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Glass, David F., M.S., December, 1997 Computer Science

An Investigation into the Search Characteristics of HillcHmbing Algorithms (70 pp.)
L

Director: Alden H. Wright

In recent years, iterative search techniques have emerged as practical and robust 
function optimization methods. The general method called hiUchmbing is presented here. 
In particular, three hülclimbing algorithms that make use of the mutation operator are 
investigated. These are a single-bit mutation algorithm, RMHC, and two varieties of a 
multi-bit mutation (macromutation) algorithm, which we call MMHCl and MMHC2. 
Several important algorithm parameter settings are varied across the runs of these 
algorithms, and three different problem sizes are used. Each algorithm is tried on the six 
bit fully easy and six bit fully deceptive problems of Goldberg[7] as weU as on the NK  
landscapes due to Kauffman[5].

The results indicate the relative superiority of the macromutation algorithms as 
compared with the single-bit mutation algorithm. This is especially true for the 
macromutation algorithm, MMHC2, whose mutated bits are localized with respect to 
each other along the length of the bit string. Also, it is seen in each problem that as the 
number of bits mutated is increased past a certain value, performance of all the 
algorithms is degraded. The effect on relative algorithm performance of variations in 
other parameter settings is also illustrated. An answer to the question, “Why does 
macromutation do well on separable functions?” is given and the effect of problem length 
on algorithm performance is examined.
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Chapter 1 

Introduction to Hillclimbing

1.1 A Problem

Real world problems whose instances contain many variables pose a daunting challenge 

to people charged with arriving at optimal solutions to those problems in a reasonable 

amount of time, using a reasonable amount of resources. One such problem might be the 

weekly scheduling of employee work shifts at a large company. Company management 

would have to take into account the various requirements of each of the many jobs 

involved in their business and the suitability of the qualifications of the employees 

available to fill those jobs. The employees’ personal preferences regarding the shifts they 

worked, as well as the demands placed on them by their outside responsibilities would all 

be factors influencing such a decision. Other considerations, such as the completion times 

allotted for necessary tasks, the average rates at which the individual employees have 

worked in the past to complete such tasks, job deadlines and even the availability of 

employees due to holidays are examples of the many additional factors complicating cost
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effective arrival at an optimal solution. An optimal solution in this case would likely be 

one that satisfied the most employees while at the same time allowing completion of the 

most work in the least amount of time. One method of searching for solutions to such 

difficult and multifaceted problems would be to work out with pencil and paper each 

different combination of employees in different shifts, evaluating each potential work 

schedule, one at a time, according to its overall effectiveness, given the criteria 

mentioned above. For a small company of five employees, this method of work shift 

scheduling might be sufficient. For a company of 200 employees, this weekly task would 

be prohibitively complex.

1.2 A Solution

As the size and complexity of multivariate optimization problems like this one grow, 

iterative techniques that use various operators to navigate the search space become viable 

alternatives to exhaustive search[2]. If we are able to find a representation for a particular 

problem that easily fits into a familiar, expedient solution technique, then we have 

accomplished a large part of the task of efficiently searching for better solutions to our 

problems. By way of example, using the particular problem mentioned, one combination 

of employees scheduled to work certain shifts might be better than another combination. 

We might assign a numeric value (fitness) to each of the two schedules, depending on 

how good they are, given the criteria we have chosen to use to evaluate them. Changing 

one employee’s shift assignment might be similar to complementing one bit in a bit 

string. It would likely have some effect (small or profound) on the relative value of that
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particular schedule. Trying different combinations of shift schedules would be similar to 

mutating bits in a bit string, thus altering string fitness.

Representing multivariate problems as bit strings allows us to apply computerized search 

methods to them. One such computerized search technique is the iterative procedure 

called hillclimbing[l]. We perform a hillclimb on a bit string simply by repetitively 

changing bits in the string, which hopefully results in our finding a better bit string, one 

step at a time[4]. Before we perform a hillclimb on a bit string though, we must have a 

place to start. In this work, we start at a point, the composition of which determines its 

position on a landscape. Each of the points on the landscape consists of a concatenation 

of N  bits (a string of length AO, with each bit valued at 0 or 1. The landscape itself 

consists of 2^ of these points. Associated with each point on the landscape is a real­

valued number between 0 and 1 that depends on the values of the point’s constituent bits 

and their locations in the string. This number is called the fitness of the point. (Fitness 

can be thought of as the characteristic of a point that determines its place among all of the 

2^ points comprising the landscape.) We conduct our search for highly fit points in this 

search space. In so doing, we are moving on the landscape. The immediate neighbors of 

any point in the search space are points that differ from it in the value of only one bit (in 

the case of the RMHC algorithm) and up to as many as six bits (in the MMHCl and 

MMHCl algorithms). We randomly choose a point on the landscape and call it the 

current point. We immediately complement one or more of the point’s bits, effectively 

changing its location on the landscape to that of one of its neighbors. We evaluate the 

new point’s fitness. At this point, there are three possibilities. If the point newly created
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by mutation is of higher fitness than the previous point, we accept it as our current point 

and continue from there. If the new point is of lower fitness than the previous point, we 

apply mutation to the previous point again, generating another new string to evaluate. We 

only do this up to a specified number of times {nmoves), after which time a new random 

starting point is generated. If the new point is of equal fitness to the previous point, we 

accept it as our new current point. This also, is done up to a specified number of times 

{amoves), after which time a new random starting point is generated. This mutate- 

evaluate-select procedure is iterated until there is no additional fitness improvement, 

within the limits set by the nmoves and emoves parameters. In the case of our study, we 

also limit this process by ending it after a fixed number of fitness evaluations.

1.3 Benefits

The object of hillclimbing is to locate points of high fitness in the search space. By 

representing the multiple facets of some real-world scenario in the form of a binary 

string, we can effectively map a complicated multivariate problem to a form that can be 

efficiently explored in search of improved solutions using a computer. We examine here 

the effects of adjusting some of the parameters involved in applying each of three 

hillclimbing algorithms to bit strings of three different lengths.
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Chapter 2 

The Algorithms

2.1 The Algorithms

Initially, we present the general algorithm used for hillclimbing. (See Figure 2.1.) This 

will be followed by a detailed description of the characteristics that differentiate each of 

the three varieties of this general algorithm. As it turns out, RMHC, MMHCl and 

MMHC2 differ only in the procedure that performs mutation on the bit strings.

2.1.1 General Hillclimbing Algorithm

In this study, we perform a fixed number of function evaluations for each combination of 

algorithm parameter settings as a way of allocating an equal amount of work to each 

algorithm. For this purpose, we define a maximum number of evaluations called 

maxevals. We begin the general hillclimbing algorithm by using a random number 

generator to generate a random point in the search space. (For example, if it is a 60 bit
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problem that is being used in this hillclimb, then we start with a string of 60 randomly 

generated bits.) Call this point currentPoint. We evaluate that string’s fitness by using the 

fitness function we are studying. Call that number currentFitness. The next step is to 

apply a mutation operator to the string. This creates newPoint. The mutation operator is a 

function that is called by the algorithm. (See the discussion concerning the separate 

mutation operators, in sections 2.1.2, 2,1.3 and 2.1.4.) The fitness of newPoint is 

evaluated. Call that number, newFitness, Depending on the outcome of a comparison of 

newFitness with currentFitness, one of three possible paths is taken through the 

algorithm;

♦ newFitness > currentFitness: We accept the newly mutated string as our new 
current point and repeat the mutate-evaluate-select process from there.

♦ newFitness < currentFitness: We increment a variable, ntimes, that keeps 
track of how many times a newly mutated point is less fit than the current 
point. We check the nmoves parameter. If ntimes is less than the nmoves 
parameter, then we repeat the mutate-evaluate-select process on the current 
string, the one that had originally resulted in currentFitness. If ntimes is 
greater than or equal to the nmoves parameter, we consider that we have 
reached a point of locally maximum fitness on the landscape and start a fresh 
hillclimb. If the number of function evaluations performed has reached or 
exceeded maxevals, we terminate that set of hillclimbs, return the point of 
highest fitness achieved and begin a new set of hillclimbs using a new 
combination of parameter settings.

♦ newFitness = currentFitness: We incrernent a variable, etimes, that keeps 
track of how many times a newly mutated point is equal in fitness to the 
current point. We check the emoves parameter. If etimes is less than the 
emoves parameter, we accept the new, equally fit point as our new current 
point. We continue the hillclimb from there by repeating the mutate-evaluate- 
select process. If etimes is greater than or equal to the emoves parameter, we 
consider that we have reached a point of locally maximum fitness on the 
landscape and start a new hillclimb. If the number of function evaluations 
performed has reached or exceeded maxevals, we terminate that set of 
hillclimbs, return the point of highest fitness achieved and begin a new set of 
hillclimbs using a new combination of parameter settings.
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Figure 2.1. Pseudo-code for the general hillclimbing algorithm.

