
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1997

Investigation into the search characteristics of three hillclimbing Investigation into the search characteristics of three hillclimbing

algorithms algorithms

David F. Glass
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Glass, David F., "Investigation into the search characteristics of three hillclimbing algorithms" (1997).
Graduate Student Theses, Dissertations, & Professional Papers. 8189.
https://scholarworks.umt.edu/etd/8189

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F8189&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/8189?utm_source=scholarworks.umt.edu%2Fetd%2F8189&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

i
It I

Maureen and Mike
MANSFIELD LIBRARY

The University o f IVIONTANA

Permission is granted by the author to reproduce this material in its entirety,
provided that this material is used for scholarly purposes and is properly cited in
published works and reports.

* * Please check "Yes" or "No" and provide signature * *

Yes, I grant pennissioii
No, Tde-neWzrant permission

Author’s Signati

Date

Any copying for commercial purposes or financial gain may be undertaken only with
the author's explicit consent.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

AN INVESTIGATION INTO THE SEARCH CHARACTERISTICS

OF THREE HILLCLIMBING ALGORITHMS

by

David F. Glass

B.A., The University of Montana, 1990

presented in partial fulfillment of the requirements

for the degree of

Master of Science

The University of Montana

December, 1997

Approved by:

Dean, Graduate School

12 . - (S - ^ 0
Date

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

UMI Number: EP38990

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction Is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, If material had to be removed,

a note will indicate the deletion.

UMI
OMSwlxtkm PVbliahwtg

UMI EP38990
Published by ProQuest LLC (2013). Copyright In the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work Is protected against

unauthorized copying under Title 17, United States Code

uest*
ProQuest LLC.

789 East Elsenhower Parkway
P.O. 60x1346

Ann Arbor, Ml 48106 - 1346

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Glass, David F., M.S., December, 1997 Computer Science

An Investigation into the Search Characteristics of HillcHmbing Algorithms (70 pp.)
L

Director: Alden H. Wright

In recent years, iterative search techniques have emerged as practical and robust
function optimization methods. The general method called hiUchmbing is presented here.
In particular, three hülclimbing algorithms that make use of the mutation operator are
investigated. These are a single-bit mutation algorithm, RMHC, and two varieties of a
multi-bit mutation (macromutation) algorithm, which we call MMHCl and MMHC2.
Several important algorithm parameter settings are varied across the runs of these
algorithms, and three different problem sizes are used. Each algorithm is tried on the six
bit fully easy and six bit fully deceptive problems of Goldberg[7] as weU as on the NK
landscapes due to Kauffman[5].

The results indicate the relative superiority of the macromutation algorithms as
compared with the single-bit mutation algorithm. This is especially true for the
macromutation algorithm, MMHC2, whose mutated bits are localized with respect to
each other along the length of the bit string. Also, it is seen in each problem that as the
number of bits mutated is increased past a certain value, performance of all the
algorithms is degraded. The effect on relative algorithm performance of variations in
other parameter settings is also illustrated. An answer to the question, “Why does
macromutation do well on separable functions?” is given and the effect of problem length
on algorithm performance is examined.

11

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table of Contents

Abstract .. ii

Table o f Contents... 1
List o f Fig u r e s .. 3
Chapter 1: Introduction to H illclim bing4
1.1 A Problem...4
1.2 A Solution...5
1.3 Benefits..7
Chapter 2: Th e Alg o r ith m s .. 8
2.1 The Algorithms.. 8
2.1.1 General Hillclimbing Algorithm...8
2.1.2 RMHC ...11
2.1.3 M M H C l... 11
2.1.4 M M H C l... 12
2.2 Linear (affine) Interaction, Coupling and Separability..13
2.2.1 Linear (affine) Interaction and Coupling..13
2.2.2 Separability...16
2.3 Tlie Hypotheses..17
2.3.1 Macromutation..17
2.3.1.1 Overall Performance... 17
2.3.1.2 Number and Position of Bits Mutated.. 17
2.3.1.3 RMHC’s Strength..17
2.3.2 emoves...18
2.3.3 nm oves.. 18
2.3.4 Informal Summary of Hypotheses and Observations... 19
CHAPTER 3: The Problem s...20
3.1 Fully E asy.. 21
3.2 Fully Deceptive.. 22
3.3 N K Landscapes.. 23
3.4 Formal Statement of Hypotheses and Observations.................................... 26
Chapter 4: Th e Ex per im ents..27
4.1 Parameters... 27
4.1.1 N .. 27
4.1.2 nmoves and emoves...28
4.1.3 b its ...28
4.1.4 K .. 29
4.2 Procedures... 30
4.2.1 Implementation.. 30
4.2.2 Preliminary Hillclimbs... 30
4.2.3 Final Hillclimbs...31

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5: Data and Resu lts ... 33
5.1 All Algorithms / All Problem Sizes.. 33
5.1.1 All Algorithms ; bits mutated................. 33
5.1.1.1 Deceptive... 33
5.1.1.2 E a sym d N K ... 34
5.1.2 All Algorithms : bits mutated / nmoves and emoves.. 35
5.1.2.1 Deceptive... 35
5.1.2.2 Easy...36
5.1.2.3 NK Landscapes...37
5.1.3 All Algorithms: IT.................. 38
5.1.3.1 NK Landscapes.. 38
5.1.4 All Algorithms; K / nmoves and emoves... 39
5 .1.4.1 NK Landscapes...39
5.2 MMHCl / All Problem Sizes..40
5.2.1 MMHCl / Deceptive: bits mutated..40
5.2.2 MMHCl / Deceptive: bits mutated / nmoves and emoves..41
5.2.3 MMHCl / Deceptive: N ! nmoves and emoves.. 42
5.2.4 MMHCl / Easy: bits mutated.. 43
5.2.5 MMHCl / Easy: bits mutated / nmoves and emoves..44
5.2.6 MMHCl / Easy: N / nmoves and emoves..45
5.2.7 MMHCl / N K Landscapes : bits mutated ! K ..46
5.2.8 MMHC1 / NK Landscapes : bits mutated / nmoves and emoves.. 47
5.2.9 MMHCl I NK Landscapes: K / nmoves and emoves...48
5.3 MMHC2 / All Problem Sizes..49
5.3.1 MMHC2 / Deceptive: bits mutated..49
5.3.2 MMHC2 / Deceptive: bits mutated / nmoves and emoves..50
5.3.3 MMHC21 Deceptive: N / nmoves and emoves.. 51
5.3.4 MMHC2 / Easy: bits mutated...52
5.3.5 MMHC2 / Easy: bits mutated/ nmoves and emoves..53
5.3.6 MMHC2 / Easy: N / nmoves and emoves..54
5.3.7 MMHC2 / Landscapes: bits mutated / K .. 55
5.3.8 MMHC2 / N K Landscapes : bits mutated / nmoves and emoves...56
5.3.9 MMHC2 / 7/KLandscapes: K / nmoves and emoves... 57
5.4 RMHC / All Problem Sizes.. 58
5.4.1 RMHC / Deceptive: bits = 1 / nmoves and emoves..58
5.4.2 RM HClE^sy. b its= 1 / nmoves and emoves...59
5.4.3 RMHC / NK Landscapes: bits = 1 / nmoves and emoves.. 60
Chapter 6: Conclusio ns... 61
6.1 Superiority of Macromutation.. 61
6.2 Superiority of Localized Macromutation..62
6.3 The Strength of RMHC.. 63
6.4 The effects of varying nmoves, emoves and N ..64
6.4.1 nmoves and emoves................... 64
6.4.2 N ...65
6.4.3 The bits Parameter...66
6.5 Summary.. 66
Ap p e n d ix .. 68
B ib lio g r a p h y ..7 0

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Figures

Figure 2.1. Pseudo-code fo r the general hillclimbing algorithm...10

Figure 2,2. Pseudo-code fo r mutation under RM HC..11

Figure 2.3. Pseudo-code fo r mutation under MMHCl..12

Figure 2.4. Pseudo-code fo r mutation under MMHC2... 12

Figure 3.1. A fully easy six bit problem. Maximum fitness point is 000000................. 21

Figure 3.2. A fully deceptive six bit problem. Maximum fitness point is 111111............................. 22

Figure 3.3. Elements o f an NK function where N = 6 and K = 2 (substring length = 3 }25

Figure 3.4. N K Fitness calculation for the string 101100..25

Figure 4.1. Summary o f elements comprising the hillclimbs...29

Figure 5.1 — 5.48. Charts graphically showing hillclimb results... 3 3 - 60

Figure A.I. Sample UNIX C-Shell script used to run the MMHC2 algorithm..................................68

Figure A.2. Sample UNIX command-line invocation of the MMHCl algorithm............................. 69

Figure A.3. Sample UNIX command-line invocation of the MMHC2 algorithm............................. 69

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 1

Introduction to Hillclimbing

1.1 A Problem

Real world problems whose instances contain many variables pose a daunting challenge

to people charged with arriving at optimal solutions to those problems in a reasonable

amount of time, using a reasonable amount of resources. One such problem might be the

weekly scheduling of employee work shifts at a large company. Company management

would have to take into account the various requirements of each of the many jobs

involved in their business and the suitability of the qualifications of the employees

available to fill those jobs. The employees’ personal preferences regarding the shifts they

worked, as well as the demands placed on them by their outside responsibilities would all

be factors influencing such a decision. Other considerations, such as the completion times

allotted for necessary tasks, the average rates at which the individual employees have

worked in the past to complete such tasks, job deadlines and even the availability of

employees due to holidays are examples of the many additional factors complicating cost

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

effective arrival at an optimal solution. An optimal solution in this case would likely be

one that satisfied the most employees while at the same time allowing completion of the

most work in the least amount of time. One method of searching for solutions to such

difficult and multifaceted problems would be to work out with pencil and paper each

different combination of employees in different shifts, evaluating each potential work

schedule, one at a time, according to its overall effectiveness, given the criteria

mentioned above. For a small company of five employees, this method of work shift

scheduling might be sufficient. For a company of 200 employees, this weekly task would

be prohibitively complex.

