View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by University of Montana

University of Montana

ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &

Professional Papers Graduate School

1968

Ring and its complete matrix ring

Leonard Joseph McPeek
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation

McPeek, Leonard Joseph, "Ring and its complete matrix ring" (1968). Graduate Student Theses,
Dissertations, & Professional Papers. 8233.
https://scholarworks.umt.edu/etd/8233

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.


https://core.ac.uk/display/267574213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F8233&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/8233?utm_source=scholarworks.umt.edu%2Fetd%2F8233&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

A RING AND ITS COMPLETE MATRIX RING

By
Leonard Joseph McPeek
B.A., University of British Columbia, 1959

Presented in partial fulfillment of the requirements for the degree of
Master of Arts

UNIVERSITY OF MONTANA

1968

Approved by:

Chairman, Board of Examiners

Graduate

August 6, 1968
Date

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: EP39034

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,
a note will indicate the deletion.

UMI
" Dissertation Publishing

UMI EP39034
Published by ProQuest LLC (2013). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code

ProQQuest

ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 481086 - 1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGEMENTS

I am indebted to Professor Gloria Hewitt for suggesting
the topic of this thesis and for the encouragement and guidance
she provided during the preparation of this paper. I also want
to thank Dr. Hewitt for her critical reading of the manuscript
and for her many helpful suggestions during the writing of this
thesis. 1In addition I want to thank Professor M, Maﬁis for his
critical reading of the manuscript, and my wife for her typing

of the manuscript.

LQ Jo Mo

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

CHAPTER PAGE

I.
II,

IT1I.

IV.

INTRODUCTION AND PRELIMINARIES ,.cessengesvsersncococsscccel
DEVELOPMENT OF THE COMPLETE MATRIX RING ,,.cocepecscsqaceced
RELATIONSHIPS BETWEEN A RING AND ITS COMPLETE MATRIX

RING covceeccepsoncetesassorsccnrsacsssasrsossegsssansessonpalB
DETERMINANTS AND SYSTEMS OF LINEAR HOMOGENEQUS

EQUATIONS -Ql'OQQ..'.Q-C.QQCQ.Q.l..OQOOQ.O"OQOQ..Q.""935

REFERENCES Q'..’Q.Q'.’OOQOQOOQQQ.'QQGQ'Q’.....YO.OQQ'..Q'O,Q,Q,AZ

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER I

INTRODUCTION AND PRELIMINARIES

The theory of linear transformations from one vector space to
another furnishes a convenient approach to the study of matrices
over a field. Herstein [4] and Halmos [3] develop the theory of
matrices over a field from this point of view.

This thesis will develop the more general notion of matrices
over an arbitrary commutative ring with identity. The reader who is
familiar with the theory of matrices over a field will recognize that
many of the results we develop here are direct generalizations of
results in the study of the theory of matrices over a field, 1In the
development of the complete matrix ring, the basic concepts regarding
modules come from notes taken during a seminar in Ring Theory that
this author attended during the Summer of 1966, The basic concepts
of modules may be found in Zariski and Samuel [IQ] and in Jans [5].
We will show that there is a one~to-one correspondepce between the
set of all n by m matrices over a commutative ring with identity and
the set of homomorphisms from one unitary free module to another.
Further, we show that the set of n by R matrices and the set of
homomorphisms from one unitary free module into itself are isomorphic
rings with identity.

In Chapter I1I we develop certain relationships between the ring
itself and its complete matrix ring. The basic properties of rings
and ideals, a development of which may be found in McCoy [8] s enable

us to characterize the ideals in the complete matrix ring.
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The concept of a ring being Noetherian may be found in Zariski and
Samuel [11} +» We are able to show under what circumstances the
complete matrix ring becomes Noetherian, Chapter III concludes with
a comparison of the radical properties of a ring and its complete
matrix ring. Divinsky [2] provides us with a thorough development of
radicals. We will show the equivalence of a commutative ring with
identity and its complefe matrix ring being both nil-gsemi-simple and
prime-semi~gsimple. We also show when the complete matrix ring is
Jacobsonesemi-simple.

Chapter IV develops the theory of determinants over a commutative
ring with identity along the lines that Artin [1] develops determinants
over a field. We follow the development of McCoy [7] and characterize
inverses and zero divisors in the complete matrix ring.

Before proceeding further, we list some of the notation that
recurs throughout this paper.

Numbers in square brackets, such as [5] , indicate references.

We will use the symbol { ) to represent set theoretic union,

f\ for intersection, . for inclusion, etc., 1In addition to these
symbols, we will use J . to represent a summation and = to represent
an isomorphism between two sets.

A map from one set to another will be indicated by f, g, h, ... .
If £ maps M into N, this will be denoted by f:M—>N, For mappings
f:M—=>N and g:N—==V, let g o £ denote the composite of the mappings.
If T is a subset of M and S a subset of N, then £[T] =~{f(t) I teT }

will represent the image of T im N under the map f.
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f-'[S] = {m €EM | f(m) € S} will represent the inverse image of S in M
under the map f. For a € M, f(a) denotes the image in N of the element
a. We sometimes write im f for £ [M] .

The set of natural numbers will be represented by N and the
integers by 7ZZ . Lower case Latin letters a, b, ¢, ..., will
generally denote elements of sets with the exception that matrices
will be denoted by capital Latin letters A, B, C; ... « Subsets of
matrices will be denoted by capital script letters (I, B , coo «
When we wish to refer to the individual entries of a matrix A, the

matrix will be denoted by A = (‘ij JorA=/a, a, ...a8a,.
.2| .21 o e .zn

L4

2mi ®ma *cc ®mip

Throughout this thesis we will assume that the reader is familiar
with the concepts and basic properties of rings, ideals, fields,
matrices over & field, a vector space over a field, and determinants of
matrices over a field.

If a ring has identity, 1 will stand for that identity. It is
assumed that 1 # 0. For non-empty subsets A and B of a ring R, A B is
the set of all sums Zriaa b; where nc N and a;e¢ A , b;

1
it=1
If R is a ring and S < R, then ¢S ) will denote the ideal in

e B.

R generated by S, If S = {a, a,, ...,an} s < S ) will be written

simply =as <a', cses ‘nl> . In general, if a € R, then <a ) =

{na+ra+as+ Z':p‘-a qQ: { n, m &£ N;r,s,pi,qLeR} :
i=t

This may be indicated by (a) = RJa+Ra+aR+RaR. IfR
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m : :

has 1, then <I>"'EZP;‘Q¢" méN;PL’qLQR}’
[y

RaR, IfRis commutative, then <a>={na+ra|neN,

ren}= FRMa + R a. Finally if R is commutative with 1, then
<a> = { ralreR; =R a.

We will have occasion to refer to Zorn's Lemma,which states that

if each chain in a partially ordered set has an upper bound in the
set, then there is a maximal element in the set.

A set, S, of elements in a partially ordered set P with ordering

( forms a chain if a, b € S implies a ¢ bor b ( a.
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CHAPTER IIX

THE DEVELOPMENT OF THE COMPLETE MATRIX RING

Definition 2.1 For a commutative ring R with 1, a non-empty set M is

called a unitary module over R, or a unitary R-module, if:

1. M, +) is an abelian group
2. there exists a map f: R x M — M such that for every
r, s € R and for every x, y € M,
i) f(r, x+y) = £(r, x> + £(r, y)
ii) f(r + s, x) = f£(r, x) + £(s, %)
iii) f(rs, x) = £{r, £(s, x))
iv) f(1l, x) = x.
We denote f(r, x) by rx.
Examples:
1. Let R= /Z , M be any abelian group with respect to +. Then M is
a unitary R-module.
2. Any vector space over a field F is a unitary F-module.
3. Let R be any ring wi*h 1. Let M be any left ideal of R.
Then M is a unitary R-module.
4, Let V be a finite dimensional vector spece over a field F.
Let A be a linear transformation of V. V can be considered as
an F [ X ] - module by defining:

if f=a, +a x+ ... +a, x , then

/
fv = a, +a, (AV) + ... +a, (A"v) = £[A]v.
Definiton 2.2 For unitary R-modules M and N, let h: M == N.

Then h is called a homomorphism if for every r, s € R and for every
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x, yeM, h(rx + sy) = rh(x) + sh(y). h is called an epimorphism

if h is onto, a monomorphism if h is 1-1, and an isomorphism if h is

1=-1 and onto.

Definition 2.3 For a unitary Remodule M and S a subgroup of M, S is

called an R~submodule of M if RS < S.

We note that if R is a ring considered as an R-module, then the
R~submodules are just the left ideals of R. If V is a vector space
over a field F, the F-submodules of V are what we usually call the
subspaces of V and the homomorphisms of V are just the linear
mappings of V.

Definition 2.4 Let L:M --> N be a homomorphism, M and N unitary

R-modules. { xe M ‘ h(x) = 0, the identity in N } is called the
kernel of h, denoted by ker h.

