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  Glutamate transporters have a homotrimeric subunit structure with a large central water-

filled cavity that extends partially into the plane of the lipid bilayer (Yernool et al., 2004). 

In addition to uptake of glutamate, the transporters also mediate a chloride conductance 

that is gated by Na+ and glutamate. Our data indicate that glutamate binding sites, 

transport pathways, and chloride channels reside in individual subunits in the trimer and 

function independently and that the anion channel is gated by alkali cations binding from 

either side of the membrane.  We also investigated conformational changes during 

glutamate binding by incorporating a fluorescent probe into a site near the postulated 

external gate (HP2) of a mutant transporter that can bind but not transport L-Glu.  

Fluorescence changes were observed upon ligand binding that strongly depended on the 

number of subunits labeled; this suggests quenched fluorophore dimers form at the center 

of the trimer that are subject to HP2 loop closure upon substrate binding.  This supports a 

model of gate motion that is also consistent with recent x-ray structural data (Boudker et 

al., 2007).  Finally, we propose that the large aqueous central cavity in the trimeric 

complex (Yernool et al., 2004) may function to restrict the diffusion of molecules near 

the three ligand binding sites, resulting in an increase in the probability of rebinding.   
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CHAPTER 1:  BACKGROUND AND SIGNIFICANCE 
 
Introduction 

Excitatory amino acid transporters 1-5 (hEAATs) are membrane proteins 

fundamental in regulating (Veruki et al., 2006) and clearing synaptically-released 

glutamate within the central nervous system (CNS) (Diamond and Jahr, 1997).  The 

hEAATs are secondary active transporters that harness energy from the existing Na+, H+, 

and K+ gradients under physiological cellular conditions.  This is in contrast to primary 

active transporters that metabolize ATP.  Knockout mutant mice for Glt-1 (hEAAT2) in 

combination with GLAST (hEAAT1) result in perinatal mortality with multiple 

developmental deficits (Matsugami et al., 2006).  Unexpectedly, knockout mice for these 

transporters (Glt-1 and GLAST) individually reveal relatively normal development 

demonstrating the effectiveness of redundancy and compensatory mechanism in the 

glutamatergic system.  However, despite normal development, Glt-1-/- mice have 

spontaneous seizures that usually cause death within the first 6 weeks (Tanaka et al., 

1997); GLAST-/- mice have difficulties in challenging motor tasks and are more 

susceptible to brain injury (Watase et al., 1998); and EAAC1-/- mice (hEAAT3) at age 11 

months have a decrease in learning on the Morris water maze, and hippocampal neurons 

taken from these mice have reduced glutathione levels with increased susceptibility to 

oxidants (Aoyama et al., 2006).  Dysfunction of the hEAATs has widely been 

documented in amyotrophic lateral sclerosis, epilepsy, Huntington’s disease, Alzheimer’s 

disease, and ischemic stroke (Beart and O'Shea, 2007).  

The transport of L-Glu across the membrane was initially described in brain slice 

and synaptosomes (Balcar and Johnston, 1972; Logan and Snyder, 1971).  Biophysical 

characterizations of L-Glu transport revealed an electrogenic process that required 

extracellular-based Na+ solutions and intracellular based K+ solutions (Kanner and 

Sharon, 1978).  Within the CNS, Brew and Attwell (1987) documented some of the first 

glutamate transporter currents in retinal glial cells, pharmacologically distinct from 

currents associated with ionotropic or metabotropic glutamate receptors.  At this same 

time period, pharmacology had suggested there were distinct and multiple forms of 

glutamate transport (Ferkany and Coyle, 1986; Fletcher and Johnston, 1991; Robinson et 

al., 1993).  In the early 1990’s GLAST (from rat brain), Glt1 (from rat brain), and 
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EAAC1 (from rabbit intestine) were cloned, allowing the isolation and, thus, fundamental 

description of these unique glutamate transporters (Kanai and Hediger, 1992; Pines et al., 

1992; Shafqat et al., 1993).  Soon following, the five human glutamate transporters 

(hEAATs 1-5) were cloned, each revealing a protein of about 60 kD (Arriza et al., 1997; 

Arriza et al., 1994; Fairman et al., 1995).  Isolated expression of the clones confirmed an 

electrogenic protein with three unique currents directly associated with the transporter 1) 

an L-Glu coupled current (Wadiche et al., 1995a); 2) a L-Glu gated anion current 

thermodynamically uncoupled from L-Glu transport (Wadiche et al., 1995a); and 3) leak 

currents in the absence of L-Glu, one conductance carried by cations (Kanai et al., 1995; 

Vandenberg et al., 1995) and the other carried by anions and gated by extracellular Na+ 

(Otis et al., 1997; Wadiche and Kavanaugh, 1998).  By studying the L-Glu coupled 

current of the hEAAT3 transporter expressed in Xenopus laevis oocytes, Zerangue and 

Kavanaugh (1996) determined the exact stoichiometry of the L-Glu coupled current as 

the forward movement across the membrane of three Na+, one H+ and one L-Glu coupled 

to the countertransport of one K+.  Hydrophobicity plots in combination with cysteine 

scanning mutagenesis studies identified an 8 TMD protein with 2 Hairpin loops (HP1 and 

HP2) with both N and C-termini intracellular (Grunewald and Kanner, 2000).  This 

membrane topology was confirmed by Yernool et al. (2004) with the crystallization of 

GltPh from Pyrococcus horikoshii, an archaeal homolog of the hEAATs, that defined the 

multimeric structure as a trimer of three identical subunits with a density thought to be a 

substrate cradled between the two hairpin loops (Figure 1).   

My dissertation project has attempted to address fundamental questions posed by 

this structural architecture.  1) Can the archaeal protein Gltph, with only 20-30% identity, 

be a valid model for the mammalian glutamate transporters?  2) How do the coupled or 

uncoupled currents permeate this multimeric complex?  3) What cations are sufficient or 

required for the leak conductance?  4) What is the function of the large aqueous basin, 

which dips halfway through the membrane bilayer, created by the clustering of three 

identical subunits?  And finally, 5) can the HP2 loop be the physical external gate for L-

Glu transport, confirming a long-described alternating access model that distinguishes a 

membrane transporter from a channel (Jardetzky, 1966)? 
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A.    B.     C. 

 
Figure 1:  A.  A ribbon diagram of Gltph viewed from the extracellular side, parallel to the membrane.  B.  

A surface rendering of Gltph with a slice through the central basin of the trimeric complex, viewed 

perpendicular to the membrane.  C.  An individual subunit of Gltph viewed perpendicular to the membrane 

and revealing the proposed extracellular gate (HP2) and intracellular ate (HP1) (Yernool et al., 2004).   

 

Distinguishing a Channel from a Transporter 

 Ions and hydrophilic molecules permeate through the plasma membrane either by 

diffusion through a water filled channel or by facilitated movement across the membrane 

by a carrier or transporter.  Functionally, both need to discriminate between chemically 

similar molecules.  Channels have been described as proteins that allow diffusion of 

atoms or small molecules down their electrochemical gradients, usually with high flux 

rates (up to 108/sec).  In contrast, transporters are proteins that physically can move 

molecules across the membrane, from single atoms to polypeptides, against an 

electrochemical gradient by harnessing energy from ATP (primary active transporter) or 

from the existing electrochemical gradients for Na+, K+, H+, or Cl- (secondary active 

transporter).  The flux of molecules through transporters seems to be much slower with 

rates up to 105/sec and as slow as 1/sec.  This flux is often associated with larger 

conformational changes of the protein, which likely accounts for why the Q10, a ratio 

relating the flux rate before and following a 10 °C change in temperature (rate + 10 °C / 

Q10 rate before temp change), is much higher for transport opposed to diffusion of ions 

through a channel.  Lauger (1980) cautioned that as the energy barrier for a channel 

increases, the distinction between a channel and transporter is very little.  We continue 

with this in mind because the hEAATs appear, at times, to function as both channel and 

Water Filled 
Basin 

Substrate  
Density 
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transporter; 1) a glutamate or Na+ gated anion channel (hEAAT5 and hEAAT4) or 2) as a 

high affinity L-Glu transporter (hEAAT1-3).  

 
Figure 2:  A. A simple illustration depicting the distinction between a channel and transporter based on the 

number of gates: channel (1 gate) and transporter (2 gates) (Kavanaugh, 1998). 

 

 In theory, a channel would have binding sites accessible from both sides of the 

membrane and a transporter would have a binding site alternately exposed to each side of 

the membrane, but not both sides simultaneously like the channel (Lauger, 1980).  

Physiologists have made this distinction between a channel and transporter by the gating 

mechanism, where a channel would have a single barrier or gate that would act as a 

switch to allow ion diffusion through a water-filled pore and a transporter would have 

two gates that function in sequence allowing an alternate access of the permeation 

pathway to either the cytoplasmic or extracellular side, but not both simultaneously 

(Figure 2) (Kavanaugh, 1998).  Support for a one gate switch model for channels is seen 

in the flickering quantal nature of conductance from single channels recorded in patches 

(Neher and Sakmann, 1976) as well as from the relatively recent crystal structure of the 

K+ channel, revealing a water filled pathway that extends through the protein (Doyle et 

al., 1998).  Evidence for this long standing two gate, alternating access model for 

transport has gained strong support in crystallization of multiple membrane transporters 

that, in general, reveal no water filled permeation pathway (Dutzler et al., 2002; Faham et 

al., 2008; Yamashita et al., 2005; Yernool et al., 2004).  In the crystal structure of the 

prokaryote chloride channel (CLC), single amino acids seems to be the external and 
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internal gates revealing a proton/chloride transport exchanger, from what was initially 

thought to be a chloride channel, reemphasizing the small distinction between channels 

and transporters (Miller, 2006).  In the recent crystal structures of Gltph, the hEAAT 

homolog, two obvious hairpin loops, HP1 and HP2, physically appear to be the defining 

gates regulating the alternating access transport (Figure 1C) (Boudker et al., 2007).     

 

Solute Carrier Family 1 (SLC1) 

 The hEAATs 1-5 are members of the solute carrier family 1 (SLC1) of membrane 

proteins that includes the neutral amino acid transporters, ASCT1 and ASCT2 (Kanner 

and Zomot, 2008).  The hEAATs have a 50-60% identity with each other, a 30-40% 

identity to the neutral amino acid transporters, and a 20-30% identity to 

dicarboxlate/cation transporters found in bacteria (Slotboom et al., 1999).  This SLC1 

family is quite distinct in sequence and structure from those of the solute carrier family 6 

(SLC6), which includes Na+ dependent, neurotransmitter transporters for GABA, glycine, 

dopamine, serotonin, noradrenalin, proline, and taurine (Kanner and Zomot, 2008; 

Yamashita et al., 2005).  Members of the SLC1 family have very conserved motifs in the 

carboxy-terminal end of the protein, specifically TMD7 and TMD8 (Figure 3, yellow and 

orange, respectively).  Charged residues in the center of these alpha helices tend to 

function in amino acid selectivity, binding, and transport, and point mutations in these 

domains often render the protein non-functional or drastically alter the function for 

glutamate transport.  Deviation of the backbone structure for a alpha helics of TMD7, 

HP1 (Figure 3, green), and HP2 (Figure 3, green) are evolutionally conserved in sequence 

and seem to be in line with flexible regions of the protein that have the potential of 

coordinating cations as well as possibly acting as gates for transport.  A fairly conserved 

sequence for TMD2 has been shown to affect the uncoupled anion conductance in the 

hEAATs as well as for Gltph (Figure 3, red).  Finally, there are 50 residues in the hEAATs 

between residues Gln 161 and Asn 211 that are not present in the archaeal homolog GltPh.  

This loop is an extracellular domain, whose function is not completely known (Koch et 

al., 2007b).   
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Figure 3: A single subunit of GltPh with the hEAAT3 amino acid sequence threaded through the PDB file 

highlighting helical domains shown to be important for both coupled and uncoupled conductances: TMD2 

(red), TMD7 (yellow), TMD8 (orange), and HP2 & HP1 (green). 

 

 Apart from individual motifs, the relative similarity in sequence across the family 

likely suggests a similar trimeric nature even with distant members of this family. The 

creation of a large aqueous basin caused by the interface of the three identical subunits is 

definitely a unique feature for a membrane bound protein that as of yet has not been 

demonstrated to have a purpose (Figure 1 B).  The basin is about 60,000 Å3 in volume, 

and it dips through the outer leaflet of the bilayer.  Yernool et al. (2004) suggested this 

clustering structure may decrease the energy barrier for moving a charged molecule 

across the plasma membrane by increasing the water filled pathway and decreasing the 

distance the molecule must transverse the lipid membrane.  Other speculations consider 

the bowl an aqueous ‘waiting area’ for solutes like Na+ or L-Glu (Kavanaugh, 2004).  In 

chapter 4 of this dissertation, we find evidence that the water filled basin may act as a 

possible ‘holding area’ that constrains the diffusion of inhibitors upon unbinding and 

increases the probability that they will bind in a subunit across the trimer.  For L-Glu 

within the CNS, the transporters have actually been suggested to initially only buffer L-

Glu from the extracellular space through binding, in which there is still a very high 

probability of L-Glu unbinding at the extracellular face as opposed to being transported 

(Diamond and Jahr, 1997; Otis and Kavanaugh, 2000; Wadiche and Kavanaugh, 1998).  

In this instance, the trimeric structure may help increase the capture efficiency of L-Glu 
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by similarly restricting the diffusion of the L-Glu molecule from the water filled basin 

and increasing the chances of transport.   

 

Excitatory amino acid transport is a multi-step process 

 L-Glu transport can be portrayed in discrete states with a simple classical-

chemical kinetic model based on the law of mass action.  The transitions between each 

state can be viewed as equilibrium constants, offering physical information about the 

rates of interaction and dissociation at each step (Colquhoun and Hawkes, 1995).  A 

cyclical alternating access scheme of transport requires a four state model which includes 

four sets of equilibrium constants (Figure 4): T is the empty transporter with its 

extracellular gate open to the extracellular milieu, TS is the transporter in the 

extracellular conformation bound with substrate, T’S is the transporter bound with 

substrate after translocation to the cytoplasmic face, T’ is the empty transporter with its 

intracellular gate exposed to the cytoplasm.  In the hEAATs L-Glu, three Na+, and one H+ 

are shuttled into the cell followed by the coupled outward movement of one K+ (Levy et 

al., 1998; Zerangue and Kavanaugh, 1996).  The model in Figure 4 can be expanded to 

include these discrete steps for each binding event (Bergles et al., 2002; Larsson et al., 

2004) (Figure 5). 

 
Figure 4:  A. A simple four state reaction scheme to describe the transport of L-Glu (Grewer and Rauen, 

2005). 

 

 Fast application of L-Glu to an outside-out patch of membrane pulled from a cell 

expressing Glt-1 (rat homolog of hEAAT2) (Figure 7) reveals a rapid inward current that 

decays to a steady state; this can be explained by the electrogenic transport of glutamate 



 8 

with a net flux of +2.  This transport rate is increased at negative membrane potentials 

demonstrating that there are voltage dependent transitions between states in the cycle 

proposed to be at 1, 7, 9, and 15 (Figure 5).  Surprisingly, L-Glu binding as well as that of 

inhibitors is thought to be voltage independent (Bergles et al., 2002; Grewer et al., 2000; 

Wadiche and Kavanaugh, 1998).  In the model, anion conducting states are considered to 

be at ToNa1, ToNa2, ToNa2G, ToNa2H, ToNa2GH, ToNa3GH, TiNa2, and TiK.  At 

steady state the transport cycling depends on the rate-limiting step, which has been shown 

by multiple groups to be in the K+ relocation half of the cycle (15).  L-Glu has been 

shown to transport into the cell when intracellular Na+ plus L-Glu replaces K+ based 

intracellular solutions which can be explained by the transporter entering conditions of 

homoexchange that occupy only the right half of the model, which entails a futile 

shuttling of L-Glu back and forth across the membrane (Kanner and Bendahan, 1982).  

The rates between each step have been either determined experimentally or ones not 

measured yet have been estimated by fitting experimental data to the model (Bergles et 

al., 2002).  Since the publication of this model in 2002, Larsson et al. (2004) have shown 

that low pH increases the binding of Na+ demonstrating H+ likely binds before L-Glu; 

however, it is not certain whether a proton is bound before or after Na+ (Grewer and 

Rauen, 2005).  Two Na+ ions are depicted in this model as being bound before L-Glu, but 

there is still much uncertainty as to whether two Na+ bind before or after L-Glu. 

