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Griffin, Paul Carlo. Ph.D., January 2004 Fish and Wildlife Biology

Landscape Ecology of snowshoe hares in Montana

Graduate Committee Chair: L. Scott Mills, Ph.D. Lfcyf\

This is an inquiry into landscape-level population dynamics in the snowshoe hare, Lepus 
americanus, using empirical field data to test ecological theory. We found evidence 
supporting a source-sink dynamic, the mechanism proposed to explain why snowshoe 
hare populations appear not to cycle in fragmented forests of the species southern range. 
We estimated birth, death, and movement rates for snowshoe hares that lived solely, or in 
mixtures of, 4 different categories of forest stand structure (FSS) type. We validated the 
use of ultrasonography as an effective tool to monitor fetal number and pregnancy rate. 
We sampled individual patterns of FSS type occupancy, which we used as covariates in 
survival and emigration models. Estimated survival rates decreased as individuals spent 
proportionally more time in the Open young and Open mature FSS types. The Dense 
young and Dense mature FSS types were potential “sources.” Dense mature had positive 
expected population growth, which was lower in models that included movement. Open 
mature and Open young FSS types were “sinks.” For a model landscape with a simplified 
model for succession, and where Dense mature forest was prevalent, snowshoe hare 
populations stayed higher when loss of high-quality patches was asynchronous.

We used an experiment to test for short-term effects of pre-commercial thinning (PCT) 
on snowshoe hare densities. Compared to control stands, snowshoe hare densities 
declined after standard prescription (100% of stand area) PCT; and in stands treated with 
pre-commercial thinning with reserves (PCT-R), where 20% of the total area was 
retained in uncut lA ha patches. Declines were prominent in the second winter after 
treatment. Snowshoe hares used retained patches more than thinned areas within PCT-R 
stands. Also, of 49 dead radio-collared snowshoe hare locations, none were in extremely 
densely vegetated microhabitats.

Predation risk influenced snowshoe hare movement behavior: snowshoe hares’ 
responses to moonlight corresponded to seasonal variation in moonlight intensity. When 
the moon was more than half full and the ground snow-covered, predation rates were 
higher and snowshoe hare movement distances were lower than near new moons. Neither 
predation rate nor movement rate varied when the ground was snow-free.
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1

Chapter 1. Landscape ecology of snowshoe hares: motivations and directions

This dissertation is a research inquiry into landscape-level population dynamics in 

the snowshoe hare, Lepus americanus. Snowshoe hares are an attractive model organism 

for studies of demography because their generally short life cycle makes them tractable, 

and because they have been well studied in the north of the species range (reviewed in 

Hodges 2000). They are an attractive species for landscape ecology studies because their 

population dynamics are thought to be influenced by processes within single forest 

stands, and by routine movements or dispersal connecting separate forest stands. 

Snowshoe hares are also important for forest and wildlife management because of their 

central role in the diet of the threatened Canada lynx, Lynx canadensis (U. S. Fish and 

Wildlife Service 2000), and other forest carnivores.

The unifying question in this dissertation is, what are the relative impacts of intra

patch birth and death rates, and inter-patch immigration and emigration rates [vital rates], 

in multi-habitat landscapes? Snowshoe hare populations cycle regularly with high 

amplitude in the north, but may not cycle at all in the contiguous United States and 

southern Canada (Wolff 1980, Keith 1990, Hodges 2000). Long before metapopulation 

(Levins 1969, Gilpin and Hanski 1991) and source-sink (Pulliam 1988, Pulliam and 

Danielson 1991) theories were in vogue, the lack of regular, high-amplitude cycles in the 

southern range of the snowshoe hare was essentially explained as a result of source-sink 

processes in a heterogeneous landscape, with the prediction that low-quality habitats 

interspersed with high quality habitats prevent a synchronous buildup of hare populations 

over large areas (Howell 1923).
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I tested these hypotheses by estimating differences in snowshoe hare habitat- 

specific fertility, survival, and movement rates in several forest stand structure [FSS] 

types. I then compared patterns of population growth against those predicted by various 

landscape-scale hypotheses of population dynamics. Experimental manipulation gave me 

additional insight into the effects of habitat heterogeneity as I asked what impact a 

sudden habitat change (via pre-commercial thinning) has on snowshoe hares. Finally, 

simulations that included a simplified model for succession indicated that habitat patch 

arrangement and the timing of habitat disturbance can influence population growth. 

Overview o f  the dissertation

Estimating pregnancy rates and litter size in many animal species is difficult, but 

it was necessary for me to evaluate these components of fertility in different habitats. 

Newborn snowshoe hares (leverets) are nearly impossible to count after parturition 

because they are cryptic, and mothers attend to them only once per day (Rongstad and 

Tester 1971). In Chapter 2 ,1 present and validate a new, relatively non-invasive, field 

technique for estimating snowshoe hare fertility rates: veterinary ultrasonography (Griffin 

et al. in press). This work resulted from close collaboration with Dr. Leslie Bienen.

My analysis of projected population growth rates in single forest stands and 

connected landscapes connected by movement is presented in Chapter 3 (Griffin and 

Mills, in preparation). For large or isolated local populations, intra-population birth and 

death rates may determine growth or decline, but when a landscape is made of patches 

that vary in quality and proximity, movements between patches can play a large role 

(Harrison 1994, Hanski and Simberloff 1997, Thrall et al. 2000). In support of the 

dominant paradigm that explains the apparent lack of cycles in southern snowshoe hare
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populations (Howell 1923, Wolff 1980,1981, Keith et al. 1993), I found that a source- 

sink dynamic does operate, such that low quality sink FSS types can prevent the 

population from growing to high densities over large areas. I also introduce a new 

framework for considering the relative value of different patch types in spatially 

structured populations, the “habitat rank” hypothesis.

In Chapter 4 1 test for changes in density after experimental manipulation of 

vegetation structure, via pre-commercial thinning (Griffin and Mills in review). Pre

commercial thinning is a widespread practice in which the majority of small trees in a 

stand are cut in order to increase the growth rates of the young trees that remain (Daniel 

et al. 1979, Johnstone 1984), and to increase the frequency of favored tree species (Carey 

and Johnson 1995). I found that pre-commercial thinning does cause strong declines in 

snowshoe hare density in the 2 years after stand treatment, especially in winter. A 

modified prescription that leaves 20% of the stand in uncut 50 m x 50 m ‘aggregate 

retention’ patches maintained somewhat higher snowshoe hare density than prescription 

with uniform thinning; this modified prescription may be useful for areas where 

snowshoe hare retention is a management priority.

In chapter 5 I use spatially-explicit population simulation software (Akfakaya 

2002) and a simple successional model to ask how the timing and distribution of 

vegetation structure change might influence snowshoe hare population dynamics (Griffin 

and Mills 2004). Landscape-level population growth was a function of processes within 

patches and movement between patches. I found that the arrangement and timing of 

vegetation structure change in the landscape did influence population trajectories, but the 

model for vegetation successional change may have driven the simulation outcomes.
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Two topics related to my central research question are explored in appendices; for 

these, I motivated the research questions and study designs, and guided the field work, 

analysis and writing. In Appendix A (Griffin et al. in review) my coauthors and I tested 

and supported the predation risk hypothesis (Lima and Bednekoff 1999) by examining 

the influence of moonlight on snowshoe hare movement and predation rates. Only in 

winter was moonlight highly variable, and that was also when the moon modulated 

predation risk and hares correspondingly reduced movements. In Appendix C my 

coauthors and I show that no dead radio-collared hares were found in the densest of 

microhabitats available in the forested study site, while they were found with greater 

prevalence than available in extremely open habitats (Pouderoux et al. in preparation). 

Considerations, and future directions for snowshoe hare studies in Montana

Any study of snowshoe hares must consider the possibility that observed 

demographic rates could result from large-scale population cycles, and not from 

proximate covariates such as vegetation structure. Over the course of studies at the Seeley 

Lake study sites I observed a regional decline in snowshoe hare density from 1999 -  

2001 (Chapter 3, Figure 2). It is possible that the drought that started in 1999 (and which 

led to a disastrous fire seasons in 2000) contributed to the decline. Alternately, some 

undetermined cyclic mechanism may have played a role, but our data do not indicate a 

regionally synchronous increase in density in later years. Densities at the Spring Creek 

site had not increased by the end of my study, but they increased in 2002 at the Placid site 

and in 2003 at the Inez site. Five years is too short a period to determine whether or not 

snowshoe hare populations cycle in Montana. That conclusion can only be made after 

many years of monitoring. I look forward to the results.
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Chapter 2. Estimating pregnancy rates and iitter size in snowshoe hares using 

ultrasound

Abstract: Accurate estimates of pregnancy rate and litter size are essential to many 

studies of population dynamics. We examined the use of ultrasound for estimating 

pregnancy rate (the proportion of pregnant females in a population) and litter size and for 

monitoring fetal development and survival in snowshoe hares (Lepus americanus). We 

compared ultrasound-based estimates of fetal number in 16 females to either radiographic 

estimates of fetal number for the same females, or to the number of newborn hares 

counted after parturition. With ultrasound we detected fetuses as small as 4 mm and at 

least 25 days before parturition. Ultrasound-based estimates of fetal number were correct 

for 8 hares, low by 1 fetus for 6 hares, and high by 1 fetus for 2 hares. Sequential 

ultrasound examinations detected change in fetal size and position, and detected ceased 

or abnormal fetal development in 2 hares. Ultrasonography is an effective, minimally 

invasive tool to monitor fetal number and pregnancy rate. Application of the technique to 

other species would require familiarity with internal anatomy and training in operation of 

the ultrasound machine.

Key words: Lepus americanus, litter size, pregnancy rate, snowshoe hare, wildlife 

ultrasonography

Ultrasonography is widely used in zoo and traditional veterinary medicine but is 

less often used in wildlife field studies, despite its potential as a valuable tool. Because 

fat and intestinal contents are the main confounding factors when counting fetuses with 

ultrasound, estimates should be more accurate in wild animals than pets or livestock 

because wild animals generally have less body fat. Obtaining an estimate of minimum

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



fetal number in wild animals allows comparison of pregnancy rates and minimum litter 

sizes across different habitats, years, and management treatments.

Population dynamics of snowshoe hares (Lepus americanus) are the focus of recent 

attention in the southern part of their range because they are the primary prey of the 

Canada lynx (Lynx canadensis), listed as threatened in the contiguous 48 states (United 

States Fish and Wildlife Service 2000). Snowshoe hares give birth to as many as 4 litters 

per summer (Severaid 1942, Keith 1990). In the northern range, the number of offspring 

per female per breeding season varies from 7.5 in the decline phase of the cycle to 17.9 in 

the late increase phase (Cary and Keith 1979). Conception occurs immediately post

parturition (Severaid 1942, Bookhout 1964, Keith 1990) in a synchronous birth pulse 

(Hodges 2000a), with a gestation period of 34-37 days (Keith 1990).

Traditionally, litter sizes were estimated using methods such as abdominal palpation 

(Cary and Keith 1979), holding females in captivity until parturition (O’Donoghue and 

Krebs 1992), and necropsy of sacrificed pregnant females to count corpora lutea scars 

(corpora albicans; Bookhout 1964, Cary and Keith 1979). Each technique has advantages 

and disadvantages. Abdominal palpation requires no expensive equipment and reliable 

detection of pregnancy with palpation has been reported 8 or 10 days after coitus 

(Bookhout 1964, Kieth et al. 1968), but we have not found publications validating its 

accuracy in assessing litter size in snowshoe hares. Palpation has the potential to damage 

or dislodge fetuses, particularly if performed at critical stages of placental development 

(Harkness and Wagner 1995); it requires a gentle technique (Short 1967), and early in 

gestation it can be difficult to distinguish fetuses from digestive organs (Tainturier 1988). 

Holding females in captivity for prolonged periods can produce significant, chronic stress
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levels, which can affect observed litter size at birth (Hillyer and Quesenberry 1997). 

Necropsy can not provide information about changes in fetal number or viability during 

the course of a pregnancy, is not acceptable in long-term studies at low population size 

when survival and density parameters are estimated from marked animals, and poses 

ethical conflicts. Radiography with X-rays yields precise estimates of litter size but is not 

practical for widespread diagnosis of pregnancy and fetal number unless gestational stage 

of the females are known because fetuses can only be visualized late in gestation, after 

the fetal skeleton has mineralized.

In domestic rabbits the use of ultrasound to diagnose pregnancy is now widespread 

(Cubberly et al. 1982, Inaba et al. 1986, Tainturier 1988, Beregi et al. 2000) and 

minimally invasive (Beregi et al. 2000), although it does require specialized equipment, 

training, and anesthesia. To complement long-term demographic studies of snowshoe 

hares in western Montana, we assessed the accuracy of abdominal ultrasound in 

determining litter size by comparing ultrasound estimates of fetal number to estimates 

using late-term radiographs and to counts of newborn hares born to females held in 

captivity for short periods of time.

Methods

In the summers of 2000 and 2001, we live-trapped adult female snowshoe hares in 

the Seeley Lake region of western Montana. We limited this research to the second and 

third birth pulses; litter size in the first birth pulse is consistently small (Keith 1990). We 

housed captive hares i n 7 6 x 7 6 x 4 1  cm hutches on a forest litter substrate. We fed 

captive hares apple, common wild plants, and commercial pellets. We shaded cages with 

cloth and branches and hung an interior curtain for hare cover (Carol Stefan, University
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of British Columbia, personal communication). We released animals that met objective 

stress indications (weight loss, self-injury, hair pulling, or pacing) or subjective criteria 

(inappetence or aggression).

In 2000, we held seven females in captivity 15-23 days, and held 3 captive at a 

forested site 6-9 days. Of these, we could use 6 to test ultrasound-based litter size 

estimates via comparison to X-ray radiography (5 hares) or necropsy (1 hare); we 

released the other 4. In 2001, we held captive in forested sites 12 females that were 

identified as likely within 10 days of parturition via ultrasonography, until they gave 

birth; we released 2 of these after 7 days to minimize stress to the mother. Thus, sample 

size for evaluation of ultrasound was 16 hares for 2000 and 2001 combined.

We anesthetized hares prior to all ultrasound and radiologic exams. Five of 33 

exams in 2000 were performed using isoflurane gas (Isoflurane USP, Schein 

Pharmaceutical, Phoenix, Ariz.) administered with a mask but no regulated delivery 

system; all other exams followed intramuscular injections of 9.4 mg/kg ketamine 

(Ketalar, Parke-Davis Pharmaceutical, Morris Plains, N.J.) and 1.75 mg/kg xylazine 

(Rompun, Bayer Pharmaceutical, New Haven, Conn.) given in the epaxial muscles. 

These low doses provided sedation for 30-50 min. We were concerned with potential 

effects of injectable drugs on fetal development, so in 2001 we used only regulated 

isoflurane gas. Isoflurane has the advantage over nonreversible injectable drugs in that, 

when applied at low flow rates, the animal regains consciousness < 5 min after the gas is 

turned off (Thurmonn et al. 1996). We placed each hare in an anesthesia box with 3-4% 

isoflurane flow rate until the hare was sedate, then applied a mask connected to a
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vaporizer and flow meter (Ohmeda, Madison, Wise.; $900 used), maintaining 1-2 % flow 

of anesthetic gas.

We shaved anesthetized hares on the ventral abdomen from pubic bone to the most 

caudal rib prior to ultrasound examinations. We performed examinations with hares in 

dorsal recumbency, using a Universal SonoVet 600 veterinary ultrasound machine and a 

6.5 MHz microconvex probe (Universal Medical Systems, Bedford Hills, N.Y.; $12,000 

new). We obtained estimates of fetal number by counting separate echogenic masses 

inside the body and horns of the uterus (Figure 1), following each horn craniolaterally 

until the lumen was no longer visible. We measured each fetal mass in cross-section at 

its largest diameter, by measuring from the dorsal edge of the fetus to the junction of the 

fetus and the uterine wall on the ventral aspect of the uterus. This method provided 

consistent measurements within each exam and allowed us to monitor fetal growth 

between ultrasound exams. Later in gestation we measured longitudinal spine lengths 

and cranial diameter of fetuses to estimate both fetal number and gestational stage 

(Figure 2). Only 1 ultrasound operator (L. B.) measured fetuses and estimated litter size 

in all examinations.

For ventrodorsal radiologic exams in 2000, we used high-speed, high-contrast fdm 

with a rare earth detail cassette and a MinXRay 803 G portable x-ray machine (MinXRay 

Inc., Northbrook, 111.; $3,200 used), at settings of 70kVp, 30mA, and 0.06 sec with a 

focal distance of 76 cm. For 5 hares, radiographic estimates of fetal number were made 

in the radiology program at Tufts University School of Veterinary Medicine by counting 

individual fetal skulls. Fetal number also was determined by necropsy in a sixth hare in 

2000 after she died, most likely due to unregulated isoflurane anesthesia.
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To minimize the length of time females were held captive in 2001, we used 

ultrasound to approximate gestational stage of all females captured. Later-term fetuses 

were distinguished with ultrasound by their size and the relative development of skull, 

limbs, and vertebral column. Only females with very late-term fetuses were put into 

captivity. We recorded total litter size born to captive females within 24 hr of parturition. 

We estimated the earliest point in gestation when fetuses were visible based on females 

that gave birth in captivity and were examined early in pregnancy.

We assessed the bias of ultrasound-based litter size estimates by comparing 

ultrasound estimates to the observed number of fetuses visualized on late-term 

radiographs, counted after parturition or in necropsy. We examined 1 female that gave 

birth to 5 leverets with ultrasound twice, with ultrasound-based estimated litter sizes of 4 

and 5; to be conservative when analyzing the accuracy of ultrasound as a technique, we 

used the incorrect ultrasound estimate.

We used Akaike’s Information Criterion (AIC; Akaike 1973, 1974; Burnham and 

Anderson 1998) to compare 4 models against the data to assess fit. Models differed only 

in the expected values of litter size; observed litter size was the number of fetuses or 

newborns counted by radiography or after birth of the litter. Three models, “Accurate,” 

“Negative bias,” and “Positive bias” had expected values of litter size that were, 

respectively, the number seen on ultrasound examinations, one fetus higher, or one fetus 

lower. A fourth model, “Average,” had only 1 expected value that was the mean litter 

size recorded for all hares in the study, using radiography or observed litter size at birth. 

The AIC value for each model was 2 X the number of parameters plus 2 X the negative
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log likelihood. We calculated model likelihood as a product of the likelihood of all 16 

pairs of expected and observed values, given a Poisson distribution.

Results

We correctly determined the pregnancy status (pregnant or nonpregnant) of all 

females examined, as evidenced by fetal development detected with radiography or by 

parturition. We successfully detected fetuses of known gestational stages 25 d before 

parturition (9-12 d after coitus); these were 8, 9, 11, and 13 mm in cross-sectional 

diameter. The smallest measured fetus in a female of unknown gestation stage was 4 

mm; by comparison, Bookhout’s (1964) 9-day old embryos were 3.5 mm on average in 

necropsy. Sibling fetuses measured with ultrasound varied in size, as has been noted in 

previous studies (Bookhout 1964). Growth curves for fetuses of known age (Figure 2) 

indicated that, based on our small sample size, fetal cross-sectional diameter was a more 

reliable indicator of gestation stage early in pregnancy; this measure was also the most 

reliable of fetal age in small companion animals (Mattoon and Nyland 1995). Late in 

gestation spinal length had a more predictable relationship to age than did head 

circumference.

Ultrasonography was a reliable technique for estimating minimum litter size; 

differences between estimated litter size and observed litter size did not exceed 1 fetus. 

Mean bias of ultrasonography for the 16 females was -0.375 because our predictions 

were low by 1 fetus for 8 hares, were correct for 6 hares, and were high by 1 fetus for 2 

hares. The estimated bias was not the same at 3 realized litter sizes, but there was not a 

systematic pattern of greater bias at more extreme litter sizes. The average bias for litter 

size 3 was +0.4, at litter size 4 it was -0.71, and at litter size 5 it was -0.2. Practically,
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this means the most common mistake was for females actually carrying 4 fetuses; they 

often were estimated to have only 3 with ultrasound.

The best model to explain the relationship between our estimates and the observed 

values of litter size was 1 where estimates equal litter size (“Accurate” model). A model 

where our estimates were low by 1 fetus (“Negative bias”) fit our data well, with 

differences in AIC (AAIC) of 0.0209. The model for litter size that used the mean of 

litter sizes counted by radiography or at birth (“Average”) also fit the data well (AAIC = 

1.54); models with AAIC < 2 are considered to have roughly comparable levels of 

parsimonious fit to the data (Burnham and Anderson 1998). The comparable fit of these 

3 models to our data indicated that ultrasound was generally accurate or biased low by 1 

fetus; simply guessing that each female had litter size identical to the average observed 

(via radiography, necropsy, or at birth) would have been comparably accurate to 

ultrasound. This last estimation procedure, though, presupposed knowledge about the 

average litter size (such data require some means of observation).

