Congdon et al. 1993, 

Congdon et al. 1994). Male western painted turtles may live as long as 31 years with age 

o f  sexual maturity estimated at 3 years (Frazer et al. 1991, Chapter 2). Females live up to
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34 years and reach sexual maturity at age 7 (Wilbur 1975a, Frazer et al. 1991, Chapter 2). 

Bet-hedging theory predicts that long-lived organisms are most vulnerable to population 

decline when adult or juvenile mortality increases, as opposed to decreases in nest success 

or hatchling survival (Pritchard 1980, Crouse et al. 1987, Congdon et al. 1994, 

Cunnington and Brooks 1996). Several authors have found that increased adult and 

juvenile mortality thus had a greater impact on population stability (Pritchard 1980, 

Crouse et al. 1987, Congdon et al. 1994, Cunnington and Brooks 1996).

Life history traits that coevoive with longevity are major factors that leave long- 

lived species vulnerable to population decline when facing even slight increases in 

mortality. Maintenance of a stable population o f Blanding's turtles {Emydoidea 

blandingii) in Michigan required a level of juvenile survival that was significantly higher 

than that documented for any other vertebrate (Congdon et al. 1993). Doroff and Keith 

(1990) showed that a stable population of ornate box turtles (Terrapene om atd) in 

Wisconsin would require an annual adult survival rate o f 0.95 or higher, and they found a 

current annual adult survival rate of 0.81. They concluded that their study population 

would therefore continue to decline, although the required survival rate may vary fi’om 

one box turtle population to another. They attributed this decline to human-caused 

mortality due to roads and automobiles, farm machinery, lawn mowers, and habitat 

fragmentation by roads and the resulting increased predation along edges (Temple 1987).

Brooks et al. (1991) found that a population o f common snapping turtles 

{Chelydra serpentina) may not be able to tolerate a sudden increase in mortality due to 

otter {Lutra canadensis) predation. They predicted population recovery would be slow
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because the common snapping turtle, as well as other long-lived species, does not exhibit 

the ability to respond quickly to low population density. Without rapid increases in 

fecundity or survival of juveniles, this population’s recovery may depend on increased 

immigration from adjacent populations.

Congdon et al. (1994) also found a harvested common snapping turtle population 

vulnerable to decline. They found that adult and juvenile survival played a more important 

role in maintmning population stability than did fecundity, age at sexual maturity, or nest 

survival. Because the common snapping turtle does not respond to decreases in 

population density, Congdon et al. (1994) predicted the number of adults would decrease 

by 50% in less than 20 years with a 10% annual increase in mortality on adults over 15 

years o f age.

Other documented causes of turtle declines include increased human recreation and 

the resulting increased predation (crows, raccoons) and roadkill levels (Garber and Burger 

1995). Dodd (1983) concluded that the most likely factors contributing to the Illinois 

mud turtle's (Kinostemon Jlavescem spoom ri) decline were habitat alteration and 

fragmentation due to agricultural practices, as well as direct adult kills and nest 

destruction by farm machinery and ploughing.

Recovery o f long-lived, slow-growing species is slow once a population is 

depressed. Management measures to prevent initial declines therefore may be crucial to 

the long-term viability of such populations. The painted turtle population in the Mission 

Valley may not be able to tolerate the current or increased levels of roadkill mortality and 

predation. My study was designed to help determine management measures necessary to
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avoid population decline to a point where recovery is difficult or unlikely.

Study Area

The study area is located in the Mission V a ll^  o f western Montana, on the 

Flathead Indian Reservation of the Confederated Salish and Kootenai Tribes. The high 

density wetland area o f the Valley floor, consisting of over 2,000 permanent and 

ephemeral wetlands, is similar to the prairie pothole region of the Dakotas and Canada. 

The pothole wetlands are close enough for turtles to migrate from one to another, possibly 

exhibiting a metapopulation.dynamic.

Highway 93 bisects this network of potholes near the Ninepipe National Wildlife 

Refuge. We collected road-killed turtles along a 4.5 mi (7.2 km) section of Highway 93, 

the section that runs through the concentrated pothole area. The potholes sampled lie on 

either side o f that section of the highway, out to 1,5 mi (2.4 km) to the east and to the 

west. In other words, pond sampling took place within a 13.5 mi’ (17.3 km^) area of the 

pothole region that is bisected by Highway 93 (Figure 3.1).
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METHODS

Roadkill Collection

We collected turtles dead on the road (DOR) 3 mornings per week on the section 

o f Highway 93 described above from 17 May to 24 August, 1995. We recorded the 

location o f each turtle using evenly-spaced reflector posts along the roadside. We 

numbered each post (0 through 60) and estimated DOR turtle locations to the nearest 

reflector post or nearest midpoint between reflector posts (e.g. to the nearest 150 ft, or 

45.6 m).

After collection, we took several measurements on the turtle shell (if intact), 

determined its sex, and removed a femur. Turtles were aged from growth annuli counted 

on cross sections of the femurs at Matson’s Laboratory (Milltown, Mont.). We counted 

growth annuli and took 5 measurements on each turtle's shell (Figure 2.1); carapace 

length, plastron length, plastron width, length o f the anterior section of the plastron, and 

length of the medial annulus on the turtle's right abdominal lamina (the most recent and 

longest annulus, see Sexton 1959). The number o f growth annuli were counted from the 

laminae on the plastron and recorded as the maximum number found on any one lamina. 

DOR turtles had often been hit so hard or by so many vehicles that their shells were not 

sufficiently intact to obtain all, if any, measurements, and sexing was not always possible. 

The shell measurements and lab-determined ages were used to develop an age-predictine 

model (see Chapter 2).

At the end of the field season, we walked along the west and east sides of the 4 5
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mi (7.2 km) stretch of highway to record detectable nest site locations in the highway right 

o f  way. The only detectable nest sites were depredated nests, where a dug up hole and 

egg shells were visible, and incomplete nests, which were abandoned nest attempts (empty 

holes excavated by female turtles). We could not see potentially successful, buried nests.

Turtle Trapping

Trapping occurred from 28 May to 23 August 1995. We sampled ponds along 4 

transects perpendicular to Highway 93 in areas where each transect could extend 1.5 mi 

(2.4 km) without coming closer than 0.5 mi (0.8 km) to any secondary roads. We sampled 

16 permanent ponds and 7 ponds that dried up over the course o f the field season. I only 

included data from the permanent ponds in the analyses. I did not sample any ponds with 

an edge less than 0.25 mi (0.4 km) from a secondary road in an effort to reduce variability 

due to roadkill on these roads.

In each pond, we used basking traps (Appendix A), supplemented in some cases by 

a baited funnel trap. We checked the traps in each pond every other day. When groups of 

volunteers were available, we would capture turtles with dip nets or seine nets (“sweep” 

the ponds) to increase capture efficiency and sample sizes.

Each turtle captured was sexed, measured (the same measurements described 

above), marked, and released. Sexing involved looking for male secondary sex 

characteristics (elongated foreclaws and preanal region o f  the tail) on turtles with 4 or 

more annual growth rings (annuli) on the plastron. The absence o f these characteristics 

indicated a female. Turtles with fewer than 4 annuli were recorded as juveniles because
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they were generally too young to have secondary sex characteristics and therefore could 

not be sexed. However, the juvenile definition o f less than 4 annuli only applied during the 

second half o f the field season. Before that, we required the experience of sexing 

hundreds o f turtles to determine an accurate adult/juvenile cut-off age.

We assigned each turtle an individual code and marked it accordingly, using the 

marking system developed by Dr. Justin Congdon at the Savannah River Ecological 

Laboratory, South Carolina (Appendix B). Each marginal scute on the carapace was 

assigned a letter, and the scutes corresponding to the turtle's code were marked with a 

power drill for turtles larger than roughly 120 mm in carapace length. We used a 1/8 in 

bit before 8 August and a 9/64 in bit after that date to ensure that codes would last over 

the long term. Changing the bit size included redrilling all recaptures after 8 August. We 

used a triangular file, creating a notch at least 1/3 the width o f the scute, for smaller 

turtles. When a marked turtle was recaptured, we recorded its code and repeated the 

same measurements.

Whenever we spotted a turtle moving overland, we recorded the time o f day and 

the turtle's sex. This was not done systematically, so we did not sample all hours of the 

day or sample times of day equally. However, these anecdotal observations did give some 

indication of times of day that turtles were active.

Examining Age and Size Distributions 

All statistical analyses other than population estimations were computed using the 

SPSS software package. The age-predicting model for the Mission Valley turtle
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population  w as based on a regression equation that w as used to  estimate the ages o f  adults 

o r  juveniles from  plastron width or length (see C hapter 2). The age distributions o f  live 

tu rtles  w ere based on that model, using size at sexual m aturity to  separate adults and 

juveniles into the different models (160 mm PL  for females, 93 mm PL for males, see 

C hapter 2). The age distribution o f  DOR turtles w as based on the age determined by 

M atson 's Laboratory (M illtown, M ont.) from fem ur cross sections.

In examining age distributions o f live turtles, w e only looked at turtles with an 

estim ated age o f  4 or older because the trapping m ethod w as biased for older turtles. 

B ecause turtle grow th rates vary temporally as well as betw een ponds in the M ission 

Valley (see Chapter 2), I examined the age distributions using stage classes: Stage 2=4-6 

years old; Stage 3=7-11 years old; Stage 4> 12 years old.

Using a chi square test, I compared the stage distributions o f  turtles in ponds <1/4 

km  aw ay from  the highway (Distance 1, n=448), betw een 1/4 and 1 km away from the 

highw ay (Distance 2, n=336), and >1 km away (D istance 3, n=233). I also com pared the 

stage distribution o f  D O R  turtles to these 3 distributions.

I tested whether average size varied significantly between turtles in ponds at these 

3 distances. I used only turtles with 4 shell annuli to  standardize the number o f  growing 

seasons as well as possible. Pooling all turtles at each distance would have maintained the 

sam ple bias, as would choosing turtles o f a certain predicted age because the age- 

predicting model is based on size. I used turtles w ith 4 annuli because those with 5 and 3 

annuli included large turtles that had apparently lost som e o f  their older annuli, and these 

g roups w ere therefore not normally distributed. I analyzed the differences in average
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plastron lengths (PLs) using a one-way ANOVA.

Population Estimation 

Adult population densities were calculated for 8 ponds at different distances from 

the highway using the Lincoln-Petersen model. Only these 8 ponds had high enough 

sample sizes and recapture rates to estimate adult population size. In 5 of the 16 

permanent ponds sampled, we captured less than 6 turtles all summer. In another 3 ponds, 

we recaptured only 1 or 0 adult turtles, although the total numbers of captures in these 

ponds were 40, 60, and 68.

Although the number o f turtles found DOR indicated substantial movement over 

land, population closure was assumed for each pond because the data were insufficient to 

estimate survival rates or emigration/immigration rates over the course of the season. 

Only 2 DOR turtles were marked and from a known location. In addition, the recapture 

rates within each pond sampled were generally too low to estimate birth/death or 

emigration/immigration rates between sampling occasions.

Program CAPTURE (Otis et al. 1978) was initially used, but selected 5 different 

models for the 5 ponds tested. This may have been due to low recapture rates, since 

CAPTURE often selects incorrect models in such cases (Menkens and Anderson 1988). 

Menkens and Anderson (1988) and Dr. Colin Henderson (Department o f Biological 

Sciences, University of Montana, pers. commun.) suggested pooling capture occasions 

and using the Lincoln-Petersen model as an alternative to CAPTURE. I pooled the 

capture occasions (e.g. the days traps were checked) into 2 categories: marking effort and
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recapture effort. All ponds in which we were unable to  do a final "sweep" o f turtles (e.g. 

w ith dip nets or seine nets) were pooled in the same way: turtles caught during the first 

2/3 o f  the capture days w ere entered into the to tal num ber o f  turtles marked (n j ;  turtles 

caught during the last 1/3 o f  the capture days w ere entered into the recapture values (% 

and m2). I estimated the population o f  5 ponds this way (Ponds 72, 613, 621, 886, and 

945).

