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INTRODUCTION

As the title implies, this thesis deals mainly with varieties and 
valuations, with some of the results applied to ideal theory* The reader 
should have a certain amount of familiarity with the basic concepts of 
modem algebra. Definitions of the standard notions not given in the 
thesis are presented here. The elements x-ĵ, are algebraically,
independent over a subring A of a ring R if and only if each x^, k = 1,
2, n is transcendental over a|^, X2, .,,, . If K is an exten­
sion field of a field k and L is a subset of K, then the elements of L 
are said to be algebraically independent over k if each finite subset of 
L consists of elements which are algebraically independent over k. Such a 
set L is called a transcendence set over k, A transcendence set L in K is
called a transcendence basis of K over k if it is maximal, i.e., if L is
not a proper subset of another transcendence set. The common cardinal of 
the various transcendence bases of K over k is called the degree of tran­
scendency of K over k, A field k is said to be algebraically closed if it 
possesses no proper algebraic extensions or also if every polynomial 
expression with coefficients in k has roots in k. If k is a subfield of a 
field K, then K is said to be an algebraic closure of k if (1) K is an 
algebraic extension of k and (2) K is an algebraically closed field* An 
irreducible polynomial f(X) in k [[x] separable or inseparable according 
as f̂  (X) / 0 or f- (X) = o, where f̂  (X) denotes the deriative of f(X), An 
arbitrary polynomial f(X) in k [x] is separable if all its irreducible fac­
tors are separable; otherwise f(X) is inseparable. Two elements x and y of

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



IV

one and the same extension field k of k are conjugate over k if they are 
algebraic over k and have the same minimal polynomial over k* Let K be 
a finite algebraic extension of the field k, of degree n, and let x be 
arxy element of K* Let ® irreducible poly-
nominal over k satisfied by x« Then the norm of x relative to K over kg 
denoted by W @  is (-l)^a^* If f(X) (X-Xĵ ) then the norm of
X is x^ and if x is separable over k, then are distinct
and the norm is equal to the product of the conjugates of x.

Chapter I introduces the concept of the variety and derives of its 
properties and also gives its relationship to prime ideals* The second 
chapter deals with valuations g valuation rings, and places with the main 
theorem being the extension theorem of a homomorphism to a place* This 
play a fundamental role in the development of algebraic geometry* The 
third chapter deals with a theorem of I, N* Herstein concerning three 
fields* In the development of this theorem, an existence lemma in valua­
tion theory is used which is proved prior to the theorem*
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CHAPTER I

BASIC CONCEPTS OF ALGEBRAIC GEOMETRT

SECTION I

INTRODUCTORY CONCEPTS OF ALGEBRAIC GEOMETRT

This chapter concerns the solutions (x^, ... x^) common to 
certain polynomial equations: “ o for i « 1 , 2, r*
In general the coefficients will belong to an arbitrary commutative field 
which will be denoted by k* In answer to the question, "In what- domain 
do the solutions lie?", the components of the solutions are taken from 
the universal domain_n_, where-/i. is an extension field of k such that:

1» The degree of transcendency of-/V /k is infinite and 
2* ~jTU is algebraically closed.
The first theorem will show that any finitely generated extension 

field of k can be "taken care of" in-n-. Thus
Theorem 1.1 Let k be a field such ttiat k c E  and let E = k(a^, a^)*
Then there exists an i s o m o r p h i s m g E—Jfe/Xwhich is the identity map on k.
Proofs Let k_  ̂ = k(a_ , ... a _) and let k = k. Then E = k =* k (a )«   r-JL ' r-1 o r r-1 r

, The proof is by induction. For r = o, the statement is trivial.
Suppose it is true for extensions generated by fewer than r quantities.
Then there exists an isomorphism «rz-, : k k * _*=--/%_ which is thei>*x r«*i r—1
identity on k. There are two cases to considers (1) a^ is transcendental 
over k T, (2) a is algebraic over k . In the first case, select in 
an element bj, which is transcendental over k^^^» This can be done because
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of the infinite degree of transcendency of-O- over k. Now extend to
E hy mapping onto and this extension is an isomorphism leaving k 
fixed*

In the second case, let P be the raonic irreducible polynomial over
k̂ _̂  ̂having a^ as a root* Let P* be the image of P in k^^ ^ Choose
b^ in _n_ as a root of P %  which can be done s i n e i s  algebraically
closed* Extend the isomorphism to an isomorphism of E into-H- leaving
k fixed by mapping a^ onto b^*

A zero of an ideal A«z k(%2, is an n-tuple (/ti ••»s'Ztn)c
..-O—  of elements in an extension field of k such that fC'ẑ is = 0
whenever f m o mod (A)* If A is an ideal of k , then the set of zeros
of A is called an algebraic set over k* It is also said that A defines an
algebraic set over k* A— > S ■Hill be used to designate that an ideal A
defines an algebraic set S* Immediate consequences of this definition are:
(1) S is the ençjty set when A = k ano (2) S (the n-fold Cartesian
product of-O-.), "tâien A - £o^ * It may also be the case that different

2ideals define the same algebraic set; for instance^ A and A always have 
the same algebraic set V*
Lemma 1.2 If A and B are ideals then A«-B implies that V a W  urtiere A V 
and B W.
Proofs The proof is immediate from the previous discussion.
Theorem 1*3 If A and B are ideals, and if A — 7 and B — W  then 7 »>¥
and 7'^W are algebraic sets such that A + B — <** 7/* W, A B — 7^ W, and
A^ B 7*̂  W.
Proofs That A + B — » 7o W is immediate* For the other part, let A ^ B  -f'S,
and AB-^R* Since Ao B«=A and A B < =  B, S ̂ 7 and S:=>W, by Lemma is 1*2,
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Thus S o  V C/W» To show that any zero of AB is in V C/ W, let (x) =
(x-ĵ ,,* ,,x^) he a zero of AB and suppose (x) is not in V* By as sung)- 
tion, (x) is not a zero of A, so there exists an f(X) in A such that 
f(x) # 0. Let g(X) be any element of B| then f(X)g(X) is in AB* Since 
X  £. S, f(x)g(x) = 0, and this implies that f(x) = 0; i.e., (x) is in W« 
Finally, note that AB <=• A O B  so that RoS* Since any zero of AB is in 
V l/W and S 3> 7VW, V L / W o R o S o V U W ,  that is, R = S « Vl>¥.

SECTION II 

VARIETIES AND GENERIC POINTS

mThe set A is a proper union of the sets A]^,*»*,A^ in case A =^g^Ai 
but A + Ai for any i* In algebraic set V is called a variety if V is not a 
proper union of a finite number of algebraic sets*
Theorem 1*U Let S be any set-/iP. With S, associate a subset A of k Q Q
defined ass A = £f(X) £ k [x ]  j f(x) = 0 for all x z  | then (l) is
an ideal and (2) If S is an algebraic set defined by an ideal A^ in k
then the ideal A cf S is the maximal ideal defining S*
Proof; (1) A is certainly an ideal since the set is closed under subtrac­
tion and also under multiplication by elements of k «

(2) A^czA since, for A^— ►S, if fflA^, then f(x) = 0 for all x f  S, 
so that f ê A* Let A—^R* Since A^c A, S'=*R* But R o S  by the definition 
of A* Thus R ^ S, and A is the maximal ideal defining S«

The following discussion is restricted to maximal ideals, and the 
association between the algebraic set S and a maximal ideal A is denoted 
by S—vA* The notation f(V) = 0 means if x £ V  the f(x) = 0,
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Lemma 1,$ Let V, W  be algebraic sets and let Ag B be the maximal ideals 
defining V and ¥  respectively. Then implies A«-B,
Proof Î If fcAp then f(V) ® 0 and f(W) = 0| consequently fC B,

A ring R is said to satisfy the ascending chain conditions if each 
sequence of ideals A^, Ag,*.. in R such that A^« A^c has only a
finite number of distinct terms. If a ring satisfies the ascending chain 
condition and is commutative then it is called Moetherian, Observe that 
since k [jf] is Noetherian, every descending chain of algebraic sets "breaks 
off" so that every non-empty collection of algebraic sets has a minimal 
element.
Theorem 1*6 Any non-empty algebraic set is the union of a finite number 
of varieties.
Proof: Consider the set ̂  of all algebraic sets which do not satisfy the
theorem. It will be shown that ̂  = 4^, Assume is not empty and let V 
be a minimal element of<& * V By definition V is not a variety.
Thus ¥ = U (/W where Ug W are algebraic sets and TJ 4" V, Ü + ¥, From the 
choice of ¥ it follows that Thus U is a finite union of
varieties and similarly for W, Consequently, ¥ is a finite union of varie­
ties (since ¥ » Uuw)| hence ¥ t which is a contradiction so'é. =
Lemma 1,7 Let B be a variety and ¥ be an algebraic set with the represen­
tation ¥ = Wgt/ If the U<=̂  ¥ then there exists an integer i
such that (If the assumptions that for i + j  and that the
Wj are varieties is added, then the representation ¥ ® ¥ 2 »̂ i/Wj- is
unique.)
Proof g U U n ¥  = u (U/i¥2) w , *«ij (¥/i¥^ » Since the class of
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algebraic sets is closed under union and intersection, the represen­
tation yields? Variety U » union of at least two algebraic sets. The 
union cannot be proper, so that there exists an integer i such that 
U a thus

