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        Hybridization with non-native walleye may play a substantial role in sauger declines 

throughout the upper Missouri River drainage of Montana and Wyoming.  I identified 11 

microsatellite loci to detect interspecific hybridization and describe the genetic 

population structure of sauger. Two major population groupings of sauger were revealed 

by principal component analysis of allele frequencies.  The first consisted of samples 

from the Missouri and lower Yellowstone River drainages, which showed no evidence 

for genetic divergence among each other.  The second major grouping contained samples 

from the Bighorn River drainage and the upper Yellowstone River.  Samples from the 

upper Bighorn River drainage were genetically distinct from downstream samples.  The 

Bighorn and upper Yellowstone River samples had substantially lower heterozygosity 

and allelic richness than the lower Yellowstone and Missouri River samples.  Analysis of 

simulated data sets suggested that 100% of sauger and walleye and 100% of first and 

second generation hybrids could be correctly identified using these 11 loci.  This 

indicates that my analysis method has the power to discriminate sauger and walleye and 

to detect hybridization and introgression. I detected only eighteen hybrids out of 925 

individuals analyzed.  Hybridization appeared recent, as nearly 50% of the hybrids 

showed significant evidence for having a non-hybrid ancestor within two generations.  

Only one hybrid was detected in the Missouri River.  All others were found in the 

Yellowstone River drainage, despite a substantially higher rate of walleye stocking in the 

Missouri River drainage.  Environmental conditions in the Yellowstone River drainage 

may be more conducive to hybridization, or hybrid and walleye survival.  The rarity of 

hybrids, despite massive walleye stocking, is unexpected.  Introgression of walleye genes 

into native sauger does not appear to be an immediate threat.  Nevertheless, the presence 

of hybrids could still be harmful because their production represents wasted reproductive 

effort.  Given my results, I recommend that (1) the transfer of genetically distinct stocks 

of sauger not take place; (2) historical levels of gene flow among populations be restored; 

and (3) the walleye fishery in the upper Missouri River drainage be replaced with a 

sauger or sterile walleye fishery. 
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Chapter 1 
 

Introduction 

 

The human domination of Earth‘s ecosystems is of growing concern in conservation biology 

(Vitousek et al. 1997).  Most troubling are increasing rates of species introductions, habitat 

destruction, and habitat fragmentation (Mooney and Cleland 2001).  These issues act 

independently or in conjunction with one another to reduce population viability and rapidly drive 

species to extinction (Rhymer and Simberloff 1996; Mooney and Cleland 2001). Continued loss 

of biodiversity is likely as human populations increase.  

 

 The establishment of non-native species is a common result of ecological destruction.  In 

the United States, introduced taxa are the main threat to 42% of the species on the threatened or 

endangered species lists and are estimated to cost $120 billion annually in environmental damage 

(Pimentel et al. 2005).  These and similar issues develop when exotics escape the biological 

constraints of their native habitat and expand rapidly, leading to loss of ecosystem function, 

niche displacement, competitive exclusion, hybridization
1
, and extinction (Rhymer and 

Simberloff 1996; Gordon 1998; Mooney and Cleland 2001).  Rahel (2002) has argued that the 

replacement of native taxa with nonindigenous species is resulting in the homogenization of 

biodiversity worldwide.   

 

 Aquatic systems have been dramatically impacted by exotics (Rahel 2002; Eby et al. 

2006).  In the United States, this is primarily due to sport fish stocking (Schade and Bonar 2005).  

Millions of fish are introduced each year by thousands of stocking events in managed fisheries 

(Hickley 1993).  Introductions for angling have led to an estimated one in four individual fish 

being non-native in streams throughout the western United States (Schade and Bonar 2005).  

Competition, predation, and hybridization have facilitated the establishment of non-native and 

stocked fishes, which has led to reductions, extirpations, and extinctions of native fish 

populations (reviewed by Eby et al. 2006).  Further loss of biodiversity due to negative 

interactions with non-native fishes is likely due to the growing need for fishery supplementation 

to meet the demands of anglers and the propensity for non-natives to rapidly expand and 

establish (Eby et al. 2006).  

 

 Genetic variation in fishes, an integral component of aquatic biodiversity, is being lost at 

an alarming rate, largely due to negative interactions with non-natives (Krueger and May 1991; 

Leary et al. 1995; Scribner et al. 2001).  For example, competition, predation, and hybridization 

commonly result in the contraction of species effective population sizes, extinction of unique 

populations and species, and homogenization of gene pools (reviewed by Krueger and May 

1991).  Freshwater fishes are sensitive to genetic impacts due in part to their breeding patterns 

and the selective pressures they experience in discrete aquatic environments e.g., homing 

segregates populations leading to the evolution of population-specific adaptations to local 

                                                 
1
 Hybridization reorganizes genomes at the organismic level and reorganizes gene pools at the population level.  

Consequently, very precise language is needed to avoid confusion when describing its characteristics.  Definitions 

for words in bold appear in the glossary in Table 1-1.   
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conditions (Garcia de Leaniz et al. 2007).   Despite their importance in species‘ persistence, 

genetic impacts on native fishes are an often neglected penalty of non-native establishment.  

   

 Here, genetic impacts are defined as alterations to the gene pools of indigenous taxa 

(modified from Krueger and May 1991).  Direct genetic impacts typically result from 

hybridization―that is, interbreeding between native and introduced species (interspecific) or 

stocks (intraspecific) (e.g., Allendorf et al. 2001).  Indirect genetic impacts include the extinction 

of genetically distinct stocks, loss of genetic variation, and/or inbreeding (Krueger and May 

1991).  These impacts are the proximate result of predation, competition, disease, fragmentation, 

and habitat destruction ― processes that ultimately result in reduced effective population sizes 

and shifts in gene flow and selection regimes (Krueger and May 1991; Lande 1998).  

 

  From a conservation perspective, the scope of genetic impacts is of considerable scale.  

Introduced fish, fragmentation, and habitat destruction have impacted many watersheds in the 

United States.  It is, therefore, critical to understand the means by which genetic impacts result in 

decreased viability of native fishes.  Knowledge of two vital genetic issues have become 

increasingly important in fishery management:  (1) knowledge of the threat that hybridization 

with introduced fishes poses to natives (Allendorf et al. 2001), and (2) an understanding of the 

genetic population structure of the species being affected by genetic impacts (Laikre et al. 2005). 

 

Hybridization 

 

Hybridization with introduced species is a common result of non-native establishment and 

threatens the long-term persistence of many indigenous fishes (Leary et al. 1995).  In North 

America, hybridization has been implicated as a major factor in 38% of fish extinctions during 

the 20
th

 Century (Miller et al. 1989).  Understanding the mechanisms by which hybridization 

reduces fitness is critical in preventing further loss of species. 

 

 The threat of hybridization is dependent upon the survival and fertility of hybrid 

offspring (for a general consideration of hybrids in conservation see Allendorf et al. 2001).  

Fertile hybrids can act as a vehicle for genomic introgression, resulting in fitness penalties due 

to intrinsic genetic incompatibility and extrinsic disruptions in local adaptation (e.g., gene-by-

environment interactions) (Templeton et al. 1986).  Despite even heavy fitness consequences, 

however, introgression can still spread and result in the formation of hybrid swarms (Epifanio 

and Philipp 2001) in which every individual in the population is a hybrid.  Hybrid swarms may 

be of little or no conservation value (Allendorf et al. 2001).  Hybridization that produces sterile 

offspring is not benign either, as it may result in wasted reproductive energy and a competitive 

advantage for the invasive species (Leary et al. 1993).  

 

 Three factors play a critical role in describing the threat of hybridization in a hybrid 

swarm:  (1) sample size, (2) the number of diagnostic loci examined, and (3) the minimum 

proportion of admixture considered acceptable in ‗non-hybridized‘ populations.  The 

relationship between these factors can be expressed by the following equation: 

 

          , 
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where p is the proportion of admixture, N is the number of individuals in the sample, X is the 

number of diagnostic loci, and a is the probability of detecting admixture.  By increasing both 

the number of individuals sampled and the number of diagnostic loci examined, investigators 

garner more power to detect smaller proportions of admixture within populations.  Theoretically, 

the first two factors (sample size and number of diagnostic loci) can be determined by 

investigators (e.g., collect more individuals and genotype more loci).  The third factor, however, 

is influenced by answers to both biological (e.g., at what proportion of admixture does 

outbreeding depression affect fitness?) and social questions (e.g., at what proportion of 

admixture do we legally or morphologically consider a fish to be a hybrid?).  In the end, 

determining the appropriate sample size and number or loci depends heavily on both acceptable 

proportions of admixture and probabilities of error in detecting hybridization. 

 

 The equation described in the previous paragraph only applies to populations that are 

hybrid swarms.  Detecting hybridization in a population that contains a mixture of parental and 

hybrid genotypes is dependent upon the percentage of hybrids in the population and the level of 

admixture within hybrids.  To detect hybridization in populations with few hybrids that contain 

low admixture (e.g., later generation backcrosses), many individuals need to be sampled and 

many loci need to be genotyped (Boecklen and Howard 1997).  Quantifying the power of hybrid 

detection in such cases is complicated.  Consequently, frequent sampling needs to be conducted 

to ensure the absence of hybrids.  

 

 Finally, to understand the history of hybridization in populations, interpretation of the 

data must occur at both the individual and population level (Barton and Gale 1993).  This is 

critical because allele frequencies and admixture estimates do not adequately describe the 

history, pattern, or threat of hybridization (Allendorf et al. 2001).  For example, both a hybrid 

swarm with 50% admixture and another population comprised of all F1s can be described by the 

same proportion of admixture:  q = 0.50.  Nevertheless, the patterns of hybridization in these 

populations are distinct.  As a result, hybridization is best described by the distribution of hybrid 

genotypes and by the amount of gametic disequilibrium among alleles at diagnostic and 

informative loci (Allendorf et al. 2001). 

 

Genetic population structure 

 

The genetic population structure of a species describes the distribution of genetic variation 

within and among populations.  This structure is determined by complex, long-term interactions 

among four evolutionary forces: mutation, natural selection, genetic drift, and gene flow 

(Chakraborty and Leimar 1987).  Knowledge of the genetic structure of a species and the 

evolutionary relationships among populations is critical for planning and applying management 

strategies (Chakraborty and Leimar 1987; Allendorf and Leary 1988; Leary et al. 1993; Laikre et 

al. 2005).   

 

 The genetic population structure of a species can be classified into three basic categories:  

(1) distinct populations, (2) isolation-by-distance (IBD), and (3) no differentiation (Laikre et al. 

2005).  Each category results from differences in the relative strengths of the evolutionary forces 

mentioned in the previous paragraph.  The category in which the species of interest is classified 
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determines which management strategies will be most effective in conservation and sustainable 

use planning (Laikre et al. 2005). 

 

 Groups of individuals that are genetically homogenous should represent basic 

management units (Laikre et al. 2005).  This is because such groups that have undergone 

isolation and selective pressures for many generations may contain locally adaptive genetic 

variation and/or co-adaptive gene complexes (Templeton et al. 1986).  In each category of 

genetic population structure, it is possible to identify genetically homogenous groups (or 

relatively homogenous in the case of IBD) of individuals that should constitute these 

management units (Laikre et al. 2005).  Biologists will avoid the loss of genetic resources, 

unique populations, and adaptive alleles by managing species with regard to their genetic 

population structure.     

 

 When adaptive alleles that are unique to a population or area of relative genetic 

homogeneity are lost, they are essentially gone forever (Allendorf and Leary 1988).  This is 

because they can be recovered only by mutation, which is highly improbable.   It is likely that 

extinction of unique populations, and therefore loss of alleles, will permanently reduce the ability 

of populations to make adaptive responses to altered environmental conditions (Allendorf and 

Leary 1988). 

 

 Laikre et al. (2005) have stressed that studies should be designed to provide estimates of 

the different sources of genetic variation over the geographic area examined ― that is, among 

geographical regions and among presumed populations within regions.  To do this, studies using 

genetic markers must take place.  Additionally, sampling at spawning sites during the spawning 

season is necessary to provide information on the species‘ true genetic structure (Laikre et al. 

2005).  

 

Background 
 

Sauger and walleye 

 

Sauger (Sander canadensis) and walleye (Sander vitreus) are two cool-water species in the 

family Percidae that co-occur throughout much of the Mississippi, Great Lakes, and Hudson Bay 

drainages (Scott and Crossman 1979) (Figure 1-1).  The western most distribution of sauger 

occurs in the upper Missouri River drainage of Montana and Wyoming, which historically did 

not contain walleye (Scott and Crossman 1979; Lee et al. 1980).  Walleye stocking in this 

drainage began in the 1950s, and they are now abundant as over 40 million are stocked annually 

in over 60 water bodies in Montana (McMahon and Bennett 1996).  Although the prairie lakes 

and reservoirs in which walleye are stocked generally do not support successful reproduction, 

stocking pressure is high and walleye have established self sustaining fisheries in some locations 

(McMahon and Bennett 1996).  In fact, in the upper Missouri drainage prior to the 1980s, 

walleye made up less than 0.001% of the combined sauger-walleye catch, increasing to 30% 

from 1985 to 2005 (Gardner 2005).   

 

 The timing and environmental cues for spawning occasionally overlap between sauger 

and walleye.  Spawning times are variable across latitudes and temperatures (Kerr et al. 1997). 

They begin in the spring, typically between 3.9° and 6.1°C for sauger and between 6.7° and 
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8.9°C for walleye (Scott and Crossman 1979).  For both species, these temperatures coincide 

with a two-week period between March and early May (Scott and Crossman 1979; Ickes et al. 