We now take a look at some of the properties of homomorphisms
over unitary R-modules. The reader will recognize the corresponding
properties as applied to linear transformations over a vector space.
Lemma 2.1 Let h:M —* N be a homomorphism. Let K be an R-submodule
of M and H an R-submodule of N. Then:

i) h[K] is an R-submodule of N.
i1) HW'[H] is an R-submodule of M.

i1ii) the mappings f:K == h[K] and g:H =2 h [ H] are inverse

one~to-one correspondences between the sets of R-submodules
{ R © M| Kis a submodule of M, ker h € K § and Z“ cN|mn
is a submodule of N, H € im h ; . Henceforth submodules will be

——

abbreviated s.m.
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Proof: i) Let r € R and x, y € h[K]. Then there exist a, b € K such
that h(a) = x and h(b) = y. As K is a s.m. of M, a - b € K. Thus
x = y = h(a) - h(b) = h(a - b) € h[K]. Also rx = rh(a) = h(ra) € h[K].
Hence h[K] is a s.m. of N.
ii) Let r€R and x, y € };,[ H} . Again there exist a, b e H

such that h(x) = a and h(y) = b. So h(x -~ y) = h(x) - h(y) =
a ~beH and h(rx) = rh(x) = raeH. Hence x - y and rx e’h—'[H].
Thus h '[H] is a s.m. of M.

iii) For any s.m. K of M, obviously h{K] € im h and is a s.m.
of N by i). Suppose ker h € K. Let h[K] = H. Let h'[H] =3 € M.
We must show that J = K. It is well known that K & J. Let x € J.
Then h(x) € H. Thus there exists y € K such that h(y) = h(x). Hence
h(x) - h(y) = h(x - y) = 0; so x ~yekerh € K. As y and x ~ yve¢Kk,
x € K. Thus J &€ K and hence J = K.

Conversely, let H be a s.m. of Nwith H € im h. It is well
known that h| h [H]] C H. As O€H, ker b < R[] . Let x € H.
As H <€ im h, there exists y € M such that h(y) = x. Then y¢ h-'[H]
and x = h(y) € h [h.'[:ﬂj:l . Thus H € h [h-'[H]] . Thus we have
H = h[b'[A]] and K = W'[h[K]] for all s.m.'s. Hof NwithH < imh
and s.m.’s K of M with ker h € K. Hence f and g are inverse 1 - 1
correspondences.

Observe that im h is a s.m. of N because im h = h[M] and ker h is
a s.m. of M because ker h = h | [{ 0 }] .
Lemma 2.2 Any intersection of R-submodules of an R-module M is an
Remodule. Moreover if S and T are s.m.'s of M, then S + T is a s.m,

of M.
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Proof: Let { S- l j e r Z be a family of s.m.'s of M. Clearly

nS c M. Letx,yens\, Thenx,yesj for all jel'. As
Jeirr ,,er‘
each S; is a s.m. of M, x - y€5; for all j e ™ , which implies
that x - y ¢ nS Next, let re€R. ThenrxeSJ- for alljel—'
jerd
So rxens. Thus ﬂs is a s.m. of M,
JEI_‘J "

Let x, yes+'r. Thenx-s+tandy-'§+zwhere s, 8 € S
and t, t € T. Since S and T are s.m.'s of M, X =y =s + t = (+¢t) =
s =-8+¢t=-t €S+ T. PFinally, 1let r € R. Then r(s + t) =
rs + rt € S +T. Hence S+ T is a s.m. of M.

For S, a s.m. of M, let M/g denote the factor group of M. Then
M/s is a unitary Remodule where the module operation is defined by
r(m + S) = rm + S. The natural homomorphism f:M == M/s given by
f(m) = m 4+ S is a module epimorphism. For we know that f is a group
epimorphism and if r € R and m + S & l'!/S, then f(rm) = rm + S =

r(m + S) = rf(m). M/s is called the quotient unitary R-module of

M by S.

We now consider some fundamental properties of homomorphisms.
Theorem 2.1 Let h:M == N be an epimorphism where M and N are unitary
R-modules. Let ker h = K. Then K is a s.m. of M and /K 2 N.

Proof: Define g:M/K ==> N by g(m + K) = h(m). g is well defined, for
ifx+K==y+KinH/K , then x = y € K. So h(x - y) = 0 implies that
h(x) = h(y) which implies that g(x + K) = g(y + K). g is onto because
if 2z € N, there exists m € M such that h(m) = z. Thus there exists
m+ K in M/K such that g(m + K) = h(m) = z in N. Next, g is a

homomorphism. For if x + K, y + K are in M/K and r, s € R, then

g(r(x + K) + s(y + K)) = g((rx + K) + (sy + K)) = g((rx + sy) + K) =
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h{rx + sy) = rh(x) + sh(y) = rg(x + K) + sg(y + K). Finally, g is
1-1 because g(x + K) = g(y + K) implies h(x) = h(y) which implies
h(x) - h(y) = 0. Thus h(x - y) = 0 and x - y € K, That is, x + K =
y + K. Thus g is an isomorphism and M/K £ N.
Theorem 2.2 For unitary R-modules M and N, let h:M -=» N be an
epimorphism. Let H be a s.m. of N. Then h"[H] = K is a s.m. of M
and M/K € N/m .
Prcof: By lemma 2.1, K is a s.m. of M. Let £:N —> N/p be the
natural homomorphism where £(n) = n + H. Define g:M -——> N/yg by
g = foh, g is an epimorphism because f and h are epimorphisms,
Now ker g = {xe M | h(x)éH}= ix I xeh"[n]}n {x | xEK}z K.
Finally, by theorem 2.1 M/k = N/g |

Alternatively, this theorem may be restated:
Let h:M —~> N be an epimorphism and K any s.m. of M such that
ker h € K. Then h[K] = H is a s.m. of Nand M/ = V7, .
Theorem 2.3 Let U € S & T be submodules of the module M. Then
S is a s.m. of T, S/U is a s.m. of T/y , and T/IVS/U = T/S .
Proof: It is clear that S is a s.m. of T. Let h:T --AT/U be the
natural homomorphism. Then ker h = U & S. Moreover h[S] = S/U
is a s.m. of T/ . So by theorem 2.2, T/g & T/U/S/U .
Theorem 2.4 TIf S and T are s.m.'s of a module M. Then

i) S+ T is a s.m. of M containing T as a s.m.

ii) S () T is a s.m. of S.

111) S +m/p 250D .
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Proof: i) and ii) are clear by lemma 2.2,

11i) clearly (8 * T)/p is a module. Define h:s —a (5 + 1)/ by
h(s) = s +T. Let (s +t) + T e(s + T)/T . Now t € T implies that
(s +t) +T=28+ T and h(s) = s + T. Thus h[S] G(S +T)/T and h is
onto. Next, let s, s €S and r, T € R. Then h(rs + Ts) =

(rs +T8) + T = (rs +T) + (¥8 + T) = r(8 +T) = T(3 + T) =

rh(s) + th(8). Thus h is an epimorphism. Now ker h = i X €8S I
x—l—T-T} = {xes | xeT} =s () T. Thus by theorem 2.1
Stsny & G+,

Definition 2.5 Let M be a unitary R-module. Let Ky s, 205 X, € M.

Then M is generated by x,, ..., xn if, for every y € M there exists
Ty, -0 Ty € R such that y = Zr X; . {x s ssay x,\}

called a basis for M over R if {x sses Xp } generates M and
whenever 0 = Zn:rix‘-, then r;x; = 0 for (=1, ..., n. 1If

{ X, oe0s X, .} is a basis for M over R, we define the length of M,
denoted (M), to be n. If X, «+s, X, is a basis for M and if

n
whenever ;rixl = 0, then r; = O for it =21, ..., n, then

{ X,y ceoy X } is called a free basis for M.

Examples:

1. In example No. 1 on page 5, if M = Z/(g) , then Z/(g) is

a unitary /Z -module and { 1 } is a basis for Z /(s) over Z .
Thus I(Z/(s)) =

2. Let M = E, the even integers, and R = Z . Then E is a unitary
Z - module with basis { 2 } . Sod(E) = 1.

3. Let V(F) be a finite dimensional vector space over a field F with

dimension, n. Let { K, 3 eoey xn} be a basis for V over F.
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11
Then { P A xn} is a basis for V considered as a unitary
F-module and Z(V) = n.

n
4., For indeterminsnts x,,... X,, let M = { Zr‘-xl | r; € R,
izl

{=1, ..., n,ne N } . Define:
n
1. 2’, rx; = ésaxi if r; = s; for all 2.
L=/ = n
n

2. é rx;, + ;s;_x;_ = Z_', (r; + s;)x;
HEY] =4 [y
3. 1:x; =x; and 0 + x; = 0 for alli.
n n
4. s rx) = 2 (sr;)x; for all s &€ R.
ey c=¢
Then M is a unitary R-module with basis { Ky eoey xn} . This basis

is a free basis for M over R. Moreover, every module with a free

basis is isomorphic to a module of this form.

Theorem 2.5 For unitary R-modules M and N, let Hom(M,N) =

{ h:M o> N | h is a homomorphism } . Define module operations in
Hom(M,N) as follows: For f, g € Hom(M,N) and r € R, let (f + g) (x) =
f(x) + g(x) and (r£f) (x) = f£f(rx) for all x € M. Then Hom(M,N) is a
unitary Remodule.

Proof: Let £, g, h € Hom(M,N). Clearly f + g € Hom(M,N) and

{(f+g) +h=f+ (g+ h). Let O:M == N by 0(x) = 0 for all x € M.
O ig the zero in Hom(M,N). For f € Hom(M,N), let j:M -——> N be given
by j(x) = "1 £(x) for all x é M. Then j is the inverse of f with
respect to + in Hom(M,N). Finally, rf € Hom(M,N) for all r € R. It
is easy to check that properties 1 and 2 of definition 2.1 are
satisfied. Hence Hom(M,N) is a unitary R-module.