HILLCLIMB (mareva/j, nmoves, emoves) 
evals 4- superfit ^  0 
while evals < maxevals

ntimes 4- etimes 4- 0 
climb 4- ‘yes’
currentPoint 4- generateRandomPoint() 
currentFitness 4- evaluateFitness(cMrre«/ Point) 
evals 4- evals + 1 
while climb = ‘yes’

newPoint 4- m \it2i\.t{currentPoint) 
newFitness 4- evaluateFitness(newPomO 
evals 4- evals + 1

if newFitness > currentFitness 
then ntimes 4- etimes 4- 0

currentPoint 4- newPoint 
currentFitness 4- newFitness

else if newFitness < currentFitness 
then ntimes 4- ntimes + 1 

if ntimes >= nmoves 
then d/m!? 4- ‘no’

else if newFitness = currentFitness 
then etimes 4- etimes + 1 

ntimes 4- 0 
if etimes >= emoves 
then climb 4- ‘no’ 
else currentPoint 4~ newPoint

currentFitness 4- newFitness

if eva/s >= maxevals 
then climb 4- ‘no’

if currentFitness > superfit 
then superfit 4- currentFimess

re tu rn  superfit
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2.1.2 RMHC

The Random Mutation Hillclimbing algorithm is the simplest of the three algorithms. In 

the mutation step of RMHC, we mutate one bit chosen at random from the N  bits of the 

string. That is, we change its value to that of its complement. (See Figure 2.2.)

Figure 2.2. Pseudo-code for mutation under RMHC.

RM HCjmJTATEistring.N)
r <- generateRandomInteger(0 : N  - 1) 
complement(jm‘n^[r] )

re tu rn  string

2.1.3 M M HCl

In the Macro-Mutation Hillclimbing algorithm number 1 {MMHCl), when we apply the 

mutation step, instead of mutating only one bit (as in RMHC), we mutate some number of 

bits m the string according to the result of a comparison. The comparison is between r, 

chosen uniformly at random from the interval (0, 1), and the quotient, bitsIN (where bits 

is the bits parameter the algorithm is using and N  is the length of the string whose bits are 

being mutated). Starting with the first bit in the string to be mutated, and proceeding to 

the last, for each bit, we generate r and we mutate that bit if r < {bitsIN). This formula for 

mutating bits insures that the mutated bits are distributed randomly throughout the string 

(See Figure 2.3.)
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Figure 2.3. Pseudo-code for mutation under MMHCl.

M U liC lJA JJT  KTEistring,bits ̂  
for / ^  0 to (TV- 1)
do r  generateRandomReal(0 : 1) 

if r < {bits / N) 
then complement(.yfnn^[j])

return string

2.1.4 MMHC2

In the Macro-Mutation Hillclimbing algorithm number 2 {MMHC2), we mutate some of 

the bits in the string to be mutated according to a formula that insures that the mutated 

bits remain within a fixed distance of each other (localized) rather than occurring 

throughout the entire string (distributed), as in MMHCl. To mutate bits in MMHC2, we 

first generate a random starting position in the N  bits of the string. Letting m = 2 * bits, 

where bits is the algorithm’s bits parameter, for each of the following m bits from the 

starting position, we generate a real-valued, random number, r, with a uniform 

distribution between 0 and 1. We mutate the bit in question if r < 0.5. (See Figure 2.4)

Figure 2.4. Pseudo-code for mutation under MMHC2.

MMH.C2_M\JTATE{string,bits,N)
start ^  generateRandomInteger(0 : 1)
m 2 * bits
for i 4- start to {start + m -  I) 
do r ^  generateRandomReal(0 : 1) 

i f r < 0 .5
then complement(^rring[i mod TV]) 

return string
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2.2 Linear (Affîne) Interaction, Coupling and Separability

2.2.1 Linear (Affine) Interaction and Coupling

We would like to show what it means for a function to be affine in two of its bits.

Consider two bits, xo and xi such that xo, X] e {0, 1). A function of two bits, g(xo, X]), is

affine if there exist real valued constants, a, b, c, such that g(xo, xi) = axo + bxi + c.

Proposition; A function of two bits, xo, and X], g(xo, xi), is affine if and only if 

g (l, l ) - g ( 0, l ) = g ( l , 0) - g ( 0, 0).

Proof:
=> g ( l ,  1) = (a • 1) + (b • 1) + c = (a + b + c)

g(0, 1) = (a • 0) + (b • 1) + c = (b + c) 

g ( l ,  0) = (a • 1) + (b • 0) + c = (a + c) 

g(0, 0) = (a • 0) + (b • 0) + c = c

<= Let a = g (l, 0) -  g(0, 0), b = g(0, 1) -^ (0 , 0), and c = g(0, 0).

f ( l ,  1) = [gih  0) - g ( 0, 0)] -1 + [g(0, 1) - 5(0, 0)] • 1 + 5(0, 0)

= (a • 1) + (b • 1) + c 

5(0, 1) = [5(1, 0) -  5(0, 0)1 0 + [5(0, 1) -  5(0, 0)] • 1 + 5(0, 0)

= (a • 0) + (b • 1) + c  

5(1, 0) = [5(1, 0) - 5(0, 0)1 -1 + [5(0, 1) -5 (0 , 0)1 • 0 + 5(0, 0)

= (a • 1) + (b • 0) + c 

g(0, 0) = [5(1, 0) -  5(0, 0)1 • 0 + [5(0, 1) -  5(0, 0)] • 0 + 5(0, 0)

= (a • 0) + (b • 0) + c ■
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A fitness function, F(xo,..., xn-i) is affine in bits Xi and xj if, for any choice of the 

remaining bits xt, A: + i, j,

f 'ÇXOj  • • • ,  X^~Jj f  ,  « • •  ,  Xj-}  ,  f  ,  •  • a ,  X ^~J  )  F*^XQ^ a a a ,  Xî^ J , 0 ,  a a a ,  Xj~ 1 ,  1  ,  a a a ,

a a a ,  Xl^ J ,  ^ ,  a a a ,  Xj. J , 0 ,  a a a ,  X/^-J  ̂  ”  JF^^XQy a a a ,  Xj. J , 0 ,  a a ■ ,  , ^ _ 7 , 0 ,  a a a , ,X ^ -/^ a

In other words, F  is affine in bits Xi and xj if g(x„ xj) = F ( x o , . . j c „ . Xj.], xj,..., x^.j)

is affine. If F  is nonaffme in Xi and xj, then we say %, and xj are coupled in F.

For example, we define a fitness function, F, as the sum of simpler, nonaffine functions. 

Go, G], G2 , and G3 , and show what it means for F  to be affine in two of its bits, say X] and 

X3. Let F(xo, X],  X2, X3) = Go(xo, xi) + Giixj, X2), +  C2W , X3) + xo). The following

table defines Go, G}, G2 , and G3:

Go Gi C2 G3

00 2 6 3 9

01 3 0 2 9

10 1 4 1 6

11 0 9 8 4

From this, we can compute the 
following table of values for F:

X2X3

I

F 00 01 10 11

00 20 16 12 16

01 19 15 22 26

10 19 13 11 13

11 16 10 19 11

e.g .,F (00 1 0) = 12
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We show F  to be affine in xi and X3 , holding bits xo and xz fixed.

Case 1 ; xo = 0, xz = 0. Let g{xi, xs) = F(0, xj, 0, xs):

F(0 1 0 1 ) -  F(0 0 0 1) = F(0 1 0 0) -  F(0 0 0 0) o

( 3 +  4  + 2 + 6 )  — ( 2  + 6 + 2 + 6 )  = ( 3 +  4  + 3 + 9 )  — (2 + 6 + 3 +  9) ^

1 5 -  16= 1 9 -2 0  «  -1 = - l

Case 2: xo = 0,xz = 1. Let g(xi, xs) = F(0, xi, 1, jcj):

F(0 1 1 1) - F(0 01 1) = F(0 1 1 0) -F (0  0 1 0 ) »

2 6 -  16 = 2 2 -  12 »  0 = 0 

Case 3: xo = L xz = 0. Let g{xi, xi) = F (l, 0, xj):

F(1 1 0 1 )-F (1  0 0 1) = F(1 1 0 0 ) - F ( l  0 0 0) »

1 0 -1 3  = 16- 1 9 » -3 = -3 

Case 4: xo = l , x z  = 1. Let g(x/, xj) = F (l, xi, 1, xi):

F(1 1 1 1) -  F(1 0 1 1) = F(1 1 1 0) - F ( l  0 1 0 ) »

2 1 - 1 3  = 1 9 -1 1  » 8 = 8

We show F  to be nonaffine in bits xz and X3 , holding bits xo and xj fixed.

Let Xo = 0, xj = 0, gixi, Xs) = F(0, 0, xz, Xj):

F(0 0 1 1) -  F(0 0 0 1) + F(0 0 1 0) -  F(0 0 0 0) »

(2+  0 +  8 +6) — (2  + 6 + 2 +6) (2 + 0 +  1 +9) — (2+  6 + 3 +9) »

1 6 -  16+ 1 2 - 2 0  »  0 +-8 

We say bits xz and xs are coupled in F.
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As we have stated, MMHCl distributes its mutated bits across the string length, N. The 

local algorithm {MMHCl) mutates bits that are positionally close. This positional 

difference allows us to observe the effect of varying the couphng of the bits we mutate. 