 
Figure 5:  A. A 15 state kinetic model describing glutamate transport separated into steps based on binding 

and unbinding events or transporter reorientation events (Larsson et al., 2004). 
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Substrate binding 

 Early on, the Na+-dependent, radiolabeled glutamate uptake within the brain was 

known to be stereoselective because it would not support D-Glu transport; however, it 

would allow both D and L-Asp to transport with low micromolar affinity (Bridges et al., 

1999).  Cloning and expression of each of hEAAT (1-5) allowed for both a detailed 

kinetics analysis for the transporters as well as separation of a unique pharmacological 

profile that could not be demonstrated in preparations containing multiple transporters 

(synaptosomes from brain, tissue slices, and cell culture).  The transporter cycling rate 

varies across the hEAAT family where the fastest is hEAAT2 > hEAAT3 > hEAAT1 > 

hEAAT4 ≈ hEAAT5.  In many respects, hEAAT4 and hEAAT5 are thought almost more 

as glutamate gated anion channels than as glutamate transporters.  In terms of substrates, 

L-Glu seems to bind and transport faster than either L or D-Asp (Bergles and Jahr, 1997; 

Bergles et al., 2002; Wadiche and Kavanaugh, 1998).  In general, good inhibitors seem to 

look like either the α-amino acid aspartate or glutamate with groups extended from any 

of the 2-4 carbon atoms.  It seems the addition of substantial hydrophobic groups off the 

β-carboxylic group of aspartate have created some of the most potent inhibitors like the 

TBOA (threo-β-benzyloxyaspartate) derivatives.  Small differences of the specific 

orientation of atoms off the carbon backbone confer unique selectivity and thus a unique 

pharmacophore between the hEAATs, revealing the slight differences in each hEAAT (1-

5) binding pocket (for review see (Bridges et al., 1999).   

 
Figure 6:  A. Aspartate-binding site in GltPh showing HP1 (yellow), TM7 (orange), HP2 (red) and TM8 

(magenta).  A remarkable number of polar contacts solvate the highly charged substrate and include 

interactions with D394, main-chain carbonyls of R276 (HP1) and V355 (HP2), the amide nitrogen of N401 

(TM8), the hydroxyl of T398 (TM8), the hydroxyl of T314 (TM7), and the main-chain nitrogen of G359 

(HP2) (Boudker et al., 2007). 
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 Figure 6 shows L-Asp bound to GltPh from a crystal structure by Boudker et al. 

(2007).  The substrate is nestled between HP1 and HP2 located in the exact position of 

the density seen in the first GltPh crystal structure (Figure 1 and (Yernool et al., 2004).  

The substrate appears to be coordinated by polar atoms from both the main-chain peptide 

backbone as well as from amino acid side chains.  The charged residues D394 and R397 

align in sequence with conserved aspartate and arginine residues in the hEAATs.  A 

single point mutation in hEAAT3 of this R447 to cysteine, the residue in the SLC1 

neutral amino acid transporter ASCT2, changes the protein into a neutral amino acid 

transporter that is completely insensitive to glutamate or aspartate binding (Bendahan et 

al., 2000).  Modifications of the residue in the hEAATs that aligns with D394 from GltPh 

also prevents substrate transport, if modified to a neutral amino acid as in the 

dicarboxlate/cation transporters found in bacteria (Pines et al., 1995; Teichman and 

Kanner, 2007).  This direct overlap of critical residues identified in GltPh to coordinate 

substrate binding with those functionally observed in the hEAATs gives great credibility 

to the GltPh structure as a model for the hEAATs. 

 
Figure 7: Comparison of coupled and uncoupled responses elicited by L-glutamate. A.  L-Glutamate 

evoked (10mM) transporter current from an outside-out patch recorded in the absence of permeate anions 

(Kgluconante-based internal solution).  B.  L-Glutamate-evoked (10mM) transporter current from an 

outside-out patch recorded in the presence of permeate anions (KSCN-based internal solution) (Bergles et 

al., 2002).   

 

 The L-Glu activated transporter current in (Figure 7A or 7B) shows a rapid 

inward current that has a biexponential decay to a steady state current.  According to Otis 
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and Kavanaugh (2000), this is a typical waveform expected for a system entering and 

leaving a series of conducting and non-conducting states, (referring to states in Figure 5). 

This current is a sum of a tightly coupled inward flux associated with the transport of Na+ 

plus L-Glu (coupled conductance) and the outward flux of Cl- (uncoupled anion 

conductance) (note that both are inward currents relative to a ground in the bath, positive 

charge moving into the cell or negative charge moving out of the cell).  The inward 

current is not instantaneous, suggesting it is preceded by an electroneutral state thought to 

be substrate binding (Watzke et al., 2001).  Isolating just the L-Glu coupled current by 

using gluconante-based solutions (Figure 7A), an anion that does not permeate the anion 

channel, reveals that the coupled current activates slightly faster than the uncoupled 

current, but the waveform looks very similar to that when anions are present (Figure 7B) 

(Grewer et al., 2000; Otis and Kavanaugh, 2000).  The large inward current likely 

represents two conducting states revealed by the biexponential decay.  Watske et al. 

(2001) suggest the fast electrogenic component (fast time constant) describes Na+ binding 

to the transporter following the binding of L-Glu and the slow electrogenic component 

(slow time constant) is the translocation of the loaded transporter across the membrane 

electric field.  These two components are insensitive to the presence of internal K+, 

demonstrating these two steps are in the first half of the cycle (Figure 5).   

 
Figure 8: Comparison of deactivation kinetics in forward transport vs. homoexchange. A.  L-

Glutamate evoked (10mM) forward transporter current from an outside-out patch recorded with 140mM K+ 

based internal solution.  B.  L-Glutamate-evoked (10mM) transporter current from an outside-out patch 

with 140mM Na+ plus L-Glu (10mM) based internal solution forcing the transporter to function a 

homoexchange mode (Otis and Kavanaugh, 2000).   
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 At steady state, the transporters are desynchronized entering both conducting and 

non-conducting states, and the rate of cycling depends on the slowest step in the cycle.  

The washout of L-Glu shows a double exponential deactivation (Figure 8), thought to 

represent two different fates for the bound glutamate: 1) forward transport or 2) L-Glu 

reverse transport and unbinding (Otis and Kavanaugh, 2000).  In support of this, 

replacement of K+ based solutions with Na+ plus L-Glu forces the transporter to function 

as a homoexchanger.  Under these conditions, the deactivation kinetics following the 

washout of L-Glu become a single exponential showing one path for bound glutamate, 

reverse transport then unbinding (Figure 8B).  Considering these two fates for bound L-

Glu, in vivo, the probability of unbinding is quite significant up to 35% for EAAT2 and 

up to about 50% in hEAAT1 (Otis and Kavanaugh, 2000; Wadiche and Kavanaugh, 

1998).  The physiological role for this high probability of unbinding has lead to the 

conclusion the transporter initially only buffers L-Glu at synapses through binding 

(Diamond and Jahr, 1997).   

 
Na+ Binding 

 One defining characteristic of high affinity L-Glu transport in the brain is its 

dependence on extracellular Na+ (Kanner and Sharon, 1978).  The ability of the hEAATs 

to couple 3 Na+ to L-Glu transport supplies enough energy to maintain a sub-micromolar 

extracellular glutamate concentration; this has been demonstrated within brain tissue as 

well as in isolated Xenopus laevis oocytes (Herman and Jahr, 2007; Zerangue and 

Kavanaugh, 1996).  The exact position of these Na+ binding sites are suggested to be 

close to the substrate binding site in GltPh, based on thallium replacement experiments 

(Figure 9) (Boudker et al., 2007).  In GltPh, at least two Na+ seem to occupy the 

transporter.  The first is deep within the protein structure coordinated by an aspartate 

(D405) on TMD8 and a serine (S278) of HP1, the proposed intracellular gate; a D405N 

point mutation in Gltph had significant effects on both Na+ and substrate binding and this 

corresponds to a block of uptake in rat homolog Glt-1 (hEAAT2) (Pines et al., 1995).  

However, controversially this is not supported by the same mutation made in EAAC1 (rat 

homolog of hEAAT3) where D454N had no effect on Na+ or substrate binding affinity 

(Tao et al., 2006).  The second Na+ bound site is positioned below HP2 and seems to be 
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coordinated by the dipole moment from HP2 and TMD7 (Boudker et al., 2007; Huang 

and Tajkhorshid, 2008).  The expected third Na+ binding site is not present in the GltPh 

crystal structure, and it is worth considering the stoichiometry of substrate transport may 

not be the same as for the hEAATs or that thallium cannot sufficiently bind in the 

position of the third Na+.  

 
Figure 9:  Sodium sites 1-3 (red spheres) are depicted, showing the proximity of sites 1 and 3 to the crystal 

structure thallium sites (purple spheres identified by Boudker et al. (2007).  The site 2-bound ion interacts 

with the HP2 helix dipole and the γ-carboxyl group of docked glutamate (orange sticks).  Overlaid with the 

docked glutamate molecule is the aspartate (white sticks) that was resolved in the crystal structure.  The 

HP1 loop is depicted in cyan, with occluding HP2 loop in dark blue (Holley & Kavanaugh, 2008). 

 

 The first evidence that suggested Na+ was bound before L-Glu came from the 

observation that exchange of L-Glu in rat brain synaptosomes was independent of 

external Na+, which could be explained, if upon efflux and then unbinding of L-Glu, a 

Na+ was still bound and not released before a L-Glu molecule could rebind.  With 

isolated expression of hEAAT2 in oocytes and in the absence of L-Glu, Wadiche and 

Kavanaugh (1995) demonstrated capacitive Na+ transient currents blocked by the specific 

non-tranportable inhibitor DHK, accounting for either one Na+ binding experiencing 40% 

of the electric field or two Na+ binding experiencing an average of 20% of the electric 

field.  This binding of Na+ could account for about 1/5 of the total net flux of +2.  Adding 
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further support for Na+ binding before L-Glu, an anion leak gated by Na+ was measured 

in the absence of L-Glu that is blocked by inhibitors (Otis et al., 1997; Wadiche and 

Kavanaugh, 1998).  How the two Na+ defined in the crystal structure of Gltph correspond 

to the Na+ transient currents or the Na+ gating the anion leak is currently not known.  

Potential evidence of a link comes from: 1) the fact that both currents are blocked by 

competitive inhibitors, localizing the Na+ atoms to the binding sites, and 2) the direct 

correlation seen between these currents and conformational changes detected with 

voltage clamp fluorometry (VCF) when transitioning from choline, a cation that does not 

interact with the hEAATs, to Na+ (Larsson et al., 2004).  Recently, it has been suggested 

that one Na+ bound before L-Glu may be voltage independent.  In support of this idea, 

inhibitor binding and unbinding is known to require Na+ and yet be voltage independent 

(Wadiche et al., 1995b).  It is important to emphasize that strong evidence demonstrates 

the presence and requirement of at least one bound Na+ before L-Glu can interact with the 

transporter; what remains unknown is whether a second Na+ binds before L-Glu? 

  Na+ binding following L-Glu has been suggested from studies on the presteady 

state kinetics associated with the forward transport of L-Glu (Watzke et al., 2001).  A 

direct coupling interaction of the γ-carboxylate of L-Glu to a third Na+ has been 

suggested in the hEAATs (Holley and Kavanaugh, 2008).  A similar direct coupling of 

leucine to Na+ was captured in a crystal structure of LeuT, a homolog of the mammalian 

SLC6 family, which could correspond with a general strategy by evolution in these 

secondary active transporters to prevent any type of substrate leak (Kanner, 2005; 

Yamashita et al., 2005).  

 

K+ Binding 

 Intracellular K+ is required for the hEAATs to concentrate L-Glu.  The K+ binding 

and reset of the extracellular binding site is considered by multiple groups to be the rate-

limiting step in the transport cycle (Bergles et al., 2002; Grewer et al., 2000; Kanner and 

Sharon, 1978).  When intracellular L-Glu and Na+ increase, they compete with K+ for the 

empty cytoplasmic binding site, turning the transporter into an exchanger 

(homoexchange).  In a similar competition, increased K+ extracellular can compete with 

L-Glu and cause reverse transport of L-Glu.  This efflux of L-Glu could be a pathway of 
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brain injury following ischemic stroke, in which extracellular K+ is increased resulting in 

L-Glu excitotoxicity, a pathological condition resulting in cell death from overstimulation 

of ionotropic glutamate receptors, NMDA, AMPA, or kainite (Alix, 2006; Hertz, 2008).   

 The detection of a K+ binding site has recently been suggested in hEAAT3 

located near the bound substrate and distinct from the Na+ binding sites (Figure 10) 

(Holley & Kavanaugh, 2008). This overlap could explain the competition seen between 

L-Glu and K+ for binding.  This type of model also corresponds well with point mutations 

studies that have localized residues critical for K+ coordination near the binding pocket 

for the substrate, like R447 of TMD8 and Y373 and E374 (TMD7), that if mutated can 

render the transporter insensitive to K+ (Bendahan et al., 2000; Kavanaugh et al., 1997; 

Zhang et al., 1998).  Also, the Y373C mutant is the only residue in the protein that has 

been identified to be accessible from both sides of the membrane, localizing water filled 

pathways from both cytoplasmic and extracellular sides that converge near this residue 

(Bendahan et al., 2000).      

 
Figure 10: Interactions of K+ with hEAAT3.  A.  The K+ site overlaps with the aspartate-binding site in the 

GltPh crystal structure.  B.  Bound K+ is predicted to interact directly with D444, a residue also involved in 

glutamate binding (mentioned above) (Holley & Kavanaugh, 2008). 

 

 Intracellular replacement of K+ with only Na+ does not allow a steady-state 

transport current, though the presteady state inward current associated with substrate and 

Na+ binding are still observed (Figure 7).  Giving paired-pulses of L-Glu to a cell 

expressing the transporter and measuring the recovery of the peak amplitude of the 
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presteady state waveform is a method to measure cycling rate for transport.  With Na+ as 

the only intracellular cation, the paired pulse recovery is much slower than that with K+ 

(Bergles et al., 2002).  These two pieces of evidence demonstrate: 1) Na+ can replace K+ 

as an intracellular cation in the transport cycle but is much less effective, resulting in a 

transport cycling rate where no steady state transport can be detected or 2) Na+ cannot 

replace K+ and the transporter has a way of returning the extracellular binding site 

independent of an internal cation bound.  Larger monovalent cations like Cs+ and Rb+ 

have been shown to replace K+ in countertransport (Bergles et al., 2002; Kanner and 

Schuldiner, 1987).   

  

The uncoupled anion conductance 

 Most mammalian cells maintain an intracellular Cl- concentration of 5-10 mM 

and an extracellular Cl- concentration of 110-150 mM.  Following its electrochemical 

gradient, chloride at depolarized potentials (more positive) would flow out of the cell and 

at hyperpolarized potentials (more negative) flows into the cell.  The hEAATs (1-5) have 

a substrate gated anion conductance.  Functionally, speculations suggest the chloride 

conductance  could offset the accumulating intracellular positive charge during L-Glu 

transport (net flux +2) as well as dampen the excitability of the membrane (Wadiche et 

al., 1995a).  Only recently has direct evidence for the latter been observed in bipolar 

neurons where L-Glu binding to hEAAT5 opens an anion channel, hyperpolarizing the 

membrane and decreasing vesicle fusion (Veruki et al., 2006).  Across the family, the rate 

of uptake for L-Glu is inversely proportional to the size of the anion current in which the 

rate of uptake is fastest for hEAAT2 > hEAAT3 > hEAAT1 > hEAAT4 ≈ hEAAT5 

(Wadiche and Kavanaugh, 1998).  This suggests that size of the anion current is coupled 

to a conducting state during the process of substrate translocation that has a different 

open probability for each transporter.  In support of this idea, the transport of D-Asp in 

hEAAT1 has been shown to have a larger anion conductance than with L-Glu which 

directly correlated with slower kinetics for D-Asp at the transporter (Wadiche and 

Kavanaugh, 1998).  Surprisingly, the flux of anions through the protein has little to no 

effect on the cycling rate of transport or the translocation of L-Glu (Eliasof and Jahr, 

1996; Fairman et al., 1995; Picaud et al., 1995; Wadiche et al., 1995a).   
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 Initially, the pathway of anions through the protein was suggested to be through a 

central pore at the interface of subunits forming the multimeric complex (Eskandari et al., 

2000; Torres-Salazar and Fahlke, 2006).  More recently, kinetic evidence has 

demonstrated that both the glutamate and anion permeability pathways are colocalized 

within individual subunits (Grewer et al., 2005; Koch et al., 2007a; Leary et al., 2007).  

The Q10 for activation of the uncoupled current is near 1 consistent with a channel-like 

diffusion path for anions void of large conformational changes in the protein.  The anion 

pore has a fairly typical chaotropic selectivity sequence as is seen in other anion preamble 

channels (SCN- > ClO4
- > NO3

- > I- > Br- > Cl-) which confers a minimum 5 Å diameter 

of the pore (size of ClO4
-) (Eliasof and Jahr, 1996; Wadiche and Kavanaugh, 1998).  The 

unitary conductance of anions through the transporter has been too small to individually 

resolve, but noise analysis from photoreceptors estimated a conductance of about 0.5 to 

0.7 pS (Larsson et al., 1996; Picaud et al., 1995) and about 0.012 fS for hEAAT1 

expressed on Xenopus laevis oocytes (Wadiche and Kavanaugh, 1998).  This results in 

single channel currents of about 0.012 to 0.7 pA, equivalent to roughly 7 x 104 to 4 x 106 

anions/s, definitely within the gray area of distinguishing a channel from a transporter.  