1999; Jaeger et al. 2005). Males generally arrive first and are followed by the females, which 

leave soon after spawning (Scott and Crossman 1979).  Reproduction occurs at night in 2-12 feet 

of water (61-366 cm) (Scott and Crossman 1979; Penkal 1992; Kerr 2008).  Females are usually 

attended by one to six smaller males (Lee et al. 1980).  Neither species builds a nest or shows 

territoriality, but both species show a propensity for natal homing (Scott and Crossman 1979; 

Penkal 1992; Kerr et al. 1997; Jaeger et al. 2005).  

 

 There is limited overlap in spawning habitat between sauger and walleye.  Occasionally, 

both species broadcast their spawn over the same shoals in turbid lakes or large rivers (Scott and 

Crossman 1979; Lee et al. 1980; Penkal 1992).  When such sympatric spawning occurs, it is 

usually over substrate characterized by clean rubble or gravel (Nelson and Walburg 1977; Penkal 

1992). However, overlap in spawning habitat is not typical (Rawson and Scholl 1978; Siegwarth 

1993; McMahon 1999; Gangl et al. 2000). For example, in the Missouri and Yellowstone 

drainages of Montana, sauger recruitment takes place in very specific locations associated with 

bedrock, boulder substrate, and rocky ledges that are resistant to erosion (Gardner and Stewart 

1987; Jaeger et al. 2005; Belgraph and Guy 2008).  Sauger generally avoid all other habitat types 

during spawning (Jaeger et al. 2005).  Conversely, walleye in these drainages select for pebble, 

cobble, or gravel substrate while spawning (Penkal 1992).   

 

Hybridization between sauger and walleye 

 

Sauger and walleye hybridize rarely where they are found in natural sympatry (Billington et al. 

1997; White et al. 2005).  The resulting offspring are apparently fertile (Hearn 1986) and readily 

backcross with both parental species (Billington et al. 1988; Leary and Allendorf 1997). 

Hybridization appears more common, however, where (1) walleye and saugeye (female walleye 

x male sauger) are introduced, (2) both species occur in altered habitat, and/or (3) spawning sites 

are limited (reviewed by McMahon 1999).  Such conditions are pervasive throughout the native 

range of sauger, and several investigators have documented loss of genetic integrity of native 

populations due to hybridization (Riegier et al. 1969; Nelson and Walburg 1977; Leary and 

Allendorf 1997; Billington et al. 2006).   

 

   Extensive stocking of walleye and saugeye is probably the most pervasive issue 

contributing to hybridization between the species.  In Montana, Leary and Allendorf (1997) 

found that hybrids constituted 10% of Sander samples in both Fort Peck Reservoir and the 

Yellowstone River where non-native walleye stocking effort is high (Table 1-2) (Montana Fish, 

Wildlife & Parks (MFWP) 2009).  In a similar study, Billington et al. (2006) found that samples 

from the Missouri and Yellowstone River drainages consisted of 22% and 10% hybrids, 

respectively.  Graeb (2006) established that samples in Lewis and Clark Lake, South Dakota 

(where walleye are stocked regularly) contained 21% hybrids.  In locations not known to have 

sauger, Billington et al. (1988) identified 141 walleye using two allozyme loci and found that 

two of these individuals had sauger mtDNA; they credited this to walleye stocking from 

locations known to have sauger.  Ward (1992) used one diagnostic allozyme locus and 

discovered that the Sander population in Lake Sakakawea, South Dakota consisted of 10% 

hybrids.  Lake Sakakawea has a native population of both sauger and walleye, but the walleye 
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fishery is regularly supplemented.   The use of just one diagnostic allozyme locus, however, 

undoubtedly makes their estimate conservative.  In Normandy Reservoir, Tennessee, where 

saugeye are stocked extensively, Fiss (1997) found that 75% of individuals in Sander samples 

were hybrids.  Likewise, White and Schell (1995) examined samples from the Ohio River and 

established that saugeye stocking had resulted in a Sander population of over 30% post-F1 

hybrids.  

 

Despite pervasive walleye and saugeye stocking across the distribution of sauger, no 

studies have detected evidence of hybrid swarms, indicating that ecological (pre-mating) or 

intrinsic (post-mating) barriers to introgression may be present.  Acquiring evidence that such 

barriers to introgression exist, however, has proven difficult due to the availability of only four 

species diagnostic allozymes.  As it stands, introgression appears limited by some mechanism, 

but its strength and cause are not well understood due to insufficient markers.  

 

Conservation issues 

 

Sauger in the upper Missouri River drainage of Montana and Wyoming persist in only a fraction 

of their historical range (McMahon and Gardner 2001; Welker et al. 2001).  Sauger declines in 

Montana first became a concern during a region wide drought in the 1980s; however, when 

precipitation returned to normal in the 1990s, sauger did not return to pre-drought abundances in 

some areas (McMahon and Gardner 2001).  Blame for failed recovery has been placed on loss of 

habitat and population connectivity due to water development and habitat destruction (McMahon 

and Gardner 2001).  For similar reasons, sauger have declined in Wyoming where they are 

considered rare or absent in all but one (Bighorn River drainage) of their native river drainages 

(Welker et al. 2001).  Accordingly, sauger are a critically imperiled species of special concern, 

making them a conservation priority (Carlson 2003).   

 

Hybridization 

 

Hybridization with non-native walleye may be a potentially underestimated factor in sauger 

declines in the upper Missouri River drainage (Leary and Allendorf 1997; McMahon and 

Gardner 2001; Billington et al. 2006; Graeb 2006).  The impact of hybridization on failed 

recovery in some locations may be substantial, as hybridization has been documented (Leary and 

Allendorf 1997; Billington et al. 2006) and conditions favorable to its spread are present:  there 

is overlap with walleye populations during the spawning season (Penkal 1992; Belgraph and Guy 

2008); habitat alterations including reservoirs and irrigation infrastructure are common 

(McMahon and Gardner 2001; Welker et al. 2001); hybrids have been inadvertently stocked as 

sauger or walleye (Leary and Allendorf 1997; Gardner 2005); and massive walleye stocking 

occurs within the drainage (Kerr 2008). 

 

 The demand for a booming walleye fishery governs much of eastern Montana's reservoir 

fishery management.  In fact, at Fort Peck Reservoir, "rearing walleye…is the facility's top 

priority" (MFWP 2009).  Walleye stocking records for MFWP and Wyoming Game and Fish 

(WGF) indicate that an average of 45 million are stocked annually in the upper Missouri River 

drainage (Kerr 2008) (Table 1-2).  Over 90% of the walleye stocking in Montana occurs in the 

Missouri River drainage.  The remainder occurs in the Yellowstone River drainage.  Alarmingly, 
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evidence provided by Leary and Allendorf (1997) has indicated that hatchery personnel 

mistakenly include as much as 5% hybrids in their brood stock collections, suggesting that 

hybrids are occasionally stocked as walleye.   

 

 Walleye stocking also occurs in the Bighorn River drainage of Wyoming.  In reservoirs 

located on the main stem river, walleye stocking occurs in Bighorn Lake and historically took 

place in Boysen Reservoir (most years between 1952 to 1971 (P. Gerrity, WGF, Lander, WY, 

personal communication)).  Walleye stocking also occurs in Ocean Lake, which is located 

upstream of Boysen Reservoir, but not on the main stem river.  Walleye stocked in Ocean Lake 

may eventually arrive in Boysen Reservoir through an irrigation return flow canal, but this is 

probably very rare (P. Gerrity, WGF, Lander, WY, personal communication).  

 

 MFWP propagated sauger in the middle Missouri River from 1998 to 2003 (Gardner 

2005). The program disbanded, however, partially because of genetic purity concerns.  

Specifically, several individuals used for spawning in 2003 were identified as definite hybrids 

using diagnostic allozymes (Gardner 2005).  The lots containing these hybrids were discarded; 

however, given only four diagnostic allozymes were used for screening, hybrids may have been 

unintentionally released, increasing the possibility for further hybridization in the wild.  

 

Within the upper Missouri River drainage, field studies have detected hybrids in Montana 

(Leary and Allendorf 1997; Billington et al. 2006), but not in Wyoming (Krueger et al. 1997; 

Billington et al. 2006).  Hybridization appears most common in the Missouri River drainage 

(samples have consisted of 22% hybrids) and least common in the Yellowstone River drainage 

(10% hybrids) (Billington et al. 2006).  Samples from Montana do not appear to come from 

hybrid swarms (Leary and Allendorf 1997; Figure 1-2).  In contrast, Wyoming is considered a 

regional stronghold for sauger due to the apparent ‗purity‘ of their stocks.  Nevertheless, studies 

of hybridization in both states have been hampered by two weaknesses:  investigators did not 

objectively target discrete spawning aggregations, and they used, at most, four diagnostic 

allozyme loci to examine the dynamics of hybridization (Krueger et al. 1997; Leary et al. 1997; 

Billington et al. 2006).  Thus, the extent to which hybridization has progressed within breeding 

groups in the upper Missouri River drainage is not well understood. 

 

Genetic population structure 

 

Little work has taken place on the genetic population structure of sauger across their range.  

Billington (1996) conducted an RFLP analysis of mtDNA across the native distribution of 

sauger, walleye, and yellow perch (Perca flavescens).  Sauger showed very little mtDNA 

variation with only four haplotypes detected across the species‘ range, compared to 42 different 

haplotypes identified in walleye.  Although sauger haplotype frequencies among populations 

showed significant genetic distinction from one another, this study found no geographical 

structuring.  Thus, Billington (1996) suggested that sauger spent the Pleistocene in a single 

Mississippian glacial refuge.   

 

 Little is known about the genetic population structure of sauger in Montana and 

Wyoming.  An allozyme and microsatellite study by Billington et al. (2006) identified the 

presence of genetically distinct stocks.  However, there was a ubiquitous excess of homozygotes 
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across samples.  This is probably the result of a Wahlund effect because individuals were not 

collected from spawning aggregations and many samples were conglomerates from multiple 

geographic locations.  Thus, an accurate assessment of the true genetic structure of sauger in the 

upper Missouri River drainage is lacking.  

   

 Managers are uncertain of whether genetically distinct stocks of sauger are present in the 

upper Missouri River drainage.  Consequently, they do not know how anthropogenic impacts, 

non-native competition, predation, and hybridization may affect sauger genetically.  Steep 

population declines in the 1980s, and failed recovery in some locations since then may have led 

to genetic bottlenecks, and therefore, susceptibility to inbreeding and genetic drift.  Competition 

and predation from non-native fishes may further affect ecological (Eby et al. 2006) and 

evolutionary (Krueger and May 1991) processes, making knowledge of the genetic population 

structure of sauger critical for predicting potential outcomes and formulating functional 

management programs.  Finally, inter- and intra-specific hybridization can homogenize the 

genetic composition of sauger, resulting in outbreeding depression. 

 

Objectives and research questions 

 

To develop a more biologically informed sauger conservation program, a better understanding of 

their genetic status is needed.  The use of allozymes in genetic analysis has two major 

drawbacks.  First, it requires lethal sampling, which is undesirable for a species of special 

concern.  Second, only four diagnostic allozyme loci between sauger and walleye have been 

identified (Billington et al. 1988), which greatly reduces the power to investigate the dynamics of 

hybridization.  A nonlethal genetic method for hybrid detection, in addition to genetic markers 

with high allelic diversity, is needed to examine the genetic status of sauger in Montana and 

Wyoming.  The research questions of this study are as follows: 

 
1. What are the patterns of hybridization between sauger and walleye?    

 a. How common is hybridization? 

 b. Where is hybridization occurring? 

 c. What are the patterns of introgression?  

 

2. How is genetic variation distributed within and among sauger populations?   

 

Summary and synthesis 

 

I identified 11 microsatellites that are useful in discriminating sauger, walleye, and their hybrids.  

Four are diagnostic and the other seven are informative.  Analysis of simulated data sets 

suggested that 100% of sauger and walleye and 100% of F1, F2, and first generation backcrosses 

are correctly identified by program STRUCTURE at qi = 0.98 and 0.02 (qi is the posterior 

proportion of an individual‘s genome with walleye ancestry).  This result indicates that my 

analysis method has the power to (1) discriminate between sauger and walleye, (2) detect 

interspecific hybrids, and (3) assess levels of introgression.   

 

 I examined 925 individuals collected from 22 locations throughout the upper Missouri 

River drainage.  With one exception (Boysen Reservoir, Wyoming), samples represented random 
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samples of the genus Sander.  Samples were collected primarily during the spawning season at 

spawning locations, and therefore, almost undoubtedly represent discrete spawning populations.  

 

 Although I found little genetic divergence among samples, two major population groups 

were revealed by principal component analysis.  The first consisted of samples from the Missouri 

and lower Yellowstone River drainages, which showed no evidence for allele frequency 

differences among each other.  The second major population grouping contained samples from 

the Bighorn River drainage and the upper Yellowstone River.  Within the Bighorn River 

drainage, samples from upstream locations (Little Wind and Popo Agie Rivers) clustered 

separately from downstream samples (Bighorn Lake and main stem Bighorn River), indicating 

the presence of significant genetic structuring.  Samples collected from the upper Yellowstone 

and Bighorn River drainages also displayed reduced genetic variation compared to all other 

samples.  Populations of sauger within these locations are known to be small and isolated, and 

thus genetic distinctiveness and reduced genetic variation are likely due to genetic drift and 

lower migration rates rather than long-term isolation.    

 

  I detected only eighteen hybrids between sauger and walleye out of 925 individuals 

analyzed.  Hybridization appeared recent, as nearly half of the hybrids showed significant 

evidence for having a sauger or walleye ancestor within two generations.  I found no evidence 

for hybrid swarms, as hybrids were few and widely scattered across sample locations.  Thus, 

introgression of walleye genes into native sauger does not appear to be an immediate threat.   

Nevertheless, hybridization could still be harmful to sauger because it represents wasted 

reproductive effort.   