For the test functions we use, the fitness of an entire string is made up of a sum of fitness 

functions that depend on substrings. (In the previous example, F  was defined as the sum 

of Go, Gi, Gz, and G3 , where each Gi depends on the values of two adjacent bits that 

comprise a two-bit substring.) In our test functions, if bit i and bit j  are in the same 

substring, then they are coupled in the fitness function. Conversely, in our test functions, 

bits that are not in the same substring are not coupled in the fitness function. In this case, 

mutating one bit does not affect the fitness of the substring containing the other. For our 

test functions, bit i and bit j  are affine in the fitness function if they are greater than k bits 

apart,

I i ~ j  \>k,

where k is the length of the substrings used in the definition of the test function.

2.2.2 Separability

As stated, for the test functions we use, the fitness of an entire string is made up a sum of 

fitnesses of substrings. If the bits contributing to the fitness of a substring do not overlap

with bits in other substrings, we say that the function is separable. In other words, F  is

separable if, for some i, and some functions G, H,

F{pCQ,t. . , JCi.j, Xi,,.., Xf̂ i-j) — ..., Xi,]) H{Xi,,.,, X^,]),

In this case, if '̂ < i and i < k, then bits xj and Xk are affine in F.
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2.3 The Hypotheses

2.3.1 Macromutation

2.3.1.1 Overall Performance

We hypothesize that the two macromutation algorithms, MMHCl and MMHCl, perform 

better overall than the single-bit-flipping RMHC algorithm. We expect this to be true on 

the landscapes that have non-separable functions.

2.3.1.2 Number and Position of Bits Mutated

When hillclimbing algorithms mutate bits in a string in an attempt to find a point of high 

fitness, they can mutate one or several bits in any single iteration. The RMHC algorithm 

we study mutates only one bit per iteration while the MMHCl and MMHCl algorithms 

mutate multiple bits in an iteration. The number and position of bits mutated, especially 

as related to each other, are extremely important factors. We conjecture that mutating bits 

that are likely to be affine in the fitness function {MMHCl) results in somewhat lower 

performance levels on all test problems than mutating bits that are likely to be coupled in 

the fitness function {MMHCl).

2.3.1.3 RMHC’s Strength

We expect RMHC's performance on the separable problems to be somewhat better than 

its performance on the non-separable problems.
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2.3.2 emoves

In hillclimbing algorithms, we are always searching for points (strings) that have higher 

fitness than the point where we currently are. If every mutation resulted in a point of 

higher fitness, every hillclimb would be simply a matter of directly taking the shortest 

route to the top of the highest peak on the landscape. Of course, that is what we hope will 

happen. The random nature of the mutation operator seldom affords such a fortuitous 

series of steps. Often, we find ourselves at relatively flat places on a landscape (mesas) 

where most mutations result in points of equal fitness. Although the moves of 

hillclimbing algorithms are biased in the direction of strings of higher fitness, we 

hypothesize that it would be advantageous to allow the algorithms to make moves to 

points of equal fitness in hopes of discovering higher-fitness points hidden on the mesa. 

Therefore, we have implemented an emoves parameter, which is some multiple of the 

string length, N. We investigate the benefit of the emoves parameter to the performance 

of the algorithms and observe the effect of its becoming quite large with respect to N.

2.3.3 nmoves

The emoves parameter, discussed above, is one way that we hmit possibly endless 

wandering of our algorithms on non-productive parts of the landscapes. The nmoves 

parameter is another way to accomplish a similar end. When a mutation results in a less 

fit string, we throw away the original string in favor of a fresh hillclimb only after we 

have tried what we have decided to allow as a sufficient number of mutations of the 

original string. However, this state of affairs might also indicate that we have reached a 

point of locally maximum fitness. The parameter that determines the number of lower-
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fitness mutations that we consider before we make that decision is the nmoves parameter.

We think that allowing an increase in nmoves would be beneficial to algorithm

performance. As with emoves, we set nmoves to a multiple of N. While we think that, like

emoves, nmoves should increase, we investigate the effect of constraining its upper limit

to a smaller multiple of N  than that for emoves.

2.3.4 Informal Summary of Hypotheses and Observations

• MMHCl and MMHCl perform better than RMHC on all test problems and on all 

problem sizes. This is demonstrated emphatically on the problems using non- 

separable functions,

• Mutating bits that are likely to be affine in the fitness function {MMHCl) results in 

somewhat lower performance levels on all test problems than mutating bits that are 

likely to be strongly coupled in the fitness function {MMHCl).

• RMHC  performs better on the problems using separable functions than on the 

problems using non-separable functions, for all problem sizes.

• We observe the effect on algorithm performance of the emoves and nmoves 

parameters.

• We observe the effect of the problem length, N, on algorithm performance.
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Chapter 3

The Problems

I t  seems clear enough why we would want to automate the solution of a problem like the

one presented in Chapter 1: time and money. Of course, the method chosen to implement 

the automation should be as efficient as the current state of technology allows. The 

hillclimbing algorithms that we explore here present areas into which investigation can 

result in increased understanding of the method and allow for adjustment of the 

parameters that will result in optimal algorithmic performance.

The landscapes (problems) we have chosen for our hillclimbing investigation are the six 

bit fully easy and six bit fully deceptive landscapes found in Goldberg[7] and the NK  

landscapes due to Kauffman[5].
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3.1 Fully Easy

This problem requires that the algorithm simultaneously solve a number of fully easy 

subproblems. Each subproblem is a six bit function of unitation. Unitation is the number 

of bits in a binary string that are set to 1. (The specific function of unitation is given in 

Figure 3.1.) For example, the string, 010101 contains three ones. Thus its fitness would 

be 0.9. This landscape was designed by Goldberg[7] in his study of G As. He intended it 

to be easy for a GA to solve. That is, it should be easy for that algorithm to achieve the 

maximum fitness point, the string of all zeroes (fitness = 1.0), in a fully easy problem. Of 

course, a hillclimbing algorithm is not a GA and will find other local maxima on this 

landscape besides the global one. However, the fully easy landscape is one that is useful 

for comparing the three algorithms that we have chosen for this work because it is a 

separable function. Each problem instance is constructed by concatenating some number 

of these six bit functions together. The experiments use 10, 20 and 30 such subproblems, 

resulting in problem sizes of 60, 120 and 180 bits.

Figure 3.1. A fully easy six bit problem. Maximum fitness point is 000000.

Unitation 0 1 2 3 4 5 6

Fitness 1.0 0.8 0.6 0.9 0.5 0.7 0.9
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3.2 Fully Deceptive

The fully deceptive problems are also representative of a class of problems that have 

received attention in the study of G As. Each of the fuUy deceptive subproblems is a six 

bit function of unitation. The string, 010101 here has fitness 0.3. (See Figure 3.2.) The 

function values for the different unitation values are arranged differently than in the fully 

easy problems. The maximum fitness point in a fuUy deceptive problem is the string of 

all ones. It is important to note that the location of the global maximum in the fully 

deceptive problem is opposite to the location of the global maximum in the fully easy 

problem (the string of all ones as opposed to the string of all zeroes). On the fully 

deceptive landscape, there is a local maximum situated at thé point of aU zeroes. Fully 

deceptive problems get their name from reasoning by their designer that the placement of 

function values would deceive an algorithm into finding the local maximum rather than 

the global maximum. As with the easy functions, deceptive functions are also separable 

functions whose bits are affine in the fitness function. Each of our problem instances is 

constructed by concatenating some number of these six bit functions together. The 

experiments use 10, 20 and 30 such subproblems, resulting in problem sizes of 60, 120 

and 180 bits.

Figure 3.2. A fully deceptive six bit problem. Maximum fitness point \s 111111.

Unitation 0 1 2 3 4 5 6

Fitness 0.90 0.45 0.35 0.30 0.30 0.25 1.00
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3.3 N K  Landscapes

In the NK  model, N  refers to the number of parts of a system -  factors influencing a 

decision, bits in a string, or otherwise. Each part makes a fitness contribution to the whole 

which depends upon that part and upon K  other parts among the N. That is, K  reflects the 

degree to which the system components are coupled with each other, the degree of 

epistatic interaction. In terms of the bit strings we use here, N  refers to the total length of 

the string and K  refers to the length of a substring within the N  bits[5,6].

For example, if we have a string of 60 bits {N = 60), then there are ten substrings of 

length six {K = 5) which comprise the 60 bits. This is true when the substrings are placed 

end-to-end. However, the substrings might not be placed end-to-end. The substrings 

might overlap each other. That is, instead of beginning the second substring one bit 

position beyond the end of the first substring, we might begin the second substring at the 

second bit position in the first substring, thereby overlapping the two substrings by five 

bits. Thus, five of the six bits in the first substring also contribute their part to the fitness 

contribution of the second substring, and so on, for all N  bit positions. When this is the 

case, there are a total of 60 substrings of length 6 (and AT = 5) in a string where N  = 60. 