The conductance with either NO3
- or Cl- exhibit a saturation kinetics in hEAAT1 

consistent with interaction of the anion within the pore as opposed to freely diffusing ions 

through a water path.  The monotonically changing relationship when comparing solution 

with different mole fractions of NO3
- or Cl- shows no evidence for multiple anion 

occupancy within the pore (Wadiche and Kavanaugh, 1998).  GltPh has recently been 

shown to support an anion conductance(Ryan and Mindell, 2007), but in the crystal 

structure of GltPh, there is no obvious water filled anion permeation path.  Hints of the 

anion channel location follow a deep water filled pathway down TMD2 identified by 

cysteine scanning mutagenesis using the thiol-reactive, negative charged MTSES or an 

even smaller thiol-reactive HgCl.  Residues with altered anion conductance followed by 

cysteine modification are colored in black (Figure 11). 
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Figure 11: A single subunit of GltPh with the hEAAT3 amino acid sequence threaded through the PDB file, 

highlighting residues, colored black, on TMD2 (red) that are extracellularly accessible by thiol-reactive 

probes and alter the uncoupled anion conductance, revealing a deep water filled pore in the protein not 

detected in the crystal structure.  TMD2 (red), TMD7 (yellow), TMD8 (orange), and HP2 & HP1 (green). 

 

 An anion leak current gated by extracellular Na+ is tonically active in the resting 

cell (Bergles and Jahr, 1997; Grewer et al., 2000; Otis et al., 1997; Wadiche and 

Kavanaugh, 1998).  This current can be isolated by a block with a nontransportable, 

competitive inhibitor for the hEAATs, such as DHK or TBOA, revealing an anion 

conductance of 10-15% the anion current activated by L-Glu (discussed above), and with 

the same permeability for anions, shown with the same reversal potential.  Slight 

differences exist between the selectivity sequence for the anion leak and that of the L-Glu 

activated conductance, posing slight conformation difference in the anion pore under two 

different conditions (Ryan et al., 2004).  The model of Bergels et al. (2002) (Figure 5) 

proposes cations bound on either side of the membrane resulting in an anion conducting 

state (ToNa1, ToNa2, TiNa2, and TiK).  Of these states, only the ToNa1, ToNa2 and 

TiNa2 have been shown experimentally to conduct anions (Bergles et al., 2002).  In 

chapter 3, in support of these conducting states, we show evidence that Na+ or K+ bound 

on either side of the membrane is enough to support an anion conductance.  Finally, work 

on GltPh in proteoliposomes suggested that there is an anion leak insensitive to inhibitors 

resulting in a larger anion conductance within the resting cell than was initially thought.  

Our work in chapter 3 on cation gating the anion channel supports a larger resting anion 

current independent of the competitive nontransportable inhibitor TBOA. 

 

 

Extracellular 
Accessible Residues  
In TMD2 
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Summary 

 The biophysical and biochemical properties of the mammalian glutamate 

transporters have been intensely studied for over thirty years, and the recent advance of a 

crystal structure of GltPh, an archaeal analog of the EAATs, has only created more 

questions.  The homotrimeric structure of GltPh seems to be also conserved in the EAATs.  

The large aqueous basin created by the interface of the three identical subunits, a water 

filled vestibule, appears to be a general theme among plasma membrane transporters that 

allows an aqueous pathway to extracellular binding sites (Gouaux and Mackinnon, 2005). 

The exact permeation pathways for glutamate, cations, and anions through the protein 

remains unknown, though all are thought to pass through individual subunits.  In 

addition, it is not known how these proteins almost mechanically couple glutamate to 

Na+, H+, and K+ to maintain an impressive low nanomolar extracellular glutamate 

concentration within the CNS.  A chemical kinetic reaction mechanism with discrete 

states for the individual binding or unbinding of 3 Na+, H+, Glu, and K+ replicates 

experimental electrophysiology data well providing a reversible, stepwise, progression 

model of glutamate transport.  The location of these energy minimum binding sites for 

each ion or molecule within the crystal structure has been approximately localized by 

mutagenesis experiments targeting conserved residues within the protein.  However, there 

is much speculation about how these mutagenesis experiments map directly or indirectly 

to function.  In the future, the help of molecular dynamics modeling as well as new 

crystal structures revealing higher resolution and unique conformations of the protein will 

help elucidate our understanding of glutamate transporter below a resolution of 10 Å. 
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CHAPTER 2:  THE GLUTAMATE AND CHLORIDE PERMEATION 
PATHWAYS ARE COLOCALIZED IN INDIVIDUAL NEURONAL 

GLUTAMATE TRANSPORTER SUBUNITS 
G.P. Leary, E.F. Stone, D.C. Holley, A.N. Tzingounis, and M.P. Kavanaugh 

 
Introduction 
 In mammals including humans, high affinity glutamate transporters are encoded 

by a group of five genes (EAAT 1-5; SLC1A1-A5) that are members of the 

dicarboxylate/amino acid:cation symporter family that also includes the neutral amino 

acid transporters, ASCT1 and ASCT2.  This gene family is distinct from the family of 

genes encoding the transporters for neurotransmitters such as GABA, serotonin, 

dopamine, norepinephrine, glycine, and others. The excitatory amino acid transporters are 

found throughout the central nervous system and peripheral tissues; they are the major 

routes for cellular uptake of glutamate (Danbolt, 2001).  

EAAT function is well-described by a cyclical alternating access transport model 

in which L-glutamate is co-transported with 3 Na+ ions and 1 H+, followed by 

countertransport of 1 K+ ion, restoring the initial state (Zerangue and Kavanaugh, 1996; 

Levy et al., 1998). In addition to mediating coupled glutamate transport, EAATs also 

exhibit a thermodynamically uncoupled chloride conductance that is increased in the 

presence of glutamate (Fairman et al., 1995; Picaud et al., 1995; Wadiche et al. 1995; 

Billups et al., 1996).  The chloride conductance varies relative to the glutamate transport 

rate among different EAAT subtypes (EAAT5 ≈ EAAT4 > EAAT1 > EAAT3 > 

EAAT2). Whether the channel activity plays a physiological role in each of them is 

presently unclear, but the chloride conductance of the glutamate transporters on 

presynaptic terminals of retinal bipolar cells has recently been shown to modulate 

synaptic release by hyperpolarizing the terminal (Veruki et al., 2006, Wersinger et al. 

2006). The channel conductance has a chaotropic selectivity sequence, SCN- > NO3
-> I-> 

Cl- > F- (Wadiche et al., 1995; Eliasof and Jahr, 1996).  The gating of this anion 

conductance has been proposed to be linked to state transitions in the glutamate transport 

cycle, but the small predicted unitary conductance for the channel and the transporter has 

not allowed a direct test of this hypothesis (Picaud et al., 1995; Larsson et al., 1996; 

Wadiche and Kavanaugh, 1998). The structure of a homologous archael transporter from 

Pyrococcus horikoshii was recently solved at 3.5Å (Yernool et al., 2004), but the 
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structural nature of the chloride channel pore remains unclear. The transporter is a trimer 

of identical subunits (figure 2.1A), and each subunit appears to be able to independently 

transport glutamate (Koch and Larrson, 2005; Grewer et al., 2005). In contrast, it is less 

clear whether chloride permeation occurs independently in each subunit or whether 

channel function involves interacting subunits (Torres-Salazar & Fahlke, 2006) in 

analogy to ligand-gated channels such as ionotropic glutamate receptors, which have a 

pore in the central axis of the multimer.  In this work we analyzed and modeled the 

isolated transport and channel conductance components and show that the channel gating 

is described by a simple model in which each subunit in a trimer has a channel that is 

independently gated by glutamate. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Experimental Procedures 

Electrophysiology and flux assays- Human EAAT3 cRNA was microinjected in stage V-

VI oocytes, and transport and anion currents and radiolabel fluxes were recorded 3-5 days 

later as previously described (Wadiche et al., 1995). In co-expression experiments, equal 

R447 

L-Glu 

Figure 2.1: The hEAAT3 trimer threaded through a crystal structure from Pyrococcus horikoshii, 

a bacterial glutamate transporter homologue.   

A. The structure identifies three identical subunits forming a trimer (Yernool et al., 2004).  B. A single 

subunit showing the substrate, L-Glu, bound. The R447 residue for EAAT3 that was mutated in this 

study is shown in black. 

 

A. B. 
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amounts of wild-type and mutant subunit plasmid DNA were mixed prior to linearization 

and transcription. Recording solution (Cl-Ringer) contained 96mM NaCl, 2mM KCl, 

1mM MgCl2, 1.8mM CaCl2, and 5mM HEPES (pH7.4).  In chloride substitution 

experiments, 90mM NaNO3 was used to replace equimolar NaCl (NO3-Ringer). 

Microelectrodes were filled with 3M KCl and had resistances from 1 to 3 MΩ. Two 

electrode voltage clamp recordings were performed at  22°C with a Geneclamp 500 

interfaced to an IBM-compatible PC using a Digidata 1320 A/D controlled with the 

pCLAMP 6.0 program suite (Molecular Devices). The currents were low-pass filtered at 

1 kHz and digitized at 5 kHz. Currents induced by L-glutamate or L-alanine were isolated 

by subtracting currents recorded in control solution. Data were analyzed offline and 

modeling and fitting of substrate concentration-dependence of the currents were 

performed with Kaleidagraph software (v 3.6).  

Analytical Modeling of the Anion Channel Gating- Our models proceed from the 

assumption that one transporter subunit binds and transports glutamate independently of 

the others (Koch and Larsson 2005; Grewer et al., 2005; and present results). Then, the 

unidirectional transport of substrate S to release P (when [S]trans = 0) by each transporter 

subunit T is described by:  

 
T + S

kf

kb

! "!!# !!! C
kt

! "! T + P  

If an independent anion channel is contained in each subunit and its open probability is 

increased by binding of substrate, then, at steady-state, the normalized current amplitude 

is given by the Michaelis-Menton relationship:  

I

I
max

=
C

C + T
=

S

S + K
 

where K =
kb + kt

k f
 

If, in contrast, an anion channel is formed by three subunits in the trimeric complex, then 

its open probability is increased by binding of glutamate to either 1, 2, or 3 subunits. The 

set of transporter reaction equations defining the transporter states occupied by 0 (T), 1 

(C1), 2 (C2), or 3 (C3) molecules of glutamate is:  
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If occupancy of only one subunit is required to open the channel, we assume that singly, 

doubly, and triply occupied trimers are all open; for the case where two are required then 

doubly or triply occupied trimers are open, for the case where three is required then only 

triply occupied trimers are open. At steady-state, the normalized current amplitudes for 

each anion channel gating model are as follows:   
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double occupancy: 
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triple occupancy: 
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Derivations of these equations are given in the accompanying supplement. 

 

Results 

Each subunit in a trimer transports substrate independently. Wild type hEAAT3 

subunits were coexpressed with mutant R447C subunits by injecting RNA transcribed 

from equal amounts of each cDNA into Xenopus laevis oocytes.  The R447C mutation 

has been shown to induce an altered charge selectivity for neutral amino acids such as L-

alanine (Bendahan et al, 2000; figure 2.2). L-Alanine (1000 µM) did not activate currents 

in oocytes expressing wild-type hEAAT3 alone (n=4), nor did L-glutamate (1000 µM) 

activate currents in oocytes expressing the R447C mutant alone (n=3;  figure 2.2 A,B). 

This selectivity swich  was confirmed by radiolabeled uptake assays with either 30µM 
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[3H]D-Asp or [H3]L-Ala (figure 2.2C). Co-immunoprecipitation evidence suggests that 

wild-type and R447 mutants form hetero-multimers when co-expressed in the same cells 

(Grewer et al., 2005). We therefore examined and compared the L-Ala and L-Glu 

concentration-dependence of transport currents in oocytes expressing heterotrimeric wild-

type hEAAT3 and R447C mutant subunits with the currents activated in homotrimeric 

populations of each subunit. The concentration-response data were fitted to the Hill 

equation and the EC50.values and Hill coefficients were measured at a series of membrane 

potentials between -100mV and 60mV. At -20 mV, the reversal potential for Cl-, the 

current activated by glutamate predominantly reflects coupled transport (Wadiche et al 

1995; figure 2.2 A). At all membrane potentials, the L-Glu and L-Ala concentration-

dependence of currents in oocytes expressing heterotrimers was the same as for oocytes 

expressing homotrimeric wild-type and mutant transporter subunits, respectively (Figure 

2A,B; p>0.5). These data are consistent with the conclusion that glutamate transport 

occurs independently in each subunit within the trimeric complex, since a binding site 

and translocation pathway formed by multiple subunits would be expected to be altered 

in the heterotrimers (Awes et al., 2004; Koch and Larsson, 2005; Grewer et al., 2005).  
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Figure 2.2: Individual subunits in a trimer transport substrate independently: the R447C mutation 

in hEAAT3 results in a reversed selectivity for neutral and acidic amino acids, and the substrate-

dependent transporter currents are unchanged in hetero-multimers comprised of wild-type and 

mutant subunits.  

A.  The L-glutamate concentration-response of transporter currents for homo-multimeric WT (open 

triangle: Km = 85.7 !M +/-19; nhill = 0.84 +/- 0.02; n=7), R447C (solid triangle) (n=3), and the hetero-

multimeric R447C+WT subunits (open circle: Km = 70.4 !M +/-12.5; nhill = 0.89 +/-.07; n=6). The 

extracellular solution contained 96 mM chloride.  B.  L-alanine concentration-response of transporter 

currents for the homo-multimeric WT (filled triangle) (n=4), R447C (open triangle: Km = 30.8 !M +/-9; 

nhill = 0.85 +/-.05; n=4), and for the hetero-multimeric R447C coexpressed with WT subunits (open 

circle: Km = 20.8 !M +/-6; nhill = 0.91 +/-.05; n=6). The extracellular solutions contained 90mM nitrate 

to amplify the transporter anion current. Steady-state currents were recorded at a membrane potential in 

of 20 mV for L-ala and -20 mV for L-Glu.  The currents were fitted to I/Imax=Sn/(Sn+Kn). C.  Radiolabel 

uptake (30µM [3H]D-Asp or L-Ala) also demonstrates the selectivity shift. 
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Analytical modeling of anion channel gating. We considered two general classes of 

models for anion channel gating in a trimeric molecule: 1) a channel within each subunit 

that is activated by glutamate binding or 2) a single channel that is gated by glutamate 

binding to one, two, or three subunits. Using the intrinsic transport kinetic parameter K 

estimated from measurement of the EC50 of glutamate transport in the absence of anion 

flux (44 µM; see figure 4A), we derived the predicted concentration-dependence 

conductance of the anion channel for each of the models.   This estimated value was in 

good agreement with previous microscopic rate measurements and modeling; with a 

glutamate binding rate of 6.8x106 M-1 s-1, an unbinding rate of 300 s-1, and a transport rate 

of 14.6 s-1 (Wadiche et al., 1995; Larsson et al. 2004), K =
kb + kt

k f
= 46µM (also see 

methods and supplemental material).  This value was used to derive the predicted 

glutamate concentration-dependence of the channel conductance for the one channel/one 

subunit model as well as for the three models in which a central channel is gated by 

glutamate binding to one, two, or three subunits. For a given transport constant K, which 

reflects glutamate binding, unbinding, and transport rates, each channel gating model 

predicts a unique concentration dependence of anion channel activation which can be 

experimentally tested to identify the gating mechanism of the anion channel (figure 2.3). 

 

The isolated anion current is best fit by the model of one channel within each subunit. 

The four models represented in figure 2.3 predict distinct differences in anion channel 

gating as a function of glutamate concentration. The glutamate concentration-dependence 

of the anion conductance was determined by subtracting the coupled current recorded at 

the anion reversal potential from the total current at the same potential. Because the 

presence of the permeant anion NO3
- does not affect the rate of coupled transport 

(Wadiche and Kavanaugh, 1998), the anion current was isolated by subtracting the 

coupled transport current (recorded in Cl-Ringer at -20 mV) from the current recorded in 

the same cell after switching the external solution to NO3-Ringer. Figure 2.4A shows the 

L-Glu dependence of both the anion current and the coupled currents at -20 mV. The 

concentration-dependence of anion channel activation was compared to each model and 

quantified by chi square measurement (Figure 2.4B). The data are best fit by the model in 
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which one anion channel within each subunit is gated independently (χ2 = 8.08). The next 

best fit was for the model in which the anion conductance is gated by binding of 

glutamate to at least two subunits (χ2 = 202). Similar results were obtained fitting the 

kinetics of the anion conductance isolated at potentials up to +60mV (data not shown).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Discussion 

Data from several laboratories obtained by co-expression of wild-type and mutant 

subunits is consistent with the conclusion that glutamate binds and translocates 

independently through single subunits within a trimeric complex (Grewer et al., 2005; 

Koch and Larsson, 2005; Awes et al. 2004; Leary et al. 2006). In agreement with Grewer 

et al., (2005), we found that co-expression of R447C subunits with wild-type subunits 

results in transporter currents consistent with two populations of transporters 

translocating substrate independently. Some caveats arise when making quantitative 

inferences about gating of anion currents using this experimental approach because of 

untested asumptions of random translation and interaction of wild-type and mutant 

subunits expressed at the plasma membrane surface as well as uncertainties about the  
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Figure 2.3: Analytical modeling of the trimeric transporter predicts distinct kinetics for anion channel 

gating. A model depicting 1) An anion channel independently gated within each subunit of the trimer (black 

line: Km = 45µM; nhill = 1).  2) A central anion pore gated by non-cooperative binding to one or more subunits 

(red line: Km = 11.90; nhill = 1.48).  3) A central anion pore gated by occupancy of two subunits (blue line: Km 

= 46.33; nhill = 1.57).  4) A central anion pore gated by occupancy of three subunits (green line: Km = 180.50; 

nhill = 1.18).  The curves were generated from the equations for the respective models shown above, using a 

transporter kinetic constant, K, of 45 µM (Larsson et al., 2005). 
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microscopic conductance properties of the various homo- and heterotrimers. To 

circumvent these caveats, we applied Michaelis-Menten analysis to homotrimeric wild-

type transporters and derived equations that predict the distribution of singly, doubly, and 

triply-occupied trimeric complexes as a function of glutamate concentration. These 

derivations depend only on the assumption that each subunit transports glutamate 

independently (Grewer et al., 2005; Koch and Larsson, 2005; Awes et al. 2004; Leary et 

al. 2006).  