 

 The near absence of hybrids despite massive walleye stocking is unexpected.  

Surprisingly, nearly all hybrids were found in the Yellowstone River drainage despite a 90% 

higher rate of stocking in the Missouri River drainage.  The Yellowstone is the only major river 

sampled that does not contain the clear, cold water that is characteristic of tail water habitat.  

Thus, environmental conditions in the Yellowstone River may be more conducive to 

hybridization, or to hybrid and walleye survival.  Genetic incompatibility could also explain the 

rarity of hybridization because nearly half (eight of 18) of the sampled hybrids were early 

generation (e.g., F1, F2, BC1). 

  

 Given my results, I conclude that preservation of sauger within the upper Missouri River 

drainage will require the persistence of many populations in order to retain genetic diversity. I 

recommend that (1) the transfer of genetically distinct stocks of sauger not take place; (2) 

historical levels of gene flow among populations be restored; and (3) the walleye fishery in the 

upper Missouri River drainage be replaced with a native sauger or sterile walleye fishery. 
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Table 1-1. Glossary.  Modified from Allendorf et al. (2001) with additions from Allendorf and 

Luikart (2007) and Laikre et al. (2005).   

 

Admixture: the production of new genetic combinations in hybrid populations through 

recombination. 

 

Diagnostic locus: a locus that is fixed or nearly fixed for different alleles in two hybridizing 

populations. 

 

Dynamics of hybridization:  the differential patterns of admixture and introgression that result 

from the reorganization of genomes at the organismic level and the reorganization of gene pools 

at the population level. 

 

Hybridization: interbreeding of individuals from genetically distinct populations, regardless of 

the taxonomic status of the populations. 

 

Hybrid swarm: a population of individuals that all are hybrids by varying numbers of 

generations of backcrossing with parental types and mating among hybrids. 

 

Informative locus:  a locus with substantial allele frequency differences between two 

hybridizing populations. 

 

Introgression: gene flow between populations whose individuals hybridize. 

 

Isolation-by-distance:  a pattern of genetic differentiation in which genetically effective 

migration among closely located populations is larger than in the case of distinct populations, 

resulting in successive genetic change over geographic distance. 

 

Outbreeding depression: a reduction in fitness in hybrid individuals relative to the parental 

types. 

 

Proportion of admixture: the proportion of alleles in a hybrid swarm or individual that comes 

from each of the hybridizing taxa. 

 

 



11 

 

Table 1-2.  Number of walleye stocked in Montana by county:  2006-2009. "X" indicates no walleye were stocked that year. 

            

  Year 

 County 2006 2007 2008 2009 

1 Bighorn 5,066,072 5,559,793 15,20,672 1,106,337 

2 Blaine 13,030 10,168 5,108 X 

3 Cascade 5,476 5,023 X 5,565 

4 Chouteau X X X 40,068 

5 Custer 240 X X X 

7 Fergus 5,000 X X X 

8 Garfield 1,000 1,000 121,662 1,000 

9 Hill 21,911 115,012 140,716 10,017 

10 McCone (Ft. Peck) X X 1,941,754 534,380 

11 Park 10,000 35,000 8,650 21,000 

12 Petroleum 22,000 20,055 20,000 21,528 

13 Phillips 19,829 113,909 118,898 8,000 

14 Pondera 101,270 X X X 

15 Richland 40,000 80,000 X X 

16 Rosebud X 1,000 99,786 1,049 

17 Sheridan 752,110 4,937 54,030 50,000 

18 Valley (Ft. Peck) 39,302,130 29,186,151 15,824,507 49244171 

19 Wibaux 2,000 2,000 2,000 2,000 

  Total 45,568,262 35,339,048 18,537,111 51,450,115 
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Figure 1-1.  Historical distribution of sauger and walleye; modified from Scott and Crossman 

(1979).   

 

 
 

 

 

 

 

 

 

 

 

Figure 1-2.  Hybrid indices for sauger samples collected from the lower Yellowstone River and 

Fort Peck Reservoir (Leary and Allendorf 1997).   
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Chapter 2 

 
Selection of microsatellite loci for detecting hybridization between sauger and walleye 

using a Bayesian-likelihood model 

 

Abstract 

 

We screened 20 microsatellite loci for usefulness in discriminating sauger, walleye, and their 

hybrids.  Eleven loci reliably amplified in PCR and were optimized in multiplexes.  Four of the 

loci are diagnostic (non-overlapping allele sizes between the species) and the other seven are 

informative with substantial allele frequency and size differences between the species.  We 

created simulated data sets in which 100% of sauger and walleye and 100% of F1, F2, and first 

generation backcrosses are correctly identified by program STRUCTURE at qi = 0.98 and 0.02 

(qi is the posterior proportion of an individual‘s genome with walleye ancestry).  This q-value 

threshold can be considered very conservative because it ensures that hybrid individuals not be 

classified as parentals.  This study shows that assignment tests have the power to (1) discriminate 

between sauger and walleye, (2) to detect interspecific hybrids, and (3) to assess levels of 

introgression.  Used in conjunction with one another, these diagnostic loci and Bayesian 

likelihood methods will provide a powerful new analytical framework with which to detect and 

to describe the dynamics of hybridization between sauger and walleye.   

 

Introduction 

 

Hybridization between individuals of genetically distinct populations is a growing concern in 

conservation biology (Allendorf et al. 2001).  This issue is especially pervasive within freshwater 

fishes (Leary et al. 1995).  In North America, hybridization with introduced species was 

considered to be the main factor in 38% of fish extinctions during the 20
th

 Century (Miller et al. 

1989).  Given increasing rates of species introductions, habitat destruction, and habitat 

fragmentation worldwide, further loss of aquatic biodiversity as a result of hybridization is 

expected. 

 

 Accurate detection of hybrid offspring has a variety of applications in fishery 

management.  For example, non-hybrid individuals are often desired for management programs 

designed to reestablish populations of extirpated indigenous taxa (Novinger and Rahel 2003).  

Conversely, hybrids between native and introduced species are at times targeted for removal 

from populations because they can serve as vehicles for genomic introgression (Allendorf et al. 

2001). Given the pervasiveness of artificial supplementation for sport and commercial fishing, 

biologists often want to know the extent to which hatchery fish contribute genetically to wild 

populations (Campton 1987; McGinnity et al. 2003; Sanz et al. 2009). On a similar note, 

estimated proportions of admixture within samples are sometimes used to determine which 

populations receive legal protection (Allendorf et al. 2004).  Whatever the case, accurate 

classification of the ancestry of an individual or the genetic status of a population has long-term 

evolutionary, ecological, and at times legal implications.        
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The advent of protein electrophoresis in the 1960s and of PCR in the 1980s allowed for 

the discovery of distinctive genetic variation between species, and therefore, the ability to 

identify individuals of definite hybrid ancestry.  When applying these methods, investigators 

most commonly seek codominant, diagnostic loci for hybrid detection.  Diagnostic loci are those 

that are fixed for different alleles between hybridizing taxa.  Such markers allow all genotypes to 

be distinguished and to assess the probability that parental individuals remain in the population.   

Additional benefits of diagnostic loci include the ability to determine directionality of 

hybridization (Scribner et al. 2001) and the ability to identify specific hybrid classes (e.g., F1, F2, 

and backcrosses.) with high power.    

 

Current model-based methods can be used to efficiently identify individuals of hybrid 

origin.  Many different methods are available, but most identify hybrid genotypes based on allele 

frequency differences between taxa (e.g. BAPS (Corander and Marttinen 2006)) or by 

minimizing Hardy-Weinberg and linkage disequilibrium within putative populations (e.g., 

STRUCTURE (Pritchard et al. 2000)).  There are three significant advantages of such model-

based methods: (1) diagnostic loci between species, populations, and stocks are not necessary; 

(2) it is possible to use more information from the data compared to approaches that are not 

explicitly based on genetic models (e.g., Anderson 2009); and (3) many of these programs 

operate within a Bayesian framework that allows for the use of prior information.   As described 

in Vaha and Primmer (2006), these methods have already been used to identify and discount 

admixture, to describe hybrid zones, and to detect introgression.  For a detailed consideration of 

model-based methods in hybrid detection see Anderson (2009).   

  

 Sauger (Sander canadensis) and walleye (Sander vitreus) are two congeneric North 

American perch species, and field studies using diagnostic allozymes and mtDNA have indicated 

that the species hybridize in nature (e.g., Billington et al. 1988).  Their hybrids are apparently 

fertile (Hearn 1986) and may display heterosis (Malison et al. 1990).  Nevertheless, hybridization 

and introgression appear rare where the species live in native sympatry (Clayton et al. 1973; 

Todd 1990; Billington et al. 1997).  Conversely, hybridization appears more common where (1) 

walleye and saugeye (female walleye x male sauger) are introduced, (2) both species occur in 

altered habitat, and/or (3) spawning sites are limited (reviewed by McMahon 1999).  Such 

conditions are pervasive throughout the native range of sauger and several investigations have 

documented loss of genetic integrity of native populations of sauger (Riegier et al. 1969; Nelson 

and Walburg 1977; Leary and Allendorf 1997; Billington et al. 2006).  

 

 The extent to which introgression threatens sauger has been examined by using, at most, 

four diagnostic allozymes (occasionally in conjunction with diagnostic mtDNA analysis (e.g., 

Billington et al. 1988)).  This small number of diagnostic loci limits the power of detecting and 

describing certain characteristics of hybridization that are critical for effective hybrid 

management.  For example, using these four diagnostic loci to examine a sample of 30 

individuals from a hybrid swarm containing 1% admixture from walleye leaves investigators 

with almost a 10% chance of concluding that the population is not a hybrid swarm.  Additionally, 

there is about a 6% chance of concluding that a first generation backcross to sauger is a sauger, 

which can have serious consequences in supplemental stocking programs.  Finally, sauger are 

considered a species of special concern across much of their native distribution and thus the 
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lethal sampling required to screen fish at these loci is undesirable.  What is needed is a powerful 

and nonlethal genetic method of detecting hybridization between sauger and walleye. 

 

 The objectives of this chapter are to (1) find diagnostic and informative microsatellite 

loci for hybrid identification between sauger and walleye; and (2) to estimate the power of 

hybrid detection between the species using simulated hybrid individuals and Bayesian analysis of 

the multiple locus genotypes in program STRUCTURE (Pritchard et al. 2000). 

 

Materials and methods 

 

Sample collection and DNA extraction 

 

Reference individuals from both species were collected from wild populations to identify 

distinctive allelic variation at microsatellite loci.  To represent the geographic range of the 

species, reference walleye were obtained from numerous sources, including the Cumberland 

drainage, Kentucky (N = 20); the Muskegon River (N = 20) and Lake Gogebic (N = 10), 

Michigan; Lake Mistassini, Quebec (N = 44); and Lake Erie (N = 20).  If samples were collected 

from areas in which sauger occur, the species identity of each walleye was confirmed by 

allozyme, microsatellite, and/or mtDNA analysis (R. Leary, Montana Fish, Wildlife & Parks, 

Helena, MT, personal communication).  Reference sauger were collected from the Bighorn 

River, Wyoming (N = 50).  Reference sauger were confirmed by morphology (M. Smith, 

Wyoming Game and Fish, Cody, WY, personal communication) and were collected from 

locations that had no evidence of introgression from a prior allozyme study (Billington et al. 

2006; Leary unpublished data).  We randomly selected 40 sauger and walleye reference samples 

for diagnostic and informative microsatellite analysis.    
 

 We extracted DNA from fin clips using a detergent-based cell lysis buffer and 

ammonium acetate protein precipitation followed by isopropyl alcohol DNA precipitation.  DNA 

was resuspended in 100uL TE buffer, and diluted 1:10 for PCR amplification in a PTC-200 

thermocycler (MJ Research Inc., Waltham, MA) using the QIAGEN Multiplex PCR Kit 

(QIAGEN, Valencia, CA).  Following the PCR reaction conditions described by the original 

primer developers, PCR amplification was initially conducted on 20 pairs of percid microsatellite 

primers (Table 2-1) including those originally developed from walleye: Svi7, Svi2, Svi20, Svi26 

(Eldridge et al. 2002), Svi L9, Svi L10, and Svi L11 (Wirth et al. 1999); yellow perch (Perca 

flavescens): YP13, YP17, YP41, YP60, YP78, YP80, YP113, (Li et al. 2007), Pfla L1, Pfla L2, 

Pfla L4, and Pfla L8 (Leclerc et al. 2000); and pike-perch (Sander lucioperca): MSL-1, MSL-2, 

and MSL-9 (Kohlman and Kersten 2008). From these 20 primer pairs, a subset of eleven were 

used in hybrid analyses (see results; Table 2-2).  All multiplex PCR reactions used a total volume 

of 10ul and followed the QIAGEN Microsatellite protocol.  All loci were amplified using a 

touchdown PCR profile with an initial annealing temperature of 65 or 60°C stepping down -1 or 

-0.5°C until the bulk of the cycles ran at 45°C (Table 2-2).  PCR products were visualized on an 

ABI3130xl Genetic Analyzer (Applied Biosystems Inc., Foster City, CA (ABI)).  Allele sizes 

were determined using the ABI GS600LIZ ladder, (ABI).  Electropherogram output was viewed 

and analyzed using GeneMapper version 3.7 (ABI). 
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Genetic analysis 

 

Within sauger and walleye, we measured base genetic diversity at each locus as expected 

heterozygosity (He) using FSTAT Ver. 2.9.3 (updated from Goudet 1995).  The assumption of 

the absence of linkage disequilibrium between loci was checked using a log likelihood test (G-

test) in which P values were calculated using the Markov Chain algorithm in GENEPOP 

(Raymond and Rousset 1995) using a dememorization period of 10,000, in 100 batches with 

1000 iterations per batch.  We tested for allele frequency differences among  the species at each 

locus with log-likelihood-based exact tests (Goudet 1995) using the default parameters for 

Markov chain tests in GENEPOP.  We quantified population differentiation between sauger and 

walleye in three different ways:  (1) FST (ѲST; Weir and Cockerham (1984)); (2) RST, which is an 

FST analogue based on microsatellite mutational patterns and allele sizes (Slatkin 1995); and (3) 

FST‘ (Hedrick 2005), a standardized measure of genetic differentiation, which ranges from 0 to 1 

for all levels of genetic variation.  FST and RST were estimated in GENEPOP.  An unbiased 

estimate of FST‘ was calculated using the equation described in Meirmans and Hedrick (2011):   

 

   
  

        

              
 , 

 
where HT is the total gene diversity, HS is the mean within population gene diversity, and k is the 

number of sampled populations, in this case k = 2 (sauger and walleye).   