We obtained reliable estimates of fetal number from diagnostic-quality X-ray 

radiographs for 5 hares and from necropsy for 1 hare. In the necropsy true diameters of 3 

fetuses were within 1.4 mm of diameters estimated by ultrasound, and their locations 

within the uterus corresponded to the positions estimated from the ultrasound exam. A 

fourth fetus present in the right uterine horn was not detected on ultrasound exam due to 

its extremely distal position, where it was more likely to be confused with intestinal 

contents.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



13

Discussion

Ultrasonography can provide detailed, safe, and demographically useful 

information about the parameters of female fertility that potentially affect population 

dynamics of snowshoe hares. These parameters are pregnancy rate in a particular 

geographic area, habitat, or time span, the number of fetuses in early pregnancy, and the 

development of fetuses in late pregnancy.

All females with fetuses visible by radiology or evidenced by parturition were 

correctly diagnosed as pregnant by ultrasonography. Ultrasonography in particular is a 

good choice of technique if the pregnancy status or gestational stage of the animal is not 

known because ultrasound can reliably identify and measure fetuses at small sizes; in 

snowshoe hares we identified fetuses as small as 4 mm. Predictive growth curves for 

fetuses visualized with ultrasound (Figure 2) can be improved in the future as more 

studies record fetal size in litters with known parturition dates.

Measurements made with ultrasound can be used to identify late-term pregnant 

females, to minimize time in captivity until parturition. If parturition in rabbits is delayed 

3 days beyond the mean gestation interval, fetuses can grow abnormally large and may 

die (Harkness and Wagner 1995). In 2001, 10 of 12 pregnant females identified as late- 

term gave live birth in captivity, with all 40 leverets bom surviving to detection.

It is easier to determine pregnancy status of an animal than to count the precise fetal 

number. Identifying pregnancy rate alone answers some research questions.

Interestingly, in 2001 we noted low pregnancy rates in the third birth pulse period across 

a large region of western Montana (Griffin, Bienen and Mills, unpublished data), a
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pattern that parallels pregnancy rates during the low phase of the 10-year cycle in the 

north (Cary and Keith 1979).

As long as ultrasonographic examinations are carried out by a trained individual, 

ultrasound-based estimates of litter size can be used as highly reliable estimates of the 

minimum values and reasonable estimates of true values. The “Accurate” and “Negative 

Bias” models both fit our data better than the “Positive Bias” model, suggesting that our 

ultrasound-based estimates were generally either correct or low by 1 fetus. Although 

overestimation of litter size can occur with ultrasonography, it was clearly not a source of 

systematic bias. The other model that had an equally good fit to the data, “Average” 

assumed that litter size was equal for all females and required accurate knowledge of the 

true value for mean litter size that could only be accurately obtained by widespread 

sacrifice or late-term radiography of many hares in a study site. Because litter size can 

vary so widely (Cary and Keith 1979), average values for litter size can not be assumed 

to stay constant among years or habitats. As a result, using the “Average” model would 

not allow for comparison of fecundity across birth pulses or habitats.

Identifying fetuses using ultrasound requires correct identification of the uterus and 

careful examination of the contents of the uterine horns from the caudal to cranial ends. 

For this reason, researchers applying ultrasound to any wildlife species must be familiar 

with the internal anatomy of their study organism and should be trained in the recognition 

of other echogenic structures that might be confused with fetuses, such as fecal material 

and kidneys. The training period for L. B. included 10 days of training in the ultrasound 

department of a university hospital with no particular emphasis on diagnosing pregnancy 

and 5 hours of training from an equipment salesperson. We expect the training period
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would be short for other practicing veterinarians who have some experience with 

ultrasonography. For other users, veterinary schools and ultrasound machine 

manufacturers offer 2-3 day short training courses in the use of ultrasound for abdominal 

examinations, including pregnancy diagnosis, for $800-1500. Following such a course 

the operator should practice with captive pregnant hares or rabbits until competency 

before use in the field.

Both ultrasonography and palpation can potentially be used to estimate litter size in 

animals captured at various stages of gestation, thus allowing for estimates of fetal 

resorption rates in animals captured and examined more than once. In contrast to 

palpation, ultrasound potentially provides more detailed information about gestational 

stage via precise measurement of fetal anatomical structures, verification of fetal viability 

by detecting heartbeats, and is considered less invasive. The high costs of equipment, the 

specialized training required to differentiate internal anatomical structures, and the need 

to administer anesthetics to pregnant animals are all disadvantages to the use of 

ultrasound. Ultimately, the choice of technique for a given study may depend on the 

level of acceptable risk to fetuses, the need for assessing the viability of fetuses counted, 

and the confidence of individual researchers in manual versus visual estimation.

In the southern part of the snowshoe hare range, where habitat may be more varied 

than in the north (Howell 1923, Dolbeer and Clark 1975, Wolff 1980), the existence of a 

cycle is controversial (Hodges 2000b) and there is little information about litter size 

variation across habitats or years. Along with more traditional methods, ultrasonography 

is 1 more tool that wildlife biologists could use to establish or refute the existence of 

regular cycles of fecundity corresponding to those observed in the northern range. The
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ability to compare litter sizes across habitats could help to identify the habitat features 

associated with high and low reproductive rates for a variety of wildlife species.
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Figure captions

Figure 1. View from an ultrasound examination showing cross-sectional width of a 

snowshoe hare fetus in the left uterine horn of a snowshoe hare. The measured diameters 

between both pairs of “+” cursors and “x” cursors were 9 mm.

Figure 2. Three different measures of fetal size made with ultrasound (y-axis) are 

regressed against days before parturition (x-axis) for fetuses in 10 hares that gave birth in 

captivity. Squares and the lowest regression line represent cross-sectional diameter of 

individual embryos (r2 = 0.68; P = 0.00029). Triangles and the middle line represent 

measures of head circumference (r = 0.02; P = 0.42). Diamonds and the highest line
y

represent measured spinal length (r = 0.19; P = 0.031).
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Figure 1.
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Chapter 3. Snowshoe hare demography in heterogeneous southern landscapes 

Abstract

We tested predictions of the source-sink, pseudosink, balanced dispersal, and habitat rank 

hypotheses, evaluating the effects of spatial structure on patch-level and landscape-level 

dynamics in the snowshoe hare, Lepus americanus. Differences in estimated survival 

rates supported a source-sink dynamic, which has been proposed to explain why 

snowshoe hare populations appear not to cycle in the fragmented forests of the species 

southern range. We estimated birth, death, and movement rates for snowshoe hares that 

lived solely in, or in mixtures of 4 different categories of forest stand structure (FSS) 

type. We monitored radio-collared snowshoe hare movements and sampled individual 

patterns of FSS type occupancy, which were used as covariates in survival and emigration 

models. Estimated emigration rate was highest during fall and winter. Estimated survival 

rates were lowest in Open young and Open mature FSS types, and were higher in Dense 

young and Dense mature FSS types. Post-weaning juveniles had slightly lower estimated 

survival rates than adults, and all hares had lower estimated survival in spring and fall 

than in summer and winter. Based on our samples; fertility rates may have been slightly 

lower in the Dense mature FSS type, but both newborn survival and fertility rates from 

the four FSS types had overlapping confidence limits. Population growth projection 

models without dispersal indicate that the Open young and Open mature FSS types had 

negative expected population growth. Survival rates in the Open mature and Open young 

FSS types were so low that these types appear to be permanent sinks. When emigration 

and immigration were included in a simple landscape, population growth projections 

followed predictions of the source-sink model. The FSS type with positive projected
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growth in the absence of dispersal had decreased projected growth when dispersal was 

included, while the FSS types with strongly negative projected growth in the absence of 

dispersal had increased projected growth when dispersal was included. Our results 

indicate that movement between patches of different quality could indeed depress density 

and prevent the widespread and synchronous buildup of snowshoe hare density associated 

with cycles.

Key words-, balanced dispersal, demography, habitat rank, habitat use, landscape ecology,

Montana, pseudo-sink, refugium model, source-sink, survival

Introduction

The realization that spatial arrangement of natural habitats can have widespread 

impacts on local and regional population dynamics, genetics, and community structure 

has emerged from metapopulation theories and empirical studies (Hanski and Simberloff 

1997, Thrall et al. 2000). Understanding the relative influences of intra-patch and inter

patch processes on overall population dynamics can yield insights for conservation and 

management (Harrison 1994, Hanski and Simberloff 1997, Tilman and Lehman 1997, 

Davies et al. 2001, Mills and Lindberg 2002).

Across multiple spatial scales, the discrete time measure of expected population 

change, X, is the best indicator of spatial structuring of population dynamics, /Wiividuai is 

an index to the expected fitness of that individual when compared to the average .̂individual 

in the population (McGraw and Caswell 1996). When landscapes are composed of 

multiple patch types (e.g. Levins 1969, Gilpin and Hanskii 1991, Noon and McKelvey 

1996, Thomas and Kunin 1999) X patCh is an indicator of patch quality. If the population 

of each patch is closed to movements to and from each patch, then Asingie P a tc h  depends
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only on local birth and death rates. If emigration and immigration rates are specified then 

^ M u lt ip le  p a tch  can be estimated for patch types when movement between patches is allowed, 

and /'-.Landscape can be estimated for landscapes composed of connected patches (Caswell 

1989, Wooton and Bell 1992, Burgman et al. 1993, Gyllenburg et al. 1997).

Several theoretical models make predictions about the influences of intra-patch 

and inter-patch processes on the overall dynamics of spatially-structured populations, but 

tests comparing these models against empirical data have been rare (Diffendorfer 1998). 

Under the source-sink hypothesis (Pulliam 1988, Pulliam and Danielson 1991), sources 

are defined as patches in which reproduction exceeds mortality, so that A-singie Patch > 1 in 

the absence of dispersal (Table 1). Mortality exceeds reproduction in sinks, so that in the 

absence of dispersal, S i n g l e  Patch < 1. A prediction of the source-sink hypothesis is that the 

population in the overall landscape is stabilized by the flow of individuals from sources to

s i n k s ,  SUCh that / .S in g le  P a tc h  7-M ultip le  P a tc h  f o r  SOUPCeS and Tsingle P a tc h  ^ M u l t i p l e  P a tc h  f o r

sinks. Thus, dispersal rates must be estimated to assess patch-level dynamics, because a 

patch with stable abundance measures may be a sink, maintained solely because of an 

influx of immigrants (Holt 1985, Dias 1996, Diffendorfer 1998). The pseudo-sink 

hypothesis (Watkinson and Sutherland 1992) predicts that a third kind of local patch 

dynamic could exist in pseudo-sinks, which could persist without immigrants at low 

density, but which appear to be sinks when immigration elevates the abundance above 

carrying capacity. The balanced dispersal hypothesis (McPeek and Holt 1992) contrasts 

with the source-sink and pseudo-sink hypothesis because it posits that ^ M u l t ip l e  P a tc h  is 

equivalent across all patches. Two critical predictions of this hypothesis are that: the 

emigration rates for multiple patches are inversely proportional to the ratio of their
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carrying capacities; and that sinks do not exist. Differentiating the source -  sink and 

psuedo-sink hypotheses from each other and from the balanced dispersal hypothesis is 

difficult because it requires estimates of patch-specific birth, death, emigration and 

immigration rates (Diffendorfer 1998).

One important process often missing from analyses of the dynamics of spatially 

structured populations is temporal variation in growth rates, which implies that X single Patch 

will generally not be static for a given patch (Dias 1996, Thomas and Kunin 1999, White 

2000). For example, ŝingle Patch might exceed one for all habitats in ‘good’ years, or be 

less than one in all habitats in ‘bad’ years. Even if this is the case, some patches may be 

consistently more favorable than others. To explain systems with systematic differences 

in the rank of Usingic Patch we propose a fourth hypothesis for spatially structured 

populations, ‘habitat rank.’ This hypothesis predicts that, despite temporal variation in X, 

the same habitat type will always have the highest relative Âsingie Patch among a set of patch 

types (Table 1).

Snowshoe hares in the southern geographic range

Snowshoe hares -  whose regular 9 - 1 1  year cycles in the northern range (north of 

the U.S. -  Canada border) make them the ‘poster child’ for population studies (Elton 

1924, Elton and Nicholson 1942, Moran 1953, Keith 1983, Keith 1990, Krebs et al. 1995, 

Krebs et al. 2001) -  are an ideal species for testing for the effects of spatial structure on 

population dynamics. The montane and subalpine forests of the southern range are 

fragmented by elevation and moisture gradients, fire, insect outbreaks and, more recently, 

industrial forest management. Populations appear either not to cycle in the southern 

range, or to cycle irregularly, or with only low amplitude (Keith 1990, Hodges 2000a,
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Murray 2000). Long before metapopulation (Levins 1969) and source-sink (Pulliam 1988, 

Pulliam and Danielson 1991) theories were formalized, Howell (1923) proposed that 

source-sink dynamics prevent snowshoe hare populations in the fragmented forests of the 

southern range from cycling. The proposed mechanism, also later suggested by Dolbeer 

and Clark (1975), Wolff (1980, 1981), and Keith et al. (1993), predicts that source 

habitats consistently produce a net surplus of hares, but low reproduction and / or high 

mortality in sink habitats prevents the landscape-level population from synchronously 

building in density over large regions. Predictions of this dominant paradigm connecting 

snowshoe hare spatial structure to regional population dynamics, dubbed the ‘refugium 

model’ by Wolff (1980,1981), have remained untested because no studies to date have 

simultaneously examined all the vital rates necessary to evaluate the existence of sources 

and sinks in the snowshoe hare’s southern range.

Most formulations of population structure invoke discrete patches separated by a 

hostile matrix (Levins 1969, Noon and McKelvey 1996, Hanski 1997, Bjornstad et al. 

1998) but snowshoe hare behavior in a fragmented landscape requires consideration of a 

second important process not often addressed in studies of spatial dynamics: individuals 

repeatedly move between and use adjacent patches over short time periods. Attempts to 

synthesize the effects of multiple patch use on individual, patch, and population dynamics 

have been rare (Weins 1997). For species that do move frequently between different patch 

types, the simplifying assumption that observed vital rates are specific to one patch type 

could yield misleading conclusions about the effects of spatial pattern on population 

dynamics. If survival and reproduction are partially functions of the risks and resources
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found in multiple habitats, then demographic models should incorporate the effects of 

using multiple patches at the spatial scale of individuals, patches, and landscapes.

We collected data to test whether any of the four hypotheses linking spatial 

structure to population dynamics (Table 1) operate and could potentially explain the 

dampened cycles in southern snowshoe hare populations. We used birth and death rate 

estimates to test whether A-smgie Patch varies across discrete forest stand structure (FSS) 

types (A,singie f s s ) ,  o r  when individuals use mixed proportions of different FSS types. We 

then included emigration and immigration rate estimates in a simple model to test 

whether movement between discrete patches influences ^M ultiple Patch (or /W u itip ie  pss)and 

d e p r e s s e s  ^Landscape- 

Methods

Forest Stand Structure types, study sites, and seasons

To simplify the diversity of stand histories, successional stages, stem densities, 

and species compositional mixes typical of montane coniferous forests in Montana, we 

chose a subset of 4 distinct FSS types from opposing ends of the ranges of age and tree 

stem density (Table 2; Dense mature, Dense young, Open young, and Open mature FSS 

types). Snowshoe hares are often considered to be early-successional species because they 

seem most abundant in young (20-45 years), dense stands providing ample cover and 

conifer needle forage (Adams 1959, Wolfe et al. 1982, Buehler and Keith 1982, Litvaitas 

et al. 1985a). It has also been suggested, however, that mature stands (>150 years old and 

with average DBH > 30 cm) that have dense forest understories may also be important for 

local hare populations (Beauvais 2000, Buskirk et al. 2000). In contrast to the dense 

young and dense mature FSS types, open young and open mature FSS types with less
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horizontal and / or vertical cover have generally lower recorded hare density (Dolbeer and 

Clark 1975, Wolff 1980, Wolfe et al. 1982, Hodges 2000b). In the field we classified 

stands that fit into these 4 types based on sampled vegetation structure for sapling density, 

basal area, horizontal cover, and overhead canopy cover (Appendix 1). Stands not fitting 

in one of the 4 FSS categories were not targeted for study.

Long-term study site selection was based on the presence of large stands (over 

-30 ha) from each of the 4 target FSS types in close proximity (within 1.5 km of one 

another). For logistical reasons we further constrained site selection so that all stands 

were within 1 km of a forest road. We used air photos of the Seeley-Swan region to 

choose three study sites: Inez (~ 4,600 m el.), Placid (~ 4,000 m el.), and Spring Creek (~ 

5,400 m el.) (Figure 1). We sampled vegetation structures to confirm that stands at each 

site fit into the 4 FSS categories. The 3 sites were 22 - 30 km from each other. At these 

distances, local processes at 1 site should not have influenced the others, but weather 

patterns could have influenced all three simultaneously.

We differentiated four seasons which varied in duration according to our 

understanding of snowshoe hares and weather in the region. For survival analyses we 

considered winter to be 16 weeks (~13 December to -2  April), a time when snow was 

likely to cover the ground completely. Spring (-3 April to -25 June), summer (-26 June 

to -17 September) and fall (-18 September to -  12 December) were each 12 weeks long. 

Trapping and density estimation

We used live traps (Tomahawk Trap Co., Tomahawk, WI) to capture snowshoe 

hares for 3 purposes: density estimation, radio-collar placement, and fertility rate 

estimation. When trapping to estimate density in a particular FSS type stand (Mills et al.
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in review), we arranged 50 live traps in a 5 by 10 grid, with traps 50 m apart. The 

resulting 200 m by 450 m rectangular trapping grid fit within each stand with a buffer of 

50 m or more. We trapped 4-6 days on all FSS sites at a site simultaneously, checking 

traps every morning. We baited traps with apple, alfalfa, and horse pellets. Hares were ear 

tagged (National Band and Tag Co., KY), weighed, and sexed.

In the summers of 1998 and 1999 we trapped at each grid in three primary 

sessions, each composed of 5 or more secondary sessions. We trapped twice at each grid 

in the summer of 2000. In summer 2001, 2002, and 2003 we trapped for density 

estimation during a single 5-day session at each grid. Winter trapping with 5-day primary 

sessions began at Inez and Spring Creek in the winter of 1999-2000, and included all 

three sites in 2000-2001 and 2001-2002. We used the Lincoln-Petersen estimator with 

small sample size correction (Chapman 1951) for abundance estimation because in many 

cases we had low capture rates and because we could increase the number of individuals 

per sample by pooling trap nights into two sample periods (Mills et al. in review). We 

estimated the effective trapping area for each trapping grid based on the mean maximum 

distances moved (Wilson and Anderson 1985, Litvaitis et al. 1985b, Karanth and Nichols 

1998) by individual hares recaptured during single trapping periods (Mills et al. in 

review).

We used the time series of density estimates to estimate the observed mean 

growth rate for snowshoe hares inhabiting each trapping grid, A ,fs s  observed- This was a 

measure that complemented the detailed vital rate estimation necessary for projecting 

population growth in each FSS type; the estimated X p s s  observed values for each FSS type, 

and the corresponding A-site observed values for the composite growth at each site, could be
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compared to those from a projection model for A,M uitipieFss and la n d s c a p e  that included 

movement between FSS types, L f s s  o b s e r v e d  for each trapping grid was evaluated as the 

geometric mean of the observed annual growth rate in population density, (Dt+i/Dt). We 

used only the first estimated density value from every summer, because only adult 

snowshoe hares were caught in these trapping sessions. In calculating A,S ite  o b s e r v e d  ,  which 

reflected the average overall annual population growth rates at each site, the estimated 

site density for each summer was the summed total of estimated hare abundance in the 4 

FSS types, divided by the summed total of the effective trapping areas for the 4 trapping 

grids.