1.2 A Solution

As the size and complexity of multivariate optimization problems like this one grow,

iterative techniques that use various operators to navigate the search space become viable

alternatives to exhaustive search[2]. If we are able to find a representation for a particular

problem that easily fits into a familiar, expedient solution technique, then we have

accomplished a large part of the task of efficiently searching for better solutions to our

problems. By way of example, using the particular problem mentioned, one combination

of employees scheduled to work certain shifts might be better than another combination.

We might assign a numeric value (fitness) to each of the two schedules, depending on

how good they are, given the criteria we have chosen to use to evaluate them. Changing

one employee’s shift assignment might be similar to complementing one bit in a bit

string. It would likely have some effect (small or profound) on the relative value of that

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

particular schedule. Trying different combinations of shift schedules would be similar to

mutating bits in a bit string, thus altering string fitness.

Representing multivariate problems as bit strings allows us to apply computerized search

methods to them. One such computerized search technique is the iterative procedure

called hillclimbing[l]. We perform a hillclimb on a bit string simply by repetitively

changing bits in the string, which hopefully results in our finding a better bit string, one

step at a time[4]. Before we perform a hillclimb on a bit string though, we must have a

place to start. In this work, we start at a point, the composition of which determines its

position on a landscape. Each of the points on the landscape consists of a concatenation

of N bits (a string of length AO, with each bit valued at 0 or 1. The landscape itself

consists of 2^ of these points. Associated with each point on the landscape is a real

valued number between 0 and 1 that depends on the values of the point’s constituent bits

and their locations in the string. This number is called the fitness of the point. (Fitness

can be thought of as the characteristic of a point that determines its place among all of the

2^ points comprising the landscape.) We conduct our search for highly fit points in this

search space. In so doing, we are moving on the landscape. The immediate neighbors of

any point in the search space are points that differ from it in the value of only one bit (in

the case of the RMHC algorithm) and up to as many as six bits (in the MMHCl and

MMHCl algorithms). We randomly choose a point on the landscape and call it the

current point. We immediately complement one or more of the point’s bits, effectively

changing its location on the landscape to that of one of its neighbors. We evaluate the

new point’s fitness. At this point, there are three possibilities. If the point newly created

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

by mutation is of higher fitness than the previous point, we accept it as our current point

and continue from there. If the new point is of lower fitness than the previous point, we

apply mutation to the previous point again, generating another new string to evaluate. We

only do this up to a specified number of times {nmoves), after which time a new random

starting point is generated. If the new point is of equal fitness to the previous point, we

accept it as our new current point. This also, is done up to a specified number of times

{amoves), after which time a new random starting point is generated. This mutate-

evaluate-select procedure is iterated until there is no additional fitness improvement,

within the limits set by the nmoves and emoves parameters. In the case of our study, we

also limit this process by ending it after a fixed number of fitness evaluations.

1.3 Benefits

The object of hillclimbing is to locate points of high fitness in the search space. By

representing the multiple facets of some real-world scenario in the form of a binary

string, we can effectively map a complicated multivariate problem to a form that can be

efficiently explored in search of improved solutions using a computer. We examine here

the effects of adjusting some of the parameters involved in applying each of three

hillclimbing algorithms to bit strings of three different lengths.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2

The Algorithms

2.1 The Algorithms

Initially, we present the general algorithm used for hillclimbing. (See Figure 2.1.) This

will be followed by a detailed description of the characteristics that differentiate each of

the three varieties of this general algorithm. As it turns out, RMHC, MMHCl and

MMHC2 differ only in the procedure that performs mutation on the bit strings.

2.1.1 General Hillclimbing Algorithm

In this study, we perform a fixed number of function evaluations for each combination of

algorithm parameter settings as a way of allocating an equal amount of work to each

algorithm. For this purpose, we define a maximum number of evaluations called

maxevals. We begin the general hillclimbing algorithm by using a random number

generator to generate a random point in the search space. (For example, if it is a 60 bit

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

problem that is being used in this hillclimb, then we start with a string of 60 randomly

generated bits.) Call this point currentPoint. We evaluate that string’s fitness by using the

fitness function we are studying. Call that number currentFitness. The next step is to

apply a mutation operator to the string. This creates newPoint. The mutation operator is a

function that is called by the algorithm. (See the discussion concerning the separate

mutation operators, in sections 2.1.2, 2,1.3 and 2.1.4.) The fitness of newPoint is

evaluated. Call that number, newFitness, Depending on the outcome of a comparison of

newFitness with currentFitness, one of three possible paths is taken through the

algorithm;

♦ newFitness > currentFitness: We accept the newly mutated string as our new
current point and repeat the mutate-evaluate-select process from there.

♦ newFitness < currentFitness: We increment a variable, ntimes, that keeps
track of how many times a newly mutated point is less fit than the current
point. We check the nmoves parameter. If ntimes is less than the nmoves
parameter, then we repeat the mutate-evaluate-select process on the current
string, the one that had originally resulted in currentFitness. If ntimes is
greater than or equal to the nmoves parameter, we consider that we have
reached a point of locally maximum fitness on the landscape and start a fresh
hillclimb. If the number of function evaluations performed has reached or
exceeded maxevals, we terminate that set of hillclimbs, return the point of
highest fitness achieved and begin a new set of hillclimbs using a new
combination of parameter settings.

♦ newFitness = currentFitness: We incrernent a variable, etimes, that keeps
track of how many times a newly mutated point is equal in fitness to the
current point. We check the emoves parameter. If etimes is less than the
emoves parameter, we accept the new, equally fit point as our new current
point. We continue the hillclimb from there by repeating the mutate-evaluate-
select process. If etimes is greater than or equal to the emoves parameter, we
consider that we have reached a point of locally maximum fitness on the
landscape and start a new hillclimb. If the number of function evaluations
performed has reached or exceeded maxevals, we terminate that set of
hillclimbs, return the point of highest fitness achieved and begin a new set of
hillclimbs using a new combination of parameter settings.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

10

Figure 2.1. Pseudo-code for the general hillclimbing algorithm.

HILLCLIMB (mareva/j, nmoves, emoves)
evals 4- superfit ^ 0
while evals < maxevals

ntimes 4- etimes 4- 0
climb 4- ‘yes’
currentPoint 4- generateRandomPoint()
currentFitness 4- evaluateFitness(cMrre«/ Point)
evals 4- evals + 1
while climb = ‘yes’

newPoint 4- m \it2i\.t{currentPoint)
newFitness 4- evaluateFitness(newPomO
evals 4- evals + 1

if newFitness > currentFitness
then ntimes 4- etimes 4- 0

currentPoint 4- newPoint
currentFitness 4- newFitness

else if newFitness < currentFitness
then ntimes 4- ntimes + 1

if ntimes >= nmoves
then d/m!? 4- ‘no’

else if newFitness = currentFitness
then etimes 4- etimes + 1

ntimes 4- 0
if etimes >= emoves
then climb 4- ‘no’
else currentPoint 4~ newPoint

currentFitness 4- newFitness

if eva/s >= maxevals
then climb 4- ‘no’

if currentFitness > superfit
then superfit 4- currentFimess

re tu rn superfit

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

11

2.1.2 RMHC

The Random Mutation Hillclimbing algorithm is the simplest of the three algorithms. In

the mutation step of RMHC, we mutate one bit chosen at random from the N bits of the

string. That is, we change its value to that of its complement. (See Figure 2.2.)

Figure 2.2. Pseudo-code for mutation under RMHC.

RM HCjmJTATEistring.N)
r <- generateRandomInteger(0 : N - 1)
complement(jm‘n^[r])

re tu rn string

2.1.3 M M HCl

In the Macro-Mutation Hillclimbing algorithm number 1 {MMHCl), when we apply the

mutation step, instead of mutating only one bit (as in RMHC), we mutate some number of

bits m the string according to the result of a comparison. The comparison is between r,

chosen uniformly at random from the interval (0, 1), and the quotient, bitsIN (where bits

is the bits parameter the algorithm is using and N is the length of the string whose bits are

being mutated). Starting with the first bit in the string to be mutated, and proceeding to

the last, for each bit, we generate r and we mutate that bit if r < {bitsIN). This formula for

mutating bits insures that the mutated bits are distributed randomly throughout the string

(See Figure 2.3.)

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

12

Figure 2.3. Pseudo-code for mutation under MMHCl.

M U liC lJA JJT KTEistring,bits ̂
for / ^ 0 to (TV- 1)
do r generateRandomReal(0 : 1)

if r < {bits / N)
then complement(.yfnn^[j])

return string

2.1.4 MMHC2

In the Macro-Mutation Hillclimbing algorithm number 2 {MMHC2), we mutate some of

the bits in the string to be mutated according to a formula that insures that the mutated

bits remain within a fixed distance of each other (localized) rather than occurring

throughout the entire string (distributed), as in MMHCl. To mutate bits in MMHC2, we

first generate a random starting position in the N bits of the string. Letting m = 2 * bits,

where bits is the algorithm’s bits parameter, for each of the following m bits from the

starting position, we generate a real-valued, random number, r, with a uniform

distribution between 0 and 1. We mutate the bit in question if r < 0.5. (See Figure 2.4)

Figure 2.4. Pseudo-code for mutation under MMHC2.

MMH.C2_M\JTATE{string,bits,N)
start ^ generateRandomInteger(0 : 1)
m 2 * bits
for i 4- start to {start + m - I)
do r ^ generateRandomReal(0 : 1)

i f r < 0 .5
then complement(^rring[i mod TV])

return string

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

13

2.2 Linear (Affîne) Interaction, Coupling and Separability

2.2.1 Linear (Affine) Interaction and Coupling

We would like to show what it means for a function to be affine in two of its bits.

