
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

2006

Modeling and visualization of automated feature extraction Modeling and visualization of automated feature extraction

workflows workflows

Scott W. Bouma
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Bouma, Scott W., "Modeling and visualization of automated feature extraction workflows" (2006).
Graduate Student Theses, Dissertations, & Professional Papers. 5111.
https://scholarworks.umt.edu/etd/5111

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5111&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5111?utm_source=scholarworks.umt.edu%2Fetd%2F5111&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Maureen and Mike
MANSFIELD LIBRARY

The University of

Montana
Permission is granted by the author to reproduce this material in its entirety,
provided that this material is used for scholarly purposes and is properly
cited in published works and reports.

Please check "Yes" or "No" and provide signature

/
Yes, I grant permission V ______

No, I do not grant permission __________

Author's Signature:

Date: MjCu^ 3 C , QWb

Any copying for commercial purposes or financial gain may be undertaken
only with the author's explicit consent.

8/98

MODELING AND VISUALIZATION OF

AUTOMATED FEATURE EXTRACTION WORKFLOWS

Scott W. Bouma

B.Sc., Montana State University, 1998

presented in partial fulfillment of the requirements

for the degree of

Master of Science

The University of Montana

May, 2006

by

Approved by:

Chairperson

Dean, Graduate School

Date

UMI Number: EP40575

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI
Dissertate ^Wishing

UMI EP40575

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest
ProQuest LLC.

789 East Eisenhower Parkway
P.O. Box 1346

Ann Arbor, Ml 48106- 1346

Bouma, Scott W., M.S., May 2006 Computer Science

Modeling and visualization of automated feature extraction workflows.

Chairperson: Dr. David Opitz

Automated feature extraction (AFE) from digital imagery is practical technology. An
offshoot of artificial intelligence research, AFE software tools have been helping to solve
real-world geospatial problems for several years already. Smart AFE software has been
shown to drastically reduce the time needed to extract features from digital imagery.
Nevertheless, current AFE methods focus on extracting features from imagery a single
image at a time, or at best applying a group of AFE processes to multiple images on a
very limited and inflexible scale. Since similar workflows often need to be applied to
more than one image, a new method is needed which leverages knowledge gained from
feature extractions to increase the efficiency of further (similar) extractions. The
development of such a method is the focus of this paper.

Current theory from the field of visual programming, as well as existing image-
processing workflow visualization software, forms the basis for the development of a
new technique which graphically represents AFE workflow models. The new method -
implemented as a graphical user interface and named “Feature Modeler” - provides a
powerful and flexible, yet easy-to-use tool for applying AFE workflows to multiple
images in a robust and efficient manner. In addition, it also provides a vehicle for
knowledge-transfer from more experienced AFE analysts to less experienced ones. It
may also help foster global collaboration in the arena of automated feature extraction.

Anecdotal evidence from results generated by the Feature Modeler suggests that this
new technique may increase the speed of large-scale automated feature extraction by an
order of magnitude, at no cost in terms of quality. Further rigorous testing is needed to
determine more precisely the expected efficiency gains for various feature extraction
problems, but initial results are encouraging.

ACKNOWLEDGEMENTS

No man is an island, and I suppose the same can be said of a thesis. I owe a debt

of gratitude to several who have helped me achieve this milestone. First and foremost, I

would like to acknowledge my wife for her selflessness and sacrifices over the past two

years as I juggled school, work, and family.

I would also like to thank my employers at Visual Learning Systems, particularly

Dave and Stuart, for allowing me to do most of the work for this thesis as part of my

employment duties. I am also indebted to my colleagues at VLS who helped with

suggestions, improvements, and testing of the Feature Modeler.

Finally, I thank my thesis committee members for the time and effort that each

has taken in supporting the work of this thesis.

TABLE OF CONTENTS

ABSTRACT.. ii

ACKNOWLEDGEMENTS.. iii

LIST OF FIGURES..vi

CHAPTER 1 INTRODUCTION...1

1.1 Motivation.. 2

1.2 Goal.. 4

1.3 Thesis Organization...5

CHAPTER 2 RELATED KNOWLEDGE.. 6

2.1 Literature and Software Review... 6

2.1.1 AFE Workflow Modeling in Feature Analyst...6

2.1.2 Image Processing Workflow Visualization Software..................................... 7

2.1.3 Visual Programming...7

2.2 Feature Analyst AFE Workflows.. 8

2.3 Staged Implementation Software Development Process..10

2.3.1 Concept... 12

2.3.2 Requirements Development..12

2.3.3 Architectural Design...12

2.3.4 Staged Implementations..13

CHAPTER 3 IMPLEMENTATION AND RESULTS... 15

3.1 Development Process... 15

3.1.1 Concept... 15

3.1.2 Requirements Development..16

3.1.3 Architectural Design...18

3.1.4 Stage 1: Detailed Design, Construction, and Release................................... 21

3.1.5 Stage 2: Detailed Design, Construction, and Release................................... 23

3.2 The Feature Modeler..25

3.2.1 Model Symbology...26

3.2.2 Visualization Aids...29

3.2.3 Silent Mode...30

3.2.4 Recipe Mode...33

3.3 Example Results... 34

CHAPTER 4 CONCLUSIONS AND FUTURE WORK...39

4.1 Critique of the Feature Modeler.. 39

4.2 Future Work... 41

BIBLIOGRAPHY.. 43

v

LIST OF FIGURES

Figure 1 A typical AFE workflow.. 9

Figure 2 Steps in the staged implementation model of software development.............11

Figure 3 Process/View/Controller architecture for a single AFE module..................... 19

Figure 4 Modified model architecture, including a more robust mechanism for

handling module inputs and outputs..23

Figure 5 Comparison of link display before and after re-working................................24

Figure 6 Visualization of a typical AFE workflow in Feature Modeler...................... 25

Figure 7 AFE Modules represented as colored rectangles..26

Figure 8 Input nodes... 27

Figure 9 Modules in varying stages of readiness..28

Figure 10 An AFE model, before and after AutoLayout..30

Figure 11 An example input dialog..32

Figure 12 Effectiveness of silent mode on feature extraction from similar imagery37

Figure 13 Comparison of silent and recipe modes on dissimilar imagery.....................38

1

CHAPTER 1 INTRODUCTION

Geographical information is of vital importance in our knowledge society. It has

been estimated that approximately eighty percent of all information involves a spatial

component [1, 15]. The acronym GIS (or Geographical Information Systems) has come

to represent the broad spectrum of tools and techniques used to gather, organize, and

analyze spatial information. GIS, whether in commercial settings, local governments [2],

or national security, has been shown to be an effective aid for informed decision-making

[9]. Presenting geospatial information to decision-makers in a meaningful way, however,

is not an easy task. Broadly speaking, geospatial information must usually pass through

three stages in order to become useful information: data collection (by satellites, GPS

devices, etc), organization and storage (e.g. image formatting and compression, geo-

referencing, insertion into geo-databases), and finally, visualization and analysis (usually

with dedicated software packages). The subject of this thesis is to improve the efficiency

of one aspect of the final stage, namely automated feature extraction (AFE).