Telemetry

The Inez site was selected for intensive study with radio telemetry after 

simulations indicated that high sample sizes would be necessary to detect survival 

differences between FSS types, even at one site. Of the 3 sites, the Inez site had highest 

observed snowshoe hare abundance. To increase the sample of radio-collared hares we 

trapped extensively and repeatedly on permanent trapping grids and on auxiliary trap 

lines over -5 .3  km2 of the site and throughout the study period. Juvenile and adult hares 

over 500g were radio-collared with 30 g (Biotrack Ltd., U.K.) or 40 g (AVM Instrument, 

CA; Holohil Ltd., Canada) transmitters. Transmitters were equipped with motion- 

sensitive ‘mortality switches’ that took effect after 6-10 hours of motionlessness. The 4 

target FSS types occupied most of the Inez study site, but early successional riparian 

vegetation structures were found in small patches over -  4 % of the site. We pooled hare 

locations from these stands structures with the dense young FSS type because they were 

dominated by young aspen trees and alder shrubs less than 10 cm DBH.
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Snowshoe hares are generally crepuscular or nocturnal (Keith 1964, Mech,

Heezen and Siniff 1966, Foresman and Pearson 1999, Hodges 1999), so in addition to 

locating radio-collared hares in their daytime hiding locations, we located hares as often 

as possible between dusk and dawn. We did not record a location if radio signals 

indicated a hare was moving away from us as we approached. UTM coordinates for all 

locations were recorded with handheld GPS recorders (<10 m inaccuracy). GPS data 

collected before April 2000 were differentially corrected, using GeoExplorer (Trimble 

Navigation Ltd., CA). If it was not recorded at the time when a hare was located in the 

field, we used GIS to specify the FSS type for each hare location point (Appendix 2).

We determined the majority of snowshoe hare locations by sight (n > 1664), or 

heard transmitter signals without an antenna (n > 1050), indicating location error of <15 

m (N. Olson and P. C. Griffin, unpublished data). Because of the high accuracy, relative 

to the distances snowshoe hares typically move, we preferred the walk-in method of 

locating hares. However, we triangulated 204 snowshoe hare locations from June - 

August 2000; coordinate positions were estimated using program TelLoc7 (G. McDaniel, 

U.S. Forest Service, Missoula, MT, unpublished). For the 204 triangulated locations, 

mean location uncertainty was 46 m (S.E. = 2.0 m), based on the location error method 

(Zimmerman & Powell 1995) using data from a field trial with 43 triangulations of 

known-location radio-collars (Griffin and Waroquiers, unpublished data).

Movement, Emigration, and Immigration

We calculated the maximum displacements between all points where each 

individual was located within a given season, and over all dates monitored. These 

displacements were an index to the total area spanned by each hare, including movements
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within home ranges and dispersal events. We tested for variation in the maximum 

displacement distances that hares moved, according to season and animal age, and used 

the distribution of observed displacements to estimate the spatial scale of the population. 

A second measure of movements, home range size, is an indication of the area covered by 

an animal’s routine movements. If home ranges are smaller in a particular FSS type, then 

that might indicate that that is a relatively more productive habitat, where essential food, 

cover, and water resources are available in a smaller area. We estimated the home range 

size of every radio-collared hare with 3 or more recorded locations using the minimum 

convex polygon (MCP) estimator (Mohr and Stumpf 1966). Because MCP home range 

estimates are sensitive to the number of locations (Jennrich and Turner 1969), we 

controlled for the number of locations when testing for correlations between the 

proportion of locations in each FSS type and estimated home range area.

Season, age, sex, and cover type are biologically reasonable covariates to include 

in models for snowshoe hare emigration (Dolbeer and Clark 1975, Boutin et al 1985, 

Wirsing et al. 2002, Gillis and Krebs 2000). We used program MARK (White and 

Burnham 1999) to test a suite of models that either did or did not include effects of these

covariates on emigration rate for each FSS type (EpssX the annual proportion of 

individuals permanently dispersing from a FSS type. We used known fate data from 141 

radio-marked adult and juvenile hares compiled in 36 4-week periods, during which each 

monitored hare was recorded as having stayed or having emigrated. We only wanted to 

estimate emigration rate based on the animals being monitored in any given 4-week 

period, so individuals were recoded as emigrated during the period when they emigrated, 

and were right-censored if the animal died or was lost from telemetry. We diagnosed
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emigrants as radio-collared hares that permanently dispersed greater than 500 m in one 

direction, a distance more than 2 times the diameter of a reasonably large (20 ha) home 

range (Hodges 1999). For adults, because natal location was not known, to be operational 

our criterion required 5 or more locations prior to dispersal to detect a > 500 m shift in 

home range. The same locations provided individual covariate values for each hare’s 

proportional use of each FSS type, based on the assumption that the locations were 

reliable samples from the individual’s trajectory of habitat use.

Known fate models usually estimate survival rate, but our models were estimating 

(1 -  emigration) for 4 -week periods, so we converted these parameter estimates to annual 

emigration rates. Emigration rates for 4-week intervals in each FSS type (Epss) were 

estimated by model averaging the parameter estimates from models with AAICc 

(Burnham and Anderson 1998) values less than 4 (Table 4). Model averaging weights the 

parameter estimates coming from each model by the relative likelihood of the model, 

given the data (Burnham and Anderson 1998). We did not include covariates with model- 

averaged covariates that had 95% confidence intervals overlapping zero. For projection 

models where landscapes included the 4 FSS types, emigration rate for the total 

population (ELandscape) was estimated as the average of the EFss values (Table 5), weighted 

by the density of hares in each FSS type.

Because a majority of hares on our study site remained unmarked, it was not 

possible to distinguish reliably immigrants from unmarked resident hares. Therefore, for 

landscape projection models we made the simplifying assumptions that the overall 

immigration rate (lLandscape) for a population is the same as the overall emigration rate 

(ELandscape), and that the FSS type in which dispersers settle was random. The first
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assumption implies that dispersers do not suffer mortality rates higher than the population 

at large either during or after dispersal; neither Gillis and Krebs (2000) nor Wirsing et al. 

(2002) found increased mortality in emigrant snowshoe hares. The second assumption 

implies that dispersers do not differentially select their final destinations, e.g., on the 

basis of habitat quality or density. We tested this second assumption against the 

frequencies at which emigrants settled in each FSS type, compared to the frequencies of 

FSS types from which they originated, using a contingency table.

Under our assumptions, the expected rate of immigration into an FSS type ( I f s s ) ,  

can be expressed as IFss = E L a n d s c a p e  x ( N L a n d s c a p e /  N FSs )  x (AreaFSs / Area L a n d s c a p e ) -  If E F S S  

were equal across all FSS types one would expect stands with high hare density to lose 

more hares from emigration than they gain from immigration because, for the same area, 

low-density stands do not generate the same number of emigrants as high density stands. 

Reproductive rates

Adult females at our study area could have bred in each of three synchronous 

pulses per summer. Fertility, defined as the number of female offspring in each birth 

pulse per reproductive age female, is the product of pregnancy rate and litter size. Fertility 

in snowshoe hares varies between birth pulses; for example in southern populations, the 

1st birth pulse almost always has high pregnancy rates and litter sizes yielding between 

1.1 -  1.8 female leverets in southern populations, while the 2nd and 3 rd birth pulses can 

have lower pregnancy rates but potentially higher litter sizes (Murray 2000). Summed 

across the entire breeding season, fertilities range between 3.5 to 9.5 in cyclic populations 

(Cary and Keith 1979, Stefan and Krebs 2001) and between 3.2 to 5.8 in non-cyclic 

populations (Murray 2000).
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We estimated pregnancy rates and litter sizes using ultrasound in 2000 and 2001 

(Griffin et al. WSB in Press), based on examinations of adult females at all sites. We 

trapped females at each site for 3 days corresponding to the middle of each gestation 

period. The timing of birth pulses was determined by ultrasound examinations and 

observation of trapped females during the first gestation period and birth pulse, and by 

counting days until the next roughly synchronous birth pulses (Keith 1990). To capture 

additional females for fertility estimates we also trapped at 2 auxiliary sites within the 

Seeley-Swan region known for relatively high snowshoe hare density (sites 36 and 102; 

Mills et al. in review).

All adult females trapped were carried to a central examination area in the field, 

anesthetized and examined with a portable veterinary ultrasound imaging system 

(Universal Medical Systems, NY). If fetuses were detected, then the female was 

considered pregnant, and the litter size was the number of fetuses counted in the uterus; 

fetuses at least 9 - 1 2  days old were reliably detected (Griffin et al. in press). Additional 

measures of litter size came from for females held in captivity until parturition as part of a 

validation study (Griffin et al. in press); we counted the number of late-term fetuses 

counted with X-ray radiography, or the number of leverets on the morning after 

parturition.

To test for potential effects of site or FSS type on reproductive output, we used 

95% confidence intervals to compare fertility rate estimates, using groups of females 

pooled by site or by FSS type. Females from the auxiliary trapping grids were included 

only in overall means for all sites and FSS types.

Survival rates o f Leverets

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



34

Snowshoe hares wean after 4 to 5 weeks (Keith 1990). We estimated newborn 

snowshoe hare (leveret) survival rate up to weaning at 35 days old based on the Kaplan- 

Meier method and the survival histories of 41 radio-monitored newborns bom to 15 

females in captivity at the Inez site (Sterling et al., in prep.). That sample size of mothers 

was too low to test reasonably for an effect of the mother’s use of different FSS types on 

leveret survival; estimates for each FSS type had overlapping 95% confidence intervals, 

but we could not assess whether this was due to a lack of difference between FSS types or 

due to a small sample size. For projections we applied the estimates for leveret survival 

rates to weaning (mean = 0.563; 95% C.I. {0.403, 0.722}) to all FSS types.

Survival rates and habitat use o f adults and post-weaning juveniles

We estimated the survival rate of post-weaning juveniles (> 500g) and of adults 

based on the known fates of radio-collared individuals. We attempted to monitor the 

location and survival status of all radio-collared hares once per week, though this was not 

always possible (for example, we only monitored survival once, by airplane, from mid- 

August through September 2000 because fire precluded all access to all forest lands 

regionally). There were 144 7-day time periods included in the survival analysis, 

corresponding to dates from July 26, 1999 to April 28, 2002.

The frequent monitoring of live hares allowed us to estimate the proportion of 

time each hare spent in each FSS for each 7-day time period. If we located an animal 

twice or more in a given 7-day period, then we assumed that the animal was found in each 

FSS type in proportion to the fraction of locations observed (i.e., an animal observed 

twice in 1 type and once in a second would have estimated use of 0.67 for the first and 

0.33 for the second). If no location was recorded for an animal in a 7-day period then we
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assumed that it remained in the same FSS type as its last observed location. When a 

radio-collared hare’s remains were found in a given FSS, that was also recorded as one 

location in that FSS. For each 7-day period, the proportion of each hare’s estimated use in 

each FSS type was recorded as an individual covariate. With 144 7-day time periods and 

5 FSS types, each animal had a vector of 720 individual covariates that represented time- 

specific habitat use.

For each dead hare, in addition to the UTM coordinate location of the remains and 

the FSS type in which they were found, we recorded the date of mortality or (if the date of 

mortality was not known) the date when the mortality signal was first discovered. In some 

cases we were able to assess the exact mortality date, based on snow accumulations or 

other sign at the site of the remains.

Because telemetry allowed us to determine the survival status of every animal 

with a radio-collar, we used known-fate model structure (Cox and Oakes 1984) analysis 

in program MARK (White and Burnham 1999) to estimate survival rates, with survival 

rates in different models potentially influenced by individual covariates. Hares were 

added to the data set for each time period from the first date when they were monitored 

with telemetry, and were right-censored if we lost their signal (e.g., due to collar failure or 

dispersal outside of the range of radio reception). Juveniles that survive to spring are 

reproductive adults, so each individual’s age was coded as a dummy variable for three 

different time periods: June 1999 - April 2000, May 2000 - April 2001, and May 2001 - 

April 2002. Hare ages were coded as juvenile for all weeks in their first summer, fall, 

winter and spring of life. The survival input and individual covariates for each hare 

represented whether the animal was alive or dead in each of the 144 week-long
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observation periods, sex, age, and 720 proportional use estimates for each week in each of 

the 5 FSS types at the Inez site.

We developed a candidate suite of models to represent competing hypotheses 

about the effects of season, habitat, age, and sex on survival. Each of these models 

potentially had survival rate estimates influenced by up to the four different seasons, the 4 

FSS types, sex, and hare age. Simpler model structures pooled or omitted effects of 

season, sex, age, or FSS type. Any seasonal effects parameters applied across all FSS 

types. Some models included an effect of 2 season-groups, where spring and fall were 

combined and compared to summer and winter. This reflected the biological hypothesis 

that spring and fall could have different mortality rates than summer and winter. Several 

mechanisms may reduce survival in spring and fall: in both seasons hare pelage may not 

match background colors in the environment (Litvaitis 1991); in the fall herbaceous 

foliage has senesced, yet no snow gives access to higher conifer branches; in the spring 

nutritional may be poor while energy demands prior to reproduction increase. Sex was 

modeled as either having an effect throughout the year, or only during the potential 

reproductive and nursing season ( -21 April to -  30 September). Age was modeled as an 

effect throughout the year.

FSS type effects applied across all seasons and were included in a variety of 

models. First, each FSS was modeled as its own effect, with all others pooled. Second, 

open FSS types were pooled and compared to dense FSS types; similarly, mature FSS 

types were pooled and compared to young FSS types. All survival models that included 

effects of FSS type included logit link functions with parameters that are multiplied by 

the time-specific covariates that specify use in each FSS type (Schwartz et al., in review).
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In models with such parameters, the estimated survival rate for each time period is 

partially a function of the proportion of time spent in a given FSS type.

We used AICc to select the most parsimonious models relative to the survival data 

and used models with AAICc < 4 to estimate the weekly survival rates and the associated 

95% confidence intervals for snowshoe hares living in different FSS types. Because 

bootstrap goodness-of-fit testing is not possible in program MARK for known fate 

models with individual covariates, we tested the goodness-of-fit of the most parsimonious 

model (Table 6, Model 1) by assuming that the deviance of the model was chi-square 

distributed, where deviance is -2  times the natural log of the model likelihood. For this 

test the degrees of freedom are equal to the number of parameters in the saturated model 

(with 144 time steps, 2 sexes, 2 ages, and 2 FSS types compared in any one model) minus 

the number of parameters in the model being tested (White and Burnham 1999).

The multiple models used to generate values for expected weekly survival 

included coefficients in the logit link functions that are multiplied by the proportional use 

of different FSS types. After model averaging, expected weekly survival could be 

estimated for an individual in any season, of either sex, either age, and occupying any 

proportion of different FSS type. Projected seasonal survival rates were weekly survival 

rates raised to the 12th power for spring, summer and fall, and to the 16th power for 

winter.

Projected growth rates for individuals, FSS types, and landscapes

We modeled expected individual growth rates for groups of snowshoe hares that 

varied only in the proportions of different FSS types they occupied, 7,fss- The projection 

equation was a function of expected fertility (f), newborn survival (S L e v e r e t ) ,  juvenile
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survival in every season (S jUv summer? S jUv Fail? S jUv winter? and S juv spring)? and adult 

survival in every season (S Ad summer? S Ad Fail? S Ad winter? and S Ad Spring)-

The simple model for population growth in the absence of movement did not 

include emigration or immigration, so it reflects the growth rate of a closed population 

composed only of individuals that all have the same proportional use of different FSS 

types.

The projection equation is the change in abundance of adults from the end of one 

spring to the end of the next spring. It sums the annual survival of adults and the product 

of adult fecundity (Fpss) and annual juvenile survival.

^Single FSS =

( S  Ad Summer x  S  Ad Fall x  S  Ad Winter x  S  Ad Spring) (F fS S  x  S  j Uv  Fall x  S  j uv Winter x  S  juv Spring)

Fecundity in the above equation is the expected number of juvenile female 

snowshoe hares that survive to the end of summer per adult female present at the 

beginning of summer. In addition to fertility in each birth pulse (fbPi, fbP2 , f  bp3) the 

fecundity term incorporates the survival of mothers up to the birth of leverets in each 

birth pulse, the survival of leverets to weaning 5 weeks later (S Leveret), and the survival of 

weaned juveniles up to the end of summer. Parturition for the 1st birth pulse occurs 3 

weeks before the end of spring, so because the projection interval is from the end of one 

spring until the end of the next spring, the number of adult females alive at the start of the 

1st birth pulse is actually greater than the number counted at the end of spring. Therefore, 

the adult female survival term multiplied by 1st birth pulse fertility is the cubed inverse of 

the spring weekly survival rate. Adult females must survive through 2 weeks of summer 

before parturition for the 2nd birth pulse, and through 7 weeks of summer before the 3 rd
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birth pulse. Leverets born in the 1st birth pulse must survive through 10 weeks of summer 

after weaning, those bom in the 2nd birth pulse must survive through 5 weeks of summer 

after weaning, and those born in the 3rd birth pulse need only survive to weaning. Thus, 

annual fecundity can be expressed in terms of fertility, weekly adult survival, leveret 

survival, and weekly juvenile survival.

F f SS =  {  [  fb p l X  ( 1 /  S Ad Spring W eek) X (S Leveret ) X  (S j uv Summer Week )  ]

2 5
[  fbp2 X  (S Ad Summer W eek) X  (S Leveret ) X  (S j uv Summer Week) ]  "t"

[ f b P3 X ( l / S Ad Spring W eek) X  ( S  Leveret )  ]  }

The weekly survival values for adults and juveniles in the equation for Fecundity 

are potentially a function of the proportion of different FSS types used by the hares. We 

calculated Lsmgic l s s  for each FSS type using expected survival rate and Fl Ss  values for 

individuals occupying only single FSS types. Noting that the fertility rates we observed in 

2000 and 2001 were low, relative to other published values, we also used iterations of the 

projection equation to ask what increase in fertility rates would lead to stable population 

growth rates for a single FSS type, e.g., Single f s s  = 1 -0. We used the same equation for 

^-single f s s  to describe the expected individual growth rate for a snowshoe hare that 

occupies specified proportions of different FSS types, îndividual (McGraw and Caswell 

1996). The average value of /'.individual across all hares in a population should be a measure 

of X for the landscape at large, because individuals in the population contribute to the 

overall growth rate.

Projected growth in a simple heterogeneous landscape

In contrast to projections of A.singie f s s ,  which rely only on survival and 

reproductive rates, projections of growth for one FSS type connected by movement to
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other FSS types (^.M ultiple f s s )  also require emigration and immigration rate estimates. We 

explored the effects of emigration and immigration on projected population growth rates 

for connected FSS types because: some predictions about the influence of spatial 

structure (Table 1) are the result of movements between patches; and because we wanted 

to compare projections to the A,pss observed and ^sitc observed values, which were estimated 

from real populations where movement was possible. In projecting X Multiple f s s  and 

L̂andscape we made a number of simplifying assumptions. First, and in contrast to our field 

observations, we assumed that all hares in the model population only used one FSS type 

during any given season, although individuals could change FSS type if they emigrated in 

the fall. This assumption allows the model to give insights into the effects of movement 

on population growth within FSS types and in the overall landscape, but limits the utility 

of the model because it ignores our field observations of routine movement between 

stands, and ignores the impact that using multiple FSS types can have on expected 

^individual- Second, overall immigration rate for each FSS type ( I f s s )  was assumed to be the 

total number of emigrants from the landscape, divided by the area of the FSS type; in 

effect, all emigrants settled back randomly in the population. Finally, we assumed that all 

4 FSS types had equal areas, so that the number of immigrants was distributed equally to 

all FSS types.

Conceptually, the projection model yields expected number of adults at the start of 

the summer at time t+1, based on the number of females that occupy each of the 4 FSS 

types at the start of the summer in time t. All emigration and immigration was modeled to 

occur at the start of fall, so individuals from each FSS type had to survive through the 

summer before the emigration probability was applied. The projected number of adults in
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a particular FSS type at time t+1 is the sum of surviving adults starting in that FSS type 

that do not emigrate; their surviving offspring that do not emigrate; and adults and 

juveniles from the entire population who have survived the summer in the FSS type 

where they started, emigrated, and settled in that FSS type. The total number of emigrants 

from each FSS type that are summed from all FSS types, distributed equally across the 

FSS types at the beginning of the fall season, and who must then survive through the 

spring in the FSS type of their destination is:

N emigrants FSS E X  NfsS X [  (S Ad Summer) F FSS X (S juv Summer) ]

Here, E is the Emigration rate assumed to be common to all FSS types. We started our 

projections with densities in the 4 FSS types in proportion to the average observed across 

all 3 sites in 1998. At years 5,10, and 15 we recorded values for X Multiple f s s  for each of 

the FSS types and for the overall L̂andscape- 

Results

Snowshoe hare density

There were consistent differences in snowshoe hare density according to FSS type 

at the three site replicates. The highest summer densities at each site were generally in the 

dense young FSS type, and the next highest in most years and sites was in the dense 

mature FSS type (Figure 2). Only stands of Dense mature FSS types consistently had 

winter densities that were as high or higher than in the preceding summer. Density in 

almost all trapping grids decreased from summer 1999 to summer 2003, although some 

trapping grids had increased density in the summer of 2002 or 2003. Estimated average 

^ f s s  observed in these short time series for summer densities on each trapping grid varied 

according to site and FSS type (Table 3). At the Placid and Spring Creek sites, the
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highest average X Fs s  observed estimates were in the Dense young type, while the average 

A ,fs s  observed estimate was highest in the Dense mature type at the Inez site.