Consider two bits, xo and xi such that xo, X] e {0, 1). A function of two bits, g(xo, X]), is

affine if there exist real valued constants, a, b, c, such that g(xo, xi) = axo + bxi + c.

Proposition; A function of two bits, xo, and X], g(xo, xi), is affine if and only if

g (l, l) - g (0, l) = g (l , 0) - g (0, 0).

Proof:
=> g (l , 1) = (a • 1) + (b • 1) + c = (a + b + c)

g(0, 1) = (a • 0) + (b • 1) + c = (b + c)

g (l , 0) = (a • 1) + (b • 0) + c = (a + c)

g(0, 0) = (a • 0) + (b • 0) + c = c

<= Let a = g (l, 0) - g(0, 0), b = g(0, 1) -^ (0 , 0), and c = g(0, 0).

f (l , 1) = [gih 0) - g (0, 0)] -1 + [g(0, 1) - 5(0, 0)] • 1 + 5(0, 0)

= (a • 1) + (b • 1) + c

5(0, 1) = [5(1, 0) - 5(0, 0)1 0 + [5(0, 1) - 5(0, 0)] • 1 + 5(0, 0)

= (a • 0) + (b • 1) + c

5(1, 0) = [5(1, 0) - 5(0, 0)1 -1 + [5(0, 1) -5 (0 , 0)1 • 0 + 5(0, 0)

= (a • 1) + (b • 0) + c

g(0, 0) = [5(1, 0) - 5(0, 0)1 • 0 + [5(0, 1) - 5(0, 0)] • 0 + 5(0, 0)

= (a • 0) + (b • 0) + c ■

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

14

A fitness function, F(xo,..., xn-i) is affine in bits Xi and xj if, for any choice of the

remaining bits xt, A: + i, j,

f 'ÇXOj • • • , X^~Jj f , « • • , Xj-} , f , • • a , X ^~J) F*^XQ^ a a a , Xî^ J , 0 , a a a , Xj~ 1 , 1 , a a a ,

a a a , Xl^ J , ^ , a a a , Xj. J , 0 , a a a , X/^-J ̂ ” JF^^XQy a a a , Xj. J , 0 , a a ■ , , ^ _ 7 , 0 , a a a , ,X ^ -/^ a

In other words, F is affine in bits Xi and xj if g(x„ xj) = F (x o , . . j c „ . Xj.], xj,..., x^.j)

is affine. If F is nonaffme in Xi and xj, then we say %, and xj are coupled in F.

For example, we define a fitness function, F, as the sum of simpler, nonaffine functions.

Go, G], G2 , and G3 , and show what it means for F to be affine in two of its bits, say X] and

X3. Let F(xo, X], X2, X3) = Go(xo, xi) + Giixj, X2), + C2W , X3) + xo). The following

table defines Go, G}, G2 , and G3:

Go Gi C2 G3

00 2 6 3 9

01 3 0 2 9

10 1 4 1 6

11 0 9 8 4

From this, we can compute the
following table of values for F:

X2X3

I

F 00 01 10 11

00 20 16 12 16

01 19 15 22 26

10 19 13 11 13

11 16 10 19 11

e.g .,F (00 1 0) = 12

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

15

We show F to be affine in xi and X3 , holding bits xo and xz fixed.

Case 1 ; xo = 0, xz = 0. Let g{xi, xs) = F(0, xj, 0, xs):

F(0 1 0 1) - F(0 0 0 1) = F(0 1 0 0) - F(0 0 0 0) o

(3 + 4 + 2 + 6) — (2 + 6 + 2 + 6) = (3 + 4 + 3 + 9) — (2 + 6 + 3 + 9) ^

1 5 - 16= 1 9 -2 0 « -1 = - l

Case 2: xo = 0,xz = 1. Let g(xi, xs) = F(0, xi, 1, jcj):

F(0 1 1 1) - F(0 01 1) = F(0 1 1 0) -F (0 0 1 0) »

2 6 - 16 = 2 2 - 12 » 0 = 0

Case 3: xo = L xz = 0. Let g{xi, xi) = F (l, 0, xj):

F(1 1 0 1)-F (1 0 0 1) = F(1 1 0 0) - F (l 0 0 0) »

1 0 -1 3 = 16- 1 9 » -3 = -3

Case 4: xo = l , x z = 1. Let g(x/, xj) = F (l, xi, 1, xi):

F(1 1 1 1) - F(1 0 1 1) = F(1 1 1 0) - F (l 0 1 0) »

2 1 - 1 3 = 1 9 -1 1 » 8 = 8

We show F to be nonaffine in bits xz and X3 , holding bits xo and xj fixed.

Let Xo = 0, xj = 0, gixi, Xs) = F(0, 0, xz, Xj):

F(0 0 1 1) - F(0 0 0 1) + F(0 0 1 0) - F(0 0 0 0) »

(2+ 0 + 8 +6) — (2 + 6 + 2 +6) (2 + 0 + 1 +9) — (2+ 6 + 3 +9) »

1 6 - 16+ 1 2 - 2 0 » 0 +-8

We say bits xz and xs are coupled in F.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

16

As we have stated, MMHCl distributes its mutated bits across the string length, N. The

local algorithm {MMHCl) mutates bits that are positionally close. This positional

difference allows us to observe the effect of varying the couphng of the bits we mutate.

For the test functions we use, the fitness of an entire string is made up of a sum of fitness

functions that depend on substrings. (In the previous example, F was defined as the sum

of Go, Gi, Gz, and G3 , where each Gi depends on the values of two adjacent bits that

comprise a two-bit substring.) In our test functions, if bit i and bit j are in the same

substring, then they are coupled in the fitness function. Conversely, in our test functions,

bits that are not in the same substring are not coupled in the fitness function. In this case,

mutating one bit does not affect the fitness of the substring containing the other. For our

test functions, bit i and bit j are affine in the fitness function if they are greater than k bits

apart,

I i ~ j \>k,

where k is the length of the substrings used in the definition of the test function.

2.2.2 Separability

As stated, for the test functions we use, the fitness of an entire string is made up a sum of

fitnesses of substrings. If the bits contributing to the fitness of a substring do not overlap

with bits in other substrings, we say that the function is separable. In other words, F is

separable if, for some i, and some functions G, H,

F{pCQ,t. . , JCi.j, Xi,,.., Xf̂ i-j) — ..., Xi,]) H{Xi,,.,, X^,]),

In this case, if '̂ < i and i < k, then bits xj and Xk are affine in F.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

17

2.3 The Hypotheses

2.3.1 Macromutation

2.3.1.1 Overall Performance

We hypothesize that the two macromutation algorithms, MMHCl and MMHCl, perform

better overall than the single-bit-flipping RMHC algorithm. We expect this to be true on

the landscapes that have non-separable functions.

2.3.1.2 Number and Position of Bits Mutated

When hillclimbing algorithms mutate bits in a string in an attempt to find a point of high

fitness, they can mutate one or several bits in any single iteration. The RMHC algorithm

we study mutates only one bit per iteration while the MMHCl and MMHCl algorithms

mutate multiple bits in an iteration. The number and position of bits mutated, especially

as related to each other, are extremely important factors. We conjecture that mutating bits

that are likely to be affine in the fitness function {MMHCl) results in somewhat lower

performance levels on all test problems than mutating bits that are likely to be coupled in

the fitness function {MMHCl).

2.3.1.3 RMHC’s Strength

We expect RMHC's performance on the separable problems to be somewhat better than

its performance on the non-separable problems.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

18

2.3.2 emoves

In hillclimbing algorithms, we are always searching for points (strings) that have higher

fitness than the point where we currently are. If every mutation resulted in a point of

higher fitness, every hillclimb would be simply a matter of directly taking the shortest

route to the top of the highest peak on the landscape. Of course, that is what we hope will

happen. The random nature of the mutation operator seldom affords such a fortuitous

series of steps. Often, we find ourselves at relatively flat places on a landscape (mesas)

where most mutations result in points of equal fitness. Although the moves of

hillclimbing algorithms are biased in the direction of strings of higher fitness, we

hypothesize that it would be advantageous to allow the algorithms to make moves to

points of equal fitness in hopes of discovering higher-fitness points hidden on the mesa.

Therefore, we have implemented an emoves parameter, which is some multiple of the

string length, N. We investigate the benefit of the emoves parameter to the performance

of the algorithms and observe the effect of its becoming quite large with respect to N.

2.3.3 nmoves

The emoves parameter, discussed above, is one way that we hmit possibly endless

wandering of our algorithms on non-productive parts of the landscapes. The nmoves

parameter is another way to accomplish a similar end. When a mutation results in a less

fit string, we throw away the original string in favor of a fresh hillclimb only after we

have tried what we have decided to allow as a sufficient number of mutations of the

original string. However, this state of affairs might also indicate that we have reached a

point of locally maximum fitness. The parameter that determines the number of lower-

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

19

fitness mutations that we consider before we make that decision is the nmoves parameter.

We think that allowing an increase in nmoves would be beneficial to algorithm

performance. As with emoves, we set nmoves to a multiple of N. While we think that, like

emoves, nmoves should increase, we investigate the effect of constraining its upper limit

to a smaller multiple of N than that for emoves.

2.3.4 Informal Summary of Hypotheses and Observations

• MMHCl and MMHCl perform better than RMHC on all test problems and on all

problem sizes. This is demonstrated emphatically on the problems using non-

separable functions,

• Mutating bits that are likely to be affine in the fitness function {MMHCl) results in

somewhat lower performance levels on all test problems than mutating bits that are

likely to be strongly coupled in the fitness function {MMHCl).