W e conducted recapture "sweeps" in 3 ponds (Ponds 877, 345, and 365) involving 

m ajor capture efforts with dip nets or seine nets to  increase the sample size. For these 

ponds, I used the results o f  those sweeps as the recapture values, rather than split the 

ponds after 2/3 o f  the trap days had occurred. In 2 o f  those 3 ponds (Ponds 345 and 365), 

w e swept twice towards the end o f the season to  increase sample size and decrease 

confidence intervals. These tw o sweeps, as well as the trap days in between sweeps, were 

pooled into the recapture values for these 2 ponds. In the third pond (Pond 877), we only 

sw ept once, on the last day o f  the field season. All captures before the first (or only) 

sweeps were entered into the total number marked.

Because 77% o f  all captures (n=l,048, not including recaptured animals) occurred 

in basking traps, I tested w hether basking traps w ere equally likely to catch adults and 

juveniles. As discussed in Chapter I, I assumed that the dip nets and seine nets caught 

accurate proportions o f  adults and juveniles and com pared these methods to the basking 

traps. I used data from 2 ponds with high sample sizes: one in which we caught 73 turtles 

in dip nets and 71 in basking traps (Pond 365); and another in which we caught 63 turtles 

in seine nets and 162 in basking traps.
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Juvénile and adult capture rates differed significantly in the basking traps (Pond 

365, Pearson value=10.38, P<0.01; Pond 345, Pearson value=20.42, P<0.010) 

(MacCulloch and Secoy 1983), so I separated adults and juveniles in estimating population 

sizes to avoid violating the assumption o f equal catchability. Because juveniles were less 

likely to use the basking traps, only 3 ponds had large enough juvenile sample sizes to 

estimate juvenile population sizes, the same 3 ponds with high sample sizes and recapture 

rates due to sweeping efforts (Ponds 877, 345, and 365). In these 3 ponds, I estimated 

juvenile and adult population sizes separately, using the Lincoln-Petersen model for both.

I added the 2 estimates together to estimate total population size and turtle density. I only 

estimated adult population sizes in the other 8 ponds mentioned above.
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RESULTS

Locations o f  Roadkills and  N est S ites in  the Right-of-W ay  

W e counted 205 DOR turtles on the study section o f  Highway 93. This is the 

minimum num ber o f  mortalities that occurred during the field season; the number does not 

include turtles removed from the road by scavengers, those sent o ff the road by the impact 

o f  the vehicle, o r those that survived the impact initially and w ere able to walk away from 

the  road. Turtles can survive serious injury, as indicated by the 42 captured turtles with 

chipped shells (4%), 26 with scars from cracked or punctured shells (2%), and 12 turtles 

missing one o r tw o limbs (1%, n= 1,048 captures). Roadkill locations spanned the 4.5 mi 

(7.2 km) section continuously, with a high concentration at the north end o f  the study area 

(Figure 3.2). The longest distance between mortality sites for 1995 was about 0.25 mi 

(0.4 km).

W e found 5 detectable nest sites on the east side o f  the highway and 11 on the 

w est side (Figure 3.2). These sites were either on the embankment next to the road 

shoulder or within approximately 3 m o f  the bottom  o f  the embankment.

Seasonality o f  R oadkills  

The m ajor pulse o f  DO R turtles occurred fi"om late M ay to  mid July (Figure 3.3). 

D ecreases within that pulse occurred briefly in early June and briefly again in mid June. 

D O R  females w ere collected consistently from mid June to mid July and less consistently 

outside o f  that period. This is roughly consistent with the nesting season, late May to
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Figure 3.2. Map of DOR turtle and nest site locations in the study section of Highway 93
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early July. Males and juveniles killed on the highway w ere more evenly distributed across 

the field season.

Sex R atios

D O R  turtles consisted o f 43% adult males (n=88), 26%  adult females (n=54), and 

31%  o f  unknown sex (n=63), including juveniles (Figure 3.4a). Seventy-two percent o f 

the juveniles (18 out o f  25 total juveniles) w ere from the area o f  highly concentrated 

roadkills (Figure 3.4b). W e were unable to conclusively compare the DOR sex ratio 

(1.6:1) to that o f  live turtles because the ponds sampled for live turtles each had different 

sex ratios (Table 1.2). Therefore, we do not know if  proportionally more males or 

females were killed on the highway. However, when the sex ratios of all ponds were 

pooled together, the overall sex ratio was 1.9:1.

Age and Size D istributions

The age distributions in ponds at Distance 1 w ere significantly different from each 

other (Pearson va1ue=25.8 , P<0.01) as were the age distributions in ponds at Distance 3 

(Pearson value=18.4, P=0.01). However, the difference between distributions o f  ponds at 

Distance 2 was only marginally significant (Pearson value=12.01, P=0.06). Because these 

ponds could not be pooled together for goodness o f  fit tests between Distances, I 

qualitatively examined percentages o f  turtles belonging to  each stage class at each 

Distance and DOR (Figures 3.5a-d).

The DOR turtle ages were evenly distributed from age 0 to 26, as compared to the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



14

12 -

10

1 “3

females 
fSS5Si juveniles 

males 
unknown

:::

1 2 
May

5 6
June

9 10
July

11 12 13 14
August

Week collected

Figure 3.3. Seasonality of roadkills in the Mission Valley study area, by week of 
collection (from 17 May to 24 August 1995).

a) all roadkills

temaies 
males 
Juveniles 

I I unknown

n=38

12%
n*25

b) a rea  of concentration

25%
22%
n=16

25%
n=i8

Figure 3 .4a-b. Sex ratios of all DOR turtles found on the study section of US Highway 93 
and in the area o f concentration.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CD■D
OQ.
C

gQ.

■D
CD

C/)
C/)

8

( O '

3.3"
CD

CD■D
OQ.
Ca
o3
"O
o

CDQ.

■D
CD

C/)
C/)

c
<0
Ü
0)

CL

55 -  

50 -  

45 -  

40 -  

35 -  

30 -  

25 -  

20 -  

15 -  
10 -  

5 

0

55 -1 
50 -  

45 ” 

40 -  

35 -  

30 * 
25 - 

20  -  

15 - 

10 -  

5 - 
0 -

a) Distance 1 (<1/4 km)

c) Distance 3 (>1 km)

55 -] 

50 -  

45 -  

40 -  

35 -  

30 -  

2 5 -  

20  -  

15 -  
10 -  

5 -  

0

55 -1 
50 -  

45 -  
40 -  

35 -  
30 -  

25 - 

20 -  

IS -  

10 -  

5 -

b) Distance 2 (1/4-1 km)

d) dead on road

Stage class

Figures 3.5a-d. 1995 capture records expressed as percents of turtles in each stage class by distance-from-highway 
category or DOR. Stages represent groups o f age classes: Stage 2=4-6 years old; Stage 3=7-II years old, and Stage 
4^ 12 years old.

K>



53

distributions o f live turtles. Distance 1 contained the highest percentages of juveniles and 

young adults (Stage 2, 48%), while Distance 2 consisted o f the highest percentages of 

older adults (Stage 4, 52%). Both Distances 2 and 3 contained more adults and fewer 

juveniles than ponds at Distance 1 (Figures 3 .5a-d). A consistent feature of the live turtle 

age distributions across all 3 distances is a lack o f individuals in age classes 7 to 10 and a 

steep decline starting at age 5 (Figure 3.6).

Mean PLs of turtles with 4 annuli were significantly different between Distances 1, 

2, and 3 (F ratio=28.6, P<0.01). These turtles were largest in ponds adjacent to the 

highway, and size decreased with increased distance fi"om the highway (Figure 3.7).

Turtle Movements

Turtles moved during all hours that we were in the field. Adult male movements 

occurred from 1015 to 1700 (n=10). Juvenile movements occurred from 1415 to 2330 

(n=7), and female movements occurred from 0905 to 0135 (n=20). We observed 2 

nesting females at 2130 and 2110, but left them undisturbed soon after spotting them. 

Two females were observed nesting; one from 2130 to 2345 (but did not lay eggs); the 

other from 2110 to 0135 (from the beginning o f digging her nest to when she finished 

burying her eggs). Also included in the range o f travel times above were 2 females 

returning from digging nests, detectable by mud on the posterior plastron. These occurred 

at 0905 and 1130.

From our mark-recapture efforts with live turtles, we found 7 turtles that moved 

from the pond of original capture to other sampled ponds, where they were recaptured.
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The distance moved mostly ranged from <0.1 to 1.1 km, with one turtle that moved a 

distance o f 3 km. We detected 3, I, and 3 movements among males, females, and 

juveniles, respectively (Table 3.1). One female, turtle "BL," moved from one side of the 

highway to the other. The 7 turtles that moved from the pond of original capture made up 

2% of all recaptures (n=354 recaptures). Only 2 o f  the 205 DOR turtles were known to 

be marked turtles, and both o f these turtles were marked in a pond immediately adjacent 

to the highway, the same pond in which turtle “BL” was first captured. Many others may 

have been marked, but the roadkills were usually too damaged to be able to detect the 

presence of markings.

Population Densities 

Densities of adult turtles were positively correlated with pond distance from the 

highway (Table 3.2). Approximately 57% of the variance in adult densities among these Ï 

ponds was explained by the ponds' distance from the highway (R^O.57, P=0.03) (Figure 

3.8). Total turtle density (adults and juveniles) also declined as distance from the highway 

decreased, as estimated from the 3 ponds with the highest sample sizes and recapture rates 

(Table 3.3). Pond area (ha) was also correlated with adult density at a marginally 

significant level (Pearson correlation=-0.59, P=0.06). Regression analysis showed that 

adult density was not a function of pond area, at the 0.05 significance level (R^O.35, 

P=0.13). However, pond area and distance from highway happened to be correlated for 

these 8 ponds (Pearson correlation=0.63, P=0.05), so I was unable to separate the effects 

o f these 2 variables.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5 6

Turtle Sex PL (mm) Original
capture

Recapture Distance between 
ponds (km)

ACH* m 150 June 26 August IS 0.1

N X m 119 June 22 July 13 0.5

ABCPW m 107 June 24 August 1 1.1

BL*’ f 185 June 2 August 22 <0.1

BNY* j 71 July 22 July 23 0.2

BV X j 44 July 23 August 1 1.1

IN’ j 92 June 20 July 30 3.0
T urtles are  listed by their individual codes. PL = plastron length measured on date o f  original capture; f  = female; m = male; 
j  =  juvenile . *= turtles that moved from temporary pond to perm anent *=turtle that moved across higbu-ay.
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Figure 3.8. Relationship between adult turtle density (in 8 ponds) and pond’s distance 
from  U S Highway 93.
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Table 3.2. Estimated population densities of adult turtles in the

Pond no. Pond size 
(ha)

Adult turtle density 
(turtiesÆa 
±95% Cl)

Pond's distance 
to highway (km)

877 3.40 39+16 <0.1

886 1.30 59±18 <0.1

613 1.52 62+38 <0.1 '

72 2.84 158±90 <0.1

621 1.04 178+134 <0.1

345 2.24 121+29 0.6

945 0.57 182+128 1.7

365 0.54 283+85 1.9

Table 3.3. Adult and juvenile population estimates for 3 ponds sampled in the Mission

Population estimates (+95% confidence interval)

Pond
no.

Pond size 
(ha)

Sample
period Adults Juveniles Combined

Combined
density

(turtles/ha)

Pond's i  
to#

877 3.40 6/11-8/22 134+56 59+46 193+82 57+24 4\
345 2.24 6/14-8/12 272±64 97+71 369±47 165+21 a f
365 0.54 6/19-8/12 153+46 156+80 309±87 572+161
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DISCUSSION

Roadkill Locations and Characteristics 

Without comparable historical data, we do not know whether the total roadkill 

count (205) is an increase or decrease from previous summers. CSKT biologists have 

taken roadkill counts in previous years, but used different methods and levels of effort.

Our data indicate that turtles o f all ages and both sexes attempt to cross Highway 93 

throughout the summer months. Therefore, mechanisms for increasing the permeability of 

the road (discussed in the Management Implications section) must accommodate all ages 

and both sexes and must function at all times when turtles are mobÜe over land.

The fact that 72% of the DOR juveniles were found in the area of highest 

concentration of roadkills, mostly on the same side o f the highway as a pond immediately 

adjacent to the road shoulder, indicated that juveniles as well as adult painted turtles 

disperse from their ponds (Figure 3.4). However, factors that signal juvenile dispersal are 

not well understood. The ponds we sampled that dried up during the course o f the field 

season generally consisted of more juveniles than adults (67% juveniles in seasonal ponds 

versus 27% juveniles in permanent ponds). The adults may have dispersed first as the 

ponds began to lose water. The maximum number o f DOR juveniles collected on any day 

in the high concentration area was 4. The maximum was collected on 2 occasions, on 9 

July and 23 July. In contrast, the maximum number o f adults collected on any day (also 4) 

in this area was collected much earlier in the season, on 15 June.