Telemetry

We monitored 175 snowshoe hares with radio-telemetry at the Inez site from 26 

July 1999 to 26 April 2002, recording 3240 locations. Because of staggered entry into the 

study, mortality, and transmitter loss, individuals varied in the number of locations. The 

median number of locations per hare at the Inez site was 10.

Movement distances, emigration, immigration

We found greater maximum movement distances for hares in the fall (730 m, S.E. 

= 150 m) than in spring (430 m, S.E. = 50 m), summer (440 m, S.E. = 50 m), or winter 

(420 m, S.E. = 40 m), though 95% confidence intervals of these means overlap. From the 

observed distribution of annual displacements (Figure 3), 50% of maximum 

displacements were < 470 m, 75% of maximum displacements were < 780 m, and 90% of 

maximum displacements were < 1800 m. Therefore, the spatial scale of trapping at the ~ 

5.3 km2 Inez site corresponded roughly to the scale of snowshoe hare movements.

The majority of hares monitored were located within more than 1 FSS type 

(Figure 4), and movement between FSS types was common over small spatial scales. The 

average proportional occupancy across all hares was 37.1% Dense mature, 29.6% Dense 

young, 20.8% Open young, and 12.5% Open mature. 118 of 128 hares located 5 or more 

times were recorded in more than 1 FSS type. After controlling for number of locations, 

the only biologically significant correlation between MCP home range size and the 

proportion of locations in an FSS type was in the Dense young FSS type (p = -0.227; P =
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0.027). As snowshoe hares’ proportional use of the Dense young FSS type increased, 

their observed MCP home range sizes declined.

We recorded emigration in 13 of 34 radio-collared juveniles and 7 of 107 adults 

with enough locations to distinguish emigration from other movement. Of these 20 

emigrants, the number originating from and settling in each FSS type was: Dense mature 

(7 originated, 11 settled); Dense young (10 originated, 5 settled); Open young (3 

originated, 2 settled); and Open mature (0 originated, 2 settled). The distribution of 

destinations does not differ from that of the origins (Chi-square = 4.75; d.f. = 3; P = 

0.191), suggesting that at this sample size we can not discern a preferred destination for 

emigrants. There were 23 emigration models with AICc < 4, all of which included an 

effect of season, with higher estimated emigration rates in fall and winter than spring and 

summer. The seasonal increase in emigration rate during fall and winter was the only 

effect with an estimate that did not overlap zero after model-averaging. Compared to 

spring and summer 4-week emigration rates of 0.007 {95% C.I.: 0.002, 0.020}, 4-week 

emigration rate was higher by 0.020 in the fall and winter {95% C.I.: 0.016, 0.043}. 

Although effects of each FSS type, age, and sex were included in some of these 23 

models, the beta parameter estimates for all of the FSS, age, and sex covariates implied 

minimal effect sizes, and all had 95% confidence intervals that overlapped zero. This 

meant that with our data we could not discern an influence of FSS type usage on 

propensity to emigrate, and we only included the effects of fall and winter on annual 

emigration rate in projection models. The resulting annual emigration rate was 0.205 

{95% C.I. = 0.121, 0.351}. Based on the assumption that deviance was chi-square 

distributed, with the degrees of freedom equal to the number of parameters in a saturated
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model minus the number in the model being tested, the most parsimonious emigration 

model had acceptable goodness-of-fit (chi-square = 183.4, d.f. = 575, P = 1.0). 

Reproduction

As expected, litter sizes and pregnancy rates from 2000 and 2001 varied according 

to birth pulse, but 95% confidence intervals for litter size and pregnancy rate estimates 

overlapped across all FSS types and sites within any given birth pulse. Fertility in the first 

birth pulse was close to values observed in most other snowshoe hare populations that 

have been studied: nearly all reproductive age females were pregnant with a litter size of 

3 either-sex offspring. We did not find a statistical difference in fertility rate according to 

FSS type for the combined second and third birth pulses (t-test, P = 0.098), although a 

higher sample size may have shown that fertility in Dense mature FSS type for birth 

pulses 2 and 3 (n = 14, mean = 2.0, S. E. = 0.49) was actually lower than in the 3 other 

FSS types (n = 40, mean = 2.9, S. E. = 0265). Fertility rates in birth pulses 2 and 3 at the 

2 auxiliary sites (n = 25, mean = 2.56, S. E. = 0.432) seemed comparable to the 3 main 

study sites. Unable as we were to exclude that variation in fertility according to FSS type 

was a result of sampling alone, we pooled fertility rate estimates for each of the 3 birth 

pulses across all sites and FSS types (Table 4). The low fertility rates we observed in the 

2nd and 3rd birth pulses of 2000 and 2001, and the resulting overall low fertility rates, are 

lower than those recorded in a previous study in Montana (Adams 1959), but similar to 

those recorded during the prolonged low phase of the snowshoe hare cycle in the northern 

range (Cary and Keith 1979; Stefan and Krebs 2001).

Adult and post-weaning juvenile survival
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163 radio-collared snowshoe hares at the Inez site provided data for survival 

analyses. Model selection indicated that weekly snowshoe hare survival was heavily 

influenced by season and the FSS type occupied, and was less influenced by individual 

age and sex. The 12 models with the lowest AICc values all included parameters 

representing effects of season and FSS type (Table 5). Goodness-of-fit testing for the 

most parsimonious model, based on model deviance, was adequate (Chi-square = 964.4; 

d.f. = 1148, P = 1.0). In all cases, spring and fall were seasons with the lowest estimated 

weekly survival rates. Overall, the Open young and Open mature FSS types had the 

lowest estimated weekly, seasonal, and annual survival rates. The mean and 95% 

confidence interval for the weekly estimated effect of age were negative, which translated 

to a -2.5 % lower annual survival rates for post-weaning juveniles than adults. 

Confidence intervals overlapped zero for the estimated effect of sex, indicating that sex 

did not greatly influence seasonal or annual survival rate.

Over the course of a season the weekly effect sizes of season and FSS on survival 

(Table 6) led to sizable differences in expected survival rates (Table 7). Expected spring 

and fall survival rates increased with the proportional use of the Dense young and Dense 

mature FSS types, as compared to the Open young or Open mature FSS types. Hares 

living exclusively within the Dense mature FSS type have survival rates with 95% 

confidence intervals that overlap that of hares in the Dense young FSS type, whose 95% 

confidence intervals overlap both other FSS types. Although survival point estimates 

were higher in Dense mature, comparable emigration and immigration rates across all 

FSS types, coupled with high hare densities that were generally observed during trapping
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in the Dense young FSS type throughout the study indicate that survival in the Dense 

young FSS type is also relatively high.

Population projections

Variation in weekly survival rates led to large differences in the expected 

fecundity values and population growth rates for animals living exclusively in single FSS 

type in the absence of dispersal ( S i n g l e  f s s ,  Table 7). Because the survival models that best 

fit our data did not include parameters to differentiate Open young and Open mature FSS 

types, several estimates (survival, fecundity, and Xsingie f s s )  were the same for these 2 FSS 

types. Hares inhabiting multiple FSS types were also predicted to have variable Individual 

values according to their proportional occupancy of different FSS types (Figure 5). 

Because our estimates of survival rate were highest in the Dense young and Dense mature 

FSS types, ^dividual was predicted to be the highest for hares inhabiting these FSS types 

exclusively or in some combination. In contrast, as an individual’s proportional use of 

either the Open young or Open mature FSS type increased, predicted individual declined 

'markedly. The differences in projected individual, as a function of the proportional use of 

different FSS types, implicated routine movement between favorable and unfavorable 

FSS types as a potential cause of depressed growth rates in the overall population.

Based on the fertility rates that we observed in 2000 and 2001, only the Dense 

mature FSS type was predicted to have a mean positive population growth for hares 

living in it exclusively. Mean population growth rate projections for the Dense young FSS 

type would also be > 1.0 if fertility were ~ 50% higher than the observed rate -  such 

higher estimates were recorded in an earlier snowshoe hare study in Montana (Adams 

1959) -  or if annual survival rates there had been modestly higher (130% of observed
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rates). In contrast, for population growth rate to exceed 1.0 for hares exclusively 

inhabiting the Open FSS types, fertility would need to increase by 320% over the 

observed rate, or survival increase to 140% greater than the rate observed there.

Simple landscape model projections led to expected values of ̂ M ultiple f s s  (Table 

8) that were roughly comparable to estimates of X f s s  observed from the 1999 -  2003 time 

series at the Inez site (Table 3). The asymptotic value of A,LandscaPe predicted with the 

simple landscape model (0.967) were slightly lower than to the A,S ite observed average 

observed across the 4 FSS types at the Inez site (1.03). However, the predicted A-Muitipie f s s  

and ^Landscape estimates from the model did not match the observed X f s s  observed or ^ s ite  

observed values observed at the Placid or Spring Creek sites. Not surprisingly for a model 

where the point estimate for projected survival was highest in the Dense mature FSS type, 

the proportional hare densities projected by the simple landscape model were markedly 

highest there (Table 8). This projection contrasted to density measures from all sites, 

where highest summer snowshoe hare densities were generally observed in the Dense 

young FSS type. The mismatch between the projected proportional densities and ^Multiple 

f s s  growth rates under the simple landscape model (Table 8), as compared to the observed 

densities (Figure 2) and X Fs s  observed population growth estimates (Table 3) indicate that 

the Dense young FSS type is probably more valuable for snowshoe hares in reality than 

our rate estimates and projection models suggest.

Discussion

The central predictions (Table 1) of the source-sink model (Pulliam 1990, Pulliam 

and Danielson 1991) were observed in our study of snowshoe hares. The Dense mature 

and Dense young FSS types had high enough projected growth rates that they appeared to
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be potential sources, providing a net supply of snowshoe hares that moved through and 

into neighboring patches. Compared to the projected Xsmgie f s s  values for the Dense 

mature FSS type, we recorded lower Xfss observed values from density time series and also 

lower projected A,MuitiPie f s s  values. These results suggested that ‘surplus’ hares from 

Dense mature sources were absorbed by less optimal Open FSS types. At the other 

extreme, the Open young and Open Mature FSS types were projected to be sinks; annual 

survival or fertility would need to increase dramatically for populations of hares living 

exclusively in these FSS types to increase in the absence of immigration.

We observed the highest densities of snowshoe hares in the Dense young FSS 

type, but based on the vital rates estimated, the projected point estimate for ^sing le  f s s  for 

this FSS type was < 1. Although we can not label this FSS type a source with that result, 

we still conclude that this FSS type is quite valuable for snowshoe hares because of the 

relatively high observed survival rates there, the high observed densities and Xfss observed 

growth rates. With only slight increases in either fertility or survival rate, the Dense 

young type would have behaved as a source in projection models. We can not evaluate 

whether the observed low survival in the Dense young type was a result of the relatively 

high observed densities. If this was the case then Dense young FSS type would match the 

definition of pseudo-sink (Watkinson and Sutherland 1995), a habitat with low expected 

X values when density is maintained at high levels by immigration. Alternately, the 

fertilities observed in 2000 and 2001 may have been anomalously low because of severe 

drought; hot summers and low-snowfall winters have been associated with low fertility 

rates (Keith and Meslow 1971, Cary and Keith 1979). Higher fertility rates in the 2nd and
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3rd birth pulses, such as might occur after winters with heavier snowfall, could cause the 

Dense young FSS type to be a source.

Of the 4 models for spatial population dynamics, we can reject only the balanced 

dispersal hypothesis (McPeek and Holt 1992) for snowshoe hares in our study because we 

found that individual fitness is not equal for hares inhabiting different FSS types. 

Moreover, we found that /individual varies for hares occupying different mixtures of FSS 

types. Predictions of the habitat-rank hypothesis (Table 1) could not be fairly tested with 

our data because no models with inter-annual variation had good fit to our data for 

emigration or survival. The estimated vital rates for each FSS type did not vary over time, 

so the relative ranks of X-singie f s s  could not change. There must be temporal variation in 

vital rates for FSS type ranks to potentially change; our 3 year study was apparently too 

short, relative to the data needed to test the habitat rank hypothesis.

Snowshoe hares in fragmented southern landscapes

A source-sink dynamic appears to exist for this southern snowshoe hare 

population. Our results indicate that spatial patterns of patch distribution and size can 

strongly influence snowshoe hare population dynamics. If the area of a landscape is 

dominated by sink FSS types, then dispersing hares may not survive long enough to 

elevate densities in nearby forest stands.

Observed snowshoe hare displacements were an index to the spatial scale of the 

population; of 144 observed maximum displacements, 90% were less than 1.8 km. Our 

analyses of survival and movement at the ~ 5.3 km2 Inez site, therefore, matched the 

approximate spatial scale of an operating population. We infer, based on this fairly small 

spatial scale, that habitat heterogeneity in the southern range could lead to asynchronous
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local dynamics if barriers more than a few km effectively separate potentially interacting 

groups of hares.

Do vital rates for intra-patch processes (death and birth) or for inter-patch 

processes (emigration and immigration) play the most significant role in the source-sink 

dynamic depressing L̂andscape? Haydon et al. (1999) used elasticity analysis (Caswell 

1989) to examine the relative importance of survival and reproductive rates on projected 

X values, and found highest sensitivity for juvenile survival rates, followed by adult 

survival, then by fertility. For ^sing le  f s s  our results suggest a similar pattern: 2nd and 3rd 

litter fertility rates in Open FSS types would have had to increase -320% to cause A,singie 

f s s  =  1, while annual survival would have needed to increase by only -140% for the 

same effect. Our simple landscape model suggests that emigration rates in all FSS types 

(and the corresponding immigration rates) would need to decrease by -20% to raise

^-Landscape t o  1.

In assessing the relative impacts of different vital rates on landscape-scale 

population dynamics, one should assess the range of variability of the rates, and the 

possibility that multiple rates will vary (Wisdom et al. 2000). Even though changes in 

fertility have lower relative impact on population growth than survival, its wide 

variability means that even the Open young and Open mature FSS types could realize 

positive S in g le  f s s  when reproduction is extremely high. The fertility rates we observed are 

as low as those observed during the decline and prolonged low phase of the northern 

population cycles, and the high fertility necessary to affect population growth in Open 

FSS types has been recorded only during increase phases in the northern range (Cary and 

Keith 1979, Stefan and Krebs 2001). In contrast to fertility, we can not assess whether the
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smaller increase in annual survival necessary to give Open FSS types stable ^sin g le  f s s  

values is plausible. It may be that the vegetation structure in Open FSS types, lacking 

sufficient hiding cover, dooms its resident hares to chronically low survival. In a study at 

the Inez site examining their spatial distribution of snowshoe hare mortality sites, no dead 

radio-collared snowshoe hares were found in the densest of microhabitats available, but 

they were found with greater than available prevalence in extremely open habitats 

(Pouderoux et al. in preparation).

Factors influencing inference scope o f these results

Our projection models used vital rate projection rates that, with the exception of 

weekly survival rates and monthly emigration rates, were the same for snowshoe hares 

inhabiting all FSS types monitored. It is worth considering whether the similar vital rates 

were actually are the same across FSS types, or whether we had inadequate sampling to 

detect differences that existed. First, our estimates of survival and emigration rate were 

based on observations of 163 radio-collared hares at only the Inez site, Although we can 

not test whether our survival and emigration estimates are a reflection of only the Inez 

site, we point out that the influences of FSS type were spatially replicated within the -5.3 

km2 Inez site; each FSS type was represented by 2 or more discrete stands. Second, 

sample sizes in some FSS type -  birth pulse combinations were low for fertility estimates. 

The same limitation occurred in the study that we relied on for estimates of leveret 

survival to weaning (Sterling et al. in prep), which had an inadequate sample for robust 

evaluation of FSS type effects. Nonetheless, the salient differences in A-singie f s s  would not 

have been changed by slight differences in fertility or leveret survival, because Asingie fss
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was dominated by the very low annual survival rates in Open young and Open mature 

FSS types.

We are cautious about the estimates of precision associated with the vital rate 

estimates and with the X values that result in projection models. For example, the 95% 

confidence intervals of weekly and seasonal survival for Dense mature and the Open FSS 

types do not overlap, but in closed population projection models the confidence intervals 

around ^sin g le  f s s  estimates do overlap for all FSS types. We recognize that the estimates 

of precision for vital rate estimates reflect some combination of sampling and process 

variation, but without a longer time series or further spatial replication these sources of 

variation would be difficult to separate (Burnham et al. 1987, Thompson et al. 1998, 

Gould and Nichols 1998, Ludwig 1999, White 2000).

Empirical conclusions and implications for snowshoe hares

We used empirical data to evaluate whether survival, fertility, and emigration 

rates were the same or different in 4 different FSS types. Besides their usefulness for 

testing theoretical models that address spatial structure, our results yield some practical 

insights for management and conservation of snowshoe hares in their southern range.

In theory, the frequency of favorable habitats in a landscape can influence local 

and regional population sizes (Pulliam 1988, Pulliam and Sutherland 1991, Watkinson 

and Sutherland 1995, Gyllenburg et al. 1997), because of differences in local intra

population birth and death rates. Given the spatial scale of snowshoe hare populations 

that we observed, one strategy for maintaining some dense local populations of snowshoe 

hares could be to conserve clusters of favorable FSS type forest stands within 5 - 1 0  

km2. Also, recognizing that an individual’s proportionate use of different habitats
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influences individual, the adjacency of Dense mature with Dense young FSS type stands 

would be more valuable than adjacency of either with Open FSS type stands.

The high estimated juvenile and adult survival rates yield high Xsingie f s s  for hares 

in Dense mature and Dense young FSS types. These also were the FSS types where we 

observed the highest density of snowshoe hares based on trapping and mark-recapture 

estimation. The high winter densities we observed in Dense mature FSS types may reflect 

the relatively high estimated fall survival rates there. Dense mature FSS type stands also 

appear valuable for long-term stability of snowshoe hares in a landscape because of their 

temporal stability. There are several reasons why we do not necessarily recommend that 

landscapes be composed entirely of Dense mature FSS type stands if a goal is achieving 

high snowshoe hare densities. First, we found a trend suggesting lower fertility rates for 

females captured in the Dense mature FSS type. Second, -68% of radio-collared hares 

who were ever located in Dense mature FSS type routinely used other FSS types, 

indicating that some aspect of adjacent stands complements the food and cover resources 

available to hares in the Dense mature FSS type. For example, it is possible that 

herbaceous plants and conifer needles in the Dense mature FSS type may be less 

nutritious than in FSS types where levels of sunlight in the understory and available soil 

nutrients are higher. Despite these caveats, our results indicate that Dense mature forest 

stands may be as favorable for snowshoe hares as stands of the Dense young FSS type; 

indeed, point estimates of X-singie f s s  were actually higher for Dense mature. Because 

Dense mature stands have longer residence time than early forest successional stages, 

they could play a role as “refugia” of high-quality habitat over longer time periods than 

Dense young stands.
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Stands of the Dense young FSS type should continue to be considered important 

for snowshoe hare population dynamics because they appear to have high snowshoe hare 

carrying capacity and abundant food and cover resources. The highest observed snowshoe 

hare densities at all sites were generally in the Dense young FSS type. Survival rates were 

high, and fertility may have been higher than in the Dense mature type. As further 

indication of the high productivity of Dense young stands, home ranges were smaller in 

the Dense young FSS type than in any other FSS type. In efforts to maintain high prey 

densities for Canada lynx, stands of the Dense young FSS type have rightly been targeted 

for conservation, because highest snowshoe hare densities have been observed there (U.S. 

Fish and Wildlife Service 1999). Regenerating forest stands are in young successional 

stages for only a short time, however, while Dense mature FSS type stands are 

presumably closer to an ecological steady state (McKelvey et al. 2000). We conclude that 

both Dense young and Dense mature FSS types are valuable for elevating snowshoe hare 

density in the landscapes of the southern range. Future studies should evaluate whether 

landscapes dominated by these favorable FSS types sustain snowshoe hare densities high 

enough to trigger the complex cyclic dynamics observe in the north.
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Chapter 3 Appendix 1. Vegetation measurements

We estimated the vegetation measures for each stand in the study using 6 or more 

systematically-located vegetation plots per stand. In each vegetation plot basal area of 

trees was estimated with variable radii, using Relaskops (Speigel, Germany). Overhead 

canopy was estimated at 25 points arranged at 5 m intervals in a 20 m x 20 m square 

around the plot center, using a point densiometer that indicated canopy cover directly 

over the observer. Sapling density estimates were based on complete counts within a 5-m 

radius plot of all conifer trees over 0.5 m tall and < 10 cm DBH. Horizontal cover was 

measured across four lines of sight per plot using a horizontal cover board (Wolfe et al. 