• RMHC performs better on the problems using separable functions than on the

problems using non-separable functions, for all problem sizes.

• We observe the effect on algorithm performance of the emoves and nmoves

parameters.

• We observe the effect of the problem length, N, on algorithm performance.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 0

Chapter 3

The Problems

I t seems clear enough why we would want to automate the solution of a problem like the

one presented in Chapter 1: time and money. Of course, the method chosen to implement

the automation should be as efficient as the current state of technology allows. The

hillclimbing algorithms that we explore here present areas into which investigation can

result in increased understanding of the method and allow for adjustment of the

parameters that will result in optimal algorithmic performance.

The landscapes (problems) we have chosen for our hillclimbing investigation are the six

bit fully easy and six bit fully deceptive landscapes found in Goldberg[7] and the NK

landscapes due to Kauffman[5].

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

21

3.1 Fully Easy

This problem requires that the algorithm simultaneously solve a number of fully easy

subproblems. Each subproblem is a six bit function of unitation. Unitation is the number

of bits in a binary string that are set to 1. (The specific function of unitation is given in

Figure 3.1.) For example, the string, 010101 contains three ones. Thus its fitness would

be 0.9. This landscape was designed by Goldberg[7] in his study of G As. He intended it

to be easy for a GA to solve. That is, it should be easy for that algorithm to achieve the

maximum fitness point, the string of all zeroes (fitness = 1.0), in a fully easy problem. Of

course, a hillclimbing algorithm is not a GA and will find other local maxima on this

landscape besides the global one. However, the fully easy landscape is one that is useful

for comparing the three algorithms that we have chosen for this work because it is a

separable function. Each problem instance is constructed by concatenating some number

of these six bit functions together. The experiments use 10, 20 and 30 such subproblems,

resulting in problem sizes of 60, 120 and 180 bits.

Figure 3.1. A fully easy six bit problem. Maximum fitness point is 000000.

Unitation 0 1 2 3 4 5 6

Fitness 1.0 0.8 0.6 0.9 0.5 0.7 0.9

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 2

3.2 Fully Deceptive

The fully deceptive problems are also representative of a class of problems that have

received attention in the study of G As. Each of the fuUy deceptive subproblems is a six

bit function of unitation. The string, 010101 here has fitness 0.3. (See Figure 3.2.) The

function values for the different unitation values are arranged differently than in the fully

easy problems. The maximum fitness point in a fuUy deceptive problem is the string of

all ones. It is important to note that the location of the global maximum in the fully

deceptive problem is opposite to the location of the global maximum in the fully easy

problem (the string of all ones as opposed to the string of all zeroes). On the fully

deceptive landscape, there is a local maximum situated at thé point of aU zeroes. Fully

deceptive problems get their name from reasoning by their designer that the placement of

function values would deceive an algorithm into finding the local maximum rather than

the global maximum. As with the easy functions, deceptive functions are also separable

functions whose bits are affine in the fitness function. Each of our problem instances is

constructed by concatenating some number of these six bit functions together. The

experiments use 10, 20 and 30 such subproblems, resulting in problem sizes of 60, 120

and 180 bits.

Figure 3.2. A fully deceptive six bit problem. Maximum fitness point \s 111111.

Unitation 0 1 2 3 4 5 6

Fitness 0.90 0.45 0.35 0.30 0.30 0.25 1.00

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

23

3.3 N K Landscapes

In the NK model, N refers to the number of parts of a system - factors influencing a

decision, bits in a string, or otherwise. Each part makes a fitness contribution to the whole

which depends upon that part and upon K other parts among the N. That is, K reflects the

degree to which the system components are coupled with each other, the degree of

epistatic interaction. In terms of the bit strings we use here, N refers to the total length of

the string and K refers to the length of a substring within the N bits[5,6].

For example, if we have a string of 60 bits {N = 60), then there are ten substrings of

length six {K = 5) which comprise the 60 bits. This is true when the substrings are placed

end-to-end. However, the substrings might not be placed end-to-end. The substrings

might overlap each other. That is, instead of beginning the second substring one bit

position beyond the end of the first substring, we might begin the second substring at the

second bit position in the first substring, thereby overlapping the two substrings by five

bits. Thus, five of the six bits in the first substring also contribute their part to the fitness

contribution of the second substring, and so on, for all N bit positions. When this is the

case, there are a total of 60 substrings of length 6 (and AT = 5) in a string where N = 60.

We allow K of the substrings to wrap around from the end of the main string to its

beginning whenever the start position of the substring is greater than position N - K ■¥ \

in the main string. The fitness contribution of each of the N substrings is dependent on

the 2^^^ possible position combinations of the substring’s bits. Thus, there are N tables,

each with 2 '̂*'̂ function values that have been randomly chosen with a uniform

distribution over the interval, [0,1). These function values additively contribute to the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 4

overall fitness of the string. (See Figure 3.3 and Figure 3.4 and accompanying example

on the next page.) The two main parameters in the NK model are the number of bits in the

string and the number of other bits that epistatically influence the fitness contribution of

each substring. In the NK landscapes, there is a high degree of coupling between bits that

are close to each other in the string. NK functions are non-separable. Simultaneously

mutating bits that have a high degree of epistatic interaction is one of the areas this work

investigates.

For this study, a fresh instance of a randomly generated NK function is produced for each

set of hillclimbs performed. This is because randomness is part of the definition of the

NK landscapes. This is unlike the runs using the easy and deceptive landscapes. For

those, the same function is used for all hillclimbs.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

25

Figure 3.3. Elements of an NK function where N = 6 and K = 2 (substring length = 3).

locus[0] locus[l] locus[2] locus[3] Iocus[4] locus[5]

000 0.25 0.55 0.19 0.23 0.23 0.77

001 0.20 0.02 0.99 0.38 0.22 0.08

010 0.85 0.66 0.03 0.71 0.09 0.17

oil 0.52 0.01 0.71 0.16 0.55 0.42

100 0.01 0.77 0.13 0.83 0.76 0.98

101 0.22 0.22 0.30 0.53 0.69 0.44

110 0.06 0.61 0.55 0.53 0.16 0.49

111 0.51 0.88 0.00 0.50 0.66 0.38

Locus Neighborhood Fitness

0 010 0.85

1 101 0.22

2 1 Oil 0.71

3 110 0.53

4 100 0.76

5 001 0.08

Figure 3.4. NK Fitness calculation
for the string 101100. The
contribution of locus[0] is influenced
by bits in positions 5 and 1. The
contribution of locus[l] is influenced
by positions 0 and 2, and so on.

Fitness = (0.85 + 0.22 + 0.71 + 0.53 + 0.76 + 0.08) / 6 = (3.15 / 6) = 0.525

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 6

3.4 Formal Statement of Hypotheses and Observations

• We hypothesize that the macromutation algorithms, MMHCl and MMHC2 perform

better than RMHC on all test problem sizes. This is demonstrated emphatically on the

non-separable, NK landscapes.

• We hypothesize that mutating bits that are likely to be affine in the fitness function

{MMHCl) results in somewhat lower performance levels on all test problems than

mutating bits that are likely to be strongly coupled in the fitness function (MMHC2).

e We hypothesize that for all problem sizes, RMHC performs better on sepaiable

functions, the easy and deceptive problems, than it does on the non-separable NK

landscapes.

We observe the effect on algorithm performance of changes in the emoves and

nmoves parameters.

We observe the effect of the problem length, N, on algorithm performance.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 7

Chapter 4

The Experiments

In order to produce reliable results from this investigation, it was necessary to conduct a

sufficient number of trials for each of the possible settings of the various algorithm

parameters on each of the proposed problem sizes. All of the trials then had to be

repeated using each of the three different algorithms. Initially, decisions had to be made

regarding the range through which each parameter would vary.

4.1 Parameter

4.1.1 N

Specifically, for all algorithms tested, we wanted to see if the size of the problems, the bit

length N, affected algorithm performance. Since previous work by Jones[3] with

hillclimbing algorithms had been done using problem sizes generally less than 120 bits,

we chose to start with string lengths of 60 bits and 120 bits, but also to extend this to 180

bits.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 8

4.1.2 nmoves and emoves

As well, we wished to observe the effects of varying the parameters nmoves and emoves

in all cases, since these parameters are crucial in determining how thorough an

algorithm’s search of a landscape for highly fit points will be. Again relying on previous

work for guidance as to the range of parameter values selected, we choose to tie them to

the value of N in each case. We use N/2, 2N and 3N for the settings of nmoves and N/2,

ION and 50N as the settings for the emoves parameter. Reasoning here was that tying the

value of these parameters to N would result in their being more fairly comparable across

all algorithm runs and problem sizes.

4.1.3 bits

The number of bits mutated is a very important parameter to observe. Of course, in the

RMHC algorithm, bits is always, trivially, 1. With MMHCl and MMHCl however, we

vary bits. We choose to vary it between 2 and 6. Six is the number of bits in each of the

fully easy and fully deceptive subproblems used in our study. Thus it might be possible,

in a single iteration of an algorithm, to simultaneously mutate all of the bits in one of the

easy or deceptive subproblems. On the NK landscapes, we had chosen the largest

substring size to be six. Therefore, on those subproblems it also might be possible, in one

iteration, to simultaneously mutate all of the bits in one substring.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2 9

4.1.4 K

One way to view K is that it refers to the length of a substring on the NK landscapes.

(Kauffman’s definition of K in the NK landscapes is one less than the number of bits in

the length of a substring. The parameter K that we use in this study is equal to

Kauffman’s K, plus one.) The value AT = 6 is also the subproblem size we use for the fully

easy and fully deceptive landscapes. With the latter two landscapes, we choose a fixed

subproblem size of six since we use the easy and deceptive functions designed by

Goldberg[7] and used in Jones’s work[3]. With the NK landscapes however, we were

able to vary the subproblem size. On the NK landscapes, we vary the subproblem size

between 2 and 6. Letting the parameter K be greater than 6 on the NK landscapes results

in function tables that quickly become unwieldy, due to the fact that each NK function

contains N tables of 2^ randomly generated values.