Suppose V = w, o,^U  where U„ is a variety and U. U 2-1- ^ s X i j
for i + j. Since U^oV, from above there exists an integer j such that
U.c. W. and similarly there exists an integer r such that W  c  U so that 1 J j r
U.C.W. cU^ and by assumption i = r so that U. = W., Thus each U. occursX  J J, X  J X

among the Wj's and likewise each occurs among the This shows
the uniqueness.
Theorem 1.8 If V is a variety, then V-^P, where P is a prime ideal.
Proof? Suppose P is not a prime ideal. Then there exist a, b in k ][x~l 
^ S' such that abc P and â t P, b^ P, Set A “ P + Then P properly 
since Ag' P and A-ap U c  V and the inclusion is proper, since P is the 
maximal ideal defining V, Similarly g set B = P + b/% Then P properly and
B - > ¥ c V  where again the inclusion is proper. Thus U vW cV. Now AB ®
(P + ad^)(P + b<^) = p2 + aP + bP + abo^so ABc p, but A B - ^ U u y  and thus 
Uo ¥=»V, Hence, V » Ut? W, where U c  V a n d W « V  properly, contradicting 
the assumption that V is a variety«

The next two results establish the fact that the varieties and 
prime ideals are in one-to-one correspondence,
Theroem 1,9 Any prime ideal P detemines a variety which, in turn, deter­
mines the given ideal P,
Proof? Suppose that P is a given prime ideal defining an algebraic set V,
If P = k (30 ** ̂  then the algebraic set is the variety . Assume P & Cr.
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6

Let o< denote -toe natural map of &- onto i5'/P, Sine ^ / P  is an integral 
domain, its quotient field K may be formed* L e t ^  denote the identity 
isomoiphism of (9- /P into K* Now consider c< | k, the restriction of 
to k* This gives a homomorphism of k, and is therefore either trivial 
or an isomorphism* Since P, 1 ^  P and thus 1 does not map into 0
under cC . Hence c< | k is not trivial but is an isomorphism of k into 
£9" / P, Let k denote the image of k under c<̂ | k, so k ^ k *  Finally, 
let X « (X^, X^) go into(xj'Where (x) *.., and where
X^ c< = for each i* Then ̂ p/p = k , so K * k (x). Now by the
properties of the universal domain, there exists an ( x ) s u c h  that 
•fche mapV's k(x)— k(x) is an isomorphism* ^is called the realization

The sequence of maps k [%] îc[xï]-t^k(x)-^^ k(x) gives a homo-
moiphism cf î^Xj onto k(x) whose kernel is P, so (x) £L V*

Now consider the set consisting of the one point (x)* From above 
(x)—frPe Let V-»*A* Since (x) £_V, P =, A,j but A is the maximal ideal 
which can define V, so that A c? P, whence A = P*

It is shown next that the algebraic set V is a variety* Suppose 
V = U u W  where U, W  are algebraic sets such that A -♦■ll and B—^  W*
Then AB— ^Uc^T/f ** V so AB<= P since P is the maximal ideal defining V*
Now if A<& Pp then there exists an a cA such that a^F, but abEP for any 
b implying B;^ P. Thus eitlBr A c  P or Bop* Hence either Ü •=> V orWjs V* 
Therefore either U « V or W = V, so V is a variety*

This discussion and theorem 1*8 establish:
Theorem 1*10 The varieties of are in one to one correspondence with 
the prime ideals of k Cxi ,
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Let V be a non-empty variety determined by the prime ideal P«
Let (x) £  V, (x) is called a generic point of V if the ideal determined
by the set consisting of just (x) is Pg that is, (x)— P—

Some of the properties of the generic point are g (l) If (x) is
a generic point of the variety Vg then V is the smallest algebraic set
containing (x). This is the ease since if (x) is in a algebraic set W  and
A — ► W ,  then (x) is a zero of the ideal A* This implies that A <=. P and
W  ̂  V, (2) Any point is a generic point of some variety. This is the case
since if (x) is any point in -vi? and P is the ideal defined by the set
consisting of one point, then V ̂  since 1 does not vanish for (x).
Furthermore, P is a prime ideal g for suppose f(X) g (X)£_ P. Then f(x)
g (x) = 0 so g(x) &  P. Thus P is a prime ideal not equal to , but P
defines a variety, and (x) is a point of this variety, (x) satisfies the
conditions of the definition so it is a generic point of the variety V*

Some examples to illustrate these concepts follow. Let k = Q, the
field of rational numbers, and let -/t- be the complex numbers® The 

z,varieties in _/%. will be determined for which the following points are
generic points# (o,o), ( */2,l), (e,e), (e,e

(1) (o,o)« The prime ideal P consists of those polynomials of ^  

with constant term zero, and (o,o) is the generic point of the variety 
consisting of the single point (o,o). If any point (r^,rg) of had 
been considered, then the variety of this point is just the set

(2) ( j/T,l). The prime ideal P -■ (x̂ ^^-z) (x2=l) , so with
the generic point ( /Y,l) is associated the variety ^/^,l), „
Here (-1^,1) is also generic point of the variety®
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(3) (e^e). Consider here those for which ffe^e) = 0
The prime ideal is the principal ideal generated by and the variety
of which (e,e) is a generic point is I ®

(ii) (e^e The elements e and e ^ b e i n g  independent transcen­
dental elements (as is assmaed here)^ the corresponding prime ideal P is 
£o'̂ « It has been shown that £o3 defines the variety ^ , Here then 
(e,e^^ is a generic point of-^i^j and thnsvl? is the minimal algebraic 
set containing (636^^0

These examples also Ulnstrate what is meant by dimension* Let V 
be a variety and let (x) be a generic point* Then the dimension of V is g 
dim V ® ^ ( x ) g ^  (degree of transcendency of k(x) over k)| dim (x) is 
also written for dim 7* In the above examples3 the dimensions are O^Oglg 
and 2p respectively*

Next a relation of the other points of a variety to a generic point 
is given* Let 7 be a variety and (x) a point of 7* Consider the k
k(x) where/y^is identity on k and takes X into x* By theorem l*9g^^ is a 
homomorphism with kernel P* Let (z)£ and consider the mapoCs
k — gp k £ y  g i*e*g a<K = a for all a in k and xo< « z* If this map«=<;
is well“defxned than it surely is a homomorphism* It must be the case if 
g(x) = f(z) then f(z) g(z)g or it will suffice to have f(x) = 0 implying 
f(z) = 0  If f(x) * 0 this means that f(X) EL Pg so that is well-defined 
if an only if P QzJ = 0* The map *=^is then well-defined and is a homo­
morphism for all (y) 7* Thus (x) is a generic point of the set of points
of the variety for which the map is well-defined and a homomorphism*
This relation is called a sperdallzation. (y) is a specialization of (x)g
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■written (x)— ^(y) in case the mapoC^is well-defined and a homomorphism.
Note also that (x)— ►(y) if and only if f(x) = 0 implies that f(y) = 0 
Theorem 1.11 The relation (x)— >(y) is transitive^ i*e*9 (x)— *»>(y) and 
(y)— ►(») implies (x)—
Proof; Let f(x) be a polynomial such that x is a root. Since (x)—*^(y)
y is also a rooto Similarly, z is a root g and so (x)-^ (z)«

Two points ■will be called equivalent if they are generic points of 
the same variety and each is a specialization of the other.
Theorem 1,12 dim V is independent of the choice of the generic point.
Proof: For any two generic points (x) and (y) of V, (x)— iKy) and (y)-H^(x),
Consequently J, k ^  k and k(x) ^k(y). If the degree of transcendency
is then computed with (x) and ■with (y)j, the same result is obtained.

One also speaks of a subvariety W of the variety V, This means W
is a variety itself and is a subset of V* The following connections 
between a variety and a subvariety hold.
Theorem lgl3 Any point of the variety V can be considered as a generic
point of a subvariety.
Proof; Let (x) define 7 and let (y) £.7, The (y) defines a subvariety. 
For (x)—»(y)s and the specializations (y)—►(z) define the points (z) of %
from theorem l.llg these are points of 7,
Theorem 1,1^ Let 7^W be varieties ^ c h  that W  o. 7, Then dim W dim 7 g 
and if dim V  = dim 7, then W = 7,
Proof; Let (x) « (x^jXgp ,,,, Xjj) be a generic point of 7 and let (y)
Cyi5>y2s yn) ^ generic point of W, Then the map «P g
defined as a<P = a for all a £ k  and x 9  = y Is well-defined. Suppose
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dim W = r. There is no loss in generality in assuming that 7x^72» ® s^r
are algebraically independent elements over k* Then
algebraically independent* For if this is not the case, some polynomial 
f(x^,».»,x^) Oo where f has some non-zero coefficients in k* Since ^  

is well-defined, f (yxj,y2i = • • sy^) ® Og which is a contradiction^ thus 
dim V - r. Assume now that dim V = r* It is desired to show that Ÿ  is 
an isomorphism. Let z £ k [jQ and z f 0, Assume that z is in the kernel 
of f  « z is algebraically dependent on XxpX2s. »* ,Xj. since dim V = r*
Thus a^(x^..*x^)z^ +oo*+ a^(x^o.ox^) = 0 where each a^(xxjX2j*«ox̂ ,) 
is a polynomial with coefficients in kg and not all the a^ are zero* If it 
is assumed that s is the minimal degree for all such equations satisfied 
by Zg than a^Cx^jX^o « »x^) 9̂ 0* If 4̂  is applied to the above equation 

®̂ o(7if72  ̂* " " Og since z is in the kernel of ̂  , which contradicts the
assumption that yxs72s''*®3'̂ r algebraically independent* Hence the
kernel in 0, so both (x) and (y) are generic points of Vg thus ¥  ® V*

Consider now the following:
(1) dim V = max, dim (x), where for any (x)£V, dim (x) ® lk(x):^t_.