Lemma 2.3 Let M be a module with a free basis, x,, ..., x,. If

f, h ¢ Hom(M,N) are such that f(x;) = h(x;) for i = 1, ..., n, then

f = h. Moreover, if { a,, ..., a,,} is any subset of N and if
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12
h(x;) = a; is a mapping of { X,, eovns Xp } into { a, ..., a, } s
then h extends uniquely to an element in Hom(M,N).
Proof: Suppose f(x:) = h(x;) for.i- =1, ..., n. For any x€M,
x = LZ:rix;_. As £, h €Hom(M,N), f(x) = Zn;'r,; f(x;) = ‘ﬁrih(xl) = h(x).
Hence-f = h. - -=!

1f { 8,, .0, an} is any subset of N and if;h(x;f) = a,-'x-for

n
i=1l, ..., n, extend h by letting g(x) = Z r; h(x;) = Zn;’ r;a;

" L=/ t=1
where x € M is given by x = 2: r;x;. g is clearly in Hom(M,N) and
ts!

this extension is unique by the above,.

In referring to this lemma, we will say an element h ¢ Hom(M,N)
is completely determined by its values on a free basis,

Note that there is a difference between a basis and a free basis.
Recall, from example 1 on page 10, that .Z ( Z/(S))= 1and §{ 11} is
a basis over /Z . However, f 1} is not a free basis because
81 =0and 830 in ZZ . Let x be an indeterminant. Let M =

{ nx I n e Z} . Then M is a unitary ZZ -module with basis {x} ]
So £ (M) = 1. Now as modules, M * 2/(3) because M is infinite while
Zz/kg)is finite. Thus for unitary R-modules M and N, £ @) = .Z(N)
does not imply that M = N. However, if M has a basis with n elements
and M = N, then £ (M) = £ (N). Also if M and N both have free bases

E X, » oo » xn} and Z Y, 5 eee > y,,} respectively, then £ (M) =
AL(N) and M &= N. For let f ¢ Hom(M,N) with f(x;) = y; for i = 1,
«eo, N. Then if x ¢ M with f(x) = 0, there exist r,, ... , r, € R

n n n
such that f£( Z:ri_xi) = 2: r;f(x;) = Z r;y; = 0. Hence ry = 0 for
“=1 Y L=

i=1, ... , n which implies that x = 0. Thus ker f = { 0} . That

ig, £ is an isomorphism.
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13

Definition 2.6 Let M and N be unitary R-modules with free bases

{x, s eoe s x,,,} and {y, y soe 3 y,,} respectively. Let h € Hom(M,N).

Then h(x;) = Z a,y; where a; e R, i=1l, ... , n, and j =1, ..., m.

[
=t
That is, h determines a rectangular array of nm elements aij € R. This

array Ak = (a;;) is called the matrix of h with respect to the free

i
bases {xl, oo p xm} and {y,, cos 9 y,,} .

Note that By cee s anj are uniquely determined by h(x,-) for
j=1, ... , m. So each h € Hom/M ,N) determines amn unique rectangular
array, Ah’ of elements of R. Conversely, let A = (au) i=1, ..., n,
jJj=1, ..., m be any array of nm elements of R. Define h,:M—>N by
hA(xj) = .Z':'.‘ a.y; . Then hAe Hom(M,N) and is uniquely determined by
lemma 2.3, because { h(x,), ... , h(x,)) } € N. So each array, A,

of nm elements of R determines an unique element h, & Hom(M,N).

a;jeR,i=1,“.,n,j=1, ...,m}

Let M (R) = { (ay;)
where R is commutative with identity 1.
Theorem 2.6 Using the notation above, l'l-=m==iAh and A —=< h, are
inverse 1-1 correspondences between HM‘(R) and Hom(M,N). That is,

hAh= h and AhAﬂ A.

n
Proof: hA(xj) = E.:. a,v; » j=1, ... , m, where A = (a‘.J-).,
Th:s A"A= (au) = A. Convernsely, let Ah = (a;j) where h(xj) =
ey, . Then h, (x;) = Z3 a;y, . By lemma 2.3, h = Ba s

L= (=1

We now define operations on M (R) so that lgm_gk) becomes an

R-module and the correspondence above becomes a module isomorphism.
n

Let faww*(a;j) and g == (bij)' Then f(xj) = Z: a.y; and

;:‘
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n

n
g(x;) = Z: byyi. Now (£ + g) (x;) = £(x;) + g(x;) ”_Z::(aaj'*‘ byly: =
n L= L¥
PN c; Y: where cy; = a;+ by. Then f + g e (cij)' (c;j) will be called

t.:l;; of ("tj) and (b;j), denoted by (a;_i) + (b;j). Now let r e R.
Define r(‘ij) = (ra;j). It is clear that these module operations are
preserved by the l1l-1 correspondence h —~=Ah. Since Hom(M,N) is a
unitary R-module, so is M (R) and Hom(M,N) = M"gR) as

R-modules.
Theorem 2.7 Let M and N be R-modules. Suppose M has a free basis

§ X, s eee X, } and N has a basis f Y, s eee s y,,} . For each
j=1, ... , mand each i = 1, ... , n, define h;j:M «~=>N by hij(xn) =
Oif K# 3

gy‘- if X = }
Then h,\_je Hom(M,N) and { h;j | ie=l, ... ,n, j=1, ... , m } is a
basis for Hom(M,N). Thus £ (Hom(M,N)) = nm. If, in addition,

{y, s 2o s yn} is a free basis for N, then E hi.j I i=1, ... , n,
j=1, ... , m } is a free basis for Hom(M,N).

Proof: First note that h;j € Hom(M,N) by lemma 2.3, To show that

{ h;_j I i=1], ... ,n, =1, ... , m} generates Hom(M,N), let

(4]
g € Hom(M,N). We know that g(x;) = PN a;y; where a; € R. Thus g =
" . X "
(;' ( f‘;-h: aijhlj)s because g(x,) = é &Y T o a b (x,) =
[ o) )
S7(2> ah) (x,) = (2.(2. a.h.)) (x,). Therefore { h., | i =1,
l=i J= v w K izl ey oY K " o 4
ces sy =1, ... , m} generates Hom(M,N). Let 8' Z::. a h,= 0.
= 4=

n w

U
CLomm)) ) = 2 ahyGx) =

(4]
}Z-.E a .y , and ay, =0 fori=1, ... , n because i ¥ is a basis

for N. Thus a’.‘hm(x,{) =0 for i=1, .., ,nand k=1, .., , m,

Then for K=1, ... , m, D=(‘

=

This implies that ‘-‘jhij(x() =0 for i =1, ... , nand j, k=1, ... , m
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and hence that a,-jh;; =0 fori=1, ... ,nand =1, ... , m,

Therefore {h;j I i=1], ... ,n, =1, ... , } is a basis

m
o 1
for Hom(M,N). If {y‘-} is a free basis for N, then é PN a; h; =0
is)

&

implies that a; = 0 for i =1, ... ,nand k=1, ..., , m. Thus
{ h;j I i=1, 0. ,n, =1, ... , m}is a free basis for Hom(M,N).
There are nm such h;. In either case £ (Hom(M,N)) = nm.

2

We remark that if 42 (M) = m, then _¢ (Hom(M,M)) = m~ and

£ (Hom (M,R)) = m. For, as an R-module, £ (R) = 1. Note alsoc that
since l"%.m(R) £ Hom(M,N) as R-modules when both M and N have free
bases, then MM‘(R) has a free basis defined as follows: 1let E‘-j =

(e,) where e, ;= 0 if r + i and 8 # j, and e;j= 1 for i =1, ... ,.m,
j=1, ... , m. To see that { Eij I i=1, ... ,n, =1, ...,m }
is a free basis for Mm(R), observe that E; is the matrix of hij .
The basis elements h, ¢ Hom(M,R) are given by h; (x,) = 0 if
k#iand hy(x;) =1 fori=1, ... , m, Using { 1 } as the free

basis for R over R and f X5 see s xm} as a free basis for M,

R

{ h, l i=1, ... , m } is & free basis for Hom(M,R) and M
Hom (M,R) by the mapping f(x;) = h;.
Extending one step further, if x ¢ M is fixed, the mapping
f,: Hom(M,R) =R given by £, (h;) = h; (x) is in Hom(Hom(M,R),R),by
lemma 2.3, with the free basis { £y, I i=1, ... , m} . Also
M Z= Hom(Hom(M,R), R) by the mapping g(x;) = f, .