Figure 4.1. Summary of elements comprising the hillclimbs.

Algorithms RMHC MMHCl MMHC2

Landscapes Fully Easy Fully Deceptive NK

N 60 120 180

K 2 3 4 5 6

bits 1 2 3 4 5 6

nmoves N/2 2N 3N

emoves N/2 ION SON

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3 0

4.2 Procedures

4.2.1 Implementation

The RMHC, MMHCl and MMHC2 algorithms were implemented in the C language

using a suite of C++ classes developed by Alden H. Wright at The University of

Montana in 1996. In particular, from this suite, the class that provides a bit sequence and

its accompanying functionality was used, as was the class that provides for the generation

of random numbers. All algorithms and accompanying functions were written in C.

4.2.2 Preliminary Hillclimbs

Once the parameter range settings were decided, and the code to implement the

algorithms written, a preliminary set of hillclimbs was performed. The objective of

performing this preliminary set of hillclimbs is to determine the amount of work that we

require each of the three algorithms to accomplish in order to compare them fairly. We

decided to use as our unit of measure a single evaluation of string fitness. The total

number of times that the fitness function is called on to evaluate string fitness during ten

complete hillclimbs, using each of the parameter setting combinations, represents the

amount of work the algorithm does on a given combination of parameter settings. The

test problems are sufficiently hard that there is a difference in performance among the

algorithms. We chose to allow each algorithm/setting combination ten hillclimbs. We

considered that this would present sufficient opportunity for the algorithms to return a

measure of work done that reflects differences among them. (See Figure A.2 in the

Appendix for a sample command-line call to the MMHC2 algorithm for the prehminary

hillclimbs.) We retain across all runs the largest number of function evaluations required

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

31

for each set of ten hillclimbs. The resulting single numeric measure is later used as the

standard on which to compare the performance of the different algorithms. On the 60-bit

problems, especially with the lower settings of the nmoves and emoves parameters, the

number of function evaluations required for an algorithm to complete ten hillclimbs can

be relatively small compared with the number required for the 180-bit problems using the

higher settings of nmoves and emoves.

After aU preliminary hillclimbs were run, we found that the largest number of function

evaluations required for any algorithm to finish ten hillclimbs was nearly 5.7 million.

This number is the yardstick for our final comparisons. The single algorithm whose

maximally fit point is the best after each algorithm, performs 5.7 million function

evaluations can be considered the better-performing algorithm, using a given

combination of parameter settings.

4.2.3 Final Hillclimbs

Fairly comparing all the algorithms using every combination of the parameter settings

meant performing however many hillclimbs it took, using each setting, to obtain 5.7

million function evaluations. (See Figure A.3 in the Appendix for a sample command-

line call to the MMHC2 algorithm for the final hillclimbs.) From the 5.7 million

evaluations allowed for each different combination of the settings, we retained the

maximum fitness value that was achieved in all the resulting hillclimbs. That value, and

the parameter settings that produce it, were output to a file used to collect the data. As

soon as an algorithm would complete 5.7 million evaluations, it outputs its data to the

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

32

data file, proceeds to the next combination of parameter settings and begins another 5.7

million evaluations. Three UNIX C-Shell scripts were used to run the algorithms through

all of the necessary parameter combinations. (See Figure A.1 in the Appendix for an

example UNIX shell script for running MMHCl.) For each of the three algorithms, this

process was repeated for each combination of parameter settings until all combinations

had been used. In the entire work, there are a total of 2,079 separate combinations of

parameter settings observed. (See Figure 4.1.) That total results from 945 setting

combinations being used in each of the MMHCl and MMHCl algorithms and 189 setting

combinations tried for RMHC. Not absolutely every parameter setting was combined with

absolutely every other one on all three algorithms, however. For instance, it must be

remembered that since RMHC is the algorithm that mutates only one bit at a time, the bits

parameter.for is always set at 1. Similarly, the MMHCl and MMHCl algorithms

do not use a setting of 1 for the bits parameter, since data for settings which used bits = 1

were obtained from runs of RMHC. (Additionally, it makes no sense to say that we

macromutationally vary one bit.) Also, the value of K was set at a constant 6 for all

algorithms on the fully easy and fully deceptive landscapes. This is because 6 bits is the

size of the subproblems used in the test landscapes.

Each combination of parameter settings required 5.7 million function evaluations. This

resulted in nearly 12 billion function evaluations being observed during the entire study.

Completion of these final runs took several weeks of computation time, even with the

algorithms simultaneously being run on many different computers.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

33

Chapter 5

Data and Results

U pon completion of all algorithm runs, the data files produced by those runs were used

as input to spreadsheet software for conversion to spreadsheets and subsequently for

conversion to charts used in analyzing the data and producing results. A discussion of the

conclusions of this investigation, referencing these charts, is in Chapter 6.

5.1 All Algorithms / All Problem Sizes

5.1.1 All Algorithms: bits mutated

The chart shown in Figure 5.1 is a general overview of the entire study using the fully

deceptive landscape. It clearly shows the superior results obtained with the MMHC2

algorithm across all tested problem sizes.

5.1.1.1 Deceptive

Figure 5.1. For a bits setting
of 3, 4 or 5, MMHCl shows
remarkably good perform
ance on the fully deceptive
landscape. (A bits setting of
1 is valid only for RMHC.)
For the macromutation
algorithms, generally, as bits
increases past 2 or 3, average
fitness declines. 3 4

bits mutated
E mmhcl I mmhc2 □ rmhc

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3 4

5.1.1.2 Easy and

Similar charts are produced for the fully easy landscape and the NK landscapes. On the

easy landscape MMHC2 is clearly the better performer, when the number of mutated bits

is set to 2, 3 or 4. On the NK problems, MMHC2 is better than MMHCl or RMHC using a

bits setting between 2 and 5,

1

0.99

0.98

0.97

0.96

0.95
3 4

bits mutated

El mmhcl I mmhc2 □ rmhc

Figure 5.2. We see the
average fitness achieved with
all the algorithms on the fully
easy landscape. Again, we
see outstanding results
obtained with MMHC2,
especially for a bits setting of
2 or 3. Notable are the
relatively low fitness values
for MMHCl and the fact that
RMHC gets better numbers
than MMHCl throughout.
RMHC even beats MMHC2
with bits = 6.

0.77

0.76

0.75

0.74

0.73

0.72

0.71

0.7

0.69
3 4

bits m utated

O mmhcl mmhc2 □ rmhc

Figure 5.3. As expected, the
average fitness reached, for
all algorithms on the NK
landscapes is somewhat
better for the macromutation
algorithm, MMHC2, than for
RMHC for most bits settings.
However, on the NK
landscapes, MMHCl doesn’t
lag as far behind MMHC2 as
it does on the previous two
charts.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

35

5.1.2 All Algorithms: bits mutated / nmoves and emoves

The charts showing the effect of varying the nmoves and emoves parameters across all

algorithms and problem sizes studied generally tend to support our behef that adjusting

these factors would make a difference in average fitness values achieved. What is

surprising is that various settings of the nmoves parameter show greater differences in

average fitness than adjustment of the emoves parameter.

5.1.2.1 Deceptive

0 . 8 8 - - B

0.84 - - i

3 4 5

bits mutated

□ nmoves = N/2 ■ nmoves =2N □ nmoves = 3N

0.98

0.86 - - !:?

0.84 ■-

3 4

bits mutated
E emoves = N/2 ■ emoves = ION □ emoves = SON

Figure 5.4, Changes in nmoves
on average fitness for the
deceptive problems are relatively
insignificant for the smallest
number of bits mutated. However,
as bits increases, it is clear that
the nmoves parameter is vital to
improved average fitness
numbers, as shown by the rapid
decline for N/2,

Figure 5.5. For deceptive
problems, the emoves
parameter does not exhibit
effects that are as profound as
with nmoves. In fact, an
increase in emoves beyond
107V tends to give decreased
average fitness for most
settings of bits. It only results
in increased fitness at bits = 3
and bits = 4.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.1.2.2 Easy

3 6

0.98 - - Jî?

0.96 - i

2 3 4 5

bits mutated

nmoves = N/2 ■ nmoves =2N D nmoves = 3N

Figure 5.6. On the fully easy
landscapes, nmoves exhibits
similar tendencies as it does on
the deceptive problems; an
increase in nmoves becomes
more critical to greater average
fitness numbers as the bits
parameter gets bigger.

0.95 --Ü

2 3 4 5

bits mutated

emoves = N/2 ■ emoves = 10N □ emoves = SON

Figure 5.7. While the emoves
parameter appears to contribute
some to better average fitness
values, again with the easy
problems, a variation of emoves
seems to effect relatively
insignificant changes in average
fitness at each of the bits
settings.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.1.2.3 NK Landscapes

37

0.77

0.73 ' - S:

3 4

bits mutated

I nmoves = N/2 I nmoves = 2N O nmoves = 3N

Figure 5.8. On the NK
landscapes, as with the
previous problems, changes to
the nmoves parameter seem to
have more effect on average
fitness as the size of the bits
parameter varies from 2.

0.77

0.72 - -

3 4

bits mutated

Q emoves = N/2 ■ emoves = 10N □ emoves = SON

Figure 5.9. The emoves
parameter on the NK
landscapes causes a slightly
different trend in average
fitness, compared with the
previous two problems. As
bits increases, an emoves
setting of 107V seems to
emerge as the better setting
despite the fact that overall,
average fitness tends to
decline with an increase in
bits beyond bits = 2.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3 8

5.1.3 AU Algorithms: K

The chart shown in Figure 5.10 is a general overview of the entire study for different

values of the parameter K, on the NK landscapes. Since we use a fixed value of A" = 6 on

the deceptive and easy problems, we have no data for variations of K on those

landscapes. Since we have no data on the global maximum for each NK landscape, the

NK data are not as definitive as the data for the easy and deceptive problems.