The pond adjacent to the high DOR concentration did not dry up by late August.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5 9

However, during wetter years, this pond is connected to another adjacent pond (ponds 

77a and 77b). During my study, the 2 ponds were separated by a band of dry mud. The 

pond areas were each approximately 0.3 ha, although the area of the 2 ponds connected 

usually equals 2.5 ha. Both ponds were devoid o f vegetation. The movements from these 

ponds may be an example o f turtles leaving temporary wetlands or wetlands that were 

otherwise unable to support substantial turtle populations.

The sex ratio, DOR locations, and age distributions we found could be better 

explained in comparison to historical data. For example, the proportion o f DOR females 

we found may be smaller than that of previous years. Many females with historical nest 

sites across the highway from their breeding ponds may have already been killed. The 

concentrations o f DOR turtles may have shifted as well. Areas where we found low 

concentrations may be due to higher concentrations in the past and the resulting 

population decrease. For example, the section o f Highway between Ponds 886 and 877 

may have once been an area of high concentration o f roadkills, as indicated by the fact that 

both marked DOR turtles came from Pond 886, as did turtle "BL," the turtle that crossed 

the road successfully, from Pond 886 to 877. The possibility o f temporal variation in 

areas of concentrated roadkills may complicate management strategies (e.g. choosing 

culvert locations).

Overland Movements 

Gibbons et al. (1990) provided 5 general reasons for extrapopulational (long- 

range) movement among freshwater turtles. They include: 1) hatchling movements to W
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w ater; 2) seasonal movements due to habitat variation; 3) travel to and from overwintering 

sites; 4) males searching for mates; and 5) females moving overland to nest. At least 3 o f  

the 7 movements we detected can be explained by the second reason because these turtles 

moved from ponds that dried up over the course o f  the field season to ponds that 

remained full o f  w ater (see Table 2). McAuIiffe (1978) and Sexton (1959) also found that 

painted turtles migrated out to "satellite" temporary ponds when they filled in the spring 

and returned to  permanent waters when the satellite ponds dried up. Several other studies 

confirmed freshwater turtles' response to drying o f  wetlands (Sexton 1959, Gibbons et al. 

1990).

McAuliffe (1978) found that 58% of extrapopulational movements were greater 

than 100m, whereas Gibbons (1968) found 15%. We found a travel distance greater than 

100m for 71% o f  the movements (5 o f  7 total movements) (Table 2). This high 

percentage o f  travel distances over 100m may reflect the dry conditions during the 

summ er o f  1995. Water-filled ponds were farther apart during the summer o f 1995 than in 

m ost years in the Mission Valley.

From  26 years o f  mark-recapture data collected at the Savannah River Site (South 

Carolina), Burke et al. (1995) found that 3.9% (n=65) o f  the 1,660 slider turtles 

(Trachem ys scriptd) originally marked in one wetland site were recaptured at other sites. 

The 7 painted turtles that moved from their original capture sites in the Mission Valley 

make up 0.7%  o f  the 1,048 turtles marked during the summer o f 1995. This may be a 

result o f  dry conditions in 1995, assuming slider and painted turtle metapopulation 

dynamics are comparable, and assuming dry years cause turtles to be more sedentary
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rather than more mobile, in search of non-existent temporary ponds. The lower number of 

dispersers in the îÆssion Valley also may reflect the much shorter duration of study.

The 3 km distance recorded (Table 3.1) wouM require the turtle “IN” to have 

crossed Highway 93. Although adult painted turtles have been known to travel as far as 

2.1 km (McAuliffe 1978), this turtle was a juvenile and would have had to travel a longer 

distance (3 km) to reach its site of recapture. Alternatively, the turtle may have been 

captured and moved (e.g. for annual "turtle races" in the area), or its code may have been 

recorded incorrectly. The one female that moved may have moved to nest without 

returning to her original pond (Gibbons et al. 1990). She may have been helped across the 

road by people driving by; this has been observed on several occasions though less 

frequently as traffic volume has increased (S. Ball, CSKT biologist, pers. commun.). The 

fact that we found only one female among all 7 turtles that moved agrees with Gibbons et 

al.'s (1990) conclusion that females are more sedentary. However, as discussed earlier, 

we do not know if the DOR sex ratio also indicates this.

Gibbons et al. (1990) found that freshwater turtles in South Carolina were not 

active at night, in water or on land. However, we observed nesting activity at night 

despite minimal monitoring at night. The female mentioned above may have crossed the 

highway at night, when traffic volume decreased. The highway may act as a selective 

force, selecting for turtles that move at night or during hours o f lighter traffic.

Effects on Age Distributions 

Proportionally more juveniles (4-6 years old) and proportionally fewer adults (>12
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years old) were found at Distance 1 (n=7 ponds) than found in both Distances 2 and 3 

(n=5 ponds and n=4 ponds, respectively), implying that roadkill mortality may be killing 

proportionally more adults. Frazer et al. (1991) found that juvenile growth rate and turtle 

density increased at the same time survival rates decreased. Roadkill mortality may be 

causing this pattern in the Mission Valley. Roadkill mortality may also be significant 

enough to cause a decrease in turtle density, thereby decreasing juvenile-adult competition 

for resources (including basking sites), increasing juvenile survival rates, and potentially 

increasing juvenile catchability in basking traps (Lovich 1988). However, more 

information on juvenile dispersal and hatchling movements is necessary to understand this 

age distribution.

The low numbers o f  turtles in age classes 7-10 does not correspond with any single 

w eather trend, such as fluctuation in average annual temperature or precipitation. 

However, various combinations o f temperature and precipitation variability may have 

contributed to decreased recruitment rates 7-10 years ago as well as changes in growth 

rates and resulting inaccurate age predictions. For example, the drought of 1988 (32.05 

cm o f  precipitation) may have caused a decrease in nest success. The high average 

temperatures for 1987 and 1988 may have resulted in increased turtle growth rates which 

caused the age-predicting model to overestimate ages o f  turtles hatched during those 

years. Effects o f annual environmental fluctuations may span more than one predicted age 

class because the age-predicting model assumes discrete size ranges for each age class.

In addition, the skunk {Mephitis mephitis) population in the pothole region was 

controlled from 1988 to 1993 (reduced by approximately 80%), possibly resulting in
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increased nest success and a pulse of turtles hatched after 1988 (younger than 7 years old). 

Skunks have been documented preying on turtle nests (Gibbons 1968, Tinkle et al. 1981, 

Snow 1982, Christens and Bider 1987). The bimodal distribution of ages in the Mission 

Valley population (Figure 3,6) was augmented by the fact that a second peak occurred at 

ages 12-14. This is at least partially explained by older turtles tending to be within the size 

ranges o f 12-14 year olds (Figure 2.3a). Further, femur annuli counts were generally less 

reliable for older turtles due to resorption of early annuli (G. Matson, Matson’s 

Laboratory Director, pers. commun.).

Some degree of instability in age distributions o f long-lived, bet-hedging species 

populations may be expected. Bet-hedging theory suggests that longevity and high adult 

survival rates of iteroparous species account for unstable recruitment rates (e.g. 

recruitment rates that are vulnerable to environmental fluctuations) (Congdon and 

Gibbons 1990, Cunnington and Brooks 1996). Further monitoring o f this population will 

indicate whether it might eventually reach a stable age distribution or always exhibit some 

degree of bimodality, evidence o f environmental variability.

Effects on Population Densities 

The significant difference in mean PL among turtles with 4 annuli may be an 

indication of lower turtle densities in ponds next to the highway. Increased growth rates 

in response to decreased densities and increased availability o f  resources have been 

documented for reptiles and amphibians (Gibbons 67, Wilbur 1975b, Dunham 1980, Hart 

1982, MacCulloch and Secoy 1983, Dunham and Gibbons 1990, Russell et al. 1996).
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The low percentage o f marked turtles that moved makes the assumption of 

population closure in each pond more realistic, at least for the summer o f 1995, although 

the M ission Valley turtles clearly exhibit a metapopulation dynamic. Population density 

estim ates support the hypothesis that proximity to the highway results in population 

decrease (Tables 3.2 and 3.3, Figure 3.8). Only 57 turtles per hectare of water area were 

estimated in a pond <0.1km from the highway, whereas 165 and 572 turtles per hectare 

w ere estimated in ponds 0.6 and 1.9km from the highway. The estimates made by 

program  CAPTURE, using a different model for each pond, show the same trend o f 

decreasing density closer to the highway (Figure 3.9).

Pond variables other than distance from the highway (e.g. pond size, vegetation 

type, w ater temperature, pH levels, substrate, dissolved oxygen content) also affect turtle 

density. In the pond adjacent to the area o f highest roadkill mortality (Pond 77b), only 1 

turtle was caught, using a seine net. We caught only 5 turtles in an adjacent (Pond 77a), 

also near the area o f  high DOR concentration. However, capture rates were equally low 

in 3 ponds farther away from the highway. In these ponds, all over 0.25 km from the 

highway, we caught only 1 or 2 turtles (Table 3.4). Although pond size (area) was not as 

highly correlated with adult density as distance from the highway, it appears to be an 

important variable. Further investigation into pond size and other variables is necessary to 

interpret population densities and understand turtle habitat use.
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Figure 3.9. Comparison of population estimates from CAPTURE and Lincoln-Petersen 
models.

Table 3.4. Total number of turtles captured 
in ponds with low samule sizes.

Pond no. Total no. 
captured

Distance to 
highway (km)

77a 5 <0.1

77b 1 <0.1

956 1 0.4

981 2 0.4

381 1 1.0
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MANAGEMENT IMPLICATIONS

Traffic and road densities are increasing worldwide (UN 1992), and efforts to 

m itigate roadkill mortality and habitat fragmentation by roads will be essential to sustain 

som e wildlife populations, especially reptiles and amphibians (see M ader 1984, Dorofif and 

K eith 1990, Reh and Seitz 1990, Rosen and Lowe 1994, Bull 1995, Fahrig et al. 1995). 

The m ost effective method for increasing permeability o f  roads is to elevate (bridge), 

thereby removing the barrier (De Santo and Smith 1993). Other methods proven to 

mitigate roadkills include narrowing the road width (Oxley et al. 1974, M ader 1984) and 

reducing the traffic speed and volume (van Gelder 1973, Rosen and Lowe 1994, Fahrig et 

al. 1995). In addition, several studies have shown that culverts, drift fences, and pitfall 

traps can decrease roadkill mortality for various vertebrates (Gibbons 1970, Hunt et al. 

1987, Tyning 1989, Bush et al. 1991, De Santo and Smith 1993, Krivda 1993, Ruby et al. 

1994, Fahrig et al. 1995, Yanes et al. 1995, among others). These methods can be 

modified to  w ork for painted turtles and other species vulnerable to Highway 93 traffic.

Because culverts and other road-crossing mechanisms have been minimally 

examined for freshwater turtles, designs should be tested on Highway 93 before their 

perm anent construction. This will also help mitigate roadkill mortality in the short term. 

Yanes et al.'s (1995) methods involved using tracks to  determine which animals are using 

the culverts and their willingness to do so. They found that reptiles were willing to use 

culverts under railway lines but not under roadways. Yanes et al. (1995) found that small 

mammals' and carnivores’ willingness to use culverts decreased with increased length o f
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the culvert. Although they did not test this for reptiles, they found that willingness to use 

a culvert generally depended on the length of the culvert (e.g. the width of the road) and 

the home range o f the animal (e.g. animals with smaller home ranges are less likely to use 

longer culverts). Future monitoring o f painted turtle movements may indicate the lengths 

o f  culverts they are willing to pass through. Ruby et al. (1994) found little reluctance 

among desert tortoises (Gopherus agassizi) to pass through tunnels and culverts, but these 

are burrowing animals.

