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INTRODUCTION

This short survey consists of known results about the type of
algebraic system known as a Dedikind ring. In this survey, the defini-
tion of a Dedikind ring is given first in terms of valuations, and the
valuation approach is, for the most part, emphasized. Various different
assumptions under which either the properties of valuations needed for
Dedikind rings arise or under which only some of these properties arise
are investigated. Two chapters discuss conditions equivalent with the
valuation definition of a Dedikind ring. Another chapter relates the
assumptions made in classical research papers on ideal -theory (e.g,, Van
der Waerden's work) to the properties of valuation. The final results

concern algebraic extensions viewed with regard to valuations,
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CHAPTER I
VALUATIONS AND CLASSICAL IDEAL THEORY

Note in regard to references: In the first four chapters (I, II,

III, and IV), the main statements proved are given Arabic numerals while
useful preliminary results are assigned letters. Reference to a state-
ment is made by enclosing in parentheses the appropriate symbols, €.ge.,
"by (II.lc)" means "by the result (c) preceding the proof of statement
(1) in Chapter II." The chapter and/or statement number is dropped in
case of a reference pertaining to the same chapter and/or statement in
which the reference occurs.

Results and definitions considered to be of an elementary or of a
set theoretic nature appear in appendices, Reference to such material is
made by using the abbreviation "app." followed by the appendix number
(I, II, III, or IV) and the section number (1, 2, « « o), €.8., "by appe
(II.3)«" Occasionally the abbreviation "para." for "paragraph" is used,
Also, terms and notations not defined in the course of the text are listed
at the end of the first chapter in which they appear. Beside each liste
ing is an appropriate reference to an appendix.

Publications referred to are indicated in the text by a bracketed
number, followed by the chapter and section number. The bracketed number

corresponds to the listing in the bibliography following the appendices,

Definition (valuation): Let 0 be an integral domain with identi-
ty. A discrete valuation of 0 is a mapping of the multiplicative semi-
group O* of U onto a set of non-negative rational integers such that:

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(a) v(ab) = v(a) + v(b)

(b) v(a+b)2 min %v(a), v(b)j%

It is convenient to define v(0) =co with the conventions co>n,
n+Q =+ @ = W+ n =0 where n is any rational integer.

Definition (Dedikind Ring): An integral domain with an identity

element ¥ is a Dedikind ring if there is defined on G a non-null set @
of discrete valuations which satisfy the following postulates:

(I) If the elements a,b of & are such that v{a) v(b) for all
vE£ @, then there exists ¢ such that a = be,

(II) For 2 o%, v{a) is not equal to zeroc for at most finitely
many v €@,

(I11) If T vzim, v, # Vs then there exists a 0% such that
vl(a) =0, vz(a) >0.

(IV) The only ideal A of G with the property that min iv(a) s &

inA}=0forallvinﬂ!isB.

It will be shown in this chapter that the classical ideal theory
holds in 6, that is, each proper ideal of 6 can be expressed in one and
only one way as a product of powers of finitely many prime ideals; con-
versely, it will be shown on any integral domain in which the classical
ideal theory holds, there can be defined a non-null set 0 of valuations
satisfying I through IV,

In the ensuing statements, (1) through (14) inclusive, it is
assumed o is an integral domain and @ a set of discrete valuations satis-

fying postulates I, 1I, III, and IV.

(1) If veQ, a and bed, v(a) # v(b), then v(a + b) = min%(a),
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v(b) .

Proof: it may be assumed v(a) Zv(b). Then if v(a + b)\‘>v(b), it
follows v(b) = v(a + b - a)2 min {_v(a +b), v (a)} Dnin {v{a‘), v(b)}
= v(b).

(2) Let Vis Vps Vyseeesss¥ and v be distinct valuations in Q.
Then there exists:

(a) a.-_in 0 such that v(a) = O, vi(a) 0, 1<i<n;
(b) b in 0 such that v(b).> O, vs(b) = 0, 1€i<n

Proof of (a): For each j, 1<£j<n, there exists an element a
"\

3
.
such that v(aj) = 0, vj(a.J)) O, Let a =:Ir ase Then v(a) =_2V(09);

) = 03 . >
v(aJ) 0; vJ(a)__‘ vj(aj)> O.
Proof of (b): For each j, 15j< n, there exists by (a) an element

bj such that v(bj)'?‘ 0, vj(bj) = 0, and vk(bj)P 0, k# 3, 1¢£k4n, Let

b = mé bs. Then v(b) = min {v(bj)E > 0, and vi(b) = O since v (by) =
4=, 1< j<n
0, vk(g by) > O.

(3) If vV, V)jeesess and v, are distinct valuations in @, there

exists in 0 an element p such that v(p) = 1, vj(p) = 0 for 1€ j<n.
Proof: There exists p in U such that v(p!) = 1. By (2a) there

exists for each k, 1£k<n, an element b, such that v (b,) = 0, v(by)

~m

1, vj(bk)>0 when j # k, 14£j4n, Let p=p! + be. P is the required

K=t
element.

Definition (value of an ideal): If A is an ideal of U and if v is

in @, define v(A) as the Mir; Xv(a)} « Note that since v is discrete,
a in

there actually exists in A such that v(a) = v(4).

Definition (product of ideals): Let Al

0. The product of the [A 1;‘ s denoted by either A1A2A3...Anor by —H-A,_ 3

» A2,000000A be 1dea.ls of

is defined as the ideal
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5

in G / for some p051t.:|.ve integer n there a elements
x aiJ in Ai" ]5 n, such that x = % 8.1 a.zjaBj...nj
&=t

J
It is seen that'TT'Ai 7;Er A 'TF Jy+ Postulate IV states v(A) = O for
all ve @ only when the ideal A is 0 itself,
Let v be in @, Then
(4) v(AB) = v(A4) + v(B) for any pair of ideals, A and B of 0.

Proof: v(AB) = min v( aibl) > v(a) + v(B).
_ me —
oenbeB

On the other hand, there is an element & in A and an element b in B such

that v(a)

v(A) and v(b) = v(B). Since ab is in AB, v(AB) £ v(ab) =
v(a) + w(b) = V(&) + v(B).

(5) For each ideal A, v(A) = O except for (at most) finitely
many v in @,

Proof: Let a # O be an element of A, Then v(a) +v(a) O for
all v in 0. Since v(a) = O for all but finitely many v in @, so also
v(A) = O but for finitely many v in @.

(6) If vy, Vy,eeeeesV, are distinct valuations in @ and if A is
an ideal, there exists a in A4 such that vi(al) =v;(A), 1 i n.

Proof: For each 1, 1<i< n, there exists a; in A such that v;(A)
= v;(a;). By (2a), there exists elements by such that vi(bi) = 0 and
vj(bi)> O when i # j, 1£i<n., The element a=£:£l a;b; has the required
propertye.

(7) If the set @ of valuations is finite, then O is a principle
ideal ring.

Proof: Let A be an ideal. If @ is finite then by (6) there

exists a in A such that v(a) = v(4) for all v in @. If b is in A, then

v(b) = V(A) = v(a), for all v in 0. By axiom I, b is a multiple of a;
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A consists only of multiples of A,

(8) v(A)£ V(B) if and only if BC A.
Proof: Clearly if BE A, then v(B) = min{v(b% > Min %v(aé
v(a). beB

To prove the converse, let v,, VosesseaaV, be the set of all
valuations v in @ such that v(4)= 0. This set is finite or null by (5).
If @ consists of no other valuations, then 0 is a principle ideal ring
by (7)s Then A = 0{a), B = O{b) for some elements a, b in A and B respec-
tively. V(A) = v(a), v(B) = v(b) for all v in 0. If v(4) = V(B) for
all v, then by axiom I b is a multiple of a. B = ObS A in this case,

Suppose now that there is a vo in @ distinct from either Vi
V,3eeseeeOl V . The set C = { ¢ in 0/Becgc A} is an ideal of 0., (Bc de-
notes the get of products of ¢ by elements from B.) It will be shown for
each v in @, there exists ¢ in C such that v(¢) = O, Then by axiom IV,
C=0, and B = B0 € A in this case,

By (6) there exists a in A such that vi(a) = vi(A), O<ic<n.

Let Vor VyseereeoVis ViqsecceceVun be a set of distinct valuations
in @ containing all those which do not vanish on a. By (2b) there exists
for each j, 14 j¢m, an a5 such that x;ny(a ) >0 and v, (a )= 0, 0£ic<n,
let ¢ = zﬁ' (a )T with r so large that ()= v (a), n+1l- k<€<m, Then
vi(c) = 0, OSLén, W(c) = Wa) for all other w in @, Let b be any ele-
ment of B. Then vi(b) > vi(a), 0% i<n, and so w(be) = w(b) + w(e) >
w(a) for all w in Q.

Hence bc is a multiple of a by axiom I; therefore bc is is in A
and ¢ is in C. For 0£i<n, 02 v,(€) = v;(¢) = 0 or v,(C) = O. Since
Vo can be any valuation in @ distinct from the vy, vy,......v, , the
result follows.
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7
Notation (ideals P(v)): Let v be in (. Denote by P(v) the totality of

elements a on 0 such that v(a) O. It is seen that P(v) is an ideal of @.
(9) 1f v and v, are distinct valuations in @ then PSVJ_)_ $ P(vs).

Proof: By axiom II there is an a such that vl(a) > 0 and vz(a)

(10) Ir v, and v, are distinct valuations in @, then vz(Pg v,)) = 0.

Proof: The statement follows at once from (9) and the definition
of v, (Pv,).

(11) Py is a maximal prime ideal of O,

Proof: If ab is in Pv, then @ v(ab) = v(a) + v(b). Hence either
O0<v(a) or 0<v(b): either a or b is in Pv,

Suppose A is an ideal of 0 such that PveA. Then there is an
element a in U for which v(a) = 0, and so w(A) = O for all w in @.

A =0,

(12) Every prime ideal has the form Py for some v in {.

Proof: Let P be a prime ideal of O. By axiom IV there 1is a v in
{8 such that vP\!o. Then by (8) and (9), PE€P(v). It is shown that W(P)
= w (P(v)) for all w in @, whence P = P(v).

First it is shown w(P) = O for all w in { different from v; there-
fore, w(P) = w(Py) for w # v. There exists by (3) an element p such that
v(p) = 1, w(p) = 0. There is an a in P such that v(a) = v(P) = e>0,
By (2a) there exists b in U such that v(b) = O and v'(ab) > v!(p®) for
all v! in @ different from v. By axiom I there 1s an element ¢ in 0
such that ab = op®; since a is in P, cp® 1s in P and so either ¢ or p°
is in Ps But v(e¢) = v(a) + v(b) - v(p®) = 0 and so ¢ is not in P. Then
0 <i(P) < w(p®) = e(w(p)) = 0.

Finally it is shown that v(P) = v(Pv) = 1. Suppose e = V(P)
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8
v(Pv) = 1., The above argument shows that there-are elements ¢ and p in
0 such that v(c) = 0, v(p) 1, and cp® is in P, Then either cp or Ee-l
must be in P, and in either case v(P)<e,

(13) The ideals of O form a semi-~group under ideal multiplicaticnj
the mappingW: A ——){v(a)}, v in @, is an isomorphism of this semi-group
onto the restricted direct sum ’—_:(ﬁ/ } ve piheTe I—v is the additive semi~
group of non-negative integers. (Ideal multiplication is the operation "ot
defined on pairs A,B of ideals in O such that A°B = AB.)

Proof: By (4), (5) and (8), ¥ is an isomorphism into| . Now if

{rv} vell is an element ofr in whichrvl, [—vz,......[; are the only
m 7 . n
non-zero rv’ then set A =[] P(Vi). Then vi(A) =rvk, 12i<n, and v(a)

= 0 for all other v in @ by (4) and (10). Hence LPA =[r‘Y] vl and l{/

is an onto mapping.

Definition: Classical ideal theory (or prime power representation

of ideals in 0), The classical ideal theory is said to hold in 0 if:

for each proper ideal, A, of O there is a finite set of distinct prime
ideals CPi ] y L£iZn, and a positive in'biger, £ j» L£i=n, cor-
responding to each prime, such that A = JI P;Q s moreover, the set of
prime ideals and the set of corresponding integers is uniquely determined
by A.

(14) The classical ideal theory holds in O.

Proof: If A is an ideal of 0 (A ¥ 0), let Wa =[rv]v5m where
rvi', ﬁrz,...... I—vn are not zero and all other rv are zero. Then by
(13), A =F'(r4) = /_'l[r v] = _/}ILP(%)“Z“: This representation of A as

VEE 4=t
a product of powers of prime ideals is unique for by (12) every prime
ideal is of the form P(v) for some v in @, and any other product of pow=-

-5t have a different image under the isomorphic map-~
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ping . (See (13))

(15) If the classical ideal theory holds in the integral domain
O with identity element, then 0 is a Dedikind ring.

Remark: It must tacitly be assumed that there is at least one
prime ideal in O,

Proof: LetT’ be the set of prime ideals of 0. Given P infP, a
valuation vp is defined as follows: When a is in U*, the principle ideal
Fﬂca.n be written uniquely in the form P*Q, where Q is a product of powers
of prime ideals all distinct from P and where X is a non-negative rational
integer. (0a = Q when x = Q.) Let vp(a) = X. Let vP(O) =00 , The set
of valuations {vpg Psﬂiis readily seen to satisfy II and IV,

Suppose vP(a) = VP(b) for all P inTP . Then 0a = Ob®A where A
is a product of powers of finitely many prime ideals. Thus a = b(ual)
where u is in O and a! is in A, Axiom I thus holds, -
(\ atoa- D Al for any ideal A, If A # 0, thentn At can con-

vel =1\

sist only of the zero element. Thus 1£{o}¢B$A, then Aks B for all suffi-

ciently large K. Let P and Q be in rP, P # Q. Suppose PC Q. Let n be
a positive integer such that Q%€ Pc Qn"l. There are elements a,b such
that a 45 in Q, 2 18 not in P, b is in @®L, and b is not in P. Then ab
is in Q®, but ab is not in P, a contradiction. Thus there always is an

element C in P and not in Q. vp(c)> 0, but vQ(c) = 0, Axiom III is valid.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

Terms of Chapter

[

Additive group « . . . App. 1I.1

Elemen'b o & & ® & & @ o ® . App. I'l
Finite, finitely many . . . App. 1.4
Ideal s @ & @& 3 ® & & s @ App.II'B
Identity element . » . . App. 1I1.2
Integral domain . . « . « App. 1I.2
Tsomorphism « ¢ « ¢« o« « o« App. II.6
Mapping « ¢« ¢ ¢ ¢ o o & & . App. I.3
Mapping onto o « « o « o & . App. I.3
Maximal ideal . ¢ o « « .App. II.3
Mul‘biple e o &6 & & » & o @ APP- II-B

Multiplicative semi-group
Null 9’ non—null . ® & & o @
Prime ideal ® 2 & & & »
Principal ideal . . &
Principal ideal ring .

App. II.2
« App. I.1
App. I1.3
App. II.3
App. II.3
App. II.3
- App. I.2
App. 1I.2
App. IT1.2
App. II.2
« App. I.1
.App. II.1

Proper ideal . « « &
Rational integers .
Restricted direct sum
Ringoonooto
Semi=group « o ¢« o o+ o
Set * @& » e & s 9
Zero-element . . .

L] L] L I . o [ ] * L . s ® s 0 [ ] * ® L] * . » [ ]
¢ @ L] [ ¢ 2 * @ L] * & & e & @ [ ] [ ] [ ] L] ¢ 2 2 [ ]
s L] L ] ¢ *® o o L] [ ] - @ [ ] " . » [ ] L] L ] * L] [ ]
L] » L] » L] . @ . & * *« & @ L ] [ ] * » [ ] . [ ] L * L]
* O 4 @ .- s & w @ * +* & 9 . & @ L} [ ] - ¢ @ - L ]
L N * & ® & & ¢ P ¢ & o 9 0 . B 3 [ ] L ] L) * L] [ ]
L] L] * & [ N [ I [ ] [ ] « & &+ 2 | I [ ] ] [ ] » L] [ ]
® o & e o e & & & ¢ 0 e » L) *® B L ] [ ] [ ] [ ] [ )
*® & & & & 32 & [ ] * 2 & 0 s & 0 @ * . [ * 9
L 4 . € * * L . . 2 & & [ ] & & & & » L » » L} [ ]
\d . * @ * * 0 L] L s & = . 9 . * o L] [} L ] L ] L ]
» » LJ L] L] 1 L ] L ] L] L4 [ ] [ I | ] L] L] [ ] L] . . [ ] ] [
L] [ L] L] s @ L] L[] L] . ] ¢ & L4 [ ] » * L ] [ ] [ ] * L ] ]
[ ] [ ] * L) "« & & & ¢ L] [ . 1 ] * [ ] . L ] ] [ ] [] L ] L ] [ ]
] ] - L] L 2 * @ * L) L] L] L] * L] [ ] * [ ] » L] [ ] » [ ]
[ ] L] L] [ ] L N [ ] L] [ 3 L ] [ ] [ 4 * L ] . . e L] - . - [ ]
[ ] L] * L} . ] . » [ ] L I s« @ . 9 L] L[] L] L] * L] . L]
[ ) L] L ] s @ 9 @ [ 2 2 & & @ L ] L} [ ] ¢« @ L] L] ] * [ ]

® o & & 5 » 8 2 % »

Notation
. -""-'-'-g_:& App. I.1
" App. 1.4
0, a + b, a—bJ ga.ﬂ App. I.1

3 |™

\

1, a b, ab, a®, \lg, App. II.2
0(a) App. II.3
(\ App. I.1
O%, R¥, F¥ App. II.2
,_(V, —) ; App. II.2

min, App. I.3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11

CHAPTER II
OTHER AXIOMS FOR A DEDIKIND RING

Introductiont Throughout this chapter let 0 be an integral domain

with identity element. Let F be the Quotient field of 6. (Refer to App.
II. 7). A list, to be followed by proofs, will be given of conditions
each necessary and sufficient in order that 0 be a Dedikind ring.
Definition (Valuation on a field; extension of valuation): Let
v be a mapping of the multiplicative group of F (F¥) onto the rational
integers. Let v(0) =©9 ., Then ¥V is termed a valuation on F if V satis-
fies the conditions: V (a £ b)2min/V(a), v(b)/; v(ab) =v(a) # v(b).
Let v be a valuation of 0. Let a be in F*, with a=x/y, x, y in O%.
For such a define v(a) = v(x) ~ v(y); v(0) = e0. It is cbserwed that v
will then be a valuation of F. Denote by v' the mapping into the integers
determined by the restriction of ¥V to O. It is noted that the values of
¥' on O coincide with the values of the original valuation, V, on 0.
Accordingly, V on F is referred to as an extension of V on 0.

Definition (valuation ring): Let v be a valuation on the field

F. The valuation ring of y, denoted by Oy, is the set?ﬁ; in F/ V(x)>0 }.
For all a in F¥ either a or l/a is in 5v.
Notation: Let Ay, Ap —— An be subsets of F. By the product of the

A s denoted byTTAbcn'by AjAy - - An is meant the set of all finite sums,
1n ic iz € SLEw 1Ly em.
ZOKO\ -0, _in which O € Ay, | R

L=

Definition (O-ideal): A is defined to be an U~ideal of F providing

the following conditions should hold:
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A is an additive subgroup of F properly containing the set consisting
only of the zero element; for all gz in 0 and all a in A, za is in A;
A has a multiplier p, that is to say,there is a p in F such that pA
<0.