(xkv
(2) Since 0 ^ dim V ^ n, consider the following three cases:

(a) dim 7 == n. Let (x) be a generic point of V, Then
/I

XxgX2g*,«gXp must be algebraically independent. Therefore any (y) &  -/%- 
is a specialization of (x) since no polynomial relation can hold in k 
and in this case V - , Thus _/)3 has dimension n and any proper sub-
variety will have dimension less than n,

(b) dim Y ~ 0, Here (x) is algebraic, i, e,, each x^ is alge­
braic over ko Let (y) be a specialization of (x). As previously, then, (y)
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is a generic point of a subvariety, say W, where W c  V# Then 0 = dim 
V ^  dim, W, so dim W “ 0 and, by theorem l.lL, V “ W* Hence (y) and (x) 
are equivalent and every specialization is also. If (x)—^(y), then 
k "= k • However in this case k(x) ^k(y) because:

1. Let each x^ be algebraic over k. Suppose n^ is the 
degree of x^ over k, k |j3  is spanned by the totality of products of
powers of %2 ,Xg,...,x^, where the power of x^ is at most n^-1. Thus k [xj
is a finite dimensional vector space over k.

2. k is an integral domain since k is an integral domain.
3. A finite dimensional vector space over a field which is

an integral domain is a field* For suppose R is a finite dimensional vector 
space over a field and H is an integral domain and a 4 0, aeR, and consider 
the map x -*.ax for all x S.R. This is an isomorphism of R into R which pre= 
serves dimension, so is onto* Thus the equation ax = b, where a, b & R  
always has a unique solution x in R*

Combining 1,2, and 3 k » k (x) and the specializations of (x)
are those (y)C such that k(x) ^k(y)« When dim V = 0, 7 has as many 
points as there are isomorphisms of k(x) over k. If all x^ are separable, 
then the number of points equals the degree of k(x) over k.

(3) dim V =» n-1. First of all, the varieties of dimension n-1 are
in one to one correspondence with certain prime ideals. Thus V-4^ P where 
P ^ fo| since V + -oJ « Let f£.P* Since k Q Q  is a unique factoriza­
tion demain, f factors uniqu^y into a product of irreducible polynomials 
except for arrangement and units. If f E.P then there exists an irreducible, 
non-constant polynomial QS-P, since P is prime* Sine O' is a unique .
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factorization domain. Q 6  ̂« is a prime ideal. Let P — v . Sinceo o o
PqC.P, V^=» V, so that dim ^  n-1 * P^ é {p} so # —/if and dim
Vq - n-1 and therefore dim = n-1, V = V@ and P = Q . Thus any (n-1) - 
dimensional variety is defined by the zeros of a prime ideal generated 
by a non-constant, irreducible polynomial.

If Q is a non-constant irreducible polynomial, then P - Q ̂  is a 
prime ideal. Let V be the variety determined by P, Since V ^  -/X , 
dim V n-1* If one point of ? is exhibited with dimension n-1 then dim 
V * n-1* Since Q is non-constant, it must depend on at least one variable, 
say Choose ^  the universal domain, algebraically
independent, and solve i n t h e  equation Q (x%,x2, » « »$Xn-lg3h) ® 0» Call 
this solution x^* Thus (x) = (xg^,x^^*.*,x^) is a zero of Q, by construc­
tion, hence a zero of P, so that (x)CV and dim (x) = n-1 by construction* 
Thus the variety determined by a prime ideal generated by an irreducible 
polynomiaüL is of dimension n-1. The prime ideal is unique and if f^ c^and 
fg ̂  (f^,fg irreducible) are representations for this prime ideal, then 
f^ and fg differ by a constant factor*

As a matter of terminology one-dimensional varieties are called 
curves, two-dimensional varieties are called surfaces, and (n-1 )-dimension­
al varieties are called hvoersurfaces*

SECTION III

PRODUCTS æ  ALGEBRAIC SETS

First the product of two algebraic sets is defined. Let V«=- -oi^and 
Wc. V lP be algebraic sets. The subset V x W  of obtained by taking
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all points (x,y) where (x) £. V and (y) £ ¥  is called the product of the 
algebraic sets V and W« This is the usual Cartesian product.
Theorem 1.1$ V x W is an algebraic set.
Proof; Suppose A— V where A is an ideal of k and suppose B — ¥
where B is an ideal of k . Set o- = k[x,Ÿ] and let D = A ^ *  Bô^. It
will be shown that the ideal D of determines V x ¥. Let (x,y) be a
zero of A| then (x,y) must be a zero of A ^ .  Thus (x) must be a zero of
A since A O' does not depend on X. Similarly^ (y) is a zero of B, so that
any zero of D is of the form (x^y) where (x) c  V and (y) s. ¥. Hence the
zeros of D belong to V x ¥. On the other hand, if (x,y) £. V x ¥  ihen (x,y)
is a zero of D. Thus V x ¥ is an algebraic set defined by D.

The following example shows that if V and ¥ are varieties then V x ¥
need not be a variety. Let k ^ Q, the rational numbers and let H  = c, the
complex numbers. Consider the variety 7 = ̂  " Then 7 x 7 ®
^ (1^2,^?), ( This can be written as the union of two
varieties; 7 x 7 =

The dimension of an algebraic set is defined as the maximal dimension
of its component varieties g equivalently, the dimension of the algebraic set
7 is max. dim (x). From this we conclude that the dimension of a proper 

(x)f7
algebraic subset of the .algebraic set 7 is not necessarily less than that 
of 7.
Theorem I.l6 dim (7±¥) = dim 7 + dim ¥.
Proofs Since dim (73drf)® max. dim(x,y), dim(7x¥) - dim 7 + dim ¥.

Cx)C7 
(y) £. ¥
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Conversely, choose a point (x)£.V with dim (x) = dim V, and a point
(y) £ W  with dim (y) = dim W, such that the transcendence base of k(y)
is algebraically independent of that of k(x)* This can be done because 
of the properties of the universal domain. For these (x) and (y), 
dim (x,y) = dim V + dim W, so dim (V x W) z  dim V + dim W, îhus dim
(V X W) = dim 7 ♦ dim W*
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CHAPTER II 

VALUATION RINGS, PLAGES, AND VALUATION 

SECTION I 

INTRODUCTION

After laying the groundwork in Chapter I, the concepts of valua­
tion rings, places, and valuations are now introduced* This builds up 
to the main theorem of this chapter, the extension theorem for places*

A subring <9̂ of a field K is called a valuation ring if for any
a€ K, a(Timplies that £. er* An immediate consequence is so
a valuation ring is a ring with identity.

Consider first the set P of non-units of a valuation ring i.e.,
P = £a(a€<9' , a”^ ̂  Thus ag.E and a ^ P  implies a"l £<^. Some of
the properties of the set P areg

1. If a+b #P then either a 4 P  or b^P* This is certainly
true if either a or b is 0 so one may assume that a # 0, b ^ 0. Assume

a b
a/t)g,<^(if b ̂ ^then a £ ̂ a n d  the argument is analogous). Since a*b ̂ P 
and because c ^ P implies c°°̂  g. <0 -, (a+b)"^£^. Hence b”^ = (l+b )(a+b) "1 £-^1 
that is, b ̂ P.

2. If a, b £. c^and ah fL P then neither a nor b belongs to P.
For a h ^ P  inçilies (ab)“^ &  and it follows that a“^ » (ab)~l b £-<̂ .
Thus a ̂  P and likewise b X

The contrapositives of these two results show that P is an ideal.
The following theorem shows that it is a maximal ideal,

15
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Theorem 2.1 The non-units of a valuation ring O' form a maximal ideal of P. 
Furthermore, <?/P is a field and P is a prime ideal.
Proof; The above remarks show that P is an ideal. Also any proper ideal 
in 6^consists entirely of non-units, hence is contained in Pj thus P is a 
maximal ideal. It follows at once that e/P is a field and P is a prime 
ideal.

If U denotes the set of units of ̂ t h e n  clearly U is a multiplica­
tive group. Consider then the deconç>osition of K as the disjoint unions 
K = Pt/ uup("l), where p(-l) denotes the set of elements inverse to the
non-zero elements of P. Since Pt̂  U = ^ ,  it must be shown that p(-^) con­
sists of the complement of ̂ i n  K. This is the case, for if a § ^ ^  then
aT^SCf^hxit since a“l ^  U, a”! &  P so that a£p(“l). Now if a f^p(-l) then
a-1 cf-P and a Thus K = PO U which shows that P determines the
valuation ring Gr „ Since K may be written as this disjoint union, i f a n d

two valuations rings of K with groups of units and U^, and ideals
of non- units P^ and Pg, thend^c::*^ if and only if P^op^, which is the
case and only if Ug.

Let K and F be two arbitrary fields. Then a map (P : K - ^ F  t/ is
called a place if:

1* ^  ”^(F) = (^is a ring
2. is a non-trivial homomorphism, and
3. if (P (a) » <30 (a^<^ ) then (p (a*"̂ ) = 0, 

where oo if a symbol adjoined to F.
Consider the following example of a place. Let F(x) be the field of 

rational functions in one variable over a field F. That is, each element of 
F(x) is a polynomial fraction in reduced form. If a e F is substituted for x.
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a map of F(x) into F U £c»5 is obtained. If, after the substitution,
the denominator is zero, this element is mapped into c o  . Since the
elements of F(x) are in reduced form, the forra-^ does not occur. This
map is well defined. It also satisfies the definition of a place since
if ff g F(x) have denominators not divisible by x-a then the same is
true for their sum and product so that condition 1, is satisfied. On ^
the map 3s a homomorphism, which is non-trivial since 1 does not go into 0, ,
so condition 2 is satisfied. Condition 3 is certainly satisfied.