We find that the glutamate concentration-dependence of the fractional anion 

conductance is the same as the fraction of total subunits occupied by glutamate, 

consistent with the presence of a channel in each subunit that is gated by glutamate 

binding. This is in contrast to the predictions for gating of a central channel controlled by 

occupancy of one, two, or three subunits. A consequence of the one subunit/one channel 

gating scheme is that the concentration-dependencies of transport and anion conductance 
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Figure 2.4: The hEAAT3 anion channel conductance is best fit by the model of a single pathway within 

each subunit.  (A) The isolated coupled transport current (solid circle: Km = 43.7µM; n=8) was recorded in Cl- 

at the anion reversal potential, -20 mV, and the uncoupled anion current (open circle: Km = 42.8; n = 8) was 

recorded in 90 mM NO3 at -20 mV. The coupled and anion currents were fitted to (I/Imax=[L-Glu]/([L-Glu]+Km). 

(B) The model fits for the experimental anion conductance data are shown for an anion channel within each 

subunit (black line: chi2 = 8.08), one central anion pore gated by non-cooperative binding to one or more subunits 

(red line: chi2 = 1369), one central anion pore gated by non-cooperative binding to at least two subunits (blue 

line: chi2 = 202), or one central anion pore gated by non-cooperative binding of all three subunits (green line: chi2 

= 867).  The measured coupled transport constant used for the fitting was 43.7 µM .  
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are expected to be identical, which is indeed observed (figure 2.4A). This result conflicts 

with that of Torres-Salazar et al. (2006), who found evidence of subunit cooperativity in a 

recent study of channel gating of the related EAAT4 glutamate transporter. Aside from 

the difference in subtype, it is presently unclear why these results differ. It is possible that 

in the recording conditions of Torres-Salazar et al. (2006), some of which involve 

activation of transient anion currents by voltage jumps, additional conductances could be 

reflected in the pre steady-state currents which are not monitored in the steady-state 

conditions studied here. Additionally, the analytical solutions we apply are derived from 

steady-state assumptions. 

 The detailed molecular mechanisms controlling the chloride channel functions of 

glutamate transporters are still unclear. A cluster of residues in TMD2 that affect anion 

permeation has been identified by Ryan et al., (2004). These residues are in a helix that is 

adjacent to the likely glutamate binding site (figure 2.1B). TMD8, where R447 lies, and 

TMD7, where other residues implicated in alkali cation coupling lie (Kavanaugh et al. 

1997), are also close to the likely glutamate binding site. The identity of the coupled 

alkali cation also strongly influences the anion conductance (Borre and Kanner, 2001), 

suggesting that these helices could potentially be involved in forming a permeation path 

that could be shared by L-glutamate, the coupled cations, and Cl- ions. A further 

unresolved question concerns the reason for the trimeric nature of the transporter given 

that the subunits function independently. It is unknown whether dissociated monomeric 

subunits are functional, but it is possible that a multimeric structure has evolved to play a 

functional role; e.g. a large aqueous bowl projecting partially through the plane of the 

membrane might facilitate transport of charged substrates.  Analysis of the quaternary 

structure and channel properties of other members of this transporter superfamily may 

shed further light on these issues. 
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Supplemental material: 
 
To quantitatively distinguish between possible channel gating mechanisms we formed 
Hill-type equations for the dependence of the measured signal upon the concentration of 
substrate. These equations were then fit to experimental data to determine which reaction 
mechanism yielded the best fit. For all the reaction mechanisms considered, the steps in 
the analysis are the same. First the reaction mechanism was enunciated in terms of the 
involved components, i.e. for one anion channel per subunit: 
 

 
T + S

kf

kb

! "!!# !!! C
kt

! "! T + P  
 
Then the Law of Mass action was invoked to form ordinary differential equations (ODEs) 
in the concentrations of the given molecules.  For the reaction above this yields the 
following set of equations, where we have used notation to write [X] =  X for a given 
molecule X. 
 
dT

dt
= !k fT S + kbC + ktC  

 
dS

dt
= !k fT S + kbC  

 
dC

dt
= k fT S ! kbC ! ktC  

 

Ck
dt

dP
t

=  

 
We assume the uncoupled anion current, since it is gated by the transporter bound with 
substrate, is directly proportional to the concentration of complex, C.   This can be 
determined in terms of substrate concentration S by making a quasi-steady state 
assumption that the complex formed is in equilibrium, so that the time derivative of 
each/any quantity,  is zero. The resulting algebraic equations can be solved and simplified 
to yield a single equation for a concentration ratio of complex to total transporter. 
 
In the case of one channel per sub-unit the result is the familiar Michaelis-Menton 
approximation to enzyme kinetics, with a saturation curve given by 
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C

C + T
=

S

S +
(kb + kt )

k f

=
S

S + K
 

where  K =
kb + kt

k f
 

For the models involving a central pore gated by non-cooperative binding to one or more 
subunits, the reaction mechanisms considered are: 
 

 

T + S
3k f

kb

! "!!# !!! C
1

kt
! "! T + P

C
1
+ S

2k f

2kb

! "!!# !!! C
2

2kt
! "! C

1
+ P

C
2
+ S

kf

3kb

! "!!# !!! C
3

3kt
! "! C

2
+ P

 

 
where Cn is the transporter complex with n molecules of ligand bound.  If occupancy of 
only one subunit is required to open the channel then singly, doubly, and triply occupied 
trimers are all open.  If two are required, then doubly or triply occupied trimers are open 
to selective anions, and if all all three must be bound to open the anion channel, only the 
triply occupied trimers are considered to be open.  Therefore we need to solve for quasi-
steady state concentrations of C1, C2 and C3, and the chloride current will be proportional 
to  the ratios: 
 

 
 
 
 
 
 
 
 
 

 
 

For three subunits bound to open, two subunits bound to open and one subunit bound 
required to open the channel, respectively. 
 
The ODEs for the reactions resulting from the law of mass action are as follows: 
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dC
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SCkCkk
dt

dC
ftb 23

3 )33( ++!=  

 
Invoking the quasi-steady state assumption, solving for the equilibrium state of the three 
complexes and using the fact that the total number of transporters is conserved, yields: 
 

)33(

3
3223
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SKSKSK

TKS
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2
K + S

3
)

 

 
Here 0T  is the total number of transporters and is equal to 

321
CCCT +++  at any time. 

Therefore: 
 
single occupancy: 
I

I
max

=
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double occupancy: 
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triple occupancy: 
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CHAPTER 3: ALKALI CATION GATING OF THE UNCOUPLED ANION 
CONDUCTANCE IN THE EXCITATORY AMINO ACID TRANSPORTER 1 

 
Introduction 

 At glutamatergic synapses in the central nervous system, the excitatory amino 

acid transporters 1-5 (hEAAT 1-5) are fundamental in the regulation and clearance of L-

Glu.  In addition to this ability to concentrate L-Glu within the cell and keep extracellular 

L-Glu below micromolar levels (Herman and Jahr, 2007; Zerangue and Kavanaugh, 

1996), the glutamate transporters have a thermodynamically uncoupled anion channel 

gated by Na+ (anion leak conductance) or Na+ plus L-Glu (uncoupled anion conductance) 

(Fairman et al., 1995; Wadiche et al., 1995).  Within the homotrimer, described by the 

crystal structure of an archeal homolog GltPh (Yernool et al., 2004), the anion channel is 

an intrinsic part of each subunit (Grewer et al., 2005; Koch et al., 2007; Leary et al., 

2007).  These anion channels are conserved in the SLC1 family and even in the distant 

relative of the archaeal aspartate transporter GltPh (Ryan and Mindell, 2007).  The anion 

conductance in the hEAATs is intricately coupled to the binding and translocation of 3 

Na+, 1H+, and L-Glu.  The amplitude of the anion conductance in the EAATs is inversely 

proportional to the transport rate, where the anion conductance of hEAAT5 ≈ hEAAT4 > 

hEAAT1 > hEAAT3 > hEAAT2, likely revealing a conducting state or states accessed 

during substrate transport (Bergles et al., 2002; Wadiche and Kavanaugh, 1998).  

Recently, Veruki et al. (2006) and Wersinger et al. (2006) made the first functional 

description of the anion channel as an inhibitory feedback mechanism, hyperpolarizing 

the presynaptic membrane of bipolar cells of the eye and reducing L-Glu vesicle fusion.    

 The gating by only Na+ of the anion leak conductance in the resting cell has been 

detected in both cells expressing high levels of glutamate transporters in the brain as well 

as in cells expressing transporters in isolation (Bergles and Jahr, 1997; Otis et al., 1997; 

Wadiche and Kavanaugh, 1998).  Ryan and Mindell (2008), who recently measured the 

anion conductance in GltPh, suggested that in addition to a Na+ dependent leak, subject to 

block by the competitive inhibitor TBOA, there may also be a transporter related anion 

leak insensitive to the block by inhibitor.  In this study, we us outside-out patches from 

Xenopus laevis oocytes expressing hEAAT1 to determine which alkali cations are 

required to gate the leak conductance.  The presence of Na+ or K+ on either side of the 
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membrane supports the anion leak conductance, not seen with TRIS+ based solutions.  

Further and in agreement with Ryan and Mindell (2008), only a portion of this 

conductance is associated with the presence of hEAAT1 is blocked by TBOA. 

 
Experimental Methods 

Electrophysiology patch clamp recordings- Human EAAT1 cRNA was microinjected in 

stage V-VI oocytes, and transport and anion currents were recorded 3-5 days later.  After 

removal of the vitelline membrane, outside-out patch recordings were made with fire-

polished pipettes (4-5 MΩ) as previously described (Wadiche and Kavanaugh, 1998). 

Three Cl- based extracellular solutions were used (Na+, K+, or TRIS+ based) containing 

100mM NaCl, TRISCl, or KCl, 10mM TRISCl, 1mM MgCl2, 1.8mM CaCl2, and 5mM 

HEPES (pH7.4 with TRISbase).  Three NO3
- based intracellular solutions were used 

containing 100mM NaNO3, TRISNO3, or KNO3, 10mM TRISCl, 1mM MgCl2, 1.8mM 

CaCl2, and 5mM HEPES (pH7.4 with TRISbase).  The more permeable SCN- anion was 

used in some experiments to replace NaNO3 and KNO3 in the intracellular solutions to 

confirm the presence of an anion conductance associated with hEAAT1.  Membrane 

currents were recorded with a Geneclamp 500 interfaced to an IBM-compatible PC using 

a Digidata 1200 A/D controlled with the pCLAMP 6.0 program suite (Axon Instruments).  

Only patches with membrane seal resistances > 10 GΩ were used in experiments from 

either uninjected or hEAAT1 injected oocytes.  Records were lo-pass Bessel filtered at 2-

5 kHz and digitized at 2kHz.  Currents induced by L-glutamate or L-alanine or blocked 

by TBOA were isolated by subtracting currents recorded in control solution. Also, chord 

conductances across voltages associated with the hEAAT1 transporter were obtained by 

subtracting the chord conductance from patches pulled from uninjected oocytes from 

those from hEAAT1 injected oocytes, under the same respective ion conditions.    
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1 

Extracellular 
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10 pA
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-120 mV 

60 mV 
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K+ 

L-Glu+ 
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Figure 3.1:  Monovalent cation gating of the hEAAT1 anion conductance in outside-out 

macropatches. Representative experiments of outside-out patches from an uninjected oocyte (left) and an 

hEAAT1 injected oocyte (right) in response to Na
+
, K

+
, or TRIS

+
 as the only extracellular cation.  A KNO3 

intracellular solution was used, and L-Glu + Na
+
 was a positive control to demonstrate the presence of 

hEAAT1 transporters.    
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Results 

The anion channel gating is supported with a K+ based intracellular solution. 

In the hEAATs, it is not completely understood which cations, if any, are 

sufficient to gate the “anion leak” conductance.  Outside-out macropatches from Xenopus 

laevis oocytes allowed us to control the concentrations of cations (TRIS+, K+, or Na+) on 

both sides of the membrane. TRIS+ was used as a control cation because it neither 

supports glutamate transport nor activates the uncoupled anion conductance.  We 

performed experiments only on outside-out (o/o) patches that resealed with a resistance 

of 10 gigaohm or greater.  These patches were voltage clamped at 0 mV, and at steady 

state for each respective extracellular cation, a current-voltage (I-V) relationship was 

defined by a series of jumps from -120 mV to 60 mV.  To resolve anion currents in the 

patches, intracellular Cl- anions were substituted with either NO3
- or SCN- because of 

their greater permeability through the transporter anion channel (Eliasof and Jahr, 1996; 

Wadiche et al., 1995).  The Nernst equation predicted a reversal potential for the 

hEAAT1 uncoupled anion conductance of 56 mV when 110 mM NO3
- replaced Cl- as the 

intracellular anion and 104 mV when 110 mM SCN- replaced Cl-.  This assumed the 

permeability ratio of NO3
-:Cl- of 10.8, SCN-:Cl- of 67 (Wadiche and Kavanaugh, 1998). 

Under physiological conditions, the cytoplasmic face of the hEAATs is exposed 

to high K+ (100 mM).  With KNO3 based intracellular solution, voltage jumps in 

extracellular TRIS+, Na+, or K+ revealed currents that were inwardly rectifying at 

negative potentials, reversed and became outward at positive potentials for patches from 

either hEAAT1 or uninjected oocytes (Figure 3.1).  These I-V relationships were similar 

with NaNO3 or TRISNO3 based intracellular solutions.  L-Glu (1mM) plus Na+ 

stimulated the anion conductance in o/o patches with hEAAT1 transporters but had no 

effect on o/o patches from uninjected oocytes (Figure 3.1 and 3.2A).  Comparing the 

hEAAT1 and uninjected current amplitude at -120 mV showed an obvious and significant 

increase in the steady state conductance for TRIS+, Na+, and K+ extracellular (Figure 3.1 

and Figure 3.2A).  This corresponds with previous studies suggesting Na+ binding can 

gate an hEAAT associated ‘anion leak’ (Otis et al., 1997; Wadiche and Kavanaugh, 

1998), and it appears this extracellular cation binding site can be occupied also by K+.   

 



 44 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-12

-10

-8

-6

-4

-2

0

2

4

-120 -80 -40 0 40

pA

mV

Tris

K
Na

Na+
Glu *

*

*

*

A. B. 
KNO3 

C. 

0

5

10

15

20

Tris K Na Na+1mMglu

c
u

rr
e

n
t 

(p
A

)
U

n
ije

c
te

d
 o

o
c
y
te

 (
g

ra
y
)

E
1

 o
o

c
y
te

 (
b

la
c
k
)

extracellular cation

*

* *

*

-20

-15

-10

-5

0

5

-120 -80 -40 0 40

pA

mV

Tris

K

Na

Na+
Glu *

*

*

*

KSCN 

Figure 3.2:  The hEAAT1 anion conductance is gated by K
+
 from either side of the membrane.   A.  

The average current amplitudes at -120 mV for 7 to 8 outside-out patches from uninjected (gray_TRIS
+
 = 

2.09 +/- 0.23 pA; Na
+
 = 4.87 +/- 0.59 pA; K

+
 = 5.96 +/- 1.03 pA; L-Glu + Na

+
 = 5.09 +/- 0.70 pA) or 

hEAAT1 (black_ TRIS
+
 = 4.11 +/- 0.53 pA; Na

+
 = 10.44 +/- 2.25 pA; K

+
 = 12.23 +/- 1.88 pA; L-Glu + Na

+
 = 

16.92 +/- 3.53 pA) oocytes with Na
+
, K

+
, or TRIS

+
 as the respective extracellular cation (KNO3 intracellular).  