5.1.3.1 NK Landscapes

4

K
0 mmhcl rrrrhc2 a rmhc

Figure 5.10. This chart also
shows the good average
fitness values achieved with
MMHC2 on the NK
landscapes. In general, as the
parameter K is increased in
the range 2 - 6, the fitness
values for MMHC2 improve.
The average fitness for the
other algorithms improves
also, but only until A = 5,
after which their numbers
decline.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

39

5.1.4 All Algorithms: K / nmoves and emoves

We see the effect of varying the nmoves and emoves for different K. Again, only results

for the NK landscapes are shown since we used a fixed Æ = 6 on the easy and deceptive

landscapes. An important result is that in general, the average fitness achieved by all

algorithms on combined problem sizes seems to improve as the parameter K increases.

5.1.4.1 Landscapes

0.77

0.76 -

4

K

0 nrroves = ISK2 ■ nmoves = 2N □ nmoves = 3N

Figure 5.11. For all settings of
the K parameter, the two
higher settings of nmoves
show higher average fitness
values. As K increases, so does
the dominance of the higher
two values of nmoves, with the
3N setting being the better of
the two in most cases.

Figure 5.12. Somewhat less
dramatic differences in
average fitness are noted with
variations in the emoves
parameter than with the
nmoves parameter. Here, the
effect of different settings of
emoves tends to be a bit more
pronounced for K = 5, &l which
point emoves = ION does best.

Q emoves = N/2 ■ amoves = ION□ emoves = SON

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 0

5.2 M M H Cl / All Problem Sizes

On the following pages are charts depicting data for the different landscapes in which all

problem sizes are combined. There is no data for variations in on the deceptive and

easy landscapes, since K is constant 6 on them. However, varying data for K are shown

on charts for the NK landscapes. We begin with data for the distributed algorithm,

MMHCL

5.2.1 M M H Cl / Deceptive: bits mutated

0.94

0.92

0.9

0.88

0.86

0.84

0.82

0.8

bits mutated

■»— N = 1 2 0 N = 180

Figure 5.13. As the bits
parameter becomes larger,
beyond a value of 4, the average
fitness values for the MMHCl
algorithm on the deceptive
problems fall off sharply. This is
true for all tested problem sizes.
It is interesting to note that the
algorithm does better on this
landscape overall on the 60 bit
problems and somewhat less
well on the 120 and 180 bit
problems.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

41

5.2.2 MMHCII Deceptive: bits mutated / nmoves and emoves

0.94

0.92

0.88 -

0.86

0.84

0.82

0.8

bits mutated
nmoves = N/2
nmoves = 3N

nmoves = 2N

Figure 5.14. The same overall
trend of decreased average fitness
values with an increase in the bits
parameter is seen here for
MMHCL The nmoves parameter
makes a dramatic difference in
average fitness for the deceptive
landscape, especially when bits is
greater than 2.

0.94

0.92

0.9

0.88

0.86

0.84

0.82

0.8

bits mutated
emoves = N/2

k: emoves = SON
emoves = 10N

Figure 5.15. Adjusting the
emoves parameter appears to
have little effect on MMHCI on
the deceptive landscape, for all
bits values.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 2

5.2.3 MMHCI / Deceptive: N I nmoves and emoves

O nrroves = N/2 ■ nmoves = 2N □ nmoves = 3N

Figure 5.16. It can be seen here
that on the deceptive problems of
all tested sizes, an nmoves setting
of 3N is clearly the best one to
use with MMHCL The data for
the shorter bit-length problems
show better results than that for
larger N.

□ emoves = N/2 ■ ermves = 10N □ ermves = SON

Figure 5.17. The data for the
emoves parameter aren’t quite as
definitive as for nmoves. It seems
that changes to emoves produce
very little effect on average
fitness with deceptive problems
of these sizes.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 3

5.2.4 MMHCI / Easy: bits mutated

Results for MMHCI on the fully easy problems are in many ways similar to those for the

deceptive problems. One major difference is that overall average fitness is significantly

better for aU algorithms on this landscape. Also, increasing the nmoves parameter has a

less dramatic effect here.

0.99

0.98

0.97

0.96

0.95

0.94
3 4 52 6

bits mutated

N = 60 * "" N = 120 N = 180

Figure 5.18. As bits is
increased beyond 2, overall
average fitness decreases, but
not quite as much as on the
deceptive landscapes. Again,
the MMHCI algorithm
returns higher average fitness
values on the 60 bit
problems, with a bits setting
of 2.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 4

5.2.5 MMHCI / E}asy: bits mutated / nmoves and emoves

0.99

0.98

0.97

0.96

0.95

0.94

bits mutated
nmoves = N/2
nmoves = 3N

nmoves = 2N

Figure 5.19. The 3N setting
of nmoves for MMHCI on
all the easy problem sizes
tested seems to be the better
setting. The bits setting of 2
seems to be best here, as
weü.

0.985

0.975

0.965

3 4 5

bits m utated

• emoves = N/2
emoves = 50N

• emoves = 10N

Figure 5.20. Variations in
the emoves parameter appear
to produce rather
insignificant changes in the
average fitness at all bits
settings, as bits increases
beyond 2.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.2.6 MMHCI / Easy: N / nmoves and emoves

4 5

□ nmoves = N/2 ■ nmoves = 2N O nnroves = 3N

Figure 5.21. The MMHCI
nmoves setting of 37V again is
the best setting for all tested
problem sizes on the easy
landscapes.

E emoves « ry2 ■ emoves = 10N □ emoves = SON

Figure 5.22. The lower two
settings for the emoves
parameter turn out to give
slightly better results on most
easy problem sizes here.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 6

5.2.7 M M H Cl / NK Landscapes: bits mutated / K

Since we vary K on the NK landscapes, the data presented for the NK problems is more

complex than for the easy and deceptive landscapes. Since we do not know the global

maximum for each NK landscape, average fitness data for our three algorithms on the NK

landscapes are not as definitive as they are with the separable functions.

0.77

0.76

0.75

0.74

0.73 -

0.72

0.71

0.7

bits = 2 bits = 3
4*— bits = 6

bits = 4

Figure 5.23 On the NK
landscapes, we see the effect of
varying the K parameter. The
average fitness values for
MMHCl are seen here to show
greater variation above the value
oi K = A, for bits settings
between 2 and 6. The larger
settings of bits produce much
poorer results, with average
fitness declining above K = A.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 7

5.2.8 M M H Cl I NK Landscapes: bits mutated / nmoves and emoves

0.77

0.76

0.75

0.74

0.73

0.72

0.71 -

0.7

bits mutated
nmoves = N/2
nmoves = 3N

nmoves = 2N

Figure 5.24. The average fitness
reached by MMHCl on the NK
landscapes appears to be highest
when bits = 3 or bits = 4 and we
let nmoves = 2N. Increasing bits
beyond 4 causes a rapid decline
in fitness for all three values of
nmoves.

0.77

0.76

0.75

0.74

0.73

0.72

0.71

0.7
2 3 4 5 6

bits mutated

• emoves = N/2
emoves = SON

■ emoves = 10N

Figure 5.25. Increasing the bits
parameter past 3 has its
expected effect of a decrease in
average fitness with MMHCl on
the NK problems, too. Varying
emoves has almost no effect
here, at all bits settings.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 8

5.2.9 MMHCl / NK Landscapes: K / nmoves and emoves

0.77

0.76

0.75

0.74

0.73

0.72

0.71

0.7 4

nmoves = N/2
nmoves = 3N

— nmoves = 2N

Figure 5.26. As the K parameter
increases with MMHCl on the
NK landscapes, overall fitness
also increases, up to AT = 4.
Here, the larger two values of
the nmoves parameter seem to
contribute more to the average
fitness numbers.

0.77

0.76

0.75

0.74

0.73

0.72

0.71

0.7

— emoves = 10Nemoves = N/2
emoves = SON

Figure 5.27. While the effect of
varying the emoves parameter
isn’t quite as large as it is with
the nmoves parameter, as K
increases past a setting of 4, an
emoves setting of ION seems to
do slightly better than the other
settings.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4 9

5.3 MMHC2 / AU Problem Sizes

We present charts depicting the average fitness values achieved by the localized

algorithm, MMHCl, on the next several pages. Data for each landscape are shown. In this

section, the results are combined for aU problem sizes we tested.

5.3.1 MMHC2 / Deceptive: bits mutated

0.99

0.97 -

0.95

0.93

0.91

0.89 -

0.87

0.85

bits mutated

N = 120

Figure 5.28. An interesting
feature of the MMHCl data for
the deceptive problems is the
very dramatic peak in average
fitness of this algorithm on all
problem sizes at a bits setting of
3. This is followed by a
comparatively gradual decline in
average fitness past that point,
with the algorithm doing
slightly better on the 60 bit
deceptive problems than it does
on the others.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5 0

5.3.2 MMHC2 / Deceptive: bits mutated / nmoves and emoves

1.01

0.99 -
0.97 -
0.95 -
0.93
0.91
0.89
0.87
0.85

bits mutated

nmoves = N/2
nmoves = 3N

* — nmoves = 2N

Figure 5.29. The dramatic peak
in fitness at bits = 3 of the
MMHC2 algorithm on the
deceptive landscape is enhanced
by the larger settings of the
nmoves parameter. Even at
higher bits settings, when
nmoves = 2N or nmoves = 3N,
average fitness drops off more
slowly. MMHCl is even able to
solve some of the deceptive
problems, while using the higher
two nmoves settings

1.01

0.99

0.97

0.95

0.93

0.91

0.89

0.87

0.85

bits mutated
emoves = N'2
emoves = SON

emoves = 10N

Figure 5.30. Once again,
changes in the emoves
parameter have a negligible
effect on average fitness with
the MMHCl algorithm on these
deceptive problems.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

51

5.3.3 MMHC2 / Deceptive: N / nmoves and emoves

0.99

0.97 -

0.95

0.93

0.91 —

0.89 - —

0.87

0.85
60 120 180

□ nmoves = N/2 ■ nmoves = 2N O nmoves = 3N

Figure 5.31. The smallest
deceptive problems (N = 60) do
best with MMHC2 in this chart,
although the nmoves parameter
seems to contribute much to the
average fitness of all three
problem sizes. The larger
nmoves settings (2N and 3N)
provide the best results.