AFE is a technique used to automatically detect features from digital imagery (see

Section 2.1.1). This usually involves more than one step, and often the application of a

standard workflow. Software tools are available for automatically extracting features,

such as Visual Learning System’s Feature Analyst. For various reasons, Feature Analyst

has emerged as the leading software in the AFE field [10, 11]. However, the current

2

software tools available in Feature Analyst for reusing these standard workflows are

limited and inflexible. This thesis addresses this problem by implementing a new

graphical user interface (GUI) for visualizing and modeling these workflows, leveraging

their inherent knowledge to speed up future extractions.

Thesis Statement: Modeling AFE workflows will increase the speed o f

future feature extractions and decrease the user input required, at no cost

in the quality o f results.

1.1 Motivation

Development of a GUI to visualize AFE workflows is motivated by the current

lack of any such methods, and the premise that such a tool will be of real practical value

in the GIS world. In particular, two practical needs in the current Feature Analyst AFE

software solution provide motivation for this thesis:

• The need for a method of applying standard AFE workflows to multiple

images, while maintaining enough flexibility to account for variation between

images.

• The need for an intuitive mechanism for transferring knowledge from more

experienced AFE analysts to less experienced ones.

Advancements in satellite remote sensing are such that high quality color imagery

is freely available for most parts of the globe (and several other planets). If these

advancements are not mirrored by equal advancements in imagery analysis, however, the

dazzling salmagundi of available digital imagery will be of little use in the real world.

Since feature extraction is a major part of image analysis, the success of AFE is critical to

3

the continued advancement and usefulness of GIS. “Automated feature extraction is a

challenge that must be addressed if LIDAR data are to be widely adopted,” says one GIS

expert [14].

AFE is more than just a single-step, “one size fits all” process. Each feature

extraction problem has its own intricacies, and requires its own solution. A road

extraction, for instance, requires a training and classification step, followed by a

conversion to lines, and possibly a line-smoothing step to cull extraneous vertices. An

inner-city pervious/impervious surface layer analysis, on the other hand, requires an

entirely different workflow. These differing requirements mean that an analyst must use

professional judgment to develop a workflow which produces the desired results on a

single image. Once this is accomplished, however, that same workflow could be applied

to similar extraction problems, to produce similar results. In theory, an expert analyst

could develop workflow models to be used by junior analysts for high-output production

work. Such a technique would take the already-substantial efficiency gains of AFE and

increase them by orders of magnitude in many situations. In order for such a goal to be

realized, however, a method of modeling and visualizing these workflows needs to be

developed which combines flexibility for workflow development and ease-of-use for

non-expert analysts. Such a method should be implemented as a GUI, since most GIS

analysts are adept at processing visual information. Developing such a GUI for Feature

Analyst is the goal of this programming thesis project.

Best-practice techniques in the field of visual programming provide an excellent

basis for developing a method to visualize AFE workflows with adjustable parameters

and inputs. Feature Analyst AFE workflows can be visualized as individual process

4

modules linked in a linear program, with the inputs and outputs of each module

visualized as user-definable parameters. Basic control sequences, such as allowing an

analyst to decide if a particular step was successful, can also be modeled using visual

programming techniques, to provide a powerful and interactive AFE “program.”

1.2 Goal

The goal of this thesis is to implement a GUI which allows user interaction with

existing AFE models, as well as development of new models. The goal of the GUI

(hereafter referred to as the Feature Modeler) is to be intuitive, have simple-to-

understand base functionality, and be flexible enough to handle a wide variety of

extraction problems. Feature Modeler should work with existing AFE models and be

architectured in a “forward-compatible” manner, which will allow the development of

new image processing modules that can still be modeled and visualized in the same

manner, and can even be integrated into existing AFE models. Such a software tool will

go a long way towards addressing efficiency issues associated with AFE production

workflows.

5

1.3 Thesis Organization

The remainder of this thesis is organized as follows:

• Chapter 2 discusses related literature and software, explains the concept and

structure of a Feature Analyst AFE model, and outlines the general steps of the

software development process used to develop Feature Modeler.

• Chapter 3 steps through the details of the Feature Modeler’s development, and gives

an overview of the finished product.

• Chapter 4 discusses the strengths and weaknesses of the Feature Modeler as they

relate to the original goals and requirements. The chapter ends with suggestions for

future work in the area of AFE workflow modeling and visualization.

6

CHAPTER 2: RELATED KNOWLEDGE

2.1 Literature and Software Review

This section provides knowledge reviews for three areas: (a) AFE workflows, (b) visual

programming techniques, and (c) current image-processing workflow visualization

software.

2.1.1 AFE Workflow Modeling in Feature Analyst

The leading commercial AFE software package (Feature Analyst) currently offers

the ability to “batch process” an existing workflow to new imagery [10]. Batch

processing is the ability to take knowledge gained by an intelligent software agent in one

extraction problem, and apply that knowledge to a different image. At each step in an

extraction process, Feature Analyst records the parameters used and appends them to any

previous steps, creating a record of the workflow and settings used to arrive at the current

results. This workflow can then be applied to additional imagery via Feature Analyst’s

batch processing functionality. However, this functionality does not allow any change to

workflow parameters, and only offers basic trial-and-error modifications. Batch

processing can be very effective when used on imagery sets with little or no variation.

However, images collected under varying conditions (e.g., different times of year,

different sensors, different sunlight conditions) usually show some amount of variation.

7

In these cases, batch processing cannot consistently produce quality results. In addition,

Feature Analyst records workflows step-by-step as the user performs the initial

extraction, and users are unable to see the resulting workflow; so when it comes time to

apply the workflow to a new image, there is no way of knowing for sure that the

workflow is correct. It’s a bit like typing without ever being able to look at the screen

and check for mistakes.

To solve these problems, Feature Analyst needs a graphical AFE workflow

visualization tool which allows users to see what they are working with and adjust

workflow parameters to account for variations in imagery.

2.1.2 Image Processing Workflow Visualization Software

Although Feature Analyst does not currently have a workflow visualization tool,

several image processing software packages do. In particular, the Model Builder in

ESRI’s ArcGIS software [3] uses visual programming techniques to facilitate graphical

development of image processing workflow “programs.” Model Builder is an excellent

example of workflow modeling and visualization, and forms a basis upon which the

current work is loosely modeled.