Theorem 2.8 Let M,N, and T be R-modules with free bases

15

{x,, cee x,..,}, {y,, ces s yn} , and fz,, ces s zp} respective-

ly. Let f € Hom(M,N) and g € Hom(N,T) have matrices A e (a;j) and

B= (b,j) respectively. Then the composite mapping, g o £, is in
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n
Hom(M,T) and has matrix C = (c;) where c; g; bca,;.
Proof: Let x, y € Mand r, s € R. Then (g o f) (rx + 8y) =
g(f(rx + sy)) = g(rf(x) + sf(y)) = rg(f(x)) + sg(f(y)) implies that
g of &Hom(M,T) Also ( g o f) (x-) g(£(x;)) = g(Z 8.5 =
n P
é;. akig(y') = & aKJ.( ‘Z‘:; b. z;) = § ( Z__; bmam) z;, = § €, Z; where

c‘i = o b.‘n"kj . Thus g o £f will have matrix C = (c,_]).
We call C the product of B and A and write C = BA. Note that
if M= N=T, then products in Mm‘R) are also preserved by the l-1
correspondence between Hom(M,M) and l?“m(R). That is, if
f, g € Hom{(M,M) with matrices A and B respectively with respect to a
free basis { X, 5 aoce 5 Xp } , them g o f corresponds to the matrix
BA by the above. Hence if Hom(M,M) is a ring with respect to this
"multiplication", )L“(R) is also a ring and Hom(M,M) = 1'4"‘(R) as
rings.
Henceforth we will consider the case where N = M, We will write
H(M) for Hom(M,M). Also for m = m we will write Mn(R) for MM(R)
where R is an arbitrary commutative ring with identity. The word
basis will be understood to mean a free basis. All modules will be
understood as having a free basis.
Theorem 2,9 M,(R) and H(M) are rings with identity and
M,(R) £ H(M) as rings.
Proof: The operations in H(M) are + and composition o. We know that
H(M) is an R-module and thus (H(M) +) is an abelian group. Let
f, g, h H(M). Let x € M. Then o is associative, for
(f o(g o h)) (x) = £((g o h) (x)) = £(g(h(x))) = (f o g) (h(x)) =

((f o g)o h) (x).
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Similarly, £ o(g + h) (x) = £(g(x) + h(x)) = £(g(x)) + £(h(x)) =
(fog) (x) + (f oh) (x) implies that the left distributive law holds.
In like manner the right distributive law holds. Thus H(M) is a ring.
Let i:M ===M by i(x) = x for all x € M. Then i is the identity map in
H(M). Thus H(M) is a ring with identity. Finally, by the preceeding
remarks, H(M) = M _(R) as rings, so M, (R) is a ring with identity.

i will correspond to I = (S;Jo)e M,(R) where 8; = 0 if i 4 j and S; = 1.

Definition 2,7 M_,(R) is called the complete matrix ring over R.
Thus far we can see similarities between H(M) and the set of
linear transformations of a vector space V over a field F. For
example, in M the free basis corresponds to the notion of a basis in
the vector space, length to dimension, submodule to subspace, and

quotient module to quotient space,.
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CHAPTER III
RELATIONSHIPS BETWEEN A RING

AND ITS COMPLETE MATRIX RING

In this chapter we seek relationships between a commutative
ring R with 1 and its complete matrix ring M,(R). In particular, we
seek to find properties of R which are inherited by M,(R).

Definition 3.1 Let R be any ring. The center of R, ?(R), is

the set, { s € R l ST = rs forallreR} .

Lemma 3.1 ?(R) is a subring of R.

Proof: As 0 € ?,(R), ?(R):i: @ . Let x, y € ?(R). Then
Xr = rx and yr = ry for all r€ R. So r(x - y) = rx - ry =

Xr = yr = (x = y)r implies that x = y € ? (R). Also (xy)r =
x(yr) = x(ry) = (xr)y = (rx)y = r(xy) implies that =xy e 3, (R).
Thus } (R) is a subring of R.

Definition 3.2 An ideal M of a ring R is a maximal ideal of

R if M # R and whenever there exists an ideal J of R such that
MC JE R, then J=Mor J = R.

Definition 3.3 An ideal P of a ring R is & prime ideal of R if,

whenever A and B are ideals of R, AB &< P implies A € Por B &€ P,

A fing R is a prime ring if, whenever A and B are ideals of R with

AB = 0, then A = 0 or B = 0.

It is easily seen that when R is a commutative ring, the usual
definition for a prime ideal of R (J is a prime ideal of R if
whenever ab € J, then a € J or b € J) is equivalent to the oné above.

For suppose that ab € J implies that a ¢ J or b € J. Let A, B be ideals
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of R with AB € J. Then abe J for all a€ A and be B. IfA ¢ J,
let a € A - J. Then as a ¢ J, ab ¢ J for all b ¢ B implies b € J for
all b€ B. Thus B € J. Conversely, suppose that for all ideals

A and B of R, AB € J implies A € Jor B € J. Let a, b € R with
abe J. Then if A= {a), and B = {(b), aAB = {ad{b) =
{=b) € J. 1fagJ, then {a) ¢ J. Thus {(b) £ J and hence b & J.

Definition 3.4 A ring R is simple if R has at least two elements and

if the only ideals of R are R and { © > .
Clearly any division ring is simple.
We now make a few easy observations about M _(R).
I If a commutative ring R does not have the zero multiplication,
then Mn(R) is non-commutative for n ) 2.
Proof: It is sufficient to give an example for the case n = 2,

Let a, b € R with ba # 0. Then 0 a b 0y =40 O , whereas
0 o) (o 0 (

oo ool 7607

Definition 3.5 An element O # a of a ring R is a zero divisor if

0o o

there exists O £ b € R such that ab = 0.

IT If R is not the zero ring and R is commutative, then M,(R) has
zero divisors for n 2 2.

0 0

o 0

Proof: Llet a € R with 8 # 0. Then |[a o) 0 o =-(o o)
( 0 a

III A commutative ring R has 1 if and only if M, (R) has identity I

and, in this case, I = ( S;j-).
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Proof: Suppose R has 1. Then clearly I = (S‘j) is the identity in M _(R)

Conversely, let I = a a € M,.,(R) be the identity.

Let (c;J) € M (R) such that c;, = O for ki and c; #0 for i € n.

Then /a,, ... a,.\ /cu O\ =/a,c, O\= /c, 0
- L] - - -
a, ‘- ann \Y Can 0 a,, S 0 Con

Thus a;; c;; = c; a;; = cy; for all i £ n which implies that a; is

an identity in R. Hence R has 1. Finally, a;, c;; =c¢,, =0

" K

for all k ¢ i implies a, =0 for all k # i, taking c;; =1 € R.

Thus I = 1 o\e M (R).

0 1
IV For & commutative ring R with 1, the center of M,(R),
9 M, (R)) = { aTl | ae€ R} where I is the identity of M,(R).
Proof: Lets={a1|aeR}.LetaIeSandAeMn(R),
Then (aI)A = aA = 8aAL = A(aI). Thus al € ; M, (R)). So S ¢ ;, M, (R)),
g i, j, =1, ..., n
be defined by E;j = (e.;) where e,; = 0 if r+1i, s+ j and e;; = 1.

Conversely, let A = (a;_j e % M, (R)). Let E;

As was shown in Chapter II, { Eij | i, =1, ... , n} is a basis
for M,,(R). Then A E; = E,-J-A for all i, j =1, ... , n. Hence a;; =
0 =a, for all s¢j, r+i and a;; = a. . So A = ¢cI where ¢ = a;; for
any i. Thus 2 M, (R)) & sS.
We shall have occasion to use the following two lemmas.

Lemma 3.2 For a commutative ring R with 1, an ideal M of R is a
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maximal ideal of R, if and only if R/M is a field.
Proof: Suppose M is a maximal ideal of R. We know that R/M is a
comm. ring with 1. By definition of M, there exists a € R - M.
Consider (a, M), the ideal generated by a and M. M ¢ {a, M) < R.
Thus {a, M > = R. Now 1 € R, so there exists r € R such that
l1=ar +m for somem &M, Sol1l+M=ar +M= (a +M (r + M)
which implies that r + M is a multiplicative inverse of a + M. Thus
the non-zero elements of R/M have inverses. Hence R/M is a field.

Conversely, let M be an ideal of R with R/M a field. Let N be
an ideal of R such that M N € R. If M #£ N, choose a € N - M,
Then a + M # M. Let b € R. As R/ is a field, so (a + M) (x + M) =
b4+ Mis solvable where x € R, That is, ax + M= b 4+ M. Thus
ax - b€ MC N and since ax € N, b € N. Therefore R = N, Thus ﬁ is
& maximal ideal of R.
Lemma 3,3 Let R be any ring and let I be an ideal of R. Then R/I is
simple if and only if I is a maximal ideal of R.
Proof: Suppose I is a maximal ideal of R. Let 4 be an ideal of R/T .
Then there exists an ideal A of R such that I €< A and ¢ = A/I . Iis
maximal implies that A = I or A = R. But then .¢ = (0) or £ = RLT .
Ry1 + { I} since I # R. Hence R/y is simple.