Consider now the valuation ring ~^(F) associated with a place
Consider the non-units P of the valuation ring <^-l(F), Since K =
? uU t̂ p('̂ l) J, p consists of 0 and the inverses of elements not in Thus
(S) (P) = ^0^ so that P is in the kernel of • Suppose £p (a) = 0, If
a"l ̂  ̂  then Cp (aa"^) = (1) =£?(a) CÇ (a-1 ) = 0 so thattÇ (l) = 0 which
implies that ( ©') = 0  ̂which contradicts condition 2 of the definition.
Hence, a“l 4' ̂  so d? (a“^) - Oo or a“^ &  p("*l) and a £, P, Thus P is the
kernel of on and (l) = 1 from condition 2» Thus with a place is
associated a valuation ring.

One can also start with a valuation ring and associate with it a
place Pbe the ideal of non-units of O' and define (a) = f ^  if a ̂  <3̂.

(a+P if a eâ'
That is, if a ^  we take the natural map so that F ** <^P« The claim is 
that this map is a place, %r definition<^*"1(F) = O' , the given valua­
tion ring g so that the first condition is satisfied, (p / <9̂ is a homomorphism 
and is non-trivial since 1 ^ P, For condition 3, if a.f.O' then a"^ e. P 
since K = Pi/ UV pC“l \  Thus a given place determines a valuation ring, 
which in turn determines the given place , up to isomoiphisift of the field F«
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Two places are said to be equivalent if they have the same valuation 
ring.

Before the introduction of the concept of a valuation, the defini­
tion of an ordered group is considered. A sub-semi-group S is called 
invariant if a“^Sa = S for every a in a group G. Let G be a multipli­
cative group, G is said to be ordered if it contains an invariant sub- 
semi -group S such that G = S U ^1^ u  where the union is disjoint*
For a and b in an ordered group G, one defines a-^b to mean that ab~^ £- S.
Thus a <  1 if and only if a & 5, Some of the properties of this relation­
ship are;

1, a-c-b if and only if b"^a E 8* This is the case since
b“la = b“l(ab-l)b so that if ab-1 & S, then b^^aÆS because of the invariance 
of S| ab"*̂  = b(b“^a)b~l gives the implication the other way.

2, From the decomposition of G, either (a) ab“ £̂; S, (b)ab“l 
£fl^ , or (c) ab'^gS^"^) " That is, (a) a<b, (b) a = b, or (c) b<_a and 
the trichotoirçr law holds.

3, This relation is transitive, i.e., a<-b and b^ c implies a<.c. 
If ab~^£ S and bc""̂  6 5, by the semi-group property of S, (ab”^)(bc~3.) = 
ac-^fS, and a<. c.

U, a -cb implies ac^bc. Here ab"^ £3 so acc“^b"^ £ S and acc be . 
Similarly ca-<i cb if ac b.

5, a<.b implies b"l<a~l. If a^bg applying property I4. twice 
gives a“^ab*“l a"lbb-l and b”l ̂  a—1

6, a-<-b and c -c d implies ac-<-bd. Since a-c.b, ac^bc by property 
Uo Similarly bc-^bd and ac-«c-bd by property 3*
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There may or may not be an addition operation already defined in G. 
However, one may always define an operation + for an ordered group as a?-b = 
max. (a,b). This definition gives a distributive laws (a+b)c = ac+bo.
If a-b, then ac-be and ac+bc = max (ac,bc) = be while (a+b)e = jmax. (a,b^ 
. c = be* If an element 0 is adjoined to G with the convention that a.O = 0 
and O-ca for all aÊ G, then a+0 = a = 0*a,

One can now define a valuation and relate it to valuation rings and 
places. A valuation of a field K is a map j.|j K-^ Go where G is an
ordered group andf^f satisfies:

1 . |a| = 0 if and only if a = 0,
2. I ab I “ Ia| ofb| ,
3. fa+b|g |a|+|b| 

where [«| (a) is written |a|«
If addition in G is the maximum previously defined, then a valuation 

ring may be constructed from a valuation. Let ̂  = ^)aE. K, (a( — l'̂  then ^  

is a ring since if — 1 and /b/^1 then /ab/ = /a) jbj-̂ -l and /a+b max. 
(/a/, /b/ ):Sl. (yis a valuation ring since if a , then /a/>^lso that 
|a*”̂ / = /a)"^^l and £,<?"«> The non=units Pof ̂  are those a*^<^ such
that a"l ^ so that P faj fa/^ 1^ and the group of units is U =
[ a |  |aj = l3 .

Next a valuation Is obtained from a given valuation ring ^  in a 

field K, with maximal ideal P and group of units TJ. First, define for 
aE-K: /a| = aU. "H" maps K onto K* /U u where K* is the multipli­
cative group K - foj. If G “ K*/U then G is an ordered group. In order 
to verify this, a sub-semi-group with the required properties must be 
exhibited. Define S asg aU €,S if and only if all aU«=-P, i.e., if a E.P.
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Now S is a semi-group and is invariant since K is a field. Since
K* (P-fo^) !/U U(p-[o7)(-l) (disjoint), G = K'’̂/ü = S U  s(-l)
(disjoint), so that G is an ordered group.

The map |.| is a valuation. It certainly satisfies the first
two conditions. The third condition, |a+b| —  lal +  fbj, is equiva-

I Si I
B I —  1 and this latter 

condition holds then 1+B | —  1+ | E I and | a+b | ̂  j a | + | b 1 ; the 
implication the other way is obvious. If addition in G is the maximum 
addition, j &j ̂  1 implies 1. Suppose aU = / a/^ 1; then a C-(Xt.
In consequence 1+a e O' so jl+a]-^ 1, Hence /a/ = a U i s a  valuation and 
its associated ring is the given one ^  . Thus there is a one-to-one 
correspondence between valuations and valuation rings5 previously a one- 
to-one correspondence between places and valuation rings was shown.

Consider next an example that illustrates the preceding discussion. 
Let K = 0(2) be the field of rational functions of a single complex vari­
able. A place is obtained by substituting a complex number Sq for 2» The
valuation ring of this place is (/= ^g(z) I g(zo)f Oj f, gÊ-C(z)^ « The

ff(z) I %maximal ideal of non-units is P » { g(z'J Ig(zçj)^ 0, f(zo)^ 0, |

and the group of units U = I g(zo)4 0, f(zo>i 0^ . The valuation
associated with this valuation ring is | f(z) | = f(z) U where f(z) &  C(z). 
Hence, | f(z) | = (a-z^)^ U for some integer n. Here n is called the order 
of the zero of f(z) at Zq where a negative n corresponds to a pole of 
order -n, and where n = 0 means that f(z) has no zero or pole at Zq , The 
ordered group G is simply a cyclic group generated by (z-Zq ) U and is iso­
morphic to Z, the additive group of integers* Also |f(z) | -Cl if and
only if (z-Zq )^£.P which is the case if and only if n:>-0; thus G has the
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reverse ordering of Z« Thus this place indicates whether a rational 
function approaches 0 or c*#at Zqs while the valuation gives the order 
with which the function goes to 0 or oo »

The position has now been reached to attack the fundamental 
extension theorem.
Theorem 2.2 Let K be any field and O a  subring of K* Let F be an alge­
braically closed field; suppose «3? s <9— F is a non-trivial homomorphism.
Then there exists a place * of K such that ̂  is not
necessarily unique).
Proof; Two types of extensions will be considered. Let S consist of those
elements s B ̂  such that<Q (s) f 0. S forms a semi-group and S ^ since

is non- trivial * Since &  is a commutative ring and S a sub-semi-group
which contains no divisors of zero, the quotient ring ® £s j aL<9} s g.
is well defined. ^  is a ring with identity.

/ / CÇ(a)/Extend (Ç on to on by defining ^  \sy => (s). is
well defined. If then â Ŝg = ^2®1 since ^  is a homo­
morphism, (Ç (a^) <P (sg) = <9 (sg) d? (s^) f 0, (Sg) * 0 . since ::
Sn , S2&  S so, dividing, ^  and 6) is well defined. is a(si) (S2J
homomorphism because is. Now dj ) O  =(§ since each a £ O’ can be written

(V ^ (s-)^ (s) aas a and "X g (s) (a). Therefore is an extension
of (P and maps into F.

This may yield no extension at all if <9- is a subfield of K. Further­
more it is not an extension to K if K has a proper subfield containing 
Thus it is necessary to show that if O' is a subfield and<=C *c. K, then <5? 
may be extended either to<^{ô^ or to (S' ̂ " 3  . This is the second type
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of extension. If ^ i s  a field and C? (^) « Fq < F then F© is a field since 
is non—tid.vial. Let s denote the image of at. ^under • Extend

^  to , i.e., apply <9 to the coefficients of each polynomial of .
The image of P(X)EG^] will be denoted by P (X). The image of <9̂ %xj is 
Fq %x] • Consider extending ̂  to by defining '^(P(ot)) =
P where is any element of F« If 9^ is well-defined it is a homo­
morphism, and is an extension of . Consider the question; Does P(A) = <
imply that P (^) = 0? Let A be the set of all P(X) with P^) = 0. It
is the kernel of the substitution mays^|[j^— ^  . A is an ideal of
<y{x} so the question becomes; Is the image J in F^ [xj of such a nature 
that X is a zero of it? Since A is an ideal of Fq ^3^ , A = Q (X) *
Fq since F^ is a principal ideal domain, /^must be selected as a 
zero of Q (X) and, since F is algebraically closed, such a^â may be chosen, 
provided Q(X) is not a non-zero constant. In this case an extension to 

obtained. Consider next the possibility that Q(X) is a non-zero 
constant. Assume Q(X) =1. There is a Q (X) = 1^Pq+piX^ ..+PrX^ where 

(p^) “ 0 for i = 1,2,...,r and where l+po+p2o^*Pr‘̂ ^ = 0. If <=< 
satisfies such an equation then the above construction does not work. It 
cannot,however, fail with both and * i^as will be shown. Conse­
quently, if the extension cannot be made it can be made to
To show this, suppose to the contrary that satisfy equations
l + P o + P ] f C  + P j . < ^ + . , . + p j < < * v = 0 5 i i h j ^ + p ^ > r '+ . .  ,+p^ IT 'S  =  0 where p^ =  p^ =  0 for 
i = 0,1,...,r and j = 0,1 ,...,s and where r and s may be assumed to be 
minimal. Assume that s :s r. Since èT -1

(1 ) oC  ̂ _ — 5L. oA « • • _ or
1+Po 1+Po
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(2) s = p^/+ P f  Pgli 8-1
where p̂ * £.& since 1 - p̂ *̂  - 1 ^ 0  and where p/' = 0 for i=l,2,**.,s-l 
Since s —  r^ <=̂ ̂  and using (2), the degree of l+pg+pg^«(+...+
PygC^ = 0 may be lowered. Thus l-frp̂ +p̂  +<.««+Pj. (=< }a<;8 “ 0 or
l+PQ+PgcC+.o.+Pj,^^-® +...+Pg_]^^ 8-lJ = 0 where the highest power of
this is contradicting the minimality of r* Thus f may be extended to 
one of <̂ £0^, &  in any case.