Included amongst the O -ideals of F are the ideals in 0;
these ideals are referred to as integral ideals. The term "prime
ideal" refers to an integral ideal which is prime.

Notation: Unless specified otherwise, capital letters, e.g.
A, B,C, ....., refer to 0 - ideals; underlined script letters, e. g.

& g, &, ««., refer to prime ideals. ~
Definitj.on: (powers of an ideal): _@_n is defined as ‘I_E Ak »
= A, 1<k¢ n. g‘l is defined as follows: _.g'_'l = {x in F/ xge.ﬁ}

-1\n
N, n a positive integer, is defined as (A L,

A
k
- 1
A

A Since Ale 0, -If
-1 ‘ '
has a multiplier, and therefore A = is an O-ideal. The D-ideals, A]‘:_é,

2 1 -2 -3 -
A, _A_B, vesesesd l, A , A, «covv.s...are called the powers of A.

Definition (value of an O-ideal) If V is ‘a valuation defined

on a field F, the V(A) is defined as miga{g(a)g 3 it is observed that,
since A has a multiplier, there actually is an a in A for which v(a)
= V(A)‘

CONDITIONS FOR A DEDIKIND RING: A listing of conditions, each

necessary and sufficient in order that U be a Dedikind ring, now follows:
(A): Valuatioms D on 0 satisfy axioms I-IV (See the beginning of
Chapter I.)

(B): Prime power representation is valid in O. (See I.15)

(C): Prime power representation is valid in F: For each U~ ideal A

ijn F, A # 0, there is a finite set of distinct prime ideals, @,6,,4?
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- Tl
and there is a set of non-zero integers /ed,o) - _.%w/ such that A “uﬂ¢? ;
moreover, the set of prime ideals and the corresponding integerstx&,
1< i <n, are uniquely determined by A.

(D): There is a non-null set D of valuations on F such that:

I' - 0= (1 Bv. II' - If a is in F¥ then v(a)
veyp A& O for at most finitely
many in 0.

IIT' - If vi-# V,, V1 and v, in D, then there is an a in F such that
vy (a)” = 0, vz(a) #Z 0. -
IV! - The only O-ideal of F such that v(A) = O for all v in 0
is 0 itself.
(E): The O -ideals of F form a group. The group operation is ideal
multiplication.
(G): There is a non-null set D of valuations on F such that:
(1) Dzvg_ Ty
(2) If a is in F#then v(a) £ O for at most finitely many
v in 0.
(3) Each Chinese Remainder system is solvable:
Whenever alg 3g; eserseedy are in F, V12 Vps sececes
v, are distinct valuations of D, and M is a positive
integer, there then exists an element x in F such that
\a) (x—al)> M, v, (x-a5) > M, ..f........vn(x-an) > M,
and v(x) > O for all other v in D,
(F): Each of the following conditions hold:
(1) Each prime ideal is maximal. ({Refer to app. 1I.3)

(2) The ascending chain condition is valid in 0.

(Refer to app. II.5)
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(3) U is integrally clesed in its quotient field.
(Refer to app. III. 1)
In (lh_) and (15) of Chapter I it was shown conditions A and B
are equivalent, The remainder of the chapter is concemed with proving
that C; D, E, F and G are each equivalent to A and/or B.

(1.) - A and B imply C: Assume there are valuations D

on O satisfying I-IV and that the classical ideal theory holds in O.
It then follows that in the quotient field F each 0 -ideal A (A7 O) is
uniquely representable as a product of powers of finitely many prime
ideals.,
(a) m”l = o.
Lemma preceding (a): For each v in D there is a b in F such
that v(b) = =1 and v' (b) O for all other v! in D.
Proof of lemma: There is an r in 6 such that v(r) = 1.
By axiom I for the valuations D and result (I,2b), there is an g in
0 such that v(s) = 0 and v' (s)= v'(r) for all other v' in D. The
element s/r has the required property.
Proof of (a): fsff-’_c_a. Let v' be the valuation in D such f,hat
£ =P (v) . It will be shown V' (@p™1) = O whence @p1 = 0 by (I,11)
and (I, 8). By the lemma there exists g in F such that v' &) = -1,
v(a)= O for other v in D. Thus, g@'ls_ 0, a is in e-l, and 0< v! Qm:—l)
v! (%) =0.
W . frp= 0.

a“=, -

Proof of (b): This result follows by repeated application of
' -1 =1y - - - - R, =
(a), . g., ®g) @'g ) = @) (gg!) =00 =0. )
(¢) Let Oa be a principle ideal in O, and let Oa = —Trﬁ

P

oL
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Then (Oa.) -1 -’TT@
Proof of (c): By result (d) below, (Da)*l(oa)('\Tf" ) Jfﬁ' :
by (b), (5e)™H(%a) ("% )= foa
{d) For any g in F¢, (Oa)-l (Ca) = O.
Proof of (d): This statement follows from the set equality
(0a)™L = B(a™t).

- =1 = -1 -
O0a & (0a) = for if x is in Oa."'l, then x = b/a for some b in 0.

Oa(b/a) & O.

-l) . . = =1 . -

- ~1
(Ga) = (0a™). If xis in (0a) ~, then xa is in O since a is

- - =1
in Oa; therefore, x is in Oa .

Proof of theorem: Let A be an a—iieal of F with multiplier a.
Furthermore, let Oa ;f}}f“ and let ad =;}T$s . Then, by (c) and (4d),
A= OA= (aa.)—l (ad) = ‘ﬁ@‘d‘ﬁqaeﬁ . In this prime power repre-
sentation of A it may be assumed that the @ ...... L Lt _7 are all
distinct and that none of the [—7-.--.%8.,--5’27 are zero. Suppose that
also A :j_@xu“ where the /A, .. _ —__/_7-27 are distinct prime

ideals, and where the /M, _ _ __ __. 46(«_7 are non-zero integers. Then

~
A<TT £ = :ﬁ— y sg_;"-rfx,,_ J.T“ My Thus -ﬁ- -n- o __—m.he, T & e
The product on either side of the last "equa‘i.‘s‘:‘ag;é;rls a representkalg;;‘;x“o
of an integral ideal as a product of powers of finitely many distinct
prime ideals, By the hypothesis, each of the [Ekj is included amongst
either the [djj or the [HI("J; therefore, each Rk' is included amongst
the [5.3._7. Also, each of the EJJ is included amongst the ﬁij or
amongst the Zﬁk'j and so each Q:j is included amongst the [Rk'J. .
The [lik'J and the /Qj _/ thus coincide; by a similar argument, the
[RK"_Z and the [Pij coincide. The exponents [uk'_z must then cor-

respond to the exponents - - = = == = = - = - = - v - w c w220 - -
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[ bj7 and the exponents [ uk_'_'_7 mast then correspond to the exponents
[-ay 7.

Corollary. The group condition is valid in F; the O-ideals of
F form a group under the operation ideal multiplication.

Proof of corollary: Clearly multiplication is an associative
operation; the element 0 is an identity of the group; because of (b) and
the conclusion of the theorem, each ideal has an inverse in the group.

Corollary. Condition D, axioms I!'-IV' for a non-null set of
valuations on the field F, is valid.

Proof of corollary: It was shown in (I.1l5) that the unique prime

power representation of integral ideals implies axioms I-IV for valuations
on 5; the proof of this corollary follows the same arguments.

Remark: Actually the axioms for the valuations {l on F could be
proved directly from the axioms for the valuations @ on 0. If the non-
null set @ of valuations on O satisfy axioms I-IV, then the set {i* of
the extensions of these valuations satisfy I'=IV!,

In order to show that conditions A, B, C, and D are equivalent,

a "sort of" converse to this last statement is proved. However; the

axioms I'-IV' for valuations on the field F guarantee only that the

axioms I~IV for some set (it of valuations on 3; the set {I' is not necesw
sarily the restriction to O of the valuations on F. (Example l; Chapter V.)

(2) D implies A. Suppose the non-null @ of valuations on F
satisfies I'-IV'on F; then a non-null subset @ of @' satisfies I-IV
on O,

Hypothesis for @ on F Conclusion for @ on O
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-0 = () o. I. If a, b are in 0, v{a) v(b)

veg/ for all v in @', the n a
is a multiple of b.

I1- For vy 4 v,, v and v,

in D' ther is an x in F II. For vy, v, distinct members
such that vy(x) # 0 and vo(x)>0 of L', thére is an a in O
0.. such that vi(a) >, vz(a) =0.
IIIL For x in F¥ v(x) =0 except for III. For x in 0%, v(x) =0 except
at most finitely many v in D. for at most finitely many
v in D',

v V(A)U=O for all v in D¥* implies IV.V(A)= O for all v in O' implies
A= 0. A =0.

Notation: The valuations in D and their respective restrictions
to O will be denoted by the same symbols.

Proof of statement (2): The proof is by transfinite induction

(refer to well-ordering axiom in appendix .4 paragraph 3... -3 Let
the set D of valuations be indexed Z— 1:7 i ;8. Denote by 1§ 6d} the
class of all subsets of F of the form Q‘ Oy, (v'ij £ vy, for

j £ k) where { is an index preceding or equal to /S . Trivially all of
the sets {'(')175 or {avn.% s l£i<@ , are Dedikind rings. Suppose that
for fixed o , all sets of the form {61-& are Dedikind rings. It will
then be shown each of the sets {Ou} are Dedikind rings. As a notat:x.onal

convenience, set O, = (\Uvi. It may be supposed that any set n '6\1
s _ ik
-~ (where k is a fixed subscript, 1 k ) properly contains Oe 3 if

such is not 'c.he case, then D is a Dedikind ring with valuations amongst

=°(
the [v _7 i « In additio? }‘t can be inductively assumed that the
i d- k —_
valuations of the Dedikind rings Ow. are precisely the
ez,
PWelemrs 1w CEK (1ergar)
P Y 23 IR -
(a). The relation "< " (" > ") is defined as follows:

Vi <V (vj $v1) if and only if there exists x in O« such that vy(x)= O
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and v, (x) > 0.
If v{ and vy are distinct valuations, 1€i, j € , then it follows
either vy < vj orwy >V,j
Proof of (a): Let m be a fixed subscript different from i and j.
By the induction assumptions, there is an element x such that vy (x)>o0,
vi(x) =0, and vk(x)ZOfor 1€ k€, k #m. It may be assumed that
vm(x)< O. In the same way, there is an element y such that v _(y) >0,
vj(y) = 0, and vk (y)20, 14ke, k f i,
The possible cases are (1) V5(y)>0 (ii) v;(y) = 0, and (iii)
vi(y)'< O.
Case (i) is trivial. In case (ii), vi(ynx) = 0, vj(ynx) >
0, and yi{ is in 6« for sufficiently large n. If case (iii)holds and
if vy is not >vj, then there is a gz i}q O such that vi (yz) =0, vj(yz)>0,
and yz is in Oot - _
), 1r v; < vy for some subscript j, then v {vk for all k £ i,
1 <€kegxX,
Proof of (b): There is a y in 0 such that 4vi(y) =0,vi(y) >0

k # 3 . There is a z in F such that vy(z) = 0, v (2)>0, and v, (2)=
0, 1¢h g, h £ 3. Then v;(y™2) =0, v (y™2)>0, and v; (ytz)z 0
for m sufficiently large.

With these preliminary results, axiom II is shown to be valid in
the ring Oe< . Because of (a) it may be assumed v24 Vye If it is also
ttrue that vy <v,, then by (b) , for all T % 31¢1i, jeox, it is true
that Vi< vJ. o
Now let x be in LDaavi and suppose v (x) Z0. There then exists

y in 5“ such that vl(y)>0, vz(y)>0; there exists integers m and n such
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mn -
that "l(ﬁ y)=0, v2(xmyn)> 0, and fxn is in Ot , Therefore, v.{ v

1 2
unless Qz Ovi = O

5 thus satisfies axiom II with valuations Do , where D is either

V—l-] i=1or 2_1_7 i = 2. let 2 and b be_ﬁelements in Qusuch that

v(a)=v(b) for all v in D« . Then a/b is in r\\ avi, and so a= be where
ts

¢ is in Ox . Axiom I thus holds for the D . Axioms III and IV readily

follow from axioms III' and IV!,

Diagram of present results in this chapters:

valuations on O

prime power
representation of
integral ideals

{D : a.luatlons {E’ group condition}
on F

\ {C* prime power repre-— %/

sentation of U-ideals
Remark: As the diagram indicates, to show that A, B, C, D, and

E are equivalent, it suffices to show that E implies B, Accordingly,
in the ensuing statements (3 s 4, and 5) it is assumed that the O-ideals

form a group under the operation of ideal multiplication; the conclusion

will be that the classical ideal theory holds in 0.
(34) as1 =70,

Proof: Let A' be an O-ideal of F such that AA! = O, Then A' <
- -1, = - 1 -1 4
A l. On the other hand, AA 1.2 6 = AA', Thus, A 1 - A AAECA ALY :Af}
(3b) Each O-ideal of F is finitely generated over 0, and hence

the ascending chain condition is valid for integral ideals.
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Proof: Let A be an U-ideal. 2gy (3a), 1= t%;:&ui, where x; is in
A and ug is in A"l, 1<3i<n. Then Ao (-J(ul, Uy, ......un)?-_ 0 since Au, €
D, 1€ifn., Since 1isin D (x . . . . . .xn)a (ug « . .un), oS
8 (x eex ) _6_ (u, ...un). It follows that Qs_a_(xl eeseex,) O (ug....
un) < A@(ul ...un)Sa. ﬁ(xl ....xn) =A.

(3¢) Each prime ideal is maximal amongst integral ideals: P C
Ac O implies A =0.

Proof: The argument is exactly the same as that used in (I,15)
with this slight change: If A # U, then the group condition shows that

oo

“A = A ﬂ A" is possible if and only if ﬂ A} consists of only the zero

L=

element.

Notation: Let U and V be subsets of 0; by (U, V) is meant the
ideal generated by U and V: (U, V)=
x in ﬁ, There are elmts. a, b in ©,
u in U, v in V such that
X = au £ bv.
(4) 1If the ascending chain condition holds in 6, then each pro-

per integral ideal A of 0 contains a finite product of prime ideals;:

there are prime ideals /¢ @»_7 i=1 such that Tﬁf’a ¢ A. Furthermore, the
i=-n
[pJ l =1 may be chosen such: thaﬂ@‘_SA < P > l1<€+«2n,
=\

Proof of (4): The required property is referred te as"P! Assume

there is an ideal AcO for which "P" is not valid. Then A cannot be a
prime ideal and there are elements a,b, in 0, a and b not in A, but ab
is in A. Let A = (A, a) and A, = (A,b). Then A; and A, are such that

A A2£ A, A€ Ay, A & A,, and both A, and A, are proper ideals. (If,

1
say, Al -0, then 6A2 = A>< A). Suppose npn is valid for both A and
M
. <i< de¢i ¢
As let'“—ﬁ_Al . »1<ign ancﬂ]—g “, €1£m, Then \-=“j?“"c"

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



21
A} A, € APy, 1€ign # m. Thus, "P" is not valid for either A;
or A2; suppose, then, "P" is not valid for A;, As previously, there
are proper ideals in 6 A21 and A22, for which A21 22 < Al -l A
before, "P" cannot be valid for both Azl and A22' In this way arises
a properly ascending chain of ideals, A< Alc_‘_ AZlC ABlC soee ....Anlc
An;‘.l ...... unless "P" is valid for the ideal A.

(5) Suppose that, in addition to the hypothesis of (4), it is
true tha.t all prime idea.ls of O are maximal. Then the prime ideals
[ﬁj iz for wh:Lch_“—f ‘R‘ﬁ j=1, 2 .. and n, must be included
amongst every set of prime ideals whose product is contained in A.

-wn\— _iz=zm i=-n
In other words, ifw‘g__bf A, then [g;_/ izl S[f,_ Jia1.
v
Proof of (5): Let -[r%_ Sﬂ.‘y; now suppose that 75 ¢ f for

=1, 2, , , “oss or m. Then there are elements x'J in a5 X3 not

in‘p sy LE 4 swy TT(:I is in-"— s but not in dE » a contradiction. There-

4

fore, given a subscript i, 1€ i ¢n, there is an i
L < "

(6) E implies B.

s 15 ije_ m, such that

J

Hypothesis: The O-ideals of F form a group under ideal multipli-

cation,

Conclusiont Each integral ideal is uniquely representable as a
product of powers of finitely many prime ideals.,

Remark: If it is assumed thatdaf-l: O for allf and that the
conclusions of (4) and (5) are valid, then the argument below is also

applicable,
- - i
Proof of (6): Let AC.Oand letIPic A, Ir /@ /i

o

.y
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consists of but one prime, , then by (3:) 4 -p.
Assume for fixed m, but for all Ac 6, that:_r‘ra’.-,s A, implies A

is equal to a finite product of prime ideals; A = Jﬁ-@:(‘.
4=

With this assumption on m consider AT 0 such that ! (F < A
By (4) there is a prime ideal P which contains A; by (5), £ must be
equal to@- for some i, 1€ i< n, say f =d:, .

d)d (ﬁ F’- - PI\MH) = fooee Urme s -FACN:‘BThe ideal f 'A
is then integral, whence @"'A"L R"% 2<iy< m # 1. {p@A A= P-!Td’:’.

=

~n
Suppose A = 'lTﬁ-“‘ = i‘ %.84. Then by (5) eachg'a.s included
n @:t
amongst the ['ﬁu _7 1

1 and conversely, eachpis included amongst the

L$TizT. A =TT =T (Trw-& ) o

L= d=t -

ez & such thatoti’ = a7
s
ot
” PB; -l " —
L 3-11 -
d“’

T sveh dhat B,

o]

In this product, both of the bracketed ideals are integral, and so
each of these ideals must be O. . Henc@,"(';’= B:.” and «¢"=8.", 1< i'¢m,
{<.”2n. For each i, 0(;-—- Be o

(7) A necessary and sufficient condition that 0 be a Dedikind
ring is that each of the follb?}ing conditions be valid: (a) O is in-
tegrally closed in F; (b) prim‘e ideals are maximal and (c) the ascending
chain condition hold.

Proof of necessity: Let D be a set of valuations on 0 satisfying

I-IV. If A is an ideal of O, then A is a set of the form

x in 0 vy (x) > a, where the a s es-..a are positive integers;
vl, v, ..;’.'.v dlstlnctlmemgers of T By
In view of (I.8) an ascending chain of ideals can consist of only finitely

many distinct ideals. Ifﬁ3 is a prime ideal of O then by (I, 13)
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= P,Z; ;7 for some valuation v; If the ideal A properly contains
then A = 0. Thus (b) and (¢) are proved; (a) follows in either of two
ways, ______ as an immediate consequence of (IV.8), or as an immediate
consequence of the fact that O is the intersection of a set of Gaussian
rings, each of which has F as its quotient field.(Refer I.7, App. II.4 & III.1)

Proof of sufficiency: In view of previous results (see diagrar p. 24)

the classical ideal theory holds in O providing thaEBP{: 0 for all primes
« In Van der Waerden Zflh, sect. 102, "Axiomatische Begrundung der
Klassischen Idealtheorie".;7appears a proof tha@ﬁ#é 0.