We allow K  of the substrings to wrap around from the end of the main string to its 

beginning whenever the start position of the substring is greater than position N  -  K  ■¥ \ 

in the main string. The fitness contribution of each of the N  substrings is dependent on 

the 2^^^ possible position combinations of the substring’s bits. Thus, there are N  tables, 

each with 2 '̂*'̂  function values that have been randomly chosen with a uniform 

distribution over the interval, [0,1). These function values additively contribute to the
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overall fitness of the string. (See Figure 3.3 and Figure 3.4 and accompanying example 

on the next page.) The two main parameters in the NK  model are the number of bits in the 

string and the number of other bits that epistatically influence the fitness contribution of 

each substring. In the NK  landscapes, there is a high degree of coupling between bits that 

are close to each other in the string. NK functions are non-separable. Simultaneously 

mutating bits that have a high degree of epistatic interaction is one of the areas this work 

investigates.

For this study, a fresh instance of a randomly generated NK  function is produced for each 

set of hillclimbs performed. This is because randomness is part of the definition of the 

NK  landscapes. This is unlike the runs using the easy and deceptive landscapes. For 

those, the same function is used for all hillclimbs.
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Figure 3.3. Elements of an NK  function where N = 6  and K = 2  (substring length = 3).

locus[0] locus[l] locus[2] locus[3] Iocus[4] locus[5]

000 0.25 0.55 0.19 0.23 0.23 0.77

001 0.20 0.02 0.99 0.38 0.22 0.08

010 0.85 0.66 0.03 0.71 0.09 0.17

oil 0.52 0.01 0.71 0.16 0.55 0.42

100 0.01 0.77 0.13 0.83 0.76 0.98

101 0.22 0.22 0.30 0.53 0.69 0.44

110 0.06 0.61 0.55 0.53 0.16 0.49

111 0.51 0.88 0.00 0.50 0.66 0.38

Locus Neighborhood Fitness

0 010 0.85

1 101 0.22

2 1 Oil 0.71

3 110 0.53

4 100 0.76

5 001 0.08

Figure 3.4. NK  Fitness calculation 
for the string 101100. The 
contribution of locus[0] is influenced 
by bits in positions 5 and 1. The 
contribution of locus[l] is influenced 
by positions 0 and 2, and so on.

Fitness = (0.85 + 0.22 + 0.71 + 0.53 + 0.76 + 0.08) / 6 = (3.15 / 6) = 0.525
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3.4 Formal Statement of Hypotheses and Observations

• We hypothesize that the macromutation algorithms, MMHCl and MMHC2 perform 

better than RMHC on all test problem sizes. This is demonstrated emphatically on the 

non-separable, NK  landscapes.

• We hypothesize that mutating bits that are likely to be affine in the fitness function 

{MMHCl) results in somewhat lower performance levels on all test problems than 

mutating bits that are likely to be strongly coupled in the fitness function (MMHC2).

e We hypothesize that for all problem sizes, RMHC performs better on sepaiable 

functions, the easy and deceptive problems, than it does on the non-separable NK 

landscapes.

We observe the effect on algorithm performance of changes in the emoves and 

nmoves parameters.

We observe the effect of the problem length, N, on algorithm performance.
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Chapter 4 

The Experiments

In  order to produce reliable results from this investigation, it was necessary to conduct a

sufficient number of trials for each of the possible settings of the various algorithm 

parameters on each of the proposed problem sizes. All of the trials then had to be 

repeated using each of the three different algorithms. Initially, decisions had to be made 

regarding the range through which each parameter would vary.

4.1 Parameter

4.1.1 N

Specifically, for all algorithms tested, we wanted to see if the size of the problems, the bit 

length N, affected algorithm performance. Since previous work by Jones[3] with 

hillclimbing algorithms had been done using problem sizes generally less than 120 bits, 

we chose to start with string lengths of 60 bits and 120 bits, but also to extend this to 180 

bits.
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4.1.2 nmoves and emoves

As well, we wished to observe the effects of varying the parameters nmoves and emoves 

in all cases, since these parameters are crucial in determining how thorough an 

algorithm’s search of a landscape for highly fit points will be. Again relying on previous 

work for guidance as to the range of parameter values selected, we choose to tie them to 

the value of N in each case. We use N/2, 2N  and 3N  for the settings of nmoves and N/2, 

ION and 50N  as the settings for the emoves parameter. Reasoning here was that tying the 

value of these parameters to N  would result in their being more fairly comparable across 

all algorithm runs and problem sizes.

4.1.3 bits

The number of bits mutated is a very important parameter to observe. Of course, in the 

RMHC algorithm, bits is always, trivially, 1. With MMHCl and MMHCl however, we 

vary bits. We choose to vary it between 2 and 6. Six is the number of bits in each of the 

fully easy and fully deceptive subproblems used in our study. Thus it might be possible, 

in a single iteration of an algorithm, to simultaneously mutate all of the bits in one of the 

easy or deceptive subproblems. On the NK  landscapes, we had chosen the largest 

substring size to be six. Therefore, on those subproblems it also might be possible, in one 

iteration, to simultaneously mutate all of the bits in one substring.
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4.1.4 K

One way to view K  is that it refers to the length of a substring on the NK  landscapes. 

(Kauffman’s definition of K in the NK  landscapes is one less than the number of bits in 

the length of a substring. The parameter K  that we use in this study is equal to 

Kauffman’s K, plus one.) The value AT = 6 is also the subproblem size we use for the fully 

easy and fully deceptive landscapes. With the latter two landscapes, we choose a fixed 

subproblem size of six since we use the easy and deceptive functions designed by 

Goldberg[7] and used in Jones’s work[3]. With the NK  landscapes however, we were 

able to vary the subproblem size. On the NK landscapes, we vary the subproblem size 

between 2 and 6. Letting the parameter K  be greater than 6 on the NK  landscapes results 

in function tables that quickly become unwieldy, due to the fact that each NK  function 

contains N  tables of 2^ randomly generated values.

Figure 4.1. Summary of elements comprising the hillclimbs.

Algorithms RMHC MMHCl MMHC2

Landscapes Fully Easy Fully Deceptive NK

N 60 120 180

K 2 3 4 5 6

bits 1 2 3 4 5 6

nmoves N/2 2N 3N

emoves N/2 ION SON
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4.2 Procedures 

4.2.1 Implementation

The RMHC, MMHCl and MMHC2 algorithms were implemented in the C language 

using a suite of C++ classes developed by Alden H. Wright at The University of 

Montana in 1996. In particular, from this suite, the class that provides a bit sequence and 

its accompanying functionality was used, as was the class that provides for the generation 

of random numbers. All algorithms and accompanying functions were written in C.

4.2.2 Preliminary Hillclimbs

Once the parameter range settings were decided, and the code to implement the 

algorithms written, a preliminary set of hillclimbs was performed. The objective of 

performing this preliminary set of hillclimbs is to determine the amount of work that we 

require each of the three algorithms to accomplish in order to compare them fairly. We 

decided to use as our unit of measure a single evaluation of string fitness. The total 

number of times that the fitness function is called on to evaluate string fitness during ten 

complete hillclimbs, using each of the parameter setting combinations, represents the 

amount of work the algorithm does on a given combination of parameter settings. The 

test problems are sufficiently hard that there is a difference in performance among the 

algorithms. We chose to allow each algorithm/setting combination ten hillclimbs. We 

considered that this would present sufficient opportunity for the algorithms to return a 

measure of work done that reflects differences among them. (See Figure A.2 in the 

Appendix for a sample command-line call to the MMHC2 algorithm for the prehminary 

hillclimbs.) We retain across all runs the largest number of function evaluations required
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for each set of ten hillclimbs. The resulting single numeric measure is later used as the 

standard on which to compare the performance of the different algorithms. On the 60-bit 

problems, especially with the lower settings of the nmoves and emoves parameters, the 

number of function evaluations required for an algorithm to complete ten hillclimbs can 

be relatively small compared with the number required for the 180-bit problems using the 

higher settings of nmoves and emoves.

After aU preliminary hillclimbs were run, we found that the largest number of function 

evaluations required for any algorithm to finish ten hillclimbs was nearly 5.7 million. 

This number is the yardstick for our final comparisons. The single algorithm whose 

maximally fit point is the best after each algorithm, performs 5.7 million function 

evaluations can be considered the better-performing algorithm, using a given 

combination of parameter settings.