Conversely, let I € A € R for some ideal A of R. Then A/-_I: is an
ideal of B/ . Now since R/I is simple, Arr = €0) or /1 = Ryp
1£ 8/ = <o » . A = I since otherwise, there exists a € A with a ¢ I.
Then a + T ¢ %/  and a + I ¢ I. Thus /. # 0 . 1£ A/ =R/,
then A = R since otherwise, there exists r € R = A. Then r + I € A/I

implies there exists a € A such that r + I = a + I. But then
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r-a€IcAandsoreA. I # RsinceR/I* {I} . Hence I is a
maximal ideal of R,
We now characterize simple commutative rings.
Theorem 3.1 A commutative ring R is simple if and only if R is a
field or (R, +) is a cyclic group of prime order and R has the zero
multiplication.
Proof: If R is a field, it is easily seen that R is a commutative
simple ring. For if I is an ideal of Rwith I # < 0 ) , there
exists a #0 inI. As a'eR, 1l =aa & I. Hence I = R.
Alternatively, if (R, +) is & cyclic group of prime order and
R has the zero multiplication, let (R, +) have order p. R is
clearly commutative. Suppose I is an ideal of R. If I # {0) ,
there is 0+ 2 ¢ I. Since (R, +) has prime order p, a is a generator
for (R, +) and so R = I. Thus R is a simple commutative ring.
Conversely, let a € R. Let Ra = {ra l r € R } . Clearly
o€ Ra. Let xa, ya € Ra. Now xa - ya = (x - y)a € R since x =y € R,
If b € R, b{xa) = (bx)a € Ra and {(xa)b = (xb)a € Ra. Thus Rg is an
ideal of R, As R is simple, Ra = {0 ) or Ra=R. Let I =
[aenl Ra =0} . I#¢@ since 0 € I. Let a, b€ I. Then
r(a = b) = ra -~ rb = 0 for all r € R. Hence a = b € I. Also s(ra) =
(sr)a = O for all s e R, Sora € I. Hence I is an ideal of R.
Again I = <0) or I = K.
Case 1. If I =<0 ) , then for every a # 0 in R we have Ra # 0
implies Ra = R, Thus xa = b is gsolvable for all a + 0, and b € R.
So for every a # 0, there exists x; € R such that x;a = a. Let

a4 £ 0 and b be in R. Then there exists y & R with ya = b. Therefore

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Xab = x;ya = ya = b, That is, x;b = b for any b € R. Hence x; = 1
is an identity for R. HNow xa = 1 is solvable for all a # 0. So each
a ¥ 0 has an inverse in R. Thus R is a field.

Case 2. If I = R, then for every a ¢ R, Ra = 0 by definition of I.

As R is simple, there is O # a € R. { a) =Ra + Za= 7Z a. Also

a # 0 implies (a) % (0> . So <a> = R. Now consider <2a>. if
2a = 0, then the order of & is 2 and (R,+) is cyclic of order 2. 1If
2a # 0, then (22 > = ({ a) implies n2a = a for some ne Z . So
(2n = 1)a = 0 implies a has a finite additive order. Thus (R, +)

is cyclic of finite order. Let m be the order of a. If m is not
prime, then m = r p wvhere p is prime and r ¢ m. Then ra # 0 and
pra =ma = 0. So rahas order p. Now {ra ) #£ {0) implies
{(ra) = R. Hence (R, +) has p elements gnd is cyclic or prime
order p.

Thus we see that the only simple commutative rings are fields
and rings, ZP = Z/(p) where p is a prime integer with the zero
multiplication.

We now take a look at the ideal structure of Mn(R) where R is a
commutative ring with 1.

Theorem 3.2 If S is an ideal of R, then M,(S) is an ideal of M, (R).
Conversely, if .f is an ideal of M,(R), then there exists an ideal
S of R such that ¢ = M (S).

Proof: Let S be an ideal of R. Then S is a ring and so Hn(S) is a
ring. Let (r,j) &€ M,(R) and (a|j) € M,(S). Then (r;j) (a‘-‘.) = (CU)
where cjj Zn r, &, € S since r; a,; € S. Thus (c;J- ) € M, (S).

K=y KKy K o

Similarly (a;j ) (r;J-) € M, (S). Hence M (S) is an ideal of M (R).
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Conversely, let S = { aeR I there exists (a;j ) I J witp
a”-a}. S¢¢ as 0 € S, Let a, b € S. Then there are
(a;;) and (b;j) € £ witha, =42, b, =b. Now (a;) = (b;;) e 4
and ¢,,= a,, -~ b, = a8 - b implies a - b & S. Let r € R. Choose
A= (a;)e J with a, = a. Let E;; = (e,) where e, ;= 0 if
i#r, J#9 and e;= 1. Clearly E-u-eM,.(R). Sincen.-e is an ideal,
(rE, )A = K . Also rE , A = (c"j) where cy = éreix‘xj =

ra,; if i = 1 and 0 otherwise. Hence ra = ra, = c, € S.

H
Similarly ar € S. Thus S is an ideal of R. To show M _(S) = 2 ’
let (a;)e L .

N
Now for 1 { r, s £ n, E . (a;j) E, = E"..(Z: 8 E;J-)E”

n his=t

.,JZ;I'a,j (E,. E;j E¢,) =&, E_ E_ E, =a E,e¢€ .‘e . Hence we have

a € S for all r, s £ n. Since r, s are arbitrery, (a;i ) € M_(8).

rs
Hence f C M, (S).

Now let (a;j )e M (S). By the definition of S, for every
Py, 9 £ n, there is ('b;j )e A with apq = b, . So E,, (b;j) E"l o=
b, Ejq € A . Then ap, EP?EJ for all p.q. But then (‘ij ) =
P-Zr:' 8, Epq € f since </ is an ideal. Thus M .(S) € <! . Hence
().

Corollary 3.2.1 There exists a one-to-one correspondence between the

ideals of R and the ideals of M,(R). This correspondence preserves
inclusion; that is, SC PC R if end only if M _(S) € M (P) C M, (R).
Moreover, maximal and prime ideals correspond to maximsl and prime
ideals respectively.

Proof: Let c.é be the set of ideals of R and 7)’[ be the set of ideals
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of M ,(R). Define f: ._Z-—m-\-'h? by £(S) = M.(S). Define g: ')’Q-—-»-L .,e
by g(9 ) = S where S is gn ideal of R and M,(8) = 4 . Clearly f and
é are well defined. Now (g o f):J—-‘-( and (g o £) (8) =
g [M,\(S)} = §, So g o f is the identity mapping on ve .

Similarly, (f o g): ??? s 77( and (f o g) (9) = f[S] = M,(S) = g .
Thus f o g is the identity mapping on ’h‘l . Hence f and g are inverse
correspondences.

Clearly if S C P are ideals of R, Mn(é) C M, (P). Conversely let
M, (S) C M, (P) be ideals of M,{(R). Let a € S. Take (a;j ) € M,(5) such
that a; = a ifi=1= j and 0 otherwise. Then (a;j ) € M, (P)
implies a; € P for all i, j implies a € P . Hence SC P and f and g
preserve inclusion.

From this we can see that maximal ideals correspond to maximal
ideals. For if P is maximal in R and 9 is any ideal of M, (R) with
M,(P) < L e M,(R), then by theorem 3.2, there exists an ideal J of R
such that ¢/ = M,(J). P maximal implies J = P or J = R. Hence
M, (J) = M (P) or M ,(J) = M, (R) implies M, (P) is maximal.

Conversely, let M,(P) be a maximal ideal of M,(R). Let J be an
ideal of Rwith P € J &€ R. By corollary 3.2.1, we have
M, (P) c M, (J) € M,(R). M,(P) maximal implies M,(J) = M_,(P) or
M, (J) = M,.(R). Thus J = P or J = R implies that P is maximal.

Also, prime ideals correspond to prime ideals. For let P be a
prime ideal of R and suppose M,(T) M,(S) £ M,(P) where T and S are
ideals of R. Suppose M,(S) ¢ M,(P). Choose A & M,(S) - M,(P). Let

a,.; be an entry of A with a_, . ¢ P. Let b € T be arbitrary. Then

rs

bE, € M,(T) and a_ E, = E,.AE;, € M,(S). Hence a,bE, & M,(P).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26
Thus a,. b € P and b ¢ P. This says that T € P and hence that M, (T)
c Mn(P). That is, M,(P) is a prime ideal of M _(R).
Conversely, let M, (P) be a prime ideal of M ,(R). Let a, b € R

with ab ¢ P. Choose A = al and B = bI in M,(R). Elements in ¢{ A > and

r 3
¢ B ) have the form é A, alIC; asnd 32:'.1 B, bID; where A,, C;, B;, D;
n T r 3
€ M,(R). Then (2 A;aIC;) (22 B;bID;) = ab (‘Z A;C;) (;Z_'I B; D))
iz =} ) 2

€ M, (P) because ab & P. As Mn(P) is a prime ideal
{AY {( B) €M (P) and thus A € M, (P) or {(B) S M,(P).
Hence a € Por b € P and P is a prime ideal of R.
Corollary 3.2.2 Let R be a commutative ring with 1. Then R is simple
if and only if M (R) is simple. Hence M, (R) is simple if and only if
R is a field,
Proof: Suppose R is simple. Let <f be an ideal of M,(R). By theorem
3.2 there exists an ideal S of R with J =M (S). If S = { 0 } ,
then ¢ = f 0} , and if S = R, then A =nM (R). Hence Mn(R) is
gimple.

Conversely, suppose M, (R) is simple and let S be an ideal of R.
Again by theorem 3.2, M,(S) is an ideal of M,(R). If M, (S) = { O},
then S= { 0} , and if M,(S) = M,(R), then S = R. Hence R is simple.

Definition 3.6 Let R be a ring with 1., An R-module A is called

Noetherian if every submodule is finitely generated over R. That is,

for every s.m. S of A, there are elements X, Xy, eeo 5 X of S such

wm
that for every x g S, x = Z\ r; x; where r; € R. A ring R is
. =1

(left) Noetherian provided it is Noetherian considered as a module

over itself. That is, every left ideal is finitely generated.