2.1.3 Visual Programming

Applying visual programming techniques to the field of image processing has

been around for several years. In 1994, Koelma et al. developed a prototype visual

programming environment for image processing [7]. In that paper, the authors pointed

out that the dataflow paradigm is the most appropriate way to represent image processing

8

workflows (as opposed to, for example, state transition diagrams which focus more on

object status than data throughput). They also suggested that complex programming

constructs such as recursion, data structures, and pointer handling should be avoided,

since they would tend to over-complicate the models, and are unnecessary for developing

visual image processing programs. In 2002, Keukelaar [6] presented further arguments in

support of the dataflow paradigm when developing visual programming interfaces for

image processing. These sentiments are echoed by others [8]. In accord with these

opinions, the dataflow paradigm was used as the basis for the AFE model architecture

developed in this current work.

2.2 Feature Analyst AFE Models

A Feature Analyst AFE model is a sequential record of all AFE processing steps

applied to a particular file. These files are either shapefiles or images output from an

AFE process. For instance, an automated building extraction performed on an aerial

photo of Missoula would result in a group of 2-dimensional polygons (stored as a

shapefile), which are displayed as an overlay on the original image. Associated with the

shapefile would be an AFE file which records that it is the result of an automated

extraction.

Next, suppose that the buildings were processed to remove all the large industrial

buildings and only preserve single-family dwellings. The result would be a new shapefile

which contained only the smaller polygons from the first shapefile. This new shapefile’s

associated AFE model would contain a record of both steps in the history of the

shapefile’s creation. In this way, any shapefile which is the result of feature extraction

9

processing has an associated model that contains the entire feature extraction history for

that model. For some feature extraction problems such as pervious/impervious surface

classification in urban environments, these AFE workflows can contain many individual

feature extraction steps (see Figure 1).

Figure 1: A typical AFE workflow

In addition to storing a linear history for each result file, AFE models also store

information about the inputs and outputs of each individual process. In the building

extraction described above, information would be stored about two required file inputs: a

base image of Missoula, and a file containing a few training examples of buildings. Two

other types of information for the process are also stored with the AFE model: (a) user-

defined settings, such as the size of the smallest building, and (b) image-specific settings,

such as information learned from the image by Feature Analyst’s intelligent software

agent.

Since the selection of these particular parameters is often a case of trial-and-error

on the part of GIS analysts, there is a substantial time-commitment inherent in the

information these models contain. Thus, a technique which reuses the information

10

contained in these models could potentially result in increased efficiency when

performing subsequent extractions on similar imagery.

The Feature Modelei provides the mechanism for this technique. AFT workflows

visualized in Feature Modeler can be used as a starting point for similar feature extraction

problems (e.g.. extraction of buildings from Great Falls imagery, based on a successful

AFE model for Missoula building extraction), allowing an analyst to focus on production

speed and quality, leveraging the built-in knowledge from an existing workflow model.

However, the image-specific settings described in (b) above may need to be re

learned on new images, to account for image variation. Thus, there is a need for two

separate modes when re-using AFE workflows: silent mode, which exactly reproduces

the initial workflow on additional images, and recipe mode, which allows re-leaming of

image-specific knowledge on new imagery (see Section 3.1 for detailed descriptions of

silent and recipe modes).

2.3 Staged Implementation Software Development Process

A software development process is a structure imposed on the development of a

software product. The choice of an appropriate software development process is critical

to the success of any software project [5]. Many good development processes exist, each

with their own particular strengths and weaknesses. Some, like extreme programming,

are relatively new and are best suited for small projects that will never be subject to

maintenance or integration into larger projects. Others, like the traditional waterfall

method [15], have been used successfully for years in the software industry, but can be

rather overbearing and inflexible.

11

Due to the nature of the current problem, the staged implementation process was

chosen for the development of the Feature Modeler (see Figure 2). The staged

implementation process emphasizes several separate and distinct steps in the

development process, but it also allows revisiting of steps when necessary to correct

problems that are discovered in subsequent steps. This model works well when the

project requirements are well-defined, and is best suited for small development teams

where communication (or lack thereof) is unlikely to cause problems. Based on these

criteria, the staged implementation process is a good fit for the development of the

Feature Modeler. Following is a brief description of each step in the process and how it

relates to the Feature Modeler (a full account of each step is given in Section 3.1).

Concept

Architecture
D e sig n

Requirements
Development

Stage 1: detailed design,
construction, and release

Stage 2: detailed design,
construction, and release

Stage 3: detailed design,
construction, and release

Figure 2: Steps in the staged implementation model of software development (adapted from Henry
[5])

12

2.3.1 Concept - In this step, a preferred concept for the software is defined and examined

to determine its life-cycle feasibility and superiority to alternative concepts. In terms of

Feature Modeler, this step involved an investigation of various methods for visualization

and interaction with data flow models. Section 3.1.1 further discusses the details of this

investigation.

2.3.2 Requirements Development - This step involves the development of a complete,

verified specification of all required functions, interfaces, and performance for the

software product. For the Feature Modeler, this step resulted in a design document

developed in conjunction with the U.S. Army ERDC-TEC (who provided funding for the

development of the Feature Modeler) specifying the requirements and goals for the

project. See Section 3.1.2 for a discussion of these goals and requirements.

2.3.3 Architectural Design - During the architectural design step, specific software

engineering patterns are investigated and applied to the problem at hand. Decisions are

made about the particular patterns to be used. The type and amount of required testing

should be considered, as well as how the final product will be distributed to end users. In

the case of Feature Modeler, this step also involved making design decisions about how

to fit the system into the existing Feature Analyst architecture. These details are

discussed in Section 3.1.3.

13

2.3.4 Staged Implementations - Each of the implementation stages generally follow a

mini-waterfall process consisting of a detailed design phase, coding phase, testing phase,

and release. Two complete implementation stages were performed during the Feature

Modeler development, details of which are discussed in Sections 3.1.4 - 3.1.5. A

possible third iteration is discussed in Section 4.2, with a short general description as

follows:

a) Detailed design - This phase is marked by the development (or modification,

in later stages) of a specific UML (universal modeling language) diagram

defining classes, interfaces, and their relationships to one another. Also, a testing

plan should be developed adequately addressing the requirements of the project.

Section 3.1.3 discusses the Feature Modeler’s general architecture, as well as its

relationship to the specific workflow models and image processing modules

which it visualizes.

b) Coding phase - Coding is where “the rubber meets the road” in any

development process, but the coding phase relies heavily on the results of the

previous steps in order to produce a high-quality, maintainable product. Details

of the coding stages are discussed in Sections 3.1.4 and 3.1.5.

c) Testing phase - The next phase is to perform several different types of testing

as per the testing plan developed in the architecture design step. Testing of the

Feature Modeler was done by the author as well as other members of the testing

staff at Visual Learning Systems. Details are further discussed in Sections 3.1.4

and 3.1.5.

14

d) Release - The final phase involves the development of an install/distribution

package for the software. The Feature Modeler was developed as an add-on to

the Feature Analyst tool, and thus distribution was integrated into existing

distribution methods for Feature Analyst. A brief summary of the release details

is treated in Section 3.1.4.