 

Diagnostic and informative microsatellites  

 

We first selected those informative loci that produced easily scorable and reproducible PCR 

products in both sauger and walleye.  We did this by examining the banding patterns of the PCR 

product on agarose gels following electrophoresis and ethidium bromide staining.  Specifically, 

we eliminated loci that did not produce visible size differences between the species and those 

that had technical problems, such as failure to amplify in one or both species after two PCRs, 

complex stutter bands that could potentially complicate the scoring of alleles, or irreproducible 

banding patterns.  For those primer pairs producing acceptable amplification products, our final 

criterion for selection was successful optimization in multiplex PCR reactions.   

 

 Next we distinguished between diagnostic and informative microsatellites.  We chose 

diagnostic loci if they had non-overlapping allele sizes between our walleye and sauger reference 

samples.  We selected informative loci based on the presence of substantial allele frequency 

differences between the species (e.g., high FST and bimodal distribution of allele sizes between 

the species).  Although diagnostic loci are more desirable than informative loci, Boyer et al. 

(submitted) established that Bayesian model-based methods of hybrid detection do not require 

diagnostic loci for efficient population admixture estimation.  Additionally, it is known that 

power of hybrid detection using Bayesian-likelihood methods increases with the number of loci 

and the amount of allele frequency divergence between hybridizing taxa (Davies et al. 1999).   

 

Using diagnostic loci, population admixture is estimated as the proportion of diagnostic 

walleye alleles found among individuals within a sample from the population of interest.  

Likewise, individual admixture is estimated as the proportion of diagnostic walleye alleles found 
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within a single fish.  For example, first generation hybrids between sauger and walleye will have 

a proportion of admixture equal to 0.5 and will be heterozygous for alleles from the parental taxa 

at all diagnostic loci.   

 

 Using model-based methods that do not explicitly incorporate fixed differences between 

species, estimating population and individual admixture is more complicated: population 

admixture is based on an underlying genetic model.  We used the Markov chain Monte Carlo 

(MCMC) model in program STRUCTURE (Pritchard et al. 2000), in which individuals are 

assigned to either taxa by minimizing both Hardy-Weinberg and gametic disequilibrium.  In 

STRUCTURE, population admixture is calculated as the arithmetic mean of q-values for 

individuals in a population.  This is done by estimating the posterior probability of an individual 

being assigned to either taxa using allele frequency differences between the species adopting a 

Bayesian approach:   

 

Pr(Z, P|X) ≈ Pr(Z)Pr(P)Pr(X|Z, P), 

 

where Z is the species of origin, P is the unknown allele frequencies in both taxa, and X is the 

multilocus genotypes of the sampled individuals (Pritchard et al. 2000). 

 

Power of hybrid detection 

 

We assessed the accuracy of parental assignments using STRUCTURE to estimate the 

proportion of admixture in simulated sauger and walleye by Bayesian analysis of the multiple 

locus genotypes.  We randomly selected 30 sauger and 30 walleye reference samples to simulate 

500 each of both species using HYBRIDLAB (Nielsen et al. 2006).   HYBRIDLAB generates 

genotypes by randomly sampling alleles from parental frequency distributions, assuming random 

mating, neutrality, and linkage disequilibrium. We replicated both species five separate times 

and used STRUCTURE to evaluate each replicate.  In STRUCTURE we used no prior 

population information, a burn-in period of 10,000, 50,000 batches and the independent allele 

frequency (I) model.  These simulations allowed us to establish a q-value threshold that no ‗pure‘ 

sauger or walleye in an empirical sample is expected to cross.  

 

 Next, we assessed the accuracy of hybrid detection using STRUCTURE to estimate the 

proportion of admixture in simulated hybrid individuals.  We randomly selected 30 sauger and 

30 walleye from our reference samples to generate 500 of each F1, F2, and first-generation 

backcrosses using HYBRIDLAB (Nielsen et al. 2006).  Once again, we replicated each hybrid 

class five separate times.  In STRUCTURE, we used the same settings as described above; 

however, sauger and walleye were excluded from STRUCTURE runs, as Vaha and Primmer 

(2006) established that hybrid detection efficiency was only minimally affected by whether 

reference population allele frequency information was included or not.   
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Results 

 

Diagnostic and informative microsatellites 

 

We discarded nine loci that did not meet our selection criteria (Table 2-1). MSL-9 and Pfla L2 

were polymorphic in both species, but we found no allele frequency differences between species.  

YP78 did not produce any product after two attempted PCRs.  This was not expected as Li et al. 

(2007) documented that these primers, developed for yellow perch, successfully amplified in 

both sauger and walleye.  YP13 and YP17 produced irreproducible stutter bands on agarose gels 

and were not selected for further optimization.  Likewise, these primers had been optimized for 

yellow perch, and were successfully cross-amplified in both sauger and walleye (Li et al. 2007).  

Finally, we were unable to optimize Pfla L8, Svi L11, Svi L9, and YP80 in multiplex PCR 

reactions.  

  

The remaining eleven loci were optimized in multiplexes (Table 2-2).  Genetic summary 

statistics for these loci are presented in Table 2-3.  Overall, genetic divergence between the taxa 

was high: FST = 0.232; RST = 0.583; FST‘ = 0.941.  Tests of genetic differentiation at all loci were 

highly significant (log-likelihood based exact test, P<0.001).  Four of the eleven loci were 

diagnostic because they had non-overlapping allele sizes between sauger and walleye (Figure 2-

1a).  The seven remaining loci were informative because they had substantial allele frequency 

differences between the species (Figure 2-1b).  Of these eleven loci, Svi20 and Pfla L1 showed 

significant evidence for being in pairwise linkage disequilibrium with each other in our sauger 

reference samples (G-test, P<0.001).  However, no pairwise locus comparisons were significant 

within our walleye sample suggesting this result is likely due to sampling error or small effective 

population size and not due to physical linkage.  The later is likely as Bighorn River sauger 

populations are known to be small and isolated (Krueger et al. 1997).        

 

 All three summary statistics provided a distinct quantification of, and perspective on, 

genetic differentiation between sauger and walleye.  Not surprisingly, RST (with the exception of 

MSL-2) and FST‘ were greater than FST across loci (Table 2-3).  This is expected because the 

upper limit of FST can never exceed 1-HS.  The eleven loci were highly polymorphic, and 

estimates of FST across all loci were essentially at their maximum values (mean 1- HS = 0.25).  In 

contrast to FST, RST takes into account the evolutionary distance between microsatellite alleles.  

As expected, estimates of RST were much larger at loci with bimodal allele size distributions 

(e.g., MSL-1 and Pfla L1; Figure 2-1a and 2-1b) and substantially smaller for those with similar 

allele sizes (e.g., MSL-2; Figure 2-1c).  This is likely due to the fact that RST assumes that each 

mutation changes the base-pair length of an allele by a single repeat unit.  Unlike FST and RST, 

FST‘ is standardized by the maximum value it can obtain (1-HS) and also has the advantage of 

being equal to 1 when populations do not share any alleles in common.  Estimates of FST‘ 

revealed substantial genetic differentiation that had otherwise been masked at loci with high 

polymorphism and/or overlapping allele size ranges (e.g., MSL-2; Figure 2-1c).  Additionally, 

FST‘ was equal to 1 for all four diagnostic loci. 

 

  MSL-2 provides an example of how at a single locus, any one measure of genetic 

differentiation does not provide a comprehensive description of the genetic variation present 

between sauger and walleye.   Specifically, vastly different proportions of genetic variation 
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between the species were explained by the three measures at this locus:  FST = 0.174, RST = 0, 

and FST‘ = 0.939.  FST at MSL-2 is essentially at its maximum value, as 1-HS = 0.197.  This 

suggests substantial allele frequency divergence is present between the species.  However, RST is 

equal to zero, which is likely because the size distribution of walleye alleles at this locus is 

completely encompassed by that of sauger (Figure 2-1c).  Finally, the two species share only 

three alleles out of 22 total in common; consequently, FST‘ = 0.939.   

   

Simulation results 

 

The ability to differentiate parental from hybrid genotypes was assessed using simulations and 

Bayesian admixture analyses in STRUCTURE.  Summary statistics for the simulated parental 

and hybrid genotypes appears in Table 2-4.  The proportions of individual admixture in the 

populations of sauger ranged from 0.001 to 0.013 with a mean of 0.001 (SE<0.001).  Conversely, 

walleye ranged from 0.998 to 0.999 with a mean of 0.999 (SE<0.001).  F1 hybrids ranged from 

0.298 to 0.668 with a mean of 0.499 (SE = 0.002).  F2 hybrids (F1xF1) ranged from 0.164 to 

0.821 with a mean of 0.5 (SE = 0.002). Finally, first generation backcrosses to sauger ranged 

from 0.106 to 0.573 with a mean of 0.262 (SE = 0.009) whereas first generation backcrosses to 

walleye ranged from 0.481 to 0.895 with a mean of 0.735 (SE = 0.006).  

 

Our simulation and STRUCTURE analyses revealed that these eleven loci can 

distinguish 100% all first and second generation hybrids (F1, F2, and backcrosses) from parental 

genotypes.   That is, the qi-value distributions between the simulated hybrids and parental 

individuals displayed absolute distinction (Figure 2-2).  In particular, no hybrid had a qi-value 

greater than 0.90 or less than 0.10 and no sauger or walleye had a qi-value greater than 0.02 or 

less than 0.99, respectively.   

 

Thus, analyses of the simulated data set suggest that 100% of F1, F2, and backcrosses in 

our empirical data set using all eleven microsatellites and STRUCTURE with qi = 0.02 and 0.98 

could have been identified correctly.   This threshold can be considered very conservative 

because it ensures that hybrid individuals not be classified as parentals (Vaha and Primmer 

2006).   

 

Discussion 

 

This study identified four diagnostic microsatellite loci between sauger and walleye and 

demonstrated that assignment tests have the power to (1) discriminate between the species, (2) to 

detect interspecific hybrids, and (3) to assess levels of introgression.  These two methods of 

hybrid detection provide a powerful new analytical framework with which to detect and to 

describe the dynamics of hybridization between sauger and walleye.   

 

 Unlike allozyme loci in which diagnostic differences between taxa are due to fixation for 

alternate alleles at a locus, microsatellite loci are usually polymorphic and diagnostic differences 

are due to non-overlapping allele sizes between species (Boyer et al. submitted).  Consequently, 

differences identified in one geographic area may not be conserved across the entire range of the 

species (Spruell et al. 2001).  In such cases, individuals may be incorrectly identified as hybrids 

if they display alleles for the congeneric species at what is considered to be a diagnostic locus.  
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Boyer et al. (2008) described that in a hybrid swarm, alleles diagnostic of both species are 

expected to be randomly distributed across loci.  Thus, if alleles of one species are much more 

common at a single locus than others, this is likely evidence for a shared allele between the 

hybridizing taxa and not evidence for hybridization.  Our reference walleye more or less 

represent the geographic distribution of the species.  Our sauger references, however, represent 

only a small fraction of the sauger distribution in North America.  Therefore, it is conceivable 

that both species share alleles at the four loci we found to be diagnostic.     

 

Using diagnostic loci it is possible to describe admixture using a hybrid index (e.g., 

Muhlfeld et al. 2009).  This index ranges from 0 for sauger (no walleye alleles) to 1 for walleye 

(two walleye alleles at each locus) and is calculated by summing the total number of diagnostic 

walleye alleles in an individual and dividing by 2X where X is the number of diagnostic loci (in 

this case four).  First generation hybrids between sauger and walleye have a hybrid index of 0.5 

and are heterozygous for alleles from the parental taxa at all diagnostic loci.  It is assumed that 

fish with a hybrid index of 0.5 that are not heterozygous for alleles from sauger and walleye at 

all loci are post-F1 hybrids.  This method of describing hybridization has two critical 

applications:  (1) testing for the presence of hybrid swarms and (2) examining the distribution of 

hybrid genotypes in a sample.   

 

Statistical power to detect admixture in a hybrid swarm is described by the equation 

          , where p is the proportion of admixture, N is the number of individuals in the 

sample, and X is the number of diagnostic loci.  Therefore, analyzing four diagnostic loci in a 

sample size of 30, from a hybrid swarm with 1% genetic contribution from walleye, investigators 

have about a 90% probability of detection.  However, on the individual level, confidence in 

discerning between non-hybridized parental types and later generation backcrosses requires more 

diagnostic loci (Boecklen and Howard 1997).  Consequently the hybrid index likely 

overestimates parental types and underestimates the number of individuals with low levels of 

admixture.   

 

The results of our simulation study support the findings of Boyer et al. (submitted) who 

established that Bayesian, model-based methods of hybrid detection that do not explicitly 

account for fixed allelic differences between hybridizing taxa can provide reliable estimates of 

population admixture.  The results of our simulation study indicate that hybrids having a sauger 

or walleye ancestor within two generations can be identified by STRUCTURE 100% of the time 

using a q-value threshold of 0.02 and 0.98.   Other recent hybridization studies (Beaumont et al. 