1982). The 2 m tall cover board had four 0.5 m-tall sections. An observer 11.2 m away 

from the cover board estimated the proportion of each 0.5 m section obstructed by 

intervening vegetation.
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Chapter 3 Appendix 2. Designating FSS using GIS

We entered locations for all radio-collared snowshoe hares in a GIS that also had 

spatial data layers for elevation, forest stand boundaries, roads, and LandSat 7 satellite 

imagery recorded August 3, 1999 with 15 m pixel resolution. FSS type was relatively 

homogeneous within stand boundaries because these were the borders of recent human or 

natural disturbance. In stands where we sampled vegetation structure, our designations of 

FSS type (Table 2) corresponded to distinct stand age and stocking density categories on 

U.S. Forest Service and Plum Creek Timber Co. spatial data layers. Therefore, we used 

U..S. F. S. and P. C. T. C. forest stand categories to assign 1 of our 4 FSS types to each 

stand that matched our criteria. We visited each stand and used our experience in the 12 

stands that were formally sampled with vegetation plots to judge whether the vegetation 

structures in the unsampled stands matched the FSS type designations made via GIS.
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Table 1. Hypotheses of spatial population dynamics make predictions that are testable 

with different estimates of the discrete rate of growth, X, based on survival, reproduction, 

and movement rate estimates specific to patch types of potentially varying quality.

Hypothesis Predictions

Balanced dispersal ^M ultiple Patch is equivalent across all patch types; 

^individual is equivalent across all patch types.

Source-sink Sources always have k sin g ie  Patch > 1, and net emigration; 

sinks always have X-singie Patch < k  and require net immigration 

to persist;

^-Single Patch ^  ^M ultiple Patch for SOUTCeS; ^-Single Patch ^-Multiple Patch

for sinks.

Pseudo-sink Sources exist; other patch types, pseudo-sinks, have ^ sin g le  patch 

> 1 at low density, and ^M ultiple Patch < 1 at high densities above 

carrying capacity.

Habitat Rank ^ sin g le  Patch is always greater in certain patch types than in 

others, although values could vary above or below 1 in all 

patches.
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Table 2. The criteria defining the 4 FSS types and distinguishing them from other types 

relied on observed sapling densities, large tree basal areas, and overhead canopy cover. 

These categories were predominant at the Inez study site, but leave out a large number of 

vegetation structure types found in the study region. Saplings are defined here as trees 

over 0.5 m tall, but less than 10 cm diameter at 1.4 m height.

FSS type Structural attributes

Dense mature Uncut forest stands with > 40% overhead canopy cover and basal

area> 13.8 m2 /h a

Dense young Dense stands of regenerating conifers with > 5600 saplings / ha

Open young Open stands of regenerating conifers, with <3360 saplings / ha

Open mature Partially harvested forest with < 30% overhead canopy cover and

basal area > 13. 8 m2 / ha
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Table 3. The observed geometric mean A,Fs s  observed values estimated from annual changes 

in estimated summer densities on individual trapping grids from 1999 -  2003 varied from 

site to site. The same was true of overall values for A,sue , based on annual changes in 

average estimated density across all trapping grids at a site. The average proportional 

densities (D proportion) observed in each of the four FSS types did not vary greatly from site 

to site in 1999, the year of the study with the highest average observed hare densities. 

Standard errors of the means are in parentheses.

7-FSS Observed

Placid

7-FSS Observed

Inez

''-FSS Observed

Spring Ck.

D Proportion

Dense mature 0.58 (0.40) 1.34(1.33) 0.23 (0.39) 0.340 (0.113)

Dense young 1.04(1.26) 1.01 (0.31) 0.54 (0.17) 0.528 (0.084)

Open young =t= 0.76 (0.25) * 0.043 (0.043)

Open mature * 0.94 (0.49) * 0.089 (0.089)

7* Site Observed 0.85 (0.63) 1.09 (0.45) 0.63 (0.10)

* No values for these trapping grids could be estimated because densities were zero.
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Table 4. Parameter estimates for fertility in each of three birth pulses (fi, f2, f3), leveret 

survival rate (SLev), and annual emigration rate (E) were common to all FSS types. 

Fertility in each birth pulse, the number of female leverets per adult female, is the 

expected product of pregnancy rate and litter size divided by 2. Brackets indicate the 95% 

confidence intervals associated with each estimate.

fl f2 f3 SLev E

1.40 1.87 0.89 0.563 0.205

{1.20,1.58} {1.70, 2.04} {0.59, 1.14} {0.403, 0.722} {0.121,0.352}
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Table 5. The best-fitting known fate models tested against survival data for 175 radio

collared hares at Inez included effects of FSS, season, age and sex on weekly survival 

rates. The “Summer and Winter” effect had one pooled parameter describing the effect 

those seasons on survival, in contrast to pooled survival rates in Fall and Spring. The 

models shown here had AAICc values within 4 units of the best fitting model, indicating

relatively good fit to the data compared to other models considered. For estimation of 

survival rates with model averaging, we used AICc weights from these models only.

Model rank, and effects included in the model AAICc AICc

weight

1. Summer and Winter Open FSS types; Sex in summer 0.000 0.169

2. Summer and Winter Dense Mature FSS type; Sex in summer 0.297 0.146

3. Summer and Winter Open FSS types; Sex in summer; Age 0.642 0.123

4. Summer and Winter Open FSS types 0.658 0.122

5. Summer and Winter Open FSS types; Age 0.853 0.111

6. Summer and Winter Dense Mature FSS type 1.49 0.0804

7. Summer and Winter Dense Mature FSS type; Sex in summer; Age 1.93 0.0645

8. Summer and Winter Open FSS types; Sex year round 2.36 0.0521

9. Summer and Winter Dense Mature FSS type; Age 2.93 0.0391

10. Summer and Winter; Dense Mature FSS type; Sex year round 2.93 0.0391

11.4 different seasons; Dense Mature FSS type; Sex in summer 3.53 0.0290

12. 4 different seasons; Open FSS types; Sex in summer 3.87 0.0244
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Table 6. The magnitude of different effects included in known fate models for weekly 

snowshoe hare survival, averaged by the AICc weights of the models, indicate that 

summer and winter are periods with higher weekly survival rates, and that the Open 

young and Open mature are the least favorable FSS types. Spring, Dense young, and adult 

females are the season, FSS type, age and sex against which other seasons, FSS types, 

age, and sex were contrasted. 95% confidence intervals for the effect sizes are in brackets.

Effect Name Effect Size 95% C.I.

Summer + 0.0222 {+0.0114, +0.0288}

Fall + 0.000287 {- 0.000647, + 0.000949}

Winter + 0.0220 {+0.0123,+ 0.0277}

Dense mature FSS type + 0.009 {+ 0.0136,+ 0.0277}

Open young and Open mature FSS types -0.0189 {-0.0380,-0.00584}

Juvenile -0.00186 {-0.000935,-0.00205}

Male, from 21 April -  30 September + 0.00829 {- 0.00616,+ 0.0165}

Male, from 31 September -  20 April - 0.000438 {- 0.00200,+ 0.000675}
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Table 8. Results from landscape level projection, using four FSS types: Dense mature, 

Dense young, Open young, and Open mature, each with 25% of the total area. Starting 

population size was 500, distributed in each FSS according to the mean proportions 

observed in 1999. Values for X at years 5, 10, and 15 of the model are /^Multiple f s s  for the 4 

FSS types, and -̂Landscape for the entire population of snowshoe hares. All X values 

asymptote to 0.967 by year 25. The proportions of the population in each FSS type are 

those of the initial population, then those observed at years 5,10, and 15; these asymptote 

to a landscape where most hares (73%) are in the Dense mature FSS type.

X X X  Proportion of individuals in each FSS

Year 5 Year 10 Year 15 Initial Year 5 Year 10 Year 15

Dense mature 0.981 0.969 0.967 0.340 0.621 0.712 0.731

Dense young 0.797 0.908 0.954 0.528 0.235 0.152 0.135

Open young 0.905 0.951 0.964 0.044 0.072 0.068 0.067

Open mature 0.905 0.951 0.964 0.088 0.072 0.068 0.067

Landscape 0.920 0.957 0.965 1.000 1.000 1.000 1.000
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Figure Legends

Figure 1. Map of the three study sites in western Montana (dark circles). Each site had 

one trapping grid in four forest stand structure (FSS) types: Dense mature, Dense young, 

Open young, and Open mature.

Figure 2. Snowshoe hare density per ha, estimated from mark-recapture trapping in 

different FSS types at each site from 1999 -  2003. Black squares are estimates from the 

first trapping period of each summer, and white squares are estimates of density from the 

winter. Error bars are + / - 1 S.E. Upper limits of the standard error bars are not shown for 

one point in Inez Dense mature (2.69) and one point in Spring creek Dense mature (2.07). 

Figure 3. Distribution of maximum annual displacements for all radio collared hares with 

more than 3 locations (n = 144). The mean maximum displacement was 618m(S.E. = 87 

m). Displacement for one hare that traveled 9,370 m is not shown.

Figure 4. Histogram showing the frequency of FSS type use by snowshoe hares. Most 

snowshoe hares were located in multiple FSS types. Each bar represents the relative 

frequency of radio collared hares located in a FSS type within the range of percentages 

listed along the x-axis. For example, 12% of observed hares had between 1-20% of their 

locations in the Dense mature FSS type, and 22% of observed hares had between 81- 

100% of their locations in the Dense mature type. Frequencies for any given FSS type do 

not sum to 1 because hares that did not use that type are not included (for example, 32% 

of observed hares were not located in the Dense mature type).

Figure 5. Projected individual growth rates, X individual (z-axis) for snowshoe hares 

inhabiting up to three FSS types (Dense mature, Dense young, and Open) with varying 

proportions. Highest X individual values above 1 are predicted for hares with high occupancy

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



68

in Dense mature FSS type (x-axis). The y-axis is the proportion of the remaining 

occupancy that is in the Open FSS type; lowest X individual values are for hares inhabiting 

only Open FSS types. The dark circle is the point representing îndividual for the observed 

average proportional occupancy of different FSS types, based on all radio-collared 

snowshoe hares. In this example, A. individual = 0.79 and occupancy of Dense mature = 0.37; 

because occupancy of the Open and Dense young types are 0.33 and 0.30, respectively, 

the value of the y-axis is (0.33 / 0.63) = 0.52.
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Chapter 4. Snowshoe hares and management of young forests

Abstract

Management of young forests is not often considered in conservation plans, but young 

forests provide habitat for some species of conservation concern. Snowshoe hares (Lepus 

americanus), critical prey of forest carnivores including the U.S. federally threatened 

Canada lynx (Lynx canadensis), are abundant in young montane and subalpine forests 

with densely-spaced saplings and shrub cover. We tested for effects of pre-commercial 

thinning (PCT), a silvicultural technique that reduces the number of saplings and shrubs 

on young forest stands, on snowshoe hare densities for two years after experimental 

treatment at three areas. Densities declined in stands treated with standard prescriptions 

of pre-commercial thinning (100% of stand area treated), compared to control stands. 

Compared to control stands, snowshoe hare densities declined in stands treated with pre

commercial thinning with reserves (PCT-R), where 20% of the total area was retained in 

uncut % ha patches; these declines occurred in two out of three study areas in the second 

winter and second summer after treatment. Sapling density played a role in snowshoe 

hare density among PCT-R treated stands; two summers and two winters after treatment, 

PCT-R stands with higher overall sapling density in retained patches had higher 

snowshoe hare densities than PCT-R stands with lower sapling densities. Snowshoe 

hares used the retained patches more than thinned areas within the PCT-R treatment 

stands. These observations support conclusions that patches with high sapling density 

can play a role in maintaining high snowshoe hare density. We suggest that managing 

forests for high snowshoe hare abundance will require the creation of new young forest 

stands to offset their functional loss through succession and pre-commercial thinning, the
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use of silvicultural techniques that retain high sapling and snowshoe hare density in 

existing young forest stands, and the conservation of structurally valuable mid- and late- 

successional forests.

Introduction

Young, regenerating forests provide valuable, if transient, habitat for many 

species (Hejl et al. 1995, Askins 2001, Hunter et al. 2001, Litvaitis et al. 2001). In 

industrial forest landscapes of the western United States, intensive forest harvest in the 

20th century created large areas of early- and mid-successional stands (Agee 2000, 

McKelvey et al. 2000). The intensive management of young forests that has 

subsequently occurred on many private and public lands can decrease the time needed for 

development of merchantable timber (Daniel and Helms 1979) and old-growth 

characteristics (DeBell et al. 1997, Tappeiner et al 1997), but may reduce their value for 

early-successional associated species.

The Canada lynx {Lynx canadensis) was recently listed as “Threatened” in the 

U.S. (U.S. Fish and Wildlife Service 1999). Although the causes of lynx decline are not 

completely understood, managing forested landscapes in ways that increase snowshoe 

hare abundance may foster Canada lynx recovery south of the Canada -  United States 

border (Ruggiero et al. 2000). Snowshoe hares, Lepus americanus, are the principal prey 

of the Canada lynx. In Montana, high summer and winter snowshoe hare densities are 

associated with young, dense forest stands (e.g., > 5000 saplings / ha; Mills et al., In 

Review). The same pattern is observed throughout their wide range in North America; 

highest densities occur where abundant young conifer saplings and tall shrubs apparently 

provide forage and cover from predators (Adams 1959, Dolbeer and Clark 1975, Wolff
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1980, Wolfe et al. 1982, Pietz and Tester 1983, Fuller and Heisey 1986, Koehler and 

Brittell 1990, Koehler 1991, Hodges 2000a, Shaw 2002). Late-seral stands with 

abundant understory can also harbor high snowshoe hare densities, especially in winter 

(Griffin and Mills, in preparation), and may be important for snowshoe hares in the more 

southern Rocky Mountains of Colorado (Beauvais 2000). Stands with high understory 

density may drive snowshoe hare population dynamics by acting as net sources of 

emigrant snowshoe hares that supplement hare populations in nearby, lower-quality 

habitats (Wolff 1980, Wolff 1981). Despite the high value of stands with high understory 

vegetation density for hares -  and therefore threatened lynx -  high sapling densities can 

lead to a decrease in future timber yields and loss of tree vigor (Martin and Barber 1995), 

such young stands are often converted to more open young forest habitats via pre

commercial thinning (hereafter, “PCT”). Commercial and / or ecological goals of PCT 

include increased growth rates for trees that are retained (Daniel and Helms 1979, 

Johnstone 1984) and increased frequency of favored tree species (Carey and Johnson 

1995). The technique is used in restoration forestry to accelerate the development of late- 

successional structures: it reduces the time that stands spend in the ‘stem exclusion’ 

phase (Carey 1995, DeBell et al. 1997, Tappeiner et al. 1997). Despite these potential 

benefits, the sudden decrease in stand density could dramatically affect snowshoe hares 

and other species that benefit from dense understory cover.

If the decreased density associated with pre-commercial thinning causes dramatic 

short-term declines of snowshoe hare abundance in the stands where snowshoe hare 

density is highest, the prey base of Canada lynx could be seriously impacted. In 1999, 

the U.S. Forest Service instituted a temporary moratorium on pre-commercial thinning on
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its lands in potential lynx habitat as a precaution against further loss of high-quality 

Canada lynx foraging habitat on public lands. Alternatively, the increased availability of 

herbaceous forage near the ground may favor snowshoe hare survival and increase 

density after thinning (Adams 1959, Black 1965, Sullivan and Sullivan 1988).

We tested the prediction that PCT has a negative short-term effect on snowshoe 

hare abundance in summer and / or winter. Specifically, we tested the prediction that 

treatment with PCT will decrease snowshoe hare densities in thinned stands relative to 

paired, untreated control stands. We also tested a corollary prediction: that stands treated 

with a novel PCT treatment that left isolated patch reserves of unthinned forest (hereafter 

“PCT-R” treatment) would support lower hare densities than untreated control stands, but 

higher than stands treated with standard PCT.

We also investigated the vegetation structures within stands that would be 

valuable to maintain in future variations on PCT treatments by examining microhabitat 

selection of snowshoe hares in pre-commercially thinned with reserve (PCT-R) treated 

stands, which contained both thinned and unthinned young forest patches.

Methods 

Study areas

All study areas were in the Seeley-Swan region of western Montana (Figure 1) 

where forested landscapes have a wide distribution of snowshoe hares across time and 

space (Mills et al. in review), snowy winters and a mesic climate. The region is also a 

center of ongoing Canada lynx ecological studies (Squires and Laurion 2000).

We limited our studies to montane / subalpine coniferous forests at 1,450 -  1,700 

m elevation. At these elevations, dominant conifers are lodgepole pine (Pinus contorta),
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Douglas-fir (Pseudotsuga menziesii), western larch (Larix occidentalis), subalpine fir 

{Abies lasiocarpa), and Engelmann spruce {Picea engelmannii). Of these, larch is the 

most commercially valuable timber species, although Douglas-fir is also highly valued 

for lumber. Lodgepole pine and Douglas-fir provide relatively high-quality forage for 

hares; spruce and fir are less valuable nutritionally and larch is deciduous, so larch 

needles are not available in the winter (Wirsing and Murray 2002). A wide variety of 

montane and subalpine shrubs and forbs also provide some cover and forage during the 

summer and fall.

The study consists of three areas: Spring Creek, Cold Creek, and Beaver-Finley 

(Figure 1). Each area had two treatments (standard PCT and PCT-R treatment) and a 

control within 0.1 -  1.4 km of each other (nine experimental stands total). All study 

stands were 15-35 year old, even-aged, regenerating stands scheduled for PCT, and were 

similar in elevation, sapling age, sapling density, and tree species composition. 

Experimental treatments were assigned randomly to stands, except at Cold Creek, where 

the control stand was selected by the land owner and only the standard and PCT-R 

treatments were randomly assigned.

Stand-level pre-commercial thinning experiment

Because PCT is usually a stand-level treatment, stands were the experimental unit 

and we evaluated changes in hare density at this scale (stands were > 20 ha). Stands of 

this size are a minimum scale for analyses of hare density because it is roughly twice the 

size of average snowshoe hare home ranges, which overlap (Hodges 2000a). Studies on 

the effects of pre-commercial thinning with response variables measured over smaller
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spatial scales (e.g., Sullivan et al. 2002) may not reflect population-level changes in 

snowshoe hare density.

Within each stand we marked five parallel trap lines 50 m apart, each with 10 

traps spaced at 50 m intervals; these formed the 9 ha trapping grids with 50 traps each. A 

> 50 m buffer between trapping grids and stand edges added confidence that indices and 

mark-recapture estimates reflected hare density within the stand. Before and after 

treatments, we sampled sapling density, overhead canopy cover, horizontal cover density, 

and shrub density at 6 or more 5.6 m radius plots per stand (Table 1).

The three stand treatments (Figure 2) were:

1) Control -  no trees or shrubs were cut in the stand.

2) PCT- the entire stand was thinned to 3.5-4.0 m spacing between saplings left alive (~ 

800 standing live conifer saplings / ha; saplings are over 0.5 m tall, but with diameter < 

7.5 cm), with preference for retaining healthy western Larch, and Douglas-fir, Shrubs 

over ~ 0.5 m tall were left standing only in areas near wetlands (<5% area of any treated 

stand). Thinning 100% of the stand area is the standard for pre-commercial thinning, and 

the tree spacing we used was well within the range applied routinely with PCT in the 

western U.S.

3) PCT-R -  80% of the stand was thinned with the PCT guidelines (above), but 20% of 

the total area was retained with saplings uncut. The arrangement of uncut areas was in % 

ha (50 m x 50 m) retention patches, randomly selected from the grid of lA ha squares 

defined by the perpendicular lines of the trapping grid, extended to the edges of the stand. 

Within the three PCT-R treatment stands we marked the retention blocks with flagging 

and yarn.
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Density estimation from mark-recapture trapping

We used mark-recapture trapping to estimate hare density once in July before 

treatments, and again 2-3 weeks after treatments. For two years after treatment, we 

estimated hare density with one session at the end of each summer and two sessions each 

winter. Additionally, we estimated density at Cold Creek the winter prior to treatment. 

Trapping sessions were 4-6 consecutive nights (n = 75 sessions; mean = 5.5 nights / 

session). At each area, all three stands were trapped simultaneously to limit any 

confounding influence of weather on capture probability. Traps were baited with weed- 

free alfalfa, apple, and pelleted horse feed, and were checked every morning. Hares were 

individually ear-tagged, weighed, sexed, and released. Because the number of recaptures 

was too small to use program CAPTURE (White et al. 1982) reliably (Menkens and 

Anderson 1988), we used the Lincoln-Petersen estimator adjusted for small sample size 

(Chapman 1951, Seber 1982) to estimate abundance.