Using the staged implementation model for the development of the Feature

Modeler was simple and effective. The well-defined and unchanging nature of the

requirements made for a solid starting point, and the multiple stages of implementation

allowed enough flexibility to address concerns and issues that required modifications to

the original design. Chapter 3 delves into the details of the staged implementation

process that was used in the development of the Feature Modeler, and the results that

were achieved.

15

CHAPTER 3: IMPLEMENTATION AND RESULTS

3.1 Development Process

This section describes in detail the steps in the staged implementation software

development process with regard to the development of the Feature Modeler.

Note that although the author was in charge of Feature Modeler’s development,

not all aspects of the development were directly carried out by the author. The author did

not write the funding proposal or the first draft of the design document. Also, the original

module architecture as represented in Figure 3 was already a part of Feature Analyst, and

only modified during this thesis work. Unless otherwise stated, all other work was

directly performed by the author.

3.1.1 Concept

The concept for a new AFE workflow visualization technique arose from a

combination of sources: originally identified as an area for improvement in the existing

Feature Analyst software by VLS staff and management, then affirmed and solidified by

Feature Analyst users. The concept was eventually given the impetus to proceed to

actual design and implementation in early 2005, when funding for the project was

secured from the U.S. Army’s ERDC-TEC division.

16

3.1.2 Requirements Development

This phase in the development process is usually critical to the project’s success,

and the Feature Modeler was no exception. Significant time was spent enumerating the

specific goals for the Feature Modeler, and how best to apply relevant visualization

techniques to this particular problem. This work resulted in the following goals.

1) Viewing of existing AFE models: first and foremost, the Feature Modeler must

clearly and cleanly display AFE workflow models of varying sizes, including the

ability to zoom in and out and pan across models which are larger than a single

screen. Color-coding of individual modules to convey information about the

module’s state was identified as a necessity. An auto-layout function was also

identified as an important visualization aid.

2) Interactive execution of the workflow with user-defined inputs: the Feature

Modeler’s main functionality would be its ability to assist a user in production-style

processing of imagery given an existing AFE workflow model. This processing

would occur in two possible modes: recipe mode and silent mode.

• Recipe mode - the user sets up the initial inputs, then steps through each

module in the workflow individually, stopping after each step to allow user

interaction and verification of results before continuing to the next step. This

mode leverages the knowledge and workflow from the existing model, while

still maintaining the flexibility needed to account for the inherent variations

from one extraction to the next.

17

• Silent mode - users set up the initial inputs for the model, and then silently1

run the entire model from start to finish. Silent mode allows for the greatest

gains in speed and efficiency. However, this mode does not allow much

flexibility in accounting for variations from one image to the next.

3) Creation and editing of AFE models: an essential part of AFE workflow

modeling is the ability to create and modify meaningful AFE models and to store

associated metadata. The ability to accomplish these tasks was an important aspect

of the Feature Modeler’s functionality. This goal would be accomplished by using

current best-practices from the field of visual programming, including the notions

of individual functions or “modules”, variables as input to the modules, and a

defined workflow of data from one module to the next.

4) Tutorial integration into AFE workflows: this functionality would mimic recipe

mode, but would focus on a multimedia tutorial approach to assist users in stepping

through an existing AFE model, “recipe-style”, with instructions at each step. This

mode was intended for use by junior analysts who could follow an AFE workflow

developed by a senior analyst.

5) Presentation of an easy-to-use interface with the outside world: accomplishing

this goal would ensure that future AFE modules can be easily integrated into the

suite of modules available to developers of AFE workflow models. This goal

requires forward-looking design to maximize the life-expectancy of the Feature

Modeler and make it a useful and relevant tool in the AFE field for years to come.

1 i.e., with no user interaction during intermediate steps

18

Several other goals were also specified, such as the ability to import, export and

print models, and the ability to analyze and extract rules from the models. However, the

five aforementioned goals are the most relevant to the objectives of this thesis.

In addition to the goals outlined above, the Feature Modeler was also subject to

certain design constraints. Firstly, the Feature Modeler had to fit into the existing AFE

model architecture, as implemented in Feature Analyst version 4.0. These models were

already being generated by commercial users of Feature Analyst, and it was these models

which would be displayed and manipulated in the Feature Modeler.

Related to the previous constraint, the Feature Modeler would need to be

implemented as an add-on to Feature Analyst, and developed using the current .NET

architecture. This constraint turned out to be more of an advantage than a constraint,

since both the Feature Analyst API and the .NET architecture are well-designed and

powerful aids for developing state-of-the-art software.

3.1.3 Architectural Design

This phase in the development process addressed two important issues: the actual

architecture of the Feature Modeler, and the architecture of the AFE models which were

to be displayed and manipulated by the Feature Modeler. The second issue was the more

important design issue, since the models were to be the main focus of the Feature

Modeler’s functionality. In addition, any changes made to the general model architecture

needed to include backwards compatibility with current AFE models already being

developed by Feature Analyst users.

Design of the AFE model architecture addressed four questions:

19

a) How will individual modules be implemented?

b) How will module inputs and outputs be handled?

c) How will modules interact with one another?

d) What control structures will be allowed in the workflow?

Question (a) found a good starting point in existing AFE models. Each AFE module

was implemented using a process-view-controller (PVC) design pattern (see Figure 3).

The PVC design pattern is flexible enough to allow a wide variety of implementations

which can all be accessed and manipulated in the same way. Although all three parts are

required for each module, only the process is actually stored on disk in the AFE file, with

its associated parameters. This requires that the process have the ability to dynamically

create its own controller, resulting in tight coupling of the process and controller.

However, it simplifies storage of the AFE workflows, and has the added benefit of

confining backwards-compatibility requirements to only one part of the module.

Process:
responsible for 1he actual
data processing and output
generation.

View:
visual interface that allows the
user to adjust para meters in the
process.

Controller:
conlrols the construction and
maintenance of the process,
using the settings provided by
the view. Also provides the
main point of contact between
1he module and the outside
world.

Figure 3: Process/View/Controller architecture for a single AFE module.

2 Examples include a training/classification module, a convert-to-line module, etc.

20

Answering Question (b) also involved reliance on existing model design. The

inputs and outputs of these modules are shapefiles or images, so it was deemed sufficient

for each module to include a mechanism which allowed the Feature Modeler to access its

parameters. In theory, the Feature Modeler could simply query the module for all

parameters which contained shapefiles or images, and treat these as the inputs and

outputs of the module. In practice, however (see Section 3.1.4) this approach was overly

simplistic and not flexible enough for many modules; in response, the module design was

modified to include an interface for inputs and outputs. In the final design, each module

controller was made responsible for providing input views (and output views, although

output views are as yet unimplemented at the completion of this paper), which are

represented as input and output nodes in the Feature Modeler, and presented to the user

for input and output setup. The user’s choices are then returned to the controller by the

Feature Modeler, allowing the controller to maintain complete control over the type,

number, and setup details for each input and output. In addition, these input and output

views are designed to be comparable. This helped answer Question (c) regarding module

interaction by providing the Feature Modeler with a mechanism for deciding whether the

output of one module is a suitable input for another module. Question (d) was originally

answered by permitting both linear and cyclic (loop structures) workflow paths. Cyclic

paths were to include decision points, which an analyst could use to decide whether to

continue on or repeat the loop. As Sections 3.1.4 and 3.1.5 indicate, however, the

inclusion of cycles and decision points was not implemented during the first or second

implementation iterations, and remains on the list for a future iteration.