4.2.3 Final Hillclimbs

Fairly comparing all the algorithms using every combination of the parameter settings 

meant performing however many hillclimbs it took, using each setting, to obtain 5.7 

million function evaluations. (See Figure A.3 in the Appendix for a sample command- 

line call to the MMHC2 algorithm for the final hillclimbs.) From the 5.7 million 

evaluations allowed for each different combination of the settings, we retained the 

maximum fitness value that was achieved in all the resulting hillclimbs. That value, and 

the parameter settings that produce it, were output to a file used to collect the data. As 

soon as an algorithm would complete 5.7 million evaluations, it outputs its data to the
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data file, proceeds to the next combination of parameter settings and begins another 5.7 

million evaluations. Three UNIX C-Shell scripts were used to run the algorithms through 

all of the necessary parameter combinations. (See Figure A.1 in the Appendix for an 

example UNIX shell script for running MMHCl.) For each of the three algorithms, this 

process was repeated for each combination of parameter settings until all combinations 

had been used. In the entire work, there are a total of 2,079 separate combinations of 

parameter settings observed. (See Figure 4.1.) That total results from 945 setting 

combinations being used in each of the MMHCl and MMHCl algorithms and 189 setting 

combinations tried for RMHC. Not absolutely every parameter setting was combined with 

absolutely every other one on all three algorithms, however. For instance, it must be 

remembered that since RMHC is the algorithm that mutates only one bit at a time, the bits 

parameter.for is always set at 1. Similarly, the MMHCl and MMHCl algorithms

do not use a setting of 1 for the bits parameter, since data for settings which used bits = 1 

were obtained from runs of RMHC. (Additionally, it makes no sense to say that we 

macromutationally vary one bit.) Also, the value of K  was set at a constant 6 for all 

algorithms on the fully easy and fully deceptive landscapes. This is because 6 bits is the 

size of the subproblems used in the test landscapes.

Each combination of parameter settings required 5.7 million function evaluations. This 

resulted in nearly 12 billion function evaluations being observed during the entire study. 

Completion of these final runs took several weeks of computation time, even with the 

algorithms simultaneously being run on many different computers.
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Chapter 5 

Data and Results

U pon completion of all algorithm runs, the data files produced by those runs were used

as input to spreadsheet software for conversion to spreadsheets and subsequently for 

conversion to charts used in analyzing the data and producing results. A discussion of the 

conclusions of this investigation, referencing these charts, is in Chapter 6.

5.1 All Algorithms /  All Problem Sizes

5.1.1 All Algorithms: bits mutated

The chart shown in Figure 5.1 is a general overview of the entire study using the fully 

deceptive landscape. It clearly shows the superior results obtained with the MMHC2 

algorithm across all tested problem sizes.

5.1.1.1 Deceptive

Figure 5.1. For a bits setting 
of 3, 4 or 5, MMHCl shows 
remarkably good perform­
ance on the fully deceptive 
landscape. (A bits setting of 
1 is valid only for RMHC.)
For the macromutation 
algorithms, generally, as bits 
increases past 2 or 3, average
fitness declines. 3 4

bits mutated
E  mmhcl I mmhc2 □  rmhc
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5.1.1.2 Easy and

Similar charts are produced for the fully easy landscape and the NK  landscapes. On the 

easy landscape MMHC2 is clearly the better performer, when the number of mutated bits 

is set to 2, 3 or 4. On the NK  problems, MMHC2 is better than MMHCl or RMHC using a 

bits setting between 2 and 5,

1

0.99

0.98

0.97

0.96

0.95
3 4

bits mutated

El mmhcl I  mmhc2 □  rmhc

Figure 5.2. We see the 
average fitness achieved with 
all the algorithms on the fully 
easy landscape. Again, we 
see outstanding results 
obtained with MMHC2, 
especially for a bits setting of 
2 or 3. Notable are the 
relatively low fitness values 
for MMHCl and the fact that 
RMHC gets better numbers 
than MMHCl throughout. 
RMHC even beats MMHC2 
with bits = 6.

0.77

0.76

0.75

0.74

0.73

0.72

0.71

0.7

0.69
3 4

bits m utated

O mmhcl mmhc2 □  rmhc

Figure 5.3. As expected, the 
average fitness reached, for 
all algorithms on the NK 
landscapes is somewhat 
better for the macromutation 
algorithm, MMHC2, than for 
RMHC for most bits settings. 
However, on the NK 
landscapes, MMHCl doesn’t 
lag as far behind MMHC2 as 
it does on the previous two 
charts.
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5.1.2 All Algorithms: bits mutated / nmoves and emoves

The charts showing the effect of varying the nmoves and emoves parameters across all 

algorithms and problem sizes studied generally tend to support our behef that adjusting 

these factors would make a difference in average fitness values achieved. What is 

surprising is that various settings of the nmoves parameter show greater differences in 

average fitness than adjustment of the emoves parameter.

5.1.2.1 Deceptive

0 . 8 8  - - B

0.84 - - i

3 4 5

bits mutated

□  nmoves = N/2 ■ nmoves =2N □ nmoves = 3N

0.98

0.86  -  -  !:?

0.84 ■-

3 4

bits mutated
E emoves = N/2 ■  emoves = ION □  emoves = SON

Figure 5.4, Changes in nmoves 
on average fitness for the 
deceptive problems are relatively 
insignificant for the smallest 
number of bits mutated. However, 
as bits increases, it is clear that 
the nmoves parameter is vital to 
improved average fitness 
numbers, as shown by the rapid 
decline for N/2,

Figure 5.5. For deceptive 
problems, the emoves 
parameter does not exhibit 
effects that are as profound as 
with nmoves. In fact, an 
increase in emoves beyond 
107V tends to give decreased 
average fitness for most 
settings of bits. It only results 
in increased fitness at bits = 3 
and bits = 4.
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5.1.2.2 Easy

3 6

0.98 - - Jî?

0.96 - i

2 3 4 5

bits mutated

nmoves = N/2 ■  nmoves =2N D nmoves = 3N

Figure 5.6. On the fully easy 
landscapes, nmoves exhibits 
similar tendencies as it does on 
the deceptive problems; an 
increase in nmoves becomes 
more critical to greater average 
fitness numbers as the bits 
parameter gets bigger.

0.95 --Ü

2 3 4 5

bits mutated

emoves = N/2 ■ emoves = 10N □  emoves = SON

Figure 5.7. While the emoves 
parameter appears to contribute 
some to better average fitness 
values, again with the easy 
problems, a variation of emoves 
seems to effect relatively 
insignificant changes in average 
fitness at each of the bits 
settings.
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5.1.2.3 NK Landscapes

37

0.77

0.73 ' - S:

3 4

bits mutated

I nmoves = N/2 I nmoves = 2N O nmoves = 3N

Figure 5.8. On the NK
landscapes, as with the
previous problems, changes to 
the nmoves parameter seem to 
have more effect on average 
fitness as the size of the bits 
parameter varies from 2.

0.77

0.72 - -

3 4

bits mutated

Q emoves = N/2 ■  emoves = 10N □  emoves = SON

Figure 5.9. The emoves 
parameter on the NK 
landscapes causes a slightly 
different trend in average 
fitness, compared with the 
previous two problems. As 
bits increases, an emoves 
setting of 107V seems to 
emerge as the better setting 
despite the fact that overall, 
average fitness tends to 
decline with an increase in 
bits beyond bits = 2.
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5.1.3 AU Algorithms: K

The chart shown in Figure 5.10 is a general overview of the entire study for different 

values of the parameter K, on the NK  landscapes. Since we use a fixed value of A" = 6 on 

the deceptive and easy problems, we have no data for variations of K  on those 

landscapes. Since we have no data on the global maximum for each NK  landscape, the 

NK  data are not as definitive as the data for the easy and deceptive problems.

5.1.3.1 NK  Landscapes

4

K
0  mmhcl rrrrhc2 a  rmhc

Figure 5.10. This chart also 
shows the good average 
fitness values achieved with 
MMHC2 on the NK 
landscapes. In general, as the 
parameter K  is increased in 
the range 2 - 6, the fitness 
values for MMHC2 improve. 
The average fitness for the 
other algorithms improves 
also, but only until A = 5, 
after which their numbers 
decline.
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5.1.4 All Algorithms: K  /  nmoves and emoves

We see the effect of varying the nmoves and emoves for different K. Again, only results 

for the NK  landscapes are shown since we used a fixed Æ = 6 on the easy and deceptive 

landscapes. An important result is that in general, the average fitness achieved by all 

algorithms on combined problem sizes seems to improve as the parameter K  increases.

5.1.4.1 Landscapes

0.77

0.76 -

4

K

0  nrroves = ISK2 ■  nmoves = 2N □  nmoves = 3N

Figure 5.11. For all settings of 
the K  parameter, the two 
higher settings of nmoves 
show higher average fitness 
values. As K  increases, so does 
the dominance of the higher 
two values of nmoves, with the 
3N setting being the better of 
the two in most cases.

Figure 5.12. Somewhat less 
dramatic differences in
average fitness are noted with 
variations in the emoves
parameter than with the
nmoves parameter. Here, the 
effect of different settings of 
emoves tends to be a bit more 
pronounced for K = 5, &l which 
point emoves = ION does best.