An additional feature that is important to test is the painted turtle's need for 

ambient light in culverts. Painted turtles are diurnal animals, for the most part, and may 

use the sun for navigation (DeRosa and Taylor 1978). Therefore, mechanisms to allow 

ambient light in the culverts/tunnels may be necessary to their success for this species (see 

Jackson and Tyning 1989). Grates over the top o f a culvert or section of culvert will 

allow light to pass through, but there may be a tradeoff with the increased noise from 

traffic due to the opening. Again, these mechanisms should be tested for painted turtles 

and other species in western Montana.

Funneling turtles into culverts will be necessary to increase the probability that 

they use the underpass rather than cross the road (Yanes et al. 1995). Turtles DOR were 

found on sections of Highway 93 that bridge over water (Crow Creek) or contain a large 

culvert for allowing water to pass through (into Ninepipe Reservoir), showing that they do 

not necessarily choose the aquatic route under the road. Ruby et al. (1994) studied drift 

fence materials and their use in directing desert tortoises. From several trials involving 

tortoises enclosed by these different materials, they recommended hardware cloth first.
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and solid materials second. Painted turtles could climb the hardware cloth, so a solid 

barrier w ould be m ost effective for funneling them. Another advantage o f  a solid barrier is 

th a t turtles are less likely to  try to  poke through and get stuck (Ruby et al. 1994). A solid 

drift fence can act as an audio and visual barrier as well, decreasing animals’ stress caused 

by traffic (D e Santo 1993).
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CONCLUSION

In the Mission Valley, all ages of turtles and both sexes moved overland, and 

connectivity between ponds and between ponds and nest sites must be maintained. 

Informed management decisions for turtles in the Mission Valley will depend on an 

understanding o f their movements and habitat use patterns. The distance turtles are 

willing to travel will indicate whether turtles are traveling to ponds next to the highway, 

which are possible population sinks (Rosen and Lowe 1994). Understanding 

metapopulation dynamics of freshwater turtles requires long term study and large sample 

sizes (Burke at al. 1995). Therefore, continued monitoring is essential to conservation of 

this turtle population. Future monitoring also could indicate whether secondary roads 

and/or agricultural practices are contributing to habitat fragmentation and direct mortality 

(see Mader 1984, Dodd 1983, DorofF and Keith 1990).

The population density estimates presented here indicate that Highway 93 is a 

significant and constant source of mortality for painted turtles in the Mission Valley. 

Although survival rates are not known for this population and cannot be compared to 

those o f other painted turtle populations, we know that long-lived, slow-growing 

organisms are extremely vulnerable to increases in mortality, especially of adults (Pritchard 

1980, Dodd 1983, Crouse et al. 1987, Doroff and Keith 1990, Brooks et al. 1991, 

Congdon et al. 1993, Congdon et al. 1994, Garber and Burger 1995, Cunninston and 

Brooks 1996). Therefore, roadkill mortality in the Mission Valley is likely to be causing 

this population, or certain subpopulations, to decline.
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APPENDIX A 
BASKING TRAP DESIGN AND EFFICIENCY

Basking trap efficiency averaged 2.1 turtles per trap per trapping occasion. The 
duration of trapping occasions was 2 days (e.g. checking each trap every other day). -The 
dimensions and materials used to build basking traps are shown below.
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A PPENDIX B 
ILLU STR A TIO N  O F M A R K IN G  SY STEM

Illustration o f  marking system with example (turtle code "ACX”).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX C 
RECORD OF TURTLE CODES AND CAPTURE LOCATIONS

(all turtles marked 20 May to 23 August, 1995)

7 9

Shell measurements

Turtle code
Original capture 

location Coond no 1 Sex Caranace length Plastron length Plastron wdth
A 1366 f 165.6 154.5 X

AB 888 f 118.5 112.8 38.7
ABC 621 m 176.8 159.9 83.3
ABCH 345 m 124.2 113.6 60.7
ABCI 345 92.2 85.4 49.0
ABCJ 345 65.0 39.2 35.5
ABCK 345 37.1 52.6 28.6
ABCL 345 92.6 85.0 47.6
ABCN 345 j 84.9 78.8 42.0
ABCO 345 j 90.8 88.1 45.6
ABCP 345 m 177.6 163.3 83.3
ABCPW 365 m 116.7 107.4 56.8
ABCU 345 m 176.4 169.6 86.1
ABCV 345 m 158.1 147.7 75.3
ABCW 345 m 168.9 161.1 83.2
ABCX 345 m 170.5 155.8 85.8
ABCY 345, m 155.3 144.1 73.5
ABH 621 f 186.1 186.1 86.0
ABHI 345 m 143.4 133.8 67.7
ABHJ 345 m 121.6 116.0 58.8
ABHK 345 m 120.5 116.1 62.1
ABHL 345 m 124.4 112.8 59.8
ABHN 345 m 114.8 116.1 57.4
ABHO 345 88.9 85.1 49.9
ABHP 345 90.4 81.9 46.6
ABHU 345 84.7 71.8 44.8
ABHV 345 93.9 85.3 48.7
ABHW _ _ 345 66.2 61.3 35.3
ABHX 345 96.2 86.6 50.0
ABHY 345 j 90.3 82.3 47.2
ABI 621 f 121.8 112.5 61.2
ABU 613 m 107.2 100.9 32.9
ABIK 613 m 182.3 170.0 86.1
ABIL 613 ID 153.7 141.4 72.6
ABIM 613 m 182.7 173.6 83.1ABIN 1720 m 109.9 102.2 52.9ABIC 1720 tn 166.6 153.7 76.5ABIP 877 m 158.0 146.5 74.8
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Shell m easurem ents Cmm)

T urtle code
Original capture 

location fnond no.1 Sex Caranace length Plastron length Plastron width
ABIU 877 m 146.2 137.3 71.5
ABIV 877 m 172.6 163.1 80.2
A BIW 839 f 173.6 162.2 78.4
A BIX 839 f 167.1 158.1 81.6
A BIY 839 f 176.3 171.9 85.9
ABJ 613 m 119.8 110.0 60.2
ABJK 345 j 95.7 87.3 45.5
A BJL 365 m 96.6 92.9 47.0
ABJM 72 m 179.4 165.0 84.0
A BJN 72 m 144.7 133.0 69.2
A BJO 72 f 113.7 110.7 61.6
ABJP 72 f 125.4 119.9 62.5
ABJU 72 f 110.9 107.9 56.8
ABJV 72 j 97.5 91.8 50.2
A BJW 292 m 110.2 102.0 54.2
ABJX 292 j 85.0 79.7 43.1
A BJY 62! f 119.9 113.6 59.7
ABK 613 f 122.5 112.2 61.7
ABKL 839 m 180.6 168.6 81.2
ABKN 926 m 188.3 177.0 85.4
ABKO 365 m 96.5 91.7 49.3
ABKP 365 f 172.9 167.1 85.4
ABKU 345 f 194.7 184.9 92.7
ABKV 345 m 181.8 165.4 83.9
ABKW 345 m 189.7 175.2 85.4
ABKX 345 m 177.2 164.3 82.7
ABKY 345 m 146.8 137.7 69.9
ABL '' 613 m 138.5 125.1 65.8
ABLN 72 f 124.5 119.6 59.9
ABLO 72 f 110.1 102.8 56.0
ABLP 72 127.9 123.5 63.8
ABLU 72 f 132.2 129.7 66.4
ABLV 72 f 122.4 116.0 59.9
A BLW 72 j 89.3 82.7 46,8

ABLX 72 f 124.6 115.4 63.8

ABLY 72 j 91.3 85.9 48.9

ABN 1720 f 176.0 169.9 .87.6

A BN O 621 j 60.7 55.3 32.5

ABNP 72 f 119.1 110.3 57.9

ABNU 72 91.8 83.4 47.4

ABNV 72 j 95.7 89.0 49,1

ABNW 72 102.9 94.1 51.6

ABNX 168 132.6 127.4 67.6

A BNY 168 f 142.5 136.1 70.6

ABO 1720 f 167.1 156.3 78.1

A BC P 292 j 85.2 80.5 42.7

ABOU 1720 175.8 ■ 166.0 85.6

ABCV 1720 f 125.4 120.5 60.2
ABOW 607 j 65.6 61.3 35.5

A BOX 345 m 183.6 168.0 85.5
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Turtle code
Original capture 

location fpond no.)

Shell measurements fnun>

Sex Carapace length Plartmn length Plastron width
ABOY 839 m 188.0 171.8 87.7
ABP 1720 m 169.5 156.7 78.0
ABPU 345 m 122.9 114.1 60.6
ABPV 345 m 116.0 112.0 60.0
ABPW 365 m 140.5 132.7 69.1
ABPX 365 f 118.9 113.7 60.6
ABPY 839 m 178.8 162.3 85.0
ABU 607 j 68.9 62.2 35.7
ABUW 839 m 120.6 111.6 57.7
ABUX 839 m 173.6 T64.0 81.2
ABUY 888 j 63.2 58.6 33.7
ABV 607 j 68.5 64.3 35.8
ABVW 839 f 175.1 167.1 85.1
ABVX 839 m 157.2 145.5 74.8
ABVY 839 m 114.8 106.3 56.8
ABW 888 tn 176.1 164.3 86.7
ABWX 888 j 63.8 59.8 33.6
ABWY 888 j 63.7 59.0 32.8
ABX 888 m 151.0 144.3 73.9
ABXY 926 m 93.4 87.5 47.5
ABY 892 m 178.5 160.8 84.3
ABZ 365 f 96.6 89.8 48.3
AC 888 f 111.3 106.2 58.6
ACH* 892 m 157.2 150.2 75.0
ACHl 72 m 173.4 158.8 80.8
ACHJ 72 f 173.3 168.4 84.3
ACHK 72 m 169.9 156.7 82.2
ACHL 72 j 103.6 97,5 54.9
ACHN 292 j • 101.9 96.7 50.2
ACHO 613 m 191.8 168.2 83.8
ACHP 613 m 103.7 95.6 52.2
ACHU 945 m 166.5 153.7 79.6
ACHY 945 m 110.5 104.3 54.7
ACHW 621 m 186.0 176.3 86.0
ACHX 621 m 127.8 116.5 64.0
ACHY 621 m 115.4 109.0 57.3
ACI 839 m 173.1 160.1 80.8
ACIJ 613 m 104.4 95.7 54.1
ACIK 1720 m 113.3 109.3 55.7
ACIL 1720 m 105.7 100.4 50.5
ACIN 877 01 144.9 133.9 68.1
ACID 877 m 164.4 154.5 79.4
ACIP 877 m 103.0 95,3 55.0ACIU 877 m 122.9 118.5 60.6ACIV 839 m 113.8 106.0 57.3ACIW 839 m 125.0 116.6 62.3ACIX 945 m 180.4 163.7 85.6ACIY 345 f 192.8 183.9 89.6ACJ 839 m 184.2 165.6 82.4ACJK j 345 m 128.5 123.8 67.1
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Turtle code
Original capture 

location frond no.f Sex

Shell measurements fmml 

Caranace length Plastron length Plastron width
ACJL 345 m 115.5 107.1 58.2
ACJN 168 m 202.2 184.1 87.7
ACJO 168 f 196.1 192.2 94.1
ACJP 72 f 114.3 108.7 56.3
ACJU 72 j 92.6 88.5 47.6
ACJV 72 f 122.8 116.1 62.1
ACJW 72 m 129.7 120.7 65.1
ACJX 72 ' f 138.9 129.5 68.7
ACJY 72 m 171.6 153.8 79.5
ACK 839 m 176.5 161.7 83.1
ACKL 345 m 123.6 116.3 .61.5
ACKN 345 ■ j 84.3 77.4 43.8
ACKO 345 m 173.0 159.0 81.9
ACKP 345 m 197.8 179.3 89.3
ACKU 365 m 182.4 164.0 82.7
ACKV 365 j 86.0 78.9 44.6
ACKW 365 m 147.3 138.6 71.9
ACKX 1720 f 118.0 112.0 58.7
ACKY 168 m 181.9 169.4 85.5
ACKZ 365 m 104.7 99.5 53.1
ACL 945 m 184.1 170.5 85.0
ACLM 345 m 120.2 110.0 58.0
ACLN 365 j 85,1 78.7 45.2
ACLP 345 m 175.4 162.7 82.1
ACLU 345 m 177.6 161.8 81.5
ACLUa* 365 f 89.9 85.5 45.6
ACLV 345 j 88.0 81.7 44.6
ACLW 345 j 89.2 84.4 45.4
ACLX 345 m 182.8 167.7 85.0
ACLV 168 f 135.5 132.3 . 68.4
AON 945 f 184.5 178.0 88.1
ACNO 1720 f 185.2 182.0 90.2
ACNP 1720 f 121.2 117.9 62.1