21

The attention paid to the design of the AFE workflow models has resulted in a

robust and extendible framework for future development of new AFE modules which will

fit seamlessly into the existing Feature Modeler environment.

Regarding the design of the Feature Modeler itself, it is designed as a plug-in to

the existing Feature Analyst software. As such, it has access to all the standard

functionality of Feature Analyst, such as image and shapefile handling and cross-platform

compatibility. It is designed to display as a modeless window which is started from

within a Feature Analyst session. Module outputs are to be passed back to the Feature

Analyst framework for display. Being modeless, Feature Modeler allows users to view

and interact with any intermediate outputs generated by running an individual module,

before returning to Feature Modeler to continue processing further steps in the model.

Also during the architecture design phase, considerable time was spent

developing a meaningful symbology for the display of AlFE models in Feature Modeler.

Shape and color were both utilized as effective methods of communicating type and state

for each item in the display. Details and examples of the symbology are discussed in

Section 3.2 below.

3.1.4 Stage 1: Detailed Design, Construction and Release

The first implementation of the Feature Modeler started with an investigation into

suitable software packages to form the basis of the Feature Modeler interface. Several

good software packages already exist for developing graph, chart, and workflow

visualization software, so there was no need to start from scratch and reinvent the wheel.

Two software packages were considered in detail, and the final choice was a

22

diagramming package based on research into the development of a visual programming

language. This fit nicely with the goal of developing Feature Modeler as a new way to

visualize feature extraction “programs”, complete with inputs and output variables,

processing modules, and basic program control structures. The chosen diagramming

package was also implemented in .NET, which allowed for convenient integration into

the existing Feature Analyst framework.

Once the groundwork was in place, the first implementation of the Feature

Modeler could begin. Details of the actual implementation are of little relevance to the

scope of this write-up, even though pages could be filled with anecdotes about furious

typing, compiler errors, devious little hidden bugs, and so on. Suffice it to say that the

first implementation of the Feature Modeler finished on schedule, within budget, and

with the complete implementation of Goals 1 and 2 (see Section 3.1.2). Goal number 4

was also partly achieved, in that a framework was put in place which allowed the storage

and display of metadata for individual modules and inputs. This framework only

supported text-based metadata, but was implemented in such a way that multi-media

descriptions and recipe instructions could easily be added in during a future iteration

stage.

Unit testing of this first iteration was accomplished during initial implementation

by the developer, and then supplemented by integration testing after the completion of

development coding. Integration testing was done hy VLS testing staff as well as the

developer. Of particular concern during the testing phase was the integration of existing

ATE modules into the Feature Modeler’s framework. Many of the modules worked

perfectly well in the Feature Modeler, but some did not, highlighting the weakness of the

23

design for input/output handling (see Section 3.1.3). As a result, the initial process-view-

controller design for each module was modified to include a collection of element views

which represent inputs and outputs to the module, and are handled by the controller (see

Figure 4). This change (at least for inputs) was implemented during the second

implementation stage, as detailed in Section 3.1.5 below.

Process:
responsible for the actual
data processing and output
generation.

View:
visual interface that allouus Ihe
user to adjust parameters in the
process.

ElemeniV iewf]:
provide a mechanism for
allowing the user to define inputs
and outputs for the process.Controller:

controls the construction and
maintenance of the process,
using the settings provided by
the view. Also provides the
main point of contact between
the module and the outside
world.

Figure 4: Modified module architecture, including a more robust mechanism for handling module
inputs and outputs.

The first release of Feature Modeler was in July of 2005, when Feature Modeler

was delivered to Army ERDTEC via an installation CD for Feature Analyst 4.0 which

included the Feature Modeler add-on. This marked the completion of the stage 1

implementation phase of Feature Modeler.

3.1.5 Stage 2: Detailed Design, Construction and Release

24

The second implementation stage began with re-visiting the individual module

architecture. As a result, the ElementView interface was created, which allows a

standard interface for setting inputs and outputs. A few other small changes were made

to the module architecture as well, with the intention of putting as much responsibility as

possible into the hands of the controller object, and standardizing the behavior of each

class in the module. The expectations for each class’s behavior were documented for the

benefit of future module developers.

Once the module changes were finalized, much of the remaining time was spent

testing the Feature Modeler with existing modules to ensure that the basic design was

robust, flexible, and maintainable. During this time, some existing modules were updated

to ensure appropriate behavior or to fix existing bugs.

Link positioning after stage 1 implementation

Create ReT>ove Clutter
Layer_______

'eature Extractor^
(with aggregaton)MASK LAYERS

Link positioning after stage 2 implementation

Figure 5: Comparison of link display before and after re-working.

25

Also during this implementation phase, improvements were made to the interface,

via changes to the display and symbology. An extra color was added to module outlines

to help represent current module states; the inter-modular links were redrawn, resulting in

a cleaner and less cluttered model (see Figure 5); and final symbology colors were

updated with the help of VLS’s graphic designer.

These and many other small changes resulted in a high-quality, functional

implementation of a new and effective AFE modeling and visualization technique, which

is slated for commercial release as part of the upcoming release of Feature Analyst 4.1.

3.2 The Feature Modeler

f e a tu r e M ode ler c o m b in e ,a fe

Model Maw

Figure 6: Visualization of a typical AFE workflow in Feature Modeler.

26

Figure 6 shows a typical AFE workflow as visualized in the Feature Modeler.

The model in Figure 6 was developed for the automated extraction of pervious and

impervious surfaces3 from urban satellite imagery. It represents a typical AFE workflow

model, and will be analyzed in detail during the following sections which describe AFE

workflow visualization using the Feature Modeler.

3.2.1 Model Symbology

Webster’s dictionary defines symbology as “representation or expression by

means of symbols”. Thus, any good symbology set should be, first and foremost, an

effective means of representing or expressing information. In the case of AFE workflow

visualization, the symbology was required to convey two separate sets of information to

the user: what type each piece of the model is, and what state that piece is in. In the

Feature Modeler, shape is used to convey type, and color represents state.

Every AFE model is made up of three main components. First, each model

consists of one or more AFE modules. These various modules, although diverse in their

particular implementations, all perform some kind of automated task related to GIS.

