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INTRODUCTION

As the title implies, this thesis deals mainly with varieties and
valuations, with some of the results applied to ideal theory. The reader
should have a certain amount of familiarity with the basic concepts of
modern algebra. Definitions of the standard notions not given in the

thesis are presented here. The elements x3, ... X, are algebrajcally,

independent over a subring A of a ring R if and only if each x, k = 1,

2, esey N is transcendental over Algl, X0y eeey zkfi]. If K is an exten-
sion field of a field k and L. is a subset of K, then the elements of L
are said to be algebraically independent over k if each finite subset of
L consists of elements which are algebraically independent over k., Such a

set I is called a transcendence set over k. A transcendence set L in K is

called a transcendence basis of K over k if it is maximal, j.e., if L is

not a proper subset of another transcendence set., The common cardinal of

the various transcendence bases of K over k is called the degree of tran-

scendency of K over ke A field k is said to be algebraically closed if it

possesses no proper algebraic extensions or also if every polynomial
expression with coefficients in k has roots in k., If k is a subfield of a

field K, then K is said to be an algebraic closure of k if (1) K is an

algebraic extension of k and (2) K is an algebraically closed field. An

irreducible polynomial £(X) in k | X | is separable or inseparable accordin
g

as £/ (X) # 0 or £ (X) = 0, where f! (X) denotes the deriative of f£(X). 4&n
arbitrary polynomial £(X) in k[X] is separable if all its irreducible fac-
tors are separable; otherwise f(X) is inseparable. Two elements x and y of

iii
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iv

one and the same extension field kof kare conjugate over k if they are
algebraic over k and have the same minimal polynomial over k., Let K be
a finite algebraic extension of the field k, of degree n, and let x be
any element of K. Let Xn-lralxn"l*,,,-l-an be a monic irreducible poly~
nominal over k satisfied by x. Then the norm of x relative to K over k,

denoted by Ny 5 (x), is (-1)nan., If £(X) =="i’2li (X-x;) then the norm of
x is ;_T:rl x; and if x is separable over k, then X1 9XKpgeseyX, are distinct
and the norm is equal to the product of the conjugates of x.

Chapter I introduces the concept of the variety and derives of its
properties and also gives its relationship to prime ideals. The second
chapter deals with valuations, valuation rings, and places with the main
theorem being the extension theorem of a homomorphism to a place, This
play a fundamental role in the development of algebraic geometry. The
third chapter deals with a theorem of I. N. Herstein concerning three

fields. In the development of this theorem, an existence lemma in valua-

tion theory is used which is proved prior to the theorem,
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CHAPTER I

BASIC CONCEPTS OF ALGEBRAIC GEOMETRY

SECTION I

INTRODUCTORY CONCEPTS OF ALGEBRAIC GEOMETRY

This chapter concerns the solutions (xl, ove xn) common to
certain polynomisl equations: fi(Xl, soey X)) =0 fori=1,2, ce0, Te
In general the coefficients will belong to an arbitrary commutative field
which will be denoted by k. In answer to the question, "In what:domain
do the solutions lie?", the components of the solutions are taken from

the universal domain_n., where s> is an extension field of k such that:

1. The degree of transcendency of-) /k is infinite and
2, 1. is algebraically closed.
The first theorem will show that any finitely generated extension

field of k can be "taken care of" in-n-, Thus

Theorem 1.1 Let k be a field such that k<E and let E = k(a.l, saoy ar),
Then there exists an isomorphismo™~: E-—®/which is the identity map on k.
Proofs Let k., = k(al, oo ar-l) and let ko =k, Then E = kr = kr-l (ar)o
» The proof is by inductione For r = o, the statement is trivial,
Suppose it is true for extensions generated by fewer than r quantities,
= u 2 ° , ] 'y
Then there exists an isgomorphism o1’ kr-—f’ kr_lc-_(;-whn.ch is the

identity on k. There are two cases to consider: (1) a,. is transcendental

over k (2) a, is algebraic over k _, In the first case, select in .0

Tel? r—1

an element b, which is transcendental over k, ;. This can be done because

1
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of the infinite degree of transcendency of /- over k. Now extend to

r=-1
E by mapping a,. onto b, and this extension is an isomorphism leaving k
fixed.

In the second case;, let P be the monic¢ irreducible polynomial over
kr-l having a,as a roote, Let P' be the image of P in k“r-l ’[X]. Choose
br in _N. as a root of P', which can be done since<-is algebraically
closed. Extend the isomorphism ¢34 to an isomorphism of E into <1~ leaving
k fixed by mapping a, onto bro

A zero of an ideal A< k(X35 <esy X,) is an n-tuple (4 15 eoes?ly) €
J‘),_n of elements in an extension field of k such that f(aq1y eeesmpy) = O
vhenever £ = 0 mod (A)., If A is an ideal of k [X] , then the set of zeros

of A is called an algebraic set over ke It is also said that A defines an

algebraic set over ke A—»S will be used to designate that an ideal A
defines an algebraic set S, Immediate consequences of this definition are:
(1) S is the empty set when A = k [ X] ano (2) S =~2" (the n-fold Cartesian
product of-1.), vwhen A = {0} . It may also be the case that different
ideals define the same algebraic set; for instancegy A and A2 always have
the same algebraic set V.

Lemma 1.2 If A and B are ideals then A< B implies that VoW where A «—» V
and B—» W,

Proof: The proof is immediate from the previous discussion.

Theorem 1,3 If A and B are idealsy; and if A—» V and B ~—» W then VvW

and VN'W are algebraic sets such that A + B—= VnW, A B—» VYW, and
AnB —» VU We
Proofs That A +#+ B-— VAW is immediate. For the other part, let AnB —»§,

and AB—+ R, Since AAB<A and A2B<By, S>>V and S>W, by Lemma is 1.2,
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Thus S> V UW., To show that any zero of AB is in V ¥ W, let (x) =
(x75e005%,) be a zero of AB and suppose (x) is not in V., By assump-
tion, (x) is not a zero of A, so there exists an f(X) in A such that
f(x) # 0o Let g(X) be any element of B; then f£(X)g(X) is in AB. Since
x &8, f(x)g(x) = 0, and this implies that f(x) = 05 i.e., (x) is in W,
Finally, note that AB< ANB so that R>S., Since any zero of AB is in

VUWand S> VUW, VWWDR>SSVUW, that is, R = S = VUW,
SECTION II

VARIETIES AND GENERIC POINTS

n
The set A is a proper union of the sets Aj,c.esd, in case A =_,Ly_lAi

but A # A; for any i, In algebraic set V is calledavariety if V is not a
proper union ¢f a finite number of algebraic sets,
Theorem 1,1 Let S be any set-nR, With S, associate a subset A of k [)'{]

defined as: A = {f(x) € k D_{] l f(x) = 0 for all xz&‘} 3 then (1) is

an ideal and (2) If S is an algebraic set defined by an ideal A  ink [ﬂ
then the ideal A ¢f S is the maximal ideal defining S.
Proof: (1) A is certairly an ideal since the set is closed under subtrac-
tion and alsc under mulivipiication by elements of k U(] °

(2) A=A since, for A—»3, if f£A, then f(x) = O for all x£8S,
so that feAs Let A-w»R. Since Aj<A, S=R. But R=>S5S by the definition
of A, Thus R = S, and A is the maximal ideal defining S.

The following discussion is restricted ‘o maximal ideals, and the

association between the algebraic set S and a maximal ideal A is denoted

by S—A. The notation f(V) = O means if xeV the f(x) = O,
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Lemma 1.5 Let V, W be algebraic sets and let A, B be the maximal ideals
defining V and W respectively, Then V=W implies A<= B,
Proof: If f£A, then f(V) = 0 and £(W) = O3 consequently f€ B,

A ring R is said to satisfy the ascending chain conditions if each
sequence of ideals Aj, Ap,... in R such that Alc A2<= esoy has only a
finite number of distinct terms. If a ring satisfies the ascending chain

condition and is commutative then it is called Noetherian, Observe that

since k Dﬂ is Noetherian, every descending chain of algebraic sets "breaks
off® so that every non-empty collection of algebraic sets has a minimal
element.,

Theorem 1, Any non-empty algebraic set is the union of a finite number

of varieties.

Proof: Consider the set £ of all algebraic sets which do not satisfy the
theorem, It will be shown that £ = @, Assume £ is not empty and let V
be a minimal element of & , V % @. By definition V is not a variety.
Thus V = UUW where U, W are algebraic sets and U+ V, U+ ¥V, From the
choice of V it follows that Uﬁ'i9 W§2%. Thus U is a finite union of
varieties and similarly for W. Consequently, V is a finite union of varie-
ties (since V = UUW); hence V& %, which is a contradiction soZ =4’°
Lemma 1,7 Let U be a variety and V be an algebraic set with the represen-
tation V = W/ Woll ooV Wy If the U« V then there exists an integer i
such that UcWs. (If the assumptions that W;¢t W for 14 and that the
W4 are varieties is added, then’'the rspresentation V = WU WoV ...V W, is
unique.)

Proof: U =UNnV = [(__Unwl)u (UnW5)U eoov (vnw@ o Since the class of
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algebraic sets is closed under union and intersection, the represen-
tation yieldss Variety U = union of at least two algebraic sets, The
union cannot be proper, so that there exists an integer i such that
U =1UnW;; thus U< W, -
Suppose V = U, VU,V o000 v U_ where U, is a variety and U, & U g
i 2 s 1 i J
for i+ j. OSince U;<V, from above there exists an integer j such that
Uic Wj and similarly there exists an integer r such that ch U so that
r
Uic_Wj <U_ and by assumption i = r so that Ui = Wj" Thus each Ui occurs
among the Wj's and likewise each W; occurs among the Ui's., This shows

the uniqueness,

Theorem 1,8 If V is a variety, then V—»P, where P is a prime ideal.