Now consider the set E of all extensions of to larger rings. If 
r ^ l ,/^2 &re two such extensions define/^^-^ in case is an extension 
of r p This gives rise to a partial ordering. Thus if every totally 
ordered subset of E has an upper bound in E, Z o m ’s Lemma is applicable to 
E. Let be a totally ordered subset of E, where the rings R*< on
which the '/'o^are defined are totally ordered by inclusion. Consider the 
union of these rings and the map defined on this union as g if ^  is 
in the union, then ^  is in some set of the union a n d w o u l d  act on
(f as the original for that set did. The definition is consistent
since all ^  }^x%are extensions of ̂ ^i=< , and is a homomorphism.

Since if cf±iS 2 the union then in some one set
of the union because the rings are totally ordered by inclusion and 

is also a homomorphism on is an extension of anyT^oC and is thus
an upper bound. By Zorn's Lemma, E has a maximal element. Let 7^ be 
such an element where 9 ^ s 0 — Since 7^ cannot be extended any further 
we haves

(3) 0 is its own quotient ring by elements with non-zero 
images, i,e.* if a £- 0 and 3^(a) 4 0 then a“^ £-.0,
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(U) If a ^ O  then we cannot extend <9̂  to 0 , since ^  is
maximal; but this implies that we can extend 9^ to 0 /â*^ « Hence 
a“^ C- 0 since V- is maximal; so if a ^  0 then a“^ £ - 0, which means 
0 is a valuation ring*

To coijçïlete the proof of the fundamental extension theorem, it 
is shown that the place ̂  belonging to this valuation ring is 9^ up 
to isomorphism. This is the case from (3) since 9^(a) 4 0 if and only 
if a“^ £ 0 so the kernel P of 9^ is the set of non-units of 0, Extend 
9̂^ to K by mapping a into <w»if a. ^  0 and then ^  * up to iso­
morphism.
Lemma 2,3 If a non-zero polynomial in several variables is given with 
coefficients in an infinite field then elements can be chosen from this 
field such that the polynomial remains non-zero upon substitution of 
these elements.
Proofs The proof is by induction on the number of variables. The choice 
is trivial for no variables. Assume that (n-l) variables can be chosen. 
Consider then a non-zero polynomial of n variables. Write it in terms 
of the n*th variable with coefficients which are polynomials in the other 
(n-l) variables. Not all the coefficients are zero since if they were 
the given polynomial would be zero. By assumption, n-l values can be 
chosen in this field so that after substitution at least one of these 
coefficients is not zero. With this substitution a non-zero polynomial 
in one variable is obtained. This polynomial has at most as many roots 
in the field as its degree, A value such that the polynomial remains 
non-zero after substitution may be chosen, since the field is infinite.
By induction, the choice of n values is possible.
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The next theorem is a consequence of theorem.2.2.
Theorem 2ok Let and f(X) ̂  k and suppose f(x) =f 0. Then
there exists an algebraic specialization (x)— (x^) (i.e., all compo­
nents of (2̂ ) are algebraic) such that f(xg) 4 0.
Proof; If (x) = (x]^,x2j« is algebraic, set (x^) = (x) and the
statement holds. Suppose then that X]̂ ,X2,...,x^ are algebraically inde­
pendent over k while ... ,x^ are algebraic over k(x^,.,. ,x^) . Let
(A be one of the x^'s or f(x); then o( is algebraic over k(x]^,,.. ,Xp) .
For eachcA there is an equation of the form

(1) o « e ,X^) +» . .+ (x^, ... f ~ 0
with coefficients in k j^,X2,.o.,3̂  . Choose x^, ...,x^ from the alge 
braic closure of k in -0 _in such a way that ao,«< (x]f,., „ ,Xj? ) 4 0 for all 

considered. This is possible by lemma 2.3. Now let'T^be the map 
k . . . defined by mapping x^ to xP for i = l,2,,.,,r.
Since x^fXgg.o.pX^ are algebraically independent, /p^is a homomorphism and 
is well-defined. Extend this homomorphism to a placed 2 k(x^, *. .x^)—
— O —  U  . (Si is the identity on k and (x^) = x P  ^
and if OP (x^) = x^° for i = r+1,..«, n then ^  (x^) “ xP ^or 1=1,2,...,n.
Now f CD for any cA since if ^(<^) = ca then = 0. From (1),

1
&Q, ^^i^ “ “ “ =A (^qj) ® “ * j-®^) cA * o •> ***”̂ 3 (Xq, o . . ,X^)

= 0 and, applying ̂  ̂  &o,c< (x^,...,xÿ> ) = 0, a contradiction to the 
choice of x^,...,x^ « Therefore <p (cf\) & -/i- for all<< and applying to
(1 ) it is seen that f  (K) is algebraic over k(xq*^.«. ,Xjf ) and so <P is 
algebraic over k. Thus (x^) = (x^.. .,x^) is algebraic and (x) (xq) 
is a specialization, since (p is a homomorphism on (p . Finally,
CP (f(x)) = f (Xo) is finite and not zero since (at) 4 00 for any 0^ «

f

(
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Theorem 2.^ Let V be an algebraic set of ^ and Vg the subset of
algebraic points of V» Let f C. k be such that f (v q ) = 0 ,
The f(V) = 0.
Proof: Suppose (x) e. V and f(x) # 0, then from theorem 2.4 there exists
an algebraic specialization (x)-^r (x q ) tiV such that f(xo) = 0 which 
is a contradiction.

SECTION II 
HILBERT'S NULLSTELLENSATZ

Let &  be any ring, not necessarily with identity, and let S be a 
multiplicative semi-group contained in « Suppose A is an ideal of ^
such that A S = ^  , It will be shown that there exists a maximal 
ideal that contains A and has this property. Let E be the set of all 
ideals which contain A and do not intersect S. E is partially ordered 
by inclusion and for any totally ordered subset of E, the union is an
ideal which does not intersect S. Thus, by Zorn's Lemma, E contains a
maximal element, say P. Any ideal properly containing P will intersect 
S. P is a prime ideal, since if a.,b ^ P, ab ^ P. Suppose ab£ P, let 
(a,p) and (b,P) be the ideals generated by a and P, and b and P respec­
tively. Their intersections with the semi-group S contain elements 8% 
and g2 where s^ = ®2 " for some p^jp^ê P where

are integers and x^,Xg€ „ Then s^s^ = p^S2+(m^e+x^a)p2+
(m^a+x^a) (n)2b+X2b) o Thus if ab &P, then s^s^fi P so P meets S, which is

a contradiction.
If is Noetherian, Zorn's Lemma need not be used for the existence
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of P, and if <9" has identity the existence of maximal ideals for f?' is
obtained by taking S = ,

Let A be an ideal of . Suppose h£.0- and has the property that
for any positive integer n. Let S = where n is a positive

integer^, S us a multiplicative semi-group. Therefore there exists
a prime ideal Tz> A such that b^^ P for any positive integer n.
Let A = p where the P ’s are the prime ideals which contain A, A is an 

p=»a _
ideal and b4^A since there is aP such that Pc? A and b^P, Thus an element 
b€-A implies b^£. A for some positive integer n. Conversely, if b has the 
property that some b^f. A and if P is any prime ideal with P=» A, then 
b’̂C.P, so b£,Pj hence b£.A, As a result of these considerations it is
seen that A = ^  | b & <9-  ̂ b ^ e A  for some nj. A is called the radical of
the ideal A,