B.  Isolated hEAAT1 I-V relationships for extracellular TRIS
+
, Na

+
, K

+
, or L-Glu + Na

+
 determined by 

subtracting currents from patches of uninjected oocytes, same patches as in 2A.  The reversal potential for 

each was ETRIS = -10 mV,  ENa = 10 mV; EL-Glu+Na = > 40 mV; EK = 20 mV (KNO3 intracellular).  C. Isolated 

hEAAT1 I-V relationships for extracellular TRIS
+
, Na

+
, K

+
, or L-Glu + Na

+
 with intracellular KSCN.  

Currents from patches of uninjected oocytes were subtracted from those with hEAAT1.  The reversal 

potential for each condition was > 60 mV (n = 4 to 7 patches).  
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Because there is a significant increase in conductance with a TRIS+ based extracellular 

solution when comparing uninjected patches to hEAAT1 patches, it may be suggested 

that a K+ atom is bound to the internal face of the protein under physiological conditions 

that can support an anion conductance in the transporter. 

The hEAAT1 transporter current-voltage relationships (I-V) with TRIS+, Na+, L-

Glu plus Na+, or K+ were isolated by subtracting the respective currents from patches not 

expressing the transporter (Figure 3.2B).  The reversal potential for each was left-shifted 

from the expected Nernst prediction for NO3
- of 56 mV.  This left-shift in the I-V for 

KNO3 would suggest 1) an additional conductance carried by a separate ion or 2) an error 

within the experimental system (see discussion).  Substitution of KNO3 with KSCN as 

the intracellular based solution, expectedly, increased the average current amplitude at 

negative potentials and shifted the reversal potentials to > 60 mV (Figure 3.2C).  Both of 

these effects demonstrate the current measured is at least, in part, if not all, due to the 

uncoupled anion conductance associated with the transporter. 

The anion channel gating is supported with a Na+ based intracellular solution. 

 Intracellular replacement of K+ with Na+ based solutions cannot support steady-

state L-Glu transport, though it will allow L-Glu binding as well as exchange (Bergles et 

al., 2002).  In our experiments, replacing KNO3 with NaNO3 or NaSCN also did not 

support steady state currents gated by L-Glu (Figure 3.3A, 3B (NaNO3), or 3C 

(NaSCN)).  Na+ or K+ extracellular appeared to bind and gate a conductance at negative 

membrane potentials on hEAAT1 o/o patches compared to those from uninjected oocytes 

(Figure 3.3A).  This follows previous observations in a bacterial glutamate transporter 

(Gltph) (Ryan and Mindell, 2007). 

 For hEAAT1, subtracting currents of uninjected o/o patches from hEAAT1 

currents revealed currents that had reversal potentials > 60 mV (Figure 3.3B), which 

supported that these currents were carried by NO3
-.  Even though Na+ cannot replace K+ 

for steady-state transport, it was not known in the hEAATs if Na+ intracellular can bind 

and support an anion conductance as was seen for K+ in figure 3.2C.  With a TRIS+ based 

extracellular solution, there was a trend of a current at negative membrane potentials, 

which was not significant (Figure 3.3B).  When we replaced NaNO3 with NaSCN, this 

current became very apparent, demonstrating Na+ could occupy an intracellular binding 
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site and gate the anion conductance (Figure 3.3C).  Again, the increase in current 

amplitude with SCN- and the reversal potentials near the expected reversal potential (-56 

mV and -110 mV) confirmed that the conductance is carried through the transporter 

anion selective pore. 
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Figure 3.3:  The hEAAT1 anion conductance is gated by Na
+
 from either side of the membrane.   A.  The 

average current amplitudes at -120 mV for 4 to 5 outside-out patches from uninjected (gray_TRIS
+
 = 2.44 +/- 

0.90 pA; Na
+
 = 2.76 +/- 0.83 pA; K

+
 = 2.94 +/- 1.06 pA; L-Glu + Na

+
 = 3.51 pA) or hEAAT1 (black_ TRIS

+
 = 

3.24 +/- 1.38 pA; Na
+
 = 7.48 +/- 1.61 pA; K

+
 = 7.30 +/- 0.58 pA; L-Glu + Na

+
 = 4.98 +/- 0.69 pA) oocytes with 

Na
+
, Na

+
 + L-Glu, K

+
, or TRIS

+
 as the respective extracellular cation (NaNO3 intracellular).  B.  Isolated 

hEAAT1 I-V relationships for extracellular TRIS
+
, Na

+
, or K

+ 
determined by subtracting currents from patches 

of uninjected oocytes, same patches as in 3A.  The reversal potential for each was > 60 mV (NaNO3 

intracellular).  C. Isolated hEAAT1 I-V relationships for extracellular TRIS
+
, Na

+
, K

+
, or L-Glu + Na

+
 with 

intracellular NaSCN.  Again, currents from patches of uninjected oocytes were subtracted from those of 

hEAAT1.  The reversal potential for each condition was ETRIS > 60 mV,  ENa = 30 mV; EL-Glu+Na =  30 mV; EK = 

30 mV (n = 3 to 4 patches).  
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The anion channel gating is supported with a TRIS+ based intracellular solution. 

 No research has studied gating of the transporter anion channel with no 

intracellular cation bound.  With a TRISNO3 based intracellular solution, bath application 

of NaCl and KCl did activate conductances in hEAAT1 at -120 mV (Figure 3.4A). This 

conductance was carried by NO3
- because the isolated currents (subtraction of uninjected 

patches from hEAAT1 patches) reversed near 60 mV (Figure 3.4B).  The addition of L-

Glu plus Na+ did not increase this conductance (not shown), which further demonstrated 

the requirement of intracellular K+ for steady-state transport of substrate. 

 Whether the hEAATs have an anion leak completely independent of any bound 

cation is not known.  With TRIS+ based intracellular and extracellular solutions, currents 

of uninjected patches compared to hEAAT1 patches revealed no significant conductance 

(Figure 3.4B).  Though this showed that there was no detectable anion leak in hEAAT1 

transporter, it is possible an anion leak could be below the resolution of our technique.    
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Figure 3.4: There is no measurable hEAAT1 anion conductance in the absence of Na
+
 and K

+
.   A.  The 

average current amplitudes at -120 mV for 6 to 15 outside-out patches from uninjected (gray_TRIS
+
 = 1.48 

+/- 0.19 pA; Na
+
 = 2.81 +/- 0.56 pA; K

+
 = 2.99 +/- 0.51 pA; L-Glu + Na

+
 = 2.78 pA) or hEAAT1 (black_ 

TRIS
+
 = 1.85 +/- 0.22 pA; Na

+
 = 4.94 +/- 0.67 pA; K

+
 = 6.78 +/- 1.17 pA; L-Glu + Na

+
 = 6.95 +/- 1.99 pA) 

oocytes with TRIS
+
, Na

+
, Na

+
 + L-Glu, or K

+
 as the respective extracellular cation (TRISNO3 intracellular).  

B.  Isolated hEAAT1 I-V relationships for extracellular TRIS
+
, Na

+
, or K

+ 
determined by subtracting currents 

from patches of uninjected oocytes, same patches as in 4A.  The reversal potential for each was > 60 mV 

(TRISNO3 intracellular).  
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TBOA only partially blocked the anion current gated by alkali cations. 

An ‘anion leak’ gated by Na+ had been described previously for the hEAATs in which 

application of inhibitors at negative holding potentials resulted in an outward current 

(Bergles and Jahr, 1997; Grewer et al., 2000; Otis et al., 1997; Wadiche and Kavanaugh, 

1998).  Figures 3.2, 3.3, and 3.4 showed that Na+ or K+ can bind and gate this current 

from either side of the membrane.  Surprisingly, application of Na+ plus 200 µM TBOA 

or Benzyl aspartate (BA) (not shown) blocked only a small fraction of this anion current 

(Figure 3.5A).  TBOA did not affect Na+ currents in uninjected oocytes (Figure 3.5B).  

The small current blocked by the inhibitor did not reverse by 60 mV, supporting that it 

was carried by NO3
- anions (Figure 3.5C_circle).  In addition, the current not blocked by 

TBOA, also did not reverse by 60 mV, consistent with the idea the two currents have the 

same ionic basis (Figure 3.5C_squares).  Because the anion leak has always been defined 

by the current blocked by an inhibitor, this may demonstrate a larger baseline anion 

current associated with the transporter.  This helps validates anion currents independent 

of TBOA as has been suggested in Gltph (Ryan and Mindell, 2007). 
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Figure 3.5: TBOA only blocks a fraction of the anion conductance gated by extracellular Na
+
   A.  

Currents from hEAAT1 o/o patches plotted as a function of membrane potential with extracellular TRIS
+
, Na

+
, 

or Na
+
 + TBOA 100!M (TRISNO3 intracellular).  B. Currents from unijected o/o patches plotted as a function 

of membrane potential with extracellular TRIS
+
, Na

+
, or Na

+
 + TBOA 100!M (TRISNO3 intracellular).  C.  The 

currents blocked by TBOA in the hEAAT1 o/o patches (Figure 3.5_A) isolated by subtracting Na
+
 + TBOA 

from the currents in just Na
+
 at each membrane potential (circles), and the current not blocked by TBOA 

(Figure 3.5_A) isolated by subtracting currents in TRIS
+
 from those with Na

+
 + TBOA (squares).    The reversal 

potential for both is > 60 mV.      
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Discussion 

 In rod bipolar cells, the anion channel of the hEAATs has been shown to 

hyperpolarize the presynaptic terminal thus reducing vesicular L-Glu release (Veruki et 

al., 2006; Wersinger et al., 2006).  Though this likely describes hEAAT5, each of 

hEAATs 1-5 has an anion channel gated by L-Glu plus Na+ (Arriza et al., 1997; Fairman 

et al., 1995; Wadiche et al., 1995) as well as gated by just extracellular Na+ (Bergles and 

Jahr, 1997; Otis et al., 1997; Wadiche and Kavanaugh, 1998).  Extracellular binding of 

Na+ is apparent in the absence of L-Glu (Wadiche et al., 1995), and a recent crystal 

structure supports sites thought to be occupied by Na+ before L-Glu binds (Boudker et al., 

2007).  Our data suggest that either extracellular Na+ or K+ can occupy one of these sites 

and gate the uncoupled anion conductance (Figure 3.1-3.4).  The anion conductance seen 

with extracellular TRIS+ suggests that an additional cation binding site exists on the 

intracellular side of the membrane that can be occupied by either K+ or Na+.  It is not 

known if this K+ is related at all to the K+ that is countertransported during coupled 

transport of L-Glu (Zerangue and Kavanaugh, 1996).  The high concentration of K+ 

intracellular and high concentration of Na+ extracellular under physiological conditions 

suggests this anion conductance is consistently passing Cl- within the resting cell. 

 With KNO3 or NaSCN based intracellular solutions, we saw a left-shift in the 

reversal potential from the expected Nernst equation prediction of 56 mV for NO3
- and 

110 mV for SCN-. This would suggest that 1) K+ or Na+ intracellular gates a transporter 

associated conductance carried by ions different or in addition to the anion conductance, 

which thus shifts the reversal potentials (Kanai et al., 1995; Vandenberg et al., 1995) or 

2) intracellular Na+ or K+ can gate the anion conductance, and the left shift in the reversal 

potential is merely an error arising from subtracting patches of different experiments, 

with different seal resistances.  In support of the latter, we repeated these experiments 

with either NO3
- and SCN- in separate batches of oocytes, and the reversal potential did 

not appear to shift in the same direction for both experiments.  More convincing, if the 

current was carried by K+, the left-shift of the reversal should have only occurred with the 

K+ based extracellular solution and not for the TRIS+ or Na+ based extracellular solution 

(Figure 3.2B).  For NaSCN, if Na+ carried the conductance, an increase in Na+ 
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extracellular should have shifted the I-V to the right and not to the left as was observed in 

figure 3.3C. 

 The amplitude of the anion conductance gated by Na+ has always been described 

by the conductance blocked by inhibitors plus Na+.  By defining cations that gate the 

anion conductance from either side of the membrane, we were able to demonstrate that 

the inhibitor TBOA (200 µM) only slightly blocked the anion conductance on hEAAT1.  

This revealed a larger baseline anion current associated with the transporter than was 

initially thought and may expand on our understanding of the anion channels functional 

role in the resting cells.   
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CHAPTER 4: MICROSCOPIC RATE ANALYSIS OF THE NOVEL 
GLUTAMATE TRANSPORTER BLOCKER 2-FAA REVEALS COMPLEX 

UNBINDING KINETICS 
G.P. Leary, D.C. Holley, E.F. Stone, B.R. Lyda, C.S. Esslinger, and M.P. Kavanaugh 

 
Introduction 

The excitatory amino acid transporters (hEAAT1, hEAAT2, hEAAT3, hEAAT4, and 

hEAAT5) are secondary active  transporters that are prominently known for terminating 

excitatory synaptic transmission within the CNS by removing L-Glu from the 

extracellular space.  Functionally, the hEAATs move L-Glu against its concentration by 

coupling transport to the sodium, potassium, and proton gradients with a stochiometric 

influx of 3Na, 1H+, and 1 L-Glu coupled to the countertransport of 1 K+ (Levy et al., 

1998; Zerangue and Kavanaugh, 1996).  A crystal structure of a homologous archael 

transporter from Pyrococcus horikoshii reveals a bowl shaped trimer of three identical 

subunits with individual binding sites located within each subunit.  The three wedge-

shaped subunits allow for a deep basin that permeates 30 Å into the membrane bilayer.  

The basin is lined with hydrophobic residues and thought to be water filled with a volume 

of 400 Å3 (Yernool et al., 2004).  Structurally, the water filled basin has been suggested 

to decrease the energy barrier of transporting substrates across a lipid bilayer by 

providing a water filled cavity that expands beyond the 1st leaflet of the bilayer (Gouaux 

and Mackinnon, 2005).  In addition, the basin has been described as a “waiting area” for 

transported solutes allowing easy access to binding sites located within the bilayer 

(Kavanaugh, 2004; Yernool et al., 2004).  These explanation act to propose testable 

hypothesize, and emphasize a that deficit exists in our understanding of how the 

architecture revealed through X-ray crystallography maps to the function of these 

membrane transporters. 

2-β-fluorenyl-aspartylamide ((S)-4-(9H-fluoren-2-ylamino)-2-amino-4-oxobutanoic 

acid; 2-FAA) (Figure 4.1A) is a novel, low nanomolar, non-transportable substrate for the 

hEAATs with a reported 5-10 fold selectivity for hEAAT3; it has recently been suggested 

for the use in treatment for schizophrenia (Dunlop, 2006).  The molecule has an 

asparagine backbone with a fluorinyl ring extended from the amino side chain.  The 

molecular design follows that of L-aspartate-β-hydroxamate (Bridges et al., 1999), and 
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the addition of the hydrophobic ring drastically increases the potency for all hEAATs but 

also the selectivity seen at hEAAT3.  Measuring microscopic rate constants for an 

inhibitor offers the advantage of delineating the binding interactions from the dissociation 

interactions between the molecule and a protein in addition to offering an accurate 

estimate of the Ki.   Previously, studying reaction rates has been used to determine the 

microscopic rate constants (kon and koff) for many agonists and antagonists and often 

requires patch clamping in combination with a fast flow perfusion device (Benveniste et 

al., 1990; Jones et al., 1998; Otis and Kavanaugh, 2000; Wadiche and Kavanaugh, 1998).  

It is the purpose of this article to demonstrate how two-electrode voltage clamp (TEVC) 

of Xenopus laevis oocytes can be used to determine the Ki of 2-FAA by studying the 

reaction rates as opposed to the steady states equilibriums.  In measuring the blocking 

rate and recovery from block rate, we conclude that the selectivity of 2-FAA for hEAAT3 

is a result of a slower dissociation rate compared to hEAAT2 and hEAAT1, with no 

differences in binding rates. In addition, the recovery from block of 2-FAA is about 3 

times faster in the presence of L-Glu, and this acceleration is also induced by 

incorporation of non-functional subunits into the trimer.  This supports the idea that the 

quaternary structure of the transporter (the water filled basin) effectively restricts 

diffusion, thus changing the apparent off-rate of bound blocker. 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.  B.  

Figure 4.1:  A. An overlay of 2FAA (orange) with L-aspartate (green).  B. An hEAAT3 homology model 

threaded through Gltph (2NWW.pdb) using the SWISS-MODEL homology modeling server.  2FAA is 

positioned on the backbone of TBOA and optimized using the SYBYL force field (Tripos SYBYL 7.3).  