For a commutative ring R with 1, if M, (R) is Noetherian as an
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R-module, ‘then M.(R) is Noetherian considered as a ring. For if 4 is
any left ideal of M,(R) then 4 is a s.m. of M,.(R) because, for any

r € R and any B¢ 4 , TB= (rI)B € Af considered as a left ideal. Hence
R.J4 € .4 . Then as an R-s.m., there are elements A oo 5 Ay

of .J_ such that for any A ¢ ,J ’ Z a; A; vhere a; € R. Pick
t

=

B, € M, (R) so that B; = ;T for i = 1, ... , t. Then A = /2, B;A;;

i=i

that is, .4 is finitely generated over M,(R).

Theorem 3.3 Let R be a commutative ring with 1. Suppose that M (R)
is left Noetherian considered as a ring. Then R is Noetherian,
Proof: Let S be a left ideal of R. Then M, (S) is a left ideal of
M, (R). M,(R) is left Noetherian implies M,(S) is finitely generated

over M (R). That is, there are elements A, ... , AjLof M (S) such that
~ .

for any Ae M (S) A 82:: B; A; w'here B; € Mn(R). Now A = Z: anEP‘I =

-’.. "°|

m [(Z bP? Pq) (Z: c'"! ’ ] (= [, (§ b’*crq) Epe]

Pa"' , 9 =1

[ (Zb‘“)}E since E, E, =01fc54=randEHE,.5-=
XA TR m

Eps if q = r. Thusa,,.,aZ,ZZb Ceo- Let a € S. Then

izt k=t T°

A = aE, € ¥, (S) and a = ﬂ. Kﬂ‘ b/ ci,. Thus § e}, I p=1, ..., n;
i=1, ... , mj generates S over R, Hence R is Noetherian.

Theorem 3.4 Let R be any ring with 1. Let M be a finitely generated
R-module. Then if R igs Noetherian, M is Noetherian.

Proof: We induct on the number, n, of generators. For n = 1,

MER by the map r —=<* ra where a is the generator of M. Hence M is
' Noetherian. Assume the theorem holds for ;‘11 finitely generated
Remodules with less than n generators. Let M be generated by

X,, coo 5 X, Let M, be the s.m. of M generated by X, s ooe 3 X 0

By the induction hypothesis, M, and M/Ml are Noetherian since they have
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n-1 and 1 generator respectively. Let f be the natural homomorphism

mapping M onto M/M . Let S be any s.m. of M. Then f [S] is a s.m, of
\

H/M'and so has generators 'y'. s soe g ;m. Choose vy, , ... , ¥, in 5 such
that f(y;) = y;. Now S/1 M, is a s.m. of M,, Since M, is Noetherisan,

SN M, is finitely generated by, say, z,, ... , Zp. Let a &€ S. Then

nn
f(a) =a+ M = 2 ay; =
=)
where 8; € R. Then a = Z‘: a,y; € M. Thus a - Z a,y. = Z b; z,;
™ e
where b; ¢ R. Hence a = 22 a,y, + :Z:' b;z; and S is finitely
.3} =

™M

Z; a f(y) = Z a(Y.+M,)= ZI ay + M

generated over R. That is, M is Noetherian.
M. (R) is an R-module and is finitely generated by

{ Ey | 4, 3=1, ... , n} . So we have that if R is Noetherian,
then M, (R) is Noetherian considered as an R=module and hence as a ring.
Also, since M, (R) is Noetherian as a module implies that MH(R) is
Noetherian as a ring, we have that if M, (R) is Noetherian as a
module, then R is Noetherian. In summary, we state the following
theorem, considering M,(R) as a ring.
Theorem 3.5 R is Noetherian if and only if M,(R) is Noetherian.

Definition 3.7 A ring R is called a regular ring if for every a € R,

there is an x € R such that a x a = a.

Examples:

1. Any division ring, and hence any field, is regular.

2. Let p be a fixed prime. Let R be any ring with at least two
elements such that for every a € R, a’ = a and pa = 0. We call such

& ring a p-ring. Then any p-ring R is regular. That is, for any

a4 € R, pickxsap—zifp>2andx-aifp=2.
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Von Neumann stated, in [9] , that if a ring R with 1 is regular,
then M, (R) is a regular ring with identity. We do not prove this
statement here, but we prove a weaker theorem.

Theorem 3.6 If R is a field, then M, (R) is a regular ring.

Proof: We will regard M,(R) as the set of all linear transformations
on an nedimensional vector space V over R. Let A # 0 be an element of
M,(R). Let N, = { ve Vv | Ave 0} be the null space of A. We know
from the theory developed in Chapter II that Np is a subspace of V.

A # O implies that Np#¥V. Let QA = { Vs cee 5 V, ? be a basis for
N, . We can extend QO to G U @B a basis for V. Let A [‘33] =

{ Avlve 33} . The map v == Av is 1-1, for if u,, u, e &

are such that Au, = Au, , then Au, - Au, = A(u,~ u,;) = 0 which

implies that ué - u, € Ny . Therefore y, = u, = é a; v; where

a, € R. Now Z av; =u +u, =0 implies that a, = 0 for

i=1, ... , t:-;ince QA U#P is an independent set. Thus u, = u, and

the mapping is i=1. Further A[EJ has net distinct elements. Let

”
B = { Vouy? °°° v,,} . Then Z a;Av; = 0 implies that
n n iz te) "
2. Aa;v, = A(.Z.' a,v;) = 0 implies 2 av: ¢ Np- Thus I a,v;,=

c'.:t‘-o-l szt et HE Y

t n
b; v; where b; € R. So .g; by v, = 2. a;v; = 0 implies

ivy ittt

bj= 0 = a, for =1, ... , t, i=t +1, ... , n, because Q U &
is an independent set. Hence A [73] is an independent set., We can
extend A [B] to A[ﬁ?] UP a basis for V. Choose the mapping

Ae M,..(R) given by K(Av‘\) =v; fori=t+1, ... , n and Z(v) = v
for ve £ . Then (AKA)V; = A(:\Av;) = Av; for every v; € B and
(ARA)VJ' = AA(0) = 0 = Avj for every v, € A . Since AAA and A have

the same effect on all basis elements v, of QU & for V, we have
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that AAA = A. Hence M,(R) is a regular ring.
We conclude this chapter with an examination of radical propetties
of a ring and its complete matrix ring. Throughout our discussion of

radicals, all rings have 1.

Definition 3.8 Let £ be a class of rings that is closed under isomorphism.

For any ring R, let Ne (R) = {J' J is an ideal of R and R/J A } .

Ng (R) is called the 6 -radical of R. R is called £ -semi~-simple if

Ng(R) = 0. If R has an ideal J such that R/3 € £ , then Ng(R) is an
. R . . . R -
ideal of R. Moreover, /NG(R) is & -semi-simple since Ne ( /NG(R)) 0.
. . . R - J
To see this, recall that if g is an ideal of /NG(R) s then g /NG(R)

. N, (R) ~ R
for some ideal J of R such that NG(R) c J. é /j’/N‘(R) = /J e 6

implies N, (R/N‘(R))a N f-’/nc(m l No(R) ¢ J and R/5 ¢ € } -
Ni{s|Ms et} /“e‘“) = e ® /0" O

Definition 3.9 For any ring R, if @ is the class of prime rings,

N (R) is called the prime radical of R. For any ring R, if € is the class

of simple rings, then NG (R) is called the Jacobson radical of R. As above,

we will refer to R as being prime-semi-gsimple or Jacobson-semi-gimple accordingl

Lemma 3.4 For any ring R (not necessarily comtm-xt‘ative), and ideal J of R
is prime if and only if R/_j- is a prime ring.

Proof: Let J be a prime ideal of R. Let (4 and B be ideals of R/j3

with Q% = 0, Then there are ideals A and B of R such that JC A, J € B
and A = A/J , B = B/Ja Now A/J' B/J = 0 in R/J implies AB € J, so that

ACJorBESJ. That is A = 0 or # = 0. Hence R/J is a prime ring.
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Conversely, let J be an ideal of R such that R/J is a prime ring.
Let A, B be ideals of R such that ABC J, Let A=A + Jand B = B + J.
Clearlyx, B are ideals of R and J < 3, J < B. Thus K/J and T?’/J are
ideals in R/J . Ifxe K/J . E/J , then x = ;Z::: (a; +3) (b; + J) =
f’. a‘.b; + J=J since a; € A, b; € B. That is, Z/J-i/J = 0 in

it

R/J . As R/j is prime, Z/J = 0 or _B-/J =0, Thus AS Jor BE J
implies AS J or B € J. Hence J is a prime ideal of R.

In the following, let & be the class of simple rings; f ,
the class of prime rings; Of , the class of fields; and )7 , the
class of integral domains.

Lemma 3.5 For any ring R,

1. Ng(R) = N §{J}J is a maximal ideal of R } ;

2. Ny®) = () {J|J is & prime ideal 0£ R } .

For & commutative ring R with 1,

3. Nm(R) = Nc(R) s

4, N&,'(R) = NH(R) .