They are the meat of any

AFE model, and thus need

a clear representational

symbology. Figure 7

shows how these various

J Pervious surfaces are those that absorb rain water, such as grass, trees, and flower beds. Impervious
surfaces - like roofs, sidewalks, and roads - do not absorb water. The ratio of pervious to impervious
surface is important in the planning of urban storm-water drain systems.

G'eate Muhi-
Ctazs input Feature Extocac'i

(with aggregatoi)

Figure 7: AFE Modules represented as colored rectangles.

27

modules are represented as colored rectangles containing descriptive titles. The colors

denote the state of the module, and are discussed in detail below.

The second major component of any AFE

model is user-defined inputs. Modules all require

inputs. Sometimes these inputs are supplied from the

output of a previous module, or inputs may be specified

by the user. These user-defined input nodes are

represented as colored ovals with descriptive names

inside. As Figure 8 indicates, these input nodes may be displayed in various colors, to

indicate their current state.

The third major component inherent in any AFE model is the information or data

flow. This data flow naturally lends itself to visualization as directional links, which are

displayed in Feature Modeler as black links with arrows to represent the direction of data

flow.

As mentioned previously, AFE workflow visualization involves not only

displaying the components of an AFE model, but also conveying information to the user

about the state of each input node or module. If these workflows are considered in visual

programming terms, then it is clear that both input nodes and modules can be in various

states. Color, both outline and interior fill, is used to represent these various states.

In the case of input nodes, an input can be either set or not set. Again, in visual

programming terms, input nodes can be thought of as variables that either have a value

assigned to them, or are equal to null. This state is represented by the symbology as grey

fill or clear. In Figure 8, the bottom input node has been set, while the top input is unset.

IMPERVIOUS EXAMFLES

Figure 8: Input nodes.

28

— Figure 9a -i

In addition to being set or unset, an input node may also be required, optional, or

irrelevant (see Section 3.2.3 for an explanation of the meaning of these three

distinctions). This threefold distinction is represented in the symbology by three different

outline colors: red, green, and blue, respectively. Examples of input nodes in all three

states can be seen in Figure 6.

AFE modules can also be in several different states, and like input nodes, these

states are represented by color. Like mput nodes, modules can be filled with grey or have

a clear background. However, rather than denoting whether the module has been set or

not (as in input nodes), a module with grey fill represents a module

that has been processed. That is, its outputs are valid and ready to be

used by further modules or displayed to the user. In a sense, this is

very similar to an input nodes “set” state, since both have the same

effect on modules further along the workflow.

The effect that modules and input nodes have on their

following modules is evidenced by the outline color of the following

module. For modules that are unprocessed, the outline color denotes

whether they are ready to run (i.e. have all required inputs), do not $\gUre 9. Modules

in varying states of
have the needed inputs, or are irrelevant. A module that has access readiness,

to all its required inputs will be outlined in green, as in Figure 9a. Figure 9b, c show

modules that are lacking inputs or are irrelevant (unneeded by further modules), outlined

in red and blue respectively. Section 3.2.3, dealing with silent mode execution of the

workflow models, explains in more detail the meaning of each of the three states.

r Figure 9b

i- Figure 9c —

^ CrtattMub-
Class Input

29

All these colors, shapes, and lines together form a comprehensive symbology for

displaying AFE workflow models. Taken as a whole, the symbology gives a user quick

and easy access to relevant information about the model’s structure and state. The

usefulness of this information is discussed further in Sections 3.2.3 and 3.2.4.

3.2.2 Visualization Aids

In addition to displaying a static model, Feature Modeler also includes several

tools and menu options to aid in convenient model visualization. AFE workflows can

easily fill more than a single screen, so the standard navigation tools are present,

including zoom in, zoom out, zoom to full extent, pan, and zoom to selection. In

addition, three different options are available for displaying links. These are standard (as

in Figure 6), orthogonal, and Bezier. These three different display methods for links can

be used to clear up screen clutter arising from the organization and placement of modules

and input nodes on various different models.

Perhaps the most useful visualization aid, though, is the AutoLayout tool. The

AutoLayout tool performs an automatic directed sort on the model and attempts to

arrange its components in an ordered and sensible way on the screen. Figure 10 shows a

model before and after AutoLayout, portraying the usefulness of this tool for effective

AFE workflow visualization.

Feature Modeler also includes functionality for AFE model I/O, including

importing, opening, saving and printing models, but since these functions do not directly

pertain to AFE visualization and modeling, a detailed explanation has been omitted. The

30

next two sections, dealing with different methods of using these AFE models, are the real

keys to the success.

Figure 10: An AFE model, before and after AutoLayout.

3.2.3 Silent Mode

Visualization of AFE workflows is one thing, but the visualization is of limited

usefulness unless it includes a mechanism for applying the workflow to new imagery.

Silent mode provides this mechanism, and transforms the AFE model from a static

display to an interactive visual program. Silent mode allows a user to apply all the

settings and parameters from a previous AFE workflow to new imagery. It is the

31

quickest and easiest way to apply an AFE model to new imagery, since it is designed to

require no interaction from the user other than setting up the initial inputs.

In order to run an AFE model in silent mode, the model must first be opened in

Feature Modeler. If the model was created on the fly by Feature Analyst, then its

modules will all be in a processed state (represented by grey fill, see Section 3.2.1). In

order to run a model, it must first be reset for silent mode. Pressing the silent mode reset

button on the toolbar accomplishes this. When a model is reset for silent mode, only

certain parts of the model are reset. That is, some internal settings (such as trained

learners) are retained, allowing these settings to be applied to new imagery. So for

example, if the model was developed to extract roads from IKONOS satellite imagery,

then the model will “remember” what it learned from the last time it was run, and so will

not need to be re-trained with new examples of roads each time it is run. Thus, when the

AFE model is reset for silent mode, some modules may not be reset, or they may become

irrelevant (denoted by blue outlines) because they are only used to train the model. In

short, resetting an AFE model for silent mode does a smart reset, resetting only the parts

of the model necessary to process new imagery, while retaining all the settings it needs to

process new imagery with no user input during the process.

Once an image is reset, all required inputs need to be reset. Each input node

displays a context menu when right-clicked, which allows (among other things) the user

to define the value of the input. Choosing this option brings up an input dialog. Figure

11 is an example input dialog for a training example input. When the required inputs

have been defined, all modules in the AFE model should have white backgrounds with

green or blue outlines. This confirms to the user that the model is ready to run in silent

32

mode. (If one or more modules have a

red outline, then these modules are

missing some required input.) Once the

inputs have been set up, clicking on the

“Run in silent mode” toolbar button

begins execution of the AFE workflow

model. From this point, no user input is

required. This may seem unimportant,

but many automated feature extraction

algorithms are computation-ally

expensive (not to mention that the shear

amount of data in multi-gigabyte imagery takes time to analyze), so a complete AFE

workflow executed on a large image can take hours to process. Thus, hands-free image

processing is an important aspect of efficient feature extraction.