The structure was visualized using PyMol version 0.99. 
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Experimental Methods 

Electrophysiology.  Human brain glutamate transporter EAAT1, EAAT2, and EAAT3 

cRNA were expressed in stage V-VI Xenopus oocytes. For mutant transporters 

coexpressed with wildtype, proportional linearized DNA was combined and then 

transcribed to RNA.  Coexpressed oocytes demonstrated currents upon L-Glu or L-Ala 

application proportional to the expected dilution ratio.  Recording solution (frog Ringer) 

contained 96mM NaCl, 2mM KCl, 1mM MgCl2, 1.8mM CaCl2, and 5mM HEPES 

(pH7.4). Microelectrodes were pulled to a resistance between 1 MΩ and 3 MΩ and filled 

with 3M KCl.  Data was recorded with power lab 2/20 (AD instruments) interfaced with 

a G4 powerbook using Chart v5.0.1 software. Na-dependent charge movements were 

recorded with a Digidata 1200 (axon instruments) interfaced with Pentium 1 PC,ß and 

settings for measuring the Na-dependent charge movements were the same as reported in 

(Wadiche et al., 1995) except for our voltage jump was from -80 mV to 20mV.  Data was 

analyzed offline with Axograph X (v1.0.8) and Kaleidagraph (v3.6).  

Solution was perfused over the eggs at rapid rates (16-20 mL/min).  Exchange of 

the bath was estimated by fitting the wash in and wash out of 3 µM L-Glu to single 

exponentials.  Time constants for the bath exchange were between 2-5 seconds.  

Concentrations for the blocking rate were excluded if the time constant to block was less 

than 1/10 the bath exchange; this was observed for higher concentrations of 2-FAA.  

Specialized chambers were designed to decrease the volume and increase the laminar 

flow over the oocyte.  The chamber had dimensions of 3 mM width, 3 mM depth, and 20 

mM length. 

The structure of 2-FAA was modeled using Tripos SYBYL7.3.  Docking in was 

performed using the Tripos force field using simulated annealing molecular dynamics in 

SYBYL7.3, (2000 fs, 300 K).  The structures were visualized using PyMol0.99. 

 

Anylitical modeling of 2-FAA’s competitive inhibition.  

Modeling the reactions using the Law of Mass Action, we derived ordinary differential 

equations (ODEs) that could be solved for the decay constants observed in the 

experiment in terms of microscopic on/off rates. For the first stage in the reaction, the 

binding of glutamate, the reaction mechanism is presumed to be 
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Where we label the binding rate k1, the unbinding rate k-1, and the transfer rate kt.  

Following standard techniques (see appendix) we derived ODEs for the time dependent 

concentrations of T, G, C. These we denote by C(t), G(t), T(t).  If the concentration of 

glutamate is taken to be a constant, G ,  the closed form solution for C(t) was found to be 

 C(t) = K(1! e
" 1t
)  

whereK =
k
1
T
0
G

!
1

, and!
1
= k

1
G " k"1 + kt .  T0 is the total concentration of transporters and 

appears only  as a scaling factor.  The decay constant for this phase of the reaction is 

clearly γ1, as expected.  The concentration of C tends to the equilibrium value K over long 

times. 

 

The second stage of the reaction, in which the blocker molecule 2-FAA is added, can be 

modeled in the same way.  The reaction mechanism is  
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where now we label the binding rate k2, and the unbinding rate k-2.  For this stage both 

glutamate and drug concentration are assumed to be fixed at G  and B  respectively.   The 

concentrations of the complexes C(t), D(t), evolve over time to another set of equilibrium 

values with decay rates given by  
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The fast rate γ1, is determined by the rates at which glutamate is transferred, and the 

much slower rate γ2, is what will be observed in the experiment, and follows the first 

order approximation form of 

 !
2
= k"2 + k2B  

If the exponent is fit from the experiment as the concentration of the drug is varied, it 

should follow a linear dependence on that concentration, with slope k2 and y intercept of 

k-2. 

 

The third stage of the reaction is the drug wash-off and this is modeled with the same 

equations as the second stage, except that now the concentration of the free drug is taken 

to be zero, and unchanging.  In this case the resulting ODEs have exact solutions again, 

and the concentration C(t) is found to be  

 C(t) = Ce
!" 1t +

k
1
GC

k!2 ! " 1
(e

!k!2 t ! e
!" 1t ) + K(1! e

!" 1t )  

where C  is the equilibrium value from the second stage,  and K is the equilibrium value 

for the complex in the absence of drug, computed for the first stage of the reaction.   At 

the start of the reaction (t=0) the complex concentration equals C , and in the long term 

evolves to K.   There are again two distinct decay rates, γ1 and k-2.   The off rate of the 

drug is orders of magnitude slower than γ1, so it will be the rate observed in this stage of 

the experiment, and it does not depend upon the concentration of glutamate. 

 
Results 

Measuring the microscopic rate constants for 2-FAA with a two-electrode voltage 

clamp 

Application of 10 µM L-Glu to oocytes injected with cRNA for hEAAT3 results 

in an inward current that rapidly reaches steady state (Figure 4.2A).  Co-application of 10 

µM L-Glu with 20 nM 2-FAA (Figure 4.2B) produces a rapid inward current followed by 

a slow block to a new steady state, suggesting L-Glu binds to the transporter and induces 

a current much faster than the block by 2-FAA.  An identical fractional block of the L-
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Glu current is observed when the oocyte is first equilibrated with 20 nM 2-FAA (Figure 

4.2C).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Repeated application of 2-FAA changed Vmax and prevented us from completing a 

full Schild analysis. However, increasing L-Glu could recover the Vmax at different 2-

FAA concentrations within the same hour, suggesting that 2-FAA acts as a competitive 

inhibitor of the EAATs (data not shown).  At high concentrations 2-FAA (1-10 µM) 

induced inward currents in both injected and un-injected oocytes. 

We considered an alternative approach to estimating the Ki by studying the rates 

of block and recovery from block for 2-FAA (Figure 4.3A). The slow kinetics associated 

with the block by 2-FAA (Figure 4.2B) allowed us to use two-electrode voltage clamp of 

Xenopus oocytes to resolve the microscopic rate constants for 2-FAA with hEAAT3.  A 

competitive inhibitor for the EAATs can be described by the simple reaction mechanism 

below:  

 

Figure 4.2:  The slow blocking kinetics of 2FAA relative to L-Glu in oocytes expressing hEAAT3.  A.  

Application of 10 !M L-Glu causes an inward current with fast wash in and wash out kinetics (-40 mV).  

B.  Co-application of 10 !M L-Glu with 20 nM 2FAA (-40 mV) results in a fast inward current with a slow 

decay to steady state.  C.  Application of 10 !M L-Glu with 20nM 2FAA already at equilibrium (-40 mV) 

results in a fractional block equal to that seen at steady state in B.   
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        Reaction mechanism 1 

where To is the transporter facing the extracellular milieu, G is L-Glu, C is the transporter 

bound with L-Glu, Gi is L-Glu after being translocated into the cell, B is the competitive 

inhibitor 2-FAA, and D is the transporter bound with the inhibitor.  For glutamate, the 

microscopic rates have been measured to be kon = 6.8 x 106 M-1s-1, koff = 44 s-1, and 

ktransport = 15 s-1 (Wadiche et al., 1995; Wadiche and Kavanaugh, 1998).  In general, 

application of a substrate or an inhibitor under voltage clamp will produce a square 

current waveform if the kinetics of binding and unbinding of the molecule are faster than 

the solution exchange.  This is apparent for application of 3 µM L-Glu (Figure 4.3A and 

3B, inverted 3 µM L-Glu current recording) where the current time course represents the 

limiting rate of the bath exchange.  With the substrate in equilibrium, application of an 

inhibitor will shift the response to a new equilibrium that will depend on the rates for the 

binding and unbinding of the substrate and inhibitor, transport of the substrate, the 

concentrations of both substrate and inhibitor, and the solution exchange (Benveniste et 

al., 1990).  It is apparent in figure 4.3B that the time constant for the solution exchange 

(inverted 3 µM L-Glu current, 4.5 s) is much faster than that for the time constant for 

block of 10nM 2-FAA (215 s).  To limit any error associated with the solution exchange, 

we only made rate calculations in which the time constant of the solution exchange was 

less than 1/10 the blocking time constant of 2-FAA.  We minimized the bath exchange (τ 

= 2-5 s) by creating a narrow, shallow chamber (3 x 3 x 20 mM) to increase the linear 

flow and decrease the volume of solution.  A vertical flow oocyte chamber has also been 

designed with bath exchange rates documented below 100 ms that could increase the 

resolution of this technique (Baburin et al., 2006). 
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Assessing the Blocking kinetics of 2-FAA on hEAAT3 in the presence of L-Glu. 

 Using the law of mass action, we derived ordinary differential equations for each 

component in reaction mechanism 1.  Knowing the microscopic rates of binding, 

unbinding, and transport of L-Glu for the EAATs and the rates of block and dissociation 

for 2-FAA, we were able to determine by modeling that the binding, unbinding, and 

transport of L-Glu would be too fast to effect the measured blocking and recovery rate of 

the drug (see methods).  Because the time course almost completely depends on the rate 

limiting time constant, (2-FAA) binding and unbinding, we can simplify the relationship 

for the blocking rate as a function of the inhibitor concentration: 

  

Y = kon[NBI59159]+ koff  

      Equation 1 

 

A.  B
.  

200 s

3µM  L-Glu

 2FAA
(300 nM)

5 nA

300 s

10 nA

 2FAA
(10 nM) 

3µM  L-Glu

Figure 4.3: Effects of 2FAA on steady-state glutamate transport currents in hEAAT3.  A.  A 

representative experiment illustrating the block and the recovery from block of the steady-state 3 !M L-Glu 

current by 2FAA (300 nM; Vm = -60mV).  B. Onset and offset of block by 800 sec application of 10 nM 

2FAA. Solution exchange kinetics (monitored with a 3 !M L-Glu pulse for 800 sec) shown inverted above.  
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The blocking rate (Y) has a linear relationship to the concentration of 2-FAA with a slope 

equal to kon of 2-FAA and the y-intercept equal to the koff of 2-FAA.  Figure 4.4A shows 

a representative experiment measuring the blocking rate of a 3 µM L-Glu current with 

varying concentrations of 2-FAA.  A single exponential relationship (red line) fits the 

blocking rate data well.  At higher concentrations of 2-FAA (300, 1000, and 3000 nM), 

the blocking rate plateaus around 0.33 s-1 (data not shown).  As mentioned before, the 

solution exchange (2-5 s) becomes the limiting factor at higher concentrations of 2-FAA 

and agrees with the rate at the plateau.  A linear regression on the 3, 10, and 30 nM 

blocking rate measurements (Figure 4.4B) gives an estimate of the kon of 4.39 +/- 0.75 x 

105 M-1 s-1 and the koff of 0.0038 +/- 0.0007 s-1.  This confirms the assumptions in Figure 

4.2 that the kinetics for 2-FAA binding to hEAAT3 are an order of magnitude slower 

than L-Glu (6.8 x 106 M-1 s-1). The Ki calculated from the microscopic rate constants for 

hEAAT3 (koff/kon) is 8.4 +/- .4 nM.                 

 Considering Reaction mechanism 1, a rapid washout of drug would remove any 

chemical energy driving the reaction forward and thus result in an single exponential 

recovery from the block of 2-FAA that depends only on the koff, a rate that is intrinsic to 

the drug/protein interaction.  This rate will be independent of the initial concentration of 

drug used to reach the steady state block.   Figure 4.4B (squares) shows that the recovery 

from block rate does not vary with the 10, 30, and 100 nM (not shown) concentration of 

2-FAA.  As mentioned previously, higher concentrations of drug result in slower 

dissociation rates of the drug (300 – 10,000 nM).  The koff estimates from the y-intercept 

(0.0038 +/- 0.0007) corresponds well to the average rate of recovery from block (0.004 

+/- 0.0002).   
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The selectivity of 2-FAA for hEAAT3  

 2-FAA has been shown to have a higher potency for hEAAT3 than hEAAT2 or 

hEAAT1 (Dunlop and Butera, 2006).  The Ki estimates taken from a Cheng-Prusoff 

conversion of the IC50 (Figure 4.4C) are hEAAT1 (54 +/- 6 nM), hEAAT2 (59 +/- 6 nM), 
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Figure 4.4: The  microscopic kinetics of 2FAA on hEAAT3 measured using L-Glu induced 

transporter currents.  A.  Representative traces showing the decay of the steady-state transport current 

induced by 3 !M L-Glu following a jump into 3, 10, 30, and 100 nM 2FAA (-60 mV).  B.  Linear 

regression of the blocking rates of the 3 !M L-Glu transporter current (like from Fig 4A) reveals a slope of 

4.39 +/- .75 x 10
5
 M

-1
s

-1
 (circles) and a y-intercept of 0.0038 +/- 0.0007 s

-1
.  The recovery from block rate 

(like from 4D) for hEAAT3 is independent of the concentration of 2FAA at 10, 30, and 100 nM 

(squares_100 nM not shown).  C. The steady state block of 2FAA for the 3 !M L-Glu current: hEAAT1 

(diamonds; IC50 = 53.7 +/- 6.1 nM), hEAAT2 (squares; IC50 = 59.0 +/- 6.3 nM), and hEAAT3 (circles; IC50 

= 5.7 +/- .5 nM) (-60 mV). D.  Representative traces showing the recovery of the steady state transport 

current from block of 2FAA for hEAAT1 (0.031 s
-1

 +/- 0.002), hEAAT2 (0.028 s
-1

 +/- 0.003), and 

hEAAT3 (0.0040 s
-1

 +/- 0.0002).  
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and hEAAT3 (6 +/- 1 nM).  It was possible to measure the rate of recovery from block 

for hEAAT1 and hEAAT2, but the blocking rate measurements were limited by the 

solution exchange.  Figure 4.4D shows representative traces of the recovery from block 

of a 3 µM L-Glu current for hEAAT1 (0.031 +/- 0.002 s-1), hEAAT2 (0.028 +/- 0.003 s-

1), and hEAAT3 (0.004 +/- 0.0002 s-1).  We back calculated the kon using the relationship  

Ki = koff / kon 

with Ki estimates from the Cheng-Prusoff conversion of the IC50’s and the koff from the 

recovery from block for hEAAT1 (6 +/- 1 x 105 M-1 s-1), hEAAT2 (5 +/- 1 x 105 M-1 s-1), 

and hEAAT3 (7 +/- 1 x 105 M-1 s-1).  This is in close agreement with those measured 

from the blocking rate and demonstrates that the selectivity for hEAAT3 is primarily a 

result of a slower dissociation rate of the drug and not an initial binding discrimination.     

 

Assessing the Blocking kinetics of 2-FAA on hEAAT3 in the absence of L-Glu. 

 Transient Na+ charge movements blocked by kainate or TBOA have been 

described for the EAATs (Larsson et al., 2004; Wadiche et al., 1995; Watzke et al., 

2001).  To determine the microscopic rate constants for 2-FAA in the absence of L-Glu, 

we measured the blocking rate and the rate of recovery from block for the Na-dependent 

charge movements by performing voltage jumps from -80 mV to +20 mV (Figure 4.5A 

inset left).  Time integrals of transient currents blocked by the drug at onset (Qon) and 

offset (Qoff) of voltage jumps showed conservation of charge (Figure 4.5A inset right).  

The concentration dependence of the blocking rate (Figure 4.5A) has a linear relationship 

(Figure 4.5B).  The kon from the slope (3.85 +/- 0.59 x 105 M-1 s-1) was not different from 

that observed in the presence of L-Glu (Figure 4.4B), but a large difference was observed 

for the koff at the y-intercept (0.0012 +/- 0.0004 s-1).  Analyzing the rate of recovery from 

block of 100 nM 2-FAA (3 min) produced an identical dissociation rate (0.0013 +/- 

0.0002 s-1); for comparison, the average recovery from block in the presence (Figure 

4.4D, inverted current_closed circles) and absence of L-Glu (Figure 4.4D, Na+ 

transients_open circles) are plotted in Figure 4.5C. This result is inconsistent with pseudo 

first-order unbinding kinetics and suggests a significant probability of drug rebinding 

subject to competition with glutamate.  Similar experiments in holding the oocyte at -20 

mV and jumping to -120 mV revealed similar kinetics to those obtained at -80 mV, 
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suggesting a voltage independent block between -80 mV and -20 mV; this is consistent 

with with a voltage independent block of kainate (reference).  Application of L-Glu (3 – 

100 µM) for 270 s following the block of 100 nM 2-FAA accelerates the return of the 

Na+-transient currents in a dose dependent manner to fractions seen in the presence of L-

Glu at five minutes following washout (Figure 4.5C inset).  This supports the notion that 

L-Glu can occupy sites that may be used to rebind 2-FAA.      
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Figure 4.5: The microscopic kinetics of 2FAA measured in the absence of L-Glu using transporter 

associated Na
+
 transient currents.  A. The blocking rate of 3, 10, and  30 nM 2FAA on the Na

+
-

dependent charge movements. Inset left: Capacitive transient currents blocked by 10 nM 2FAA at 3, 15, 

and 20 minutes.  Inset right: Correlation of the 2FAA sensitive charge movements during on and off pulses 

demonstrating the conservation of charge movements.  B. Linear regression of blocking rates of the 

transient currents in the absence of glutamate by 2FAA yields a slope of 3.85 +/- .59 x 10
5
 M

-1
s

-1
, and 

reveals a lower apparent koff (0.0012 +/- 0.0004 s
-1

).  C.  Comparison of the rate of recovery from block by 

2FAA in the presence and absence of L-Glu.  The Na+-dependent charge movement recovery (open circles 

(0.0012 s
-1

 +/- 0.0007) is 3.3 times slower than when L-Glu is present (closed circles, inverted average of 

figure 4D). Inset: Application of L-Glu for the first 270 s of the washout of 2FAA speeds the recovery in a 

concentration-dependent manner (-80 mV).  
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 An alternative approach to prevent the rebinding of 2-FAA within the multimeric 

complex was to express the hEAAT3 transporter with an excess of hEAAT3 R447C, a 

mutant that converts the transporter to a neutral amino acid transporter similar to 

hASCT2 (Grewer et al., 2005; Leary et al., 2007).  L-Ala induced currents in hEAAT3 

R447C are insensitive to block of 100 nM 2-FAA (Figure 4.6A), and no Na+-transient 

currents in this mutant are blocked by 100 nM 2-FAA (Figure 4.6B).  We expressed 

heteromultimers of hEAAT3 and hEAAT3 R447C by injecting cRNA of the respective 

transporters at a ratio of 1:3.  The probability, p(n), of having n hEAAT3 subunit within 

the trimeric complex is: 

 

p(3) = .253 = 1.5 %, p(2) = 3*.252*.75 = 14.1 %, p(1) = 3*.25*.752 = 42.2 %, and p(0) = 

0.753 = 42.2 %. 