ACNU 365 j 55.4 493 30.0
ACNV 613 j 67.9 60.6 34.5

ACNW 365 J 52.1 46.8 27.4

ACNX 365 j 53.2 48.0 27.5

ACNV 365 j 52.2 48.8 28.0

AGO 365 m 139.6 132.8 68.5

ACOP 168 m 107.2 100.0 53.3

ACOU 168 m 119.8 109.4 59.8

ACOV 168 j 74.8 68.4 39.6

ACOW 72 f 205.9 194.8 98.0

ACOX 72 f 183.2 176.0 89.3

ACOY 72 f 142.0 136.3 69.5

ACP 365 j 94.9 90.8 48.1

ACPU 72 j 98.2 91.5 49.4

ACPV 72 f 104.6 98.8 54.9
ACPW 72 m 128.3 119.2 62.8

ACPX 72 f 114.3 107.8 56.4
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Shell measurements (mm)
Original capture

Turtle code location foond no.l Sex Caranace length Plastron length Plastron width
ACU 365 j 94.5 86.8 473
ACUV 345 m 186.7 166.7 81.4
ACUW 345 j 49.7 . 46.4 26.4
ACUX 345 m 163.2 155.9 763
ACUY 345 f 126.5 120.0 63.7
ACV 365 i 97.7 91.1 50.6
ACVW 345 m 177.6 165.6 82.6
ACVX 345 j 85.0 77.7 . 43.7
ACVY 345 j 93.0 89.4 49.1
ACVZ 345 m 153.4 146.2 74.7
ACW 365 j 93.2 88.1 44.7
ACWX 365 j 81.5 75.1 41.5
ACWY 365 i 49.6 47.5 26.0
ACX 345 f 188.1 177.1 91.7
ACXY 365 m 103.2 97.7 50.4
ACYa 345 f 186.6 180.0 87.8
AH 888 j 115.6 109.7 58.9
AHI 345 m 177.4 163.9 81.4
AHIJ 945 f 178.3 171.7 91.2
AHIK 945 f 185.2 171,2 87.6
AHIL 945 m 172.0 159.3 813
AHIM 613 j 109.2 104.1 533
AHIN 877 f 191.7 182.9 93.5
AHIO 839 m 192.0 173.6 843
AHIP 839 f 175.3 172.5 86.2
AHTU 839 m 165.8 154.5 78.8
AHIV 839 m 196.7 179.7 84.5
AHIW 839 m 168.7 153.8 74.9
AHK 839 m 163.3 149.9 75.5
AHIY 981 j 54.4 49.3 28.7
AHIZ 621 m 172.7 157.5 78.7
AHJ 345 j 87.4 79.7 453
AHJK 621 f 172.7 162.6 813
AHJM 613 f 139.7 129.5 68.6
AHJN 77 f 113.2 109.1 58.6
AHJO 877 m 166.7 154.6 77.1
AHJP 877 f 153.4 149.8 73.5
AHJU 877 m 173.1 161.9 80.3AHJV 877 f 127.5 122.1 64.1
AHJW 877 f 132.4 ■ 127.9 64.9
AHJX 888 m 122.9 116.1 59.7
AHJY 839 m 153.4 146.7 70.2AHK 345 j 86.7 79.4 46.1AHKL 839 m 179.9 160.2 85.2AHKN 839 m 157.2 147.8 77.3AHKO 613 m 182.9 165.1 83.8AHKP 613 m 175.3 160.0 76.2AHKU 613 m 160.0 157.5 78.7AHKV 613 m 180.3 165.1 83.8AHKW 877 j 64.5 57.3 33.8

/
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Shell measurements fmm1
Original capture

Turtle code location foond no .1 Sex Caraoace length Plastron length Plastron width
AHKX 839 m 111.7 106.0 57.5
AHKXa 77 f 116.8 112.0 5 8 2
AHKY 72 f 203.2 193.0 91.9
AHL 345 j 88.4 82.7 47.1
AHLN 613 f 116.8 109.2 61.0
AHLO 839 m 177.6 163.0 83.0
AHLP 839 m 167.6 150.4 77.2
AHLU 621 m 177.8 165.1 78.7
AHLV 621 m 177.8 165.1 81.3
AHLW 621 m 129.5 119.4 63.5
AHLX 621 j 109.2 101.6 58.4
AHLY 613 i 104.1 99.1 53.3
AHN 1720 f 131.0 129.5 67.5
AHNO 72 m 178.0 169.1 82.4
AHNP 72 m 181.1 162.6 82.7
AHNU 72 m 162.6 154.1 77.8
AHNV 72 m 111.2 99.7 57.2
AHNW 168 m 179.3 168.6 84.4
AHNX 168 m 162.8 155.5 75.7
AHNY 168 m 188.3 175.3 84.7
AHNZ 72 j 92.9 86.2 47.2
AHO 1720 j 106.2 99.9 56.9
AHOP 168 m 190.9 173.7 83.4
AHOU 168 m 182.4 170.2 86.4
AHOV 168 m 153.7 147.6 69.6
AHOW 168 m 133.1 123.2 66.9
AHOX 168 m 117.7 110.6 58.4

AHOY 168 m 104.7 99.8 52.7

AHP 345 m 125.5 118.1 61.5
AHPU 72 tn 163.9 155.3 78.6
AHPV 72 m 171.4 157.5 81.1

AHPW 72 f 197.1 193.3 92.3

AHPX 72 m 130.1 121.8 65.0

AHPY 72 m 117.7 110.2 56.9

AHU 365 j 100.3 96.9 53.6

AHUV 168 j 87.9 83.1 45.2

AHUW 292 f 89.7 81.3 43.7

AHUX 1720 m 172.7 154.9 78.7

AHUY 1720 m 180.3 165.1 76.2

AHUZ 839 f 182.9 172.8 86.3

AHV 365 j 95.0 88.6 47.0

AHVW 877 m 178.2 166.2 80.2

AHVX 877 m 153.1 140.0 70.4

AHVY 877 m 141.2 131.1 63.2

AHWX 877 m 100.8 92.8 54.1

AH\YY 877 j 68.0 62.6 36.4

AHX 945 m 173.7 163.4 79.7

AHXY 839 m 166.9 158.1 S l.l

AHY 945 f 106.9 104.4 55.0

Al 888 j 85 2 79.2 42.5
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Shell measurements fmm)

Turtle code
Original capture 

location foond no.f Sex . Caraoace lensth Plastron leneth Plastron width
AIJY 877 f 126.4 118.2 61.1
AIJZ 877 m 106.0 95.0 55.4
AIK 365 m 149.0 140.5 72.9
AIKL 877 m 99.8 90.3 533
AKN 72 f 201.6 193.5 93.4
AKO ■ 72 f 179.8 173.6 89.3
AIKP 72 f 114.2 108.6 59.7
AIKU 72 144.6 137.0 70.4
AIKV 72 j 95.2 91.3 50.6
AIKW 72 j 91.6 89.3 46.7
AIKX 888 194.2 175.7 9 3 J
AIKY 888 146.2 139.5 73.8
AIL 365 107.6 100.6 54.1
AILN 888 i 67,8 63.0 34.7
AILO 888 j 66.8 63.2 36.2
AILP , 877 f 148.6 140.8 70.8
AILU 877 f 152.1 144.4 73.5
AILV 877 j 96.2 89.4 48.9
AILW 877 125.2 119.5 61.2
AILX 877 118.9 115.7 60.4
AILY 877 j 62.7 58.4 32.4
AIMZ 877 f 136.3 128.7 65.4
AIN 365 i 98.5 91.9 50.0
AINO 877 j 57.1 52.8 30.0
AINP 877 166.7 156.2 81J
AIO 365 j 98.6 89.6 47.7
AIOP 877 j 63.9 57.6 34.0
AIOU 877 j 62.0 56.5 35.1
AIOV 877 j 63.0 56.7 31.2
AIOW 877 J 56.6 51.4 29.5
AIP 365 j 92.4 87.0 46.5
AIU 345 168.1 154.4 75.9
AJV 345 163.5 155,8 80.9
AIV 607 f 191.5 184.7 89.1
AIW 365 f 119.6 110.1 59.1
ADi 1720 f 184.6 175.3 86.1
AIY ,1720 f 186.5 179.1 89.6
AIZ 345 f 176.4 173.4 85.2
AJ 1365 170.3 158.9 71.2
AIK 621 j 110.5 99.9 55.0
AIL 926 169.5 156.1 70.5
AJNa 365 f 200.4 189.5 92.7
AJO 365 f 156.3 148.2 75.4
AJP 392 177.1 165.0 83.9
AIU 365 j 85.0 77.9 43.3AJV 365 j 79.5 72.7 42.0AIW 381 f 171.2 166.0 85.5
AIN 345 f 183.1 177.5 88.8AIY 345 m 133.6 122.2 62.7AIZ 345 m 171.6 155 1 77.3
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Turtle code
Original capture 

location toond no f Sex

Shell measurements fminf 

Caranace length Plastron length Plastron width
AK • 1365 m 179.8 161.5 83.3
AKL 345 m 143.8 136.9 71.4
AKM 345 m 183.0 168.2 82.2
AKN ' 345 m 182 8 166.2 84.0
AKO 345 m 150.0 143.4 77.0
AKP 345 f 187.3 178.0 86.4
AKU 345 m 186.7 175.7 89.1
AKV 345 j 82.0 76.0 42.8
AKW 345 f 136.1 128.7 69.4
AKX 365 j 6 1 5 57.6 34.4
AKY 365 f 193.6 185.5 89.7
AL 1365 f 186.0 173.9 86.4
ALM 1720 f 183.5 174.7 86.6
ALN 1720 m 167.6 154.9 77.6
ALO 1720 f 186.3 179.9 88.7
ALP 365 m 169.5 156.9 77.4
ALP 1720 m 173.7 162.1 81.5

ALU 365 m 174.2 159.5 79.1
ALV 365 m 173.1 154.9 78.1
ALW 365 m 181.6 165.7 84.9

ALX 365 m 105.7 98.8 50.2

ALY 365 j 65.9 62.4 34.3

AN 1365 f 183 173.1 86.6

ANO 365 J 102.8 97.6 53.0

ANOP 345 m 151.6 148.2 77.2

ANOU 345 J 88.2 81.9 45.3

ANOV 345 j 88.7 84.7 46.1

ANOW 345 j 79.9 75.2 40.7

ANOX 345 j 96.1 87.2 45.6

ANOY 345 j 88.8 82.6 47.2

ANP 365 f 191.0 184J 87.3

ANPT 839 m 110.8 104.4 55.8

ANPU 839 f 124.2 120.8 64.2

ANPW 613 j 68.2 62.9 35.7

ANPX 613 m 182.9 166.3 84.1

ANUV 613 m 129.5 124.2 61.1

ANU%' 613 m 124.5 119.6 62.4

ANUX 613 j 104.9 98.5 53.3

A N U \' 72 m 173.8 156,8 79.5

ANY 365 f 173.2 163.3 86.9

ANVAA' 72 m 180.7 163.8 85.3

ANVX 72 m 123.1 115.1 60.3

A N \Y 72 j 109.1 102.1 55.2

ANW 365 j 37.2 31.7 19.9

A N W ^ 72 j 107.5 102-4 55.2

a n w y 72 f 105.8 101.6 53.7

ANX 365 m 153.7 156.4 75.0

ANXY' . 72 f 143.1 133.5 73.5

ANY 365 f 181.6 175.9 86.5

ANZ 365 j 40.4 36.2 22.0
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Shell m easui n nen tt
Original capture