2001; Barilani et al. 2007) have used a q-value threshold of ≤ 0.10 as a cutoff for defining 

parental populations with an FST of ~0.20 (FST for sauger and walleye = 0.22) because of limited 

power (number of loci ≤ 8).   

 

 Vaha and Primmer (2006) described that when estimating hybrid detection efficiency, an 

additional factor that needs to be considered is the proportion of hybrids in the sample. Using 

STRUCTURE and simulated genotypes, they noted a 1.8% reduction in efficiency following a 

drop from 10% hybrids within samples to 1%.  Consequently, they warned that in empirical 

samples with small proportions of admixture, hybrids may be difficult to distinguish.  In our 

study, similar to Barilani et al. (2007), we did not vary the proportion of hybrids in each run of 

STRUCTURE:   hybrids represented either 0% (e.g., in our estimates of q for parentals) or 100% 
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of each run (e.g., in our estimates of q for hybrids).  Therefore, it is plausible that our q-value 

thresholds of 0.02 and 0.98 will result in a small proportion of misclassified hybrids and/or 

parental individuals because most studies have demonstrated that natural hybridization between 

sauger and walleye is rare (Billington et al. 1988; 1997).   

 

Using STRUCTURE and all eleven microsatellite loci provides a more powerful way to 

detect hybridization than the four diagnostic microsatellites alone because allele frequency 

divergence at an additional seven loci is accounted for.  Nevertheless, we recommend that 

researchers apply both methods to examine hybridization between the species:  diagnostic loci 

provide a means to identify individuals of definite hybrid origin, not those that are ‗probably‘ 

hybrids.  Additionally, as Boyer et al. (submitted) pointed out, another advantage of model-based 

admixture estimates is the ability to measure variation around point estimates of individual 

admixture.  This is not possible using diagnostic loci, as hybrid indices are direct counts of 

alleles.  
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Table 2-1.  Twenty microsatellite loci tested for easily scorable and reproducible PCR products 

and for diagnostic and informative properties between sauger and walleye.   Loci appearing 

below the dashed line were not used in hybrid analyses for reasons appearing under the column 

labeled ―PCR status‖.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Locus PCR status Primer species Reference 

MSL-1 Optimized Pike perch Kohlman and Kersten (2008) 

MSL-2 Optimized Pike perch Kohlman and Kersten (2008) 

Pfla L1 Optimized Yellow perch LeClerc et al. (2000) 

Svi2 Optimized Walleye Eldridge et al. (2002) 

Svi20 Optimized Walleye Eldridge et al. (2002) 

Svi26 Optimized Walleye Eldridge et al. (2002) 

Svi7 Optimized Walleye Eldridge et al. (2002) 

Svi L10 Optimized Walleye Wirth et al. (1999) 

YP113 Optimized Yellow perch Li et al. (2007) 

YP41 Optimized Yellow perch Li et al. (2007) 

YP60 Optimized Yellow perch Li et al. (2007) 

MSL-9 No allele frequency differences  Pike perch Kohlman and Kersten (2008) 

Pfla L2 No allele frequency differences  Yellow perch LeClerc et al. (2000) 

Pfla L8 Unable to optimize Yellow perch LeClerc et al. (2000) 

Svi L11 Unable to optimize  Walleye Wirth et al. (1999) 

Svi L9 Unreliable in sauger Walleye Wirth et al. (1999) 

YP13 Irreproducible stutter bands Yellow perch Li et al. (2007) 

YP17 Irreproducible stutter bands Yellow perch Li et al. (2007) 

YP78 No amplification Yellow perch Li et al. (2007) 

YP80 Unable to optimize Yellow perch Li et al. (2007) 
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Table 2-2.  Multiplex reaction conditions for the eleven microsatellites used for hybrid detection.  

Primer sequences are those of the original authors (Table 2-1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Note:  *diagnostic, 
† 

a 5‘ tail containing GTGTCTT was added to reverse primer (Brownstein et 

al. 1996). 

 

 

 

Locus 

Touchdown 

annealing temperature (C°) 

 

Final Primer (um) 

Multiplex 1   

Svi7* 65-45 0.050 

Svi2* 65-45 0.050 

YP41*
†
 65-45 0.050 

Multiplex 2   

Pfla L1
†
 65-45 0.200 

YP60 65-45 0.300 

Svi20 65-45 0.100 

Svi26 65-45 0.075 

MSL-2 65-45 0.150 

Multiplex 3   

Svi L10 65-45 0.200 

YP113
†
 65-45 0.200 

Single reaction   

MSL-1* 60-50 0.200 
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Table 2-3.  Genetic summary statistics for sauger and walleye reference samples.  Diagnostic 

loci are above the dashed line and values are sorted by RST values. 

 

  He       

 

Size range (base pairs) 

Locus sauger walleye FST FST‘ RST sauger walleye 

MSL-1 0.762 0.898 0.161 1.000 0.915 168-198 130-158 

Svi2 0.695 0.875 0.291 1.000 0.891 236-258 188-202 

Svi7 0.843 0.759 0.189 1.000 0.861 170-210 154-168 

YP41 0.000 0.641 0.676 1.000 0.828 172 176-196 

YP60 0.588 0.701 0.413 0.971 0.887 190-210 174-194 

Pfla L1 0.759 0.798 0.165 0.979 0.828 125-145 103-149 

Svi L10 0.867 0.939 0.161 0.923 0.759 186-194 188-246 

Svi20 0.799 0.563 0.128 0.837 0.690 167-189 151-181 

Svi26 0.734 0.865 0.156 0.914 0.115 151-186 151-188 

YP113 0.909 0.945 0.044 0.780 0.110 138-268 138-242 

MSL-2 0.802 0.858 0.174 0.939 0.000 140-226 156-196 

Mean 0.689 0.804 0.232 0.941 0.583     
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Table 2-4.  Summary statistics for the simulated parental and hybrid populations.  Values under the columns labeled ―q‖ are the 

average proportions of an individual‘s genome with walleye ancestry as estimated in STRUCTURE.  Values under the columns 

labeled ―min‖ and ―max‖ are the minimum and maximum qi-values for individuals within each parental or hybrid simulation replicate. 

BCS = backcross to sauger; BCW = backcross to walleye. 

 

Simulation 

replicate 

sauger   BCS   F1   F2   BCW   walleye 

q min max   q min  max   q min max   q min  max   q min max   q min max 

1 0.001 0.001 0.013 
 

0.243 0.110 0.550  0.497 0.353 0.640  0.506 0.211 0.770  0.746 0.440 0.890  0.999 0.998 0.999 

2 0.001 0.001 0.012  0.240 0.125 0.536  0.505 0.298 0.633  0.495 0.176 0.802  0.749 0.481 0.880  0.999 0.998 0.999 

3 0.001 0.001 0.013  0.281 0.106 0.519  0.499 0.331 0.668  0.498 0.179 0.804  0.719 0.427 0.890  0.999 0.997 0.999 

4 0.001 0.001 0.013  0.273 0.107 0.523  0.498 0.323 0.657  0.501 0.193 0.821  0.727 0.454 0.890  0.999 0.998 0.999 

5 0.001 0.001 0.010 
 

0.275 0.113 0.573  0.504 0.311 0.631  0.498 0.164 0.798  0.732 0.445 0.900  0.999 0.998 0.999 

mean (SD) 0.001 (<0.001)   0.262 (0.019)   0.499 (0.003)   0.500 (0.004)   0.735 (0.013)   0.999 (<0.001) 
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Figure 2-1.  Frequency histograms showing a) non-overlapping allele sizes between sauger and walleye at MSL-1; b) partially 

overlapping allele sizes at Pfla L1; and c) the completely encompassed allele size distribution of walleye within sauger at MSL-2. 
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Figure 2-2.  Frequencies of simulated parental and hybrid genotypes sorted by q-value from the 

first simulation replicate.  The q-values represent the probability of an individual being a sauger 

(q-value = 0.0) or walleye (q-value = 1.0). The graph portrays the range of frequencies of the 

STRUCTURE-based q-values of the simulated sauger, walleye, F1, F2, and backcrossed hybrids 

generated in HYBRIDLAB.  The q-value thresholds for hybrid detection of 0.02 and 0.98 are 

indicated on the graph. 
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Chapter 3 
 

Genetic population structure of sauger and the pattern of hybridization with non-native 

walleye in the upper Missouri River drainage 

 

Abstract 

 

We analyzed 11 microsatellite loci to determine the genetic population structure of sauger and 

describe the pattern of hybridization with widely introduced, non-native walleye in the upper 

Missouri River drainage.  Although we found little genetic divergence among samples, two 

major population groups were revealed by principal component analysis of allele frequencies.  

The first consisted of samples from the Missouri and lower Yellowstone River drainages, which 

showed no evidence for allele frequency differences among themselves.  The second major 

population grouping contained samples from the Bighorn River drainage and the upper 

Yellowstone River.  Within the Bighorn River drainage, samples from upstream locations (Little 

Wind and Popo Agie Rivers) clustered separately and showed significant allele frequency 

differentiation from downstream samples (Bighorn Lake and main stem Bighorn River), 

indicating the presence of genetic structuring.  Samples collected from the upper Yellowstone 

and Bighorn River drainages also displayed reduced genetic variation compared to all other 

samples.  Sauger populations within these locations are known to be small and isolated, and thus 

genetic distinctiveness and reduced genetic variation are likely due to genetic drift and lower 

migration rates rather than long-term isolation.  We detected only eighteen hybrids between 

sauger and walleye out of 925 individuals analyzed.  Hybridization appeared recent, as nearly 

half of the hybrids showed significant evidence for having a sauger or walleye ancestor within 

two generations.  We found no evidence for hybrid swarms, as hybrids were few and widely 

scattered across sample locations.  Only one hybrid was detected in the Missouri River, and all 

others were detected in the largely unaltered Yellowstone River drainage.  The near absence of 

hybrids despite massive walleye stocking is unexpected.  Equally surprising is that the majority 

of hybrids were sampled in the Yellowstone River drainage despite a 90% higher rate of stocking 

in the Missouri River drainage.  This might be due to environmental conditions in the 

Yellowstone drainage that are more conducive to hybridization, or to hybrid and walleye 

survival.  Introgression of walleye genes into native sauger does not appear to be an immediate 

threat and might be due to selection against hybrids.  Nevertheless, the presence of hybrids could 

still be harmful because their production represents wasted reproductive effort.  Given our 

results, we recommend that (1) the transfer of genetically distinct stocks of sauger not take place; 

(2) historical levels of gene flow among populations be restored; and (3) the walleye fishery in 

the upper Missouri River drainage be replaced with a native sauger or sterile walleye fishery. 

 

Introduction 

 

Management for productive sport fisheries has dramatically altered freshwater ecosystems 

worldwide (Miller et al. 1989; Hickley 1993; Cowx 1994; Eby et al. 2006). Each year millions of 

individuals are introduced by thousands of stocking events (Hickley 1993), often without regard 

for the potential establishment of invasive species (Boyer et al. 2008), the extinction of native 

taxa (Miller et al. 1989; Rhymer and Simberloff 1996), and the loss of genetic integrity of native 

fishes (Araki and Schmidt 2010).  Such loss of aquatic biodiversity is often the result of 
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hybridization between native and introduced fish (Leary et al. 1995; Scribner et al. 2001). Given 

the likelihood of a continued and growing need for supplementation, further loss of species as a 

result of hybridization is expected.   

 

 The threat of anthropogenic hybridization is dependent upon the survival and fertility of 

hybrid offspring (for a general consideration of hybrids in conservation, see Allendorf et al. 

2001).  Fertile hybrids can act as a vehicle for genomic introgression, resulting in fitness 

penalties due to intrinsic genetic incompatibility and extrinsic disruptions in local adaptation 

(e.g., gene-by-environment interactions) (Templeton et al. 1986).  Despite even heavy fitness 

consequences, however, introgression can still spread and result in the formation of hybrid 

swarms (Epifanio and Philipp 2001) in which every individual in the population is a hybrid.  

Hybrid swarms may be of little or no conservation value (Allendorf et al. 2001).  Likewise, 

hybridization that produces sterile offspring is not benign, as it may result in wasted reproductive 

energy and a competitive advantage for the invasive species (Leary et al. 1993).  

 

Sauger (Sander canadensis) are a highly migratory, cool-water fish species in the family 

Percidae that occur in large, turbid river systems throughout much of the Mississippi, Great 

Lakes, and Hudson Bay drainages (Scott and Crossman 1979).  Historically, sauger were 

considered to be the most widely distributed percid species in North America (Lionberger 2006); 

however, populations have declined across a large portion of their range primarily due to habitat 

destruction and fragmentation (Caruful 1963; Nelson and Walburg 1977; Hesse 1994; Pegg et al. 

1997; McMahon and Gardner 2001).  A potentially underestimated factor in sauger declines, 

however, may be introgressive hybridization with the widely introduced, congeneric walleye 

(Sander vitreus).   

 

Despite apparent F1 fertility (Hearn 1986), allozyme studies have provided evidence that 

hybridization and introgression are rare where sauger and walleye live together in native 

sympatry (Clayton et al. 1973; Todd 1990; Billington et al. 1997).  Conversely, hybridization 

appears more common where (1) walleye and saugeye (female walleye x male sauger) are 

introduced, (2) both species occur in altered habitat, and/or (3) spawning sites are limited 

(reviewed by McMahon 1999).  Such conditions are pervasive throughout the native range of 

sauger, and several investigators have documented loss of genetic integrity of native populations 

due to hybridization (Riegier et al. 1969; Nelson and Walburg 1977; Leary and Allendorf 1997; 

Billington et al. 2006).  Curiously, however, no studies have detected evidence of hybrid swarms 

between walleye and sauger, indicating that ecological (pre-mating) or intrinsic (post-mating) 

barriers to introgression may be present.   