 

The recovery of a 10 µM L-Glu current from 100 nM block of 2-FAA has a recovery rate 

of 0.0042 +/- 0.0006 (Figure 4.6D), similar to that of hEAAT3  (0.0040 +/- 0.0002; 

Figure 4.4).  However, the recovery rate from 2-FAA block of the Na-charge movements 

was 0.0033 +/- 0.0006 s-1 (Figure 4.6C), which is significantly different from that 

observed for hEAAT3 (Figure 4.6D).  This indicates that the presence of nonfunctional 

binding sites speeds the apparent dissociation rate of 2-FAA.   We propose that the large 

aqueous central cavity in the trimeric complex (Yernool et al., 2004) may restrict 

diffusion near the three ligand binding sites, resulting in an effective dissociation rate 

significantly slower than the true first-order subunit unbinding rate. 
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Discussion  

It is critical to accurately estimate the block of an antagonist or nontransportable 

inhibitor.  Experimentally, the Ki for an inhibitor is most commonly estimated using the 

Schild Analysis or derivation from the IC50 using the Cheng-Prusoff equation.  However, 

for some very potent drugs, like 2-FAA, the extremely slow dissociation of the drug from 

the protein results in long periods of time for the system to reach a steady state.  This 

makes accurate measurements at steady state, for either the Schild Analysis or the Cheng-
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Figure 4.6:  Removal of functional binding sites in a subset of subunits within the trimeric complex 

speeds the apparent off-rate of 2FAA.  A.  hEAAT3 R447C L-Ala current with 30mM SCN in the bath 

solution is not blocked by 100 nM 2FAA (-20 mV).  B.  No transient currents are blocked by 100 nM 

2FAA in the mutant hEAAT3 R447C.  C. The recovery from 2FAA (100 nM) block of the Na-dependent 

charge movements in oocytes co-injected with E3 (WT) and R447C at a ratio 1:3 (closed circles: koff = 

0.00327 +/- 0.0006 s
-1

) compared to hEAAT3 WT (open circles, figure 5C).  D.  Summary of 2FAA 

recovery rates for WT and 3:1 R447C:WT in the presence and absence of L-Glu (*p <  0.01).   
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Prusoff conversion, difficult and possibly inaccurate due to experimental challenges 

associated with long drug application.  For 2-FAA, we found long drug applications 

resulted in changes of the Vmax, inward currents from high 2-FAA drug application (3-10 

µM) in control and hEAAT 1, 2, or 3 injected oocytes, and longer dissociation rates for 

hEAAT3 and hEAAT1 with the higher concentrations, which could possibly be 

associated with 2-FAA depositing in the membrane or entering the cell allowing for a 

longer apparent koff.  We are confident that 2-FAA is still a competitive inhibitor because 

saturating concentrations of L-Glu can still recover the Vmax.   

An alternative approach to estimate the Ki, used in this paper, is to measure the 

kinetic blocking and recovery from block rates of 2-FAA.  This method has been used 

previously to estimate the microscopic kinetics for very potent drugs such as ketamine at 

the NMDA receptor (Mayer et al., 1988), but never has been performed with as simple 

system as two-electrode voltage clamp of Xenopus oocytes.  The advantages to using 

oocytes offer a simple, inexpensive experimental system with very robust current 

measurements in the nano-micro ampere range.  This method is limited to measurements 

with very slow dissociation rates but has promising potential with the increasing 

development of high affinity molecules in the low nanomolar to picomolar range.  

Further, measuring the individual kon and koff offers information about the interactions 

between the protein and the molecule not obtainable from steady state measurements.   

L-Glu has a kon for the hEAAT2 of 6.8 x 106 M-1s-1 (Wadiche and Kavanaugh, 1998).  

For 2-FAA we detected a kon an order of magnitude slower than from that of L-Glu (4.4 x 

105 M-1s-1), which can possibly be reconciled by the large fluorine ring and its highly 

hydrophobic nature.  The estimated on rate is similar for hEAAT1, hEAAT2, and 

hEAAT3, which supports the idea that the slower on-rate is less the interaction with the 

protein and more the properties of the molecule.  As seen with the selectivity for many 

drugs at proteins, 2-FAA has a slower dissociation rate on hEAAT3 in comparison to 

hEAAT2 or hEAAT1; this accounts completely for the 10 fold higher affinity seen in the 

Ki.  

Finally, the apparent dissociation rate for 2-FAA was about 3.3 times lower in the 

absence of L-Glu when we measured the Na-dependent charge movements.  This 

demonstrates a mechanism that does not follow 1st order unbinding kinetics.  When we 
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applied L-Glu in the washout of 2-FAA measuring the Na-dependent charge movements, 

the recovery from block was accelerated to rates seen in the presence of glutamate 

suggesting a competition for the binding site between glutamate and 2-FAA.  

Structurally, we can possibly consider the large basin as a “holding area” in addition to a 

“waiting area” that increases the capture efficiency of molecules.  Supporting this view, 

removal of functional binding sites by coexpression of wt hEAAT3 in excess of R447C 

subunits, a mutant that renders the transporter insensitive to L-Glu binding, also 

accelerates the apparent off-rate of 2-FAA when measuring the Na-dependent transient 

currents.  Considering that 2-FAA does not block R447C transient currents in oocytes 

that express R447C alone nor L-ala induce currents in these oocytes, it is likely that the 

rebinding of 2-FAA within the tirmeric complex accounts for the apparent change in the 

koff.  Physiologically, it is thought that glutamate transporters surrounding synapses 

buffer glutamate through binding, with a high probability of the molecule unbinding.  

This large aqueous basin could be a very important structural feature that allows the 

transporters to not only buffer but capture the L-Glu molecule and prevent it from 

escaping and activating NMDA or AMPA receptors.  
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CHAPTER 5:  DYNAMIC GATE MOTIONS OF HP2 IN THE NEURONAL 
GLUTAMATE TRANSPORTER EAAT3 

G.P. Leary, D.C. Holley, R.C. Darlington, J.B.A. Ross, and M.P. Kavanaugh 

 
Introduction 

The human excitatory amino acid transporters (hEAAT1-5) are secondary active 

transporters that move L-Glutamate against its concentration gradient by stoichiometricly 

coupling L-Glu to 3 Na+, H+, and the countertransport of 1 K+ (Zerangue and Kavanaugh, 

1996).  The transporters physiologically maintain a sub-micromole concentration of L-

Glu in the extracellular space within the CNS (Herman and Jahr, 2007).  An alternating 

access model of two gates has been a distinguishing feature of protein transport 

(Jardetzky, 1966; Kavanaugh, 1998; Lauger, 1980).  The crystallization of a bacterial 

homolog (Gltph) of the hEAATs revealed two hairpin loops, one spanning half the 

membrane from the intracellular side (HP1) and the second, in close proximity to HP1, 

spanning half the bilayer from the extracellular face (Yernool et al., 2004).  HP1 and HP2 

give two physical structures in the glutamate transporter that could regulate this 

alternating access model.  

Though it is suggested the gates for this model can be single amino acids (Miller, 

2006), the potential motion of the HP2 loop as a gate was demonstrated in a crystal 

structure of Gltph with the competitive, non-transportable inhibitor TBOA bound, which 

forced HP2 10 Å toward the center of the trimeric complex relative to the 1st crystal 

structure (Boudker et al., 2007).  Whether Gltph can act as a sufficient model for the 

hEAATs remains in question, though a FRET based analysis of hEAAT 3 suggested only 

small scale motions associated with L-Glu transport (Koch and Larsson, 2005).  In 

contrast, recent molecular dynamics has shown substantial movement of HP2 in Gltph and 

hEAAT1 that differentially responds to the presence of substrates (Na+ or L-Glu) and 

inhibitors (Huang and Tajkhorshid, 2008; Shrivastava et al., 2008).  These dynamic 

motions of HP2 have been further demonstrated by cross-linking of HP2 to HP1, TMD8, 

TMD7, and TMD2 (Brocke et al., 2002; Leighton et al., 2006; Qu and Kanner, 2008; 

Ryan et al., 2004).    

Cysteine modification of V417C hEAAT3 on HP2 allows for binding of L-Glu 

and activation of the anion conductance, but prevents substrate transport (Seal et al., 
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2001). We defined distinct confirmations of HP2 based on unique accessibility in 

fluorophore labeling of V417C with TBOA, L-Glu, Na+, or Choline present.  Further, we 

used voltage clamp fluorometry, a method that takes advantage of the environmental 

sensitivity of a fluorescent probe, to identify conformational changes in the HP2 loop 

associated with binding of substrate (Tzingounis et al., 2002).  Alexa Fluor 488 C5 

maleimide positioned on the modified V417C HP2 reported large increases in the 

fluorescence intensity upon binding of L-Glu, which is not observed with TBOA.  The 

change in fluorescence (ΔF/F) upon L-Glu binding increased when neighboring subunits 

contained a fluorophore, demonstrating the formation of dark fluorophore complexes at 

the center of the trimer.  L-Glu binding relieves this quench by breaking the pi-pi bonds 

between fluorophores, suggesting the probes on HP2 physically separate and translate 

away from the central axis of the protein complex.  This is in agreement with HP2 being 

the external gate, closing after L-Glu binds.   

 

Experimental Procedures 

Expression and Voltage Clamp Fluorometry with Xenopus laevis oocytes – Cysteine 

point mutagenesis of V417C was performed with QuikChange Site-Directed Mutagenesis 

Kit (Stratagene #200521).  cRNA was microinjected in stage V-VI oocytes.  hEAAT3 

V417C mutant transporters were labeled with Alexa Fluor 488 C5 maleimide (Molecular 

probes, A-10254).  Currents and fluorescence were recorded 3-5 days later as previously 

described (Larsson et al., 2004; Wadiche et al., 1995b).  Recording solution contained 

96mM NaCl, 2mM KCl, 1mM MgCl2, 1.8mM CaCl2, and 5mM HEPES (pH7.4).  

Microelectrodes were filled with 3M KCl and had resistances from 1 to 3 MΩ. Two 

electrode voltage clamp recordings were performed at  22°-25°C with a Geneclamp 500 

interfaced to an IBM-compatible PC using a Digidata 1320 A/D controlled with the 

pCLAMP 6.0 program suite (Molecular Devices). The currents were low-pass filtered at 

1 kHz and digitized at 5 kHz.  Data were analyzed offline; modeling and fitting of 

substrate concentration-dependence of the currents was performed with Kaleidagraph 

software (v 4.04). 

 

Results 
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Specific labeling at V417C on HP2 of the neuronal excitatory amino acid transporter 3 

(hEAAT3)  

To examine possible dynamic gate motions of the HP2 loop, we engineered a cysteine 

point mutation in hEAAT3 at V417, a residue located at the tip of HP2 (Figure 5.1A).  

Cysteine modification of this mutant allows glutamate binding, activation of the 

uncoupled anion conductance, yet prevents transport of substrate (Seal et al., 2001).  We 

repeated these measurements with our mutant to confirm the addition of Alexa Fluor 488 

C5 maleimide prevented radiolabeled uptake on the mutant (figure 5.1B).  In addition, 

following labeling, the reversal potential of current/voltage (IV) relationship shifted near 

the chloride reversal potential (-12mV +/- Figure 5.1C) demonstrating the current is 

carried almost completely by the uncoupled anion conductance associated with the 

transporter (Wadiche et al., 1995a).  
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Figure 5.1:  Cysteine modification of V417C hEAAT3 on HP2 allows glutamate binding but prevents 

L-Glu transport.  A. An individual subunit of the hEAAT3 structural homology model threaded through 

the Pyrococcus horikoshii Gltph structure (Yernool et al., 2004) illustrating the location of the V417C point 

mutation (black sphere) on HP2.  B.  Radiolabel uptake of 10!M [
3
H]L-Glu verifies modification of 

V417C with Alexa Fluor 488 C5 maleimide prevented L-Glu transport (Seal et al., 2001).  C.  A left shift of 

the V417C current/voltage (IV) relationship following labeling (300!M*min) with Alexa Fluor 488 C5 

maleimide. 



 75 

A compiled z-stack of confocal images (Figure 5.2A) shows Alexa Fluor 488 C5 

maleimide (300 µM*min) specifically labeled oocytes injected with hEAAT3 V417C and 

further confirms that the endogenous cysteine residues (C9, C100, C256, C343) in the 

wildtype (wt) hEAAT3 do not label with this thiol reactive dye.  The labeling of V417C 

saturates and depends on the concentration of probe and time (figure 5.2B).  In Figure 

5.2C the sequence of hEAAT3 was threaded through the Gltph crystal structures (2NWX 

and 2NWW) showing HP2 in the proposed open conformation (Boudker et al., 2007) 

overlaid with HP2 from closed structure revealing a 10 Å shift of t the HP2 loop (Figure 

5.1A) (Yernool et al., 2004).  The Alexa Fluor 488 C5-maleimide was attached in silico to 

V417C in either conformation illustrating the potential distance.  The fluorophores 

chemical structure was minimized within its local environment using SYBYl 8.0.  

We measured the accessibility kinetics for the fluorophore labeling at V417C when 

choline, Na+, L-Glu, or TBOA were present (Figure 5.2C_choline is a cation replacement 

for Na that does not interact with the hEAATs).  The half maximum labeling is about the 

same for Na or choline (Na50 = 31 µM*min and Choline50 = 51 µM*min), suggesting the 

empty transporter is similar to the Na+ bound state.  When L-Glu or TBOA is present the 

half maximum labeling concentration decrease by 4 fold (L-Glu50 = 9 µM*min and 

TBOA50 = 11 µM*min). This change suggests dynamic motions of the HP2 loop 

associated with binding or unbinding of either molecule.  This was unexpected 

considering the crystal structure shows TBOA locking the transporter in an open 

confirmation similar to the Na+ bound transporter (Boudker et al., 2007).   

Unique HP2 confirmations with L-Glu, Na+, Choline, and TBOA deciphered with voltage 

clamp fluorometry  

Using voltage clamp fluorometry, we simultaneously measured transporter currents 

and fluorescent intensity changes associated with HP2.  Oocytes were labeled to 

saturation with Alexa Fluor 488 C5 maleimide and voltage clamped at -60mV.  Neither 

HP2 nor the transporter interacted with L-Glu in the presence of choline (Figure 5.3A).  

Transitioning from choline to Na+ changes both the conductance and fluorescence; this 

small current change is observed also in uninjected oocytes, but the fluorescence change 

is unique to V417C hEAAT3 expressing oocytes and is directly a result of Na+ binding to 

the transporter.  A Hill relationship (nhill = 1.8_-125 mV) describes the Na+ dependence 
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of the fluorescence change from choline, supporting at least 2 Na+ responsible for this 

motion or rearrangement in the HP2 loop.  It is noted that both of these Na+ atoms may 

not be the ones directly associated with the coupled conductance during glutamate 

transport (Koch et al., 2007; Zerangue and Kavanaugh, 1996).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L-Glu application in the presence of Na+ resulted in a robust increase in fluorescence 

that directly correlates with the activation of the uncoupled anion conductance (Figure 

5.3A).  This large intensity change as well as conductance is not seen with the non-

transported inhibitor TBOA (100 µM) (Figure 5.3A). The fluorescence intensity change 
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Figure 5.2:  Specific labeling of V417C on HP2.   A.  A reconstruction of a z-stack series of confocal 

images (10x objective) for either V417C (left) or wt EAAT3 (right) labeled with Alexa Fluor 488 C5 

maleimide for 300 !M*min.  B. Alexa Fluor 488 C5 maleimide labeling kinetics for V417C compared to wt 

hEAAT3.  C. Alexa Fluor 488 C5 maleimide labeling kinetics for V417C in the presence of Na
+
 (Km = 31 

!M ), choline(Km = 51 !M), Na
+
 and 1mM L-Glu(Km = 9!M), or Na

+
 and 200 !M TBOA(Km = 11!M).  