Turtle code location foond no.1 Sex Caraoace lencth Plastron Teneth Plastron width
AO 1365 m 142.0 136_: 68.1
AOP 365 f 151.5 145.1 74,8
AOPU 72 tn 95.4 87.7 49.9
AOPV 72 j 80.9 75.4 41.3
AOPW 621 m 120.3 1115 62.9
AOPX 613 f 175.0 168.4 85.3
AOPY 945 m 106.8 lO lJ 55.8
AOU 365 f 147.2 137.6 71.5
AOUV 168 m 190.8 1805 87.9
AOUW 292 j 89 3 84.8 43.9
AOUX 72 tn 102.4 93.8 51.9
AOUY 72 m 99.5 92.8 50.5
AOV 365 m 125.5 114.7 62.8
AOVW 72 f 106.3 98.6 57.0
AOVX 621 m 174.3 157.8 80.8
AOVY 877 i 103.3 92.8 53.4
AOW 365 m 118.1 111.6 58.7
AOWX 945 f 122.2 115.0 61.1
AOWY 877 m 153.2 145.8 75.5
AOX 365 f 166.6 168.4 80.9
AOXY 839 f 187.8 1825 88.3
AOY 365 m 111.1 1005 55.8
AP 1365 m 164.1 1485 80.4
APU 365 j 83.8 79.0 40.4
APUV 888 f 201.2 1925 93.9
APUW 839 m 173.1 1605 87.5
APUX 839 tn 181.0 163.6 86.1
APUY 839 tn 168.6 156.5 83.5
APV 365 j 91.5 83.0 47.4
APVW 839 tn 194.9 177.0 91.3
APVX 839 tn 124.8 1185 61.6
APVY 839 m 110.5 103.8 53.9
APWX 839 tn 162.4 1475 78.3
APWY 839 j 89.3 86.1 48.8
APX 365 tn 131.4 1165 60.9
APXY 839 tn 166.7 151.7 82.6
APY 365 m 112.2 104.6 55.5
AU 888 tn 160.3 1475 75.6
AUVW, 839 tn 105.6 98.1 51.9
AUVX 839 m 161.0 149.1 77.2
AUVY 839 tn 145.8 136.0 70.0
AUWX 981 tn 155.6 138.6 72.3
AUWY 839 tn 162.0 149.8 79.4
AUXY 839 tn 160.7 1559 78.1AV 888 tn 170.7 1515 80.3AVW 365 tn 108.6 99.8 52.8AVWX ' 839 tn 131.7 1255 65.8AVWY 839 tn 114.1 107.8 56.3AVX 365 tn 111.6 104.8 53.5AVXY 839 f 179.8 1751 88.7
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Shell measurements fmm'l

T urtle code
Original capture 

location foond no.'» Sex Caraoace length Plastron length Plastron width
AVY 365 f 105.4 100.2 55.2
AW 888 f 192.3 182.2 91.4
AW X 365 f 95.5 92.5 50.8
AW XY 621 m 178.3 163.7 79.2
AW Y 365 j 99.9 95.7 50.7
AX 888 m 186.9 175.6 88.9
AXY 839 m 121.0 112.8 58.5
AY 888 m 129.9 116.8 62.9
B 1365 m X X X
E C crossing f 190.1 181.4 90.4
BCH 365 j 83.7 7 7 J 43.7
BC H I 345 j 87.6 82.4 47.0
BC H J 621 m 186.1 173.2 83.0
BCHJa 621 j 97.7 85.9 48.6
BCHK 621 j 67.2 6 2 J 35.7
B C H L 613 m 108.7 101.0 55.8
BCHN 72 m 173.2 159.0 79.8
E C H O 72 m 179.7 163.8 83.8
BCHP 72 m 164.0 157J 75.2
BCHU 72 f 111.5 102.4 55.1
BCHV 72 f 130.1 124.4 67.9
BCHW 72 j 96.7 90.5 49.8

BCH X 72 f 108.4 103.8 54.7

BCHY 77b j 83.9 78.0 42.7

BCI 365 j 80.5 75.2 43.0

B C IJ 72 f 174.4 165.7 83.2

BCIK 72 f 168.6 163.4 78.8

B C IL 72 tn 176.2 161.9 84.1

BCIN 72 f 114.1 109.1 55.3

BCIO 72 f 192.7 182-1 91.4

B C IP 72 m 111.8 102.6 54.3

B c r u 292 f 110.8 106.1 55.3

BCIV 292 J 96.7 88.1 48.2

B c r w 292 f 96.8 91.5 47.5

BCIX 292 j 87.9 82.4 43.8

BCIY 292 80.2 76.0 42.1

BCJ 365 81.7 74.0 42.7

BCJK 292 83.2 77.6 42.7

BCJL 292 51.0 46.3 28.1

BCJN 292 74.4 71.9 39.2

BCJO 292 50.8 46.3 26.5

BCJP 292 j 52.7 48.4 27.2

BCJU 292 j 53.6 48.5 29.1

BCJV 292 j 49.9 45.9 26.3

BCJW 888 m 162.9 149.6 81.2

BCJX 621 m 177.1 161.4 83.7

BCJY 621 f 193.1 184 6 92.9

BCKL 77a j 48.1 43.2 25.2

BCKN 1720 m 145.9 140.0 74.1

BCKO 292 m 186.4 166.3 82.1
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Original capture
Shell measurements fTnin>

Turtle code location foond no.> Sex Plastron lensth Plastron width
BCKP 292 i 94.1 88.2 45.7
BCKU 72 f 130.7 124J 67.2
BCKV 621 m 165.1 151.7 77.9
BCKW 621 j 7L8 63.6 34.8
BCKX 621 f 124.2 119.0 62.8
BCKa 365 j 77.7 69.6 41.4
BCKb 365 j 82.4 76.1 41.1
BCKc 365 m 186.7 178.4 87.3
BCL 365 j 63.4 60.1 35.5
BCM 945 m 190.4 173.1 84.6
BCN 877 m 112.4 94.8 51.5
BCD 888 j 40.1 36.6 21.2
BCP 945 m 173.4 159.5 84.8
ECU 888 m 144.9 133.9 70.0
BCV 892 m 154.6 142.4 76.0
BCW 945 m 178.1 168.6 76.7
BCX 945 f 196.4 187.4 87.5
BCY 621 m 152.0 138.3 73.0
BH 888 m 116.8 108.3 57.3
BHI 621 j 90.7 83.4 44.2
BHJ 621 j 106.5 98.9 53.1
BHK 613 m 155.4 145.6 75.1
BHL 613 j 94.3 89.0 49.7
BHN 345 m 157.7 144.7 73.7
BHD 345 j 82.2 77.9 43.9
BHP 345 f 177.4 174.7 82.7
BHU 926 m 156.2 144.8 76.1
BHV 839 m 166.3 155.6 79.0
BHW 877 j 97.6 86.9 51.0
BHX 613 m 177.9 161.6 82.8
BHY 613 j 105.6 96.9 52.9
BHZ 613 f 181.9 173.0 84.8
BI 888 j 96.6 88.8 48.9
BIJ 877 m 160.3 149.1 73.3
BIK 877 f 128.5 121.7 61.4
BIL 877 m 114.9 103.6 56.0
B IU 945 m 163,0 150.3 79.3
BIN 945 m 169.6 156.8 77.5
BIO 621 195.7 192.3 90.0
BIP 945 f 176.2 166J 81.7
BIU 1720 m 153.8 141.6 72.0
BJ 888 j 118.8 112.6 58.9
BJX 621 f 177.7 172.7 85.4
BJK 1720 m 131.8 125.2 67.2BJL 345 m 180.9 160.7 80.5BJM 1720 f 204.3 199.5 99.6BJN 345 tn 179.9 167.5 80.8BJO 945 m 119.4 111.3 59.1BJP 945 j 89.6 82.2 45.6BJU 392 f 185.7 180,2 88.1

/
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Shell measurements fnan'S

Turtle code
Original capture 

location Coond no.f Sex Carapace length Plastron length Plastron width
BJV €21 j 98,5 87.9 51.7
BJW 621 m 124.6 115.9 62.4
BJY 613 j 48.0 43.4 26.7
BK 888 f 192.9 186.8 91.6
BKL 613 m 170.5 155.2 81.2
BKN 613 m 174.1 166.2 82.2
BKO 1720 m 172.1 162.5 79.3
BKP 1720 m 171.6 160.8 77.7
BKU 365 m 100.8 95.5 49.1
BKV 365 m 179.1 166.6 83.3
BKW 365 m 166.9 152.8 74.7
BKX 365 f 142.0 136.2 69.9
BKY 365 tn 113.7 102.4 55.3

BL* 888 f 194.6 184.6 96.8

BLU 365 f 98.6 92.2 49.2
BLW 365 f 121.8 116.5 60.3

BLX 365 j 42.9 39.0 22.9

BLY 365 j 79.9 74.0 39.9

BMN 365 j 50.7 47.0 26.1

BM O 365 175.7 160.9 80.6

BMW 345 j 47.0 41.1 25.4

BMZ 345 j 92.7 85.0 48.6

BN 888 i 121.9 116.0 63.0

BNO 365 J 53.0 46.7 26.6

BNP 365 j 66.7 61.0 3 6 3

BNU 365 j 50.2 47.0 27.2

BNV 365 162.0 152.6 72.5

BNVa 365 j 78.4 71.8 40.9

BNW  . 365 j 88.8 83.7 47.8

BNX 365 J 85.3 78.4 45.2

BNY* 374 j 73.7 70.7 38.8

BNZ 168 168,4 161.3 80.8

BO 888 m 168.9 153.3 76.1

BOU 365 j 60.7 52.5 30.3

BOV 365 j 71.6 61.2 38.5

BOW 365 m 117.6 111.5 59.7

BOX 365 j 31.7 29.2 18.6

BOY 365 m 113.2 105.0 55.7

BOZ 956 j 50.3 47.4 26.1

BP 888 m 135.1 129.0 67.2

BPQ 365 j 52.8 48.0 26.9

BPV 365 j 51.7 46.9 26.6

BPW 365 j 50.2 45.7 27.0

BPW X 365 j 53.4 49.4 29.2

BPY 365 j 55.3 50.7 29.6

BU ' 888 j 100.4 95.0 50.9

BUY 345 162.7 151.7 81.3

BUW 345 j 96.5 90.4 48.5

BUWX 345 J 88.4 80.6 47.5

BUX 345 J 92.9 86.7 47.7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



91

Original capture
Shell measurements (rtwni)

Turtle code location foond no.f Sex Caraoace l e n ^ Plastron width
BV 888 m 121.5 110,4 60.3
BVW 365 j 51.8 46.6 28.6
BVX* 365 j 48.1 443 26.9
BVY 345 j 90.2 86.4 46.0
BVZ 345 m 166.2 155.6 79.6
BWX 345 m 127.1 116.6 63.6
BWY 345 f 194.7 189.8 96.6
BWa 888 f 180.3 17Z6 80.8
BWb 888 f 123.7 120.1 65.1
BX 888 81.3 77.4 44.2
BXY 345 90.9 84.2 47.7
BY 888 86.5 78.9 45.5
C 1366 114.6 107.8 56.0
CH 888 185.1 178.8 89.4
CHI 365 77.6 69.4 39.5
CHJ 365 72.1 67.5 38.2
CHK 345 81.1 75.9 41.0
CHL 345 j 106.7 102.1 54.5
OHM 345 f 178.1 170.7 84.7
CHN 345 m 128.9 12Z9 65.9
CHO 345 m 111.2 109.2 58.2
CHP 345 m 163.6 155.0 78.6
CHU 345 f 172.7 165.5 85.3
CHV 345 m 166.0 15Z4 74.6
CHW 345 m 185.5 171.0 85.1
CHX 345 m 167.2 158.7 79.5
CHY 345 m 172.6 161.6 80.7
Cl 888 j 103.1 94.8 52.4
CIJ 345 m 165.7 155.1 78.0
CIK 345 m 173.1 159.4 76.7
CIL 613 f 144.0 137.5 71.2
CIN 613 m 161.7 149.0 76.0
CIO 613 X 113.9 103.9 56.0
CIP 621 X 48.6 43.7 26.2
CIU 1720 j 96.7 89.1 47.2
CIV 1720 j 97.5 95J 53.1
CIW 877 f 182.2 174.5 84.7
C K 839 m 144.5 137.0 71.0
CIY 839 m 112.3 100.4 52.8
CIZ 365 m 179.4 159.5 78.7
CJ 888 J 86.5 78.5 43.7
CJK 877 f 187.0 180.4 87.0
CJM 1720 m 189.0 167.5 81.9CJNa 877 f 145.3 138.5 71.6CJO 877 f 133.0 127.4 68.1CJP 877 j 104.2 9 :8 54.6CJU 877 f 133.9 1:0.0 67.1CJV 945 m 187.3 172.7 86.2CJW 945 f 197.3 193.1 94.3CSX 365 m 118.1 112.5 57.6