Q emoves = N/2 ■  amoves = ION□  emoves = SON
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5.2 M M H Cl / All Problem Sizes

On the following pages are charts depicting data for the different landscapes in which all 

problem sizes are combined. There is no data for variations in on the deceptive and 

easy landscapes, since K  is constant 6 on them. However, varying data for K  are shown 

on charts for the NK  landscapes. We begin with data for the distributed algorithm, 

MMHCL

5.2.1 M M H Cl /  Deceptive: bits mutated

0.94

0.92

0.9

0.88

0.86

0.84

0.82

0.8

bits mutated

■»— N = 1 2 0 N = 180

Figure 5.13. As the bits 
parameter becomes larger, 
beyond a value of 4, the average 
fitness values for the MMHCl 
algorithm on the deceptive 
problems fall off sharply. This is 
true for all tested problem sizes. 
It is interesting to note that the 
algorithm does better on this 
landscape overall on the 60 bit 
problems and somewhat less 
well on the 120 and 180 bit 
problems.
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5.2.2 MMHCII  Deceptive: bits mutated /  nmoves and emoves

0.94

0.92

0.88  -

0.86

0.84

0.82

0.8

bits mutated
nmoves = N/2 
nmoves = 3N

nmoves = 2N

Figure 5.14. The same overall 
trend of decreased average fitness 
values with an increase in the bits 
parameter is seen here for 
MMHCL The nmoves parameter 
makes a dramatic difference in 
average fitness for the deceptive 
landscape, especially when bits is 
greater than 2.

0.94

0.92

0.9

0.88

0.86

0.84

0.82

0.8

bits mutated
emoves = N/2 

k: emoves = SON
emoves = 10N

Figure 5.15. Adjusting the 
emoves parameter appears to 
have little effect on MMHCI on 
the deceptive landscape, for all 
bits values.
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5.2.3 MMHCI /  Deceptive: N I nmoves and emoves

O nrroves = N/2 ■  nmoves = 2N □  nmoves = 3N

Figure 5.16. It can be seen here 
that on the deceptive problems of 
all tested sizes, an nmoves setting 
of 3N  is clearly the best one to 
use with MMHCL The data for 
the shorter bit-length problems 
show better results than that for 
larger N.

□  emoves = N/2 ■  ermves = 10N □  ermves = SON

Figure 5.17. The data for the 
emoves parameter aren’t quite as 
definitive as for nmoves. It seems 
that changes to emoves produce 
very little effect on average 
fitness with deceptive problems 
of these sizes.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4 3

5.2.4 MMHCI / Easy: bits mutated

Results for MMHCI on the fully easy problems are in many ways similar to those for the 

deceptive problems. One major difference is that overall average fitness is significantly 

better for aU algorithms on this landscape. Also, increasing the nmoves parameter has a 

less dramatic effect here.

0.99

0.98

0.97

0.96

0.95

0.94
3 4 52 6

bits mutated

N = 60 *  "" N = 120 N = 180

Figure 5.18. As bits is 
increased beyond 2, overall 
average fitness decreases, but 
not quite as much as on the 
deceptive landscapes. Again, 
the MMHCI algorithm 
returns higher average fitness 
values on the 60 bit 
problems, with a bits setting 
of 2.
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5.2.5 MMHCI /  E}asy: bits mutated /  nmoves and emoves

0.99

0.98

0.97

0.96

0.95

0.94

bits mutated
nmoves = N/2 
nmoves = 3N

nmoves = 2N

Figure 5.19. The 3N setting 
of nmoves for MMHCI on 
all the easy problem sizes 
tested seems to be the better 
setting. The bits setting of 2 
seems to be best here, as 
weü.

0.985

0.975

0.965

3 4 5

bits m utated

• emoves = N/2 
emoves = 50N

• emoves = 10N

Figure 5.20. Variations in 
the emoves parameter appear 
to produce rather
insignificant changes in the 
average fitness at all bits 
settings, as bits increases 
beyond 2.
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5.2.6 MMHCI /  Easy: N  / nmoves and emoves

4 5

□ nmoves = N/2 ■  nmoves = 2N O nnroves = 3N

Figure 5.21. The MMHCI 
nmoves setting of 37V again is 
the best setting for all tested 
problem sizes on the easy 
landscapes.

E emoves « ry2 ■  emoves = 10N □  emoves = SON

Figure 5.22. The lower two 
settings for the emoves 
parameter turn out to give 
slightly better results on most 
easy problem sizes here.
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5.2.7 M M H Cl /  NK  Landscapes: bits mutated / K

Since we vary K  on the NK  landscapes, the data presented for the NK  problems is more 

complex than for the easy and deceptive landscapes. Since we do not know the global 

maximum for each NK  landscape, average fitness data for our three algorithms on the NK  

landscapes are not as definitive as they are with the separable functions.

0.77

0.76

0.75

0.74

0.73 -

0.72

0.71

0.7

bits = 2 bits = 3 
4*— bits = 6

bits = 4

Figure 5.23 On the NK
landscapes, we see the effect of 
varying the K  parameter. The 
average fitness values for 
MMHCl are seen here to show 
greater variation above the value 
oi K  = A, for bits settings 
between 2 and 6. The larger 
settings of bits produce much 
poorer results, with average 
fitness declining above K = A.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



4 7

5.2.8 M M H Cl I NK  Landscapes: bits mutated / nmoves and emoves

0.77

0.76

0.75

0.74

0.73

0.72

0.71 -

0.7

bits mutated
nmoves = N/2 
nmoves = 3N

nmoves = 2N

Figure 5.24. The average fitness 
reached by MMHCl on the NK  
landscapes appears to be highest 
when bits = 3 or bits = 4 and we 
let nmoves = 2N. Increasing bits 
beyond 4 causes a rapid decline 
in fitness for all three values of 
nmoves.

0.77

0.76

0.75

0.74

0.73

0.72

0.71

0.7
2 3 4 5 6

bits mutated

• emoves = N/2 
emoves = SON

■ emoves = 10N

Figure 5.25. Increasing the bits 
parameter past 3 has its 
expected effect of a decrease in 
average fitness with MMHCl on 
the NK  problems, too. Varying 
emoves has almost no effect 
here, at all bits settings.
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5.2.9 MMHCl /  NK  Landscapes: K  / nmoves and emoves

0.77

0.76

0.75

0.74

0.73

0.72

0.71

0.7 4

nmoves = N/2 
nmoves = 3N

—  nmoves = 2N

Figure 5.26. As the K  parameter 
increases with MMHCl on the 
NK  landscapes, overall fitness 
also increases, up to AT = 4. 
Here, the larger two values of 
the nmoves parameter seem to 
contribute more to the average 
fitness numbers.

0.77

0.76

0.75

0.74

0.73

0.72

0.71

0.7

—  emoves = 10Nemoves = N/2 
emoves = SON

Figure 5.27. While the effect of 
varying the emoves parameter 
isn’t quite as large as it is with 
the nmoves parameter, as K 
increases past a setting of 4, an 
emoves setting of ION seems to 
do slightly better than the other 
settings.
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5.3 MMHC2 /  AU Problem Sizes

We present charts depicting the average fitness values achieved by the localized 

algorithm, MMHCl, on the next several pages. Data for each landscape are shown. In this 

section, the results are combined for aU problem sizes we tested.

5.3.1 MMHC2 / Deceptive: bits mutated

0.99

0.97 -

0.95

0.93

0.91

0.89 -

0.87

0.85

bits mutated

N = 120

Figure 5.28. An interesting 
feature of the MMHCl data for 
the deceptive problems is the 
very dramatic peak in average 
fitness of this algorithm on all 
problem sizes at a bits setting of 
3. This is followed by a 
comparatively gradual decline in 
average fitness past that point, 
with the algorithm doing 
slightly better on the 60 bit 
deceptive problems than it does 
on the others.
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5.3.2 MMHC2 /  Deceptive: bits mutated /  nmoves and emoves

1.01

0.99 -
0.97 - 
0.95 -
0.93
0.91
0.89
0.87
0.85

bits mutated

nmoves = N/2 
nmoves = 3N

* —  nmoves = 2N

Figure 5.29. The dramatic peak 
in fitness at bits = 3 of the 
MMHC2 algorithm on the 
deceptive landscape is enhanced 
by the larger settings of the 
nmoves parameter. Even at 
higher bits settings, when 
nmoves = 2N or nmoves = 3N, 
average fitness drops off more 
slowly. MMHCl is even able to 
solve some of the deceptive 
problems, while using the higher 
two nmoves settings

1.01

0.99

0.97

0.95

0.93

0.91

0.89

0.87

0.85

bits mutated
emoves = N'2 
emoves = SON

emoves = 10N

Figure 5.30. Once again,
changes in the emoves
parameter have a negligible 
effect on average fitness with 
the MMHCl algorithm on these 
deceptive problems.
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5.3.3 MMHC2 / Deceptive: N  /  nmoves and emoves

0.99

0.97 -

0.95

0.93

0.91 —

0.89 - —

0.87

0.85
60 120 180

□  nmoves = N/2 ■  nmoves = 2N O nmoves = 3N

Figure 5.31. The smallest 
deceptive problems (N = 60) do 
best with MMHC2 in this chart, 
although the nmoves parameter 
seems to contribute much to the 
average fitness of all three 
problem sizes. The larger 
nmoves settings (2N and 3N) 
provide the best results.