0.99

0.97

0.95

0.93

0.91

0.89

0.87

0.85
60 120 180

E3 ©moves = N/2 ■ emoves = 10N D emoves - 50N

Figure 5.32. The emoves
parameter with the MMHCl
algorithm on the deceptive
problems appears to become
even less important to average
fitness as the problem size, N,
increases.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

52

5.3.4 MMHC2 / Easy: bits mutated

On the easy landscape, the MMHCl algorithm seems to solve the 6 bit subproblem quite

easily (as the name implies) for all of the tested problem sizes, 60, 120 and 180 bits.

1.005 T

0.995 -
0.99 -

0.985
0.98

0.975
0.97 -

0.965 -
0.96

bits mutated

N = 120N = 60 N=180

Figure 5.33. The 6 bit easy
subproblems are solved by
MMHCl for all problem sizes
tested when bits - 2. Solution
happens less often as the bits
parameter increases. Again,
the algorithm seems to do best
overall on the 60 bit problem
size, with bits > 3.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

53

5.3,5 MMHC2 / Easy: bits mutated / nmoves and emoves

1.005

0.995

0.985

0.975

0.965

3 4

bits m utated
nmoves = N̂ 2
nmoves = 3N

• nmoves = 2N

Figure 5.34. MMHC2 is able to
solve the fully easy problems of
all tested sizes as long as the
number of bits mutated is 4 or
fewer and the nmoves parameter
is set at either 2N or 3N. The
highest nmoves setting, 3N,
seems to maintain somewhat
better fitness numbers for
MMHC2 on these problems,
above bits - 4.

1.005 r

0.995

0.99
0.985

0.98

0.975

0.97
0.965

0.96

bits mutated
♦ — ©moves = N/2

emoves = SON
* — emoves = 10N

Figure 5.35. The emoves
parameter does not seem to
appreciably affect the overall
average fitness the MMHC2
algorithm is able to reach on this
landscape. The trend of
decreasing average fitness with
an increase in bits is seen here
as well.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5 4

5.3.6 MMHC2 / Easy: N / nmoves and emoves

1.005

0.995

0.985

0.975

0.965

0 nmoves = ■ nmoves =2N □ nmoves = 3N

Figure 5.36. As we have seen in
previous charts, the higher
settings of the nmoves parameter
here also seem to greatly
improve the average fitness of
MMHC2 on all tested sizes of
the easy problems.

1.005

0.995

0.985

0.975

0.965

60 120

N

180

B emoves = W2 B emoves = ION □ emoves = SON

Figure 5.37. Again, as we have
seen earlier, the emoves
parameter appears to have
negligible effect on the ability of
MMHCl to do well on all tested
sizes of the easy problems.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

55

5.3.7 MMHCl / NK Landscapes; bits mutated / K

Since we vary the K parameter only on the NK landscapes, these charts detail more

complexity. The trends seen in the previous data continue here as well, with an increase

in average fitness occuring as the K parameter increases, and average fitness decreasing

as bits becomes greater past a certain point. Again, we remind the reader that since the

global maximum of the NK landscapes is not known here, the NK results are not as

definitive as they are with the separable easy and deceptive functions.

0.78
0.77

0.76 -
0.75
0.74 -
0.73

0.72 -
0.71 -

0.7 ■

bits = 2
bits = 5

bits = 3
bits = 6

bits = 4

Figure 5.38. Not only does the
average fitness achieved become
greater with an increase in the K
parameter, but increasing the
bits parameter shows a
significant decrease in average
fitness. This is especially true
for the higher settings of the K
parameter.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5 6

5.3.8 MMHCl / NK Landscapes: bits mutated / nmoves and emoves

0.78

0.77
0.76

0.75
0.74

0.73
0.72

0.71
0.7

bits mutated
nmoves = N/2
nmoves = 3N

nmoves = 2N

Figure 5.39. The nmoves
parameter seems to have the
greatest influence on average
fitness for MMHCl on the NK
landscapes. The most productive
setting combination seems to be
bits = 3, nmoves = 3N.

0.78 1

0.77

0.76

0.75

0.74

0.73

0.72 -

0.71

0.7

bits mutated

-a— emoves = N/2
* emoves = 50N

emoves = ION

Figure 5.40. As bits is
increased, average fitness of
MMHCl on the NK landscapes
decreases. The emoves
parameter does very little to
affect that trend.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

57

5.3.9 MMHC2 / NK Landscapes: K / nmoves and emoves

0.78
0.77

0.76

0.75

0.74

0.73

0.72

0.71

0.7

— nmoves = N/2
nmoves =3N

nmoves = 2N

Figure 5.41. The larger values
of the K parameter appear to
produce better results here,
especially when nmoves = 3N.

0.78

0.77

0.76

0.75

0.74

0.73

0,72

0.71

0.7

emoves = N/2
emoves = SON

emoves = ION

Figure 5.42. The trend of an
increase of average fitness with
increasing K settings continues
on the NK landscapes with
MMHCl. The emoves parameter
values we used have little effect
on this trend.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

58

5.4 RMHC / All Problem Sizes

The data presented for the RMHC algorithm are relatively uncomplicated, due to the fact

that for RMHC, we change only one bit at a time. Thus, bits is set to 1 throughout. On the

deceptive and easy landscapes, iC = 6 on aU problems.

5.4.1 RM HC I Deceptive: bits = 1 / nmoves and emoves

0.935

0.925

0.915

0.905

E3 N = 60 B N = 120 □ N = 180

Figure 5.43. For all settings of
nmoves, the RMHC algorithm
achieves its best results on the
60 bit problems. Changes in
nmoves result in only small
differences in average fitness
here.

0.935

0.93

0.925

0.92

0.915

0.91

0.905

0.9

□ N =60

em o v es

m

N=120

SON

a N = 180

Figure 5.44. A similar thing can
be said for all settings of the
emoves parameter with RMHC
as for the nmoves parameter:
average fitness is greater on the
60 bit problems. Changes in the
emoves parameter have a
negligible effect on average
fitness.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.4.2 RMHC / Easy: bits = 1 / nmoves and emoves

59

0.998

0.996

0.994

0.992

0.988

0.986

0.984

0.982

Q N = 60 N = 120 O N = 180

Figure 5.45. Average fitness
achieved by RMHC on the
easy landscape is also highest
with the 60 bit problems,
although no problem size can
be said to do poorly here.
Changes to the nmoves
parameter have negligible
effect.

0.998

0.996

0.994

0.992

0.988

0.986

0.984

0.982

em o v es

□ N =60 N = 120 □ N = 180

Figure 5.46. Very good results
are obtained by this algorithm
on the 60 bit problems. The
emoves parameter seems to
cause a slight improvement in
average fitness on the 120 bit
problems.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

60

5.4.3 RMHC / NK Landscapes: bits = 1 / nmoves and emoves

On the NK landscapes, we vary the K parameter, so there is some additional complexity

reflected in the data. The bits parameter is set to 1. Since we do not know the global

maximum of the NK landscapes, these data are more comparative than definitive.

0.76

0.75

0.74

0.73

0.72

0.71

0.7

—: nmoves = N/2
nmoves =3N

nmoves = 2N

Figure 5.47. The RMHC data
continue to demonstrate the
trend of general improvement
in average fitness accom
panying an increase in the K
parameter. Changes in nmoves
produce erratic results here,
although a beneficial setting
for nmoves can be found for
each value of K.

0.76

0.75

0.74

0.73

0.72

0.71

0.7 ^

■■— emoves = 10N♦ — emoves = N/2
emoves = SON

Figure 5.48. The chart
depicting the effects of
different emoves settings is
very similar to that for nmoves
here. Overall fitness improves
with an increase in K, except
for the setting of K = A where
the fitness decreases slightly
for a setting of emoves = ION.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

61

Chapter 6

Conclusions

Overall, the data obtained from this investigation into the search characteristics of three

hillclimbing algorithms tend to support, to some degree, all three hypotheses we made at

the outset of the study. We refer to the sections of Chapter 5 containing the charts, for our

discussions in the present chapter. The charts are organized into three major categories

according to algorithm. Preceding the charts that detail results for the separate algorithms

(Sections 5.2, 5.3 and 5.4), there is a section of general overview data encompassing the

entire study (Section 5.1).

6.1 Superiority of Macromutation

We hypothesized that the macromutation algorithms, MMHCl and MMHCl would

achieve better results than the single-bit-mutation algorithm, RMHC on aU test problems

(landscapes), and on all problem sizes. We further conjectured that macromutation would

do especially well on the non-separable functions, the NK landscapes. Figures 5.1, 5.2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6 2

and 5.3 show the average fitness values achieved for aU the algorithms on the fully

deceptive, fully easy and NK landscapes, respectively, for all problem sizes combined.