We estimated density by dividing the Lincoln-Petersen abundance estimate by the 

estimated effective trapping area for each grid. This area was estimated for each stand 

(Table 1) from the distances individuals moved between traps during trapping sessions 

(Litvaitis et al. 1985, Karanth and Nichols 1998, Mills et al. in review).

To evaluate the effects of our two treatments on hare density relative to the paired 

control stand at an area, we calculated ln(density after treatment) -  In (density before 

treatment); this was a measure of how snowshoe hare density had changed in each stand 

after treatment. We subtracted the value of this measure in each control stand from the 

corresponding value in the paired treated stands. A negative difference indicated that the 

treated stand (PCT or PCT-R) was negatively affected relative to the control. For
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densities of zero, we substituted a value one tenth that of the lowest recorded density 

before log transformation. At the Cold Creek area, we used density before treatment 

estimates that corresponded in season (summer or winter) to the season of the after 

treatment trapping session. At the Spring Creek and Beaver-Finley areas, we used 

summer pre-treatment density estimates for comparisons to both summer and winter 

densities after treatment. We compared the relative density changes in standard PCT 

stands and PCT-R stands to control stands for the first winter (two trapping sessions at 

each area), the second winter (two trapping sessions at each area), and both summers 

(two summers after trapping at each area) after treatment. We did not use data from the 

initial period 3-4 weeks after PCT treatment because a sample of 14 radio-collared hares 

at Spring creek indicated high between-stand movement rates in that period (Griffin and 

Mills, unpublished data). We tested for effects by examining 95% confidence intervals 

of the relative changes in treated stands versus control stands, and with repeated measures 

ANOVA. Each treatment (PCT or PCT-R) was compared to the control stands based on 

the 2 summer density estimates, or on the 2 density estimates made during each winter. 

Snow tracks and winter pellets

We used snow track counts and fecal pellet counts to test for differences in winter 

abundance across thinning treatments. In contrast to the mark-recapture estimator, which 

has associated estimates of precision, both snow track and winter pellet counts are indices 

with generally positive but unknown relationship to true abundance (Nichols and Pollock 

1983, Nichols 1992, Rexstad 1994). We counted snow tracks in 5 parallel, 450 m-long 

transects in each treatment stand, using the marked trap lines. We also counted the track 

crossings in each 50 m segment to determine whether there was an association between
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hare activity and the aggregate retention patches on the PCT-R treatments. Snowshoe 

hare track crossings were counted twice per winter during trapping sessions, conditions 

permitting. Ideal track count conditions were 24 - 48 h after snowfall, before trapping 

took place. We limited comparisons to counts made within single areas on the same day. 

We assumed that relatively high track counts indicated a greater number of hares, greater 

affinity of active hares for microhabitats along the transect, or both.

Summer pellet counts (Krebs et al. 1986) were not feasible in the two years after 

PCT because cut saplings covered the ground too completely. To count winter pellets, 

we systematically placed 50 dark plastic trays (52 cm x 25 cm x 5 cm deep, with multiple 

drainage holes and secured by 15 cm stakes) in each stand in late fall before snow 

accumulation. The trays sampled pellets that accumulated in the snow above them. We 

counted pellets in trays shortly after snowmelt, censoring dislodged, broken, and steeply- 

angled (> 30°) trays.

We used snow tracks, winter pellets, and a third index, the number of individual 

hares caught, to test for an association between snowshoe hares and aggregate retention 

patches within PCT-R treatment stands. Because aggregate retention patches were lA ha 

units defined by the trapping grid (Figure 2), some traps and pellet trays were located on 

outside corners of retained patches, and some 50 m transect segments were along edges 

of retained patches. We considered these traps, trays, and segments ‘next to’ a retention 

patch. These data were compared to similar metrics collected ‘away from’ retention 

patches (i.e., immediately surrounded by thinned areas). For each index we determined 

the number of hares caught per trap, pellets per tray, or snow tracks per segment next to 

retained patches and away from retained patches. Finally, we divided the ‘away from’

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



83

index values by the ‘next to’ values. We assumed that this ratio should equal one if hares 

exhibited no behavioral preference, and less than one if hares exhibited a preference for 

retained patches.

Results

Densities and indices at experimental areas

Snowshoe hare densities varied before any treatment with PCT (Table 1), and 

over time after treatment (Figure 3). Five of six treated stands (PCT or PCT-R) had at 

least one winter trapping session when estimated density was very low (<0.1 hares/ha). 

The PCT-R treatment consistently maintained higher snowshoe hare densities than the 

standard PCT treatment in two of three areas. In comparing the observed changes in 

densities within areas, control stand densities decreased less from summer to winter, and 

were less variable than both standard and PCT-R treated stands (Figure 4). Relative to 

both control and PCT-R stands, standard PCT had a negative effect on snowshoe hare 

densities, especially in the winter (Figure 4; Table 2). PCT-R stands had negligible 

differences compared to control stands in summer and variable density responses in the 

first winter after thinning compared to control stands, but this difference increased during 

the second winter after treatment (Figure 4; Table 2).

Winter snow track and fecal pellet indices at each area were concordant with 

winter mark-recapture density estimates: we recorded higher counts in control than 

treated stands for 10 of 12 measures (Table 3). The two exceptions were from in the first 

winter after treatment, when high snow track or pellet counts were recorded in PCT-R 

stands, and correspondingly high early winter densities were estimated in the same
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stands. In all cases the standard PCT treatments had a substantially greater decrease in 

index values relative to controls than did the PCT-R treatments 

Retained patches within PCT-R treatments

Higher snowshoe hare densities were associated with higher sapling densities in 

all stands both before and after treatment (Figure 3). The PCT-R stand that retained the 

greatest snowshoe hare density (at Cold Creek) also had an average sapling density more 

than twice as large as in any other stand treated with PCT (Table 1). In PCT-R stands, 

high sapling densities after PCT were the result of high sapling densities within the 20% 

of the total area that was retained in patches. Sapling density was reduced to the same 

uniformly low density (400-900 / ha) in the other 80% of the stand.

Trapping, snow track, and pellet indices indicated that snowshoe hares in PCT-R 

treatment stands exhibited behavioral preference for microhabitats in and near aggregate 

retention patches. Compared to per-trap, per-50 m transect segment, and per-tray 

measures for areas away from retained patches, more individuals were trapped, and more 

snow tracks and pellets were counted within or next to retained patches (Table 4). 

Discussion

Pre-commercial thinning reduced snowshoe hare densities on experimental 

stands; hare densities in experimentally manipulated young forest stands support the 

prediction that unthinned young control stands maintain higher snowshoe hare 

populations than pre-commercially thinned stands. We observed greater reductions in 

snowshoe hare density in stands treated with both levels of PCT treatment than in 

unthinned control stands, except in one PCT-R replicate. Declines were most pronounced 

in winter, although PCT-R stands on average did not show declines relative to control
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stands in the first winter. We suggest that negative effects of PCT on the prey base of 

lynx and other predators may not occur for at least one year after PCT. Winter is the 

season when Canada lynx may be at greatest danger of starvation (Poole 1994), so a 

decreased availability of snowshoe hares could reduce lynx survival in the second and 

later winters after PCT.

We did find, though, that aggregate retention patches of dense young forest can 

play a role in maintaining more hares within a thinned stand than would be expected after 

complete stand area thinning. Densities in PCT-R treatment stands that retained 20% of 

stand area not thinned decreased less than stands treated with standard PCT, according to 

most density estimates and all index measures. The PCT-R stand that retained the 

greatest number of hares in the winter also had the highest overall sapling density after 

PCT, as a result of high sapling densities in the retained patches.

High sapling densities are the very condition that motivate PCT as a silvicultural 

treatment in young forest, but our results corroborate the view that extremely dense 

understory cover provides snowshoe hares some measure of safety from predation (Wolff 

1980, Sievert and Keith 1985, Litvaitis et al 1985). Live snowshoe hare affinity for the 

aggregate retention patches in PCT-R treated stands points to the importance of high 

sapling density, at least at the scale of the lA ha retained patches. At a fourth study area in 

the region, the only microhabitats where we did not find remains of dead, radio-collared 

snowshoe hares were those with extremely dense understory cover, i.e., sapling density > 

5,500 / ha (Griffin et al. in review).

At the scale of single stands, we suggest that PCT prescriptions should retain 

some very dense patches of saplings to maintain high snowshoe hare abundance. Most
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trapping estimates at experimental areas indicated that retaining dense patches in PCT-R 

treatments kept snowshoe hare densities higher than did standard PCT treatments. We 

caution that PCT-R stands had more severe declines in snowshoe hare density relative to 

control stands in the second winter of our study, and snowshoe hare density may respond 

differently to the PCT-R and standard PCT treatments as stands mature. Our study was 

too short to address whether PCT or PCT-R actually extend the time span that stands 

provide good quality snowshoe hare habitat once surviving shrubs and seedlings grow tall 

enough to provide cover and forage (e.g. Doerr and Sandburg 1986). This is an important 

consideration in planning for long-term availability of favorable snowshoe hare habitats. 

Perhaps retention of some dense patches in a densely stocked young stand could 

ameliorate conditions for snowshoe hares in the short-term (relative to complete 

thinning), while pre-commercial thinning on other portions of the stand could lead to 

future food and cover availability, as thinned areas can have a prolonged period before 

they enter the stem exclusion successional phase (Carey 1995, DeBell et al. 1997, 

Tappeiner et al. 1997).

We do not know whether the relative concentration of snowshoe hares near 

retention patches make them easy targets for predators, but it seems clear that snowshoe 

hares have no place to hide in stands that are thinned with standard PCT practices. 

Snowshoe hares may be highly visible during spring and fall molting periods, especially 

in open habitats (Litvaitis 1991). While an increased hunting success in open habitats 

may be good for individual predators in the short term, it would not be good for predator 

populations if snowshoe hares, lacking refuge, were held at low abundance. There 

appears to be no scarcity of open habitats in managed forests of the Rocky Mountains,
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and the relatively high starvation rate of lynx in Montana (J. Squires, U. S. Forest Service 

Rocky Mountain Research Station, personal communication) leads us to suggest that 

snowshoe hare abundance is rather more limiting than the availability of hunting habitat. 

Retention of some densely vegetated patches could potentially prolong the time periods 

when snowshoe hares inhabit a given stand after PCT. The size of aggregate retention 

patches (% ha in this study) could play a role in their effectiveness, with larger patches 

providing safe cover over more contiguous snowshoe hare home ranges.

We encourage future research to assess PCT prescriptions with more proportional 

area left in aggregate retention patches, and over longer time scales. Compared to 

standard PCT prescriptions, the PCT-R prescription retained more of the natural variation 

in young stand structure that is lost, at least temporarily, through standard PCT. There 

are many prescriptions that could accelerate growth of some large trees while still 

retaining much snowshoe hare cover and forage. One approach could be a ‘single tree 

release’ PCT treatment, leaving ~ 4 m radius of cleared area around 18-20 ‘release trees’ 

per ha, freeing them from immediate competition for light and nutrients; this would make 

small clearings over only 10% of the area of young forest. Another approach could be to 

create open patches of PCT within a matrix of unthinned young forest. An example of 

this that would also leave only 10% of the total area thinned is a 10 ha stand with four lA 

ha thinned patches, each holding 200 released saplings; in this case the average density of 

released saplings would be 80 / ha.

The management goals for particular stands and landscapes will determine 

whether the higher costs coming from PCT treatments that retain some proportion of 

unthinned patches are outweighed by the larger population of snowshoe hares that would
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result from standard PCT practices. Labor costs of the PCT-R treatment may be slightly 

higher until thinning crews can implement the prescription without the need for extensive 

marking. A second cost incurred in the future is a loss of potential future tree growth and 

yield in the retained patches; this could be reduced if retained patches are thinned once 

they have grown and no longer provide dense understory cover and forage for hares. 

Future agency restrictions on forest management could represent potential hidden costs of 

standard PCT treatments. If widespread PCT causes regional snowshoe hare densities to 

become or remain low in landscapes where carnivore conservation is a priority then the 

resulting cost of agency oversight could be more than the cost of PCT-R treatments. 

Instead, young forest habitat management that maintains understory cover could be an 

effective tool to increase the number of snowshoe hares regionally.

At the scale of the larger forest ecosystem, snowshoe hare populations require a 

constant availability of young or mature forest with dense understory cover. Dense 

young stands are useful to hares only until young tree growth shades out low branches 

and tall shrubs. In most regions, new young stands with ample stem and shrub density 

will need to be created through natural or anthropogenic disturbance. Late-seral forests 

with areas of dense understory can provide valuable snowshoe hare habitat (Beauvais 

2000, Buskirk et al. 2000, Griffin and Mills, unpublished data); harvesting these will not 

generally lead to a net gain in productive habitat for snowshoe hares. Rather, mid-age 

forest stands could be targeted for disturbances that lead to dense understory cover.

Partial harvest in mid-age stands can also lead to late-seral structures that are used by 

both snowshoe hare and lynx (Koehler and Brittell 1990). Our results indicate that 

intensive forest management, long recognized for its negative impacts on late-seral
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obligate species, will also need to accommodate species associated with young forest 

structures, such as snowshoe hares.
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Table 2. Proportional change of snowshoe hare density in standard PCT stands and PCT- 

R treated stands, defined as ln(density after treatment) -  In (density before treatment), as 

compared to the simultaneous change in untreated control stands. Values are the means 

from three replicate areas, with associated 95 % confidence intervals. F-values (with d.f. 

for the effect of stand type and error terms in parentheses) and P-values are based on 

repeated measures ANOVA models, where the 2 summer trapping periods or 2 trapping 

periods per winter were repeated measures of the response to treatment. Values below 

zero indicate that the treated stands declined proportionally more than control stands. 

Despite the sample size of only three areas, the upper limit of the confidence interval 

indicates greater declines in both winters on standard pre-commercially thinned stands 

than on control stands at the same area. There also was a decline on PCT-R stands, 

compared to control stands, in the second winter.

Mean
Difference

95% C.I. F P

PCT vs. control, summers -0.26 (-1.89, 1.39} 0.30(1,5) 0.61
PCT vs. control, first winter -1.28 {-2.68, 0.11} 5.54(1, 15) 0.065
PCT vs. control, second winter -2.20 {-3.98, -0.43} 9.02(1,15) 0.030
PCT-R vs. control, summers -0.77 {-2.79, 1.19} 1.48(1,5) 0.28
PCT-R vs. control, first winter 0.22 {-0.87, 1.32} 0.20(1, 15) 0.67
PCT-R vs. control, second winter -0.69 {-2.10, 0.72} 11.72(1, 15) 0.018
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Table 3. Standard PCT stands and PCT-R stands had lower winter hare index counts than 

controls stands in most cases. The ratio of treatment stand values divided by control 

stand values for snow track and winter pellet counts at each area is averaged for the two 

winters after PCT; ratios less than one indicate lower counts on treated stands. Standard 

errors for up to four snow track counts and two pellet counts per stand are shown in

parentheses.

snow tracks winter pellets
Spring Creek

Standard / Control 0.45 (0.39) 0*
PCT-R/Control 2.9 (1.6) 0.28*

Cold Creek
Standard / Control 0.33 (0.12) 0.016 (0.023)
PCT-R/Control 0.43 (0.18) 0.81 (0.14)

Beaver Finley
Standard / Control 0.13 (0.06) 0.073 (0.073)
PCT-R/Control 0.53 (0.36) 1.3 (0.047)

* Winter pellets were counted only once at Spring Creek
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Table 4. For four snowshoe hare indices within the PCT-R treatments only, each column 

shows the ratio of indices counted away from aggregate retention patches divided by 

indices counted next to aggregate retention patches. The indices were: individuals caught 

per trap-night in summer and winter, average snow track counts per 50 m transect 

segment, and average number of winter pellets per tray. Ratios below one indicate 

preference for retained habitats; all winter measures indicate lower preference for thinned

than retained microhabitats. Standard errors are in parentheses.

Area Individuals Individuals Snow tracks Winter pellets
trapped trapped
(summer) (winter)

Spring Creek 0 0.34 (0.13) 0.42 (0.12) 0.18*
Cold Creek 0.34 (0.14) 0.34 (0.15) 0.53 (0.49) 0.42 (0.42)
Beaver Finley 1.58 (1.58) 0.70 (0.70) 0.77 (0.25) 0.029 (0.029)
* Winter pellets were counted only once at Spring Creek
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Figure Legends

Figure 1. Study areas in western Montana, with Flathead lake shown for reference.

Spring Creek, Cold creek, and Beaver-Finley were areas with experimental pre

commercial thinning.

Figure 2. Schematic diagram of one experimental replicate, with three young forest 

stands: control (white), standard PCT (gray), and PCT-R (checkered). Each stand holds a 

nine ha trapping grid with 50 trap stations. Within the PCT-R treatment, 20% of the total 

area is unthinned young forest, with retained lA ha patches arranged randomly (small 

white squares).

Figure 3. Snowshoe hare densities plotted against sapling densities in nine experimental 

stands for the summer before PCT (A), the second summer after PCT (B), and the second 

winter after PCT (C). Control stands are shown as dark symbols, standard PCT stands 

are empty symbols, and PCT-R stands are filled with light gray. The three areas are 

represented by squares (Spring Creek), circles (Cold Creek), and triangles (Beaver- 

Finley).

Figure 4. Relative change in snowshoe hare densities at the Spring creek (A), Cold Creek 

(B) and Beaver-Finley (C) areas. Control stands are shown as dark symbols, standard 

PCT stands are empty symbols, and PCT-R stands are filled with light gray. Y-axis 

values are ln(post-treatment density) minus ln(pre-treatment density) for individual forest 

stands. Times along the x-axis are post-treatment trapping occasions: one per summer for 

two years after treatment; two in the first winter (1A and IB); and two in the second 

winter (2 A and 2B).
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Figure 2.
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Chapter 5. Snowshoe hares in a dynamic managed landscape 

Introduction

Since the listing of the Canada lynx, Lynx canadensis, as threatened in the 

coterminous United States (U.S. Fish and Wildlife Service 2000), the effect of landscape- 

scale forest management on populations of snowshoe hares, Lepus americanus, has been 

a concern. Snowshoe hares are the central prey species of lynx (Aubry et al. 2000). 

Because snowshoe hare densities vary widely across different types of forested 

vegetation structure (Adams 1959, Dolbeer and Clark 1975, Wolff 1980, Wolfe et al. 

1982), changes in forest vegetation structure through natural disturbance, succession, and 

silviculture can have dramatic impacts on populations. Snowshoe hare populations cycle 

with a regular 9-11 year period in the northern portion of the species range (Keith 1990) 

but evidence of a cycle to the south is mixed (Hodges 2000). Vegetative succession 

complicates population models (Johnson 2000). In Western Montana, we have found 

highest snowshoe hare densities in regenerating forest stands with high sapling density, 

and in uncut, late serai stage forest stands also with abundant saplings. This high quality 

snowshoe hare habitat in Montana can be thought of as having a bimodal distribution 

relative to forest stand age, with only young and much older stands providing the 

“closed” understoreys with abundant cover and browse (Buskirk et al. 2000). The layer of 

abundant shrubs and saplings that regenerates following clearcuts or large fires later 

disappears as the lower limbs die on growing trees, but may reappear when large trees 

die, creating canopy gaps (Oliver and Larson 1996). The potentially long period when the 

stand understorey becomes and remains comparatively “open” is a time of lower habitat 

quality. Anthropogenic canopy gaps in partially harvested stands can also allow stimulate
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growth of a dense understorey layer under an established canopy (DeBell et al. 1997, 

Tappeiner et al. 1997). Forest managers trying to maintain the prey base for lynx need to 

balance the maintenance of snowshoe hare and other prey habitats with other 

management goals (McKelvey et al. 2000). We used RAMAS GIS to explore the effects 

of timing and placement of one type of silvicultural treatment on a population of 

snowshoe hares distributed across many patches of varying quality, and highly connected 

by movement.

In pre-commercial thinning of dense conifer regenerating stands in the western 

U.S., live stem density is decreased from 3000-6000 / ha to 650-1300 / ha to increase tree 

growth and yield, reduce future fuel load, and shift species composition (Seidel 1986, 

Johnstone 1989, Martin and Barber 1995). Through pre-commercial thinning, the sudden 

conversion of a “closed” understorey to an “open” understorey means the loss of cover 

and forage for hares. In preliminary results from a three-year experiment, wc have seen 

two-fold to four-fold snowshoe hare density decreases during the two years after thinning 

(Griffin and Mills, in preparation). Because dense, young forest stands were known to 

hold high hare densities (Adams 1959, Wolfe et al. 1982, Hodges 2000), the U.S. Forest 

Service halted pre-commercial thinning on lands defined as lynx habitat in 1999, 

although the practice continues on private and state-managed lands. Because pre- 

commercial thinning is a costly silvicultural investment, it may often be applied 

synchronously across large contiguous areas.