Remarks: Actually the proofs of (1) and (2) of chapter III are
applicable., These proofs show, assuming (a) and (¢), that for certain
prime ideals, @Eﬁb“==z5 « If in addition, it is assumed that all
prime ideals are maximal (b), then it follows that for all prime ideals,

Pp-5.

In fact, the proof Zflzb, Van der Waerden, "Zur Productzerlegung

der Ideale"; Sect. 485, pp. 298-9._/ of (III.1) and (III.2) is essentially
the proof in the above reference restated te include the possibility that
a prime ideal is not maximal,

Remarks: The set of Chinese Remainder axioms (G) is, as previously
mentioned, a necessary and a sufficient condition in order that O be a
Dedikind ring. Result (80 proves the sufficiency of (G); result (9),
the necessity.

The main results of this chapter, including (8) and (9) are dia-

grammed °on Pp.. 24 bottom.
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G: Chinese A:
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axioms
(2)
(8)
D: Valuations C:
on F, (1)

24

proper integral
ideal is contained

in a prime ideal

and contains a pro-
duct of finitely many
primes

the prime ideals may
be chosen so as to
appear in any product

unigue prime
power represep-
tation for integral
ideals

Valuations on O F: ‘integral closure;

Prime power re- (7) chain cond.; prime
presentation for ideals max'l
int, ideals
“og

(1) e
Prime power repre-
sentation for 0~ (1) E: Group
ideals condition

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

(82 _Sufficiency of the Chinese Remainder axioms

Hypothesis: 0 is a Dedikind ring; the non-null set D of valu-

ations on O satisfy axioms I-IV. The valuations D satisfy axioms

IL IV' on the quotient field F. (See (1) and second corollary to (1)
Conclusion: The Chinese Remainder axioms are valid; in addition

to axioms I' and II' being true ) each Chinese Hemainder equation is

iz=n
solvable. For each set [ ai_7 i = 1 of elements in F,each finite set

of distinct valuations in D, and each positive integer M, there is an
element x in F such that vy (x-—a.i)"> M, i$i<n and v(x)=20 for all
other v in D.

(a) If A and B are integral ideals such that v(A) and v(B) are
never positive for the same v in D, then (4,B) = O.

Proof of (a): Let Vis Vas o+ -+ o vy and v, £i1s o oo A

Vi # V5 for i ¥ j, include all positive valuesifor Ajmd B respectively.
= m

Let v, be any valuation distinct from /v / i = rll. « (The argu-
ment is still valid if there is no such vo). There exists a in A such
that vi(a) =v; (A), 0O%ign £ m; there exists b in B such that v, (b)
= v;(B), 0¢<i<n £/ m. There exists ¢ in 0 such that vgy(c) >0, vi(c)zc,
1<if2n #m. Then a £ bc is in (A,B) and vi(a. Abc) =0, 0£i<n #m.
But v, is arbitrary. v(A,B) = O for all v in D. (4,B) = O.

(b) A Chinese Remainder equation in O has a solution:
Ifr vi(x:-a. )>M, 1€£i4n, is a Chinese Remainder equation in which the
[;iJ ; ;l are all elements in O, then there is an x in 6 for which the
equation is valid.

Proof of (b}: Consider a possible solution of the fqrm X = alxl

# a,% £ 83Ky s o e e e e 4 anxn{ _T:lle element x is then a

solution providing that the [ xi_7 i =1 are all in QVi(ai) M for
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i#J (121, jem), and v; (a;-1)>M (l<ign). If all these con-
ditions hold then v(x)20 for v # Vi, Vo, « « « s0OT V ; vi(x—ai) -
\7] %"*é AjXJ # (xi-l)ai J =
min /v, (xla ) J v, (x3-123-1), vi(x‘j A1 A1) e v v v v 0
(x a ), v (xl(a 1)x1)_7>M

The [x _7 i ; 1 mnpay be chosen to satisfy the conditions
mentioned in the last paragraph, because by (a) the ideals A -
{;_: in0/vi{x) M, 1<jen, § ¥ i} and B -‘-{x in 0 / vi(x)>lii}are
such that (4,B) =0 2 {1},

Proof that e?.ch Chinese Remainder system is solvable:

Lt [v 7121

i
1l be distinct valuations in D, [ aij i
be any elements of F, and M any positive integer. Let aj = cl/d,

o
"o
s

. and a, = cn/d where d is the product of the denominators
=n

1 when expressed as quotients of elements in 0.

2=c/d,-oo

ofthe[aj 1

Thencl,cz.....cnareino.

. > 2 . » -
Now v, (x a,) M (1< i <n) providing that vy (xd ca S M
(1< i¢ m). Iet Vis Vo o o o oV 7[ 1 e e e e eVy 74 m ineclude all

valuations which do not vanish on d, and let N = max [v (a) _7.
vin D

By (b) there is an element y in F such that v, (y—ci)>M £ N,
leigny v #1 (y)>M £ N, 1£ i< m; and v(y)z Ofor v 7 Vis e e e

.+ lLet = y/d. It follows v, (xd=c.)> M for v — vo, + « «
Vn%m; X .V/ i _dt> T V1o

or v and v({x)2 O for all other v in D.

(9) G implies A

Hypothesis: A set D of valuations on F is such that (i) 0 =
& vis (ii) a in F¥ implies v(a) 7 O for a most finitely many v in D;
(iii) each Chinese Remainder system is solvable,

Conclusion: O is a Dedikind ring with valuations D (or more
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precisely, the restrictions of members of B to 0)

Proof: From hypothesis (i) and (ii) readily follow properties
I and IT for the valuations on 6 (refer to the last paragraph of the
proof of (2). Also if Vi, V, are distinct valuations in D, then there

is an element x in F such that vl(x) >1, v, (x~1)>1 and v(x)>0 for
all other v in D. Thus v;(x)>0, v,(x) =0, and x is in 0. Axiom IIT
is verified. The proof that v(a) = O for all valuations v implies that
A= ® follows:

)If v, ... -v_ are distinct valuations inD, there is an
a in A such that vi(a) =0, 1£i<n,

Proof of galz Assuming axioms I to IV for the valuations this
statement is a special case of (I,6). It is observed that the proof of
(I, 6) does not depend on axiom IV,

jgl A Chinese Hemainder system is solvable in A: given elements
815 + o e 08 in O (they need not be in A), distinct valuations vys

e o o o sand vn, and a positive integer M, then it follows there exists
x in A such that vi(x-ai)> M, 1<£i«<n.

Proof of (b): By (a) there is a b in A such that v, (b) = 0,

l¢ i &. Let VA1 e v £ m include all valuations that do
not vanish for b (if there are no such Vnid i, B is a unit and A=0).
and let N = max ‘{[v ndi (b)_7/, M}- Then, by (1ii) there is a y in
l¢izgm _

F such that vy (Y-ai)>NZM (1<i<n); vi(y)>N (n £ 1¢i¢n £ m);
v(y)> 6 for all other v in D. Then v(y) =0 for all v in D and so y is
in D; since v(y)=Zv(b) for all v in D, y is a multiple of b and y is in
A, -

Proof that A = (3

Let a' be in- 0. For a non-unit element b in A, by statement

(b) there exists x in A such that vi(x-a)> M (1¢i%n); the set 51,

A 2 is presumed to include all the valuations positive for b
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and M is presumed to equal Ee;,tinvi(bl}. It then follows x-a is a mul-
~ <i¢ -

tiple of b; x~a is in A. The element a is in A. A = O.

Terms of Chapter II
Associative « ¢« ¢ « ¢ ¢ ¢ o ¢ o o o ® 5 & 5 & o + 6 s & = o
Ascand.ing chain condition « ¢+ « ¢ ¢ ¢ ¢ ¢ o « o o o s o o &
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CHAPTER III

PRINCIPALLY ORDERED SYSTEMS

Introduction: A type of ring with somewhat less restrictive prop-

erties than a Dedikind ring is a principally ordered system. (Authort's
own translation of the German "Hauptordnung.') Briefly, a principally
ordered system is an integral domain which is the intersection of valua-
tion subrings of its quotient field. EKmll, Wolfgang, Sections 1

to Lﬂ proves that an integral domain O is a principally ordered system if
and only if it is integrally closed in its quotient field. Suppose,

now, O is not only integrally closed in its quotient field, but also
satisfies the ascending chain condition. The question then arises, Jjust
what sort of a principally ordered system is 07 In this chapter; results
of Krull and Van der Waerden are derived and applied in order to answer

this question.

Definition (principally ordered system): Let 0 be an integral do~
main with quotient field F. If there exists a non-null set Il of valua-
tions on F such that O =vf) Oys then O is called a principally ordered
system. In this chapter vaa.luation on a field F is defined as a mapping
of F¥ onto a non-null, non-zero additive subgroup of a direct summand of
real numbers (see "direct summand" in appendix on Basic Algebra) such that
the conditions for v(ab) and v(a + b) hold as indicated in Chapter I.

The principally ordered system O is said to be discrete (rank
one) if each of the valuations v in @ are discrete (rank one) valuations.

In other words, if the system is discrete, each v in 0 maps F* onto a

set of rational integers.

29
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The principally ordered system is said to be finite if for each
a in F*, v(a) # O for at most finitely many v in @.

The principally ordered system is said to have the separation
property if for distinct vy and v, in @, there is an a in 0 such that vl(a.)
>0 and vz(a) = 0,

Thus a finite, discrete principally ordered system with separation
property satisfies axioms I-III for a Dedikind ring.

Remark: Since 0 is an intersection of valuation rings, the iden~
tity element of F, 1 is in J.

Throughout most of this chapter (up to and including the proof
of (8) it is assumed that O is an integral domain, integrally closed in
its quotient field, and satisfying the ascending chain condition.

The reader is advised especially to look up, amongst other re-
ferences, the material in appendix II.S5.

Definitions (minimal prime ideals; higher ideals): A prime ideal

p in O is said to be a minimal prime ideal if §sP(§ 1is a prime ideal)
implies { = £ o The primary ideal P is said to be an higher primary ideal
if P is contained in one and only one prime ideal, The ideal A 1s said
to be an higher ideal if A is the intersection of finitely many higher
primary ideals,

Definition (equivalence of ideals): The ideals A and B of J are
said to be equivalent, denoted by A~ B, if there exist ideals C and D
such that AC< B, BD€A, and such that C and D are the products of finitely
many ideals that properly contain a minimal prime ideal,

Remarks: AVB is an equivalence relation amongst ideals of 0. The

class of all finite products of ideals which properly contain a minimal
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prime ideal comprises the equivalence class of which 0 is a member (see
Statement (1) below).
Let A, B, C, and D be ideals; if AnB, and C~VvD, then ACNBD,
(1) Let [@]i be a set of prime ideals of J and let pbe a

minimal prime ideal. Then it is not possible that “ 6:) unless
e
eitheretf. ’P 'P: goecsce Or_f=Pmo

Proof: IfP# (., 1<i<n, then there are elements x,5 L¢ign,
such that x, is in.d_’,_- a.nd x, is not iridb. As in (II.5) this is not

pessible,

(2) Ifp is a minimal prime ideal, then ¢°~'> B.

Proof: Clearly®'2 8. Let a # 0, a in(P. Then by (II.L)Mfor
some positive integer n there are prime ideals [Q,_ i=l such that :_‘__‘:@:S
O(a). (The primes, E,; , need not be distinct,) Let n be chosen to be
minimal with respect to this property. Since a is inf s by (1) there is
a subscript 1, 1<i< n, such that § =+ Let @ =@. Then R-F -—ifné
O0(a). Let b be an element in f*ﬁ—--ﬂ'm’ b not in O(a).

It follows (b/a) €’ 8, and b/a is in _f“ « (If x is an elemental

such that x(b/a) is not in U, then xb is not in 0(a). Since b is not
in 0(a), b/a is not in O.
(3) If{ is a minimal prime ideal, then fPC ¢ f—', and so _d_’f-‘NG‘
Proof: Suppose PP =@ . Let § = B(a seveseea ) Let x be in

f"‘ o« Then a.x is inﬁ) s 1l¢ i2 n; there are elements of O, {C;

i
such that a,x = pd . k3xk?

non-trivial solution (app. II.8) to a linear homogeneous equation in F,

S

1£i-n. The al, az,.o.-.-an then compose a

Therefore,
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Cﬂ "X Ca Ce_____Cim

G GaxXg,. Comn

HC?" (. G3X_.._ G
YTy Ty - = O. The element X is then a root
LT L. — . of an equation of degree n in which
y— \— 1" - — the coefficient of x® is +1 or -1
e el and all other coefficients are in O,
— + .\ -
v Cea Ge3- - --Q\n

Therefore, x must necessarily be in U; this result contradicts (2).

(4) Each higher primary ideal is equivalent to a power of a mini-
mal prime ideal.

Proof: Let A be a higher primary ideal, let (P be th; only minimal
prime ide“al containing A. Let T be the least positive integer for which
(ERE A. (See app. II.5.) Let _G_ =ff-‘. Thengrv 0 and _gn'f‘-’(-). Be-
cause _Q"’= Q’be ":C_‘,% Q’"’H}ZS not contained inf by (1). Let s be the
least non-negative integer such thatg’-%Sf " now, \ d)—,s-' A =
_Q’"Q"SA <pp'e 0, and so Q'S"'A is then an integral ideal. Let A be
any minimal prime ideal different from {p and suppose thatdb's'hs . QSH =
QS+.f°s./lﬁ\Ql}Es*'g_l}_. . Since G é_r_b, then as in (1)AS R, but this is con~-
trary to the hypothesis that A is a higher ideal. Thus f'MA is not con-
tained in any minimal prime ideal. By 1I.5 there are prime ideals [ ﬁ]:‘
such that jl:ﬁ. £§"Asg l<i<n. Thus D EE'H ¢0, where D is a product
of finitely many non minimal prime ideals. f’s‘\A ~ O .QS*'AN Qs“. A~ f’s“.

(5) Each higher ideal is uniquely equivalent to a finite product
of powers of minimal prime ideals: if A is an higher ideal, then ANﬁ-ﬁd‘
where the [ﬁ,] i= ;] are a set of distinct minimal prime ideals; the f@ ]1’1
and the corresponding exponents are uniquely determined by A,

(a) If the ideals A and B are such that A€, and B<g where
f, § are distinct minimal prime ideals, then AB~v AB ,

Proof: (A {1 B)® (A;B) £ A°B since (A B)°(A,B) = [(A B)®A,
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(A B)°B] S(B°A,B%0) = B°A. Then(BNA)°NEBoA where N = (,g). Since N
properly contains the minimal prime,  , and since BASBNA, BArVBNA,
(v) 1f Al,......An are ideals of 0 such that Asch. s 1<ign,

where the [E,‘l i:? are a set of distinct prime ideals, then nMA,; N‘:ﬁ' .o

Proof follows by répea.ted application of (a). " h h

Proof of (4): If A is an higher ideal, then A -;ﬂ\ Q.; where the
Qi’ 1<i<n, are higher primary ideals, each contained in a distinct
minimal prime ideal [2 Jacobson, N. H., _ section 8, chapter VI](also see
previous reference to appendix on algebra). Then by (b), ANi\:-Q;, and by
(4) A Nj E?“", where the [p,]1-} are minimal prine ideals. Now Ap-'rs f“:ﬁ'@*
since otherwise ANHQ’.@"'is not equivalent to Ljf;d‘ « The proof of
unigueness thus proceeds by induction on the sum of the exponents., If B~ fan
B ﬁ ‘where PandQ are distinct minimal primes, then Cfgiwhere_GNO .
By (1) this is impossible,

Corollary: If A is an higher ideal, then A is contained in only
finitely many prime ideals,

Proof: Let A‘-’-i‘:?j ‘where the [{] }:& are minimal prime ideals.
Thus C° if@f“' € A where C~O . If o is a minimal prime ideal containing
A, then as in (1), ¢ is included amongst the [f* i:g.

(6) Hypothesis: O(a) is a principle ideal of 0 and 0(a) < B.

Conclusion: 0(a) is an higher ideal; by (5) 5(&)&)]3_{’:“@31-3 the
[f,,l i':g are minimal prime ideals, (et :;t%sitive integers. Refer to
app. (II.5) for results used in proof.

Remarks preceding proof: If Q is a non-higher primary ideal, then

there are, as shown in Jacobson [2 Chapter 6, section 8] , prime ideals

and 4 such that QSpcqgand such that P equals the radical of Q.
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It can be shown that an higher ideal is an irredundant short interw
section of higher primary ideals: If A is an intersection of finitely
many higher primary ideals, then A is also an irredundant intersection of
finitely many higher ideals. If two distinet ideals, P and Q, of such an
irredundant intersection have the same radical Q s then PnQ is a non-
higher primary ideal only if either P or Q is non~ higher., For, if PnQ
< e % then PQ < PAQ ©q and by (1) either P or Q is contained ing .
(See app. II.5,)
Proof: Let O(a) be an irredundant short intersection of primary

(5.4

ideals ,LQ Q. If O0(a) is not an higher ideal, then by the above remarks
one of the Qi’ l<i<€n, is non~higher. Such a Q, is denoted by Q. Let
_d_D be the radical of Q and let9 properly contain . The set {bsa/ bp gaa\}
is denoted by O(a): {° . Then 0(a) :69'2 0(a) and, in fact, 0(a) P - 0(a)
as provided in Jacobson [EChapter XI, sections 7,8 (note theorem 6)]. Let
b be an element of O(a): (P not in O(a); then b/a is an element of ﬁ" and
also of j—’ which is not in 0. Now by (II.ld) :i"fs-.ﬁﬁ(a)_l = f'ﬁ(a"l) c
£ °(O(v/a)) 0; thus %"f is an integral:ideal containing f .
By an argument similar to that employed in (3), ?_{,’"f >+ Let g be an
element of 3"&3 not inf « Then g_zgd,z-l%_g%a.nd 0 gsf. But this
contradicts the choice of g . -
Notation: Denote by )7} the set of all minimal prime ideals of O.
Corollary: If 0@F (F the quotient field, then /77 is
a non-null set,
Corollary: Let 0(a) be a principal ideal properly contained in C.
Then 0(a) is contained in only finitely many £2 in )"} o (See the

corollary to (4)).
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in g/ There exist u,v in 0 suc
(7) For eachPeMlet the set {2 *" L/ that a = u/v, v is not
inf.

There existuh, such
in fact, an integral domain, Let the set ) a in §/that a = uh, where h is
. in$ and u is a unit of
be denoted by . It then follows (P is Op.

be denoted by Op. Then Op is a ring, and is,

prime ideal of O and that each ideal A in O is equal to a uniquely deter-
[

0
mined power ofd;. (50;, is referred to as @3 .) Thus 66’ is a Dedikind
ringe.