The charts in Figures 5.1 and 5.2 demonstrate superior results obtained with the MMHCl

algorithm for bits = 3, 4, or 5 on the deceptive landscape and bits = 2 or 3 on the easy

problems. The chart in Figure 5.3 shows that MMHCl also did well in comparison with

RMHC and MMHCl on the NK landscapes. In Figure 5.3, we see that MMHCl does

better in comparison with MMHCl on the non-separable NK landscapes than it does on

either of the separable, easy or deceptive, landscapes. In Figures 5.1 and 5.2, it can be

seen that RMHC performs quite weU in comparison with MMHCl on all the separable

functions. RMHC actually performs better than MMHCl on all runs with the easy

problems. While localized macromutation (MMHCl) did very well overall, distributed

macromutation (MMHCl) performed somewhat less well than expected.

6.2 Superiority of Localized Macromutation

On the test problems in this work, we have defined the parameter K to be the length of

the substrings, the average of whose individual fitnesses comprise total string fitness. At

the outset of this study, we hypothesized that the macro mutation algorithm that tries to

mutate bits that are coupled in the fitness function, MMHCl, would outperform the

macro mutation algorithm whose bits are more likely to be affine in the fitness function,

MMHCl. We conjectured that this would be true on all test problems whenever the

mutated bits are within the length of one substring of each other, that is, whenever the

mutated bits are more likely to be coupled within the fitness function. Multiple mutations

along a string are more likely to occur within the length of one substring of each other as

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

63

we increase the size of the substring, thus making it inclusive of more bits. An increase in

the K parameter should result in more of the mutated bits being ones that are coupled in

the fitness function. We conjectured that as we increase K we would see a relative

improvement in performance for localized macromutation (MMHC2). In addition, since

the bits mutated by MMHCl are more likely to be coupled bits in the fitness function, we

expect MMHCl not only to do better Ûvàxx MMHCl but to increase its relative superiority

over MMHCl as K increases. These expectations are shown to be justified by the results

on the NK landscapes. Figure 5.10. (Since we vary the K parameter only on the NK

landscapes, charts for the NK landscapes are the only ones that include changes in the K

parameter.) Since we do not have data concerning the global maximum of each of the NK

landscapes, we are not able to definitively specify the algorithms’ absolute performances

with the NK functions.

6.3 The Strength of RMHC

The single-bit-flipping hillclimber, RMHC, also fulfills most expectations in this

investigation. We originally hypothesized that RMHC would perform better on the

separable easy and deceptive functions than it performs on the non-separable NK

functions. Since we have no data on the global maximum for the NK landscapes, we

cannot definitively describe RM HCs absolute performance there. However, we can see

in Figure 5.3 that in comparison with the other algorithms, RMHC performs somewhat

less well on the NK problems than either MMHCl or MMHCl with most bits settings. On

the deceptive problems (Figure 5.1), MMHCTs overall superiority notwithstanding,

RMHC, at bits = 1, performs better than MMHCl does for most of its own bits settings.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6 4

RM H O s greatest strength seems to lie in its ability to effectively find local maxima. It’s

outstanding performance on the easy problems (Figure 5.2), especially in relation to

M M H Cl, is indicative of this ability. RMHC significantly outperforms MMHCl for all of

M M H Cl’s bits settings on the easy landscape. Due to RMHC's mixed results on the

separable landscapes, we cannot conclude that separability is the deciding factor on this

hypothesis.

6.4 The effects of varying nmoves^ emoves and N

At the outset of this investigation, we sought to observe the influences on algorithm

performance of the nmoves and emoves parameters. We also wished to observe the effect

of changes in problem size, N. We believed that varying these parameters would likely

result in changes in algorithm performance. Each of the major sections in chapter 5

contains subsections that detail the effects of these parameter variations with the different

algorithms on the three landscapes that we studied. We summarize those data in the

following sections.

6.4.1 nmoves and emoves

We conclude that variations in the nmoves parameter, the maximum times a new point

can have lower fitness than a current point, have a greater effect on overall algorithm

performance than do variations in emoves, the maximum number of equal fitness steps.

We clearly see this by comparing the nmoves and emoves overall data charts for each

landscape in Subsections 2 and 4 of Section 5.1. Similar results throughout the study can

be seen in comparable charts for every algorithm. From these results, we conclude that a

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6 5

setting of nmoves of 2N or 3N in this study contributes more to good algorithm

performance than does the NI2 nmoves setting. We also conclude that the two higher

nmoves settings result in better performance than any of the three settings of emoves that

we tried. The contribution of nmoves to the performance of all algorithms seems

especially pronounced on the easy and deceptive separable functions, with the

macro mutation algorithms, as seen in Subsections 5.2.2, 5.2.5, 5.3.2 and 5.3.5. In almost

every chart in Chapter 5 that involves the emoves parameter, it seems clear that

performance differences are negligible for changes in emoves,

6.4.2 N

Comparative average fitness differences seemingly related to differences in problem size

are apparent throughout this investigation. The algorithms we study seem to achieve

higher average fitness values with problem size iV = 60 on all landscapes. This is

suggested by the data in Figures 13, 16, 17, 18, 21, 22, 28, 31, 32, 33, 36, 37, 43, 44, 45

and 46 of Chapter 5. Once again though, since we do not have data concerning the global

maximum of the NK landscapes, we are not able to definitively specify the algorithms’

absolute performances there. With that caveat in mind, we cannot conclusively attribute

improved performance at TV = 60 to problem size. We suggest that it may be due to the

simple fact that shorter problems are probably easier to solve.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

66

6.4.3 The bits Parameter

Throughout the data produced by this investigation, it can be seen in most of the charts

involving the bits parameter with the MMHC2 algorithm, a setting of bits = 3 seems to

produce exceptional results, comparatively. We suggest that this improvement is due to

MMHC2's potentially mutating 2 * 3 = 6 bits simultaneously.

6.5 Summary

Throughout this study, we have seen that hillclimbing algorithms using macromutation

perform very well on a variety of landscapes. We have also observed that this is

emphatically demonstrated for algorithms whose mutated bits are coupled within the

fitness function. We have obtained improved results on the particular problems studied

whenever we allow the algorithm to have 2N or 3N retries in seeking improved steps

whenever it finds less fit points during a search. In most cases, the setting of nmoves =

N!2 seems to degrade performance. Additionally, we have seen that allowing our

algorithms to explore mesas on the landscapes tested results in no significant increase in

performance. The algorithms in this study return somewhat higher average fitness values

with a problem size of 60 bits, most hkely because the longer problems are harder to

solve.

At this time, we present an answer to the question, “Why does macromutation do well on

separable functions?” It is clear from these results that macromutation does well on

separable functions. We state that this is because macromutation, by its nature of

simultaneously mutating multiple bits, has a high likelihood of mutating bits that are

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

67

coupled in the fitness function. Bits that are coupled in the fitness function are more

likely to produce a greater increase in fitness than mutating bits that are affine in the

fitness function. In the separable functions used here, the fixed value of AT = 6 increases

the likelihood that the bits mutated will be coupled in the fitness function.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

68

Appendix

Figure A .I. Sample UNIX C-SheU script file named M2, used to run the MMHC2
algorithm on the final set of hillclimbs.

driver script for mmhc2
if ($#argv 1= 2) then
echo "USAGE: M2 <evals> <seed>"
exit

endif
set evals = $argv[l]
set seed = $argv[2]
foreach N { 60 120 180 }
® nh = $N / 2
g n2 = 2 * $N
® n3 = 3 * $N
@ nlO = 10 * $N
@ n50 = 50 * $N
foreach K (2 3 4 5 6)
foreach bits (2 3 4 5 6)
foreach nmv ($nh $n2 $n3)
foreach emv ($nh $nlG $n50)
@ seed++
mmhc2 $N $K $bits $evals $nmv $emv nk $seed
if ($K == 6) then
@ seed++
mmhc2 $N $K $bits $evals $nmv $emv e60 $seed
@ seed++
mmhc2 $N $K $bits $evals $nmv $emv d60 $seed

endif
end

end
end

end
end

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

6 9

Figure A.2. Sample UNIX command-line invocation of the MMHCl algorithm for
performing the initial, exploratory hillclimbs. A hue of comments above the command
line itself identifies the parameters.

N K #bits #climbs nomovemax emovemax landscape seed#
mmhcl 60 6 4 10 120 300 e60 102938

Figure A.3. Sample UNIX command-line invocation of the MMHCl algorithm for
performing the final set of hillclimbs. A line of comments above the command line itself
identifies the parameters.

N K #bits #evals nomovemax emovemax landscape seed#
mmhc2 120 6 4 5700000 120 300 d60 107401

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

7 0

Bibliography

[1] Kihong Park. A Comparative Study of Genetic Search. Proc. 6th International

Conference on Genetic Algorithms, July, 1995, 512-519.

[2] M. Srmivas and Lalit M. Patnaik. Genetic Algorithms: A Survey. Computer, June,

1994, 17-26.

[3] Terry Jones. Evolutionary Algorithms, Fitness Landscapes and Search. PhD thesis.

University of New Mexico, Albuquerque, New Mexico, May, 1995.

[4] Stuart Russell and Peter Norvig. Artificial Intelligence, a Modem Approach.

Prentice Hall, Englewood Cliffs, New Jersey, 1995.

[5] Stuart A. Kauffman. The Origins o f Order; Self-Organization and Selection in

Evolution. Oxford University Press, New York, 1993.

[6] Richard K. Thompson and Alden H. Wright. Additively Decomposable Fitness

Functions. Paper, The University of Montana, Missoula, January, 1997.

[7] K. Deb and D. E. Goldberg. Sufficient Conditions for Deceptive and Easy Binary

Functions. Technical report. University of Illinois, Champaign-Urbana, 1992. lUiGAL

Report 92001. Available by ftp from gal4.ge.uiuc.edu in pub/papers/IUiGALs/92001 .ps.Z

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

	Investigation into the search characteristics of three hillclimbing algorithms
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459884606.pdf.sMQly