Proof: Suppose P is not a prime ideal, Then there exist a;, b in k EX]
= & such that abe P and ag P, bg P, Set A = P + a8, Then A> P properly
since AZ P and A-w U<V and the inclusion is proper, since P is the
maximal ideal defining V., Similarly, set B = P 4 bS: Then B> P properly and
B-»WcV where again the inclusion is proper, Thus UvW<V, Now AB =
(P+a2ac)P + bo) = P2 + aP + bP + abc so AB< P, but AB-»UvV W and thus
Uv W=V, Hence, V = UuW, where U=V and W<V properly, contradicting
the assumption that V is a variety.

The next two results establish the fact that the varieties and
prime ideals are in one~to-one correspondence,

Theroem 1,9 Any prime ideal P determines a variety whichy, in turn, deter-

mines the given ideal P, -
Proof: Suppose that P is a given prime ideal defining an algebraic set V.,

If P = k[ X] =& 4hen the algebraic set is the variety P . Assume P # O,
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Let < denote the natural mz-‘xp of & onts & /P, Sine & /P is an integral
domain, its quotient field K may be formed. Let)é) denote the identity
jsomorphism of & /P into K. Now consider £ |k, the restriction of K
to ke This gives a homomorphism of ky; and is therefore either trivial
or an iscmorphism. Since &3 Py, 1 ¢ P and thus 1 does not map into O
under =< . Hence o( [ k is not trivial but is an isomorphism of k into

& /P. Let ¥ denote the image of k under < | k, so K ¥ k. Finally,
let X = (Xl, coey X) g0 into (x) where (%) =(;cl, coss J-cn) and where

Xi K = x, for each i, Then&/p = k Efcj , so K =k (X). Now by the
properties of the universal domain, there exists an (x)€-~% such that

the map¥'s k(X)—» k(x) is an isomorphism. ¥ is called the realization

in 4. The sequence of maps k[f(j Y id —ﬁv‘ff(ﬁ)-zr k(x) gives a homo-
morphism of ¥ X] onto k(x) whose kernel is P, so (x) £ V,

Now consider the set consisting of the one point (x)., From above
(x) »P. Let V-—» A, Since (x) £V, P> Ay but A is the maximal ideal
which can define V, so that A > P, whence A = P,

It is shown next that the algebraic set V is a wvariety., Suppose
V =1Uvuv W where U, W are algebraic sets such that A — U and B—» W,
Then AB—» Uv W = V 30 AB€ P since P is the maximal ideal defining V,
Now if A4 P, them there exists an a eA such that a¢ P, but ab€P for any
b & B, implying B+ F. Thus either AP or B€P, Hence either U=V or W> V,
Therefore either U = Vor W = Vy, so V is a variety.

This discussion and theorem 1.8 establish:

Theorem 1,10 The varieties of 17 are in one to one correspondence with

the prime idealsof k [xJ .
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Let V be a non-empty variety determined by the prime ideal P,

Let (x) & V. (x) is called a generic point of V if the ideal determined

by the set consisting of just (x) is P, that is, (x)—» P—>V,

Some of the properties of the generic point are g (1) If (x) is
a generic point of the variety V, then V is the smallest algebraic set
containing (x)e This is the case since if (x) is in a algebraic set W and
A-—» VW, then (x) is a zero of the ideal A, This implies that A < P and
W2 V,(2) Any point is a generiz point of some variety. This is the case
since if (x) is any point in «Y and P is the ideal defined by the set
consisting of one point, then P# & since 1 does not vanish for (x).
Furthermore, P is a prime ideals for suppose f(X) g (X)£ P. Then £{x)

g (x).= 0 so g(x) € P Thus P is a prime ideal not equal to &, but P
defines a variety, and (x) is & point of this variety. (x) satisfies the
conditions of the definition so it is a generic point of the variety V.

Some examples to illustrate these concepts follow. Let k = Q, the
field of rational numbers, and let > be the complex numbers., The
varieties in _/Jf will be determined for which the following points are
generic pointss {0,0), ( ¥2,1), (e,e), (e,e Vﬁ_)

(1) (0,0)s The prime ideal P consists of those polynomials of &
with constant term zero, and (o,0) is the generic point of the variety
consisting of the single point (0,0). If any point (r‘l,rz) of Q2 had
been considered, then the variety of this point is just the set {(rl,rz)} °

{2) (V2,1). The prime ideal P = (xlznz) &+ (x5=1) O, so with
the generic point ( ¥/ 2,1) is associated the variety ﬂﬁ,l), (-/E‘,l)}; .

Here (-V2,1) is also generic point of the variety,
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(3) (ese). Consider here those f(xy,%5)E & for which f(e,e) =0
The prime ideal is the principal ideal generated by Xq=Xo and the variety
of which (e,e) is a generic point is ggxl,xz) Ixiﬂxa:}o

(L) (e e y§30 The elaments e and e yE‘being independent transcen-
dental elements (as is assumed hers), the corresponding prime ideal P is
{6}, It has been shown that £03 defines the variety—rx-z. Here then
(eseyga is a generic point of‘flg, and thusaﬂg is the minimal algebraic
set containing (egepﬁso

These examples also illustrate what is meant by dimension., Let V
be a variety and let (x) be & generic point, Then the dimension of V is:
dim V = Xgﬁx)sgi!ﬁ? (degree of transcendency of k(x) over k)s dim (x) is
also written for dim V., In the above examples, the dimensions are 0,0,1,
and 2, respectively,

Next a relation of the other points of a wvariety to a generic point
is given. Let V be & variety and (x) a point of V., Consider the mapnqak[g}ﬂb
k(x) wherespis identity on k and takes X in%o x, By theorem 1.9,m is a
homomorphism with kernel P, Let (2)£ < and consider the map of:

k [X]—wk [X] ;, 1c€0y, ack = a for all a in k and Xl = 2. If this mapeC
is well-defined than it surely is s homomorphism. It must be the case if
g(x) = £(z) then £(z) = g{z), or it will suffice to have f(x) = O implying
f(z) = 0 If £(x) = O this means that £(X) € P, so that K is well-defined
if an only if P [z] = O, The map \is then well-defined and is a homo=
morphism for all (y) & V. Thus (x) is a generic point of the set of points
of the variety for whizh the map < is well-defined and a homomorphism.

This relation is called a sperialization. (y) is a specialization of (x),
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written (x)—p(y) in case the map o is well=defined and a homomorphism,
Note also that (x)—w(y) if and only if f(x) = O implies that f(y) = O

Theorem 1.11 The relation (x)—»(y) is transitive; i.e., (x)—=(y) and

(y)—»(z) implies (x)—»(2).
Proof: Let f(x) be a polynomial such that x is a root. Since (x)—=(y)
y is also a root., Similarly, z is a root, and so (x)~¥ (z).

Two points will be called eguivalent if they are generic points of

the same variety and each is a specialization of the other.

Theorem 1,12 dim V is independent ¢f the choice of the generic point.

Proof: For any two generic points (x) and (y) of V, (x)—%(y) and (y)—w»(x).
Consequently, k¥ [x] ® k [y] and k(x) T k(y). If the degree of itranscendency
is then computed with (x) and with (y), the same result is obtained,

One also speaks of a subvariety W of the variety V. This means W

is a variety itzelf and is & subset ¢f Vo The following connections
between a variety and a subvariebty hold,

Theorem 1,13 Any point of the variety V can be considered as a generis

point of a subvariety.

Proof: Let (x) define V and let (y) £ Vo The (y) defines W, a subvariety,
For (x)-»(y), and the spesializations (y)-— (2z) define the points (z) of Ws
from theorem 1l.11, these are points of V,

Theorem 1.1k Let V,W be varieties such that W< V. Then dim W= dim V,

and if dim W = dim V, then W = V,
Proof: Let (x) = (Xy;%sy oeoy Xp) be a generic point of V and let (y) =
(¥15F25 oees ¥n) be a generic point of We Then the map P k[x|-—» kz}]

defined as a®P = a for ali afk and x @ = Y is well-defined., Suppocse
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dim W = r. There is no loss in generality in assuming that yq,¥05000,¥p
are algebraically independent elements over k. Then Xj,;X2;.00Xp are
algebraically independent. For if this is not the case; some polynomial
f(xl,...,xn) = (, where f has some none-zero coefficients in k., Since &
is well-defined, f£(¥yy,¥050005¥y) = Oy which is a contradictions thus
dim V € r, Assume now that dim V = ro It is desired to show that ¥ is
an isomorphisme Let zgk [x) and z # O. Assume that z is in the kernel
of . 1z is algebraically dependent on Xj,Xps...s%, since dim V = r,
Thus as(xl...xr)zs +o00t ao(xlo.oxr) = 0 where each a; (%) ;X55000X,)
is a polynomial with coefficients in k, and not all the a; are zero. If it
is assumed that s is the minimal degree for all such equations satisfied
by z, than ao(xl,xzenxr) # 0s If P is applied to the abowve equation
ao(yl,yz,e.oyr) = 0, since 2z is in the kernel of ¥ , which contradicts the
agsumption that ¥,¥ps0e¢¥y are algebraically independent. Hence the
kernel in O, so both (x) and (y) are generic points of Vi thus W = V,
Consider now the followings

(1) dim V = ma:)c. dim (x), where for any (x) €V, dim (x) = [k(x)sk]tp.
(x)eV

(2) Since O % dim V £ n, consider the following three cases:

(a) dim V = n, Let (x) be a generic point of V. Then

X]9XppeeosX, Must be algebraizally independent, Therefore any (y) & L
is a specialization of (x) since no polynomial relation can hold in k [:i:]
and in this case V = ., Thus " has dimension n and any proper sube
variety will have dimension less than n.