 

Two barriers potentially limiting the extent to which introgression proceeds include 

temporal and spatial differences during the spring spawning season and genetic incompatibility.  

Acquiring evidence that such barriers to introgression exist, however, has proven difficult due to 

the availability of only four species diagnostic allozymes.  Generally, during the spring spawning 

season, sauger tend to spawn later and in different locations than walleye (Rawson and Scholl 

1978; Siegwarth 1993; McMahon 1999; Gangl et al. 2000).  However, overlap in timing 

(Collette et al. 1977) and location (Medlin 1990) is known.  Genetic barriers do not seem as 

obvious.  Culture experiments have revealed that when reared in hatchery ponds, second-

generation hybrids (F2 and backcrosses) demonstrate high survival (Hearn 1986). Nevertheless, 
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post-F1 hybrids are rare in the wild (Billington et al. 1988; but see Fiss et al. 1997) and their 

reproductive capabilities have not been studied.  As it stands, introgression appears limited by 

some mechanism, but its strength is not well understood due to insufficient markers.  

 

In order to determine the threat that hybridization with widely stocked non-native walleye 

poses to native sauger, we examined the spatial distribution of hybrid genotypes in the upper 

Missouri River drainage of Montana and Wyoming.  Sauger in this location are a critically 

imperiled species of special concern (Carlson 2003) and are thought to persist in only a fraction 

of their historical range (McMahon and Gardner 2001; Welker et al. 2001).  Significant sauger 

declines have resulted from loss of habitat and population connectivity due to water development 

and habitat destruction (McMahon and Gardner 2001).  The impact of hybridization, however, 

may also be substantial as its presence has been documented (Leary and Allendorf 1997; 

Billington et al. 2006) and conditions favorable to its spread are present:  there is widespread 

overlap with walleye populations during the spawning season (Penkal 1992; Belgraph and Guy 

2008), habitat alterations including reservoirs and irrigation infrastructure are common 

(McMahon and Gardner 2001; Welker et al. 2001), hybrids have been inadvertently stocked as 

sauger and walleye (Leary and Allendorf 1997; Gardner 2005), and massive walleye stocking 

occurs within the drainage (Kerr 2008). 

 

Walleye stocking records for Montana Fish Wildlife & Parks (MFWP) and Wyoming 

Game and Fish (WGF) indicate that an average of 45 million are stocked annually in the upper 

Missouri River drainage (Kerr 2008).  Over 90% of the walleye stocking in Montana occurs in 

the Missouri River drainage.  The remainder occurs in the Yellowstone River drainage.  

Alarmingly, evidence provided by Leary and Allendorf (1997) has indicated that hatchery 

personnel in Montana mistakenly may include 5% hybrids in their brood stock collections, 

suggesting that hybrids are occasionally stocked as walleye.  In reservoirs impounding the main 

stem Bighorn River in Wyoming, walleye stocking occurs in Bighorn Lake and historically took 

place in Boysen Reservoir (most years between 1952 to 1971 (P. Gerrity, WGF, Lander, WY, 

personal communication)).  Walleye stocking in the Bighorn River drainage also occurs in Ocean 

Lake, which is located upstream of Boysen Reservoir, but not on the main stem river.  Walleye 

stocked in Ocean Lake may eventually end up in Boysen Reservoir through an irrigation return 

flow canal, but this is probably very rare (P. Gerrity, WGF, Lander, WY, personal 

communication). 

 

Within the upper Missouri River drainage, hybrids have been detected in Montana (Leary 

and Allendorf 1997; Billington et al. 2006), but not in Wyoming (Krueger et al. 1997; Billington 

et al. 2006).  Hybridization appears most common in the lower Yellowstone drainage (samples 

have consisted of 22% hybrids) and least common the Missouri River drainage (10% hybrids) 

(Billington et al. 2006).  In contrast, Wyoming is considered a regional stronghold for sauger due 

to the apparent ‗purity‘ of their stocks.  Nevertheless, studies of hybridization in both states have 

been hampered by two weaknesses:  investigators did not purposefully target discrete spawning 

aggregations, and they used, at most, four diagnostic allozyme loci to examine the dynamics of 

hybridization (Krueger et al. 1997; Leary et al. 1997; Billington et al. 2006).  Thus, the extent to 

which hybridization has progressed within breeding groups in the upper Missouri River drainage 

is not well understood. 
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The objectives of this study were to describe the genetic population structure of sauger 

and determine the pattern of hybridization with non-native walleye in the upper Missouri River 

drainage of Montana. To describe the pattern of hybridization we asked three questions:  How 

common is hybridization?  Where is hybridization occurring?  What are the patterns of genomic 

introgression?   

  

Materials and methods 

 

Study area 

 

The upper Missouri River drainage originates in western Montana and Wyoming and forms a 

major portion of the greater Mississippi river basin, encompassing approximately 190,000 km
2
.  

The drainage can be broken down into three subsidiary river basins ― the Missouri, 

Yellowstone, and Bighorn.  Our study area included these three main stem rivers and several 

tributaries and reservoirs (Figure 1-1).  

 

The upper Missouri River drainage represents the western extent of the native distribution 

of sauger in North America.  Sauger stocks within the drainage may be of increased conservation 

value due to their peripheral location in the species‘ range (Lesica and Allendorf 1995).  In fact, 

Scott and Crossman (1979) have suggested that sauger within the drainage should be classified 

as a distinct subspecies (S.c. boreum) due to their atypical morphology (e.g., distinctive spotting 

and numbers of pectoral and dorsal rays).   

 

Sample collection 

 

MFWP and WGF personnel sampled 21 locations throughout the upper Missouri River drainage 

during April 2009 to October 2010 (N = 925, Table 3-1). Samples were collected by 

electrofishing or trammel netting.  MFWP and WGF personnel randomly sampled individuals 

that morphologically represented the genus Sander (e.g., sauger, walleye, and their hybrids).  An 

exception to this sampling method was sample 19 (Boysen Reservoir) in which only individuals 

that morphologically resembled sauger were collected.  A small piece of fin tissue was excised 

and stored dry or in 95% ethanol.  In Montana, 713 out of 724 total individuals were collected 

during or within seven days of the spawning aggregation time period (March 15-May 15; Jaeger 

et al. 2005).  Therefore, a majority of our samples from Montana almost undoubtedly represent 

individuals collected from discrete spawning groups.   Collection of the 213 individuals from the 

Bighorn drainage of Wyoming ranged in time period from April to October.  Thus, there is a 

possibility they contained individuals from multiple spawning groups.  

 

 Controls—Individuals from both species were collected from wild populations to identify 

distinctive allelic variation at microsatellite loci. The original source of stocked walleye in the 

upper Missouri River drainage is unknown, and previous walleye brood from Montana‘s state 

hatchery at Ft. Peck have contained hybrids (Leary and Allendorf 1997).  Therefore, reference 

walleye were obtained from numerous sources to represent the geographic range of walleye 

including the Cumberland drainage, Kentucky (N = 20); the Muskegon River (N = 20) and Lake 

Gogebic (N = 10), Michigan; Lake Mistassini, Quebec (N = 44); and Lake Erie (N = 20).  Sauger 

controls were collected from the Bighorn River, Wyoming (N = 50) to represent populations 
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native to the upper Missouri River drainage.  The species identity of each walleye and sauger 

was confirmed by morphology, allozyme, microsatellite, and/or mtDNA analysis (L. Bernatchez, 

Université Laval Québec, Québec City, Québec; K. Scribner, Michigan State University, East 

Lansing, MI; M. White; Ohio University, Athens, OH; R. Leary, MFWP, Helena, MT, personal 

communications) if samples were collected from areas in which sauger occur.  We randomly 

selected 40 walleye:  Lake Erie (16), Lake Gogebic (7), Muskegon River (10), and Lake 

Mistassini (7); and sauger as reference samples and examined these individuals for potentially 

diagnostic microsatellite markers. 

 

Genetic markers 

 

We performed microsatellite PCR amplification on our reference samples to identify markers 

useful for species and hybrid identification (see Chapter 2).  Our criteria for selecting loci were 

(1) PCR amplifications that produce easily scorable and reproducible products; (2) loci that show 

non-overlapping allele sizes between our walleye and sauger controls (diagnostic); or (3) loci 

that display substantial allele frequency differences between the species (informative).  

Diagnostic loci can be used to identify individuals of definite hybrid origin and to help identify 

hybrid categories (e.g., F1, backcross).  Both informative and diagnostic loci can be used to 

identify admixture using model-based methods that mimic the inheritance of genes and the 

sampling of individuals (e.g., Pritchard et al. 2000).  We searched for our criteria on an initial 

suite of 20 pairs of microsatellite primers including those originally developed from walleye: 

Svi7, Svi2, Svi20, Svi26 (Eldridge et al. 2002), Svi L9, Svi L10, and Svi L11 (Wirth et al. 1999); 

yellow perch (Perca flavescens): YP13, YP17, YP41, YP60, YP78, YP80, YP113, (Li et al. 2007), 

Pfla L1, Pfla L2, Pfla L4, and Pfla L8 (Leclerc et al. 2000); and pike-perch (Sander lucioperca): 

MSL-1, MSL-2, and MSL-9 (Kohlman and Kersten 2008).       

 

 Genetic analysis 

 

We extracted DNA from fin clips using a detergent-based cell lysis buffer and ammonium 

acetate protein precipitation followed by isopropyl alcohol DNA precipitation.  DNA was 

resuspended in 100uL TE buffer, and diluted 1:10 for PCR amplification in a PTC-200 

thermocycler (MJ Research Inc., Waltham, MA) using the QIAGEN Multiplex PCR Kit 

(QIAGEN, Valencia, CA).  All multiplex PCR reactions (Table 3-2) used a total volume of 10ul 

and followed the QIAGEN Microsatellite protocol. 

 

From our initial suite of 20, we amplified eleven microsatellite loci that met our 

diagnostic and informative criteria described above (Table 3-2):   Svi7, Svi2, Svi20, Svi26, Svi 

L10, YP41, YP60, YP113, Pfla L1, MSL-2, and MSL-1.  All loci were amplified using a 

touchdown PCR profile with an initial annealing temperature of 65 or 60°C stepping down -1 or 

-0.5°C until the bulk of the cycles ran at 45°C (Table 3-2).  PCR products were visualized on an 

ABI3130xl Genetic Analyzer (Applied Biosystems Inc., Foster City, CA (ABI)).  Allele sizes 

were determined using the ABI GS600LIZ ladder, (ABI).  Electropherogram output was viewed 

and analyzed using GeneMapper version 3.7 (ABI). 

 

Genetic variation―We measured base genetic diversity as expected heterozygosity (He) 

and allelic richness (RA) using FSTAT Ver. 2.9.3 (updated from Goudet 1995).   We tested for 
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departure from Hardy-Weinberg proportions using exact tests in which P values were calculated 

using the Markov Chain algorithm of Guo and Thompson (1992).  We quantified departures of 

observed and expected heterozygosity using Wright‘s (1951) FIS in FSTAT.  We tested for allele 

frequency differences among samples with log-likelihood-based exact tests (Goudet 1995) using 

the default parameters for Markov chain tests in GENEPOP (Raymond and Rousset 1995).  After 

removing samples that contained fewer than ten individuals (samples 14, 15, and 19), we 

quantified pairwise population differentiation using  FST (ѲST ; Weir and Cockerham (1984)) in 

FSTAT and visualized these differences using principal component analysis of the pairwise 

covariance matrix of allele frequencies using GenAlEx Ver. 6 (Peakall and Smouse 2006). 

 

 Hybridization―We used the Bayesian clustering model in STRUCTURE Ver. 2.3.3 

(Pritchard et al. 2000; Falush et al. 2003) to identify admixture based on genotypes at eleven 

microsatellite loci.  STRUCTURE gives a q-value for each individual, which represents the 

proportion of an individual‘s genotype that was derived from walleye (q = 1).  We used a burn-in 

period of 10,000, 50,000 batches and the admixture and I model.   We forced the model to 

recognize only two populations (k = 2; i.e., sauger and walleye) and included the 40 sauger and 

40 walleye used in diagnostic microsatellite identification as controls to assess the accuracy of 

parental assignments (e.g., Schwartz and Beheregaray 2008).  However, we did not designate 

these individuals as priors, as Vaha and Primmer (2006) showed that the inclusion of priors 

minimally affects Bayesian-based assignment when the  FST between taxa is ≥ 0.12 (FST between 

our sauger and walleye controls = 0.22).  STRUCTURE was run five separate times and gave 

very similar results (maximum standard deviation = 0.002).  Population admixture proportions 

obtained from program STRUCTURE (q) were highly correlated (r
2
>0.99) with admixture 

estimates from the four diagnostic loci; however, estimates of q from STRUCTURE account for 

allele frequency differences at an additional seven informative loci. 

 

If hybridization has not progressed to a hybrid swarm, it may still be possible to identify 

non-hybrid individuals for conservation (Allendorf et al. 2001).  To test for recent hybridization, 

we followed a similar procedure to that of Schwartz and Beheregaray (2008), and ran 

STRUCTURE a second time defining each fish as belonging to one of the two species based on 

their qi-value from the first run of STRUCTURE. That is, individuals with qi-values < 0.5 were 

grouped with sauger and >0.5 were grouped with walleye.  We used this prior information to run 

STRUCTURE (K = 2) with the generation option set to 2, and other settings as described above.  