Current studies are addressing whether pre-commercial thinning could accelerate 

shrub and new seedling growth under the remaining trees, and what time scale is 

necessary for the regrowth of understorey plants before a thinned stand is good habitat for

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



102

snowshoe hares. Similarly, uncut mature stands may lose understorey cover as a result of 

partial harvest operations. It is not clear how long a partially harvested mature stand must 

develop sufficient understorey cover to consider it equivalent in hare habitat quality to 

uncut mature stands where shrubs and saplings are dense.

The montane forests of the study region are dominated by subalpine fir {Abies 

lasiocarpa), Douglas-fir {Pseudotsuga menziesii), western larch {Larix occcidentalis), 

lodgepole pine (Pinus contorta) and Engelman spruce {Picea engelmannii), and 

correspond generally to the “Abies lasiocarpa / Menziesia ferruginea warm phase” 

habitat type of Amo et al. (1985). Existing literature and successional models give a 

range of time necessary for development of a dense understorey in our study region 

(Zamora 1982, Arno et al 1985, Moeur 1985).

We parameterized our demographic model with vital rate estimates (survival, 

birth, and movement) from ongoing studies in the Seeley-Swan region of western 

Montana, where we are evaluating snowshoe hare population dynamics in four forest 

vegetation structural types: 1) uncut mature forest (henceforth referred to as “uncut 

mature”), partially harvested mature forest (“cut mature”), regenerating clearcut (“dense 

sapling”), and pre-commercially thinned or sparsely-regenerating clearcut (“open 

sapling”). These structural types were determined in the field, based on sapling density, 

basal area, horizontal cover, and overhead canopy cover (Table 1). Both the cut mature 

and open sapling structural types generally had little understorey cover. The preliminary 

data referred to in this chapter represent more than 4 years of intense work in 20 forest 

stands at 5 study sites (Griffin and Mills, in prep.).
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Caution is appropriate in applying our data to larger spatial scales, for several 

reasons. First, by choosing four discrete vegetation structural types to study we excluded 

many structure types of the forest matrix. For example, what we call the uncut mature 

structural type has dense understorey making good cover and forage for hares; in reality 

many mature stands have canopies of large trees without a dense layer of shrubs or 

saplings. While our demographic research estimates vital rates in specific forest stands, 

hares can inhabit multiple structural types. Therefore hares in our model occupy a 

“patchy metapopulation” (Harrison 1994) with a high degree of movement between 

contiguous patches, each of potentially different quality.

Our second concern for modeling our data in a RAMAS GIS framework was that 

the conditions and timing of succession that cause stands to change from one type to 

another can vary dramatically depending on environmental factors, stand history, and site 

preparation (Arno et al. 1985).

Despite our considerable efforts in the field, the sample size and study duration 

are still not sufficient for us to evaluate carrying capacity and the type of density 

dependence. We also could not evaluate how dispersal varied according to patch type 

arrangement (Wiens et al. 1993). Finally, our preliminary data from a period of apparent 

decline give us no basis to evaluate whether vital rate estimates are close to average rates 

of the long term, especially for a species that may be cyclic.

Methods

Population Matrices

Our vital rate estimates are from the first 3 years of a 4-year study. Snowshoe 

hares bom in the summer wean after 4-5 weeks (Keith 1990). Juveniles that survive to
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spring are reproductive adults. Adult females at our study area could have bred in each of 

three synchronous pulses per summer, with nursing taking place overall during ~15 

weeks. Fertility, defined here as total number of young expected per summer per 

reproductive female, was estimated from observed values and ultrasonographic 

examinations (Bienen et al., in review). We detected no difference in fertility between 

vegetation structure types although there were differences in litter size of newborns 

between the first, second, and third birth pulses.

Using known fates of 149 radio-collared hares, we estimated survival rates based 

on the candidate model with lowest AICc values computed in program MARK (White 

and Burnham 1999). The 11 models for adult and juvenile survival ranged in complexity 

from simple models with one parameter to models with multiple parameters for season- 

specific and habitat-specific survival (Griffin and Mills, in prep.). The selected model 

structure had the lowest AICc value by 4.57 AICc units, indicating that it is more than 10 

times as likely as all other models (after Burnham and Anderson 1999). Based on the 

selected model, survival rates were equal in all vegetation structure types in the summer 

and winter, but differed in fall and spring, when survival was lower in structure types 

with “open” canopies (the cut mature and open sapling structure types). Survival rates of 

adult and weaned juvenile hares were indistinguishable. There was no difference between 

male and female survival rates, so we our matrix model reflects females only.

To reflect the seasonal differences in survival and movement, our matrix model 

has four time steps per year (Table 2). 40-year simulations require 160 time steps. We 

account for juveniles starting in the first fall after birth, so the population vector includes 

three juvenile stages (fall, winter, and spring) and four adult stages (summer, fall, winter,
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spring). Because survival models for adult and juvenile hares were for 4-week time 

periods, mean seasonal survival rates were estimated by raising the 4-week rate to a 

power corresponding to the number of weeks in each season divided by 4 (Table 2). The 

fecundity term accounts for estimated survival of summer adults up to each birth pulse, 

fertility (number of female offspring per female per birth pulse), survival of newborns to 

weaning, and survival of weaned juveniles to the fall. To include all three 5-week nursing 

periods, the summer here is 15 weeks, and spring is 11 weeks. Over one year (4 time 

steps), population sizes decrease because of mortality, then increase after each summer 

due to reproduction.

Movement rates were specified as a dispersal function in RAMAS Metapop, 

based on radio-collared hare movements. Observed maximum distances that hares moved 

every season were log-normally distributed with a mean of approximately 275 m per 

season (Griffin and Mills, in prep.). More individuals left natal home ranges during the 

fall, so we assigned highest relative dispersal weights to fall stages.

In stochastic population models variances of vital rates should reflect the temporal 

and spatial variation but should exclude sampling variance, which results from 

uncertainty in parameter estimates owing to incomplete sampling of the population 

(Burnham et al. 1987, Thompson et al. 1998, Gould and Nichols 1998, Ludwig 1999, 

White 2000). For survival rates, we could not partition out temporal variation from total 

variation because the most parsimonious survival model did not include parameters for 

year-to-year temporal variation. Instead, standard errors for survival rate estimates were 

taken from the survival model and the corresponding standard deviations for seasonal 

survival rates used in RAMAS were found using the delta method (Agresti 1990).
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Similarly, because our fecundity data were limited in temporal scale we could not 

partition temporal variance from total variance. We used the spatial variance in fecundity 

across all sites and vegetation structure types (0.75) as a proxy for temporal variance in 

fecundity. The implicit assumption that differences across sites are comparable to 

temporal variation at a single site is suspect, because differences in parameter values at 

different sites can result from variation in abiotic and biotic factors (Tyre et al. 2000).

In the absence of dispersal, the population projection matrix corresponding to 

structure types with open understories (“open matrix” for cut mature and open sapling 

structure types) has a yearly rate of increase of X = 0.49. The population projection 

matrix for structure types with more densely vegetated understories (“closed matrix” for 

uncut mature and dense sapling structure types) has a yearly rate of increase of X = 1.03.

The data from 1998-2001 were from a period of overall decline (Mills et al. In 

Prep). Average density estimates in summer 2001 were roughly 35% of summer 1998 

values. Vital rate estimates for this period were probably influenced by whatever factor 

caused the declines. Because we do not know with certainly the cause of the declines, or 

how vital rates and movement would differ during population increases, we conducted 

simulations with the observed rates instead of increasing them arbitrarily to achieve 

stationary populations.

Model Landscapes and Succession

We limited model landscapes to four vegetation structure types (Table 1). We 

developed a single landscape including a simple model of succession, and evaluated the 

population dynamics of snowshoe hares in three additional scenarios which varied only in 

the timing and placement of pre-commercial thinning. We used the Spatial Data module
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to create a single metapopulation map with 484 patches of 16 ha each, arranged in a 

square. Although snowshoe hare habitat is contiguous in reality, we included narrow 40 

m boundaries so that RAMAS METAPOP could distinguish patches.

Each patch was randomly assigned an initial forest vegetation structure type. The 

target proportions of patches in each structure type desired were approximately 60% 

uncut mature, 15% dense sapling, 10% cut mature, and 5% open sapling. Our model 

landscape is unlike managed landscapes in western Montana because few, if any, have 

60% uncut mature forest. In the Seeley Lake region the area of uncut mature forest is not 

more than 25%. When we initially allocated less uncut mature type, however, overall 

hare populations fell to zero before the end of the 40-year simulations. This decline was 

unacceptable for meeting the objectives of this study because we wanted to explore 

effects of the timing and extent of pre-commercial thinning. In including so much uncut 

mature type in the model, we ensured that some good quality hare habitat would remain 

as a source of snowshoe hares after thinning in each scenario.

Each patch was associated with snowshoe hare vital rates depending on the 

vegetation structure type found on the patch in each year. Uncut mature and dense 

sapling structure types had the higher survival rates of the “closed matrix.” Cut mature 

and open sapling structure types had the lower survival rates of the “open matrix.” The 

matrices for each patch at each time step were recorded in a “temporal change file” 

reflecting the starting vegetation structure type of each patch, and any changes in 

structure type that resulted from simulated succession or pre-commercial thinning.

We devised a simple model for forest succession allowing for transitions over 

time between the different vegetation structure types, and recorded the successional
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trajectories of each patch. The successional simulation rules were used to represent 

probabilistic changes between types. Transitions between types were based on mean rates 

with a stochastic component analogous to demographic stochasticity, whereby transition 

occurred if a random number drawn from a uniform 0-1 distribution was less than the 

mean transition probability.

Any patch assigned initially as uncut mature type stayed in that condition; this 

simplifying assumption ignores possible logging, catastrophic fire or insect damage that 

could convert mature stands to younger structure types.

Reflecting potential tree crowding and crown lift, dense sapling type patches 

could change to a vegetation structure type with an open understorey with an annual 

probability of 0.015. After such a transition we left these patches with an “open” matrix 

of vital rates for the remainder of the 40-year simulation. The 1.5% probability reflects 

the assumption of a long residence time in the dense sapling type with the expectation of 

half the patches changing to the open-understoreyed type by 45 years, given a binomial 

distribution. Current management guidelines for preserving dense cover on U.S. Forest 

Service lands in potential lynx habitats recommend not thinning in regenerating stands 

until 45 years or older.

To signify regrowth of understorey plants to the point that open sapling type 

patches support a high density of shrub and sapling cover, each patch of the open sapling 

type changed to a vegetation structure type with dense understorey with annual 

probability 0.033, based on the expectation that half the patches of open sapling type 

should change to a structure type with a denser understorey after 20 years, given a 

binomial distribution. Arno et al. (1985) indicate that high sapling coverage occurs 12-33
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years after stand initiation, so the 20-year horizon is reasonable for dense growth of 

shrubs and small saplings.

To represent the growth of shrubs and saplings in patches starting as the cut 

mature type, such patches could change to and stay in a vegetation structure type with a 

dense understorey with annual probability of 0.02, based on an expectation that half the 

patches of cut mature type should develop adequate cover within 35 years, given a 

binomial distribution. The cut mature type had a lower probability of developing a dense 

understorey than the open sapling structure type because large standing trees can reduce 

light available for understorey growth. Tree crown area, which intercepts light, can be 

approximated as a linear function increasing with tree diameter and height (Moeur 1981). 

Shrub cover value is predicted to decline with increased basal area of a stand (Moeur 

1985).

Four scenarios o f landscape change

We refer to the single configuration of initial vegetation structure types and the 

time series of changes for that configuration as the “succession” scenario (#1). We used 

this configuration and time series, with changes only to those stands that were pre- 

commercially thinned in the three other scenarios: “upper half thin (#2),” “year 10 

random thin (#3),” and “random thin (#4).” If a dense sapling type patch was thinned in a 

scenario, hares in that patch then had the lower survival rates associated with structure 

types with low understorey cover. In all three scenarios with thinning (#2, #3, #4), 

thinned patches could potentially convert back to the “closed” matrix with the higher 

survival rate as a result of succession, but only after three or more years. All scenarios 

were simulated 100 times.
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In scenario #2, “upper half thin,” we simulated spatial autocorrelation that could 

arise from patterns of land ownership. The randomly-assigned configuration of 

vegetation structure types that initialized all four scenarios included 54 dense sapling type 

patches in the 242 patches of the model landscape’s upper half, and 68 such patches in 

the lower half. In the upper half thin scenario all 54 dense sapling patches were thinned at 

year 10. All 68 dense sapling patches in the lower half of the landscape were not thinned, 

and kept the same temporal change files as in the “succession” scenario.

In scenario #3, “year 10 random thin,” 54 dense sapling patches were again 

thinned at year 10, but the placement of those patches was chosen at random from all 122 

dense sapling patches.

In scenario #4, “random thin,” an equal amount of thinning occurs on the 

landscape as in other scenarios, but it is spread out across the 40-year time period and the 

122 dense sapling patches. For this, we calculated the annual risk of thinning to patches 

in the other scenarios by dividing the 54 thinned patches by the 122 total patches and by 

the 40-year duration of the simulations, giving 1.106% mean annual probability of 

thinning per patch. For every dense sapling patch in every year, we evaluated a random 

number against this quotient (0.01106) to determine whether or not it would be thinned. 

Fifty-five patches were thinned in this process over the 40-year simulation, while 

unthinned patches maintained the same temporal change files as in the “succession” 

scenario.

Other model parameters

We used the ceiling model for density dependence because of its simplicity and 

lack of evidence for a better alternative. We could not evaluate carrying capacity from
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snowshoe hare time series at our sites, so we assigned it at K=42 for all 16 ha patches 

based on the highest density we observed (2.63 hares/ha). This is within the upper range 

observed in experimental plots in the Yukon (Hodges et al. 2001).

For all scenarios, we initialized all patches at a density of 0.6 hares / ha (10 

individuals per patch), approximately the mean density observed in 1998. The initial 

distribution to stages was according to stable age distribution, with hares only in the fall 

juvenile and fall adult stage classes.

Model Predictions

Of the four scenarios, the “random thin” scenario maintained the highest average 

total snowshoe hare population size across the 40 years simulated (Figure 1). The 

“succession” scenario without thinning had the next highest average number of hares.

The predictions of these two scenarios overlap substantially for all years simulated.

Both scenarios in which thinning occurred at year 10 maintained a lower total 

number of snowshoe hares than the other scenarios. On average the abundance was 

marginally higher in the “upper half thin” scenario than the “year 10 random thin” 

scenario; their standard deviation bars overlap substantially at all times.

Discussion

It is not surprising that overall abundance of hares was higher in the “succession” 

scenario than the “upper half thin” and “year 10 random thin” scenarios. Both of the latter 

scenarios include synchronous conversions of 54 out of 122 high-quality dense sapling 

structure type patches to low-quality open sapling type patches, with at least a 3-year lag 

before they could convert back to a vegetation structure type with dense understorey and 

higher hare survival rates.
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More interesting is the possibility that, using our model assumptions, landscapes 

with a low level of pre-commercial thinning (the “random thinning” scenario) may 

support as many hares in the long term as landscapes without any thinning (the 

“succession” scenario). One critical assumption driving this result is that young thinned 

stands can eventually provide understorey cover necessary for snowshoe hares. A 

scenario without thinning may have supported hare higher densities, however, if stand- 

replacing processes such as catastrophic wildfire, insect damage, or clear-cutting had 

been included in the model; these would have led to regeneration of young, dense stands. 

Some outstanding research questions for models such as ours relate to successional rates: 

time for shrub and sapling growth to provide ample cover for hares; subsequent time until 

trees in the canopy reduce understorey light levels such that shrub and sapling cover 

becomes insufficient for hare survival; time to breakup of closed canopy so that 

understorey cover is again favorable. Also, we raise the vexing question of whether uncut 

mature stands can really be considered stable. For each of these successional rate 

questions, mean times will depend on many factors including elevation, moisture, species 

composition, and disturbance history. If, for example, the probability of changing from 

the open sapling type to a forest type with a dense understorey were lower than the value 

we used, then negative effects of thinning could be more severe and long-lasting.

The simulation results also hinge on the initial proportions of structure types and 

the other rules for our simple model of thinning treatment allocation and succession. To 

maintain non-zero model populations over the 40 year simulated interval, we had to 

assign roughly 60% of patches as high-quality uncut mature structure type. Even though 

patches of the dense sapling structure type were converted to open habitats by thinning in
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the “random thin” scenario, these thinned patches were later available for dense 

understorey growth. In contrast, during the 40-year simulation the 122 patches in the 

“succession” scenario starting in the dense sapling vegetation structure type could only 

change into a type with crowded trees and an open understorey. After the creation of the 

starting arrangement of structure types in the landscape, the transition rates between 

structure types govern the overall availability of high-quality and low-quality patches. 

Furthermore, we simulated only one landscape arrangement in the succession scenario, 

which was then modified slightly under each of the thinning scenarios.

Our landscape contained only four of the many forest vegetation structure types in 

the region. Some other structural types may have higher vital rates than structure types 

with open understoreys. By assuming that pre-commercially thinned structure types had 

the same carrying capacity as all other structure types, we may have inflated the 

abundance that thinned patches could maintain.

Effects of our assumptions could be examined by linking randomized realistic 

models of succession to RAMAS GIS, and by estimating demographic rates in more 

vegetation structure types. Successional rates, especially, are expected to play a large role 

in the long-term dynamics of populations living in successional landscapes (Johnson 

2000). Before any model such as ours is used to make management recommendations, 

sensitivity analysis (sensu Mills and Lindberg 2002) should be used to examine the 

effects of different landscape configurations and demographic and successional rates on 

projected hare population dynamics, perhaps with a program for generating large 

numbers of dynamic landscapes under different rules.
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Populations declined over the 40-year duration of all 4 scenarios, and remained at 

low but relatively steady levels in the latter decades of the simulations. This happened 

even though the proportion of uncut mature structure type started at a frequency not 

found in our study region. The overall decline reflects strong declines expected in the 

two vegetation structure types associated with the “open” stage matrix of vital rates, and 

the comparatively modest growth rates of the other two vegetation structure types 

associated with the “closed” matrix.

The field data leading to demographic rate estimates used here were from a period 

when the real snowshoe hare population declined in the study region. At this time it is not 

clear whether the apparent snowshoe hare declines in our study area occurred because of 

drought or other environmental factors, because of some underlying cyclicity, or because 

of habitat-specific demography linked to forest age and type composition in the real 

landscape. Evidence is mixed as to whether snowshoe hares cycle in the southern range 

(Hodges 2000, Malloy 2000). If X > 1 in all structure types during periods of increase, 

overall populations could periodically reach high levels despite pre-commercial thinning. 

Even during periods of overall population increase we would not expect vegetation 

structure types with open understoreys to have higher snowshoe hare survival than 

vegetation structure types with dense understoreys.

Despite the caution necessary in interpreting our results, the landscape modeling 

framework in RAMAS GIS allows us to make tentative suggestions about the influence 

of pre-commercial thinning on snowshoe hare populations, pending more refined 

information about vital rates and dispersal distances in many vegetation structure types, 

and rates of successional change between structure types of varying quality for hares. For
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this model landscape where uncut mature forest was prevalent and stable, results suggest 

that snowshoe hare populations stay higher when pre-commercial thinning is not applied 

all at once in a landscape. In the context of less stable landscapes with a lower prevalence 

of favorable patches, successional transition rates should largely determine the dynamics 

of snowshoe hares.
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Table 1. A key to the vegetation structure attributes we used to delineate the four nominal 

structure types used in this study. These categories leave out a large number of 

vegetation structure types found in the study region. Saplings are defined here as 

trees over 0.5 m tall, but less than 10 cm diameter at breast height.