Proof: 1. By lemma 3.3, R/J is simple if and only if J is a maximal
ideal of R. Thus Z J I J is an ideal of R and R/J is simple ? =

f 3|3 is a maximal ideal of R } .

2., By lemma 3.4, R/; is prime if and only if J is prime,

For a commutative ring R with 1, we know that an ideal I of R
is prime if and only if R/I is an integral domain and that an ideal I
is maximal if and only if R/I is a field. Hence 3. and 4. follow from
1., 2., and lemma 3.2 and 3.4.

Definiton 3.10 Let R be & ring. An ideal J of R is called a

nil ideal if for every x € J, there is an n € N such that x™ = 0.
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R is called nil-semi~simple if R has no non~zero nil ideals.

Lemma 3.6 Let R be any ring with 1. Let S be a multiplicatively
closed subset of R which does not contain zero. Then there exists a
prime ideal, P, of R such that P S = & .

Proof: Let .4 = EU I U is an ideal of R, U N s = @ 3.

As (0de L, L+ @ . Also S i§ partially ordered by inclusion.
Let ,JQ be a chain in .4 . Let D = {J f 1¢] ' UE«J‘}. Then D is an ideal
of R. For let x, y € D and r € R. Then there are U, and U, in A,
with x¢ U, and ye U,. We know that U, ¢ U, or U, £ U,, Let U C U,.
Then x,y € U,. Hence x - y € U, and xr, rx € U,., Thus x = y € D
and rx, ry € D. Further, D1 S = @ . For if x € DN S, then there
exists Uc 4, with x ¢ U and x € S. Thus S U# @ A a contradiction.
Hence D € .4 and D is an upper bound for .J,. By Zorn's Lemma, _4
has a paximal element, say P. To show that P ig a prime ideal of R,
let A, B be ideals of R such that AB € P. Suppose P is not prime,
That is, let x e A, y € B and x,y ¢ P. Then Pg P+ {x) and
PEP+y). As P is maximal in .4 , P +¢x) and P +(y) have a

~y ”

point in S. Let p + Z:". ryx s; and g + 2. t;yu;be points of P + (x)
tE =1
n

and P +(y> respectively in S, Then (p + Z', r;x s;) (q + 2: t;yu;) =

'

pq+p2:tyu +(Z:rxs)q+(8rxs.)(Ztyu)esﬂl’

|='

Hence (p + Z T, X8, ) (q + i t;yu;) € P(1S, a contradiction. Thus
Y iy

we have that A P or B € P, and hence that P is a prime ideal.

Corollary 3.6.1 If R is any ring, the prime radical of R,

NJ.'(R) g{xéRlx" = 0 for someneN}

Proof: Let T = i X € Rlxna 0 for some n ¢ N} . Suppose u ¢ T.

Let S = {uﬂ lne N } + By lemma 3.6 there is a prime ideal P of R
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such that PN S = @ . Therefore u ¢ N:‘ (R) and hence N‘.& (R) S T.
Corollary 3.6.2 For a commutative ring R, N:c (R) = i Xx e R l xn = 0
for some n € N} .
Proof: Let T = z x € Rlx“- 0 for some n & N} Let x € T.
Then X = O for some n € Ry . Hence x € P for every prime ideal
P of R. Thus x € P for every prime idgal P of R. That is,
X € N.ﬂ (R). Hence T < N& (R). By corollary 3.6.1, N$ (RYE T.
Thus T = NJE(R)'

By corollary 3.6.2, we see that for a commutative ring, the

notions of being prime~semi~-simple and nil-semi-simple coincide.
We further observe that for any ring R, if R id nil-semi-simple,
then R is prime-semi-simple. This follows from corollary 3.6.1 by
noting that N£ (R) is a nil ideal of R. It follows from lemma 3.5 and
corollary 3.6.2 that, for a commﬁtative ring, the radical N‘1(R) = 0
if and only if R is nil-semi-simple.
Theorem 3.7 For a commutative ring R, the following are equivalent:
1. R is nil-gemi-gsimple.
2. M,(R) is nilesemi-gsimple.
3. M,(R) is prime-semi-simple.
4. R is prime-semi~simple.
Proof: By the remarks above, 2. implies 3. and 4. implies 1. To show
1. implies 2., let £ be a nil ideal of M,(R). Then there is an ideal
S of R such that <€ = M,(S). Let x € S. Then A = xE, ¢M,(S). Hence
there exists anm € A such that A" = i“E,, = 0 which implies x =0
.and thus S is a nil ideal of R. As R is nil-s-s. (semi-simple), S = O.

Hence Hn(S) = Q. Therefore M ,(R) is nil«gs=s, To show 3. implies 4.,
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let M (R) be prime-s-s. Then the prime radical of M, (R),
Ny (Ma(R)) = 0. Now Ny (M, (R)) = N {M.(P)| P is a prime 1deal of
R } by lemma 3.5 and corollary 3.2.1. If x ¢ N‘.‘ (R), then
X € ﬂ {PI P is prime ideal of R} and hence xE , ¢ ﬂ {H,‘(P) l P is a
prime ideal of R § = Ny (Ma(R)). Thus xE, = 0 and x = 0. That is
N.“ (R) = 0 and so R is prime=s-sg,
Theorem 3.8 For any commutative ring R, R is Jacobson-s-~s, if and
only if M_ (R) is Jacobson-s-s,
Proof: By corollary 3.2.1 the maximal ideals of M, (R) are precisely
the ideals M,(I) where I is & maximal ideal of R. Thus with lemma 3.5,
Ng M,(R)) = n {M,,(I)I I is a maximal ideal of R } and
Ng(R) = /) { 1|1 is a maximal ideal of R } . Now A = (a;;) ¢ Ny(Ma(R))
1f and only if A € M,(I) for every maximal ideal I of R,if and only if
a;; € I for every maximal ideal I of R, if and only if a;; € N, (R).
Thus A € MH(NC (R)) if and only if ay € Ne (R).

Hence Ng (R) = O implies a;; = 0 for all i, j and thus A = 0,

That is,Nc (M,.(R)) = 0. Conversely, if Ne (M,(R)) = O, then x ¢ Ng (R)

implies xE, € NG (M.,(R)) = 0. Hence x = 0 and NG (R) = 0.
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CHAPTER IV
DETERMINANTS AND SYSTEMS OF LINEAR

HOMOGENEOUS EQUATIONS

In this chapter we present the notions of determinants and
linear equations over & commutative ring with identity. The
development here parallels the usual development of these notions
over the field of real or complex numbers. It is easy to see that
most of the theory developed for determinants over the real or complex
numbers, see [1] , carry over to our more general situation, We list,
without proof, some of the familiar results. The definition of a
determinant that we take here is the usual one.

Definition 4.1 Let R be a commutative ring with 1. A determinant is

a function Det:M (R) —> R such that, if A ¢ M, (R) and if A, ..., A,
represent its columns, the following properties are satisfied:

1. Det(A,, ... , Ay, ... , A)) + Det(a,, ... , A B, A cees A =

K? Kay ? K? K4 ?
Det(Al v LI 2 ) ') AK-I F) Ak + B‘, AK"I [} L » AH)

2, Det(A,, ... , A, , 8aA, , A cee s A))= a Det(a,, ... , A)

K Sear 2
3. Det(A) = 0 if any two columns are equal.
4., Det(l) = 1 where I = (S“ ) in the identity matrix.

Observe that, if such a function exists, the foliowing properties
will be satisfied:
1. Det(A) = 0 if any column Ak of A is zero.
2. Det(A) is unchagged if a multiple of one column is‘added to

another column.

3. Det(A) changes sign if we interchange any two columns.
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4. Det(AB) = Det(A) Det(B).

We proceed now to define such a function. Let D:M_ (R) =R be
defined inductively as follows: For n =1, A € M, (R) implies A = (a,, );
let D(A) = a,, . Clearly D works. Assume we have a function
-D-:Mn_.(R)-—-lR which is a determinant. Let D:Hn(R)-—dR be defined as
follows: for A ¢ M,(R) and for each i, j, 1{1i, j¢n, let

th

M. € Mn_,(R) be formed from A by deleting the i = row and the j L

g
column of A, Let A“ = (-1)..’1 B(M;j ). A;j is called the cofactor of
a; . For a_fi‘xed i, 1€i¢n, let D(A) = a;, A;, + a, A, + ... A, A,
This is the usual definition in case R is the field of real or complex
numbers. The proof that this definition gives a determinant in our
more general situation is analogous to the proof that 'such a definition,
in the case of a field, gives a determinant.

Note that if, in the above discussion, the word "column" is
replaced by the word "row" throughout, we get analogous results in
terms of rows.

Observe that, for A = (a;;) € M,(R), “Z': aj A,,j = S;K D(A_) = 0
if k¢ i and D(A) if k = i; ‘Z;' a; A, = SJ D(A) = 0 if kg j and
D(A) if k = j. To see this, notice that if k¢ i and if we replace row k
of A by row i we get a new matrix B with two rows equal. 1If ij is the
cofactor of b,(j in B = (b;j ), then for each j, 1 ¢ j¢n, bkj = a;; and

n

"
Anj = By; . Hence p2¢ & Ay = FZ: b,jB,,J- = D(B) = 0.

j:l n "
If k = 1 then clearly PN a, A; = D(A). Hence 2:\: a; A,‘j =
J31 3=

Sig D(A). The second expression sabove follows by a similar argument
after we replace column k by column j in A,

The determinant of A € M, (R) will hereafter be denoted by I Al .
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Definition 4.2 Let A € M, (R). Let Aij be the cofactor of a; -
The adjoint of A, denoted adj A, is adj A = Ay Ay --- A\ e M,(R).