Now if A = then its radical A consists of the nilpotent
elements of ; in this case A is called the radical of the ring. It
suffices in the definition of the radical A to consider only the minimal 
prime ideals containing A so that :
Theorem 2,6 The radical of an ideal A in the ring &  is the intersection 
of all minimal prime Ideals containing A,
Proofs In view of the preceding discussion, it remains only to show that 
there are minimal prime ideals containing A, Let F be the set of all 
prime ideals containing A, This set is partially ordered by reverse 
inclusion. Consider any totally ordered subset 1 Pck) of F, Let P =/l^ 
then Pq is a prime ideal, for suppose abeP^ and a ̂ P^^„ Then a is not in 
some PoC. which implies c  Pca, but ab is in every , so h £^3 for
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all Çg o Pck: » Thus bE so P^ is a prime ideal, thus the totally ordered 
set |Po^ has an upper bound. Therefore, by Zorn's Lemma, there exists a 
minimal element in the set F, i.e., among the prime ideals containing A 
there are certain minimal ones, and all others contain one of these. 
Theorem 2.7 Let A be an ideal in k (jO and V i s  algebraic set. Then A, 
the radical of A, is the ideal determined by V.
Proof: Let V—*-A^ or ^  \ ffc f(V) = 0^ . Let P be any prime
ideal containing A; then P->-W, a variety, and Wc-V. But V implies
P=>A^ so that /I p ̂  A ' or A a A . If f<fi A, then f^ & A for some n, so that A=P
f^(V) = 0; but then f(V) = 0 which implies f <^k\ so A Hence A = A'.
Theorem 2.8 Hilbert's Nullstellensata (strong form) Let A be an ideal 
of the ring = k DG ; suppose A — ^  V and V q is the subset of algebraic 
points of V. If f e- i^is not identically zero and is such that f(V^) = 0 
then f” dlA for some positive integer n„
Proof: From theorem 2.4. fCV^) = 0 implies f(V) = 0 which in turn Implies,
by theorem 2.6, that f & A, the radical of A, or f^e.A for some positive 
integer n.
Theorem 2.9 Hilbert°s Nullstellensatz (weak form) let A be an ideal of 
the ring k [jsj ; then A without zeros implies A
Proof ! Suppose V = ; then V^ = (̂  so that all f & (^vanish on V^. Hence,
for all f£ f^E-k for some n. In particular 1& A so A =
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SECTION III

INTEGRAL CLOSURE

Let O’ be a ring with identity and let be a subring of the
field K. An element ae K is said to be integral over O' in case a
satisfies an equations a’̂+bja’̂ ’̂̂+o <, o+b̂ .̂  -= 0, where all b T h e  

totality of elements of K, integral over is called the integral 
closure of cr in K. If O'Is the ring of integers and K the field of 
complex numbers J, then an element a satisfying an equation a^4b]^ 
is called an algebraic integer.
Theorem 2.10 Let S be the set of all places of K which are finite on 
(All places of K whose valuation rings contains^). If a€.K is integral 
over er , and if 6 S, then 4  ̂(a) is finite.
Proofs If (a) = c«?then^Ca3= 0. Since a satisfies a^+b^a^^^t... +b^ = 0, 
b^ S dividing by a^ yields 1 + h J ^  +...+ba 0. Applying gives
1 =(§(1) = Oj, a contradiction.. Thus any place of K which is finite on O' 

is finite on any element of K integral over <9̂ .
Corollary 2.11 If F is a subfield of K, and if K is algebraic over F, 
and if is a place of K which is an isomorphism on F (i.e., a trivial 
place on F since the valuation ring of ̂  ( F is F), then (Q is an iso­
morphism on K (i.e., a trivial place of K.)
Proof : Consider F as a subring of K. Since K is algebraic over F, all
elements of K are integral over F, so c$ is finite on all elements of K.

Consider now the converse of theorem 2.9. Here let S^oS be the 
set of those places £ S whose kernel in ^  is a maximal ideal of O^.
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Theorem 2.12 Let afTK and suppose (a) for any G 8^; then a
is integral over O" ̂ (and by theorem 2.9, ^ (a) 4= for any £ S).
Proof: If a =0. then a £'(5'and satisfies the equation x = 0. Thusrîl 1assume a # 0 . Consider the « If a is a unit of then

^ and a = bQ+b]^(a)+.. .+bj„( a^) for b^ £<5-. Multiplying by we have 
a^‘*‘̂ -b^a^-,. .“by, = 0 so a is integral over (3̂ . â is a unit of since 
if it were not, then the ideal ^ ^ ^  ^1° There is a maximal ideal P 
of such that â ̂ L ‘̂ P. Consider the imj! is a
field and injecting this into its algebraic closure <9%/P gives a homo­
morphism of the ring c9^ into an algebraically closed field; this homo­
morphism is non-trivial since P 4̂ Extend this homomorphism to a

1place ̂  of K. Since <5̂ is finite onC)^, it is finite on â £T P, so
that^Ca^ = 0 and ($ (a) = oo^ a contradiction already, if the set S is 
used in place of in the statement of the theorem.

The set does suffice. The kernel of in is P, which is a
maximal ideal. The kernel of ̂  in is P = Q, Q is maximal since 
if c c ^ Q, then c has an inverse modulo Q, i.e., â^Q. is a field.
If c£<^and c ^ Q then, c ë- and c ^ P. Since P is a maximal ideal of
^ 2» c has an inverse in 0^^ modulo P or c(bQ+bQ^Vâ/+.. o+bj.(avy == 1 mod P.

1 a
cbg—1 ̂ 6)^so cbq-l C Q and cb^ ̂  1 modulo Qc
But a * 0 mod P so this reduces to cb^ =  1 mod P. Thus cbg-1 S P  and

From theorems 2.10 and 2,12 the integral closure of in K consists 
of all those elements of K which are fini te on all place s"̂ of S. There­
fore the integral closure 0. of ̂  in K forms a ring.

The conclusion of this section will show that the terminology 
"integral closure" is justified, i.e., the integral closure of 0 in K is
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0 Itself, Let S' denote the set of all places of K which are finite on 
0. If G 8 , then is finite on 0 and so is finite on ^  and ̂  ^  8 , 
Conversely, if dp E 8 then is finite on 0 since 0 is the integral
closure of ̂  in K, so , Thus 8 = 8  ̂ , Hence the integral closure
of 0 in K is precisely 0. The integral closure 0 of ^ i n  K can be
written as 0 = &  where the intersection is taken over all valuation
rings ^  of K such that &  :=>
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CHAPTER III

THEOREMS CONCERNING MANY VALUATIONS

SECTION I

AN EXISTENCE LEMMA IN VALUATION THEORY

This chapter leads to the proof of a theorem concerning three 
fields as given by I. No Herstein Some concepts are first intro­
duced which are necessary in the proof of the theorem*

An exponential valuation on a field K is a map on K satisfy­
ing:

(1) For every a * 0, (a) is a real number
(2) (0) = <25 , where is a symbol adjoined to the image

field
(3) (p (ab) * (p (a) +• (b)
(U) <5 (a+b)2r min. ( CÇ (a), (b>).

If a —►  /a/ is a real valued valuation on K in the former sense^ then 
^  (a) ® - log I a I is anexponential valuation on K* In this chapter,
"valuation" will mean "exponential valuation."

With an exponential valuation it is possible to obtain a metric 
which is a real valued distance function/^(a,b) defined such that

(a,b)^ 0, (a,b) = 0 if and only if a=b, (a,b)? J^(bp a) and finally.

*'The symbol will refer to the n'th entiy in the list of refer»
ences «

32
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(b,c) viiere a,bgC, are elements of K, Define for
X K, a field, /x/ = (f (x) if x + 0 and /x/ » 0 if (and only if)
X = 0, Then jfxyj = e" ̂  (^) = (x)- f (y) = /x+y/max*
(|-xi,1yl) since Ixtyi » @- 1̂ (%+y)^ g-min. W ( x ^ ^  (y)^ (x)^g- (y^,

Let the "metric be given by (x,y) = j x-y /* The properties of a metric 
are certainly satisfied and the inequality is stronger than the triangle 
axiom. The idea of this metric will be used but the development and
results will be stated in terms of ^  ,

A sequence ^a^^ is a fundamental sequence in the valuation if
for every B =- 0 there exists N such that if p,q ?-N then (0 (a -a ) •> B,

’ P q.
A field is complete in the valuation op if and only if every fundamental
sequence has a limit in K, An interesting consequence is the following:
Theorem 3.1 A sequence in a field K with an exponential valuation
^  is fundamental if and only if lim 4̂  = on ,n-Ĥ  oo “
Proofs The sequence ^a^is convergent exactly when lim ( ^ 4-k°^n) ^ ̂  

uniformly in k. However, since (an+k“^n) ̂  min. ( AP ( ̂ +k^^+k=l) , ,..,

(p (an+1-anv» the condition lim (an+l"%i) = ̂  is sufficient for convert 
gence.
Theorem 3«2 A field K with an exponential valuation (p may be extended to 
a field L with valuation <P * such that dp * / K = and L is complete in the 
valuation ̂  * (L is called the ^  -conpletion of K),
Proofs The method of proof is exactly analogous to the Cantor method of 
defining real numbers by means of sequences of rationale, A sketch of the 
proof is given here* The steps in the proof are listed.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3h

1# The set A of all fundamental sequences of a field K with an 
exponential valuation tP is a commutative ring with an identity element*

The sum and product of fundamental sequences is first defined in 
the obvious way. That is, if c< = 9 /3 ^ [bj^ then define

(=K = ^n'*’̂ n^ and ^  = f̂ ®n3 a^b , Notice that any
sequence £  = , d d]̂  = dg = .., in K is a fundamental sequence all
of whose elements are equal to d. Define oC = “ d which is
fundamental for any d in K® In particular - =< “^ ^ ^ 9  0 ~ ^0^ are funda­
mental ahd so is Addition and multiplication are commutative and
associative in K and also in A. The distributive law«=<(^+a-) «

^  ̂ ( ^n*°n^ " ^^n^n^^n^i^ “ ^holds and / = J is the identity
element®

2® A fundamental sequence is called a null sequence if there
exists for every 0 a such that 0Ç (a^) > B for n>-Ng, The next step 
is then to reduce the sequences in A modulo the null sequences® Let^^be 
the set of all n u U  sequences of A® It is easy to show that ̂  is an ideal 
in A and that the difference ring, 1 = A - 9^ » is a field® The elements 
of A - 9 ^ are classes of equivalent fundamental sequences® The field K is 
isomorphic to the subfield of equivalence classes of constant sequences®
The extension L is' a field over K and all of its quantities not in K are 
equivalence classes, denoted tyj0«Q, where oC is not equivalent to a 
constant sequence®

3* * is defined as follows s Let|^>i^ be an element of L ando<^
^aji^ , a member of the equivalence class jc^* For every B ^ O  there exists 
N such that <Ç (up-a^) B for p ̂  N̂ , q N® If is a fundamental
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sequence and lim^ap #  0, then 4p (a^) is ultimately constant as n 
increases. This is the case as (a^-a^^^) approaches a? as n increases, 
but 3p does not approach 0, i.e., (a^) does not approach cx> . Thus
there eacLsts a quantity M and an integer N such that for p^-N, (p (hp) .c M 
but d? (ap-ap+i)^M. = min* ^  (a^), (ap+i)cM, unless

df (&p) “ 4̂  (^+l)' Hence for p^N, (ap)-(ap^-j^)* From this = (Sp) is 
a constant fundamental sequence and (p = [M] = ^(a^). This
sequence is positive and consider and the product .