(b) dim V = 0, Here (x) is algebraic, i. e., each x; is alge=

braic over ko Let (y) be a specialization of (x). As previously, then, (y)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

is a generic point of a subvariety, say W, where Wa V, Then O = dim

V & dim, W, so dim W = 0 and, by theorem 1,14, V = W, Hence (y) and (x)
are equivalent and every specialization is also, If (x)-—=»(y), then

k [x] Tk Eﬂ . However in this case k(x) = k(y) because:

1. Let each x; be algebraic over k., Suppose n; is the
degree of x; over k. k [}g__] is spanned by the totality of products of
powers of XysXpseensX, s where the power of x, is at most ni—l.. Thus k EC:I
is a finite dimensional vector space over k.

2, k Dﬂ is an integral domain since k is an integral domain,

3¢ A finite dimensional vector space over a field which is
an integral domain is a field, For suppose R is a finite dimensional wector
space over a field and R is an integral domain and a # 0, a€R, and consider
the map x-sax for all xR, This is an isomorphism of R into R which pre-
serves dimension, so is onto. Thus the equation ax = b, where a, beR
always has a unigue solution x in R.

Combining 1,2, and 3 k [x] = k (x) and the specializations of (x)
are those (y)€ <+  such that k(x) = k(y)s When dim V = O, V has as many
points as there are isomorphisms of k(x) over k. If all x; are separable,
then the number of points equals the degree of k(x) over k.

(3) dim V = n=1, First of all, the varieties of dimension n-l1 are

in one to one correspondence with certain prime ideals, Thus V&4 P where
P ¢ 70} since V #7". Let fEP. Since &=k {x] is a unique factoriza-
tion demain, f fastors uniquely into a product of irreducible polynomials
except for arrangement and units. If fEP then there exists.an irreducible,

non=constant polynomial Q&P, since P is prime, Sine@ is a unique
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factorization domain, Q& = P, is a prime ideal. Let P —» V. Since
PocPs V5V, so that dim V_ Tn-l. P, # {0} so v, #+ 1" and din
V, = n~l and therefore dim V, = n-l, V =V, and P = Q¢ . Thus any (n=1) =
dimensional variety is defined by the zeros of a prime ideal generated
by a non=constant, irreducible polynomial,

If Q is a non-constant irreducible polynomial, then P = Q & is a
prime ideal, Let V be the variety determined by Po Since V EN 4 s
dim VS n-1, If one point of V is exhibited with dimension n-1 then dim
V = n=l, Since Q is non-constant, it must depend on at least one variable,
82y Xpeo Choose X)y%X55ee03%X, 7 in the universal domain, algebraically
independent, and solve in -/} the equation Q (X} ,X2j006¢5Xn=]sXn) = O. Call
this solution x . Thus (x) = (XyXs50005%,) is a zero of Q, by construc-
tion, hence a zero of P, so that (x)€V and dim (x) = n-1 by construction.
Thus the variety determined by a prime ideal generated by an irreducible
polynomial is of dimension n~l. The prime ideal is unique and if i‘l <rand
f2 & ( fl’fz irreducible) are representations for this prime ideal, then
fl and f 5 differ by a constant factor,

As a matter of terminology one-dimensional varieties are called

curves, two-dimensional varieties are called gurfaces, and (n-1)-dimension-

al varieties are called hypersurfaces.
SECTION III

PRODUCTS OF ALGEBRAIC SETS

First the product of two algebraic sets is defined. Let V& —~2Pand

We N be algetraic sets. The sabset V x W of -N*™®  obtained by taking
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all points (x,y) where (x) & V and (y) &€ W is called the product of the
algebraic sets V and W, This is the usual Cartesian product,

Theorem 1,15 V x W is an algebraic set.

Proof: Suppose A—& V where A is an ideal of k [x] and suppose B—» W
where B is an ideal of k (I] « Seto = k[X,Y] and let D = A8+ Bo-, It
will be shown that the ideal D of & determines V x W. Let (x,y) be a

zero of A; then (x,y) must be a zero of AS. Thus (x) must be a zero of

A since A ¢ does not depend on Y, Similarly, (y) is a zero of B, so that
any zero of D is of the form (x,y) where (x) £ V and (y) & W. Hence the
zeros of D belong to V x We On the other hand, if (x,y)& V x W then (x,y)
is a zero of D, Thus V x W is an algebraic set defined by D.

The following example shows that if V and W are varieties then V x W
need not be a variety. Let k = Q, the rational numbers and let 4X = ¢, the
complex numbers, Consider the variety V = {( V2), (af'ﬁ(."l}, Then V x V =
i(ﬁ,m, (-V2,12), (-ﬁg-@}o This can be written as the union of two
varietiess Vx V = Z(lf&";fZ—), (-ﬁ,-l}é—)}; Uf(ﬁ,-l’?), (=Vé—,lé-§§o

The dimension of an algebraic set is defined as the maximal dimension

of its component varieties; equivalently, the dimension of the algebraic set

V is max. dim (x).. From this we conclude that the dimension of a proper
(x)£V
algebraic subset of the zlgebrais set V is not necessarily less than that

of V.

Theorem 1,16 dim (VW) = dim V + dim W,

Proofs Since dim (VW)= max, dim(x,y), dim(VxW) € dim V + dim W,
(x}e Vv
(y)eW

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1k

Conversely, choose a point (x)£ V with dim (x) = dim V, and a point
(y) eW with dim (y) = dim W, such that the transcendence base of k(y)
is algebraically independent of that of k(x)e. This can be done because
of the properties of the universal domain, For these (x) and (y),

dim (x,y) = dim V 4 dim W, so dim (V x W) & dim V + dim W, Thus dim
(VxW) =dim V +# dim W,

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER II

VALUATION RINGS, PLACES, AND VALUATION

SECTION I

INTRODUCTION

After laying the groundwork in Chapter I, the concepts of wvalua-
tion rings, places, and valuations are now introduced. This builds up
to the main theorem of this chapter, the extension theorem for places.

A subring & of a field K is called a valuation ring if for any

atk, a*O'ianlies that a~l £ &, An immediate consequence is 1O, so
a valuation ring is a ring with identity.
Consider first the set P of non-units of a valuation ring &, i.e.,
P = {a[aie— R a"lg &}, Thus a£K and a P implies a~! £&, Some of
the properties of the set P ares
1, If a+b¢P then either a¢ P or bgP, This is certainly
true if either a or b is 0 so one may assume that a # O, b ¥ 0, Assume
a/h €6 (if %Fﬁthen ‘5 £ & and the argument is analogous). Since asb &P
and because ¢ § P implies c™lge >, (a+b)-lE8&, Hence b1l = G.-l-% )(a+b) ~1£9;
that is, b§¢P.
2 If a, b& cand ab ¥ P then neither a nor b belongs to P.
For ab ¢ P implies (ab)“’l & &, and it follows that a=l = (ab)-l b £ &,
Thus a £ P and likewise b £ P,
The contrapositives of these two results show that P is an ideal,

The following theorem shows that it is a maximal ideal.
15
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Theorem 2,1 The non-units of a valuation ring O form a maximal ideal of P.

Furthermore, ©/P is a field and P is a prime ideal.

Proof: The above remarks show that P is an ideal. Also any proper ideal

in @ consists entirely of non-units, hence is contained in P; thus P is a
maximal ideal, It follows at once that ©/P is a field and P is a prime

ideal,
If U denotes the set of units of & then clearly U is a multiplica=-

tive group. Consider then the decomposition of K as the disjoint union:
K = Pvygup(~l) , where P(~1) denotes the set of elements inverse to the

non-zero elements of P, Since PUU = &, it must be shown that p(-1) con-

sists of the complement of ¢¥in K, This is the case, for if a§ & then
a=l& Obut since a=1 £ U, a~1 £ P so that a€P(-1), Now if a £P(~1) then
a-l £P and a €. Thus K = POUVP(-1), which shows that P determines the
valuation ring &, Since K may be written as this disjoint union, if0i and
&’2 are two valuations rings of K with groups of units Ul and U2, and ideals
of non- units Py and P,, thenO’lc&z if and only if P1:>P2, which is the
case and only if U< Uzo
Let K and F be two arbitrary fields. Then a map@ : K—-»F v {0} is
called a place ifg
1, & -1(F) = C07is a ring
2. & |® is a non-trivial homomorphism, and
3. if® (a) =@ (a§ S ) then @ (a-1) = 0,
where o0 1f a symbol adjoined to F,
Consider the following example of a place. Let F(x) be the field of

rational functions in one variable over a field F, That is, each element of

F(x) is a polynomial fraction in reduced form. If a £ F is substituted for x,
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a map of F(x) into FV §=0%3 1is obtained, If, after the substitution,
the denominator is zero, this element is mapped into ¢z, Since the
elements of F(x) are in reduced form, the form-8- does not occur. This
map is well defined. It also satisfies the definition of a place since
if f, g & F(x) have denominators not divisible by x-a then the same is
true for their sum and product so that condition 1. is satisfied, On €
the map isa homomorphism, which is non-trivial since 1 does not go into O,.
so condition 2 is satisfied, Condition 3 is certainly satisfied.

Consider now the wvaluation ring CP “1(F) associated with a place& .
Consider the non-units P of the valuation ring @ -1(F), Since K =
PUUUP(”l), P consists of O and the inverses of elements not in &, Thus
Q (P) = {0} so that P is in the kernel of Q. Suppose @ (&) = 0. If
a"l &£ & then @ (aa™l) =Q(1) =®(a) @ (2-1) = 0 so that@® (1) = O which
implies that € (&) = 04 which contradicts condition 2 of the definition.
Hence, a"'li & so Q (a=1) =02 or a=i & P(-1) and ae P, Thus P is tre
kernel of d% on & and @ (1) =1 from condition 2. Thus with a place is
associated a valuation ring.