Proof: Clearly Up is an integral domain., The set, U , of units
of Q,is composed of elements of the form a/b , where a and b are both
in O, but neither a nor b is in P, Therefore,’dD'UUp = Gp ,p‘ﬂUd,-- g,
and d)' is a maximal, prime ideal of O. It is noted first that Op com~
prises the set of all elements of the form hu such that h is in 0 and u
is in Up ; secondly, if a is in O, but & is not in ¢ » then a is in Up »

Let 60,(33) be any principal ideal of @. (2ain O, u in U ) It
is claimed that ﬁa,(au) = (0 (a))Up « First, (Ja) Uﬁ,sad, (au). On the
other hand, 04 (au) < 0(a)Up , for if bv is in Op (b in O, v in V), then
(bv)°(au) is a member of baUp and baVUp UT(a)Up . 4

Let (_)(a)m)ﬁa“.%@:(‘where the [f,e.’&,___@ﬂ;}are distinct members of
Wy . Then c° I’fﬁ’ .S 0(a) where C A5 and xC = :ﬂ'%g' ; the [q ] im
are, of course, a set of ideals in O, each of which properly contains a
member of YY} . Since in each of the ideals,[‘m,ﬁ,_.-.-@,,.j,__g,:]there is an
element in the respective ideal that is not in-@ s it follows (see re-
mark at the end of the first paragraph of the proof) f“U—P-C- U(a)Uf,
Consequently, é‘*_c_ O(au). Conversely, by setting D O(a) g'_jl:'@t“.g,(where D~ 0,
it follows 5‘, (au)_t_-'f'“. Thus Oy, (au) = (P'u.

Now let A be any ideal of 0., Let m = min n such that
X in G‘ = 0(x)
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It follows A =& .

m M-l ]

Clearly Fmﬂi p' » 1 = 1,244 Supposedp = meor some positive

integer n. Then Q”'%S_&“t')band so ?’M@MU&, < Q—M EN‘ U € E-Mfm [iEUi» ]
= E)m@"d;,"gq,d;‘: 5’" Now by (1) and (B)Emf%ontains an element of 0
not in § , whence " Up = 0p o Therefore,afsd;', an impossibility.
P cp'™,n=0,1, 2, etc. Q. E. D,

(8) Let O be an integral domain with ascending chain conditions
such that O is a proper subset of and is integrally closed in its quo-
tient field F. Then 0 is a finite, discrete principally ordered system
with separation property.

Proof: By the first corollary to (6), the set W} of minimal primes
of § is non-null. Let *&_3 be a member of m . For each b in 0%, define
v(b) = x where x is the non-negative integer such that U@(b) = le . If
vy (0) is defined to beo0 , and if ¥ is extended to F, then by (7) ¥ is
a discrete (rank one) valuation on F and 5\,? =0p.

Clearly Qms 2 0, and it is claimed that ‘Qm'dp = 0, Suppose
a is in O but that there is an @ in Y} such that}g is not in O@. Then
i/a is. in p (see second. definition in previous Chapter II) and indeed,
1/a is in 6@: . There are elements h in (P, u and ¥ in O, neither U
nor v in_@ , such that 1/a = h(u/v). It follows u = avh is a member of
Ofp =@, a contradiction,

Suppose a is in 0%, @€ 1%, and Ve (a)> 0. Then U(a)vﬁ, C-;‘_:UP,
and by the argument employed in the above paragraph, a is in @ . Then
O(a) S@. By the first corollary to (4), then %(a.) > 0 forat most
finitely manyegm . O is thus a discrete s finite principally ordered

system; since m consists of minimal-prime ideals, O has the separation
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Remarks : (Finite, discrete, principally ordered systems, neces-
sarily satisfy the separation property. Actually, the last step of the
above proof is unnecessary. It is true that any finite, discrete prin-
cipally ordered system has the separation* property for a subset of its
valuations. In other words, if O is a finite, discrete principally or—
dered system with valuations @', then a subset 0 of these valuations will
satisfy the separation property, and can be chosen such that O -'-‘Qg_‘_,e- .

The subset @ of @' will consist of wvaluations

. the set of elements in O
{v in @f /such that v(x)> 0 is a minimal prime idea% .
EKrull, section 37.]

" However, the method of II.2 may easily be used to show that a
finite, discrete principally ordered system has the separation property.
It is recalled that II.2 proved that if axioms I through IV' are valid
for a set of valuations on the quotient field of O, then axioms I to IV:
are valid on O for a subset of these valuations. In this proof axiom
JI' is not needed while axiom IV' is used only to imply axiom IV,

An alternative proof of statements (8) and (9) is obtained in the
following way: Van derWaerden [[22, Van.derWaerden, line 18, p. 307;
12b , line 11, p. 301, line 31, p. 302] proves that each principal
jdeal in 6, is uniquely expressible as a product of powers of finitely
many minimal prime ideals. Proceeding as in (I.15) the properties for
the non-null set of valuations are readily obtained.

The concept of equivalence, defined for ideals in 5, is readily
extended to apply to all O-ideals, The classes of equivalent O-ideals
form a group under ideal multiplication. IfC? andB are each classes of

equivalent O-ideals, the product of the classes,(§°F, is the uniquely
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determined class { X / %é__ep% Beds 5} . Under this definition
of class multiplication, the classes of ideals form a group. If the sys-
tem 0 is such that each of the prime ideals{f(v',’gp&};e maximal prime
ideals, then the U-ideals A and B are equivalent if and only if A = B.
Therefore, the finite, discrete principally ordered system 0 with separa-
tion property is a Dedikind ring providing that each prime ideal is maxi-
mal; indeed, the system 1s a Dedikind ring if and only if prime ideals
are maximal “EJSchilling, Ch. IV, sec. 1,2,3] (see II.7). Statement (9)
proves this result using arguments on valuations.

First, however, the question arises, is the converse to statement
(8) valid? If the integral domain 0 is a finite, discrete principally
ordered system, does the ascending chain condition hold in 0? Is 0 inte-
grally closed in its quotient field, F? As indicated, in the beginning
of the chapter, 0 will be integrally closed in F. However, 0 need not
satisfy the ascending chain condition as (Ghapter!5, sec.9 shows. If the
ascending chain condition did necessarily hold in O, the proof of (9)
would, of course, be superfluous.

(9) Hypothesis: O is a finite, discrete principally ordered sys-
tem in which the valuations satisfy the separation property. Each prime
ideal in 0 is a maximal ideal.

Conclusion: O is a Dedikind ring with valuations (@.

Proof: Axiom IV must be verified to show O is a Dedikind ring.

It will be shown that if there is an ideal A in O such that AC 0 and
v(a) = O for all v in @, then there are prime ideals'lﬁ > q in 0. such that
Pc<g .

Suppose A< U and v(A) = @ for all v in @i, Then there is a maxi-
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mal, prime ideal N such that AZNCO. (Refer to "Hausdorf Maximality
Principle," appendix I.4,) Then O = v(A)= v(N) = 0 and so v(N) = O for
all vin @. Let a be a non~unit element of N and let Vis VyseseeceeeVy
comprise the set of all valuations in @I which do not vanish on a. Let
;Ec= P(V ), 1%i<n, let v.(a) = & '>0, 1< i<n. Now v(O lOTFf-c 2 =
0 for all v in {0 whence Oa %?Ef “‘c 0. By (IT.2d), ﬁg-/ 7 = an(Oa.'"lO
Mf Z) £ 0a < N. Therefore, by (1),f < N for 1 = 1, 2, OTesoseNe
Remark: Statements (8) and (9) offer a proof showing direct.ly
that the conditions (a) 0 is integrally closed'in F; (b) ascending chain
conditions hold in 0; and (c) maximality of prime idea.ls together guar-

antee that there are valuations @ on O satisfying I-IV,
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CHAPTER IV
ALGEBRAIC EXTENSIONS

The reader is especially advised to refer to the appendices as
well as to the other references that occur in this chapter. (IV.1l, IV.2,
and III.1 through III.7)

Question under consideration: Let U be a Dedikind ring with val-

unations . Let K be finite algebraic extension of F. Is K the quotient
field of & Dedikind ring? If so, what is the nature of such a ring and
what is the nature of the valuations on the ring?

Throughout this chapter, 0, F, K and @ refer to the sets indi-
cated above.

Notation: Let G<H and let v be a valuation on the field H. The
mapping of H onto the rational integers (with o~ added) may be restricted
to'-a mapping of G inte the rational integers (with %o added). The restric-
ted mapping is denoted by v/g; if a is in G, v/G(a) = v(a).

Definition: (prolongation of a valuation) Let u and v be valua~
tions defined on K and F respectively, If u/F = ¥, then u is said to be
a prolongation of v from F to K; if u is discrete (rank one), then u is
said to be a discrete (rank one) prolongation.

(1) For each v in @ there is at least one discrete (rank one)
prolongation of V from F to K.

Preliminary remark: If w is a valuation on a field and w(a) >w(b),

then w(a + b) = w(b). This statement, analogous to (I.l), is proved
exactly the same argument,
Proof: First assume that K is a simple extension of F, say K =
F [a] . Let {1 be the completion of F with respect to v (refer app.
41
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IV.l). Let the defining equation for a over F be f(x) = O and let f(x)
be represented as a produci of monic, irreducible polynomials in Nx) as
iﬁ— fi(x) (refer to app. I1I1.2, para. 4)e. Then a is a root of one of
;ﬂ; monic, irreducible polynomials, [fi(xﬂ] i:? (otherwise £(a) # 0) and,
indeed, suppose a is a root of fj(x). I1f fj(x) =g aixi, [Cl;]:fﬂ,then
the field {L{a] is a finite algebraic extension of () with a basis of
m elements. Each element of K (K = F[a.]) is also an element of _f)_[ a] .
Let w be the restriction to K of the valuation N defined on the field
ML{a). since N, coincides with v on F (refer to app. (IV.1) and IV.2),
W is a prolongation of V.

Since any algebraic extension K. of F can be obtained as the re-
sult of finitely many successive simple extensions (app. II1.2, last
paragraph) a prolongation of the valuation v to K is obtained by success-
ively prolonging v to simple extensions.

If K has a basis over F consisting of n elements, then each a in
K is the root of an equation in F(x) of degree m<n. (Refer to app. I1.2)

Let f(a) = a.aam + ala.m—l

=ee eeea; 18 + a, = O. Then w(aiam"l) = w(aja.m"j)
for some i # j since otherwise w(f(a)) = % i{swl(laiam'i)}% oo, Let
w(asa.m"a) = w(aram'r), s> r. Then w(a%"T) = w(as/ar) = v(ag/a,) = b
where b’ is a rational integer. Thus w(a) = b/(s-r) = be/N where ¢ is a
rational integer and N = 19203 ,,....°N. If v maps F¥ onto the set of
rational integers U, then w maps K* onto a subset of the set x=y/N, y
inU.

Example: Let v be a valuation of F which is a mapping onto the
integers, .ceeee=3, =2, =1, 0, 1, 2,¢cccee o« Let K be an algebraic ex-

tension with a basis of two elements over F. Then the extension w of

v is a mapping of K* onto a subset of the rational numbers whose denomina-
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tors are two:{....-5/2,-2,-3/2,-1,-1/2,0,+1/2,+1,... }

(2) If K is a purely separable extension of F then each v in {
has one and only one prolongation from F to K (see app. III.4).

Proof: By (1) the valuation v in @ has at least one prolongation
to K. Let v' be any prolongation of v from F to K. Bach element 2 in
K is the root of an equation x* - b = O for an appropriate positive
integer n and an appropriate element b in F (refer app. III.4). Thus
vt(al-b) = and so v'(a®) = v'(b) = v(b)e Then v'(a) must be equal to
v(b)/n.

Definition: conjugate prolongation. Let K! and M be respectively

a least normal closure of K and a maximal separable subfield determined
by K (app. III.6). Let w' be a prolongation of the valuation v from F
to K'. Then for O in gt—“ (app. III.5), and an a in M, \N;—(a) is de-
fined as w'{(0"a)., For a in K!' but not in M wie-(a) is set equal to the
unique prolongation of the valuation w! from M to K! (refer to statement
2 above). The prolongations w!' and w of v are then said to be conjugate
valuations on K!,.

Finally, any pair of prolongations w and Wy of v from F to K are
defined to be conjugates if they are valuations w' and wl' on K' such that
wi /K = w, wl/K = Wy and such that w and W, are conjugate on K!'. The
notation Wg1s used to inducate a conjugate w; of won K. The G is here
presumed to be the element in élj',‘? such that wl(a) = w(SfA) for all a in
M where w' is the valuation on K' such that w'/K = w,

In case K is normmal extension of F then valuations vy and w, are
conjugate if and only if there is a O in J¥ such that w)(a) = wg)

for all a in K.
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Actually any prolongation of the wvaluation v from F to K is, in a
certain sense, equivalent to a member of a set of mutually conjugate pro-
longations. This is proved in (6).

Notation (for integral dependence): Let K be a field containing

the ring with identity element R. The set of elements of K that are inte-
grally dependent on R is denoted by I (K] R
=m
(3) Hypothesis: v ¢ Q. [W;l:‘is a set of prolongations of v from
F to K and w is in this set; moreover, any prolongation conjugate to w on

K is in this set.

0 [\ o
Conclusion: I [K|= = 0, =
[ ] OV LQ wi ] g
Proof: Let K' and M be as indicated in the above definition. By

the definition of conjugate prolongations on K, there is a set of valua-
tions on K’'which consists of respective prolongations of the Wy from
K to K' and which includes for each O in 3,{."' (including U = I, the
jdentity of .Q:." ), the valuation Wg on K'. As a notational convenience,
this set of valuations on K' is also denoted by [wi-l .

(a) 1{u]; 5, =ﬂ(6(wi) n - n(ofwm M.

Proof of (g) Let b be in the I [M] 5,» and let b be & root
of the monic polynomial (app. III.1) x® + alxm"l e +a_in
which the [ai if{ are elements in 0. Then wj(ai) = v(ai) 0, 1£i<m,
l<j<re. Suppose wj(b) < O for some subscript j. Then w (b')' <
wj(aibm'i), 1€ i< m and so W, (o™ +albm -1, cessesd ) = wj(bm) ¥°0.
Therefore, w,(b) = 0, 1<jsn. I[M] (\(o(wi)r\ M.

Let ¢ & (\(ow NAM). Then ¢ is in M, and the defining equation

L=t

for ¢ is f(c) = :\_T (x— O:"m) = O where the {0]9] g:’i‘ are a subset

of the [0’;] i:i‘ (appe III1.7). Let the coefficients of f(x) be denoted

by [a,] 375 Since w{G,0) = wg ()2 0, 14 ¢m, it follows w(ay) =
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v(a.i)_’?. 0, 1< i% k, since the (a.i i:{ are the symmetric functions of
the G:‘c} 3:?_. (App. III.7.) The element ¢ is, therefore, in I(MJG .
v

It follows ﬁ (O(w) M) S o-g;; " G,.Nnm < ' "”I"{MJGVS

(51 |
Q (5\,\,&{\M) , and (a) is proved. (Refer to App. III.5.)

th

(b) Let a¢K and be M , and suppose that a is an n " root of b

for some positive integer n. Then a is in I(K](—) if and only if b is in
I K - 3

[K5s

Proof of (b): Assume b is in I[K_]a with a monic equation f(b) =

b2 + albm'l toeeeess A= 0, in which h,az,....a,;' are members of O.
Let g(x) = £(¥*). Then g(a) = £(b) = 0, All of the coefficients of g(x)
are in Q,and the coefficients of the leading term, xmn, is one. There-
fore, a is in I(k] 5

v

Suppose a is in @ [Kl_.. Then a® = b is in the ring I[K]a .

Ov v

(Refer to app. III.1l.)
Returning to the proof of (3), if a is in K' but a is not in M

then a is the root of a polynomial xP'—b = O in which b M and p% is a

power of positive prime integer; if a is in K as well as in K', then b

is in MN K. According to (2) the only prolongation, wi' , of the valuation

wi/M'ﬂK from M K to K is such that w;! (a) = wi(b)/pn. Thui\, wi'(a) =0

if and only if w,(b)= O. Therefore, if a£ K, then a is in PQ 5§wil if and

~y
only if b is in (\g ijn ) Again, since the prolongation to K of the

[B=)

valuation wg/MNK, where 0¢ &L, is unique, it follows that a is in f\g S
TE F
if end omly 42 b 1o in (B AM. By (v) 2 ie in I(K]5 if and enly if
F v
b is in I(M]5 . These three underlined statements, together with (a)
v

above, complete the proof of (3).

Definition (equivalent, inequivalent prolongations): If w; and
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w, are prolongations of a valuation from F to K, then Wy and w, are said
to be equivalent valuations (or prolongations) if wl(x)?: O implies that
wz(x)?..O and wz(x)?:o implies that wl(x).?:O whenever x is in K. If this
condition does not hold for all x in K then v, and w, are said to be in-
equivalent. The set [ wi] i:g of prolongations of v to K is said to
be inequivalent if each distinct pair from the set are inequivalent,

(4) Let [wi i:‘i‘ be a set of prolongations of the valuation v
form F.to K:such that any w 3o? l2j=n, G 63:‘;\, is equivalent to at least
one of the w,, 1<i<n, Let A i':r be a set o,f prolongit,\ions of v which
includes all of the [wi }_:?_. It then follows | 6"1 = ‘Q 6"’1 =1 (K]Eiv.

Proof: The proof follows by (3) and the definition of equivalent
valuations,

(5) Hypothesis: [wi i:?_ are a set of inequivalent, discrete pro-
longations of the valuation v from F to K.

Conclusion: If [a.i }_:ﬁ is a set of elements of K, and if M is a
positive integer, there then exists z in K such that wi(z—ai) ’M, 12i%n,

(a) Under the above hypothesis, for each pair of distinct Wy
and wj, 1# J, there exists an element x in K such that wi(x)>0, and w‘j
(x)< 0; there exists y in K such that wl(y)> 0 and wz(y)< 0.

Proof: If w; and wy are inequivalent, then either there exists
a in K such that w;(a)20 and wy(a) < O or there exists b in K such that
wl(b)< 0 and wz(b)_? O. Suppose that the first possibility is true, and
in fact, éuppose that wl(a) = O, There exists ¢ in F such that v(c¢)> O,
Then wl(c) = wz(c) = v(¢)> 0. For sufficiently large n, wl(anc)7 0,
wz(anc)( O. The required elements are aPc and 1/a"e respectively,

(b) Under the hypothesis of (5) there exists x in K such that
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L
wl(x) o, wz(x)> 0, wB(x)> 0......wn_l(x)> 0, and wn(x)>0.

Proof: The following statement is logically equivalent to
the statement to be proved: There exists y in K such that wl(y)70,
wz(y)< 0, wB(y)d 0......wn_1(y)< 0, wn(y)< 0. If z satisfies one of the
conditions, then 1/z satisfies the other,

Statement (a) proves (b) for a case in which the [wi %:5‘_ consist
of but two valuations. Inductively assume the equivalent statement is
valid for any set of n-l1 valuations. Let ¢ be an element of K such that
wl(c) >0, wz(c)<. 0, w3(c)< 0......wn_l(c)<.0. It may be assumed w,(c)>0.
Let d be an element of K such that wl(d)b 0, wn(d) <0, and let 5 be a
1 w_(c®)> abs. wi(d), %z €i <n. Then W

2 1
(c + ds)>0 and wi(c + d8)¢ 0, ia= 2, 3,......01‘ e (lo Abs, is a nota-

positive integer such that abs,

tion for absolute value.)