Silent mode offers GIS analysts an effective tool for addressing efficiency

bottlenecks in feature extraction. It requires only one user-aided iteration (perhaps on a

small image, or a small section of a large image) to develop an effective model which can

then be applied to large amounts of similar data with no user input required. It is fast,

and on the right imagery sets it offers extraction speeds that are orders of magnitude

better than manual extraction. However, silent mode allows an analyst only very limited

ability to change the actual performance of the model from one run to the next (some

parameters such as minimum shape size can be changed, but no re-training is possible in

silent mode). As such, it has limited usefulness in applications where the desired results

Feature Layer 1 ®® 0 ®®
Description:

This input should consist of impervious surface
training examples.

Available Feature Layers:

imperv_results_clutter
perv_results_ras_erode_vec
pervjesu lts
imperv_results
results
train

fpervjrain

Create... I OK

Figure 11: An example input dialog.

33

are the same, but the input imagery is variable. These situations may arise when, for

instance, data collection is inconsistent (i.e., some imagery was collected on cloudy days,

others in bright sunlight). In these cases, silent mode may produce inaccurate results.

This can be solved by running a model in recipe mode, which allows users the flexibility

to adjust for variable imagery without having to regenerate the entire model.

3.2.4 Recipe Mode

In a perfect world, GIS analysts would only ever need to develop and train an

AFE model once to extract residential houses in American suburbia, and ever after, use

silent mode with the original AFE model to extract residential houses from additional

imagery. Unfortunately, the world isn’t perfect, and geospatial imagery sets are subject

to internal variation. Weather conditions, sensor type, and time of day are only a few of

the factors that affect data collection. So the spectral signature of a suburban residence in

Seattle may be quite different than that of a similar house in Auckland, New Zealand. In

both cases, though, the same workflow would be applied to extract the houses from the

imagery; only the actual pixel values of the imagery would be different. In this situation,

the most efficient method for extracting the houses would be one that took advantage of

the workflow and basic parameters used in one extraction, but retrained the model with

new examples of houses in the second set of imagery. This is exactly the flexibility that

recipe mode offers.

As in silent mode, a model must be open in Feature Modeler to run in recipe

mode. Also like silent mode, the model must be reset before running it on new imagery.

Resetting a model for recipe mode completely resets every part of the model, so that

34

training information about any previous images is cleared. The user must also redefine

the values of all required inputs to prepare the model for running. This often involves not

just browsing to a new image, but also drawing training examples of the desired feature,

so the AFE modules can re-leam what they need to look for.

Once the model is set up and ready to run, the user can click the “Step forward in

recipe mode” button on the toolbar. This runs the first module in the AFE model, and

displays the results to the user. The user then has a chance to analyze the results, and

perhaps manually tweak them before continuing with the next step in the model. Or, the

results may require user interaction before the next step can run. For example, if the next

module is a Remove Clutter module, then the user must provide examples of correct and

incorrect shapes, so the module can re-leam what clutter to remove. In this way, the user

maintains control over the results at each step in the model, while still benefiting from the

speed and efficiency gains inherent in using an existing workflow. This method of

feature extraction, although slower than silent mode, is still faster than performing the

same extraction without the aid of an existing AFE model. Since the results will be

identical to redoing the extraction from scratch, recipe mode is a definite improvement.

3.3 Example Results

It’s easy to imagine that modeling and reuse of existing AFE workflows, whether

in silent mode or recipe mode, can lead to time savings, but what about accuracy? Do the

time savings come at the expense of result quality? The answer is an unequivocal no. In

fact, reuse of AFE models can actually increase the accuracy of the final product, as well

as decrease the time required. It’s well known that manual digitizing of features by

35

human analysts is prone to several errors, not the least of which is inconsistency. So if

two analysts are each given a similar image, and asked to differentiate between pervious

and impervious surfaces, one may err on the side of pervious, and the other on the side of

impervious, leading to inconsistent results on almost identical imagery. Even a single

analyst’s work can vary from one image to the next. An existing, trained AFE model will

not have these inherent inconsistencies, but will produce consistent results from one

image to the next. This is especially true in silent mode, but even recipe mode could

potentially produce more consistent results than redoing each extraction from scratch. As

long as the original workflow was developed by an expert analyst, consistent high-quality

results could even be produced by analysts with only basic knowledge of automated

feature extraction. This further lowers the overall cost of feature extraction.

The following figures show example results obtained from silent and recipe mode

runs on various imagery. Figure 12 shows the results of running a gravel bar AFE model

in silent mode on new imagery that is very similar to the original. Hie results illustrate

the usefulness of silent mode. Figure 12a shows the original image and training

examples. The gravel bar extraction results in Figure 12b took approximately 20 minutes

to achieve, including the time it took to draw the training examples. This is already an

order of magnitude faster than hand-drawing the gravel bars, and the results speak for

themselves (see Figure 12b). But even better, consider the new image in Figure 12c.

This image was processed using silent mode, and the gravel bars in Figure 12d were

extracted in less than two minutes. That’s another order of magnitude faster than the

original extraction.

36

Despite these promising statistics, silent mode has its limitations. Figure 13

points out the deficiency of silent mode when running on disparate image sets, and how

this problem can be corrected by using recipe mode to retrain the model for new imagery.

The results in Figure 13 were generated using the pervious/impervious model shown in

Figure 6. Figure 13 shows the original imagery on which the model was developed. The

final results of this extraction are shown in Figure 13b. Figure 13c is a new image which,

although still depicting suburban houses, is quite different in terms of resolution, zoom

level, and so forth. Figure 13d shows that using silent mode (with its knowledge learned

from the original image) is ineffective in extracting pervious/ impervious surfaces from

the new image. In this case, recipe mode is a more appropriate solution. Recipe mode

allows the flexibility to re-train the AFE model for new imagery, while still retaining the

information present in the workflow and associated settings. In other words, even though

the images in Figure 13a and 13b are quite different, the extraction of

pervious/impervious surfaces requires the same basic workflow in both cases. The only

new information required to run recipe mode is some new training examples for the new

image. Figure 13e shows these new training examples (displayed in grey and green), and

Figure 13f displays the results of running the AFE model in recipe mode on the new

image. For time comparison, the original extraction (Figure 13b) took about an hour.

Using recipe mode, results were extracted from the new image in approximately ten

minutes. Even allowing for the trial and error involved in the first extraction, recipe

mode still resulted in a substantial time saving for the second extraction. Even better, the

second extraction could easily be performed by a junior analyst with little or no

experience in automated feature extraction.