One can also start with a valuation ring ¢~ and associate with it a

place ®,Let Pbe the ideal of non-units of &~ and define @ (a) =ja> if a g &,
at+P if a €&

That is, if a £ & we take the natural map so that F =©/P. The claim is
that this map & is a place. By definition§-1(F) = o~ , the given valua-
tion ring, so that the first condition is satisfied, @/ & is a homomorphism
and is non-trivial since 1 £ P, For condition 3, if a¢ & then al g P
since K = PV UV P("l)o Thus a given place determines a valuation ring,

which in turn determines the given place @ , up to iscmorphism of the field F.
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Two places are said to be equivalent if they have the same valuation

ring.

Before the introduction of the concept of a valuation, the defini-
tion of an ordered group is considered, A sub-semi-group S is called
invariant if a=lSa = S for every a in a group Ge Let G be a multipli-
cative group. G is said to be ordered if it contains an invariant sube
semi=-group S such that G = S v ilt'; U SC']), where the union is disjoint.

For a and b in an ordered group G, one defines a<b to mean that ab-l £ 3,
Thus a<1l if and only if a £ S. Some of the properties of this relation-
ship are:

l, a<b if and only if b~la €S, This is the case since
b—la = b=l(ab~1)b so that if ab~1 £S5, then bv~las£S because of the invariance
of S; ab~l = b(b-la)b=1 gives the implication the other way.

2, From the decomposition of G, either (a) ab"lg_ S, (b)ab=l
Efl} , or (e) ab=leg(L). That is; (a) a<b, (b) a = b, or (c) be.a and
the trichotomy law holds.

3¢ This relation is transitive; i.e., a<b and bec implies a«c,
If ab=le S and be~l £35S, by the semi-group property of S, (ab=1)(be=1) =
ac"’lES, and a<c,

Lo a<b implies acebc. Here ab™l £S so acc™lb™l £S5 and ac«<be..
Similarly ca<cb if a<b.

5. a<b implies b=l<a=l, If a<b, applying property L twice
gives a~lab=l <a—=lbb=l and b-l < a-l

6o a=<b and c<d implies ac<bd, Since a«<b, ac<bc by property

L, Similarly bc<bd and ac<bd by property 3.
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There may or may not be an addition operation already defined in G.
However, one may always define an operation + for an ordered group as a+b =

max. (a,b). This definition gives a distributive laws (a+b)c = acebc,

If a<€b, then ac< be and actbc = max (ac,be) = bec while (a+b)c = Eaxo (a,bj
« ¢ = bce If an element O is adjoined to G with the convention that 240 = O
and O«a for all a€& G, then a+0 = a = O+a,
One can now define a valuation and relate it to valuation rings and
places, A valuation of a field K is a map [+ K—» Go fo} where G is an
ordered group and{-f satisfiess
1. |at = 0 if and only if a = O,
2, |ab| = [4] .Ivl,
3. [asb|<g|a|+|v]

where |.] (2) is written [a|.

If addition in G is the maximum previously defined, then a wvaluation
ring may be constructed from a valuation. Let 8 = {:'ztlaF.K,, lal E.-l} then &
is a ring since iflal= 1 and [b{sl then Jabl = Ja} Jbl<1 and [a+b[< max.
(lal, b} )21, O'is a valuation ring since if a§ ¢, then |af/>1so that
'a"‘ll = Ia)"lél and a~% € & o The non=units Pof © are those a < O such
that a=} £ & so that P = {al lale. 1} and the group of units is U =
i al la] = 13 °

Next a valuation is obtained from a given valuation ring & in a
field K, with maximal ideal P and group of units U, First, define for
atK: Jal = alUl. ®H" maps K onto kK* /U v §0} where K¥ is the multipli-
cative group K - {0, If G = K*/U then G is an ordered group. In order
to verify this, a sub-semi-group with the required properties must be

exhibited. Define S asgz aU€S if and only if all aU<P, i.e., if a &P,
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Now S ig a semi-group and is invariant since K is a field., Since
K* = (P-fo3) vUu(P-£0})(-1) (disjoint), G = K¥/U = 5 ¥ Zi} v s(-1)
(disjoint), so that G is an ordered group.
The map .| is a valuation. It certainly satisfies the first
two conditions. The third condition, la+b]| = lal + {b\, is equiva-
lent to |a] < 1 implying Jl+a] = 1+/a/ . For if|%|f 1 and this latter
condition holds then |1+%|f- 1+ |%| and |a+b’ = ‘a] + lb l 3 the
implication the other way is obvious, If addition in G is the maximum
addition, [af = 1 implies [1+a|/=< 1. Suppose al = [a[=. 1; then a £ o
In consequence 1+a€ & so |l+aj=< 1. Hence [af = aU is a valuation and
its associated ring is the given one & . Thus there is a one-to-one
correspondence between valuations and valuation rings; previously a one-
to-one correspondence between places and valuation rings was shown.
Consider next an example that illustrates the preceding discussion.
Let K = C(z) be the field of rational functions of a single complex vari-
able. A place is obtained by substituting a complex number z, for z, The
valuation ring of this place is O = ((%E%% g(z0)# 0; £, geC(z)} o The
maximal ideal of non-units is P = 'g'{_z‘} |g(zo)4 0, f(z5)# O,}
and the group of units U = {gg':‘} I g(z,)+ 0, £z, )t O} « The valuation
associated with this valuation ring is | £(2z) | = £(2) U where f£(z) £ C(z).
Hence, l £(z) | = (z=2,)2 U for some integer n., Here n is called the order
of the zero of f(2z) at z, where a negative n corresponds to a pole of
order -n, and where n = O means that f(z) has no zero or pole at zy. The
ordered group G is simply a cyclic group generated by (z-zo) U and is iso-

morphic to Z, the additive group of integers. Also |f(z)| <1 if and
only if (2-2z,)P &P which is the case if and only if n>0; thus G has the
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reverse ordering of Z. Thus this place indicates whether a rational
function approaches O oroeat zgy, while the valuation gives the order
with which the function goes to O or e,

The position has now been reached to attack the fundamental
extension theorem,

Theorem 2.2 Let K be any field and © a subring of K. Let F be an alge-

braically closed field; suppose ® 3 ©—w F is a non-trivial homomorphism,
Then there exists a place ® ¥ of K such that @ *}6’ = ® . (® ¥ is not
necessarily unique).

Proof: Two types of extensions will be considered. Let S consist of those

elements s € & such that® (s) # 0. S forms a semi-group and S # 47 since
® is non-trivial, Sinceo is a commutative ring and S a sub-semi-group
: a
which contains no divisors of zeroy; the quotient ringB” = {EI ato®, s & S}
Id
is well defined, € is a ring with identity.
7 Vi /(E) @ (a)
Extend ® on © to®& on & by defining & \(s/ = /6 (s). @ is

21 a2
well defined, If 5~ = 5o then a;s, = a,s; and, since & is a homo-

morphism, @ (a1) @ (s,) =& (a,) ].(s;). ® (s)) # 0, &(s,) # O. since -
s dividine. €(31) = R(22) ‘. . . & 4

51,82& S s0, g, S E SRt and ® is well defined, A’ is a

homomorphism because & is. Now § J o> =@ since each a & & can be written

as g2 - @86 -
as & and 5 ® (s) ® (2), Therefore ® is an extension

of § and maps &’ into F,

This may yield no extension at all if & is a subfield of K. Further-
more it is not an extension to K if K has a proper subfield containing & .
Thus it is necessary to show that if & is a subfield and{ € K, then &

may be extended either to @EEJ or tod& g:.lj o This is the second type
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of extension, If & 'is a field and ® (&) = Fo<F then Fo is a field since
® is non-trivial. Let m denote the image of ae& & under € . Extend

® +to G’[ﬂ s lee., apply ® to the coefficients of each polynomial of & [_X]
The image of P(X)EGE(] will be denoted by P (X)s The image of &[X] is
Fq I}E] . Consider extending & to <¥: 59’[;2.'___7-——*}? by defining A¥(P(xt)) =
P (#) where A is any element of F, If9¥ is well-defined it is a homo-
morphism, and is an extension of & ., C.onsider the question: Does P(A) = 0O
imply that P (4) = 07 Let A be the set of all P(X) with P(4) = 0, It

is the kernel of the substitution may:&fﬂ'—" o[ . A is an ideal of
S’DQ so the question becomes: Is the image K in F, [X] of such a nature
that X =/Z is a zero of it? Since & is an ideal of Fg {_'x] , A =Q (X) »
Fq [}i] since Fo CX] is a principal ideal domain. ,ﬂ must be gelected as a
zero of Q (X) and, since F is algebraically closed, such a ,«9 may be chosen,
provided Q(X) is not a non-zero constant. In this case an extension to