This specifically tested each individual for having an ancestor of the other species in the past two 

generations (Pritchard et al. 2000), thus indicating a recent hybridization event. Following a 

significant test (P<0.05) for ancestry within two generations, we used genotypic patterns at the 

four species diagnostic loci to place hybrids into specific hybrid classes (e.g., F1, F2, or 

backcross).  For example, a hybrid with a qi-value ≈ 0.25 that also shows significant evidence for 

having a walleye ancestor in the past two generations would be considered a first generation 

backcross to sauger if it was homozygous for sauger alleles at some diagnostic loci and 

heterozygous for both species‘ alleles at other diagnostic loci.   
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Results 

 

Genetic variation within and among samples 

 

Genetic summary statistics for sauger are presented in Table 3-1.  All eleven loci were 

polymorphic.  Expected heterozygosity across samples averaged 0.758 and ranged from 0.697 in 

the Bighorn River (sample 18) to 0.787 in the Tongue River (sample 13).  Mean allelic richness 

was 6.0 and ranged from 4.87 in the Bighorn River to 6.44 in the Tongue River.  Genotypes from 

individuals at Fallon (sample 9), Calypso Bridge (sample 10), and Bighorn Lake (sample 17) did 

not conform to Hardy-Weinberg proportions (HWP) after correcting for multiple tests (P<a‘ = 

0.05/11 = 0.004), with an apparent deficit of heterozygotes at all sites.  No single locus contained 

genotypes that were consistently out of HWP across populations.     

 

 Samples from the Bighorn River drainage and the upper Yellowstone River (samples 16 - 

21) showed reduced genetic variation compared to samples from the Missouri and lower 

Yellowstone River drainages (Figure 3-2).  Within the Bighorn River drainage and upper 

Yellowstone River, median expected heterozygosity was 0.720 and allelic richness was 5.410, 

compared to 0.773 (Wilcoxon rank-sum test; W = 21, P < 0.001) and 6.265 (W = 21, P < 0.001) 

within the Missouri and lower Yellowstone River drainages.  Additionally, the YP41 locus was 

monomorphic within the Bighorn River drainage and the upper Yellowstone River.     

   

Genetic differentiation among samples was low (global FST = 0.009, 95% CI 0.006-

0.013) (Table 3-3). Nevertheless, those from the Bighorn River drainage and the upper 

Yellowstone River showed several significant pairwise tests of differentiation among each other 

and all other samples (log-likelihood based exact test, P<0.05/11 = 0.0045).  Allele frequency 

divergence among these populations, though significant, was low; the maximum pairwise FST 

value was 0.039 between samples 13 and 17. Interestingly, samples collected from the Missouri 

and lower Yellowstone River drainages showed no significant pairwise tests of genetic 

differentiation (P>0.05/11 = 0.0045) despite over 800 river km of separation.   

  

 Three major population groupings are evident in the plot of the first two components of 

the PCA (Figure 3-3).  The first component (PC1), which accounts for 63% of the variation, 

clearly clusters the Missouri and lower Yellowstone River samples and also separates them from 

samples collected in the Bighorn and upper Yellowstone River drainages.  PC2, which accounts 

for 19% of the total variation, separates the Little Wind and Popo Agie samples from those 

collected in the Bighorn River and Bighorn Lake.  The PCA analysis also indicates that sample 

16 from the upper Yellowstone River is genetically more similar to samples from the Bighorn 

drainage than to samples from the lower Yellowstone drainage.   This lends evidence to the 

presence of a genetic break between sauger located upstream and downstream of the confluence 

of the Bighorn and Yellowstone Rivers.   

  

Hybridization 

 

In general, hybridization was rare:  18 of 925 individuals were hybrids, 848 were sauger, and 61 

were walleye.  The qi-values for hybrids ranged from 0.026 to 0.517 with a maximum standard 

deviation of 0.002. Hybrids were identified by STRUCTURE in ten of 21 samples (Table 3-1).  
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Hybridization was most common in the Yellowstone River drainage, which contained seventeen 

of eighteen hybrids.  Within the Yellowstone River drainage, samples 7, 8, 11, 15, and 16 

contained one hybrid each; whereas, samples 6 and 10 contained two, sample 13 contained three, 

and sample 9 contained five hybrids.  The Missouri River drainage contained only one hybrid, in 

sample 2 about 80 km upstream of Ft. Peck Reservoir.  No evidence for hybridization was found 

in the Bighorn River drainage. 

 

Walleye were found in three of 21 samples (Table 3-1).  No walleye were sampled in the 

Missouri River drainage; however, only those individuals that morphologically resembled sauger 

were collected.  The mouth of the Tongue River (sample 13) in the Yellowstone River drainage 

contained seven walleye, the highest number in the drainage.  The only other walleye in the 

Yellowstone River drainage was sampled at Forsyth (sample 15).  In the Bighorn River drainage, 

Bighorn Lake (sample 17) contained 50 walleye and was the only sample in the entire data set to 

contain more walleye than sauger.   

 

We used the second run of STRUCTURE to identify the specific genealogical classes 

(e.g., F1, F2, backcrosses) of recently hybridized individuals (Table 3-4).  Three F1s were 

discovered (P <0.001), one each in samples 6, 8, and 13.  These individuals had qi-values = 

0.492, 0.517 and 0.501 and were heterozygous for walleye and sauger alleles at all four 

diagnostic loci.  One F2 (F1xF1) was identified (P<0.001) in sample 13.  This individual had a qi-

value = 0.472 and was heterozygous for walleye and sauger alleles at three diagnostic loci but 

homozygous for sauger alleles at one diagnostic locus.  Four first generation backcrosses to 

sauger were identified (P<0.001), one in sample 2, one in sample 6, and two in sample 9.  These 

fish had qi-values between 0.103 and 0.235 and were homozygous for sauger alleles at some 

diagnostic loci and heterozygous for sauger and walleye alleles at the other diagnostic loci.   

 

 The remaining ten hybrids did not show significant evidence for having a non-hybrid 

ancestor in the past two generations (P>0.05).  These individuals all contained qi-values that 

ranged from 0.026 to 0.098 indicating they are likely later generation backcrosses to sauger.  No 

hybrids were identified as backcrosses towards walleye.   

 

Discussion 

 

Hybridization with widely introduced walleye has been proposed as a threat facing native stocks 

of sauger (White and Schell 1995; Leary and Allendorf 1997; White et al. 2005; Billington et al. 

2006).  Of particular concern is loss of unique behavioral, genetic, and ecological adaptations 

due to the introgression of genes from walleye.  Previous investigations have provided evidence 

that rates of hybridization and introgression increase where walleye or saugeye are stocked, 

where both species co-occur in altered environments, where spawning sites are limited, and/or 

where sauger numbers fall to low levels (reviewed by McMahon 1999).  Here, we present 

evidence that contrasts this paradigm.  Our Bayesian analysis of multiple-locus microsatellite 

genotypes revealed a near absence of hybridization between sauger and widely stocked, non-

native walleye despite the presence of conditions considered favorable to hybridization.  Below 

we discuss potential reasons for the apparent rarity of hybridization. 
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Different spawning locations 

 

Limited overlap in spawning habitat between sauger and walleye likely contribute to the 

apparent rarity of hybridization.  For example, in the Missouri and Yellowstone drainages, 

sauger recruitment occurs in very specific locations associated with bedrock, boulder substrate, 

and rocky ledges that are resistant to erosion (Gardner and Stewart 1987; Jaeger et al. 2005; 

Belgraph and Guy 2008).  Sauger generally avoid all other habitat types during spawning (Jaeger 

et al. 2005).  Conversely, walleye in these drainages typically select for pebble, cobble, or gravel 

substrate while spawning (Penkal 1992).   

 

Besides preferring different habitat, the two species are found spawning in different 

geographic locations.  For example, in the Wyoming section of Bighorn Lake (sample 17), 

walleye spawning is known to take place near the confluence of the Bighorn River, whereas 

sauger are more often seen spawning at multiple upstream sites as far as 65 km from this area 

(M. Smith, WGF, Cody, WY personal communication).  Similarly, in the Missouri River below 

Fort Peck Dam, sauger spawn in the Milk River, the lower Missouri , and likely downstream of 

Fort Peck Dam, but walleye are not common in any of these areas during the spawning season 

(T. Haddix, MFWP, Helena, MT personal communication).  Above Ft. Peck Dam in the 

Missouri River drainage, sauger often spawn in the Marias River (Gardner and Stewart 1988; 

Penkal 1992; McMahon 1999; but see Gangl et al. 2000).  Although walleye occasionally spawn 

here, walleye spawning is more common near Fred Robinson Bridge on the main stem Missouri 

(W. Gardner, MFWP, Helena, MT personal communication), in Highwood and Belt Creeks, and 

in the Big Dry arm of Ft. Peck Reservoir (Colby and Hunter 1989).  In the Yellowstone River 

drainage, sauger recruitment most commonly occurs in the main stem river from below the 

mouth of the Tongue River, continuously, to below Intake diversion (Jaeger et al. 2005).  

Historically, spawning was also common in the Tongue and Powder Rivers (Penkal 1992).  

Conversely, walleye do not commonly spawn in the Yellowstone River upstream of Intake 

diversion in locations of known sauger spawning (Penkal 1992).  Recently, however, walleye 

have been seen spawning in the Tongue River (M. Backes, MFWP, Helena, MT personal 

communication).     

 

Investigations outside of our study area have also shown that where both species are 

found together, there is little overlap in spawning habitat (Rawson and Scholl 1978; Siegwarth 

1993; McMahon 1999; Gangl et al. 2000).  Segregation seems apparent during the spawning 

season in the upper Missouri river drainage, but it is probably not absolute.  For example, our 

samples from spawning aggregations in the Tongue River (sample 13) and near the mouth of the 

Powder River (samples 9, 10, and 11) contained several hybrids and ripe walleye.  Likewise, 

both species occasionally spawn in close proximity throughout the main stem Yellowstone River 

(Penkal 1992; Jaeger et al. 2005), and spawning migrations are of the same direction, distance, 

and timing in the Missouri River (Belgraph and Guy 2008).  

 

Walleye spawning habitat within the upper Missouri River drainage may be of low 

quality.  Within the Bighorn River and Boysen Reservoir, Wyoming, Krueger et al. (1997) found 

no evidence for hybridization and attributed this to poor walleye reproduction.   Likewise, 

natural walleye recruitment is also rare in Bighorn Lake, Wyoming (M. Smith, WGF, Cody, WY 

personal communication) and our study found no hybridization in this location.  In the 
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Yellowstone River drainage, anecdotal evidence suggests that spawning habitat may be a 

limiting factor for walleye recruitment (M. Ruggles, MFWP, Helena, MT personal 

communication). The fact that walleye historically had access to the upper Missouri River 

drainage but did not establish (Hoagstrom and Berry 2010) lends further evidence to the 

argument that sufficient spawning habitat is not present. 

 

Selection and genetic incompatibility  

 

Natural selection against walleye and hybrids could also be a factor in infrequent hybridization.  

Hybrids were rare or absent in the Missouri and Bighorn samples, respectively, but seventeen 

hybrids were found in the Yellowstone River drainage.  Of these three rivers, the Yellowstone is 

the only one that does not contain clear, cold water characteristic of tail water habitat.  In a study 

examining walleye and hybrid ecology and performance in Ohio, Johnson et al. (1988) reported 

that walleye typically have not produced good tail water fisheries.  The study also found that 

hybrids have diet (e.g., benthic forage fishes) and habitat preferences (e.g., finer substrates and 

turbidity) more typical of sauger.  Thus, the Yellowstone drainage may simply provide better 

walleye and hybrid habitat.  In similar fashion, it is also plausible that walleye and hybrids are 

traveling in search of suitable habitat, which the Yellowstone drainage may provide.  This seems 

reasonable as both species have been recorded as making long seasonal migrations in our study 

area (250 to 300 km) (Jaeger et al. 2005; Belgraph and Guy 2008).  

  

 The fact that nearly half (eight of 18) of our sampled hybrids were early generation (e.g., 

F1, F2, BC1) despite over 60 years of walleye stocking indicates that genetic incompatibility 

between the species may be present.    Although survival and reproduction of post-F1 hybrids has 

been minimally studied, there is published evidence supporting genetic barriers.  For instance, 

under intensive culture conditions, a study by Malison et al. (1990) demonstrated that hybrids of 

walleye females and sauger males showed significantly greater weight gain, length gain, and 

condition factors than the reciprocal hybrid, not accounting for maternal effects.  Literature on 

post-F1 hybrid fertility and performance, however, is scarce.  Hearn (1986) found that second-

generation hybrids (F2 and backcrosses) survived for at least 16 months after stocking in a 

managed hatchery pond in Kentucky, but reproduction and long-term survival was not 

documented.  Likewise, in an observational field study, Fiss et al. (1997) found  that F1 hybrids 

were reproducing with themselves and walleye but the extent to which backcrossed and F2 

hybrids survived and reproduced was not recorded.   A majority of the hybrids in our study (ten 

of eighteen) were post second-generation lending evidence that recombinant hybrids are to some 

extent capable of reproducing. 

 

Absence of ‘saugeye’ stocking 

 

The highest frequency of hybridization between sauger and walleye reported in the literature 

occurs where female walleye X male sauger hybrids (saugeye) are stocked (White and Schell 

1995; Fiss et al. 1997; White et al. 2005).  This is likely because saugeye generally do not show 

reduced fertility or fitness.   Furthermore, they are artificially propagated, so any natural barriers 

to reproduction between the species are avoided.  Saugeye are not intentionally stocked in 

Montana and Wyoming, which may be another reason why hybridization is apparently 

infrequent.     
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Threat of hybridization 

 

Studies have shown that introgression can proceed towards the formation of hybrid swarms even 

in the presence of severe fitness penalties in hybrid offspring (Epifanio and Philipp 2001; 

Muhlfeld et al. 2009).  Therefore, given enough time and walleye propagule pressure, 

introgression may eventually result in hybrid swarms in the upper Missouri River drainage.  