(c¢) Let M be a positive integer. Under the hypothesis of (5)
there is an element z in K such that wl(y-1)>M, wz(y)>li, w3(y> Mecoooo
Wn(Y)> M.

Proof: By (b) there exists a in K such that w (2)> 0, wi(a)< 0,
2<€i%n, Let 8 be a positive integer. It follows wi(as/l + a%) = Wy

s e
(L + a%) -~ wi(l + as) = wi(as)’ 2€i< n. Also, wl(l;a;—a-s -1 = Wy (=1/
1+ a% = -wl(a.s). Hence z = a®/1*a®)~ is the required element for s
sufficiently large.

Proof of (5): By (¢) for each K, 1<k<n, there exists X, in K
such that 15\71((2:.“:-1) M and wz(xk)bl{, l¢i<€n, i # k. As in (II.8) this
result suffices to guarantee that each Chinese Remainder equation has a
solution,

(6) Let [wl......wn‘] be inequivalenf. discrete (rank one) prolonga-

tions of the wvaluation v from F to K, Let Ui designate the valuation ring
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5wi and let O' designate the ring ‘Q O;. It follows there are exactly n
prime ideals in Ot,

(2) Under the hypothesis (6) each ideal A of O' is equal to
the set LD Ai in which A, is an ideal of O

i i
versely, each f..et [Ai i:g in which Ay is an ideal of 51, l<i<n, is

and A; = 0;A, 1£i<n; (b) con-

such that A = D Ay is an ideal of O' and A; = O;

“of &: Let A be an ideal of 0', Clearly 5;‘1\ is an ideal of

i

——— . C—— - S

Ui, 1< i<n, and AS nO OA. Suppose & is a member of ﬂ 0i®A. For fixed

(541
i, 1¢ 4 <n, there exists a, in A such that wi("a) = w; (a;) because of the

~”

following argument: Let a 'Z where aj' is in A, bj is in 5},‘1£j$m.

J J
Since it is impossible that. wi(aj')> wi(a.) for all j, 1< j<m, a subscript

k may be chosen such that wi(ak')ﬁ wi(a). Then wi(ai"ak') = w;(a) and
ai"ak' is in A providing that ai“ is chosen to be an element of O! such
that wi(ai") = wi(a) - wi(ak').

Let M equal ﬁ {wi(a)} e« By (5¢) there is a set of elements
in K, °i-3 :.-l such that wj(ci)>M for i ¥ j and such that w;(c;=1) > M,
Therefore, w (c ) = 0 and w, (a; c.) = W (a.); for i # j, w (ajcj)_?_wi(c,)_?

M2w, (a)?—O. Let d 2 a It follows d is in A and w (d) = wi(a),

< 833%4.
1€i<n., Hence, d/a is an element of 0%, and a = (a/d) d is in A,

‘Proof of (b): Let [Ai] -2 be such that A, is an ideal of Oy,
l=i<n., Define A' = ﬂ A Then A' is an ideal of 0! and 5i°A'5 Aj,
l< isn., Consider any set of elements [ai] i-l such that a; is in 4y,

£€4i< = 3
1€i<n, Define M Tgs&i(aiﬂ' By (5) there is an element of K, a,
s
such that w (a—ai)> M, T 1%i<n. It follows w (a) = wi(a.i) and so a
is a miltiple of a; in the ring 0;. Thus a is in {lA; = A'. Let k be a
-1

fixed subscript, 1€ k£n. The element a, is equal to (ak/a) a, and there-—
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fore is in A'§,. A'Q = A, 1£k<n,

(c) Under the hypothesis of (6), for any rational number r >0,
there exists a_in 0' such that wk(ak) ~r and wi(ak) =0 for 1£i<n, i # k.

Proof: There is a set of elements in O, [bi} i:rf, such that
wi(bi) =0, 1<i<n, i # k, and wk(bk) >r. By (5) there exists aj in K
such that wi(ak-bi) >r, 1<i<n. H follows wi(ak) =0, i # k; w“(ak)>r.
Ak is on O,

Proof of Theorem: Each of the valuation rings O; has one and only

one prime ideal, f-‘.‘ e ( ﬁ{ consists of elements having non-zero
value; see I,)2) By statements (a) and (b) there is a one-to-one corres-—
pondence between ideals, A, in D' and sets [Ai-l %:f of ideals in the re-
spective 51, lei<€n; the correspondence is such that whenever A and

(Ai ;:li‘ correspond, then A = 0;®A,. Denote by [_%1 322 the ideals of

O' such that A0, = o, for one subseript j and A;0; = O; for all the other
n=-1 subscripts, i. The [_ %3' §:§ are easily shown to be prime ideals;

by (e) the [C(,& 8 must be distinct prime ideals. To complete the

proof of (6) it must be shown that if the ideal A is not equal to 4 %
cseceslT Gr, then A cannot be: prime ideal of Ot,

Suppose A<O and A =‘Q AiUi. Since A # Q1> Fpresves-or ¢ it
follows then that either (i) Xl;:mk S P mdAD < o for at least
two distinct subscripts k and m or els: (ii) A0 < (P for some k and
Aiﬁi = 51 for 1 # k. In case (i) by (c) there exists a in U' such that
wi(a.) =0 for i ¥ k, wk(a) = wk(Aié°5k); there exists b in G!' such that
w,(b) = 0 for i # m, w (b) = wm(Am°6m). It then follows that a is not
in A and b is not in A but that ab is in A unless 4;0; € . for values

of i distinct from k and m. In any case of type (i) s however, repeated
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application of (c¢) yields a finite set of elements o.:t' O; none of which is
in A, but whose product is A. In case (i), the element a (above) is not
in A, but a® is in A for h.sufficiently large.

(‘7) Hypothesis: v is in @, w is a prolongation of ¥ from F to K.

Conclusion: Any prolongation of v from F to Kis equivalent to a
prolongation conjugate to w.

Proof: The relationship wlrv w2 (the prolongation vi ‘o{ v is
equivalent to the prolongation w2) is an equivalence relation. (Refer:
"Galois Group," appe. olllj-Beetion 5i}3: "Equivalence Rel.", app. T,
Ssctdon:5.) Let m be an integer equal to the number of equivalence classes
for the set | e Let [wl,......%] be a set consisting of one
member from each of the m classes. Then WiseeeecsW is a set of inequiva-
lent prolongations of the valuation v.

Suppose that there actually is a prolongation, w!' of v from F to
K such that w'~ we 1is false for all 6‘282. Then w!', WysseeeseW is
a set of inequivalent prolongat.ioris of vo Since by (1) every prolonga-
tion of v is discrete (rank one), it follows.. by (6) that there are m +.1
and B prime ideals in the respective rings, (ﬂow \ﬂOw' and ﬁ Ow,; -
This is impossible, since by (4) n(Ow)nOw' S ﬂ (Ow,) -

The question proposed at the beginning of thg chapter can now be
answered. K is the quotient field of a Dedikind riné 6K' 5K will coin-
cide with the set I[K](-)- of elements in K that are integrally dependent
on 0. The valuations @ on K or on Oy arise in the foll‘owing way:

For each v in @ let wvl bq & prolongation of v from F to K de-
fined as in (1). In other words, if a is in K, then wvl(a.) is the norm

of a with respect to the field {2(a)over the field fL . As in (7), a
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set of inequivalent prolongations is chosen from the equivalence classes

which together comprise all prolongations conjugate to wvl. Let [w"l,
W' ,eecessW' |denote such a set; let @' denote the set[wv i=n, .
2 il¥h o

and finally, let O_ denote the subset of K, ﬂowv..
K w\iigl »

(8) Conclusion: D, is a Dedikind ring with valuations O'; I[K']6 =
6K; and K is the quotient field of GK.

(a) If a is in BK then'wvl(a) # for at most finitely many w"’i

in @.
Proof: If @@ is in 0, clearly wvi(a)# O for at most finitely

v

many W',

ly many wvi in @',

in @'; indeed, if a is in F, then w’i(a) # O for at most finite-

Consider an element b in BK which is not in 0. Let b be a

root of f(X) = O where f(x) = amxnl + amnlxm-l "'cna.-c*alx*a\Oo (Refer:
"Equations" in app. I1I, Set. 2¢paragraph 2.) It will be shown that w‘{(b) only i
{(aj) # 0 for some 25 14 i< j, whence wvi (b)> O is possible only for
a:
in in the finite set Jg {wz >tS " m‘)w‘,v('aﬁ) #\0’}
Suppose, then, to the contrary, that for some w in {i' w(b)»(but

b1n-2 +

w(ai) = 0, 1£i<m. Then w(£(®)) = w(a.mbm + 2

m=1
1P + a,

am_. .o.o-oao)

= w(ao) #ob , a contradiction.

(b) It w, and w, are distinct members of (', then there exists

x in Bk such that w (x)> 0 and wy(x) = 0.

. _Proof: The required element x is in 0 itself if w, and w, are
prolongations of different members of . Suppose, then, that w, and w,
are respectively wvi and wvj for some v in @, i # j, where {wvi,llllfsl
wvn ] is the complete set of prolongations of v that are members of @,

v

By (5b) there exists b in Ki-such that wvi(b)( 0, and such that ka(b)> 0,
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1< k< n, k # i. Also, by (1), there exists ¢ in 0 and t.he(re exists a
positive integer m such that wvi(bmc) = 0, and ka(bmc)>0 for all k # i,
1¢ k¢ n_, in particular for k = J.
According to (a) let all negative values of b™c be included in the

\ V V2
set [W:'. W W wlr w.,’”.--w,.ﬂ. By (I,2b) there is

A ) -

an element d in O such that vi(d)>0, 1€i<n and such that v(d) = 0, It

follows w Jﬂ(bmcdn)zo for sufficiently large m, 1<icr, 1<Jj<n, .

Therefore, w(b®cd®)=0 for all w in @i; moreover, wvi(bmcdn) = 0 and‘
wv J(bmcdn) > 0.

(e) In 6K each prime ideal is maximal.

Proof: Let ¢ be prime ideal of EK and let A be an ideal of
BK that properly contains f . ’I‘hen_@fl 0 mst contain a non-zero element
of 0. Let a€p, a # 0, and let £(a) = O be the defining equation for a.

If £(x) = X"+ a_ T+ ci....va,, then ay # 0. (Dtherwise text, |

is reducible} sée app. IID.2.), and aj is in PNO. ThuspND is a

prime ideal in 0, andPN3 & aND. 1£pNT< A O, thenby
(1,8) and (1,12) A1 0 = § whence A contains the identity element. In this

case A = GK'

In the following way it is shown that§P/1 0 < AND: Let h be an

element of A not in . Let f(h) = O be the defining equation for h and

let £(h) = b E™b _ W™ +......+bg. Then bg is in AO\D; it may be assumed

that b is also in PO, Thus, b h™ + b 6™ 4 ......bih s in AT,

and since h is not inN 0, b K™L + p . W™

m-l * cescesa "'bl isamember
of N 0 € A ND. Then, b, is in 4 N\ 0, and, as previously, it may be
assumed that bl is infﬂ O. However, if this argument is successively

repeated, after a certain number of steps m, m<n, it must follow that

ing_-"'ﬂ 0.
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Proof of (8): (a) and (b) proved that the valuations (@' on BK

satisfy axioms II and III for a Dedikind ring; since by definition 6

_K E—
ﬂ 0., axiom I is valid (see last para. of proof for 1I2). Because
wed w
prime ideals in 61( are maximal by (c¢), 61( is a Dedikind ring with valua-
tions @,

Let x be an element of I[K}- Then for each v in 0, x is in I(K_]O
and so by (4), x is in (\owi for each v in D; x is in C\@Ow. I(Kjﬁ c
'Gk. By simply reversing the steps of the preceding argument, the con-
clusion 0, S I[K]-. is obtained. I[K]~ = Dy
usion Oy []0 is o e []0 Ok
K is proved to be the quotient field of 61{ in the following way:
Let b be in K, £(h) = O where £(x) = x® + a__, ™1+ ... .2, Let v,
VysesecesV, be a set of valuations in @ which includes valuations v (of
@) for which v(aj) + 0, =0, 1, 2,e0000e0r n=1l, Set M = max {-v (aj)iv

i=n j=m, There is an element a in O such that vi(a):'i M, vi(a.)z 0, 1€ i< m,

i=1 3=1
Let g(x) = xX™ + am_lam-l + am.__za.zxm-2 + ......aoa.m. Then g(x) is a monic
polynomial with coefficients, a 122 am_zaz,......aoam, all in 0; also

g(ax) = 0 if and only if f(x) = O. Therefore ah is an element of I [K]a
= Og and h is the quotient of the elements ah and h from E)'k.
Remarks: applications of results to finite, discrete principally
ordered systems with separation propertyt: Suppose the hypothesis for the
valuations @ on O are altered so that only axioms I-III are valid; in other
words prime ideals are not necessarily maximal in 0. Can results similar
to the above still be obtained for an appropriate subring of the algebraic
extension K? It is observed that axiom IV is not used in this chapter
except to prove that prime ideals are maximal in the ring O (9a). All
other proofs are valid without axiom IV. Therefore, if O is a principally

ordered system satisfylng axioms I, II and III, just exactly as above
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valuations {i' can be defined on a ring 61:3 the set of valuations {i' can be
constructed from @ in precisely the same manner as in (1) and (7) and the
ring 51( can again be defined as the intersection of the valuation rings.
It will follow that axioms I, II and III are valid in 0)3 K will be the
quotient field of 'dk and the ring of integrally dependent elements from K,

I{k]5 will coincide with 0.
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CHAPTER V

EXAMPLES

Examples of rings which are Dedikind rings or which satisfy
some of the properties of Dedikind rings are considered below. Each
section of this chapter considers a certain specific example.

Example 1. Ring of integers: The ring of inters I is a Gaussian

ring Echa.pter IV., Sec. E]. The only units of I are +1 and -1, and the
only associates of an element are +a and —-a, Therefore, the set P ot
those positive integers that are prime comprises a set of elements, no
distinct two of which are associates; moreover, every prime integer is

an associate of some member of ¥ . For each prime P in I s define Yp(a)
as the integer corresponding to the power o'f.ﬂ> in the finite prime power
representation of the non-zero element a. Define v (a) = 0 if the prime
is not represented. Define v, (0) ==° for alle in . For example,

12 = (22) (3) (~1); vz(-lZ) = 2, v3(12) = 1, y(12) = O for all other p
inf® . Each v is a valuation on I and the set of wvaluations {VP}PE ‘Psatis-
fies axioms I to III. Also, axiom IV is valid because I is a principle
ideal ring,

Let R denote the rational numbers, the quotient field of I, As
usual, each valuation v can be extended to the quotient field by defining
v(b/a) = vp(b) - vp(a). The set @' of the extended valuations then
satisfies axioms I'=IV'. (Refer to statement of result (II.2).) For
all a in I, define w(a) as follows: w(a) = wz(a.) + v3(a). w is then a
valuation of I. Let w be extended to R. The set I of the extended
valuations, sL'di'}Ufw} , then satisfies axioms I', III', and IV! on R,

56
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Of course, distinct pairs of vb satisfy axiom II', If p is a member of

T distinct from either 2 or 3, then v§(p) =1, ﬁ(p) = 0 and vp(z) =0,
w(2) = 1. Also v,(2/3) = 1, w(2/3) = 0, and v,(3) = 0, w(3) = 1. Fin-
ally, v5(3/2) = 1, w(3/2) = 0, and v,(2) = 0, w,(2)
satisfies axiom IIY',

l. The set @ then

As pointed out in the proof of (II.2) and as now illustrated by
this present example, the set of wvaluations satisfying axioms I'=IV' on
the quotient field may well properly contain the set of valuations satis-~
fying axioms I-~IV on the ring.

Example 2. Algebraic extension of a Dedikind ring: Again denote
by I, R, and ¥ the integers, the rationals, and the set of prime (posi-
tive) integers respectively. Consider the polynomial %% + l. As is
custdmary, let 1 denote a root of this polynomial. Then i and -i are
the roots of x2 + l. According to (III.7),R (i) will be then the quotient
field of a Dedikind ring composed of the totality of elements (of R (i))
that are integrally dependent on I. If a + bi is in R(i), b # O, then
the defining equations for a + bi is x° - 2ax + (b? - a%) = 0, Thus a
+ bi is in the Dedikind ring if and only if 2a and b2 - a2 are integers.
(see Lésection 14.3].) This ring is the set I(i)-*{a + bi in R(i)/a and
b integeré; The valuations @' on I(i) are composed of the following
members: For each # in P there is a valuation w; equal to the norm N
over a completion of R (with respect to v); also, there are valuations
conjugate to wi. The question then arises, how many conjugate valuations
are possible? Since R(i) is a normal extension of R with basis (1, i)
over R, the only possible R-automorphisms of R(i) are the identity auto-

morphism mapping each element onto itself and the automorphism O defined
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by O (i) = -i. Thus the only valuation conjugate to w;, besides w; itself,

is the valuation w, such that wz(a + bl) = wy(a - bi).

For example, consider possible prolongations of the valuation v

3
from R to R(i). Consider the roots of the polynomial x° + 1 which are

in the field . Is x2 + 1 reducible in f13(x)? .If so it has a root r

in ﬂ;{. As provided by appendix IV.5, set r = Zo riBi, r; in I, 0 £ig =,

4=

(It is not possible that r =3 n3% K<0,r«+0O ; in this case h{(r) < 0,

[ =
o0
but the roots of x° + 1 are members of I(i).) Then r® = (rg + 321':.“?1)2
Azo

= =1. Therefore, r.2

o must be congruent to -1, mod 3. However, if r, =

o}

0 mod 3, ro2 = 0 mod 3; if ro2 = 1 mod 3, r02 = -2 mod 3; if rg = -1 mod
3, r02 = =2 mod 3, Thus x° + 1 is irreducible over (x) and no root of

this polynomial is in ﬂ}{ The valuations w?_ and wg each must be the
restriction of the only possible valuation N +to the field R(i). “33_ =

wg. In general, the prolongations w) and w, of v form R to R(i) are
equal whenever n? = 1 mod p is valid for no positive integer n.

Suppose P is a member of P for which there exists an integer i,
iz «lmod « As an example, consider P = 5, Then 22 = ~] mod 5, and

x2+ 1= xR -y 5 (x=2) (x+2) mod 5 or mod P(vs\. By Hensel's lemma (see

appe IV.4), 3 + 1 is then reducible in _(1g(X), Let x* + 1 = (x+r) (x~1)

o

vhere r = % riBi and where r is a root of x + 1. (Refer IV.h and
{cT

IV.5.) The first term, To of r must be either +2 or =2, It may be pre-

sumed to be +2,

r2 + l = 0 = 0050 + 0051 + 0052 teeoevvcesoencscesnssnnsae

- 1 o2
r 2+rl5 +r25

+..0........‘.+ rn5n +......l.....