0.99

0.97

0.95

0.93

0.91

0.89

0.87

0.85
60 120 180

E3 ©moves = N/2 ■ emoves = 10N D emoves -  50N

Figure 5.32. The emoves 
parameter with the MMHCl 
algorithm on the deceptive 
problems appears to become 
even less important to average 
fitness as the problem size, N, 
increases.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



52

5.3.4 MMHC2 / Easy: bits mutated

On the easy landscape, the MMHCl algorithm seems to solve the 6 bit subproblem quite 

easily (as the name implies) for all of the tested problem sizes, 60, 120 and 180 bits.

1.005 T

0.995 - 
0.99 -

0.985
0.98

0.975
0.97 - 

0.965 -
0.96

bits mutated

N = 120N = 60 N=180

Figure 5.33. The 6 bit easy 
subproblems are solved by 
MMHCl for all problem sizes 
tested when bits -  2. Solution 
happens less often as the bits 
parameter increases. Again, 
the algorithm seems to do best 
overall on the 60 bit problem 
size, with bits > 3.
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5.3,5 MMHC2 /  Easy: bits mutated / nmoves and emoves

1.005

0.995

0.985

0.975

0.965

3 4

bits m utated
nmoves = N̂ 2 
nmoves = 3N

• nmoves = 2N

Figure 5.34. MMHC2 is able to 
solve the fully easy problems of 
all tested sizes as long as the 
number of bits mutated is 4 or 
fewer and the nmoves parameter 
is set at either 2N  or 3N. The 
highest nmoves setting, 3N, 
seems to maintain somewhat 
better fitness numbers for
MMHC2 on these problems, 
above bits -  4.

1.005 r

0.995

0.99
0.985

0.98

0.975

0.97
0.965

0.96

bits mutated
♦ — ©moves = N/2 

emoves = SON
* —  emoves = 10N

Figure 5.35. The emoves 
parameter does not seem to 
appreciably affect the overall 
average fitness the MMHC2 
algorithm is able to reach on this 
landscape. The trend of 
decreasing average fitness with 
an increase in bits is seen here 
as well.
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5.3.6 MMHC2 / Easy: N  / nmoves and emoves

1.005

0.995

0.985

0.975

0.965

0  nmoves = ■ nmoves =2N □  nmoves = 3N

Figure 5.36. As we have seen in 
previous charts, the higher 
settings of the nmoves parameter 
here also seem to greatly 
improve the average fitness of 
MMHC2 on all tested sizes of 
the easy problems.

1.005

0.995

0.985

0.975

0.965

60 120

N

180

B emoves = W2 B emoves = ION □  emoves = SON

Figure 5.37. Again, as we have 
seen earlier, the emoves 
parameter appears to have 
negligible effect on the ability of 
MMHCl to do well on all tested 
sizes of the easy problems.
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5.3.7 MMHCl /  NK  Landscapes; bits mutated /  K

Since we vary the K  parameter only on the NK  landscapes, these charts detail more

complexity. The trends seen in the previous data continue here as well, with an increase 

in average fitness occuring as the K  parameter increases, and average fitness decreasing 

as bits becomes greater past a certain point. Again, we remind the reader that since the 

global maximum of the NK  landscapes is not known here, the NK  results are not as

definitive as they are with the separable easy and deceptive functions.

0.78
0.77

0.76 -
0.75
0.74 -
0.73

0.72 - 
0.71 - 

0.7 ■

bits = 2  
bits = 5

bits = 3 
bits = 6

bits = 4

Figure 5.38. Not only does the 
average fitness achieved become 
greater with an increase in the K 
parameter, but increasing the 
bits parameter shows a 
significant decrease in average 
fitness. This is especially true 
for the higher settings of the K 
parameter.
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5.3.8 MMHCl / NK  Landscapes: bits mutated / nmoves and emoves

0.78

0.77
0.76

0.75
0.74

0.73
0.72

0.71
0.7

bits mutated
nmoves = N/2 
nmoves = 3N

nmoves = 2N

Figure 5.39. The nmoves 
parameter seems to have the 
greatest influence on average 
fitness for MMHCl on the NK 
landscapes. The most productive 
setting combination seems to be 
bits = 3, nmoves = 3N.

0.78 1

0.77

0.76

0.75

0.74

0.73

0.72 -

0.71

0.7

bits mutated

-a—  emoves = N/2 
* emoves = 50N

emoves = ION

Figure 5.40. As bits is 
increased, average fitness of 
MMHCl on the NK  landscapes 
decreases. The emoves 
parameter does very little to 
affect that trend.
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5.3.9 MMHC2 / NK  Landscapes: K  /  nmoves and emoves

0.78
0.77

0.76

0.75

0.74

0.73

0.72

0.71

0.7

— nmoves = N/2 
nmoves =3N

nmoves = 2N

Figure 5.41. The larger values 
of the K parameter appear to 
produce better results here, 
especially when nmoves = 3N.

0.78

0.77

0.76

0.75

0.74

0.73

0,72

0.71

0.7

emoves = N/2 
emoves = SON

emoves = ION

Figure 5.42. The trend of an 
increase of average fitness with 
increasing K  settings continues 
on the NK  landscapes with 
MMHCl. The emoves parameter 
values we used have little effect 
on this trend.
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5.4 RMHC /  All Problem Sizes

The data presented for the RMHC algorithm are relatively uncomplicated, due to the fact 

that for RMHC, we change only one bit at a time. Thus, bits is set to 1 throughout. On the 

deceptive and easy landscapes, iC = 6 on aU problems.

5.4.1 RM HC I Deceptive: bits = 1 /  nmoves and emoves

0.935

0.925

0.915

0.905

E3 N = 60 B N = 120 □  N = 180

Figure 5.43. For all settings of 
nmoves, the RMHC algorithm 
achieves its best results on the 
60 bit problems. Changes in 
nmoves result in only small 
differences in average fitness 
here.

0.935

0.93

0.925

0.92

0.915

0.91

0.905

0.9

□  N =60

em o v es

m

N=120

SON

a  N = 180

Figure 5.44. A similar thing can 
be said for all settings of the 
emoves parameter with RMHC 
as for the nmoves parameter: 
average fitness is greater on the 
60 bit problems. Changes in the 
emoves parameter have a 
negligible effect on average 
fitness.
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5.4.2 RMHC / Easy: bits = 1 /  nmoves and emoves

59

0.998

0.996

0.994

0.992

0.988

0.986

0.984

0.982

Q N = 60 N = 120 O N = 180

Figure 5.45. Average fitness 
achieved by RMHC on the 
easy landscape is also highest 
with the 60 bit problems, 
although no problem size can 
be said to do poorly here. 
Changes to the nmoves 
parameter have negligible 
effect.

0.998

0.996

0.994

0.992

0.988

0.986

0.984

0.982

em o v es

□  N =60 N = 120 □  N = 180

Figure 5.46. Very good results 
are obtained by this algorithm 
on the 60 bit problems. The 
emoves parameter seems to 
cause a slight improvement in 
average fitness on the 120 bit 
problems.
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5.4.3 RMHC /  NK Landscapes: bits = 1 / nmoves and emoves

On the NK  landscapes, we vary the K  parameter, so there is some additional complexity 

reflected in the data. The bits parameter is set to 1. Since we do not know the global 

maximum of the NK  landscapes, these data are more comparative than definitive.

0.76

0.75

0.74

0.73

0.72

0.71

0.7

—: nmoves = N/2 
nmoves =3N

nmoves = 2N

Figure 5.47. The RMHC data 
continue to demonstrate the 
trend of general improvement 
in average fitness accom­
panying an increase in the K 
parameter. Changes in nmoves 
produce erratic results here, 
although a beneficial setting 
for nmoves can be found for 
each value of K.

0.76

0.75

0.74

0.73

0.72

0.71

0.7 ^

■■—  emoves = 10N♦ — emoves = N/2 
emoves = SON

Figure 5.48. The chart
depicting the effects of
different emoves settings is 
very similar to that for nmoves 
here. Overall fitness improves 
with an increase in K, except 
for the setting of K  = A where 
the fitness decreases slightly 
for a setting of emoves = ION.
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Chapter 6

Conclusions

Overall, the data obtained from this investigation into the search characteristics of three

hillclimbing algorithms tend to support, to some degree, all three hypotheses we made at 

the outset of the study. We refer to the sections of Chapter 5 containing the charts, for our 

discussions in the present chapter. The charts are organized into three major categories 

according to algorithm. Preceding the charts that detail results for the separate algorithms 

(Sections 5.2, 5.3 and 5.4), there is a section of general overview data encompassing the 

entire study (Section 5.1).

6.1 Superiority of Macromutation

We hypothesized that the macromutation algorithms, MMHCl and MMHCl would 

achieve better results than the single-bit-mutation algorithm, RMHC on aU test problems 

(landscapes), and on all problem sizes. We further conjectured that macromutation would 

do especially well on the non-separable functions, the NK  landscapes. Figures 5.1, 5.2
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and 5.3 show the average fitness values achieved for aU the algorithms on the fully 

deceptive, fully easy and NK landscapes, respectively, for all problem sizes combined. 