& [fJis obtained. Consider next the possibility that Q(X) is a non-zero
constant, Assume Q(X) = 1. There is a Q (X) = 1+p +p1Xh .« +p X" where
R (pi) =0 for i = 1,2,.00,r and where 1l4po+poXL+praT = 0, If A
satisfies such an equation then the above constﬁc'bion does not work. It
cannot,however, fail with both << and ALl = ¥as will be shown. Conse-
quently, if the extension cannot be made to6-(=X), it can be made to & (¥).
To show this, suppose to the contrary that <<, & satisfy equations
Lepy+pel +Pp KT+, i+ Drol=0 § 145+ ]'_Y +o.5+pl ¥S = O vhere pi = 'ﬁj' = Q for
i=0,l,000sr and j = 0,1,000,8 and where r and s may be assumed to be

minimal. Assume that s=r., Since & =x=-1

! )
(1) ¢ 5 = _ ’1 51 .ee _Ps  or
l+po 1+po
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(2) XS = DY+ Pk +eoot Dgly o& 571
where pj £ & since T = p;i’ = 1 # 0 and where p;’ = O for i=1,2,,0.,5-1
Since s < r, KT =°CS(<7(I"‘S) and using (2), the degree of l+py+p] K+...+
procr = O may be lowered., Thus l+p,+p; +oeee+pPp (d( r-S )48 = 0 or
14P*+Pp K +o 0 o #Pp LTS (pé' *oeo0¥Pg 1K s=1) = 0 where the highest power of
this is r-3,contradicting the minimality of re Thus f may be extended to
one of & E:(j, & Q—ﬂ in any case.
Now consider the set E of all extensions of ¢ to larger rings. If
9 4 1s7¥o are two such extensions define /f/27 rf/l in case ql’z is an extension
ofrfl. This gives rise to a partial ordering., Thus if every totally
ordered subset of E has an upper bound in E, Zorn's Lemma is applicable to
E. Let {7<}be a totally ordered subset of E, where the rings Re< on
which the ’)0._—.-4 are defined are totally ordered by inclusion., Consider the
union of these rings and the map ~¢ defined on this union as: if § is
in the union, then & is in some set A= of the union andqbwould act on
J  as the original <Yk for that set did. The definition is consistent
since all’y]” > Y. care extensions of ¥ =<, and P is a homomorphism.
Since if 7,4 o are in the union then fl’ 52 are in some one set
R .8 of the union because the rings are totally ordered by inclusion and
is also a homomorphism on Rﬁ o ‘7/ is an extension of any?l’cc. and is thus
an upper bound. By Zorn's Lemma, E has a maximal element., Let % be
such an element where ¢ : O—wF, Since P~ cannot be extended any further
we haves
(3) O is its own quotient ring by elements with non-zero

images, i,€., if a & O and '}‘(a) 4+ 0 then a™t £ 0,
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(L) 1Ir aﬁo then we cannot extend 7% to 0 {3l , since % is
maximal; but this implies that we can extend % to O [;;i' o Hence
a=l £ 0 since +/ is maximal; so if a ef. O then a1 e 0O, which means
0 is a valuation ring,

To complete the proof of the fundamental extension theorem, it
is shown that the place<?'* belonging to this valuation ring is 9% up
to isomorphism, This is the case from (3) since #(a) # O if and only
if a=1 € 0 so ﬁhe‘kernel P of ¥ is the set of non-units of 0. Extend
’)4 to K by mapping a into ¢oif a & 0 and then 7/ = @%* yp to iso-
morphism.

Lemma 2,3 If a non-~zero polynomial in several variables is given with
coefficients in an infinite field then elements can be chosen from this
field such that the polynomial remains non-zero upon substitution of
these elements,

Proof: The proof is by induction on the number of variables. The choice
is trivial for no variables., Assume that (n-l1) variables can be chosen,
Consider then a non-zero polynomial of n variables. Write it in terms
of the n'th variable with coefficients which are polynomials in the other
(n-1) variables, Not all the coefficients are zero since if they were
the given polynomial would be zero., By assumption, n-l1 values can be
chosen in this field so that after substitution at least one of these
coefficients is not zero. With this substitution a non-=zero polynomial
in one wvariable is obtained, This polynomial has at most as many roots
in the field as its degree, A value such that the polynomial remains

non=-zero after substitution may be chosen, since the field is infinite,

By induction, the choice of n values is possible,
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The next theorem is a consequence of theorem. 2,2.

Theorem 2,4 Let (x)&~>T and £(X) £ k [X] and suppose f(x) $ O. Then

there exists an algebraic specialization (x) -+ (x,) (i.e., all compo-
nents of (x,) are algebraic) such that f(xg) % O.

Proof: If (x) = (X),%Xpsee0s%,) is algebraic, set (xo) = (x) and the
statement holds. OSuppose then that Xj,%X5,.00,%, are algebraically inde-
pendent over k while X’I’+19°i°9xn are algebraic over k(Xy,...,x.). Let

o~ be one of the x;'s or f(x); thenof is algebraic over k(xj,cee;Xp)o

For each<h there is an equation of the form

(1) agseq (Eseeesx Ik 4uoot 8, o (Xy,000,%,) = O
with coefficients in k E,xz,ooo,xg o Choose xf,' ,,o,er from the alge-
braic closure of k in «2-in such a way that ag5,L (%1% .00,x,°) # O for all
=X considered, This is possible by lemma 2.3. Now let ¥ be the map ¥
A»k E,o..,g—_—-r.fl. defined by mapping x; to xi° for i = 1,2,500;T
Since X1 3XpsooepX,, aYre algebraically independent, ¢is a homomorphism and
is well-defined, Extend this homomorphism to a place @ : k(%) 5000x,)—>
—— U {w} o ® is the identity on k and ¢ (x;)= x° for 1 = 1,25000,r,
and if ® (x;) = x° for i = r+l;.e0, n then @ (%) ==1xi° for i=1,2500. 50
Now @@() $ (® for any + since if ‘{’(ﬁ)=09 then f(i) = 0, From (1),
‘ 8y = (xi,”o,,xr) * 8y, ot (X geeesxy) u—g'+ao.+ascc. (xl,“,,,xr)

(':__ = 0 and, applying @ , &g,cK ()fj_ogt’oo’x'-_tg) = 0, a contradiction to the
choice of Xlo"'" 9x:? o Therefore @ (R) & -~ for all <k and applying @ to
(1) it is seen that P ) is algebraic over k(xl%“o,,xr") and so @ &) is
algebraic over k. Thus (xo) = (xlgooosxrf’) is algebraic and (x) ¥ (xg)
is a specialization, since ® is a homomorphism on @ ~l(A). Finally,

@ (£(x)) = f(x,) is finite and not zero since @ (K) # @ for any X .
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Theorem 2.5 Let V be an algebraic set of -N-  end Vo the subset of
algebraic points of V. Let f € k [X] be such that f(vy) = 0.

The £(V) = 0.

Proof: Suppose (x) g V snd f(x) £ O, then from theorem 2.4 there exists
an algebraic specialization {(x)-# (x0) €V such that f(xo) = O which

is a contradiction.

SECTION IT

HILBERT'S NULLSTELLENSATZ

Let © be any ring, not necessarily with identity, and let S be a
multiplicative semi-group contained in & ., Suppose A is an ideal of O
such that AN S = ¢, It will be shown that there exists a maximal
ideal that contains A end has this property. Let E be the set of all
ideals which contain A and do not intersect S. E is partially ordered
by inclusion and for any totally ordered subset of E, the union is an
ideal which does not intersect S. Thus, by Zorn's Lemma, E contains a
maximal element, say P. Any ideal properly containing P will intersect
S, P is a prime ideal, since if a,b ¢ P, ab £ P. Suppose abg P, let
(a,P) and (b,P) be the ideals generated by a and P, and b and P respec-
tively. Their intersections with the semi-group S contain elements sj
and S where s, = pitmje+x.8; s, = p2+m2b+x2b for some p, sPo € P where
m,,m, are integers and %,,%,€F ., Then s.;s, = p132+(m18+xla)p2+

(rnla‘i-xla)(m2b-!—x2b)° Thus if ab &P, then s;s,&€P so P meets S, which is

a contradiction.

If © is Noetherian, Zorn's lLemma need not be used for the existence
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of P, and if & has identity the existence of maximal ideals for O is
obtained by taking S = {1} .

Let A be an ideal of & . Suppose bg& & and has the property theat
b? ZA for any positive integer n, Iet S = ﬁ:n, where n is a positive
integerj . S us a multiplicative semi-group. Therefore there exists
a prime ideal P> A such that bP£ P for any positive integer n.
Let A = f\ P where the P's are the prime ideals which contain A, A is an
ideal ancllbidfi since there is aP such that P> A and 'bf{P, Thus an element
beA implies b e A for some positive integer n. Conversely, if b has the
property that some bns_ A and if P is any prime ideal with P= A, then
bneP, so b £P; hence bg_z. As a result of these considerations it is
seen that A = fb| be & |, bl e A for some n}. A is called the radical of
the ideal A.

Now if A = {0} then its radical & consists of the nilpotent

elements of © ; in this case A is called the radical of the ring. It

suffices in the definition of the radical A to consider only the minimal
prime ideals containing A so that:

Theorem 2,6 The radical of an ideal A in the ring & is the intersection

of all minimal prime ideals containing A,

Proof: In view of the preceding discussion, it remains only to show that

there are minimal prime ideals containing A, Iet F be the set of all

prime ideals containing A, This set is partially ordered by reverse

inclusion. Consider any totally ordered subset iP"a of F. I1et P =nP.c
O e

then P, is a prime ideal, for suppose ab &P, and a¢.Poo Then & is not in

some Pt which implies a¥ P8 < Pot, but ab is in every Pg , so bEES for
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all B <P ., Thus bz P, so P, is a prime ideal, thus the totally ordered
set fPa{} has an upper bound. Therefore, by Zorn's Lemma, there exists a
minimal element in the set F, i.e.;, among the prime ideals containing A
there are certain minimal ones, and all others contain one of these.

Theorem 2,7 Let A be an ideal in k (X] end V i 's algebraic set. Then A,

the radical of A, is the ideal determined by V.