Then 2(2) + 1 + 2°2°rl°51 + h, = 0, Here, h,

product r? which involve 5%, n22. Therefore, [lsection 19.2] 2(2) + 1

consists of terms in the

otes the completion of R with respect to vp.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



59
+ hrl°5_=_0mod 52 or 1 + Arlzomod5.
r, = 1 mod 5.
r=2+ 504 r252 +.........r'nSn +eessssecsssacess
Therefore, 202 + 1 + 202051 + 52 & 2°2°r252 + hy = 0. Hers h, consists
of terms of the product r2 involving Sn, n 23, Consequently, 2(2) + 1 +

105t + 52 4 ur252 = 0 mod 57, 2 + Lr, = O mod 5. Therefore, T, = 2 mod 5.

2
The argument above then justifies the formula, valid for any positive

Kn_ =
integer n, hrn +gm = O mod 5, Here Kn is the sum of all terms of

either the expression r2

or else of the expression (1':,‘.5:5‘)2 + 1 which in=
volves 5J for some integer j, 0< j< n. In other words, kn is 1 +

&%rirjfﬁ'j where the sum extends over dl pairs i,j of non-negative inte-
gers such that i+jgn. It follows a3§l mod 5, that ah = 4 med 5, etc.

Let a + bi be in I(i). Then wi (2 + bi) is the value of a + 2b

+;§‘ br;)':wit.h respect to v in the completion field (app. IV.l). As pro-
vided by app. IV.5, w:?_(a + bi) is then zero unless a + bi = O mod 5. But
if a + 2o = O mod 5, then w{(a + bi) _equals k where K is the first index
for which the coefficient of 5% in %bh 5%  is not zero. The conju-
gate prolongation wg(a + bi) is of course given by wg(a + bi) = w{(a - bi).
For example, w>(h + 31) = v(4 + 3°2 + 3°1°51 4 3°2°52 4 3°1°53 4+, .....0)
= v(795% + 3°53 +......ll), st_(L, + 3i) = 2. wg(g + 3i) = w]5_(1,, - 3i) =
v(l - 3°1 - 3°2°5% = 3°1°5%..0.000) = v(2 - 6953 iii) e wO(h ¢ 31)

L__ shows that w? and w? are in-

4+ 31 1 2
equivalent., The prime ideals P(w{) and P(wg) corresponding to the two

= (0, Consideration of the element

valuations will now be characterized. P Wi = {x/x in I(i), wi (x) >0} =

{x/x = a + bi, a and b integers, a + 2b 0 mod 5}. Likewise, P wg =

0 mod 5}. For the element a +

il

{x/x = a + bi, a and b integers, a - 2b
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bi of I(i) to be in P(wi one of the following situation must hold:
a=0,b=z0;a=1,b=2;a=2,b=z3;a=z3,bz=1l;a=z4,b=3
(congruences mod 5). In order that a + bi is in P wg_ the possible situ—
ations are:
a=z0,b=0;a=1,b=3;a=z2,b=1;a=3,b=4 a=4,b=2,

- In conclusion it is interesting to note that I(i) is a Gaussian
ring as well as a Dedikind ring. A mapping of I(i) into the positive
integers is defined by the relation (a + bi) = a2 + b%. If m and n are
in I(i), then (mn}) = (m) (n). Therefore, if u is a unit of I(i),

= 1, If I(i) is not a Gaussian ring, there must be an integer n and
two distinct sets of relatively prim? positive integers {x,yl and[‘u,v}
such that n = x° + y° = u?® + v, As arguments in Nagell ESection 51;]
and Wright E-6Section 11“3:1 indicate, this is not possible.
Other references to this section are PBSect. 76, Bewertung von

Alg. Erweif], and [15"Va1uations of Alg. No. Fieldst.

Example 3. A non-Gaussian Dedikind ring: In view of examples 1

and 2, it might be conjectured that every Dedikind ring is Gaussian. The
example of the ring I(Y-¢ ) shows this conjecture is false. Here \-§
and -V-§ are roots of the equation x4+ 5 =0, R(N<§ ) is then a finite
algebraic extension of the rationals R and is therefore the quotient field
of a Dedikind ring. By the same type of argument used in example 2, this
ring is simply the set of elements I( V5§ ) = {a + b¥°5 in R('N"S )/a
and b in I(the set of integers)} . I(V°§ ) is a standard well-known
example of a non-Gaussian ring. A poof of this property of 1(\J’-'§) appears

in Jacobson Eexa.mple in Ch. IV, Sec, a'
Example 4. A finite discrete principally ordered system with

#a and b are relatively prime if a and b have no common multiples
except zero.
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separation property that is not a Dedikind ring: Let G be a Gaussian

domain (integral domain). Let G(x) denote the set of all polynomials in
F(x) (where F is the quotient field of G) with coefficients in G, G(x)

is also a Gaussian domain. Pch, 1V, Sec. 10, ;@ Consider I(x) where I
dt;notes the integers. The only units of I are +1 and -l1. A polynomial,
:_s_; a; X+ s 3 # 0, is termed positive or negative accordingly as
a, is positive or negative. Let [ be the set of positive prime elements
of I(x). As in example 1, for each p in P define vy (a) to be the power
of ‘o that occurs in the essentially unique prime power representation of
a given element a. Again, the set of valuations {szm;atisfies axioms

I, II, and III. Consider the ideal (x,2) = {a in I(x)/ a = bx + c2 for
some elements b and ¢ in I(x)} « Then (x,2) consists of all the elements
of I(x) excepting the odd integers, { -3,-1,1,3500c00 .g. vp (%x,2) =0
for allpy in W . Actually (x,2) is a maximal prime ideal that contains
the prime ideal (x). (Reference (:U'*Section 63, M"Einfache Transcendente
Erweit._'g)

Example 5. A finite discrete principally ordered system in which

the ascending chain condition is not valid: It is noted that if G is a

Gaussian ring the polynomial ring G(x) can just as well be indicated by

G(xh) where n is any index, 1% nsooESec. 10, Ch. IV}, Let IO denote I,

Il denote I(xl) or I(x). Inductively, let I, denote In_l(xn).wFor n=

1,2000000, In is a Gaussian domain, Finally, let I_, denote UI,«. o
: mzo

Ioo is then the set of all finite sums

= Ay KAV\
{Z QXSO X, }
ﬂ .

= i

Two such sums or members of Ieo are equal if and only if the same collec~

tion of subscripts i 3 and corresponding exponents Kk,

4 appear in each
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sum and also if the corresponding coefficients [ai 1:2 are equal. For
& given element p of I let m equal the maximum of the subscripts {ij}
in a finite sum that represents p. Then p is in Im but p is not in In
for n> m, Hence p is in no way representable as a finite product of
elements, one of which is not in Im‘ The unique prime power representa-
tion of p that occurs in Im is also a unique representation iﬁ~Ioo. Teo
is Gaussian, and therefore, as in examples 1 and 4, a non-null set @ of
valuations can be defined on Ia; satisfying axioms I, II, and III. The
ascending chain condition is no£ valid in I . Consider the properly

ascending chain in which the n®

h : .
ideal is generated by (xl, xz........xh).
(xj), latly (xl’x2)C:'(xl’ Xy, x3)........ (X, % .. X)¢--.(References: lhgee,

63, "Einfache Transcendente Erweit," and Sec., 64, "Der Transcendergrod.")
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Appendix I

BASIC SET CONCEPTS

Section 1. Introduction. The meta-mathematical and/or logical

notion of set and element is not'. defined, The statement "a is an element
(or a member of) in B" is denoted symbollically by "a £ A." The set A
is said to be contained in the set B if each element of A is also an
element of B, In each case, A is said to be a subset of B and also B

is said to contain A. The notation "A < B" or "B = A" means A is con-
tained in B and B contains A, The negation of A< Borof B 2 A is
indicated by A¢f B or by B2 A. Thus, A </ B means that there is an
element in the set A which is not in the set Bs The sets A and B are
said to be equal if A and B are composed of the same elements; set equali-
ty of A and B is indicated by A = Bs, It is observed that A = B if and
only if A« B and B> A. The set A is said to be properly contained

in the set B or B is said to properly contain A if A <€ B but if A does
not equal B. The notation A< B or B = A indicates such a relation,

A null-set is a set which consists of not a single element. Such a set
is denoted by .

Class of sets; set operations: A class of sets is a collection
of sets {HJ in which all members, Ai’ of the collection are contained in
some preassigned fundamental set or space., In this sense a class is a
set composed of glements that are subsets of the space. Let ?Ai}be a
class of sets. The union of the sets in the class is the set consisting
of all elements of the space which are members of at least one set in the
class, This union is denoted by&%ﬂhor bygjlq.;in case the class is
well-ordered and indexed by the subscripti(see app. I.4). The inter—

section of sets in the class is the set consisting of all elements of
63
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the space which are members of each set in the class, This intersection
is denoted bynn{-h or by QQ; in case the class is well-ordered and in-
dexed as abovef " |

Other notation: " -E} . " is used to mean the phrase "there exists";
" 3 w is used to mean "such that."” Thus "3 A > a € B" means "there
exists an element a in the set A such that a is also in the set B." The
notation {x€ S/ property "pM holds} denotes the subset of S which
consists of all elements that have propertyﬂﬁl If A and B are elements
of a set, the phrase "a equals b" or the notation "a = b" means that a
and b are the same element. The negation of "a = b" is indicated by
na # b

For details of the above discussion refer to Kershner ECh- Iﬂ.

Section 2, Ordering Relation. Let A be a set, An ordered pair

of A is an arrangement of subsets of two elements from A. Thus (a,b)
where a and b are elements from A is an ordered pair of A. Two ordered
pairs of A are considered to be equal if and only if the two pairs con-
sist of the same arrangement of the same two elements; e.g., (a,b) is not
equal to (b,a) unless a = b, A relation on A is a subset of the set of
ordered pairs of A, Let R be a relation on A. The element a is then
said to be related to the element b, denoted by a R b, if and only if
(a,b) is in R. The relation R is termed an ordering (or an ordering
relation) and A is said to be ordered by R (or A is said to be ordered)
if R has the following properties: (i) for any pair of elements s & and
b, from A either a R b or else b R a; (ii) if a R b and b R ¢, then a R ¢}
(iii) if a R b and b R a, then a = b,

An ordering relation R is frequently denoted by "= ." Thus a2 b

means a R b, If "> " is an ordering relation, then the converse relation
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"< " is also an ordering relation. "< ¥ is defined as follows: aZ b

if and only if b= a. If a and b are elements of an ordered set, then a
is sald to succeed or be greater than b; denoted by a > b, if a> b but

a # b; a is said to precede or be less than b, denoted by a < b, if a< b
but a # b, For a detailed discussion refer to Kershner [FSec. 4.8 and 15,k

Example 1. Let I be the set of positive integers,{._:.--z,-l, 0, I,2-“}.
Define a 2 b where a and b are in I, as follows: a Zb if and only if
either a = b or else a ~ b is a positive integer (refer to AChapter VIII),

Example 2, Let Rn be a set of rational integers: Rn =§ cevsanse
-/n, -m-1/M,e000esee-1/1,0,1/M/2/Nyesseeeso{ Wwhere n is an integer.
Define "> " on R as follows: b/n = a/n if and only if the integer b
is greater than or equal to the integer a as provided in example 1, -

Example 3. Let Rn be a set of rational integers as above. A
set of extended rational integers, Rn' s is8 a set comprised of the rational
integers Rn together with two new elements, ¢ and - <, Elements in Rn
are greater than or less than one another according to‘ the same relation
as before while - o< a < =© for all a in Rn.

Section 3. Mappings. ILet S and S!' be sets. Suppose that for
each a in S there is a uniquely defined element ¢ (a) in S*, This cor-
respondence, CP s, between elements of S and S' is termed a mapping of S
into S' and is indicated by § : S — S'. The mapping & : S5 S* is said
to be a mapping onto St if for each b in S' there is an element a in S
such that ®(a) = b. The mapping§: S—> 5! is said to be single-valued
if for each element a of S' the set ixES/ Qx) = a} consists of at most
one element. If the mapping @ : S S' is single-valued and onto, then

for each element a of S!' the set mentioned above consists of exactly one
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element. The single-valued onto mapping is often called a one-to-dne
correspondence or a correspondence between S and St. Theﬁ.dfﬁsfss, de-
fined by (y"(a)== x where X is the element in S for which Q&) = a, is
a single-valued onto mapping. {Refer to[?Introduction, Sec. él and
to E"Sectlon 5.1:,})

Consider the mapping, P : s— Rn' where Rn' is a 'set of ex-
tended rational integers. The following definitions are made: g?glfaﬁﬂ}
= p if p is a rational integer such that @)= p for all b in S and if
G (Y = p for at least one elewcut ¢ in S; zgsshsa f@(a\} = €0 means that
(b)) =0 for all b in S; gxgsn{ $(a)} = — @ means that for each rational
integer p there is an element » in S for which @ (b) < p. glflgc{ Q(a)} is
defined analogously; more pregisely, let m&zagc § Q(a)} be defined as rg:é_rsx{' ..G(a)}
where =(e2) = - e and =(=%) =%, ‘there always are extended rational
extegers p and q such that nu.n§ tgca)} p and such that max { Gt = q.
(Refer to Kershner, h15.h.

Section 4. Well-ordering. Let A be an ordered set with ordering

relation "< .0 A is then said to be a well-ordered set or to be well-
ordered by " < " if each non-mull subset B & A has a so-called first
element, an element b in B which precedes all other elements of b, Con-
sider the possibility that an ordering relation (<) can be defined on
every arbitrary set A in such a way that A is well-ordered. The axiom
that states this possibility is in fact valid is called the well-ordering
principle. This axiom is assumed to be true in many if not most current
research papers. Accordingly, in the material at hand, the well-ordering
principle is assumed.

Suppose that the set {l,Z,B,........n,n*l,........ i ."‘!15 well-
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ordered and that the positive integer n is the first element of each sub-
set formed by deleting elements less than n. Then the set A is said to
be indexed if there is a correspondence which is a single-valued onto
mapping between A and the well-ordered set ,{1,2,3,... serevilyitl c00encee
°4|,°§. This correspondence between elements of a and the indices (the
elements of the well-ordered set) is often indicated by affixing sub-
sceripts or occasionally by affixing superscripts, e.ge., a., is the element

1l

corresponding to the index 1, a_, is the element corresponding to 2, etc.

2

In this publication square brackets will always designate indexed sets

while curled brackets might refer to sets that are not indexed. Thus the

indexed set A, mentioned above, can be denoted by (ai ;L_:;(. The notation
j=B, - j=

" [ aij-] :]=l" indicates a subset of the indexed set [ aﬂ j=1 Such that a,

is in this subset if and only if the subscript i appears amongst [il, i

SRR B

1= &
In referring to the indexed set A as (ai];'__:l, the " ol is a

2’

symbol depending on the set A. If A has but finitely many n (where n is
some positive integer)elements, then the appropriate symbol " X # for A
is n, If the indices range over the complete set of integers, 1,2,3,
ssssssseNyN+l,s00se00e but not over any larger set, then the appropriate
] 1 jgo,
Transfinite induction: Let A = [a;]17)' be an indexed set. For

1sB <« letf{a |denote any subset of the [aﬂ i=< of the form [a ="

$Bs 8 i1 1,31
where ij # i for j # ke For 1284, let B + 1 denote the first index
appearing in the set of indices in which the i<B are deleted. Consider
now a property TP stated in terms of subsets of A. Suppose that the

property T is valid for each subset of A of the form A,; suppose further
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that it can be proved I’ is wvalid for each subset of the form AB*'l when-
ever [P is valid for each subset of the form AB, 1¢B8<t, The principle
of transfinite induction, which is a consequence of the well-ordering
principle, then states that ¥ is then valid for the set Ay or A, In
case A= [a i] i:fo then the induction principle is nothing more than the
usual induction employed in the most elementary algebra,

Hausdorf Maximality Principle: As a consequence of the well-
ordering principle follows the Hausdorf maximality principle, Suppose
«13 is a non-null set of subsets of a space S. ( & is a nén-null class
of sets.) A chain ofcg in a non~null subset of " such that for every
distinct pairof sets A,B in the chain, either A € B or B << A, The
maximality principle states that each chain of & is contained in a
maximal chainm : )'7} is a chain and is not properly contained in any
chain ofé e A detailed discussion of this section appears in Kelley
ECh. @, see especially under heading "Hausdorf Maximality Principle,"

The proof of the following result, needed in the main body of
results, illustrates the principle:

Hypothesis: A is a proper ideal of a ring with identity element.

Conclusion: A is contained in a maximal ideal.

Proof: Let & be the set of proper ideals of the ring containing
A. Let Y7} be a maximal chain of § containing the trivial chain con-
sisting only of the set A. Let M = 98 . M is then an ideal of S,
indeed a proper ideal since none of the sets of & contain unit elements.
Therefore, M is in W} and M pust be a maximal ideal,

Section 5. Equivalence relation. Let ™ denote a relation on

the non-null set A with the following properties: a ~/ a for all a in Aj
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arvb implies brv a for any a and b in A; a~ b, b vec implies asve
for any triplet a;b and ¢ in A. " ~v % is said to be an equivalence re-
lation if " " satisfies these properties.

An equivalence relation on A partitions A into disjoint sets of
mutually equivalent elements. In other words, there are certain non-null
subsets of A, called equivalence classes, and denoted by {A;I‘such that:
A=‘§)HL 3 Ay N A, = @ for any distinct A, Aj; if x and y are
elements of A, then x and y are members of the same set A, if and only

i
if x a’ y. For further discussion see Kershner ESec. 15.2 and 15.2).
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Appendix II1
BASIC IDEAS OF ALGEBRA

Section 1 Groups: operations: let g be a non~-null set, An

operation onqg?' (sometimes called a binary operation) is a singled-valued
mappingq from the set of ordered pairs of# into the set c? « in other
words, corresponding to each ordered pair (a,b) is a uniquely correspond-
ing element of & » 9 (a,b). A more usual notation for an operation, is,
however "o", Thus "a%b" refers to &(a,b). The set Y and the operation
#On i3 denoted by (&7 ,°) or simply by?/if no ambiguity is possible,

1", Chapter VII .

Let "O" be an operation on \‘Q « Parenthesis are used to indicate
the order of successive "% operations, e.g. (a°b)c means d°c where d is
a%b, (e%) is said to‘be é.ssociative or is said to be associate under "OW
if (a%)% = a° (b%) for all a,b, and ¢ ind . An identity element for
HOn" js an element e ing such that €% = a = a% for all a in &, Suppose
there is an identity element e for "O", 1If a is in & , an inverse element
of .a, denoted by a~l is an element such that aca=l = a~log = e.

The non-null set on which the operation "O" is defined is said
to be a group under "o" {or is said to be a group) if all of the conditions
below hold, Alternative terminology is to refer to (¥ ,°) as a group.

(1) "O" ig associative ond/ .

(ii) There is an identity element in é}’ for the operation "o",

(iii) Bach element of & has an inverse under "Ow,

(iv) If the elements a, b and ¢ ind are such that (b%) = (c%)
then b=c; if the elements are such that a®% = a®c then bmc,

Actually condition (iv) follows if (i), (ii) and (iii) hold. If
conditions (i) and (iv) are valid then # is termed a semi-group under "o "
or simply a semi-group. (Y o) is termed a semi-group.

70
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Ir (G,o) is a group,( semi-group),if the restriction of the opzration
"o" to elements in.H, N §21, is a group (semi-group) opegration, then
W is termed a subgroup (subsemi-group) of G.