The charts in Figures 5.1 and 5.2 demonstrate superior results obtained with the MMHCl 

algorithm for bits = 3, 4, or 5 on the deceptive landscape and bits = 2 or 3 on the easy 

problems. The chart in Figure 5.3 shows that MMHCl also did well in comparison with 

RMHC  and MMHCl on the NK  landscapes. In Figure 5.3, we see that MMHCl does 

better in comparison with MMHCl on the non-separable NK  landscapes than it does on 

either of the separable, easy or deceptive, landscapes. In Figures 5.1 and 5.2, it can be 

seen that RMHC performs quite weU in comparison with MMHCl on all the separable 

functions. RMHC actually performs better than MMHCl on all runs with the easy 

problems. While localized macromutation (MMHCl) did very well overall, distributed 

macromutation (MMHCl) performed somewhat less well than expected.

6.2 Superiority of Localized Macromutation

On the test problems in this work, we have defined the parameter K  to be the length of 

the substrings, the average of whose individual fitnesses comprise total string fitness. At 

the outset of this study, we hypothesized that the macro mutation algorithm that tries to 

mutate bits that are coupled in the fitness function, MMHCl, would outperform the 

macro mutation algorithm whose bits are more likely to be affine in the fitness function, 

MMHCl. We conjectured that this would be true on all test problems whenever the 

mutated bits are within the length of one substring of each other, that is, whenever the 

mutated bits are more likely to be coupled within the fitness function. Multiple mutations 

along a string are more likely to occur within the length of one substring of each other as
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we increase the size of the substring, thus making it inclusive of more bits. An increase in 

the K  parameter should result in more of the mutated bits being ones that are coupled in 

the fitness function. We conjectured that as we increase K  we would see a relative 

improvement in performance for localized macromutation (MMHC2). In addition, since 

the bits mutated by MMHCl are more likely to be coupled bits in the fitness function, we 

expect MMHCl not only to do better Ûvàxx MMHCl but to increase its relative superiority 

over MMHCl as K  increases. These expectations are shown to be justified by the results 

on the NK  landscapes. Figure 5.10. (Since we vary the K  parameter only on the NK  

landscapes, charts for the NK  landscapes are the only ones that include changes in the K  

parameter.) Since we do not have data concerning the global maximum of each of the NK  

landscapes, we are not able to definitively specify the algorithms’ absolute performances 

with the NK  functions.

6.3 The Strength of RMHC

The single-bit-flipping hillclimber, RMHC, also fulfills most expectations in this 

investigation. We originally hypothesized that RMHC would perform better on the 

separable easy and deceptive functions than it performs on the non-separable NK 

functions. Since we have no data on the global maximum for the NK  landscapes, we 

cannot definitively describe RM HCs absolute performance there. However, we can see 

in Figure 5.3 that in comparison with the other algorithms, RMHC performs somewhat 

less well on the NK  problems than either MMHCl or MMHCl with most bits settings. On 

the deceptive problems (Figure 5.1), MMHCTs overall superiority notwithstanding, 

RMHC, at bits = 1, performs better than MMHCl does for most of its own bits settings.
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RM H O s greatest strength seems to lie in its ability to effectively find local maxima. It’s 

outstanding performance on the easy problems (Figure 5.2), especially in relation to 

M M H Cl, is indicative of this ability. RMHC significantly outperforms MMHCl for all of 

M M H Cl’s bits settings on the easy landscape. Due to RMHC's mixed results on the 

separable landscapes, we cannot conclude that separability is the deciding factor on this 

hypothesis.

6.4 The effects of varying nmoves^ emoves and N

At the outset of this investigation, we sought to observe the influences on algorithm 

performance of the nmoves and emoves parameters. We also wished to observe the effect 

of changes in problem size, N. We believed that varying these parameters would likely 

result in changes in algorithm performance. Each of the major sections in chapter 5 

contains subsections that detail the effects of these parameter variations with the different 

algorithms on the three landscapes that we studied. We summarize those data in the 

following sections.

6.4.1 nmoves and emoves

We conclude that variations in the nmoves parameter, the maximum times a new point 

can have lower fitness than a current point, have a greater effect on overall algorithm 

performance than do variations in emoves, the maximum number of equal fitness steps. 

We clearly see this by comparing the nmoves and emoves overall data charts for each 

landscape in Subsections 2 and 4 of Section 5.1. Similar results throughout the study can 

be seen in comparable charts for every algorithm. From these results, we conclude that a
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setting of nmoves of 2N or 3N in this study contributes more to good algorithm 

performance than does the NI2 nmoves setting. We also conclude that the two higher 

nmoves settings result in better performance than any of the three settings of emoves that 

we tried. The contribution of nmoves to the performance of all algorithms seems 

especially pronounced on the easy and deceptive separable functions, with the 

macro mutation algorithms, as seen in Subsections 5.2.2, 5.2.5, 5.3.2 and 5.3.5. In almost 

every chart in Chapter 5 that involves the emoves parameter, it seems clear that 

performance differences are negligible for changes in emoves,

6.4.2 N

Comparative average fitness differences seemingly related to differences in problem size 

are apparent throughout this investigation. The algorithms we study seem to achieve 

higher average fitness values with problem size iV = 60 on all landscapes. This is 

suggested by the data in Figures 13, 16, 17, 18, 21, 22, 28, 31, 32, 33, 36, 37, 43, 44, 45 

and 46 of Chapter 5. Once again though, since we do not have data concerning the global 

maximum of the NK  landscapes, we are not able to definitively specify the algorithms’ 

absolute performances there. With that caveat in mind, we cannot conclusively attribute 

improved performance at TV = 60 to problem size. We suggest that it may be due to the 

simple fact that shorter problems are probably easier to solve.

R eproduced  with perm ission of the copyright owner. Further reproduction prohibited without perm ission.



66

6.4.3 The bits Parameter

Throughout the data produced by this investigation, it can be seen in most of the charts 

involving the bits parameter with the MMHC2 algorithm, a setting of bits = 3 seems to 

produce exceptional results, comparatively. We suggest that this improvement is due to 

MMHC2's potentially mutating 2 * 3  = 6 bits simultaneously.

6.5 Summary

Throughout this study, we have seen that hillclimbing algorithms using macromutation 

perform very well on a variety of landscapes. We have also observed that this is 

emphatically demonstrated for algorithms whose mutated bits are coupled within the 

fitness function. We have obtained improved results on the particular problems studied 

whenever we allow the algorithm to have 2N or 3N retries in seeking improved steps 

whenever it finds less fit points during a search. In most cases, the setting of nmoves = 

N!2 seems to degrade performance. Additionally, we have seen that allowing our 

algorithms to explore mesas on the landscapes tested results in no significant increase in 

performance. The algorithms in this study return somewhat higher average fitness values 

with a problem size of 60 bits, most hkely because the longer problems are harder to 

solve.

At this time, we present an answer to the question, “Why does macromutation do well on 

separable functions?” It is clear from these results that macromutation does well on 

separable functions. We state that this is because macromutation, by its nature of 

simultaneously mutating multiple bits, has a high likelihood of mutating bits that are
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coupled in the fitness function. Bits that are coupled in the fitness function are more 

likely to produce a greater increase in fitness than mutating bits that are affine in the 

fitness function. In the separable functions used here, the fixed value of AT = 6 increases 

the likelihood that the bits mutated will be coupled in the fitness function.
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Appendix

Figure A .I. Sample UNIX C-SheU script file named M2, used to run the MMHC2 
algorithm on the final set of hillclimbs.

# driver script for mmhc2 
if ( $#argv 1= 2 ) then 
echo "USAGE: M2 <evals> <seed>" 
exit 

endif
set evals = $argv[l] 
set seed = $argv[2] 
foreach N { 60 120 180 }
® nh = $N / 2 
g n2 = 2 * $N 
® n3 = 3 * $N 
@ nlO = 10 * $N 
@ n50 = 50 * $N 
foreach K ( 2 3 4 5 6 ) 
foreach bits ( 2 3 4 5 6 )  
foreach nmv ( $nh $n2 $n3 ) 
foreach emv ( $nh $nlG $n50 )
@ seed++
mmhc2 $N $K $bits $evals $nmv $emv nk $seed 
if ( $K == 6 ) then 
@ seed++
mmhc2 $N $K $bits $evals $nmv $emv e60 $seed 
@ seed++
mmhc2 $N $K $bits $evals $nmv $emv d60 $seed 

endif 
end 

end 
end 

end 
end
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Figure A.2. Sample UNIX command-line invocation of the MMHCl algorithm for 
performing the initial, exploratory hillclimbs. A hue of comments above the command 
line itself identifies the parameters.

# N K #bits #climbs nomovemax emovemax landscape seed#
mmhcl 60 6 4 10 120 300 e60 102938

Figure A.3. Sample UNIX command-line invocation of the MMHCl algorithm for 
performing the final set of hillclimbs. A line of comments above the command line itself 
identifies the parameters.

# N K #bits #evals nomovemax emovemax landscape seed#
mmhc2 120 6 4 5700000 120 300 d60 107401
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