From a short term perspective, however, the threat that hybridization poses for sauger may be 

wasted reproductive effort rather than genetic introgression.  Leary et al. (1993) described that 

this situation is similar to heterozygote disadvantage whereby hybrids have a fitness value near 

zero and parentals a relative fitness near one.  They explain that the more numerous species will 

have an advantage because less of their total reproductive effort will be wasted in hybrid 

production.  In the upper Missouri River drainage, walleye reproduction is independent of the 

species‘ abundance because walleye are stocked.  Thus, when hybridization does occur the 

wasted reproduction is more harmful to sauger, potentially giving walleye a competitive 

advantage.  

 

Genetic population structure    

 

Our PCA and pairwise FST analyses revealed genetic divergence among sauger populations.  In 

particular, populations from the Bighorn River drainage and the upper Yellowstone River 

displayed significant allele frequency differences among each other and all other samples.  

Within the Bighorn River drainage, samples from upstream locations (e.g., the Little Wind 

(sample 20) and Popo Agie (21)) clustered together, as did samples from downstream locations 

(e.g., Bighorn Lake (17) and the mainstem Bighorn River (18)). This likely indicates limited 

gene flow among populations located in these areas. Curiously, sample 16, from the upper 

Yellowstone River clusters more closely to samples located upstream in the Bighorn River 

drainage than to any other samples.  Biologically, this makes little sense and may be an artifact 

of sampling error.  Whatever the case, our results indicate the presence of genetic structuring and 

divergence of sauger populations located above the confluence of the Bighorn and Yellowstone 

Rivers. 

 

 Further evidence for relative isolation of sauger populations from the Bighorn River 

drainage and upper Yellowstone Rivers is provided by our finding of reduced genetic variation 

(allelic richness (RA) and expected heterozygosity (He)) within these populations.  This likely 

indicates reduced gene flow with downstream populations and/or genetic drift within 

populations.  Both explanations are plausible, as samples from the Bighorn River drainage were 

collected from populations known to be isolated from the other sample sites by a significant 

stretch that is thought to not contain sauger (Billington et al. 2006).  Regarding genetic drift, 

sauger populations from the Bighorn River drainage are known to be relatively small and 

isolated (Krueger et al. 1997; Welker et al. 2001). 

 

 Sauger from the Missouri and lower Yellowstone River drainages appear to come from 

one genetically panmictic population.  This is an unexpected result, as over such great distances 

(~800 river km), river fishes are typically distributed into genetically distinct populations 

(Chakraborty and Leimar 1987; Ward et al. 1994).  However, sauger are known to make 

spawning migrations as far as 300 km (Jaeger et al. 2005), indicating a propensity for genetic 
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mixing over long distances.  The apparent lack of structure raises concern because Ft. Peck Dam 

represents a complete barrier to upstream fish migration. Thus, historically high levels of gene 

flow from the lower Missouri and Yellowstone Rivers to the Missouri River above Ft. Peck dam 

are probably now absent.    

 

 Microsatellites are presumably neutral so inference on adaptive differentiation is entirely 

speculative.  Regardless, our finding of genetic distinctiveness of sauger in upstream locations 

may increase the likelihood of local adaptation and increased conservation value.   For example, 

samples 20 and 21 from the Little Wind and Popo Agie Rivers do not come from typical sauger 

habitat.  In particular, sauger habitat in these locations is high in elevation (1,435 m to over 1,500 

m), contains steep gradients, and is characterized by relatively clearer, colder discharge (Amadio 

et al. 2005).  It is known that sauger biomass is positively associated with the availability of 

deep, low-gradient pools and high summer water temperature and turbidity (e.g., Amadio et al. 

2005).   Such features are presumably limiting in these locations and thus environmental 

selective pressures may be strong. 

 

  Similarly, the absence of genetic divergence at neutral microsatellites among populations 

in the Missouri and lower Yellowstone River drainages of Montana does not necessarily indicate 

the absence of adaptive differences among populations.  It is possible that historically high 

numbers of successful spawners (e.g., large Ne) reduced the effects of genetic drift, thereby 

slowing the rate at which separate populations diverge genetically at neutral markers.   

 

 In summary, based on our survey of genetic variation within and among populations of 

sauger, we conclude that any one population will not represent the range of genetic diversity 

contained within the evolutionary lineage of this species.  Preservation of the species will, 

therefore, require the persistence of many populations in order to retain genetic diversity of 

sauger.  Given the presence of genetically distinct sauger populations, stock transfer is not 

recommended.  Managers might also consider prioritizing conservation of both the upper 

Yellowstone and Bighorn populations due to their genetic distinctiveness.   
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Figure 3-1.  Upper Missouri River drainage and approximate sample locations in Montana and Wyoming.  See Table 3-1 for sample 

codes.   
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Figure 3-2.  Scatter plot of allelic richness and expected heterozygosity within sauger 

populations.  Gray circles represent sauger samples from the Bighorn River drainage and the 

upper Yellowstone River and black diamonds represent those from the Missouri and lower 

Yellowstone.   

 

 

 

 

 

 

 

 
 

Figure 3-3.  Plot of first two principal component scores derived from allele frequencies at 

eleven microsatellite loci.  Diamonds represent individual samples.   
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Table 3-1. Map codes, and genetic and hybrid analysis summary statistics.  Samples from the Bighorn River drainage appear below 

the dashed line.  See Table 3-4 for individual hybrid classes.  N is the total sample size including sauger, walleye, and hybrids.   

 

 

Map code # 

 

Samples 

 

N 

Allelic 

richness 

 

HE 

 

FIS 

Number of 

sauger 

Number of 

walleye 

Number of 

hybrids 

1 Upper Missouri 11 6.25 0.768 -0.021 11 0 0 

2 above Ft. Peck 47 6.09 0.763 0.021 46 0 1 

3 Milk River 30 6.32 0.781 -0.005 30 0 0 

4 below Ft. Peck  34 6.33 0.779 0.016 34 0 0 

5 lower Missouri 30 6.32 0.774 0.036 30 0 0 

6 Intake 37 6.41 0.778 0.022 35 0 2 

7 Glendive 99 6.26 0.777 0.019 98 0 1 

8 Sand Creek 11 6.12 0.769 0.007 10 0 1 

9 Fallon 82 6.27 0.771 0.043*** 77 0 5 

10 Calypso Bridge 215 6.40 0.777 0.025*** 213 0 2 

11 Crooked Creek 33 6.24 0.772 0.026 32 0 1 

12 Miles City 30 6.14 0.764 0.012 30 0 0 

13 Tongue River 28 6.44 0.787 0.018 18 7 3 

14 Ft. Keogh 7 6.10 0.773 0.091* 7 0 0 

15 Forsyth 5 - - - 3 1 1 

16 upper Yellowstone 53 5.59 0.744 0.032* 52 0 1 

17 Bighorn Lake 76 5.78 0.715 0.041** 23 53 0 

18 Bighorn 40 4.87 0.697 -0.031 40 0 0 

19 Boysen Reservoir 7 5.22 0.707 -0.148 7 0 0 

20 Little Wind 25 5.48 0.743 0.014 25 0 0 

21 Popo Agie 25 5.34 0.724 0.001 25 0 0 

 Total/mean 925 6.0 0.758  0.021 846 61 18 

Note:  Significance:  α = *<0.05, **<0.01, *** <0.001. 
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Table 3-2.  Summary information and multiplex reaction conditions for eleven microsatellites.  Primer sequences are those of the 

original authors. 

 

 

Locus 

 

 

FST 

 

 

RST FST‘ 

 

Size range 

sauger (bp) 

Size range 

walleye 

(bp) 

Touchdown 

annealing 

temperature (C°) 

Final 

Primer 

(um) 

 

 

Reference 

Multiplex 1         

Svi7* 0.185 0.861 1.000 170-210 154-172 65-45 0.050 Eldridge et al. 2002 

Svi2* 0.281 0.891 1.000 236-258 188-202 65-45 0.050 Eldridge et al. 2002 

YP41*
† 

0.644 0.828 1.000 172 176-196 65-45 0.050 Li et al. 2007 

Multiplex 2         

Pfla L1
† 

0.175 0.817 0.979 125-145 103-149 65-45 0.200 Leclerc et al. 2000 

YP60 0.397 0.873 0.971 190-210 174-194 65-45 0.300 Li et al. 2007 

Svi20 0.122 0.632 0.837 167-189 151-181 65-45 0.100 Eldridge et al. 2002 

Svi26 0.151 0.176 0.914 151-186 151-188 65-45 0.075 Eldridge et al. 2002 

MSL-2 0.187 0.000 0.938 140-226 156-196 65-45 0.150 Kohlman and Kersten 2008 

Multiplex 3         

Svi L10 0.157 0.750 0.923 186-194 188-246 65-45 0.200 Wirth et al. 1999 

YP113
† 

0.04 0.079 0.780 138-268 138-242 65-45 0.200 Li et al. 2007 

Single reaction         

MSL-1* 0.156 0.915 1.000 168-198 130-158 60-50 0.200 Kohlman and Kersten 2008 

Mean 0.223 0.576 0.941      

Note:  * diagnostic, 
† 

a 5‘ tail containing GTGTCTT was added to reverse primer (Brownstein et al. 1996). 
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Table 3-3.  Multilocus pairwise FST estimates between sauger samples in the upper Missouri River drainage.  Sample locations are 

given in Table 3-1.  FST values in bold italics are significant at P< 0.0045 (Bonferroni correction).   

 
         

Sample 
        

Sample 1 2 3 4 5 6 7 8 9 10 11 12 13 16 17 18 20 

2 

 
2 

0.001                 

3 
0.008 0.002                

4 
-0.005 -0.001 -0.003               

5 
-0.002 0.002 0.002 -0.001              

6 
-0.006 -0.002 -0.001 -0.002 -0.003             

7 
-0.004 0.002 0.003 -0.002 -0.001 -0.001            

8 
-0.005 -0.008 -0.003 -0.006 -0.003 -0.006 -0.003           

9 
-0.006 0.000 0.002 -0.002 -0.003 -0.004 -0.001 -0.004          

10 
-0.001 0.000 0.000 -0.002 0.000 -0.002 0.000 -0.005 0.000         

11 
-0.004 -0.004 0.001 -0.001 -0.004 -0.001 0.001 -0.008 -0.001 0.000        

12 
-0.005 0.002 0.003 -0.001 -0.001 -0.001 0.000 -0.003 -0.001 0.000 0.002       

13 
0.004 -0.002 -0.004 0.000 -0.003 -0.003 0.001 -0.012 -0.002 -0.002 -0.007 0.000      

16 
0.016 0.017 0.025 0.017 0.029 0.021 0.021 0.022 0.022 0.020 0.021 0.026 0.023     

17 
0.030 0.033 0.039 0.032 0.038 0.033 0.034 0.038 0.031 0.033 0.035 0.029 0.039 0.025    

18 
0.018 0.025 0.032 0.023 0.030 0.023 0.025 0.022 0.021 0.024 0.024 0.024 0.023 0.015 0.001   

20 
0.012 0.015 0.022 0.019 0.027 0.019 0.018 0.022 0.019 0.016 0.019 0.020 0.020 0.002 0.017 0.013  

21 
0.018 0.017 0.027 0.021 0.028 0.026 0.021 0.025 0.022 0.020 0.018 0.019 0.024 0.006 0.024 0.021 -0.002 
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Table 3-4.  Eighteen hybrids sorted by sample location (see Table 3-1).  Columns labeled first and second indicate the probabilities of 

being a first (F1) or second (F2 or backcross) generation hybrid based on the second run of STRUCTURE with asterisks under the 

column labeled ―P‖ indicating the significance level.  The column labeled ―Hybrid class‖ is the most likely hybrid class (e.g., F1, F2, 

or backcross) based on the genotypic pattern at four diagnostic loci.  Diagnostic walleye alleles appear in bold italics.  

 

Note:  F2 = F1 x F1, BCS = F1 x sauger, and BCS+=later generation backcross to sauger.  Significance: *α <0.05, *** <0.001.

 

 

 Hybrid 

generation 

  

Diagnostic loci 

Sample location qi First Second P Hybrid class Svi7 Svi2 YP41 MSL-1 

2 0.235  0 1 *** BCS 162 188 240 256 172 187 174 186 

6 0.517  0.986 0.014 *** F1 158 182 202 248 172 187 142 184 

6 0.103  0 0.5 * BCS 158 182 254 254 172 172 0 0 

7 0.086  0 0.001 NS BCS+ 184 186 244 244 183 191 170 178 

8 0.492  0.487 0.513 *** F1 164 186 194 240 172 183 138 174 

9 0.209  0 0.982 *** BCS 170 180 190 258 172 183 178 178 

9 0.166  0 0.995 *** BCS 164 170 244 254 172 172 139 170 

9 0.072  0 0.017 NS BCS+ 170 182 244 254 172 172 174 174 

9 0.047  0 0.012 NS BCS+ 174 184 240 244 172 172 146 174 

9 0.028  0 0.009 NS BCS+ 176 210 244 244 172 172 168 174 

10 0.058  0 0 NS BCS+ 188 188 236 242 172 172 138 176 

10 0.026  0 0 NS BCS+ 174 182 188 254 172 172 194 194 

11 0.098  0 0.002 NS BCS+ 170 210 242 244 183 187 172 182 

13 0.501  0.986 0.014 *** F1 164 170 188 256 172 183 142 174 

13 0.472  0.446 0.554 *** F2 162 170 234 242 172 183 139 192 

13 0.089  0 0.006 NS BCS+ 170 190 244 258 187 191 176 180 

15 0.041 0 0.041 NS BCS+ 170 170 244 256 172 172 176 176 

16 0.031  0 0.027 NS BCS+ 182 182 244 256 172 172 174 184 
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