= [ [ ‘P { V n 3 l
0 similarly the property (â j+bĵ ) min. «ÿ(a^, Q(b^)
implies that armin* Also (^*(0) =
<3? (O) = oO and d? ̂  is well defined. The valuation A  * is a valuation 
on K to the reals with the symbol oo adjoined* If aaK, <^*(a) = <9 frfâ ij) 
l i M j i a )  . (9(a).

U* L is complete in the vaulation *. Let ® funda­
mental sequence in L where = (jK p̂2Î » EachX (P) = is a
fundamental sequence in K, This implies that for every B >- 0 there exists 
an N such that (p (a^(P^-a^(p))B for n, m >iî. Let B = 2P“^, m = N+1 and 
define a(p)=a^(p)* Replacing <? by CP^(a^^P^-a^P^) :?■ 2P“^ for n-^N.

Letc< (p)=! ^a^(p)^ and notice that G^P)-ajj(p)= ̂ ^a^(p)-aj^^P)^^ >. B

f o r N ,  n>W, and for every n, cp*(c(P)-a_(p)) = lira (a>t^P)=.a„(p)).yK -y- <£0 / n
Fix n>-N and each cf (a^(p)-a^(p)) >  B so that certainly the limit

C? ^(C^P^-a^(P^) >. B for n?^N* Again take B ® 2P”̂  and have c(P)=a(p) “ 
C^P^-an^PUa^Cp)-a(p), so that <9 *(c(p)-a(p))2" min* 4 *(c(p)-a^,(p)),

^  (ajj^P^-a(P^)> 2P“^ for all values of p. For every B >  0 there exists
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a such that B for Hence <)̂ *( c(P )-a^P) );> B for p> p^
and the sequence =Co " , where a(p) Is a constant sequence^ is a
fundamental sequence equivalent to . The class is the
general quantity of L, where is a sequence in K and ^  is in.!,» 
Thus L is conqplete in the valuation 4

If K is a field with valuation 0  , the elements of the valuation 
ring 0 (the set of x £■ K such that (ÿ ( x ) : S r  o) are said to he integral,
A polynomial f(x) in K(x) with integral coefficients is primitive in ease 
the greatest common divisor of its coefficients (considered as elements 
of 0 or of some other integral domain) is 1 »
Lemma 3*3 (Hensel) Let K be conçlete in the exponential valuation (Ç »
Let f(x) be a primitive polynomial with integral coefficients in K«
Let gg(x) and h^(x) be two polynomials with integral coefficients in K 
which satisfy f(x) = So(x)ho(]c) modulo P, where P is the set of all 
elements in K with Ĉ (a)-=>- 0. Then there exist two polynomials g(x) s)h(x) 
with integral coefficients in K for which g f(x) = g(x)h(x)

f(x) = g^(x)(mod P) 
h(x) = hQ(x)(mod P) 

provided gg(x) and hQ(x) are relatively prime modulo Po It is g moreover ̂ 
possible to determine g(x) and h(x) so that the degree of g(x) is equal 
to the degree of gç(x) modulo P«
Proofs Since, without changing hypothesis and conclusion, it is possible 
to omit in g^(x) and h,̂ (x) coefficients contained in P, it may be assumed 
the go(x) is a polynomial of degree r and that the leading coefficients 
of go(x) and h^(x) are units. Assume g (x) = xF+... . If b is the leading
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coefficient and s the degree of h^Cx), then the leading coefficient of 
g^(x)h^(x) is b are the degree The factors g(x) and h(x) shall
be constructed so that g(x) is a polynomial of degree r and h(x) a poly­
nomial of degree n-r.
By hypothesis, all the coefficients of the polynomial f(x)-go(x)ho(x) 
have positive values; let the smallest of them be(f̂ -=>-Oo If oothen 
f(x)=g^(x)hQ(x) so that nothing else need be proved* Since gg(x) and 
h^(x) are relatively prime modulo P there exist two polynomial^-l(x) and 
m(x) with integral coefficients in K for which

l(x)gQ(x)+m(x)hQ(x)*l(mod P) 
holds* Let the smallest of the values of the coefficients in the poly­
nomial l(x)gQ(x)-l-m(x)ho(x)—1 bec^ ?» 0* Let £ be the smaller of andd^2 
and let 'ÏÏ' be an element for which ( ‘7T ) = ̂  *
Then we have:

(1 ) f(x) = g^(x)hQ(x) (mod (7T))
(2 ) 1 (x)go(x)-frm(x)ho(x>|fmod ('??))

where by (71) is meant the principal ideal generated by // *
Now construct g(x) as the limit of a sequence of polynomials g^(x) of 
degree r, beginning with go(x) and, similarly, construct h(x) as the limit 
of a sequence of polynomials hji(x) of degree less than or equal to n-r 
beginning with ho(x)» Suppose g^^x) had h^Cx) have already been deter­
mined so that:

(3) f(x) = gĵ (x)hji(x) (mod
(4) S n M  = goĈ c) (mod TT)
(5) hn(x) = ho(x) (mod 7T)
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and that g^(x) = xF+... has leading coefficient 1* For determining 

^n+l(x) and h^+lCx) puts

(6) gn+l(x) * gn(x) *
(7) hn+i(x) = hjj(x)

Then:

^n+l(x)hn+i(x)-f(x) = gn(x)h^(x)-f(x)*'n' x ) v (x) + h ^ ( x ) x ^
4- TT u(x) -V- (x)
By (3) 3 put f(x)-gji(x)hn(x) » 'TT ̂ '*'̂ p(x)s then:

®n+l(2c)hn+l(x) - f(x) = TTU+l ^^(x)-i/-(x)+hjj(x)u(x)-p(x)5 mod*7Tn-*-2.

For the left side to be divisible by'TT^*^, it suffices that
(8) g^(x)v-(x)+h^(x)u(x) 5 p(x) mod TT 

be satisfied. Thus multiply (2) by p(x) and
(9) p(x)l(x)gQ(x)+p(x)m(x)h^(x) s p(x) (modTT).

Divide p(x)m(x) by g^(x) so that the remainder u(x) is of degree less 
than r and

(10) p(x)m(x) “ q(x)g^(x)+u(x).
Substituting (10) into (9)

£p(x)l(x)+q(x)hj,(x)J go(x)+u(x)h^(x) « p(x) mod TT.
Replace by zero all coefficients of the polynomial in braces which are 
divisible by 77“ so that

(11) i/-(x)g^(x)+u(x)h^(x) = p(x) mod 77̂ .
From (ll) follows idie desired congruence (8) because of (U) and (S). 
Furthermore, u(x) is of degree less than r and because of (6) gn+i(x) is 

of the same degree and has the same leading coefficient as g^(x). It 
remains to show that V(x) is of degree less than or equal to n=r. If
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this were not the case, a highest term of degree greater than n would 
occur in the first terra of (11) but not in the others* By (11) j, the 
coefficient of this terra would have to be divisible byTT, so that the 
leading coefficient of o^(x) would be divisible by 'TT* But since all 
coefficients in tt<x ) divisible by *77" have been omitted, i/-(x) is of 
degree less than or equal to n=r, and the proof is complete,

A polynomial f(x) of degree h  is said to be separable over a 
field k if it has n distinct roots in some root field K S k| otherwise 
it is inseparable* A finite extension K3- k is called separable over 
a field F if every element in K satisfies a separable polynomial equa­
tion over k* An element x in K is purely inseparable over k if some 
p® power of X belongs to k for e 2: 0* K is a purely inseparable extension 
of k if every element of K is purely inseparable over k* If a field k 
is algebraic over its prime field then it is called absolutely algebraic. 
The set of all elements of K which are algebraic over k is called the 
algebraic closure of k in K, By the discriminant of a polynomial is 
meant the norm of the formal derivative of the polynomial. Let h(x) be 
an irreducible polynomial and suppose r(x)=h(x)™“^(x] where a(x) and b(x) 
are relatively prime to h(x) * Then set (S} (r(x)) = ra* If ra = 1 then the 
valuation (Ç is said to be of the first degree*
Lemma 3*^ Let K be a field vhich is either of characteristic 0 or not 
absolutely algebraic, and let L be its separable finite extension* Then 
there exist infinitely many valuations in L which are of first degree 
over K*
Proofs Let L = K(o<) and let F(x) = ^^+aj^„23̂??̂ "l+**o+aĵ  be the minimal
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polynomial over K with oC as a root. Assume that n 1 and let d be 
the discriminant of F(x)« It will be sufficient to get infinitely many 
pairs (wjif ) g where w c K and dp is a valuation in Lj, with mutually pair­
wise distinct ' s such that for each pair (wjCp)s

(1 ) <P (d) = 0
(2) (a^) 2: 0 for i=lj,2j..«j,n-l
(3) (c< -w) 0

for with such a pair and with F(x+w) « 3£p+bjj_̂ 3d̂ “ -̂«-®.o+b̂  it follows that:
(U) ( oC ) -S’ O because of theorem 2.9 since << is in the

integral closure and d? (w) ̂  0 since -w = (=< -w) - aC and (<< -w) O5
(Ç (<< ) 2= 0;

(5) CP (b^) = ^(F(w)) « (F(w)“F( t/N.)) > 0  since «<-w is
a factor of F(w) “ F( ) and (oC -w) 7*0 by (3)g

(6) (g (b^) = (P(F^(w)) * 0 since n F̂  (x) is the norm of
F*(x) and the norm of the derivative is zero, and C5 (b^) z  0 for
i=2,...,n-l because the b^'s are polynomials in the â '̂s and w with 
integer coefficients hence are in the valuation ring. The value of a
constant times the b^*s or w®s is greater than or equal to the minimum
of their individual values which are all non-negative.