The operation "o" on 1is called commutative operation if aob-
boa for all a, b indf. If ( & , o ) is a commutative group (group
in which "o" is commutative) then often (G, o) is termed an addative
group, the operation is termed addition and is denoted by +. If
(ey, o) is a commutative semi-group ("o" is commutative) then often
"o" is referred to as multiplication or occasionally as addition and
(& , 0) is termed a multiplicative or an a ddative semi-group respectively.,

For an addative group the following notation is adopted:

M
= a; denotes the successive addition operations a; # a, #a

=,

3 . [ ] L [ ]

74- a, e Because " £" is associative it does not matter in what order the
n-1 -"£" operations are performed. Indced, because " #£" is commutative,

it does not matter if the order of the [aiI:are interchanged., "-b'" de-
notes the inverse of b and a-b demotes.a.f.(<b)  "O" denotes the identity

or zero element otd « ™"a", where n is positive integer denotes
m

a,, &, =a, 1< 1< n.; "na", where n is gzero, denotes 0; "na", where
\ i

i

<
n is negative denotes -n(-a). For all integers n and m (n #/m) a=
na # ma.

The concept of a linearly ordered group is defined as follows:
Let(g be an additive group that contains a non-zero element; suppose that
there is an ordering relation, = , defined on &/ with the properties a £ b
-

- c 71 4 whenever a2b and ¢c2d. Then g is termed a linearly ordered

group. (See Krull,[é, Section _]}.)
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A re§tricted direct sum is defined as follows: Let
Z:QQ,Q;_7 ; :oi be an indexed set of additive groups (o? of semiw-
groups). Define & :{X} where x is any set [& _7 ; -_=-°§. such
that X is inél, 1< i¢o¢, and such that X is an identity of!f;for
at most finitely many i. Thené}is an additive group ( or a semigroup)
with operation © defined as follows:
i == i —e i-x
[ % 7 i =21 [?;Jizl =[xioi‘ai_7 i=1. Then
¢ 1 -
(39, ) is called the restricted direct summand of the / &, , i/ 1 = 1
Jacobson 172, Chap. V, Sect. 14;7 discusses the direct summand under
the name "direct product™.
Examples: The set of integers {. e o=n, -n £ 1, « « =2, -1, 0,
1, 2,3, ... .-1,n. ... ;kforms a commutative group under the
usual addition operation; the set of positive integers'{«--l, 2, 3 . . .
Ny, « .}'forms a commutative semi-group under the usual addition.
The previous paragraphs of this section are discussed in detail
in: Jacobson Ze, Introduction, Sect. 4;7 and Kershner th, Chapters
VIII and XII/.

Section 2. Rings and Integral domains. let R be a non-null

set on which two binary operations, addition (denoted by4 ) and
multiplication (denoted by © ) are defined. Then R or (R, £, 0) is
termed an integral domain or more precisely an integral domain under
(£,0 ) if the following conditions are valid:
(1) (R, £) is an additive group.
(11) (R,o ) is a multiplicative semi-group. In other words,
n v ig both assSociative and commutative; aob = aoc implies that a-c.

(1ii) The distributive law holds: a o(b Zc) = (aeb) # (avc)
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for all a, b, and ¢ in R. (Once again, parenthesis are used to indicate
the order of a series of operations.)

If (R, £,0) satisfies (i) and (iii) but if only the associative

and commutive part of condition (11) is necessarily valid then R is
termed a commtative ring (under £ and ©). If conditions (i), (iii),
the associativity part of condition (ii), and a so-called "right"
distributive law are valid, then (R, £ , ©) is termed a ring (under #
and ©), By the right distributive law is that that (b A c)ea = (beoa)
-{ (¢ ca) for all a, b, and ¢ in R.

An identity element of a ring (R, £ , ©¢) is an element of R that
is an identity in (R, ). A ring need not have an identity element. If
however the ring R does have an identity, then an element is called a

unit if the element has an inverse for the multiplication operation.

In cases where no ambiguity is possible, the multiplicition
operation on a ring, ac b, is frequently indicated by ab. ;‘Ta;
denotes the element 2] 83 83 .+ . . . e8] because "O" is associative
in a ring, this definition does not depend on the order in whlch the
operations are performed. It follows Tr a, = TT- a; o T a,

P =1 3 ek AT by 1

Also in a commutative ring, fl a; remains unchanged if the order of
(R
”m

the / a _7 is changed. If a = T!' CHp then a is called /the product of
the [a /i -__- n. al is defined as Tra s 81=a, 1<:|.J n. The set[Q" ],,,,

.48 called the powers of a. Examples: The set of integers . « <« «

i—-—B, -2,1, 0,1, 2,3 .., .". }is an integral domain under the usual ad-
dition and multiplication operations. ™"1" is an identity for this ring.

The set of even integers{. e o o o=by =by =2, 0, 2, b, 6 . . 4 e . .}is

a ring and a integral domain without identity.
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Unless parenthesis indicate otherwise, whenever there is a
succession of addition and multiplication operations in a ring, the
addition operation is understood to come first, e. g. 201 # 2 =
203 26 in the ring of integers, but (291) /2:-2 £2 =i
The set of non-zero elements of any integral domain is frequently
indicated by affixing a superscript ¥ to the symbol for the integral
domain, e.g. if I denotes the non-negative integers then I¥ denotes the
positive integers,
The material in this section is discussed in detail in Jacobson
/~ 2, Chap. II, Sect. 1 and 2 _J/.

3. Ideals in Commutative rings. The subset A of the commutative

ring(R, # , ©) is called an ideal of R if the following conditions are
valid:

A is a group under the addition operation of R restricted to
elements in A; If a is in A and r is in R, then ar is in A; A properly
contains the zero element.

In regard to the last condition, the standard definition of
ideal requires only that A may be non-null set. Under this definition
the set consisting only of the gzero element is an ideal. The departure
from this convention is made because in the material at hand it is desired

1

to separate the zero "ideal" from other ideals. (Refer to Jacobson,
1-2, section 7, chapter II. _7
R itself is always an ideal of R. The term proper ideal refers to

ideals properly contained in R, A prime ideal is a proper ideal such

that if a product of elements of R, ab, is in R then either a or b must

be in 32 .
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In the text prime ideals are invariably designated by underlined
script letters,

A maximal ideal is an ideal M such that if M<N<R and if N is an
ideal, then N must equal M. A maximal ideal is always a prime ideal,
but a prime ideal need not be maximal, For further discussion see Van
der Wéerden.{Z— 13,s§?tion 16, "Ideale, Restklassenringe.“;7 .

=n

Let Z?ﬁi ;7 i =1 be a finite set of elements in the commutative
i =-n

ring R with identity element. By the ideal generated by Zﬁﬁi ~7 ; =1,
denoted Py "..’,___R(x.l.’ s o 0 o e .xn), is meant the ideal{ ain R / J elements
[a; A in Réuch that a = % ay x;
The ideal A in R is said to be finitely generated if there is a set
i =n
Z-xi:7 i = 1 of elements of R such that A = Rix, x5 o ¢ & .xh).
Acommuatative ring (integral domain) is termed a principle ideal ring
(principle ideal domain) if each ideal of the ring (integral domain)
can be generated by a set consisting of only one element,
If A and B are ideals of the commutative ring R, then by (A,B)
is meant the ideal generated by A and B: (A, B) = r in R a in 4,
b in B such that r = a £ b

Section 4., Prime elements: Gaussian rings. Let a and b be

elements ofa integral domain R, Then a is said to be a multiple of b
if there is an element c in R such that a= be. If a and b are multiples
of one another, then a and b are called associates; in this case a = bu
and b = av for appropriate unit elements u and v. A non-unit, non-zero
element of R is called a prime element (or a prime) if p is a multiple

of no element of R excepting units and associates of p.
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An integral domain R is said to be a Gaussian ring if ezch
non-unit of R¥ is essentially uniquely representable as a product of

powers of finitely many prime elements: If a is a non-unit of R¥,
i=n

then there is a set of distlnct primes [p 7 i =1 and a set of
- ™ k.
positive integers [ k _7 i = l such that a- ‘!T(pi l) u where u is

~m! J = n!
a unit. Moreover, if a = :ﬂ q 1,3 v where [qJ 73 -1 is a set of
J =“n!
distinct primes, [l j-7 = 1l is a set of positive integers and v
1

is a unit then there is a singled-valued, onto mapplng,Q [«Pi-] -5 [“""Jé'-"
such that Q(p ) is an associate of P;» 1£i<n, and such that t.he in-
teger ki equals the integer 1:] corresponding to Q(pi), 1<ign. A more
detailed discussion of this section appears in Jacobson [ 2, Chapter IV,
sections 1, 2, 3 and 4 __7.

5., Rings with Ascending Chain Condition: Let R be a commutative

i hadh g

ring. A set of ideals of R, [ Ai j i = 1 is said to be an ascending

chain of ideals if Alg A2_c_: A3§ Ala- « « « o «Or in other words if A C

Ak 41 for k =1, 2, 3, etc. the ascending chain condition is said to be
valid in R if each ascending chain of ideals terminates: for each chain

i - a0

[A‘iji = 1 there is anlntegernsuchthatAn:An%l =An7[2

= 3

The ascending chain condition is valid in R if and only if every ideal

*e & & & .An % k - ¢ e = o) k - l, 2, 3, etco

is finitely generated. For the proof, refer to Jacobson, [2, sections
L, 5, and 6, chapter VI _/.

Iet A be a proper ideal in the integral domain R with identity
element and satisfying the ascending chain condition. The set of elements
z in R Fpositive integer n {depending on z} © is called the radical

1 = g0 is in A
of A and is denoted by R(A). Because of the chain condition there is an

integer m such that E'(A) £ A. The proper ideal A is said to be a primary
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ideal if whenever a product of two elements of R, ab, is in A, then
either one of the elements a is in A or else the other element b is in
R(A). If A is a primary ideal, then R(A) is a minimal prime ideal as
McCoy shows [8, theorem 59 _7.
Let A be any proper ideal in this integral domain R Then there
is a set [ Ql _7 i : ?. of primary ideals such that A -:ﬂQl. The

intersection, ﬁQl is said to be 1rredundant if for each integer k,

1¢ k<n, it is true that n q D ﬂ Q- Now if C and D are primary
K

i“. L=t
ideals with the same radical {p , then CN\D'is a primary ideal with radical

P . It then follows that each proper ideal of R is equal te an ir-
redundant short intersection of finitely many higher primary ideals:
the term "short intersection" means that the radicals of the respective
primary ideals are distinct. Details of the discussion in the last two
paragraphs appear in Jacobson, [ 2, Chapter VI, sections 4-8 _7 and

in McCoy / 8, Sect. 43-45_/,
Section 6, Isomorphism, embedding: Let R and R' be rings with

addition and multiplication operations ( £ , o) and ( #',0 ') respect-
ively. A singled-valued mapping§of R onto R' is ter‘med‘a ring ismorphism
or simply an ismorphism if for each pair of elements in R, a and b,
Gla £b)= @(a ) #' ¢(b) and §{a ob) =g ( ,a) o' §( b). In sucha
case R' is said to be ismorphic to R. The concept of isomorphism (ephic,
mapping) is dlseé défined for'z':grb;x-;s ‘(sémngroups)'.’ ©Ir @ is & dingled~
valued mapping of'd onto &’ where (Y, o ), (H’s") are both groups (semi-
groups) then ¢ is said to be an isomorphism if 4§ (a®p) = g (a) of Q(b)

for all a, b inqy .
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Let R and S be rings. Suppose there is an ismorphism of R

( £ ,2) onto a (not necessarily proper) subset R' of S ( £ ', o! ).
Then R is said to be embedded in S. Although R ( £,0 ) and R' ( £',0 ")
are not necessarily composed of the same set of elements and the same
operations, because of the ismorphic mapping the elements of and the
operations on R are frequently desingated by the same symbols as are
the elements and operations of R'. For details refer to Jacobson

/[, section 9, Chapter II /

Section 7. Field, Quotient Field A field is a ring F in which

the non-zero elements, F¥, form a commutative group under multip;;cation.
Am equivalent defihition of a field is: an integral domain with identity
in which each non-zero element is a unit.
Suppose R is an integral domain. Then R can always be embedded
in some field F, F may be chosen to be a "smallest" such field in the
sense that if F' is any field in which R is embedded, then F can be
embedded in F', vSuch a smallest field F has the property that each ele-

ment of F is equal to the quotient of an element in R by an element in
a
b
the quotient of a by b.**) In other words, F = Zx in F /3a, b in R™x- a/b}

R¥, (In a field the element ab—l often denoted by a/b or by = is termed
where R' is the subset of F ismorphic to R.
These '"smallest" fields in which the integral domain can be em-
bedded are ismorphic to one another. Any of the "smallest" fields is
termed "the" quotient field of R.
Example: Let R be the ring of rational numbers (where p and q
are integers) with the usual addition and multiplication operations.
R is then the quotient field of the integral domain of integers. A more

complete discussion of this example and of this whole section appears in
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Jacobson [/ 2, sections 1, 2, and 3, chapter III /

# (2™ denotes (a~1)".)

Section 8. Determinents and homogeneous linear equations

Let ?cij% » 1£i<n, 1¢ j<n (n a positive integer) be a set
of n elements from a field F, Suppose that the cij are arranged in a
sQuare array of n rows and n columns such that ¢ 13 appears in the

ith row and the jth column. The determinent of this array, (cij)

is defined as folloews:

Let ‘8 be the set of all possible products of the form
k~n

cldlczj'z. s s v e .cnjn in which the [;j K _7 k = 1 are all different

and lﬁjkﬁ- n., In other words,é consists of all those products

(up to order) of n elements in which each row and each column is repre-

sented exactly once., Let t be in<-3 o For 12idn, define Pi(t) to be
k n

the numbers of subscripts [,j_kj k __—_ i
s
Define n(t) =s 2 Pi(t). The determinent of (cij) is defined as L

[ =Y
%‘t.(l_ljn(t). The signg indicates successive addition operations on
(t)

- that are greater than ji.

. n
a set of elements in which t(-1) is represented exactly once for

CM Cu Co-g -~ - -__Cp.\
eacht.inc_g - GlCnGn--*_ C
‘ C3 e - Lam
The determinent is denoted by det(c,,),or by >~ ~om--Cam
C._;u a‘éﬂ'l' ——:-_..: Ch-:\
Consider the equations: (j =1, 2, ¢« v s s sorn)G'c uj = O.
Jzv LJ

One solution of this set of equations is obtained by letting the uJ.,
i n

1 =
l<j<n, all equal zero. A set [ui __7 i =1 of elements of the field

~
F is called a non-trivial solution to this set of equations if fcijujzo,
«=0
l<ign, and if also at least one of the u, 1€ i<n is not zero. A

necessary and sufficient condition that the indicated set of equations have

a non-trivial solution is that det (c, j) #0. In MacDuffie, / 7,

section 4, pp. 8 J appears a detailed discussion of this section,
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Appendix III
ALGEBRAIC EXTENSIONS

Section 1. Polynomial domain, algebraic extensions

Suppose F(£,°) is a field. Let x be an arbitary symbol. There
then exists a Gaussian integral domain, F(x), (operations £ and °) that
consists of elements that for some non-negative integer n are represented

AN
either as a x" / an_lxn'l 2 2X" £ ceceee fagx £ a, or as é aixi. The
[aj] i=ro‘ are presumed to be elements of F. Here x0 is defined to be 1,

the identity of F and x™x™ is defined as xn/m. The elementsz aixl and

2 ' bixi are considered to be equal if and only if ai:bi f:;aall i,
6:_-:_ i< max (n,m) (max (nym) means of course the greater of n and m).
It is supposed that a;=0 for max(m,n) >i= m, and that b;=0 for max
(myn)> i= n. The integral domain F(x) is called a polynomial .domain
over F. Elements of F(x) are called polynomials in x or, if no ambiguity
is possible, polynomials., For further discussion, refer to Jacobson, [2,
chapter III, section lg .

If X and F are fields, then K is termed an extension of F if K= F,
The element a in K is a root of the polynomial f(x) = % a xi

- i 4 . £z i
aixl if f(a) =0; in other words, if = aial = O where the operations

Az
are carried out in the field K. The field K is called an algebraic ex-
tension of F if K is an extension of F and if for each element a of K,
there is a polynomial which has a as a root.
e 3 .
Let f(x) = é a,x be a polynomial., Then aj, 0<% i<=n,-is called
. i m .
the coefficient x* and [aﬂ T, are the coefficients of f(x). The degree
of polynomial is the maximum value of i for which the coefficient of x+
is not zeroce A monic polynomial is a polynomial in which the coefficient

of xn, where n if the degree, is 1.

80
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If a is a root of a polynomial of degree n, then a is a
root of a monic polynomial of degree n, Suppose a is an algebraic
extension of F, The defining equation of A over F is an equation f(%)=0
(sometimes written f(a) = 0) where f(x) is a monic polynomial that has
as a root and where the degree of f{x) = minimum Ejdegree of g(x)/g(x) in
F(x), g(a) = 02(

The polynomial k(x) is said to be reducible in F(x) if there are
polynomials g(x) and h(x) such that k(x)=g(x)h(x) and such that 0 <
degree of g(x)< degree of k(x). If no such g(x) and h(x) exist, then
k(x) is said to be irreducible in F(x). The irreducible polynomials then
comprise the set of prime elements of the Gaussian ring F(x) while elements
of F¥comprise the units., Also, it follows that the polynomial correspond-
ing to the defining equation of an element (e.g. the f(x) mentioned above)
is irreducible in F(x). For further discussion refer to Jacobson, EEJ
section 5, chapter Ilﬂ and to Van der Waerden, EB, section 35, "Alg.
Korperweitungen'ﬂ .

Let R be a subring (subset that is a ring) of the field F and let
K be an algebraic extension of F, An element a of K is said to be in-
tergrally dependent on R if a is a root of a monic polynomial all of whose
coefficients are in B, The set of elements of K integrally dependent on
R is a ring as provided by Jacobscn l?, section 9, chapter Vi] . If R
is a Gaussian ring, then an element of K is integrally dependent on R if
and only if the polynomial corresponding to the defining equation (Recall
such a polynomial is monic) has all its coefficients in R. A ring is
integrally closed in the field F if the set of elements in F integrally
dependent on the ring coincides with the ring. A Gaussian ring is

always integrally closed in its quotient field (see theorem 11 of above
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Section 2, Basis, vector space, finite extension.

Let F( £,°) be a field. An addative group, (A, /') is then

said to be a vector space over F if there is a wapping
LP t N xF > J\. with properties listed below. Here A x F de-
notes the set of all pairs of elements {e( » a?) where ™ is in _/\-and

a is in F.