Proof: let V—wA' or A/ = f[fe o, £(V) = 0} . Let P be any prime
ideal containing A; then P—#W, a variety, and WeV, But W=V implies
P-4’ so0 that chlzaA'or A5A . If £& A, then f® ¢ A for some n, so that
£7(V) = 0; but then £(V) = O which implies f £4°, so AcA. Hence b = A/,

Theorem 2.8 Hilbert's Nullstellensatz (strong form) Let A be an ideal

of the ringd =k [ﬂ 3 suppose A—¥ YV and V, 1s the subset of algebraic
points of V., If f £0-1is not identically zero and is such that f(V ) = O
then f7 €A for some positive integer n. »
Proof: From theorem 2.4 f£(V,) = O implies £(V) = 0 which in turn implies,
by theorem 2.6, that fEA, the radical of &, or £f2c A for some positive
integer n.

Theorem 2,9 Hilbert's Nullstellensatz (weak form) let A be an ideal of

the ring &= k (X] ; then A without zeros implies A =
Proof: Suppose V = 43 3 then V_ = (15 so that all f & &vanish on V,. Hence,

for all f&€ &, f’ng_A for some n, In particular 1£ A so A = 67
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SECTION III

INTEGRAL CLOSURE

Iet & be a ring with identity and let ¥ be a subring of the
field K. An element ag K is said to be integral over ¢* in case a
satisfies an equation: aeLn‘-i-b1aan“"j‘+.,a.,+blq = 0, where all b; £07 The
totality of elements of K, integral over &, is called the integral
closure of & in K. If & is the ring of integers and K the field of
n=1

complex numbers, then an element a satisfying an equation an+bl +o o o#b =0

is called an algebraic integer.

Theorem 2,10 Let S be the set of ail places of K which are finite on <&~

(A1l places of K whose valuation rings contain&), If aeK is integral
over & , and if @ €S, then P (a) is finite,

Proof: If® (a) = ©then® %): 0. Since a satisfies an+blan"1+“.,+bn =0,
bi € &, dividing by a® yields 1+b1<%) +.00tbp (a;n_): O. Applying d gives

1 =80(1) = 0, a contradistion. Thus any place of K which is finite on <&
is finite on any element of K integral over &7,

Corollary 2.11 If F is a subfield of K, and if K is algebraic over F,

and if@ is a place of K which is an isomorphism on F (i.e., a trivial

place on F since the valuation ring of @ {F is F), then R is an iso-

morphism on K (i.e., a irivial place of K.)

Proof: Consider F as a subring of K., Since K is algebraic over F, all

elemenits of K are integral over F, so(ﬂ is finite on all elements of K.
Consider now the convsrse of theorem 2.9, Here lat 5,5 be the

set of those places@ £ S whose kernel in & is & maximal ideal of .
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Theorem 2,12 Let a£K and suppose & (a) #9° for any ® £ ; then a

is integral over 6"3 (and by theorem 2.9, Q (a) $ o for any Qe S).
Proof: If a =0, then a £ ©and satisfies the equation x = 0. Thus
assume a ¥ O, Consider the ring@’lsé'[% . If % is a unit of @7 then
at & 1 and a = b°+b1(%)+.. °+br( %r') for bs £6-., Multiplying by a’ we have
ar"’l-boar—,..,-br. = 0 so a is integral over O~. % is a unit of OF since
if it were not, then the ideal z & 1 % %1, There is a maximal ideal P
of 9’1 such that % &1 < P. Consider the map (9'1‘?01/1’ Now1/P is a
field and injecting this into its algebraic closure 557?_ gives a homo-
morphism of the ring 69’]: into an algebraically closed field; this homo-
morphism is non-trivial since P # 07, Extend this homomorphism to a
place Q of K. Since@® is finite ond’i, it is finite on &, % £ P, so
that&(%‘) =0 and ® (a) =00, a contradiction already, if the set S is
used in place of S, in the statement of the theorem.

The set So does suffice., The kernel of(?in 9:[ is P, which is a
maximal ideal. The kernel of @ in O~ isO"n P = Q. Q is maximal since
if c£0; ¢ 4Q, then c has an inverse modulo Q, i.e., &7/Q is a field.
If c€8 and c & Q then ¢ £0; and ¢ # P, Since P is a maximal ideal of
(9 1s ¢ has an inverse in 6"1 modulo P or c(bo+ble'_>+”,+br %r’) = 1 mod P.
But %’ = 0 mod P so this reduces to ¢by, =1 mod P, Thus ¢b,~1£P and
cb,-1 £07s0o cbg=1€Q 8nd ¢cby, = 1 modulo Q.

From theorems 2,10 and 2,12 the integral closure of & in K consists
of all those elements of K which are "finite on all places™ of S, There-
fore the integral closure 0, of # in K forms a ring.

The conclusion of this section will show that the terminology

®integral closure™ is justified, i.e., the integral closure of O in K is
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0 itself. 1let s' denote the set of all places of K whic.:h are finite on
0. IfdES , thenq is finite on O and so is finite on & and R €5,
Conversely, if ® €5 then @ is finite on O since O is the integral
closure of © in K, so Qe S’ o Thus S = SI . Hence the integral closure
of O in K is precisely O. The integral closure O of ¢ in K can be
written as O =n & where the intersection is taken over all valuation

rings & of K such that & > (.
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CHAPTER III

THEOREMS CONCERNING MANY VALUATIONS

SECTION I

AN EXISTENCE LEMMA IN VALUATION THEORY

This chapter leads to the proof of a theorem concerning three
fields as given by I. N. Herstein [3‘]."3 Some concepis are first intro-

duced which are necessary in the proof of the theorem.
An exponential valuation on a field K is a map & on K satisfy-

ing:

(1) For every a # 0, @ (a) is a real mmber

(2) @ (0) = @ , wherecr is a symbol adjoined to the image

field

(3) @ (ab) = @ (a) + € (b)

(L) § (24b)Z min. (@ (a), @ (b))e
If a-» [a] is a real valued valuation on K in the former sense, then
€ (a) = - log| a) is anexponential valuation on K. In this chapter,
tyaluation®” will mean “exponential wvaluation.!

With an exponential valuation it is possible to obtain a metric

which is a real valued distance function f(a,b) defined such that

 (a,b)= 0, S (8,b) = O if and only if a=b,.P(a,b)s £(b,a) and finally,

*The symbol [¢] will refer to the n'th entry in the list of refer-
ences.

32
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J(a,e)F& o (a,b) +.2 (byc) where a;byc, are elements of K. Define for
x £ K, a field, fxi’.' =e~®(X) ir x $ 0 and Jx/ = 0 if (and only if)
x = 0, ‘Then Jxy] = e~ 0y) - e-&(x)"‘?(Y) = fetlyl, |x+yl= max,
(Ixl,1y1) since lx+yl = e~§ (x4y) = o-min, @(x), 4 (¥)= pax. (e“@(x)se=@(y9a
Let the'metric A be given by _g& (x,y) = ) x=y ). The properties of a metric
are certainly satisfied and the inequality is stronger than the triangle
axiom, The idea of this metric will be used but the development and
results'win be stated in terms of Q.

A sequence { an§ is a fundamental sequence in the valuation ¢ if

vy -,

for every B= 0 there exists N such that if p,q >N then (? (ap-aq) > B

A field is complete in the valuation @ if and only if every fundamental

sequence has a limit in K, An interesting consequence is the following:

Theorem 3,1 A sequence {anj in a field K with an exponential valuation

® is fundamental if and only if }13 ag?(aml_an) =cn,

2 ce i t 1y when 1im —a ) = a0
Proof: The sequence {anj 8 convergent exactly when Lim .:;s-)? (an-!-k an)
uniformly in k. However, since ® (a,,x-an) 2 min.( P (an+xc=a, +k<1) 5000,

@ (a.n...l-a,n)) s the condition lim ® (ap,j-a,) =2 1is sufficient for conver-
n —= oo

gence.

Theorem 3.2 A field K with an exponential valuation @ may be extended to

a field L with valuation @ * such that @* /K =& and L is complete in the
valuation @ ¥ (L is called the & -completion of K).

Proof: The method of proof is exactl,ly analogous to the Cantor method of
defining real numbers by means of sequences of rationals, A sketch of the

proof is given hereo The steps in the proof are listed,
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1, The set A of all fundamental sequences of a field K with an
exponential valuation @ is a commutative ring with an identity element.

The sum and product of fundamental sequences is first defined in
the obvious way. That is, if < = fa ¥, & = {b,] then define
K + &= {a‘n"bn} and L= X = {cnj where ¢ = a b . Notice that any
sequence 5’ = {dnj s d ®dy = d2 = .0 in K is a fundamental seguence all
of whose elements are equal to do Define &cC = [&an} = d o4 which is
fundamental i‘or any d in K, In particular -« B{'—'anis' 0 = {oj are funda-
mental and so is (-4, Addition and multiplication are commutative and
associative in K and also in A. The distributive law= (g£+23-) =
{%(bn-vc n)} - {anbn-rancé = @ +o{ ¥holds and | = {I] is the identity
element.