/
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Shell measurements fmm)

T urtle code
Original capture 

location foond no.f Sex Caraoace length Plastron length Plastron width
CJY 365 m 181.8 167.8 80.4
C JZ 839 m 130.5 118.3 63.8
C K L 365 tn 179.3 168.2 81.1
CK N 365 m 135.6 128.6 61.3
CK O 365 j 90.9 84.3 46.1
CKP 345 m 165.6 150.5 79.6
OKU 345 m 171.2 155.8 82.9
CK V 345 m 187.8 170.6 86.1
CK W 345 m 178.3 163.1 82.1
CK X 345 m 178.4 163.7 83.3
CKY 345 m 168.3 152.0 78.5
C K Z 613 m 121.5 111.4 58.7
C K a 888 m 175.4 157.8 75.9
CKb 888 m 104.9 98.3 55.2
C L 888 m 147.4 135.1 69.3
CLN 839 tn 118.2 - 109.6 57.2

C LO 345 m 201.2 182.5 90.3

C LP 345 m 171.2 154.4 80.1

C LU 345 m 141.0 130.5 67.6

C LV 345 m 147.6 138.4 72.1

CLW 621 f 175.7 170.1 84.8

CLX 1720 m 188.3 177.3 84.2

CLY 877 f 128.5 121.2 62.9

CM 888 m 161.0 145.7 73.6

CN 888 m 173.3 161.3 80.4

C N O 345 m 125.5 117.3 62.3

CNP 345 m 101.4 91.7 50.9

CN U 345 j 81.8 77.4 46.1

CNV 877 m 186.6 170.1 83.1

CN W 877 m 162.1 149.1 81.7

CN X 877 f 160.9 151.8 80.6

CN Y 877 f 167.4 155.5 82.3

CNZ 877 m 191.6 175.2 84.3

CO 888 m 141.2 131.6 70.0

COP 877 f 134.4 129.8 69.3

COU 345 j 89.0 83 _3 46.3

CO V a 877 f 130.4 123.5 65.9

CO W 877 f 127.2 121.0 65.4

COX 877 f 129.9 123.3 67.0

COY 877 f 127.6 122.8 66.4

COZ 839 tn 191.8 174.7 84.7

CP 888 f 131.8 124.4 64.9

C PU 877 J 128.8 122.4 62.7

CPV 877 m 126.6 120.4 60.0

C PW 621 j 55.5 51.1 27.8

CPX 621 f 201.8 187.2 91.1

CPY 621 m 178.8 165.5 83.5

CPZ 621 m 150.7 137.1 69.2

CU 888 m 141.6 133.9 67.7

CUV 365 f 180.5 177.0 86.2
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Shell measurements fiwin)

Turtle code
Original capture 

location foond no. I Sex Caraoace lenirth Plartrnn length PlaslTOn width
CUW 365 f 151.3 144.2 74.4
CUWY 365 ' f 135.4 126.1 66.0
eux 365 j 89.1 84.2 4 7 J
CUY 365 j 93.0 85.9 48.0
CV 888 f 166.4 157.9 80.2
cvw 345 m 178.5 162.2 79.4
cvx 345 m 168.7 153.0 80.9
CVY 345 m 148.1 135.8 70.5
cw 888 f 188.9 178.2 86.6
cwx 1720 m 112.7 103.7 54.3
CWY 345 j 101.3 92.9 51.0
CX 888 m 133.2 123.6 62.1
CXY 1720 j 112.4 103.8 54.8
CY 621 m 175.9 160.1 80.6
DJM 345 f 107.1 102.4 54.4
EFTU 621 j 93.4 86.1 49.1
HI 621 f 147.2 142.9 73.7
HU 345 m 171.8 152.9 74.7
HIJL X j 82.5 80.5 42.1
HIK 345 m 171.4 160.2 79.6
HIL 345 f 180.1 174.5 89.2
HIN 345 f 193.0 179.6 86.4
HIO 345 j 76.0 69.1 40.6
HlOP 345 m 170.9 155.3 77.1
HIPb 945 m 167.2 158.7 79.4
HIU 345 m 180.3 164.6 84.7
HIUV 621 m 168.6 160.2 78.6
HIV 345 m 186.1 172.9 88.6
HIW 345 m 128.4 119.1 66.0
HIWX 345 m 186.5 174.6 86.6
HEX 945 f 125.0 120.1 63 5
HIY 72 f 116.0 112.7 61.6
HIY 613 m 184.7 164.3 83.3
HJ 621 m 138.0 127.7 65.4
HJK 877 j 95.0 83.5 49.8
HJL 877 j 131.3 121.2 63.2
HJN 877 m 115.5 107,4 58.1
HJO 877 f 122.3 117.5 62.8
HJP 888 m 113.4 107.1 54.8
HJU 926 f 102.8 95.3 53.2HJV 613 m 107.6 99.6 51.2
HJW 72 m 177.3 166.0 81.9
HJX 613 m 137.3 125.1 66.2HJY
HK

72
621

f
m

168.5
108.3

155.1
99.1

80.6
55.5HKL 72 f 119.1 112.6 62.1HKN 72 m 122.0 116.0 58.6HKO 72 m 124.6 115.4 60.0HKP 72 m 114.7 110.4 59.3HKU 72 tn 112.0 103.7 54.5
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Shell measurements fmm^

T urtle code
Original capture 

location Cnond no.f Sex Caraoace length Plastron length Plastron width
H N P 168 m 169.2 159.1 80.0
HNV 888 j 92.2 87.3 45.7
H N W 365 m 125.4 115.1 61.9
HNX 365 m 106.9 98.6 55.3
H N Y 365 f 91.3 85.7 46.8
H O 888 167.7 162.0 81.4
HOP 888 f 133.1 123.9 68.2
HO U 72 f 115.0 112.7 60.5
HOV 72 ' f 110.8 105.3 57.2
H OW 72 m 102.4 96.1 53.4
HOX 72 f 113.1 107.0 5 7 4

HOY 345 m 169.8 161.1 80.4
HP 621 j 97.2 87.0 49.8
HP 607 j 70.0 64.4 37.3
HPU 72 j 103.8 98.8 53.8
HPV 72 f 114.4 107.0 56.9

HPW 72 f 88.9 85.4 43.9

HPX 72 j 98.2 91.0 50.7

HPV 72 j 87.5 83.8 45.2

HU 607 j 79.2 75.3 40.0

HUV 72 i 84.5 78.1 44.4

HUW b 168 m 194.3 182.6 91.3

HUX 168 m 170.1 166.4 77.0

HUV 168 m 108.1 100.1 53.3

HV 1720 m 167.5 160.6 83.8

HVW 345 f 184.1 180.6 87.2

HVX 345 j 93.0 86.6 48.1

HVY 168 tn 149.8 138.3 73.4

HVa 888 j 132.6 124.4 64.0

HW 607 j 77.1 70.3 38.4

HW X 168 f 145.6 137.3 71.7

HW Y 168 f 126.7 119.2 65.0

HX 621 m 136.8 125.3 64.4

HXY 292 m 138.5 128.5 68.8

HY 621 j 87.4 77.8 46.4

Ha 888 f 212.8 196.8 98.8

I 888 m 163.2 150.6 77.0

IJ 365 m 109.6 98.2 55.1

UK 406 f 198.3 186.7 94.9

IJL 345 J 80.4 73.9 41.6

IJM 345 m 156.7 141.5 77.9

UN 345 m 114.9 108.5 56.1

UO 345 f 104.5 99.4 55.3

UP 345 j 79.7 72.8 41.9

u u 345 m 123.9 117.5 62.0

IJV 345 m 124.8 117.0 64.1

u w 345 m 121.0 114.6 60.2

u x 345 m 156.2 145.0 75.6

UY 374 j 90.7 84.9 46,3

UZ 406 m 177.8 160.7 82.0
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Shell measufements fmm)
Original capture

Turtle code location fnond no.f Sex Caraoace length Plastron leneth Plastron width
IK 365 m 168.1 157.7 77.5
IKL 365 f 137.6 129.7 67.6
IKN 365 m 128.5 118.7 64.5
IKO 365 m 171.8 159.9 84.5
IKP 365 f 86.6 81.4 46.6
IKU 365 m 140.0 130.0 68.6
IKV 365 f 88.4 81.8 45.8
IKW 72 j 91.5 85.3 45.8
IKX 72 m 116.9 99.8 53.4
IKY 72 j 112.3 108.5 56.8
IL 607 j 105.9 101.8 53.4
ILM 877 f 149.7 140.7 71.0
ILN 292 j 86.4 80.6 44.1
ILO 292 j 88.7 81.4 47.0
ILP 292 j 85.5 78.1 43.2
ILU 292 j 76.6 70.2 40.3
ILV 877 j 95.7 84.0 50.5
ILW 888 m 168.0 156.5 79.4
ILY 345 m 181.4 166.7 83.3
IM 365 m 112.4 103.3 57.9
IMZ 945 m 167.8 155.4 76.0
IN’ 607 j 97.3 92.5 50.0
INC 72 m 101.1 96.7 51.0
IMP 72 f 97.6 89.8 48.7
INU 72 m 114.1 104.6 56.2
INV 72 f 122.1 116.5 62.5
INW 72 j 98.9 91.6 50.6
INX 72 m 112.4 103.5 55.6
INY , 72 m 117.7 110.3 57.8
ID 345 j 108.3 100.2 50.7
lOP 72 m 125.7 117.6 62.5
lOU 72 j 89.8 85.3 46.6
lev 72 m 122.4 112.4 60.2
low 72 j 95.8 88.9 48.8
lOX 168 m 193.2 174.1 86.6
lOY 168 tn 124.8 ;il6 .4 59.2
IP 365 j 100.6 95.5 51.1
IPU 168 f 152.9 148.7 72.2
IPV 168 f 108.3 103.4 57.6
IPW 168 m 164.8 156.2 75.6
IPX
IPY

168
168

j
m

114.2
156.6

108.7
147.3

59.2
77.9lU 888 j 92.4 84.6 47.4lUV 877 j 101.4 94.4 51.7lUW

lUX
877
877

f
m

128.5
114.6

120.5
107.0

62.7
55.2lUY 877 m 126.0 119.4 60.0IV

IVW
rvx

892
168
292

m
f

j

132.9
110.7
85.0

121.6
103.6
75.5

65.8
55.5
43.2
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Shell measurements

Turtle code
Original capture 

location foond no.f Sex Plastron leneth Plastron width
IVY 877 f 132.2 127.8 66.2
IW 892 i 105.6 97.7 51.6
IW X 877 f 121.0 109.3 59.4
rw Y 877 f 130.9 121.7 62.0
DC 892 m 139.0 134.6 69.8
DCY 621 j 100.2 91.1 51.3
lY 839 m 125.9 1 1 7 J 63.2
JK 621 m 126.7 118.3 63.4
JKL 888 m 128.9 123.4 63.4
JKN 888 j 56.4 51.4 29.3
JKO 945 f 190.4 181.4 91.0
JKP 621 m 169.7 160.3 78.7
JKU 621 m 172.8 155.8 78.5
JKV 621 f 179.9 173.7 89.0
JKW 621 m 183.5 171.6 83.9
JTCX 621 f 134.2 130.1 65.1
JKY 621 tn 126.8 120.3 61.5
JL* nesting f 191.5 182.4 X

JLN 621 j 97.7 88.6 49.7

JLO 613 f 190.8 181.6 90.3
JLP 1720 m 175.0 164.0 81.0

JLU 345 m 153.5 148.5 75.0

JLU a 1720 f 203.9 197.2 94.0

JLV 345 m 174.4 161.3 84.0

JLV a 1720 f 134.1 128.0 69.4

JLW 345 j 100.5 94.8 50.5

JLX 345 j 85.9 81.0 45.8

JLY 345 j 83 5 77.9 43.5

JM* crossing f 215.7 205.3 98.3

JM Z 345 j 92.8 87.6 47.4

JN 621 j 89.8 80.9 47.4

JNO 345 j 89.6 82.7 47.0

JN P 406 tn 135.6 126.7 62.4

JNU 365 m 116.8 110.9 58.3

JNV 365 m ' 179.8 166.1 80.5

JNW 365 f 118 2 111.3 58.3

JNX 365 m 119.6 107.0 59.1

JN Y 365 j 62.5 59.5 34.2

JO 888 f 159.1 152.4 74.0

JO P 72 f 173.1 166.2 82.9

JOU 72 tn 179.0 167.4 83-7

JOV 72 f 196.0 191.9 91.2

JOW 72 f 135.4 130.3 68.3

JOX 72 f 109.4 105.1 54.4

JOY 72 tn 100.1 94.2 52.6

JP 888 f 156.4 150.1 74.2

JPU 72 j 99.1 95.4 51.7

JPV 72 f 105.9 100.0 52.8

JPW 72 f 108.2 104.2 55.9

JPX 72 j 88.4 83.1 46.8
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Shell measurements (mm)