Wix+'8, a3 = (Yik,a}) 4’

(Y18, a})
Viehatht = (Wiwal)e' (Widal) S Mo #and Gore

arbitrary elements of _A.,

¥ iV’fB,a}, 6} = q’{@,ab} a, b," " " F,

Y i 0, a} =0 O6the zero element of JL

Let [0(‘] i=n be elements of_A_ « Denote by F(«{, o, _ __olm) the set
i;-_-l ’

{y EN / 3 elements ,&;‘ :.{;T& F such
that y = é ([!fd;ua;g . ‘I'}:(c\a elements i=n of

are said to be linearly independent over F if ély{e(;‘a‘-}:Ois possible
=

only if the [0;] i=n are all zero. If F(™,ot, ..o -_-__/\_ and if the
i=1

[0(;] if;_l are linearly independent over F then [e(,;] §=1£ is said to be
a basis, or more precisely a finite basis s of J\_over ;. For details
refer to Van der Waerden, [ll*, section 33, "Linear Abnag. Grozen" and
Section 34, "linear Fleichungen.’a)

Suppose K is an extension of the field F, Then K is a vector
space over F as follows: for each in K and each a in F define

to be the field operation in K, X a, If there is a finite basis for

(the vector space) K over F then K is termed a finite extension of F
P o e e e
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and K2H=F (H a field) then H is also a finite extension of F.
(See section 34 of above reference) If K is a finite extension of F
with a basis (over F) of n elements, then each element a of K is a root
of a polynomial in F(x) of degree not greater than n, Accordingly, a
finite extension is often termed a finite algebraic extension. For
detailed discussion of this paragraph, refer to Van der Waerden,
[}3, section 35, Alg. Korperweitunged.

If the elements [ajj i‘:;' are in some finite extension K of F,
then the notation F[ a), az’.......am] is used to indicate the subfield
of K (subset which is a field),
F(1, a)s a?,\alé,......alnl—l, a,, a22,......a2né.l, Breseess) Where the
[ni] i;? are the degrees of the polynomials corresponding to the defining
equations of the [ai] .
| The finite a.léebra.ic extension K of F is said to be a simple
extensiop if for some a in K, KzF [al . Any :finite algebraic extension K
of F is the last membé{r of some finite chain of fields beginning with F
such that each member of the chain is a simple extension of the previous
member, Indeed, if a is a basis element of K over F not in F, the first
member of such a chain can be F [a} 3 if b is a basis element of K over F

not inF [a] s the next member of the chain can be F(a]t b] s ete,

Section 3. Decomposition fields.

According to Van der Waerden (13 » section 35, "Alg., Korpewei-
tungen®)} it is possible to construct a finite algebraic extension of a
field without making use of any preassigned "larger" field. Let f(x) be
a monic polynomial in F(x). There is then a field K satisfying the

conditions:
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(i) K is a finite algebraic extension of F.
(ii) f(x) factors linearly in K(x): ¥(x) :j(x—o.(;) where
the bﬁ}]i:; are elements of K.
(iii) If K!' is any field satisfying (i) and (ii) then K
can be embedded in K?',
Such a field K is called a decomposition field of f(x) over F,
If F H K, if a is in K and not ir H, if H and K are fields,
if the defining equations of a in H(x) is g(x) - O, and if the defining
equations of a in F(x) is f(x) = 0, there then exists a polynomial h(x)
in H(x) such that f(x) = g(x)h(x). Proof appears in the course of Van
der Waerden's discussion ['13, Section 35, %"Alg. Korpnweitungen"].

Section 4. Seperable and inseperable.

Let K be an algebraic extension of F and let a be an element of
K. If the polynomial f(x); where f(x) corresponds to the defining equatim
of a over F, is a seperable polynomial (has only distinct rcots in a
decomp031tion field) then a is said to be seperable over F, In other
words, a is seperable over F if f(x) = (x-a) —Yr.(xya ) where a 989580004042y
are all distinct members of a decomposition field, If the element a is in
an algebraic extension of F, but is not seperable over F, then a is said
to be inseperable over F., (Refer to Van der W’aerden,[;l3 ssection 38,
"Seperable und Insep. Erweiterungenﬁ).

K is said tq be a seperable extension of F if each element of K
is seperable over F, If K is both a seperable and a finite extension
of F, then as Van der Waerden's proof shows [13 section 40, Einfachkeit

von Alg. Erweiterungen"} K is a simple extension of F.
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If K is a finite extension of F, the set of elements in K
seperable over F is a field (Refer to Van der Waerden [le, fine print
at the end of section 39,"Vollkommene und Unvdl. Korper“]); therefore
this set of seperable elements is a finite extension of F (possibly equal
to F) or indeed, is a simple extension of F.

K is said to be a purely inseperable extension of F if K is com=-
posed entirely of elements in F and of a non-null set of elements in-
seperable over F, In this case the defining equations of each element in
K (not in F) is of the form xP" - b=0 where b is in F and p? is a power
of a prime integer p which is the characteristic of F, (If n is a least
positive ..  integer such that na - Q for all a in F, then n is termed
the characteristic of F) (Refer: Van der Waerder [:13 s section 38,
"3eperable und. Insep. Erwbiterungen"])

Section 5. Group of automorphisms: normal extension

Again let K be a finite algebraic extension of the field F.
An automorphism of K is defined to be a (ring) isomorphism of K onto
itself, The automorphism, & , of K is termed an F-automorphism if O (a)

a for all a in F. The set of all distinct automorphisms of K are

elements of a group. Denote this set by 3 e« If T ,p are in Y then
the group operation O O is defined as follows: for all a in K, (Gop)
(a) = (@e®(a) )o Denote by F! the set'{_ a in K/G(a) =§ for all}
Then F! is a field containing F. In case F!' = F, then K is termed a
normal extension of F, the groupéy of automorphisms is called the
Galois group K over F and is denoted by*é%r e« K is a normal extension

of F if ardonly if K is the decomposition field of a seperable polynomial

1
£f(x) in F(x). For details,(refer to : , Sections IIF and IIH )
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Section 6. Least normal closure:

Let K and F be as above. Denote by S the complete set of
elements in K that are seperable over F, As provided by section 4 of
this appendix (3rd para.) let S = F [ a] where a is in S, and let f(x)=)
be the defining equation of a over F. Set M equal to a decomposition
field of f(x) over S. Then M is also a decomposition field of f(x) over
F and is, consequently, a normal extension of F.

Let K' denote the field M [°(\.0(2 e o(m] where
[od,;] i:ZnL is a basis of K over F, K! is termed the least normal closure
of k while M is termed the maximal seperabl:_a subfield of K!' (or also the
maximal seperable subfield determined by K), It follows that unless K!
= M, K' is a purely inseperable extension of M, Proof below:

K' £ M only if K £ 8. If K£ S, then K' may be represented as
Mfdul.dz‘, - _____o(m'] where the [olﬂj:l{l are in K but not in S.
The (o(‘_' ]g:‘{ are inseperable éver F and therefore have defining equations

over F of the foxfm‘xpn - a = O where p is the characteristic of F (See
section 3 of app.). As provided in the discussion under the subheading
"Warzel Korper" (Van der Waerden, [13 s section 39, ¥ Seperable und Insep.
Erweiterungen"J ) X! may be obtained as the result of successively ad-

th roots. In other words, there is a finite chain of

joining a set of p
fields, M-.KOE_ Kls K2 _C_ K3 eseeens .Kn_l < Kn=K such that ki:Ki_l [ui]

where u; is not in K; ,
. but is a root of a polynomial in K; 5 (x) of the

form xP-a = 0, 1 £ i< n, As indicated in the course of the proof of
Van der Waerden's statement II [13 s section 39, "“Seperable und Insep.

h

Erweiterungen '." (Also see above reference in regard to pt roots being

uniqueiL this polynomial  fomxP - a = O is irreducible in Ki-—l(x)'
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The defining equation of u is therefore of the form xP-a = 0. If a is

. 5 T . i=p-

in K5 and not in Kj_3 than a =2§%u}cbi £ 0 for some i> 0; [bi] ;:g L
=0 =

. : . . : £l i

in ki41)' By algebraic manipulations it follows us = jE: c;a [ci]

=

i :IZ_I—l .
iz] in Ki~1)° Therefore a cannot be seperable over Ki-l (See App. III,
para.3). The defining equations over Ki_l for the element a is of the

form <P" £ clxpr":L £ czxpr'"2 # eeveverascz). (Refer to Van der Waerden,
C,13 s first italicized statement of section 39, "Seperable un Insep.
Erweiterungen."]~) In view of app. II.3, last para., the defining
equation over M of the element a is of the form xP° £ dlxps-l # dl.:cps-.2
> SR | dr‘ = 0. Thus each element a of K' not in M is inseperable
over M (See above reference.).

Additional remarks: The least normal closure K! of K can be
obtained as a decomposition field of a polynomial f(x) in F(x). The
polynomial f(x) must be chosen so that its roots include all elements

not in F of a basis of K over F; f(x) must be chosen to have the least

degree for which the first condition is possible,

Section 7. Defining equation in a normal extension
Let £(x) be a monic, irreducible polynomial in F(x). Let ug iig
be the complete set of roots of f(x) in a decomposition field. Then the
coefficients of f(x) = xB ¥ alxpnl £ anxp_z £ eveees £ a, are the so-
called symmetric functions of the u, i:g e« Fo 14£k&n, the coefficient
ajp equals the result of adding together all the products uiluiZ"""uik

involving k different U'ss for each set of K distinct ui‘s, 1€ i<n,

there is exactly one term equal to the product of the set of Ui's.
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Let K be a finite and normal extension of F, and let u be in K,
but not in F., The defining equation for u over F is then f(x) = O as

followss f = 7 - . h he[¢c1Z ]9=™ are chosen in such
wss f£(x) L:II (x - igu) where t GEU;JJH.

a way that the greatest possible number of [d? appear subject to the

restriction that@;- u £ G;;' u for i £ ke E, lemma following theorem 15,

section H . ;
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Appendix IV
COMPLETE FIELDS

Section 1. Completion of a field with respect to a valuation
Let F be a field on which is defined a valuation v. Let a be an element
of F. The absolute value of a with respect to v, denoted by /a/ 1is de-

fined to be 0 if a = O and to be 1 _ for a in Ff .

2v (a)

(1L means a™l.) It follows that /afb/ = 1 (1

a sviagb) "Zmin {v_(a), v(b__}
1, 1 %, / /

max =J/a b « Thus the absolute value
{ V(a) . ov (b)} { v’ "’} ’ ’
2 2 : N
is a norm funetion (refer: Newmann, E), p. 19 pm F just as does the

usual absolute value defined on the rationals. The statement that / /v

a norm function means that / /v is a mapping of F into the rationals (or
more generally, into an ordered set containing the rationals) such that:
(1) /a/vzto for all a in F; /a/{ = ) if and only a = O.

(i1) /afp/ gmax /fa/v, /o/y = [a/v £ /o/,
(111) /ab/y = /a/y [0/
"4 i-w
A sequence or set of elements of F, ai] i@ is said to be a
fundamental sequente with respect to / /, if for every€>0 (g is presumed

to be a rational number) there is an index N such that /aj - a,/, <%

whenever both m and n exceed N, The sequence @-i] i=1 is said to converge

with respect to to the element a in F if for every (>0 there is an index

N such that /a—a.n/<£for every n> N,
In the case of / / defined on the rationals it is not true that

for every fundamental sequence (with respect to / /) there is a rational
number to which the sequence converges ( with respect to / /). However

the rationals may be embedded in a Y"largey field, the field of real numbers,

89
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and a mapping with the properties (i), (ii) and (iii) may be so defined
that every fundamental sequence of real numbers converges to some real
number,

In the case at hand, if the valuation v is discrete, rank one
then again there is a field in which F is embedded and such that that a
norm function can be defined on in a manner so taht each fundamental
sequence converges to an element of (1. Specifically there is a field
with the following properties:

(i) P can be embeded in ).

(ii) There is a mapping, / /v from into the rationals which
has the above properties of a norm function. Furthermore ,ﬂ , 1s complete
with respect to / /g: Every fundamental sequence (with respect to / /%)
converges to an element of .n-.

(iii) / /V coincides with / /4 on F. In other words if @ is
the mapping of F onto an isomorphic subset of 1 s then for all a in F,
/a /v =/9 (a)/q

j=co
(iv)xen /t.here exists a sequence (aﬂ i=1 in F that
converges to x with respect to / /4

equals f) .
. =%

(v) If the sequence of F, [ai]i_lconverges to a (with respect
to / /z) then the / a/— equals limit {/aj/v i:j'_" Here "1limit" means
the usuwal limit of a sequence of rational numbers, in this cagse the se-~

|=w
quence of absolute values of the [ai-x ::L-L_l

The field.n.is termed a completion of F with respect to v. In
view of the isomorphism of F with a subset of.n. (i) and the equality of

/ ,é.land / /4 on correspcnding members (iii), the absolute value mapping

onfl will be indicated simply by / /..
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Property (iv) guarantees that “the" completion will be a tsmallest"
field satisfying (i); (ii), (iii) and (v). In other words, if there is
mapping / / ' of a fie1df]) I'\‘b she rationals and if all the conditions
excepting (iv) are satisfied by / / ' onl\_thexﬂlcan be embedded 1nﬂ1n such
a way that / /% and / /v' are equal for corresponding elements.

The significance of conditions (v) lies in the fact that it en-
sles the valustion v to be extended to the fieldfl. If [a] 1220 on-

verges to a (with respect / / ) then /a/, is the limit of the rational

numbers [ 1 ]i=%. Then /a/, is either _1_ for some integer n
2 v(ai) _li-_-l on

or is zero. Then v(a) is defined as n or as ©0 respectively. In view of
(ii), v defined on ) in this way has the properties of a discrete'(i-ank
one) valuation. In view of (iii) this "new" valuation v is indeed an
extention of the valuation on F,

Details of th:.s section of the appenda.x are dlscussed in Wan
der Waerden.[ 3, sect. 67, "Reelen Zahlen, and sect. 74, "Perfeckte
Erweiterungen"] .

Section 2. Norm with Respect to a Completion

_ Suppose {1 is complete with respect to / [/, where v is a valuatim

on{) . Let SU be a finite algebraic extention of )} with basis (Wl"“‘
(48

. eowy) over {1 . Suppose a is in Y . let wya = ? cigWys 1¢ifn,
cijinfl ,1<¢1<n, 1 <3< n. Define N'y (a)= /fdet(cij},. Then
N_'r;f’ (a) is in fact defined independently of_ the choice of basis for (//
over {) . Indeed, if x@ £ bl)cm-l';......;‘bm_lx £ Db = 0 is the defining
equation for a, then I\I'}{ (a) =V /bnA. If a and b are in W , it can
be shown N'_'}‘;_ (ab) = N'X (a) N'_,'{ (b). Define N_n_(a) as v(bm)/ m.

Then the norm with respect to (). , N , is related to N'X by: N (a)
Y ().
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It follows that for a and b in V¥, Nn(a.b) =N (a) #N (b); also as a
corallary to Hensel's lemma N (afb) € min{Ny(a), N(b)} . Trivially
Np(a) = v(a) for all a inf)l . Thus N indeed defines a prolongation of v
from (L to\oand indeed N is the only possible prolongation of v to W .
For a detailed discussion of N'_X refer to Wan der Waerden,
[_13 » section 71, "Normen und Spuren"]} for discussion of rest of section

refer to [13 , section 76, "Bewerttung von Alg. Erweit."],

Section 3., Congruenence, relatively prime

Let A be an ideal of a ring R and let a be an element of R, Then
b is said to be congruent to c¢c mod A, written b = ¢ mod A;, if b-c is in
the ideal A; b is said to be congruent to ¢ mod a, b = ¢ mod a, if b-c
is in the principle ideal Ra}. ,

Let the ring R be a subset of the field F and let f(x) and g(x)
be polynimials in R(x), that is polynomials of F(x) whose coefficients are
in R. Then f(x) = g(x) mod A means that the coefficient of x+ in f(x)
is congruent mod A to the coefficient of xt in g(x) mod A for each i,
1< i< max {degree of £f(x), degree of g(x)}.

. Let v be a valuation on the field F. A polynomial is said to be
primitive (or primitive with respect to v if there are other valuations
where Ov
on F) if the pelynomial is in Uvﬁ(ﬂ the valuation ring but at least one
of the coefficients is not in the prime ideal P { v) .

The polynomials g(x) and h(x) in U (x) are said to be relatively
prime mod P ( v) if: whenever both g(x) and h(x) are multiples of a poly-
nomial k(x) in 5v(x), then k(x) is congx:'uent to a unit of Uv(x) mod P {v).
The polynomials g(x) and h(x) are relatively prime mod P (v ) if and only

if there are polynomials m(x) and n(x) in J,(x) such that m(x)g(x) #
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n(x)h(x) = 1 mod P(v). For the proof of this last statement, see Van
der Waerden EB, section 18, "Euclidische Ringe" and section 23,
"Factorzelegung" (refer to main theorem following section heading; recall

statement I.7_)j .

The degree of a polynomial in Uv(x) mod P(v) is the maximal index
i such that the coefficient of x! is not congruent to zero mod P(v),

Section 4. Statement of Hensel's Lemma

Hypothesis: The valuation v is defined on the fieldJ"\L.; L)L
is complete with respect to v, has valuation ring Bv with prime ideal
@ v f(x) is a primitive polynomial in O v(x). G(x) and H(x) are
polynomials in O v(x) such that G(x) and H(x) are relatively prime mod

CP v and such that £(x) = G(x) H(x) modfv.

- Conclusion: There are polynomial g(x) and h(x) in O ,(x) such
that f(x) = g(x) h(x), g(x) = G(x) mod 4, h(x) = H(x) mod ° y, and the
degrees of g(x) and h(x) equal the degrees modq%, of G(x) and H(x)
respectively.

This result, known as Hensel's lemma, is proved in Van der Waerden

E'L", section 76, "Bewertung von Alg. Erweit.':, .

| The significance of the lemma is that it provides a condition
under which a polynomial is irreducible in./) (x): if f(x) is equal
mod,f’ 4 bo the product of two polynomials (relatively prime moddov)
and if each of these polynomials has degree mocl()DV less then the degree of

f(x), then £(x) is reducible in_ (x).
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Section 5. Properties of p-adic completions

Let v be a valuation on the rationals R corresponding to some
prime integer p (refer éxample 1, chapter V) and let (), be the completion
of R with respect to v. According to Van derWaerden ngect.ion 34, "Per-
feckta Em:.temngen'] , each element of ) ma.y be represented in a power
series é ip in which each a; is either zero or else has value zero,‘
and in which m is an integer, possibly a negative integer. The sum of
series, é@P *é\o P is defined as the series é(a abi)p* (a or b, are
presumed to be zero for M¢Zsmor Mel<M) ané—:he product is defined
to be the series ga‘pctqﬁén:g Gipi where each ¢y is the result of
adding together all of the (a. +b ) such that j + k = i. Any two series

i d.P" and éb,.p are cons:Ldered equal if and only if Ot-L‘)P
a series is considered equal to zero if and only if it consists of (at
most) finitely many non-zero terms that together add (addition operation
in R) to zero.
Let k be the first index of terms in the series corresponding a,
’bi aipi, such‘that ai+ 0. Theﬁ v(a) = v ((ak) +§+‘aipi) . Now since

L=

v(aipl) = i ors0 for all i, then é a.ipi converges in (L (refer to para-

L=s

graphs 2 and 3 of above reference): by property (v) of the completion
(refer app., section 1), v(-é aipi) > ko Therefore, v(ﬁ = v(akpk) =K

AT WM
and the valuation ring of (2 is the set of power series aipi.
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