2, A fundamental sequence {an:'f is called a null sequence if there

exists for every B>0 a Ny such that (a,) =B for n>Ng. The next step
is then to reduce the sequences in A modulo the null sequences, Le‘ba)fbe
the set of all null sequences of A. It is easy to show that?Zis an ideal
in A and that the difference ring, L = A - 7? » is a field. The elements
of A - 7?are classes of equivalent fundamental sequences. The field K is
isomorphic to the subfield of equivalence classes of constant sequences.
The extension L is ' a field over K and all of its guantities not in K are
equivalence classes, denoted by E(] s where o& is not equivalent to a
constant sequence,

3¢ @ ¥ 15 defined as follows: Let[ocj be an element of L andol =
f an} s a member of the equivalence class Ea. For every B0 there exists

N such that @ (ap—aq) > B forp>N, q >N, If l‘ép} is a fundamental
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sequence and %i_n;aoap # 0, then @ (ap) is ultimately constant as n
increases. This is the case as @& (ap-ap+1) approaches a» as n increases,
but a, does not approach 0, i.e., ® (a.p) does not approach <o . Thus
there exists a quantity M and an integer N such that for p>N9@(%) < M
but @ (ap-a.p+1)> M. @ (ap~agey)= mine § (a5)s @ (2547 )< M, unless
] (ap) = 4 (ap.,.l). Hence for p>N, (ap)=(ap+1). From this M = (ap) is
a constant fundamental sequence and @ *(E:Q) = [r] = ;ijin ca“?(an). This
sequence is positive and consider [df_} ,M and the product Ec /@ o
Q@ *< A) =[{® apF] =y @ R3] =fe a3 +fom k] -
1 *[of] +@*CB:] and similarly the property § (a,+b,) = min. &(a,, §(b,)
smplies that @ *{{=d + [Z)) =min, (d’*[.c], &*Dél) Also @*(0) =
Q (0) = % and § ¥ is well defined. The valuation & ¥ is a valuation
on K to the reals with the symbol co adjoined, If aeK,8§%*(a) = @t([{agjj=
lin @ (a) = 9 (a).

L. L is complete in the vaulation & ¥, Let {¢(P)} ve a funda-
mental sequence in L where c(P) = C°< (P_)] . Each£ (P) = fan(P)} is a
fundamental sequence in K. This implies that for every B=>0 there exists
an N such that @ (an(P)-am(P))_, B for ny m>N, ILet B = op=1l  m = N+1 and
define a(P)=am(P). Replacing @ by § ¥, @*(a,n(P)-a(P)) > 2P=1 for n-N,
Let < (p)= ia/u.(P)} and notice that C(P)-an(P)=£{a/,(P)aa (P)}] = B
for 4« > Ny n>N, and for every n, q?*(c(P)-san(P)) = 11_£ 47( (P)_s (P)),
Fix n>N and each ¢ (9.«( p) an(P)) > B so that cer‘bﬁrﬂy the limi%
@ #(c(P)og_(P)) . B for n»>N. Again take B = 2P1 and have c(P)-a(p) =
C(P)_an(phan(p)-a(p) so that @ *(C(P)-a(P)y= min, &*(c(P)-a_(p)),

& (an(P)_a(p))> 2p"1'for all values of p. For every B=0 there exists
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a p, such that 2P<13 B for p>p,. Henceq®*(c(P)-a(P))>B for p>p,
and the sequence (o = {é?} s Where a(P) is a constant sequence, is a
fundamental sequence equivalent to {b(Pi} « The class [;Qé] is the
general qua.nf.ity of L, where <, is a sequence in K and E;< ;] is in.L,
Thus L is completé in the valuation ® ¥,

If K is a field with valuation & , the elements of the valuation
ring O (the set of x & K such that ¢ (x)= 0) are said to be integral.
A polynomial f(x) in K(x) with integral coefficients is primitive in case
the greatest common divisor of its coefficients (considered as elements
of O or of some other integral domain) is 1.
Lermma 3,3 (Hensel) Let K be complete in the exponential valuation ®,
Let f(x) be a primitive polynomial with integral coefficients in K.
Let g,(x) and h,(x) be two polynomials with integral coefficients in K
which satisfy f(x) = go(x)n,(x) modulo P, where P is the set of all
elements in K with.d?(a):r'o. Then there exist two polynomials g(x),h{x)
with integral coefficients in K for which: f£(x) = g(x)h(x)

£(x) = go(x)(mod P)

h(x) = hg(x)(mod P)

provided g,(x) and h (x) are relatively prime modulo P, It is, moreover,
possible to determine g(x) and h(x) so that the degree of g(x) is equal
to the degree of go(x) modulo- P,

Proof: Sincey without changing hypothesis and conclusion, it is possible
to omit in g, (x) and h_(x) coefficients contained in P, it may be assumed
the go(x) is a polynomial of degree r and that the leading coefficients

of go(x) and ho(x) are units. Assume go(x) = xT+,00 o If b is the leading
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coefficient and s the degree of h,(x), then the leading coefficient of
go(x)ho(x) is b are the degree r+s=n. The factors g(x) and h(x) shall
be constructed so that g(x) is a polynomial of degree r and h(x) a poly-
nomial of degree n-r.
By hypothesis, all the coefficients of the polynomial f(x)-g,(x)hg(x)
have positive values; let the smallest of them bed~->0. Ifdf,=cOthen
f(x)=g,(x)hy(x) so that nothing else need be proved. Since g,(x) and
ho(x) are relatively prime modulo P there exist two polynomials 1(x) and
m(x) with integral coefficients in K for which

1(x)g°(x)+m(x)ho(x)51(mod P)
holds, Let the smallest of the values of the coefficients in the poly-~
nomial 1{x)g,(x)#m(x)h,(x)-1 bed(Tz:-O° let £ be the smaller of &7 and<d
and let 7 be an element for which ® (I7") =€.
Then we have:

(1) £(x) = g, (x)hg(x) (mod (m)

(2) 1(x)g,(x)em(0hx)Hnod (7))
where by () is meant the principal ideal generated by T,
Now construct g(x) as the limit of & sequence of polynomials g,(x) of
degree r, beginning with go(x) and, similarly, construct h(x) as the limit
of a sequence of polynomials hyp(x) of degree less than or equal to n-r
beginning with h,(x). Suppose g,(x) had hy(x) have already been deter-
mined so that:

3) £(x) = g, (x)hy(x) (mod TA+1]

(4) gu(x) = golx) (mod TT)

(5) Bp(x) = ho(x) (mod 7)
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and that g (x) = xT+.,.. has leading coefficient 1, For determining
8n+1(x) and hpe (x) puts
(6) gne1(x) = gu(x) + - M*ly(x)
(7)) bpea(x) = hp(x) + TPl (x)
Thens
B4l (Dhneg ()-£(x) = gn(®h (1) -2+ BT fo ()1 (x) sy () 2]
+ 97 22 y(x)~~ (x)
By (3), put £f(x)=gn(x)h,(x) =71 M1p(x)s thens
Bne1(X)hpe1(x) - £(x) =704 {gn(x)-v-(x)+hn(X)u(X)-p(x)} mod 77 N*2e
For the left side to be divisible by 4l ™2 it suffices that
| (8) g (x)v(x)+b (x)u(x) = p(x) mod 77
be satisfied, Thus multiply (2) by p(x) and
(9) p(x)1(R g (x)+p(x)m(x)h, (x) = p(x) (mod7).
Divide p(x)m(x) by g,(x) so that the remainder u(x) is of degree less
than r and
(10) p(xIm(x) = a(x)g (x)+u(x).
Substituting (10) into (9)
(p(x)l(x)+q(x)hocx)) g, (x)#u(x)h_(x) = p(x) mod 7~
Replace by zero all coefficients of the polynomial in braces which are
divisible by 77 so that
(11) *u-(x)go(x)-m(x)ho(x) = p(x) mod 77,
From (11) follows the desired congruence (8) because of (L) and (5).
Furthermore, u(x) is of degree less than r and because of (6) Bne1(x) is
of the same degree and has the same leading coefficient as gn(X)a It

remains to show that V' (x) is of degree less than or equal to n-r, If
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this were not the case, a highest term of degree greater than n would
occur in the first term of (11) but not in the others. By (11), the
coefficient of this term would have to be divisible by 7T, so that the
leading coefficient of .~ (x) would be divisible by 7. But since all
coefficients in v{x) divisible by 7/ have been omitted, +~(x) is of
degree less than or equal to n-r, and the proof is complete,

A polynomial f(x) of degree n is said to be separable over a
field k if it has n distinct roots in some root field K2 k3 otherwise

it is inseparable. A finite extension K= k is called separable over

a field F if every element in K satisfies a separable polynomial equa-

tion over k. ' An element x in K is purely inseparable over k if some

p® power of x belongs to k for e = 0. K isa purely ingeparable extension

of k if every element of K is purely inseparable over k, If a field k

is algebraic over its prime field then it is called absolutely algebraic,

The set of all elements of K which are algebraic over k is called the

algebraic closure of k in K. By the discriminant of a polynomial is

meant the norm of the formal derivative of the polynomial, Let h(x) be
an irreducible polynomial and suppose r(x)=h(x)™ %{x; where a(x) and b{x)
are relatively prime to h(x). Then set ® (r(x)) =m. If m = 1 then the

valuation ® is said to be of the first degree.

Lemma 3.5 Let K be a field which is either of characteristic O or not
absolutely algebraic, and let L be its separable finite extension. Then
there exist infinitely many valuations in L which are of first degree
over K.

Proof: Let L = K(=<) and let F(x) = xn+an=1x?“l+ooo+ao be the minimal
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polynomial over K with o< as a root. Assume that n> 1 and let d be
the discriminant of F(x). It will be sufficient to get infinitely many
pairs (w,4 ), where we K and @ is a valuation in L, with mutually pair-
wise distinct & 's such that for each pair (w,@):

1) & @ =o

(2) @& (ai) Z 0 for i=1,2,000on=1

(3) @ (X -~w) >0
for with such a pair and with F(x+w) = 3cn+bn_lxn“1+o.o+bo it follows thats

(LY @ (=€) = O because of theorem 2,9 since =X is in the
integral closure and § (w) = O since =w = (<X =W) = & and @ (¢ =w) = O,
® ()= 0;

(5) ® (b)) = Q(F(w)) = @ (F(w)=F(KR)) > O since oL =w is
a factor of F(w) - F( KA ) and & (L =w) >0 by (3)s

(6) @ (b)) = @(F (W) = 0 since n F'(x) is the norm of
F!(x) and the norm of the derivative is zero, and Q (b;) Z O for
i=2,00.0yn=1 because the b;'s are polynomials in the a;'s and w with
integer coefficients hence are in the wvaluation ring. The value ¢f a
constant times the bi's or wis is greater than or equal to the minimum
of their individual values which are all non-negative.