Turtle code
Original capture 

location fpond no.l Sex Caraoace leneth Plastron leneth Plastron width
JPY 72 j 99.3 91.7 49.4
JPY 292 f 104.3 92.5 51.8
JU 888 m 158.9 146.7 73.5
JUV 345 j 82.7 77.8 43.0
JUW 345 j 89.9 80.6 47.2
JUWX 345 j 51.5 47.8 27.7
JTJX 345 j 84.2 78.1 44.7
JV 888 m 172.0 152.4 78.9
JVW 292 j 91.7 82.6 45.5
JVX 292 j 85.7 76.6 41.8
JVY 621 ID 124.3 116.1 61.9
JW 345 m 165.6 153-4 80.2
JWX 345 j 42.2 38.0 22.2
JWY 345 j 44.1 40.2 24.1
JX 345 f 123.7 121.6 63.7
JXY 621 m 132.4 122.9 64.1
JYa 345 j 88.2 82.9 45.3
JZ 345 f 188.2 178.6 86.1
Ja 888 j 110.8 104.3 56.5
K 888 m 171.9 159.9 80.2
KL 926 m 187.8 168.5 86.1
KLN 345 j 105.9 100.2 55.2
KLO 345 f 178.2 171.9 86.3
KLP 345 m 202.0 184.5 89.3
KLU 345 j 91.6 84.6 48.1
KLV 345 j 93.6 87.8 48.5
KLW 345 m 189.4 171.5 88.3
KLX 345 174.8 159.0 82.9
KLY 613 j 112.9 104.5 56.1
KMO 345 m 191.0 173.2 85.2
KN 926 f 189.1 184.0 90.6
KNO 613 m 163.1 154.8 77.4
KNP 72 f 120.0 114.5 62.5
KNU 72 f 120.5 111.5 60.5
KNV 292 m 121.9 113.0 59.5
KNW 72 f 99.2 93.7 51.1
KNX 72 f 122.2 116.8 60.3
KNY 72 f 141.2 142.4 69.5
KO 621 j 100.8 94.1 52.9
KOP 292 j 89.0 82.8 46.1
KOV 292 j 87.0 79.7 43.9
KOW 168 f 200.2 195.5 94.6
KOX 168 f 181.3 176.4 88.0
KOY 168 m 159.5 150.2 75.4
KP 607 m 101.9 996 49.0KPV 168 m 126.8 119.1 61.9KPW 168 m 123.1 114.1 61.3KPX 168 f 111.5 106 6 58.2Kp y

KU
168
345

j
j

84.9
77.2

78.1
72.2

43.5
39.9
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T urtle code
Original capture 

location fnond no.> Sex

Shell measurements rmmi 

Caraoace leneth Plastron leneth Plastron width
KUV 877 m 154.4 141.6 70.3
KUW 839 m 171.0 162.5 81.0
KUX 168 m 154.1 146.8 71.7
KUX 926 m 183.0 166.7 79.6
KUY 365 m 94.1 85.6 45.7
KV 365 f 192.9 184.4 90.1
KVW 1720 m 170.9 159.6 79.6
KW 365 m 18.7 99.0 54.8
KW X 168 m 142.4 133.7 69.5
KW Y 168 f 182.5 177.1 89.5
KX 365 j 91.5 84.5 46.0
KXY 345 f 187.1 182.4 90.1
KY 365 f 188.0 176.0 84.2
L 888 m 185.6 175.3 86.4

LMN 345 m 146.7 134.1 66.8

LMO 839 m 186.6 169.7 84.1

LM U 345 f 199.0 185.1 95.1

LM V 345 m 172.7 160.9 84.8

LMW 945 m 187.3 169.9 84.4

LM X 621 m 173.4 160.4 82.0

LM YZ 945 f 127.2 119.0 65.4

LM Z 345 m 167.9 152.6 79.4

LN 345 j 96.8 92.2 53.1

LNO 345 m 179.7 164.9 81.8

LNP 345 f 172.8 164.0 80.2

LNPU 345 m 126.9 121.2 63.8

LNUa 168 f 106.5 102.3 53.2

LNUb 877 m 116.3 109.7 56.3

LNV 839 f 179.6 172.3 85.0

LNW 945 m 163.6 150.8 78.2

LNX 945 m 174.3 162.1 82.8

LNY 345 m 179.7 164.9 85.4

LNZ 345 j 103.4 97.0 51.3

LO 345 j 88.6 84.5 47.0

LOP 292 j 79.2 70.7 40.7

LOU 621 j 64.1 58.6 34.2

LOV 621 j 65.7 57.6 33.2

LOW 1720 m 189.1 176.6 87.7

LOX 888 j 106.5 99.9 54.9

LOY 888 j 100.2 97.2 49.9

LP 345 j 88.7 83.3 47.0

LPU . 345 m 127.2 119.6 61.7

LPV 345 f 113.3 108.1 57.1

LPW 621 m 171.6 165.6 86.6

LPX 345 j 93.4 87.9 49.5

LPY 621 m 129.7 121.9 63.1

LU 365 m 191.3 171.7 88.4

LUV 345 f 93,6 87.1 48.4

LUW 345 m 158.4 143.0 77.2

LUX 72 f 131.1 125.7 65.4
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Shell measurements fmm)
Original ci^Jture

Turtle code location foond no.f Sex Caraoace leneth Plastron leneth Plastron width
LUY 72 m 110.5 100.6 56.7
LV 365 f 103.6 98.3 53.2
LVW 345 j 91.5 84.8 46.8
LVX 72 f 206.7 200.6 97.2
LVY 72 f 112.5 106.6 567
LW 365 tn 174.2 158.2 81.7
LWX 72 f 107.8 102.9 56.1
LWY 168 f 148.5 146.9 75.7
LX 365 f 108.7 103.3 56.7
LXY 72 m 122.1 116.7 60.8
LY 365 m 93.3 88.5 47.5
MWZ 345 m 171.8 154.3 76.9
N 1365 f X X X
NO 945 m 152.9 147.2 74.0
NOP 168 f 118.8 111.5 59.5
NOU 168 f 99.2 96.8 51.6
NOV 613 m 186.9 169.8 88.0
NOW 613 f 118.5 110.7 60.8
NOX 613 j 67.9 62.4 33.6
NOY 345 f 135.1 131.0 70.0
NOZ 945 f 118.0 110.4 58.1
NP 888 m 157.8 150.8 70.8
NPV 945 m 101.4 92.6 49.4
NPW 345 f 165.8 156.3 81.8
NPX 345 m 135.0 126.3 64.2
NPY 345 j 87.3 80.2 44.6
NU 839 m 1117 103.6 54.5
NUV 621 f 116.6 108.8 56.8
NUW 613 f 212.1 200.0 102.3
NUX 613 m 163.4 152.6 76.7
NUY 77 j 98.7 93.1 47.2
NUZ 345 f 99.5 96.4 54.5
NV 839 m 169.2 154.2 84.4
NVW 345 j 100.7 93.7 50.5
NVX 345 j 82.0 73.9 44.8
NVY 621 j 95.4 89.1 50.3
NW 839 m 143.6 137.9 71.0
NWX 72 f 180.2 171.8 84.9
NWY 77 j 84.0 80.3 45.0NXY 72 m 134,4 124.2 66.1
NXa** 839 m 134.7 119.3 64.9NXb
NY

345
345

m

j
183.1
80.0

168.1
75.2

80.5
42.5O 888 m 175.4 168.5 82.7OPU

OPV
OPW
OPX
OPY
OU

72
72
72
72
72

345

m
f

m
m
m

j

196.7
203.3
176.6 
173.0
145.7 
85.7

179.4
192.2
166.2
154.4 
135.6
80.1

91.3
97.8 
85.6
76.2
72.3
41.8
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Shell m easurem ents

Turtle code
Original capture 

location foond no.1 Sex Caraoace leneth Plastron leneth Plastron width
OUV 168 j 88.4 85.7 45.5
OUW 168 m 118.7 116.5 5 6 9
OUX 168 m 116.7 105.6 57.8
OUY 168 f 106,3 101.7 53.4
O V 345 m 103.2 94.8 51.2
o v w 72 j 107.6 102.7 5 2 8
o v x 168 m 175.4 164.8 82.3
OV Y 168 m 175.9 159.9 80.3
o v z 168 f 190.7 177.7 89.9
o w 392 f 185.6 173.9 83.6
o w x 168 m 185.0 172.2 86.2
OW Y 168 m 128.6 118.6 63.5
OX 365 m 179.9 162.6 82.8
OXY 945 m 154.8 144.7 73.4
GY 945 f 183.1 180.1 88.1
OZ 621 m 165.1 151.4 74.1
P 1365 m X X X
PU 365 m 111.6 103.3 53.6
PUV 345 f 189.1 181.1 88.2
PUW 345 m 163.2 155.0 74.3
PUX 345 m 94.9 87.1 49.1
PUY 345 j 48.3 45.1 26.6
PV 365 j 86.9 80.6 46.3
PVW 345 j 89.7 84.0 46.1
PVX 345 m 173.1 162.6 82.9
PVY 345 m 161.5 154.4 70.6

PWX 345 f 145.4 141.2 73.6
PW Y 345 j 84.7 79.5 41.2

PX 365 m 106.1 96.5 53.7

PXY 345 m 199.2 177.0 86.8

PY 945 m 163.4 149.2 77.7

PZ 365 j 98.6 84.0 45.6

u 1365 J X X X

u v 945 m 122.3 114.7 63.2

UVW Y 888 m 183.8 168.7 81.3

u v x 345 m 187.4 173.2 86.3

UVY 345 m 175.3 159.5 81.8

UVZ 345 j 108.9 101.8 53.9

UW 888 m 115.7 111.8 59.1

u w x 345 j 90.9 85.6 46.5

U W Y 345 m 131.8 123.6 66.4

UX 888 f 190.3 181.4 92.9

UXY 345 m 94.4 88.3 49.7

UXYa 345 f 203.6 189.7 89.0

UY 888 m 194.3 174.0 85.4

UZ 945 j 117.5 111.4 60.0

V 888 j 117.1 109.6 57.7

v w 839 m 176.5 155.5 78.3

v w x 345 f 130.0 123.0 67.9

VWY 345 f 193.7 184.7 95.0
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Shell measurements fmm)
Original capture

Turtle code location ftaond no.1 Sex Caraoace leneth Plastron leneth Plastron width

VWZ 345 j 112.4 105.7 54.1

v x 839 m 123.0 116.6 61.4
VXY 345 j 93.8 87.4 48.0

VY 621 j 42.8 39.3 22.9
VZ 621 f 191.0 184.7 90.7
VZ 892 j 101.1 93.3 51.5
W 888 j I I I  4 103.2 56.7
WX 892 m 160.6 154.9 78.0
WXY 345 j 78.9 72.5 39.4
WXYa 621 m X 178.9 87.5
WY 892 f 117.5 113.6 57.7
WZ 365 j 90.1 81.8 43.3
X 888 f 121.3 116.3 60.4
XY 839 f 146.4 141.6 69.7
XZ 345 m 190.0 1649 82.1
Y 888 j 94.2 87.4 47.4
YZ 945 m 173 0 152.7 73.7

• lower case letters in turtle codes are not part of the code but shown to distinguish between turtles accidentally marked with the 
same codes. 

l=recaptured in Pond 345.
2=?ecaptured in Pond 839.
3=crossing Highway 93 next to Crow Creek bridge.
4=recaptured in Pond 877.
5=recaptured in Pond 365.
6-recaptured in Pond 345.
7=iecaptUfed in Pond 365.
8-nesting next to Pond 1854.
9 - crossing Ninepipe Road at south end of dam.
10-recaptured in Pond 886
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