A'z Azz .o w Anl

-

Alﬂ A"ﬂ Ann
Lemma 4.1 For A € M, (R), A(adj A) = (adj A) A = |a] 1.

Proof: Let A = a, ... a,, and adj A = Ay ... An

- L3 -

a o o @ A.n o ® 0 A”n

n nn

where AU. is the cofactor of ‘ij

"

where by; = P a;, A;,, and (adj A)A = (c,j ) € M_(R) where
o _

in A. Then A(adj A) = (b;j) € M_(R)

K=t

¢y = uzi a,‘jAK;. By the remarks above, b;; = S‘J I A| and cy = S,J IA | .
Thus A(adj A) =| A | 1 = (adj A)A.

For any ring R with 1, if a ¢ R and a 3 O, an element b € R is
called an inverse of a if ab = ba = 1., It is easy to check that if a has
an inverse, then it is unique. Note also that for a commutative ring R
with 1, we take aA = Aa for any a€e R and A € M_(R).
Theorem 4.1 Let A € M, (R). Then A has an inverse in M, (R) if and
only if |A| has an inverse in R.
Proof: Let B € M,(R) with AB = BA = I. Then |A || B| = |AB| = |I| =1,
Hence |B| is an inverse for IA‘ in R.

Conversely, let d € R be such that ‘A ‘ d = dlA I = 1, By lemma 4.1,
A(adj A)d = T and d(adj A)A = I. Hence d(adj A) is an inverse for A in
M, (R).

Definition 4.3 Let Q & R. An element a € R is called an annihilator

of the set Q if aQ = fax|xe Q } = §o0].
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Note that if R is an integral domain, that is, if R is a commutative
ring with 1 which has no zero divisors, then Q € R has a non-zero
annihilator if and only if Q = i 0 }.
For a commutative ring R with 1, let A € M,,(R) and let
l1¢r ¢k where k = min f n, m } Let M be any square submatrix of A
which contains r rows and r columns. Then |Ml is called a minor of A
of order r.
Let A€ M, (R). If {a; | a; is an entry of A | has a
non-zero annihilator, we say that A has rank zero. If A does not have
rank zero, then the set of all minors of A of order 1 has no non=zero
annihilators. That is, aA £ 0 for all a0 in R. In this case we define
the rank of A to be the largest integer, r, 1 {r ¢(k where k = min {m, n:},
such that the set of all minors of A of order r has no non-zero
annihilator. Note that if r¢ s ¢k, then the set of all minors of A of
order s has a non-zero annihilator. We will denote the rank of A by r(Aa).
Let R be an integral domain and A € M, (R). If r(A) = O, then there
exists an a € R, a # O, such that aA = 0. That is, A = O which implies
that all minors of A are zero. If A has rank r # 0, then the set of all
minors of A of order r has no non-zero annihilator. Hence, there is a
minor IMI of.A of order r such that IM |¢ 0. Moreover, by definition of
rank, the set of all minors of A of order 8, r¢s ¢k, has a non-zero
annihilator. That is, there is an a ¢ R, a # 0 such that, if |Ll is a
minor of A of order s, then a|L| = 0., Since R is an integral domain,
L = 0., Hence r is the largest order of the non-vanishing minors of A.
Thus we see that r(A) satisfies the usual definition of rank in case R is

the set of real or complex numbers (see [6] ). In fact, it follows that
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the two definitions are equivalent in this case.

Definition 4.5 Let x,, ... , X, be indeterminants, Let ¢y » b; e R

j:l,uo’ﬂo "
for i =1, ... , ma Then Z cy X; = b; fori =1, ... , m, is called
J'-:‘

a system of m linear equations in n unknowns. The system above is

called homogeneous if b; = 0 for all i. The set {a, s coo 3 B } CR

n
is called a solution to the system Z' cl xj = 0, i=1, ... , mif
" =

Z"T c;a =0, i=1, ..., m The matrix A = (cj;) 6 M, (R) will be
J<

called the matrix of coefficients of the system,

[a)
Theorem 4.2 The system Z: c;j X5 = 0, i=1, ... , m, where
=t
¢y € R, a commutative ring with 1, has a non=trivial solution if

and only if the rank of the matrix of coefficients is less than the
numbers of unknowns.

Proof: Suppose a , ... , a, -i.s a solution to the system with a_ ¢ O.
Then §cij a; = O for i=1, ... , m. Let A = (c;j'). We must show
r(A) ¢ ‘n.,

Case 1. If m<n, then the largest minors of A have order m. Hence

r{A) ¢ m¢n and we are done.

Case 2, If m 3} n, the largest minors of A have order n. Let lMI be any
minor of A of order n. For each i, 1 Sit £ m, for which the i:‘k row of
A is a row of M, multiply the i:"‘! equation by the cofactor, M;'-t" , of
ci*,‘ in M. We have n equations of the form:

C» nan= 00

M“'tK C"*' a' +M':+‘c."zaz + © 2o + M.‘tx c‘.'tK CK + oo e +M‘ X .*

i
t
Adding these equations, we get:
n n i
0 = a §ci*0 Ml.e“'+ eoo * aggci"& M.'*! + ool F ar\*z' ct“hni*'{

a S M|+ ... +a, 8§ M|+ ... +a, 5m<|“|”«|“|'
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Since IMl was an arbitrary minor of A of order n, and since a, # 0,
the set of minors of A of order n has a non-zero annihilator. That is,
r(A) ¢ n.

(4]
Conversely, let r(A) = r¢n., I1If r = m, Z c; X; = 0 has a
"4 =

non~trivial solution if and only if Z b‘q- x; = 0 has a non=trivial
Kz
solution, where b:j = cy; if 1 ¢k ¢m and ‘bm"j = 0. Let B= (bj;).

Clearly r(B) = r(A) = m¢m + 1. Hence we may assume r{(m. Let a ¢ R
with a # 0 such that aIMI = 0 for all minors M of A of order r + 1.

3
Case 1. If r = 0, then aA = 0 and Z; ac; = 0O fori=1, ... , m,
J:

Hence x; = a, for all j, is a non«trivial solution to the system
n

; c;j X,‘ 80, i’l, e e ,ll.‘
3T

Case 2. If r 30, then there is a minor |Ml of A of order r such that
aIMI-‘FO. Since interchanging any two rows or columns in M changes
the sign in ‘M‘ only, we can rearrange the rows and columns of A

8o that M appears in the upper left corner of A. Let | 17[| be the

minor of order r + 1 in the upper left corner of A. Let

- st
d,, «.. d,.“ be the cofactors in M of the elements in the r + 1 —

# 0. Let x; = ad; for j =1, ..., r +1

row of M. Notice that alMl = ad f

r+

and x; = 0 for j=r +2, ... , n. For any i, 1$igm, let

B-(b,j)eu (R) vhereb,j = Cy; if 1¢k¢r and b

. = N
[V €y

Lol X ]

Then lBl is a minor of A of order r + 1; so a|B| = 0. Moreover, if

B“.)j is the cofactor of brn.j Ni;n B, B, ; = d; . Hence for any
[ N ] .
i, 1¢i¢m, J2 c;;(ady) =al. b, .B . =a|B| =0
" J re) n
Thus ,Z-:: ¢y X; = 5_8' cij (adj) +‘;‘Zﬂ;‘:z cy; 0=0, i=1, ... , m where

ad, * 0. Hence we have a non-trivial solution to the system.

Corollary 4.2.1 A € Mn(R) is a zero-divisor in M_(R) if and only if
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|A| is a zero~divisor in R.

Proof:' Suppose A € M, (R) is a zero-divisor. Then there exists

B€& M, (R), B# O with AB = 0 or BA = 0. Suppose AB = 0. Let A = (a; )
and B = (b} ) with be, # 0. 1In the tﬂ' column of AB, we have

Z a:b;, =0,1i=1, ... , n. Thus we have a non-triviel solution

Jll t)

(4]
to the system E a; x; = 0, i=1, ... , n, of n equations in n
izt

unknowns. By theorem 4.2, r(A) = r<n. Thus every minor of A of
order 8 ) r has a non-zero aunihilator. 1In particular, |A| has a
non-zero annihilator. That is, |A| is a zero=divisor in R.

Conversely, let |A| be a zero-divisor in R. Then as a minor of A,
’A' has a non-zero annihilator. Thus for any set of minors of A of order
r, 1{r{n, that has no non=-zero annihilator, r must be less than n.
That is r(A){ n. By theorem 4.2, there exist y, € R, for k=1, ..., n,

n

not all zero, such that ; 8, V¢ =0 fori=1, ... , n. Let
Kz

Y € M (R) be defined by: Y = (cnj) where c,, = y. and c,; = 0 for
. n
j=2, ... , n. Then AY = (a;i ) (c;j) = (d;j) where d;j e ,‘Z-:' 81 Cp; -
n =

Now d;, = 2. a,y, =0andd; =0 for 2¢j ¢ n. Hence AY = 0 and

K=p

A is a zero-divisor in M,(R).
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