From lemma 3.3, F(x+w) can be factored in the <? -completion of K 
into a product of the foim G(x)»x with G(x) prime to x and thus is of 
the first degree over K« Either the field K has an element t, transcen­
dental over the prime field F, or is of characteristic 0. If it is the 
first, take a transcendence basis (tgu,...) of K over P, denote the
algebraic closure of PCu^^Ug,...) in K by Q and set Z = Q [3 9 R ^ Q (t)
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In the second case set R = P and denote by 2 the ring of rational integers 
which is Considered as being contained in P« In either case let I be the 
totality of elements in L integral over 2» Let c 0 be an element of Z 
such that CcCei* Take an element Wq in Z which is of sufficiently

I - totality of elements in L integral over

Q<^lgebraic closure cf P(u2 ,n2

high degree in t or of sufficiently large absolute value, according as 
2 “ Q |_t7 or the ring of rational integers® Then the norm,

(co<=Wq ) is a non-unit in 2 and there exists a prime ideal in l^R(o<.)
containing CcC-^fo^ In fact, c «<=Wq is an irreducible polynomial and
generates a prime ideal® Let be an extension to L of the valuation of
R(oC) defined by « Then (C ĵ -Wq );:̂ 0 and it is desired to obtain an
infinity of wq's such that the corresponding d} " s are all distinct® It
will be convenient, and possible, to choose w^ so that (c^ 9̂ 0) ® 1 in
loR(<^)® This implies that c «C e P and Wq ^ P since CoC -w^ £p® Consider
now getting an infinity of these pairs (w,4>)® Suppose Wq ^^^,o o<,,Wq (’̂^
have been chosen and with them the corresponding P^^), p(2)g..*gp(m) 
satisfying the above conditions, so that the p(*) are all distinct® Take

satisfying the consitions above on w^, from p(^%ip(^)n«. ® P%z®
The corresponding prime ideal is different from p(l)9p(2)^^^^^p(m)
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^ p(ni+l)^ In this manner an infinite sequence of distinct 
prime ideals is obtained and thus also an infinite sequence of distinct 
valuations in L* Now 61 (^^(d) = 0, (here ^ = 0

wherever a^+0 ) and CpC'^)(c) = 0 for almost all n, since an element can 
only be in a finite number of the P's. For any of such n's,(f («<-w) 0
with w “ WqC“^o Therefore an infinity of pairs (wg cp ) has been obtained 
with distinct Si 's satisfying (l),(2),and(3)*
Lemma 3*6 Let L be a field and K be its proper subfield* Except either 
when L is of characteristic p 0 and absolutely algebraic or when L is 
algebraic and purely inseparable over K there exists a pair of distinct 
(exponential) valuations in L which coincide on K»
Proofs There are two cases which arise* The first is when L is a 
transcendental extension of K* In this case the same procedure used in 
lemma 3.^ establishes the lemma if the roles of L and K are interchanged* 
The second case is when L is a separable algebraic extension of L* To 
establish thisg the reader is referred to theorems 3 and U of chapter U 
in "The Theory of Valuations" by 0. F, G* Schilling <*

SECTION II 

A THEOREM CONCERNING THREE FIELDS

For the next two lemmas and Luroth's theorem consider a field F g 
a transcendental x over F, and y e F(x),y = ®^^Vh(x) where g(x) and h(x) 
are relatively prime polynomials in F [xf » Let m be the maximum of the 
degrees of g(x) and h(x) in F [x| • Of course FcF(y)cF(x)*
Lemma 3«7 With the above as sumptions g x is algebraic over F(y) of degree m
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and g(t)-yh(t)=p(t) is the minimal polynomial for x over F(y).
Proofs p(x) = 0 follows from the definition of g(x) and h(x)o p(t) is 
of degree mo It must be shown that p(t) is irreducible« p(t)£ F jtg^ 
is primitive in t and irreducible in F(t)£yJ • It is therefore irreduc­
ible in F » hence irreducible in F(y) ^  *

Before considering the second lemma, note that since F(x) is 
algebraic over F(y), F(y) must be transcendental over F,
Lemma 3*8 If ^g(x),h(x)j ® 1 with maximum degree m, then m(x,t) =
g(x)h(t)-h(x)g(t) is primitive in t (also in x, by symmetry),
Proof: Let g(x) =g^+g2X+. . . f h(x)®h^,+h^x+« oo-frhjĵ xPo Then m(xgt) = 
g^h(t)-h^g(t)+ jE^h(t)+h]^g(t)] X4-00.+ p^h(t)4>h^g(t^ x^+o»o « If this 
is not primitive there exists p(t) such that p(t) divides 
*^^^i^('fc)“hig(t^ - |g^h(t)-h^g(t^ ^  h (t) for every

choice of i and But this is just “ ^0/^^ h(t)| now p(t)
does not divide h(t) because of it did, it would have to divide g(t) 
and these are relatively prime» The quantity in brackets is not always 
zero since if it were, the polynomials g(x) and h(x) would be propor­
tional.
Theorem 3.9 (Luroth) Any field L such that F c L  &F(x) has the F(y) for 
some y £  F(x). (L is isomorphic to a simple transcendental extension of F„) 
Proof: Suppose the minimal equation of x over L is p ( t)«t^a^_2%^'°^+» = o"^o=0
a^£L. Not all the a^»s are in F. Suppose a^^F and take y = 

with m the greater of the degrees of g,h. F^F(y) c L c:-F(x) where jF(x)sF(y')| 
» m and jF(x):L^ = n. Now F(y) & L and, by lemma 3,7, m a-n. Write p in 
primitive forms p(x,t)^Cn(x) t^+c^^^(x) „.+Cq (x ).
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By lemma 3.7, g(t)-yh(t) has p(x,t) as a factor in F jx,-^ . Thus 
h(x)g(t)-g(x)h(t) -with degree m in x is equal to p(x,t) q(x,t) of degree 
greater-than or equal to m (since gjh were part of a coefficient). There­
fore the degree of p(x,t) in x is m, q(x,t) is a polynomial in t alone; 
but by lemma 3,8 h(x)g(t)-g(x)h(t) is primitive, whence q is a constant 
in F* Then the degree of x over L equals the degree of x over F(y) so 
n+m, and L“F(y), as was tp be shown.
Theorem 3*10 (Herstein) Suppose F,K, and L are three fields such that 
F<=K«L (proper inclusions). Suppose that for every x in L there exists 
a non-trivial polynomial f^(t) in t with coefficients in F (and which 
depend on x) such that the element f^(x) is in K, Then either g 

(a) L is purely inseparable over K 
or (b) L, and so K, is algebraic over F,

Proofs Suppose that L is not purely inseparable over K. Then there exists 
an element in L which is not in K and which is separable over K. The set 
of all elements in L, separable over K, forms a subfield of L« K is
contained in because L is not purely inseparable over Kj L 4̂  K, If this 
subfield Jj‘ were algebraic over F, then K would also be algebraic over F, 
This, combined with the fact that L is algebraic over K, would then lead 
to the desired conclusion that L is algebraic over F, Thus suppose, to the 
contrary, that there is some element a<£L^, a which is transcendental 
over F, (Being in L , a is separable over K)« The following shows this 
leads to a contradiction.

Let L = F(z)g the set of rational functions in a over the field F. 
Letlc “ Lor. Consider the three fields, F,K",L,here These
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inclusions are all proper since atfL^ a ^ K  and since a is algebraic 
over K but not over F* If x e L  then there is a polynomial f̂ .(t) with 
coefficients in F so that f^(x)cKg since f ^ ( x ) ^ t h e n  f^(x)€lK* Thus 
the conditions on the three fields,F^KjL carry over to F,K,L.

By theorem 3o6, K is a rational function field over F in some s,
K = F(s). L = K(a) is of finite degree and separable over K, By lemma 
3.3 there exist two distinct valuations and o n w h i c h  coincide
on Ko Such 4^ and exist which, in addition, are trivial on F« Thus 
for these two valuations the following properties holds

1* There exists a ueL, u ^ K  so that 4^(u) ^ 9̂ 2(0.)
2o <3^(k) = for all k € K
3o “ ^0:^) = 0 for all°(4 0 in F*

Without loss of generality it may be assumed that f^(u) > 0. Ey hypo­
thesis, k = 5 K where é 0,
n i r ^ l o  Thus 4^(k) = 4^(k)<, Since = 0 for each i (consider only
the non-zero coefficients that occur in the expression for k) and 
since o(^ 4 0, = r 4^(u)< m 9^(u) for m > r  occurring
in the expression for k with non-zero coefficient* Thus, since ^  is an 
exponential valuation, it follows that 4^(k) = r 4^(u)« Since 0<^(k) = 
«îPgCk) then 4^g(k) > 0* Thus the same argument used for 9^ can be 
repeated and it follows that <P^(k) = r <p^(u)* But f^(k) = g9^(k) 
so that r *P^(u) = r 9^g(u) which, since r = 0, implies 9\(u) = f^(u).
This is contrary to the assumption that fR. (u) # 4R,(u)<,JL t.
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