37

Although anecdotal, the two sets of example results described above lend support

to the thesis that modeling AFE workflows and applying them to new imagery can be an

effective means of increasing efficiency and lowering the cost of extracting features from

geospatial imagery.

a) original imagery, with hand-digitized
gravel bar training examples in blue

b) original gravel bar extraction results (in
blue cross-hatched overlay)

c) new imagery (no new training examples d) results of running original AFE model in
required) silent mode on new imagery

Figure 12: Effectiveness of silent mode on feature extraction from similar imagery.

38

a) original imagery b) original results

c) new imagery d) results of silent mode on new imagery

e) new training examples for recipe mode 1) results of recipe mode on new imagery

Figure 13: Comparison of silent and recipe modes on dissimilar imagery.

39

CHAPTER 4: CONCLUSIONS AND FUTURE WORK

4.1 Critique of the Feature Modeler

Section 3.3 presents subjective evidence that the Feature Modeler successfully

implements a new technique which can improve the speed and efficiency of automated

feature extraction from color imagery. Rigorous testing and analysis will be required (see

Section 4.2) to quantify the actual gains GIS analysts can expect from using Feature

Modeler, but the preliminary results are encouraging. In particular, Feature Modeler

presents the following advantages over current methods:

a) Applying AFE models to new imagery, whether in silent mode or recipe mode, is

faster than re-doing the feature extraction on each new image from scratch.

b) Using recipe or silent mode on new imagery produces more consistent results than

processing each new image individually.

c) Feature Modeler can be used as an effective means of leveraging the knowledge

from expert GIS analysts and imparting that knowledge (in the form of AFE

models) to less experienced analysts.

However, Feature Modeler is not without its weaknesses. No doubt several will be

discovered once the Feature Modeler is commercially released, but the known

weaknesses are listed here.

40

a) The process-view-controller module architecture, although flexible and powerful,

certainly provides enough rope for module developers to hang themselves with.

That is to say, the module design errs on the side of flexibility and forward-

compatibility, not robustness. This should not be a problem for any new modules

developed by VLS software engineers, but it may be for third-party developers

who design new modules1. Safeguards have been built into the Feature Modeler

to handle any such rogue modules, but this issue may still need to be re-addressed

in the future.

b) Design and development of the Feature Modeler focused extensively on making

use of existing AFE models, and very little time was spent on developing ways

for users to build new AFE models in Feature Modeler. As a result, goal number

3, defined in Section 3.1.2, was not achieved at all. Currently, the only way to

build an AFE model is to step through an actual feature extraction on an image.

Feature Analyst automatically records each step in an extraction and appends it to

previous steps, forming a comprehensive AFE workflow history which can then

be used in Feature Modeler. This is generally the best way to develop AFE

models anyway, since the results can be verified at each step in the process.

However, AFE experts may occasionally want to quickly build a workflow model

without going through the actual extraction. Currently, there is no mechanism in

place for doing this.

c) Input nodes provide a robust and flexible way for the user to define module

inputs. However, module outputs are still handled implicitly by the Feature

1 The process-view-controller architecture is accessible to third party developers via the Feature Analyst
Plugin API.

41

Modeler, limiting the number and type of module outputs. Module outputs should

be handled in much the same way as inputs, allowing more flexibility in module

development.

The above weaknesses are not show-stoppers, but they do pinpoint areas for future

improvement and refinement. Note also that they are all issues resulting from the

implementation of the new modeling technique; they are not weaknesses in the actual

technique (modeling AFE workflows) itself. As such, they should be easier to address

than flaws in the underlying method.

On the whole, it can be stated that the implementation of a new method for

modeling and visualization of automated feature extraction workflows was successful,

and offers the GIS world another useful tool in the quest to provide meaningful geospatial

information in an efficient and cost-effective manner.

4.2 Future Work

Although the work on this thesis has advanced the cause of GIS, much work

remains to be done. Some ideas related to this thesis have been listed here for the benefit

of readers who may be interested in furthering the cause of efficient automated feature

extraction.

a) The Feature Modeler needs at least one more implementation cycle which

addresses some of the weaknesses discussed above.

b) Specific testing needs to be done to quantify the efficiency gains achieved by the

Feature Modeler. Automated feature extraction in general has already been

42

shown to be more efficient than hand-digitizing [10, 12], but how much faster is it

to use Feature Modeler than to treat each image as a separate extraction? This

and related questions deserve an answer,

c) A study which examines the usefulness of Feature Modeler as a teaching tool (via

recipe mode with embedded tutorials) would also be useful. Given the novelty of

automated feature extraction in general, such a study could provide useful

information for entities seeking to embrace AFE technology.

43

BIBLIOGRAPHY

[1] Albaredes, G., A new approach: user oriented GIS. In Proceedings o f EGIS ’92,

1992, pp. 830-837.

[2] Budic, Z., Effectiveness of geographic information systems in local planning.

Journal o f the American Planning Association 60.2 (1994): 244.

[3] Elroi, D. Geek-speak: Model Builder vs. Python vs. AML? GIS Software

Techniques and Implementation 3.3 (2003): 1-2.

[4] Esch T., Roth A., Dech S. Robust approach towards an automated detection of

built-up areas from high resolution radar imagery. In Proceedings o f the ISPRS

Joint Symposium URBAN05 and URS05, 2005.

[5] Henry, J. Software Project Management. Boston, MA: Pearson, 2004.

[6] Keukelaar, J. Topics in soft computing. PhD thesis. Royal Institute of Technology,

Stockholm, 2002.

[7] Koelma D., Smeulders A. A visual programming interface for an image processing

environment. Pattern Recognition Letters 15.11 (1994): 1099-1109.

44

[8] Konstantinides, K., Rasure, J.R. The Khoros software development environment for

image and signal processing. IEEE Trans. Image Proc. 3.3 (1994): 243-252.

[9] Malczewski, J. GIS and Multicriteria Decision Analysis. New York: Wiley, 1999.

[10] O’Brien, M. Feature extraction with the VLS Feature Analyst system. In

Proceedings o f the American Society for Photogrammetry and Remote Sensing,

2003.

[11] O’Brien M., Irvine J., Information fusion for feature extraction and the development

of geospatial information. In Proceedings o f the Seventh International

Conference on Information Fusion, 2004, pp. 976-982.

[12] Opitz, D. Hierarchical feature extraction: removing the clutter. In Proceedings o f

the International ESRI User Conference, 2002, pp. 924-930.

[13] Royce, W. Managing the development of large software systems, In Proceedings o f

the 9th International Conference on Software Engineering, 1987, pp. 328-338.

[14] Stankiewicz, A. A view from above. Geospatial Solutions, 15.7 (2005): 30-35.

[15] Stojanovic’ D., Djoijevi-Kajan S., Petkovic’ M., Stoimenov L. Development and

quality control of the spatial database for telecom network management in GIS. In

Proceedings o f the 3rd Joint European Conference and Exhibition on Geographical

Information, 1997, pp. 1221-1230.

	Modeling and visualization of automated feature extraction workflows
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459808976.pdf.Ci3qu