D. In silico attachment of Alexa Fluor 488 C5 maleimide to V417C with HP2 in the proposed closed 

(orange) and open confirmations (blue).    
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depended on the concentration L-Glu and has kinetics (Km = 26 µM) similar to the L-Glu 

activation of the anion conductance (Km= 33 µM) (Figure 5.3C).   
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Figure 5.3:  Fluorescence changes with external ions and substrate binding under voltage clamp 
fluorometry 
A.  Simultaneous fluorescence and current recording from oocytes injected with V417C hEAAT3 and 
labeled for 300 µM*min with Alexa Fluor 488 C5 maleimide (-60 mV).  B.  The Na+ dependence of the 
fluorescence intensity, from a solution change from choline to different Na+ concentrations, fits well to a 
hill equation (Km = 39 mM_nhill = 1.8).   C.  The L-Glu dose response for activation of the uncoupled 
anion conductance (circle_Km = 33 µM) and for fluorescence intensity change (square_Km = 26 µM).  
Inset:  A representative recording showing the L-Glu dependence for the anion channel activation 
compared to the fluorescence intensity change.  D.  The F/F plotted as a function of voltage with Na+, 
1mM L-Glu, Choline, or 100 µM TBOA present.  The Na+ (V0.5 = -45 mV; z  = 68.7) and choline 
relationships are fit with ΔF / F =

Ftot
1+e-zδ (V-V0.5 ) /kT

+ Foffset , and L-Glu (V0.5 = 60 mV; z  = 93.7) and TBOA 

(V0.5 = 23 mV; z  = 114.8) relationships are fit with ΔF / F = Ftot −
Ftot

1+e-zδ (V-V0.5 )/kT
+ Foffset  .  Representative 

traces of the family of fluorescence voltage jumps in Na+, L-Glu, choline, or TBOA are plotted above, 
respectively.   
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Voltage jumps with Na+, L-Glu, or TBOA reveal fluorescence changes for HP2 that 

fit well to a Boltzmann distribution, suggesting two unique voltage dependent states 

assumed by HP2 with these substrates, while choline revealed no intensity changes with 

voltage (Figure 5.3D).  At positive membrane potentials (150 mV or 200 mV), both the 

fluorescent intensities with Na+ and L-Glu approached this choline state demonstrating a 

voltage dependent unbinding for Na+ and L-Glu (Bergles et al., 2002; Wadiche et al., 

1995b). With L-Glu or TBOA bound, the Boltzmann distribution is inverted 

demonstrating a reorientation of HP2 upon binding distinct from Na+ bound. TBOA 

allows for small intensity changes in response to voltage that never approach a choline 

state; this corresponds with a voltage independent binding and unbinding of inhibitor 

even at very positive potentials (Wadiche et al., 1995b).       

 

 

 

 

 

 

 

 

 

 

 

 

With L-Glu present, a voltage jump to 150 mV reveals an exponential recovery of the 

fluorescence upon returning to -70mV.  This recovery time constant decreases with 
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Figure 5.4: Rate analysis of the fluorescence recovery in L-Glu.   A.  A representative experiment 

showing [L-Glu] increases the fluorescence recovery time following a voltage jump to 150 mV.  

Fluorescence intensity is baselined at the last 5 ms of the 150 mV jump.  B.  A plot of the recovery rate 

(1/tau) as a function of the concentration of L-Glu in 100 mM Na
+
 (circles) or 30mM Na

+
 (squares).  A 

linear regression on the limiting slope (10, 30, 100, and 300 !M L-Glu points) give a slope (kon) = 3.2x10
4
 

M
-1

s
-1

 and a y-intercept (koff) = 2.7 s
-1

.  C.  The fluorescence recovery time constant for 30, 100, and 1000 

!M L-Glu does not depend on the return voltage (between 20 and -100mV) following a voltage jump to -

150mV.  Inset:  Representative experiment in 1mM L-Glu showing the recovery from 150 mV voltage 

jump returning to either -100, -60, -20, or 20 mV.   
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higher concentrations of L-Glu and is effected by the extracellular Na+ concentration 

(Figure 5.4A).  We consider this recovery to represents the rebinding of L-Glu and Na+ to 

the transporter; we do not see these fluorescent tails for TBOA. By varying the holding 

potential, we demonstrated the binding of L-Glu for 30, 100, and 1000 µM is voltage 

independent from 20 mV to -100 mV (reference) (Figure 5.4C).  Using a rate analysis 

and fitting a linear regression on the limiting slope (10, 30, 100, 300 µM L-Glu points)  

showed the microscopic on (slope) and off (y-intercept) rate constants are kon = 3.2x104 

and koff = 2.68 s-1 (Figure 5.4B).  This represents a minimum for the binding rate for L-

Glu.  Both rates are altered substantially compared to estimates for hEAAT3:  kon = 

6.8x106 M-1s-1 and koff = 300s-1 (Larsson et al., 2004).  However, because both the off and 

on rate are slower, the Kd estimate, which is the koff/ kon = 82 µM, is not that different 

from the wt hEAAT3, 44 µM.  
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Figure 5.5: Rate analysis of the fluorescence recovery in L-Glu.   A.  A representative experiment 

showing [L-Glu] increases the fluorescence recovery time following a voltage jump to 150 mV.  

Fluorescence intensity is baselined at the last 5 ms of the 150 mV jump.  B.  A plot of the recovery rate 

(1/tau) as a function of the concentration of L-Glu in 100 mM Na
+
 (circles) or 30mM Na

+
 (squares).  A 

linear regression on the limiting slope (10, 30, 100, and 300 !M L-Glu points) give a slope (kon) = 3.2x10
4
 

M
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s
-1

 and a y-intercept (koff) = 2.7 s
-1

.  C.  The fluorescence recovery time constant for 30, 100, and 1000 

!M L-Glu does not depend on the return voltage (between 20 and -100mV) following a voltage jump to -

150mV.  Inset:  Representative experiment in 1mM L-Glu showing the recovery from 150 mV voltage 

jump returning to either -100, -60, -20, or 20 mV.   
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Fluorescence reports on subunit interactions in hEAAT3 V417C 

Unexpectedly, the ΔF/F for 1mM L-Glu increased with labeling (Figure 5.5A).  

When the V417C hEAAT3 mutant is expressed in excess of wildtype (1:5), the ΔF/F for 

1mM L-Glu application does not increase with labeling time.  V417C:wt (1:5) has about 

the same ΔF/F as is seen in the minimally labeled mutant expressed alone (5-10%) 

(Figure 5.5A_y-intercept).  The V417C hEAAT3 mutant labeled to saturation has a large 

intensity change (25-35 %) upon L-Glu application that depends directly on the presence 

of fluorophores in neighboring subunits.  The interaction of these fluorophores can 

further be seen by a left shift in the Boltzmann for 1mM L-Glu application with labeling 

time (Figure 5.5B); interestingly, the Boltzmann for Na+ is not affected by the labeling 

time (Figure 5.5C).  Figure 5.5D shows the lifetime in Na or Na+ + L-Glu taken from an 

oocytes labeled to saturation revealing no change.  If L-Glu binding was relieving some 

type of dynamic quench such as hetero Förster resonance energy transfer (hetero-FRET), 

a large change in the time constant of the lifetime would have been observed.   
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Discussion 

From Pyrococcus horikoshii, a homologue of the glutamate transporters (Gltph), 

Yernool et al. (2004) provided a crystal structure with evidence that HP2 occluded a 

bound substrate molecule posing as theoretical external gate for the transporter.  V417C 

hEAAT3 modified by Alexa Fluor 488 C5 maleimide allowed us to observe unique 

motions of HP2 associated with binding and unbinding of substrates without the 

complication of transport (Figure 5.1B).  Defining these fluorophores as forming dark 

complexes at the center of the trimer (Figure 5.6) allowed us a tool to observe motions of 

HP2 relative to the central axis.  Because of the robust increase in fluorescence, L-Glu 

binding likely causes HP2 to physically break the hydrophobic pi-pi bonds and move the 

fluorophores away from the central axis, relieving a quench on the fluorophore.  The left 

shift in the Boltzmann with increased labeling (Figure 5.6B) suggests more negative 

potentials are needed to allow binding of L-Glu supporting the fluorophores dimerization 

may constrain loop closing.  This physical constraint from either dimerization or the extra 

mass placed on the loop is further supported by the slower microscopic on and off rates 

for L-Glu (Figure 5.4B).  At very positive potentials, HP2 resembles the state with 

choline extracellular suggesting both Na and L-Glu have a voltage dependent unbinding 

(Figure 5.3C).  This physical unbinding of L-Glu is further supported by the exponential 

fluorescence recovery following a voltage jump to 150 mV (Figure 5.5A), which we 

believe represent L-Glu rebinding.  According to molecular dynamic simulations on 

Gltph, the closing of HP2 depends mostly on interactions with the substrate and is 

independent of interactions with Na+ (Huang and Tajkhorshid, 2008).  In contrast, we 

find that the large fluorescent changes thought to represent loop closure do not occur in 

the presence of Li+ + L-Glu, though an inversion of the voltage dependence shows L-Glu 

still bind (data not shown).  This suggests for hEAAT3 that the closing of the HP2 loop 

depends on the presence of both L-Glu and Na+.  These L-Glu and Na+ induced motions 

Figure 5.6:  Fluorophore interaction from neighboring subunits accounts for increase in intensity 

upon L-Glu application.   A.  The F/F for 1mM L-Glu increases with increased labeling for V417C 

hEAAT3 (circle) but not when V417C hEAAT3 is expressed in excess (1:5) of wt hEAAT3 (square).  B & 

C.  A left shift in the fluorescence/voltage relationship for 1mM L-Glu (left) but not Na
+
 with either the 30 

or 350 !M*min labeling.  Both are fit with the same Boltzmann equations used in figure 3D.  D.  

Representative trace for the fluorescence lifetime with and without L-Glu taken from a hEAAT3 V417C 

Xenopus oocycte labeled to saturation.    
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of HP2 in hEAAT3 directly correspond with and help validate predictions from Gltph that 

HP2 gates L-Glu.         

A second crystal structure bound with the inhibitor TBOA maintains HP2 in a 

confirmation 10 Å toward the central axis of the trimer from its position with the 

substrate bound (Boudker et al., 2007).  The small fluorescent intensity change upon 

TBOA application supports HP2 in a confirmation closer to the central axis in which the 

fluorophore dimers are still formed.  The inverted Boltzmann fit seen with changes in 

voltage (Figure 5.3C) in addition to the increases in accessibility for TBOA (Figure 5.2C) 

demonstrate a distinct form of HP2 from Na+ or L-Glu indicating complex interactions of 

HP2 with TBOA (Qu and Kanner, 2008).  Even at very positive potentials with TBOA, 

the fluorescent intensity never resembles a choline state, supporting a voltage 

independent unbinding.  

Low-resolution crystals with just Na+ bound suggested HP2 assumed a similar 

open confirmation as with TBOA (Boudker et al., 2007).  The accessibility of labeling 

V417C hEAAT3 as well as accessibility for residues on the loop shown by Qu and 

Kanner (2008) supports a very distinct HP2 conformation for Na+ compared with the 

inhibitor bound. Using VCF, there was a robust decrease in the overall fluorescence 

transitioning from choline to Na+, though little change in accessibility (Figure 5.3A, 

Figure 5.2C). This conformational change of HP2 directly correlates with the presence of 

at least 2 Na atoms (Figure 5.3B).  Interestingly, with choline extracellular the transporter 

and HP2 seems like a social recluse.  Measured by changes in conductance or 

fluorescence, the transporter is unwilling to respond or interact to high concentrations of 

L-Glu or inhibitor (Figure 5.3A) or to extreme changes in electrical potential between 

200 and -200 mV.  This is in contrast to large motions of HP2 expected from MD 

simulations (Huang and Tajkhorshid, 2008; Leighton et al., 2006).  At the tip of the HP2 

loop, it seems the accessibility for V417C is similar between Na+ and choline; this result 

parallels MTSET labeling to the corresponding residue for M419 in Glt-1 (Qu and 

Kanner, 2008).  
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CHAPTER 6:  CONCLUSIONS 

 

 In mammals including humans, high affinity glutamate transporters are encoded 

by a group of five genes (EAAT 1-5; SLC1A1-A5) that are members of the 

dicarboxylate/amino acid:cation symporter family that also includes the neutral amino 

acid transporters, ASCT1 and ASCT2.  This gene family is distinct from the family of 

genes encoding the transporters for neurotransmitters such as GABA, serotonin, 

dopamine, norepinephrine, glycine, and others. The excitatory amino acid transporters 

(EAATs) are found throughout the central nervous system and peripheral tissues.  These 

glutamate transporters are the major routes for cellular uptake of synaptically released 

glutamate (Danbolt, 2001), and they maintain a low nanomolar extracellular glutamate 

concentration in the brain (Herman and Jahr, 2007).  Many major neurological diseases 

like amyotrophic lateral sclerosis, epilepsy, Huntington’s disease, Alzheimer’s disease, or 

ischemic stroke have deficits in glutamate transporter expression (Beart and O'Shea, 

2007)). 

 With the recent publication of two crystal structures of GltPh an archaeal analog of 

the EAATs (Boudker et al., 2007; Yernool et al., 2004), many question have been raised 

about how these secondary active transporters can move glutamate against its own 

concentration gradient.  The crystal structures of GltPh revealed three identical subunits 

that cluster together to form a homotrimer.  The interface of the subunits creates a large 

aqueous basin (∼40,000 Å3) that dips beyond the 1st leaflet of the bilayer, though there is 

no clear water filled pathway that extends completely through the protein like is seen in 

the K+ channels (Doyle et al., 1998).   In this dissertation we have explored what 

functional significance the bowl-shaped, homotrimeric complex has on both the coupled 

transport current as well as the uncoupled anion current associated with the transporter.  

In chapter 2 we concluded that both the glutamate and chloride permeation pathways 

reside in individual subunits, opposed to a pathway created by the interface of the 

subunits as is common in ionotropic receptors.  This evidence supports the subunits 

essentially can function independently, a conclusion reached also by other labs (Grewer 

et al., 2005; Koch et al., 2007).  This, however, highlights our lack of understanding for 

the purpose of the homotrimer.  
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 In chapter 4, we studied the microscopic rates for block and recovery from block 

for a novel transporter inhibitor, 2-FAA, that has a Ki = 8 nM.  The microscopic off-rate 

for 2-FAA was three times lower when no glutamate was present, which led to the 

conclusion that the quaternary structure of the transporter (the aqueous basin) effectively 

restricts diffusion of the blocker and increases the probability of rebinding of 2-FAA in a 

neighboring subunit.  Extending these results to glutamate, we recently have shown that 

under conditions in which glutamate binding becomes rate limiting, at low concentrations 

(1 µM) or at very negative membrane potentials (-120 mV), the co-expression of 

functional and nonfunctional subunits reveals a deficit in the ability to sustain a glutamate 

inward current (unpublished observations).  Similar to 2-FAA, this demonstrates that the 

bowl created by the homotrimer actually increases the capture efficiency for glutamate 

molecules by restricting the diffusion of the molecules upon unbinding, at physiological 

concentrations of substrate (1 µM).  

 Chapters 3 and 5 focus more on understanding the transport of glutamate and the 

gating of the anion channel within an individual subunit.  For the past two decades, a 

two-gate, alternating access model has been proposed to explain how membrane proteins 

can transport substrates.  In the crystal structure of GltPh, two hairpin loops are apparent, 

one spanning half the distance of the plasma membrane from the extracellular space 

(HP2) and the other spanning half the distance of the membrane from the cytoplasm 

(HP1).  These two loops have been proposed to act as the gates regulating transport, and 

both lie very close to amino acid residues known to be critical for transport (Yernool et 

al., 2004).  Placing a thiol-reactive, fluorescent probes on HP2 resulted in fluorescence 

intensity changes that drastically report on the presence of glutamate binding to the 

transporter, but not TBOA.  The intensity change depends on fluorophores present in 

neighboring subunits demonstrating that the fluorophores form quenched dimer 

complexes at the center of the bowl that break and fluoresce upon L-Glu binding and 

HP2 loop closure.  This data offers some of the first real time measurements of HP2 loop 

closure.  This HP2 loop motion is supported by crosslinking experiments between HP2 

loop to TMD8 in the presence of L-Glu (Qu and Kanner, 2008).    

 The research in this dissertation begins to bridge the gap between our functional 

understandings of these transporters from the past thirty years and how this maps onto a 
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crystal structure at a resolution below 10 Å.  Multiple lines of evidence, including this 

dissertation, have supported GltPh as a good initial model for the EAATs structure (Qu 

and Kanner, 2008; Ryan and Mindell, 2007). Future research will attempt to elucidate the 

small differences in protein structure that confer the small functional differences between 

the EAAT 1-5, and further, it will work to map the 15 state reaction mechanism to unique 

structural conformations of the protein, providing a new understanding of secondary 

active transporters.  
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