From lemma 3.3; F(x+w) can be factored in the @ -completion of K
into a product of the form G(x)°x with G(x) prime to x and thas & is of
the first degree over K. Either the field K has an element t, transcen-
dental over the prime field P, or is of characteristic 0, If it is the
first, take a transcendence basis (t,u,...) of K over P, denote the

algebraic closure of P(ulsuQ,,“.,) inKby Q and set Z = Q [ﬂ s R =Q (t)e
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In the second case set R = P and denote by Z the ring of rational integers
which is considered as being contained in P In either case let I be the
totality of elements in L integral over Z, Let ¢ # O be an element of Z

such that cL£I. Take an element wy in Z which is of sufficiently

InR(K)
R(eé)/ l /

I - totality of elements in L integral over

\ ®  2<e[
QJM& closure of P(‘ulpugg“o) in K

high degree in t or of sufficiently large absolute value;, according as

=K ()

Z = Q [tf or the ring of rational integers. Then the norm, Np((y/p

(cK-W,) is a non-unit in Z and there exists a prime ideal [* in WMR(X)
containing cL-Wys In fact, cL-w, is an irreducible polynomial and
generates a prime ideal. Let & be an extension to L of the valuation of
R(o) defined by ™. Then Q (c L=wy) >0 and it is desired to obtain an
infinity of wg's such that the corresponding ¢ 's are all distinct. It
will be convenient; and possible, to choose W, so that (cec,w, ) = 1 in
IoR(K). This implies that cK €P and w, # P since ¢« -w, £P. Consider

now getting an infinity of these pairs (w,q ). Suppose w (1) w (2)

o] s "o
have been chosen and with them the corresponding P(l), P(z)gnogP(m)

3
gocros,"'ﬂro(n:l'J

satisfying the above conditions, so that the P(n) are all distinct. Take
Wc)(m*'l)s satisfying the consitions above on W,s from P(Lap(2)n,.. PMaz,

The corresponding prime ideal is different from P(l)sp(Q)woosP(m) since
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wo("“'l) ¢ p<m+1). In this manner an infinite sequence of distinct
prime ideals is obtained and thus also an infinite sequence of distinct
valuations in L. Now { (n)(d) =0, & (")(ai).zo (here ¢4 (")(ai) = 0
wherever a;#0) and @ (")(c) = 0 for almost all n, since an element can
only be in a finite number of the P's. For any of such n's,d (<-w) > O
with w = woc‘l., Therefore an infinity of pairs (w, #) has been obtained
with distinct & 's satisfying (1),(2),and(3).

Lemma 3.6 Let L be a field and K be its proper subfield, Except either
when L is of characteristic p#* 0 and absolutely algebraic or when L is
algebraic and purely inseparable over K there exists a pair of distinct
(exponential) valuations in L which coincide on K.

Proof: There are two cases which arise., The first is when L is a
transcendental extension of K, In this case the same procedure used in
lemma 3.5 establishes the lemma if the roles of L and K are interchanged,
The second case is when L is a séparabie algebraic extension of L. To

establish this, the reader is referred to theorems 3 and 4 of chapter 4

in "The Theory of Valuations® by O, F. G. Schilling ]7] .
SECTION IT

A THEOREM CONCERNING THREE FIELDS

For the next two lemmas and Luroth's theorem consider a field F,
a transcendental x over F, and y & F(x),y = g(X)/h(zn:) where g(x) and h(x)
are relatively prime polynomials in F [X] » ILet m be the maximum of the
degrees of g(x) and h(x) in F Ix] . Of course Fe F(y)e F(x).

Lemma 3.7 With the above assumptions; x is algebraic over F(y) of degrea m
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and g(t)-yh(t)=p(t) is the minimal polynomial for x over F(y).
Proof: p(x) = O follows from the definition of g(x) and h(x)., p(t) is
of degree m, It must be shown that p(t) is irreducible., p(t)e F Et,,,ﬂ
is primitive in % and irreducible in F(t)[y] . It is therefore irreduc-
ible in F [t,y] , hence irreducible in F(y) [t] .

Before considering the second lemma, note that since F(x) is
algebraic over F(y), F(y) must be transcendental over F,
Lemma 3,8 If (g(x),h(x)) = 1 with maximum degree my, then m(x,t) =
g(x)h(t)=h(x)g(t) is primitive in t (also in x, by symmetry).
Proof: Let g(x)=g tg;xt...+g,x" ; h(x)mho*-hlxh”*hmxmo Then m(x,t)=
g h(t)-h_g(t)+ Léﬂh(t)+h1g(t)J Xt oot ]_éih(t)mig(tﬂ xt+,,, » If this
is not primitive there exists p(t) such that p(t) divides

_ —

hjﬁ-,iEgih(chig(tﬂ - l_gjh(t)chjg(tﬂ = Ejgl/ﬁl - g}é h (t) for every
choice of 1 and j, But this is just hj E%l - g}/ﬁﬂ n{t)s mnow p(t)
does not divide h(t) because of it did, it would have to divide g(+t)
and these are relatively prime. The quantity in brackets is not always
zero since if it were, the polynomials g(x) and h(x) would be propor-
tional.

Theorem 3.9 (Luroth) Any field L such that FeL &F(x) has the F(y) for

some y £ F(x). (L is isomorphic to a simple transcendental extension of F.)

Proof: Suppose the minimal equation of x over L is p(t)=thray_340-1+ ,40,=0

a:’i.EL’ Not all the ai's are in F, Suppose a, é,,F and take y = ap, ynﬁ%%s
with m the greater of the degrees of g,h. FeF(y)<L<F(x) whers E"(x)zF(y—)!
= mand [F(x):L] =n. Now F(y) € L and, by lemma 3,7, m2n. Write p in

primitive forms p(x,t)=cn(x) t.nmnml (x) £°Lls,, 4c o{x)e
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By lemma 3.7, g(t)-yh(%t) has p(x,t) as a factor in F J_;c,,g » Thus
h(x)g(t)-g(x)h(t) with degree m in x is equal to p(x,t)q(x,t) of degree
greater than or equal to m (since g,h were part of a coefficient). There-
fore the degree of S(x,t) in x is m, q(x,t) is a polynomial in t alone;
but by Jemma 3,8 h(x)g(t)-g(x)h(t) is primitive, whence q is a constant
in Fe Then the degree of x over L equals the degree of x over F(y) so
n+#m, and L=F(y), as was tp be shown.

Theorem 3.10 (Herstein) Suppose F,;K, and L are three fields such that

F<K<L (proper inclusions). Suppose that for every x in L there exists
a non-trivial polynomial f‘x(t) in t with coefficients in F (and which
depend on x) such that the element fx(x) is in K, Then eithers
(a) L is purély inseparable over K

or (b) L, and so K, is algebraic over F, |
Proofs Suppose that L is not purely inseparable over K. Then there exists
an element in I which is not in K and which is separsble over K., The set
of all elements in L, separable over K, forms a subfield L/ of Lo K is
containedinzfgbecause L is not purely inseparable over K, L # K, If this
subfield L' were algebraic over F, then K would also bs algebraic over F,
This; combined with the fact that L is algebraic over K, would then lead
to the desired conclusion that L is algebraic over F, Thus suppose, to the
contrary, that there is some element a¢& L/9 a §K which is transcendsntal
over Fo (Being in 1 s & is separable over K). The following shows this
leads to a contradiction,

Let T = F(z), the set of rational functions in a over the field F,

let K = TnrK., Consider the three fields, Fs‘l-{:,’f,-her’e FeKeT., Thess
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inclusions are all proper since ac'f,, a#f{’ and since a is algebraic
over X but not over F. If x£T then there is a polynomial f (t) with
coefficients in F so that f,(x)€K; since fx(x)e T then £ (x)e K., Thus
the conditions on the three fields,F,K,L carry over to st,f.
By theorem 3.6, K is a rational function field over F in some s,

X = F(s)e L = K(a) is of finite degree and separable over K. By lemma
3.3 there exist two distinct valuations 491, and ’Pz on T which coincide
onK. Such ¢, and P, exist which, in addition, are trivial on F, Thus
for these two valuations the following properties hold:s

1, There exists a uel, ugd ¥ so that ?Dl(u) =#‘P2(u)

2o (k) = (k) for all kek

3, R &) = Fylx) = 0 for allet# O in T,
Without loss of generality it may be assumed that ??l(u)> 0. By hypo-
thesis, k = u'+ o(n_lun"‘l-o-,”-m{rur € K where pseoos O EF, of # 0,
nzrzl, Thus 9‘91(k) = q%(k)o Since ‘P(@fi) = 0 for each i (consider only
the non-zero coefficients that occur in the expression for k) and
since &, # 0, ﬁ(o{rur) =7 ‘Fi(u)K cPl(ﬂ’(mum) =m 901(u) for m > r cccurring
in the expression for k with non-zero coefficient. Thus, since 9’91 is an
exponential valuation, it follows thatb ﬁ%(k) = r-qgl(u), Since O<g(k) =
¥, (k) then ‘Pztk)> O, Thus the same argument used for ?1 can be
repeated and it follows that 6502(1:) = r <P2(u)° But CPl(k) = 992(1;:)
so that r ‘Pl(u) = r 902(11) which, since r = O, implies <P1(u) = @2(11),,
This is contrary to the assumption that ?91(11) # 992(11)0
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