Habitat type name Structural attributes

Dense Sapling Dense stands of regenerating conifers with > 5600 saplings / ha

Open Sapling Open stands of regenerating conifers with <3360 saplings / ha

Uncut Mature Uncut forest stands with > 40% overhead canopy cover and basal

area > 13.8 m2 / ha (60 ft^ / acre)

Cut Mature Partially harvested forest with < 30% overhead canopy cover and

basal area > 13. 8 m2 / ha (60 ft2 / acre).
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Juv(F) Juv(W)Juv(Sp)Ad(Su)Ad(F) Ad(W)Ad(Sp)

Juv (fall) 0 0 0 Fa 0 0 0

Juv (winter) SjFa 0 0 0 0 0 0

Juv (spring) 0 S jw 0 0 0 0 0

Adult (sum) 0 0 Sjspb 0 0 0 S ASp'

Adult (fall) 0 0 0 S Asub 0 0 0

Adult (wint) 0 0 0 0 ^AFa 0 0

Adult (spring) 0 0 0 0 0 S aw 0

Table 2. Our stage-based projection model for snowshoe hares makes explicit the 

seasonal differences in survival rates. Survival rates are subscripted with J for juveniles 

and A for adults, then with Fa, W, Sp, and Su for fall, winter, spring, and summer. The 

fecundity term, F, accounts for survival of mothers up to each enumerated birth pulse, 

fertility per mother in each birth pulse (f,), survival of baby leverets up to weaning in 

each birth pulse ( S l cvb p O , and survival of weaned juveniles to the fall. Fertility is for 

female offspring only, i.e. half the total number of offspring. Adult survival rates in the 

fecundity term are raised to a power to indicate the number of weeks survived at that rate, 

out of the 15 in the summer. Juvenile survival after weaning until the fall is the same as 

adult summer survival (SAsu)-

a Fecundity term here is: (fi*SLevBPi*SAsu(10/15)) +  ( S As (5/15)* f2 *SLevBP2* S Asu(5/15)) +

(S  ASu( 10/15)* f 3 * SLevBP3)

b Spring survival rates reflect an 11-week period; summer survival rates reflect a 15-week 

period.
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Figure 1. Overall abundance in four simulation scenarios for snowshoe hare populations 

at years 10, 20, 30 and 40. Scenarios in which thinning is applied in year 10 have lower 

trajectories than those with no thinning (“succession”) or where thinning is spread out 

over time and space (“random thin”). Error bars are standard deviations from 100 

simulations.
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Appendix A. Mortality by moonlight: predation risk and the snowshoe hare 

Abstract

1. Optimal behavior theory suggests that prey animals will reduce activity during 

intermittent periods when elevated predation risk outweighs the fitness benefits of 

activity. Specifically, the predation risk allocation hypothesis predicts both: that prey 

activity should decrease dramatically at times of high predation risk if there is high 

temporal variation in predation risk; and that if there is little temporal variation in 

predation risk, prey will have relatively uniform activity levels.

2. To test these predictions we examined the seasonably variable response of snowshoe 

hares to moonlight and predation risk.

3. Unlike studies finding uniform avoidance of moonlight in small mammals, we find that 

moonlight avoidance is seasonal and corresponds to the seasonal variation in moonlight 

intensity.

4. When the moon was more than half full and the ground was snow-covered, predation 

rates were higher and snowshoe hare movement distances were lower than near new 

moons. When the ground was snow-free, full moons changed predation rate only slightly, 

and snowshoe hare movement did not change according to moon phase. These results 

support the predation risk allocation hypothesis.

Key-words: moon phase; movement; predation risk; prey behavior; snowshoe hare 

(Lepus americanus).

Introduction

Prey animals commonly reduce activity levels in response to stimuli signaling 

high predation risk; this generally decreases encounter rates with predators (Lima 1998a).

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Optimal prey animal behavior increases fitness by minimizing exposure to predation, 

while satisfying energetic needs for survival and reproduction (Rosenzweig 1974; 

Ghalambor & Martin 2001). Strong temporal variation in predation risk alone should 

dramatically reduce prey activity levels during very dangerous periods, and increase 

activity during relatively safer periods (Lima & Bednekoff 1999; Sih, Ziemba & Harding 

2000). Conversely, if predation rates are relatively uniform across time, then prey should 

exhibit little variation in anti-predator response (Lima & Bednekoff 1999). These two 

predictions have been tested experimentally with invertebrates foraging in laboratory 

enclosures where predator scent was manipulated (Sih & McCarthy 2002), but not with 

wild vertebrates where reproduction and year-round survival determine fitness. With 

studies from multiple seasons we tested whether snowshoe hares follow both predictions 

of the predation risk allocation hypothesis (Lima & Bednekoff 1999) in response to 

measured changes in predation associated with moon phase.

Many researchers have used moonlight variation over the 29.5 day lunar cycle as 

a proxy for risk from predators {reviewed in Lima & Dill 1990; Lima 1998a; Lima 

1998b). If predation rates depend on moonlight, then the moon’s phase provides regular 

temporal variation in predation risk. Several studies have manipulated predation risk in 

semi-captive desert rodents under varying light conditions (Kotler et al. 1991; Longland 

& Price 1991; Bouskila 1995), but few have actually demonstrated that light from the full 

moon increases predation in the wild (Lima 1998a). In one exception, kangaroo rats were 

found to have decreased activity and increased predation during the full moon (Daly et al. 

1992), but results were limited to the winter, when the difference in illumination from full 

and new moons is greatest.
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Seasonal variation in the moon’s path through the night sky changes the 

magnitude of variation in moonlight intensity between full and new moons. Behavioral 

responses to moonlight should be particularly strong in winter in the northern hemisphere 

because that is when the earth is closest to the sun (perihelion occurs near January 3) and 

lunar declination above the horizontal is maximal. For example, on a clear January night 

in Montana the full moon usually rises to ~ 60° or more above the horizontal and has an 

illumination intensity > ~ 0.2 lux; in contrast, the moon is at a shallower angle of only ~ 

20° above the horizontal in July, illuminating at < ~ 0.08 lux (Janiczek & DeYoung 

1987). The seasonal contrast in the moon’s intensity becomes even more pronounced 

further to the north. Furthermore, in summer, foliage and the moon’s low incident angle 

can shade the ground from moonlight, whereas in some biomes lack of deciduous foliage 

and the high reflective albedo of snow can further increase ambient moonlight at ground 

level in winter.

Snowshoe hares are prey for many forest carnivores including the Canada lynx 

(U.S. Fish & Wildlife Service 2000), Lynx canadensis, and most snowshoe hare mortality 

is due to predation (Boutin et al. 1986; Wirsing, Steury & Murray 2002). Snowshoe hares 

forage almost exclusively in twilight and night (Keith 1964; Mech, Heezen & Siniff 

1966; Foresman & Pearson 1999) and may avoid open areas during moonlit nights in the 

winter (Gilbert & Boutin 1991). Females one year old and older reproduce in up to three 

or four synchronous birth pulses per summer (Keith 1990). Other reproductive behaviors 

are also synchronous because female receptivity to fertilization is high around the time of 

parturition. Annual survival rates for adults are low (< 32% (Hodges et al. 2001); < 18% 

(Wirsing, Steury & Murray 2002)) and under most conditions overall population growth
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rate is more sensitive to juvenile survival than adult survival (Haydon et al. 1999). As a 

result, residual reproductive value is low, so current reproduction should contribute more 

to fitness than survival and reproduction the following summer (Rosenzweig 1974).

We used a natural experiment (Diamond 1986) to evaluate the effect of moonlight 

on snowshoe hare survival and movement in snowy and snow-free conditions. Moon 

phases and seasons were the natural perturbations and individual snowshoe hares were 

the experimental units whose response, in terms of survival and movement, could be 

evaluated. This system was ideal for testing the predation risk allocation hypothesis in the 

wild. At the latitude of the study site, the variation in moonlight intensity from full to 

new moon depends on the season, with highest expected variation in moonlight levels in 

winter, and lowest expected variation in summer. The predation risk allocation 

hypothesis in this context predicts that variation in snowshoe hare activity should be low 

when variation in lunar illumination and mortality is low, and high when variation in 

lunar illumination and mortality is high.

Materials and Methods 

Study sites

Snowshoe hares in the survival analysis were on Richmond Ridge and Spring

• 2  •Creek, two areas encompassing more than 5 km and separated by ~25 km in Montana’s

Seeley Lake region (47.3°N, 113.5°W). There are ongoing studies of Canada lynx in the 

region (Squires & Laurion 2000); other locally common snowshoe hare predators include 

coyote (Canis latrans), bobcat (Lynx rufus), great horned owl (Bubo virginianus), and 

Red-tailed hawk (Buteo jamaicensis). Fire and forest management here has resulted in a 

forest vegetation structure mosaic, with variation in canopy cover and forest understory,
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so that sampled snowshoe hares inhabit multiple structural types found at both sites. Our 

research was conducted under University of Montana Animal Care and Use Committee 

protocol # 004-99(00,01).

All snowshoe hares in analyses of movement were on Richmond Ridge. 

Demographic studies that we have conducted since 1998 provided data concerning the 

timing of reproductive activity in the summers of 2000 and 2001 (Griffin et al. in press). 

At Richmond Ridge during this study we observed evidence of parturition on 25 June -  1 

July 2000, 30 July -  8 August 2000, 31 May -  3 June 2001, 5 - 1 5  July 2001 and 1 1 -1 9  

August 2001. Conditions in the June 2001 full moon were snowy, due to an unseasonable 

storm that deposited over 50 cm of snow.

Predation risk

We monitored survival in adult and large juvenile (> 500 g) radio-collared 

snowshoe hares over 32 lunar cycles (each of 29.5 days) from August 1999 -  April 2002. 

Radio-collars were equipped with mortality switches that activated after ~ 6 hours of 

motionlessness. There was no systematic difference in the number of radio-collared 

snowshoe hares alive during the new moon periods as compared to full moon periods. In 

plotting the distribution of hares’ estimated time of death in relation to the date of full 

moons we considered 4 relative moonlight categories: within 3.5 days of full, 3.5-7 days 

from full, 7-10.5 days from full, and 10.5-14.7 days from full (Figure 1). This 

categorization of moon phase ignores whether the moon is waxing or waning, but each 

category is associated with a total potential nighttime illumination relative to the nearest 

full moon; that illumination is a function of the time the moon is above the horizon and 

the proportion of its surface that reflects light to Earth.
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Risk was defined as the observed proportion of mortality in different lunar phases. 

We monitored individual survival in 177 snowshoe hares every seven days or less, 

barring logistical problems. Of 115 observed mortalities, only three were censored from 

analyses because predation did not cause death. We plotted the distribution of snowshoe 

hare death in relation to moon phase in two broad seasonal periods, defined by the 

widespread absence or presence of snow on the ground, as determined by our 

observations and data from U.S. Forest Service Seeley Lake ranger station (-15 km from 

sites). Each snowshoe hare’s date of death was estimated halfway between the dates last 

known alive and first heard dead (the “uncertainty interval”). Here we present data for the 

51 snowshoe hares with uncertainty intervals < 7 days; this associates each mortality 

confidently with either full or new moons. Results were qualitatively the same using all 

uncertainty intervals.

Movement

To examine movement patterns we located 7-12 snowshoe hares once per day and 

once per night during five-day observation periods centered on full or new moons (10 

locations per animal per five-day period). To contrast the seasonal effects of moonlight 

we limited our observations on movements in two ways: to the new and full moon 

phases, and to summer and winter (Table 1). Movement distances were the nine linear 

distances between consecutive day-to-night and night-to-day locations. Day locations 

were between one hour after sunrise and one hour before sunset. Night locations were 

between one hour after sunset and Vi hour before sunrise. Any missed location for a 

snowshoe hare reduced the number of sequential distances by two. The order of animals 

located varied between nights. There was no biologically significant difference in the
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distribution of location times for hares found under the full or new moons in summer (full 

moon= 1:33 a.m., S.D.= 9 min.; new moon= 1:19 a.m., S.D. = 7 m in.) or winter (full 

moon = 11:27 p.m., S.D.= 31 min.; new moon = 11:36 p.m., S.D. = 32 min.).

To control for effects of habitat, sex, and individual variation in movement, we 

followed the same individual snowshoe hares over multiple moon phases so that moon 

phases were, in effect, treatments applied to all individuals simultaneously. The sample 

was chosen from the pool of radio collared snowshoe hares available at the study site, 

with attempts to balance the number of males and females, and the number of sampled 

animals in different types of vegetation structure. Because of logistical constraints, we 

did not include snowshoe hares in the sample that were more than 2 km from a central 

access point. If individuals were killed we located additional snowshoe hares in 

subsequent moon phases.

Universal Transverse Mercator (UTM) coordinates for all locations were recorded 

with handheld GPS recorders (<10 m inaccurate). For 100 locations in July-August 2000 

and all subsequent locations (total n=833), we determined snowshoe hare locations by 

sight, or heard transmitter signals without an antenna, indicating proximity of <15 m (N. 

Olson & P. C. Griffin, unpublished). If radio signals indicated a hare was moving away 

from us as we approached, we did not record a location for that hare. Because of the high 

accuracy, relative to the distances snowshoe hares typically move, we preferred this 

walk-in method of locating hares. However, 132 triangulated locations made only in 

July-August 2000 were estimated using program TelLoc7 (G. McDaniel, U.S. Forest 

Service, Missoula, MT, unpublished), with uncertainty estimated using the location error 

method (Zimmerman & Powell 1995). Triangulating observers were, on average, within
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70 m of the snowshoe hare (S.E =4.8 m), with mean location uncertainty 46 m (S.E =2.3 

m).

We used model selection (Burnham & Anderson 1998) to identify parameters that 

best explain observed snowshoe hare movement. Movement distances were the 

dependent variable in mixed model ANOVAs. Mixed models are conservative in 

estimating treatment effects because individual snowshoe hares (n = 34) are treated as a 

random effect, rather than using each location as independent. The five a priori candidate 

models potentially included two categorical variables, snow (snowy or snow-free) and 

moon phase (full or new), and an interaction between snow and moon phase. We used 

Akaike weights from corrected Akaike Information Criterion (AICc) values to identify 

the most parsimonious model.

Each night of full moon observation periods we recorded relative light level as 

bright or dark, based on visibility of shadows (Gilbert & Boutin 1991). Nights with 

intermittent shadows were considered dark. Dark full moon nights were always brighter 

than new moon nights because of the diffuse moonlight that penetrated clouds. We again 

used Akaike weights, this time to compare the fit of two mixed model ANOVAs to 

displacement data from full moon nights only; one model had an effect of clouds 

(differentiating bright and dark nights) and the simpler model did not.

Results

Mortality was nonrandom with respect to the moon in snowy conditions; 80% of 

observed mortality when the ground was snow-covered occurred in the two relative 

moonlight categories when the winter moon was half or more full (Table 2).
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Correspondingly, snowshoe hares moved shorter distances during all winter full moon 

observation periods than during winter new moon periods (Fig. 2).

There was no difference in mortality rates between the full and new moon periods 

during snow-free periods (Table 2). In contrast to the winter, the full moon was not 

associated with lowered snowshoe hare movement in the summer except during the 

unusually snowy observation period in June 2001. Instead, the summer observation 

periods with the lowest mean distances moved (July -  August 2000 new moon, June 

2001 full moon and July 2001 new moon) were associated with birth pulses. Snowshoe 

hares of both sexes appeared to decrease movement during 5-day periods near parturition, 

as compared to nearby periods without parturition.

Under the most parsimonious a priori model for movement overall, when the 

ground was snow-covered snowshoe hare movement distances under full moons were 75 

m shorter than during new moons (Fig. 3). This model included parameters for snow, 

moon, and a snow*moon interaction; the Akaike weight was 0.9999, indicating a far 

better fit than any other model considered. The moon was not associated with an 

appreciable difference in movement when the ground was snow-free.

Light level itself was the likely cue for reduced movement in winter. Considering 

movement only on full moon nights during snowy conditions, snowshoe hares moved 

slightly more when clouds darkened the moon. Our criterion to distinguish bright from 

dark nights was seeing a distinct shadow (Gilbert & Boutin 1991), so some cloudy nights 

with rather bright, but diffuse, light were classified as dark. Despite this, under the 

slightly more parsimonious model for movement near full moons, snowshoe hares moved 

21.3 m (S.E. = 11.7 m) more on cloudy (dark) winter nights than on clear (bright) winter

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



128

nights. The Akaike weight was 0.71 for the model including an effect of clouds, and 0.29 

for a simpler model without the clouds’ effect.

Discussion

Our observations from a wild population over 2 Vi years support two central 

predictions of the predation risk allocation hypothesis (Lima & Bednekoff 1999), which 

has heretofore been tested only in the laboratory (Sih & McCarthy 2002). First, prey 

activity in winter decreased during 5-day observation periods of brightest illumination 

(and high danger) and increased during the contrastingly darkest 5-day, safest periods. 

When the ground was snowy, predation increased 4-fold under full moon phases (Table 

2), and snowshoe hares displayed reduced movement during these periods (Fig. 3).

Longer movement distances indicate that a snowshoe hare was traveling through a larger 

area, and potentially encountering more predators. By decreasing their movements during 

times of elevated predation risk, snowshoe hares were likely decreasing their encounter 

rates with predators. The increased proportion of death in the days near winter full moons 

was higher than expected by chance. We conclude that the moon phase played a role in 

the susceptibility of snowshoe hares to predation, whether that predation occurred at 

night or in the day.

In winter, the cyclic regularity of risk and safety may facilitate the observed 

behavioral response: snowshoe hares moved lesser distances when the risk of predation 

was high. During brief periods of reduced winter activity, low food intake or 

consumption of lower-quality food could reduce fitness. However, because survival until 

the summer breeding season is essential for individuals to have any fitness at all, 

behaviors that lead to higher winter survival should be favored by natural selection. The
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reduced movement in full moon periods could be compensated by foraging relatively 

more during predictably dark periods when the moon is not high above the horizon. With 

every day further from the full moon there is approximately 50 minutes more darkness 

during which foraging should be relatively safe, so a few nights of reduced caloric intake 

could be followed by nights with progressively longer safe feeding periods. Interestingly, 

we found the highest frequency of mortality in winter during when the moon was 3.5-7 

days from full (Table 2), a period for which we have no data on snowshoe hare 

movement, but during which we speculate hares may forage intensely to compensate for 

reduced activity during the height of the full moon.

Second, snowshoe hare movements did not respond to moon phase when its 

influence on predation was low. During snow-free periods the full moon was not 

associated with increased predation (Table 2) and we found no consistent reduction in 

movement in the five days closest to the full moon (Fig. 3). If anything, reproductive 

activities influenced snowshoe hare movements more than moonlight in summer, when 

every adult’s reproductive value was at its peak. Female snowshoe hares reduce 

movement around parturition (Hodges 1999), and male movement is closely tied to 

females during the breeding season (Bider 1961). The increased activity two weeks 

before or after parturition may coincide with times when males assess females’ spatial 

distribution, and when prenatal and lactating females forage intensively.

Archibald (1977) suggested that the 9-11 year snowshoe hare cycles, which are 

more regular and pronounced in higher latitude boreal forests (Murray 2000), may be 

synchronized in part by lunar phenomena that recur on a 9.3-year interval. This is half the 

length of the moon’s 18.6-year nodal cycle that governs the moon’s declination above the
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horizon, the timing of moonrise and moonset and the length of time it is visible in the 

night sky. The brightest full moons closest to any fixed calendar date occur every 9.3 

years when the moon reaches a maximum in its declination above the horizontal, its 

corresponding incident illumination, and its total time above that horizon. The lowest and 

least bright full moons near the same calendar date also occur predictably every 9.3 years, 

but 4-5 years after the brightest. Archibald’s model (1977) did not posit a mechanism 

causing the correlation between the nodal cycle and snowshoe hare population dynamics, 

but our observations on the seasonality of predation risk and moonlight may be relevant. 

Snowshoe hare population growth rate is most sensitive to juvenile survival rate, 

followed by adult survival rate. If juvenile and adult snowshoe hares suffer higher 

predation rates during years with higher and brighter full moons, then population growth 

rates for such years should be low relative to other years, potentially leading to 

population declines. We lack data to test this hypothesis, but suggest that future studies 

focus on variation in survival rates in winter, during which we found strong effects of 

moonlight on snowshoe hare predation risk.

Our results support the predation risk allocation hypothesis and suggest that the 

mediating effect of the lunar illumination on many predator-prey interactions could vary 

seasonally. Prey that reliably assess the safety and danger of the moon phases in different 

seasons should have relatively higher fitness, and be favored by natural selection. 
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Table 1. Moon phase and dates of intensive snowshoe hare movement observation 

periods, with sample size of snowshoe hares (n), the snow condition on the ground at the 

time.

Moon phase and dates n Snow condition

Full, 13-19 July 2000 12 snow-free

New, 28 July -  3 August 2000 12 snow-free

Full, 6-11 February 2001 7 snowy

New, 21-25 February 2001 7 snowy

Full, 7-11 March 2001 9 snowy

New, 19-23 May 2001 9 snow-free

Full, 4-8 June 2001 9 snowy

New, 18-22 July 2001 9 snow-free

Full, 2-6 August 2001 10 snow-free

New, 11-15 January 2002 10 snowy

Full, 25-30 January 2002 7 snowy
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Table 2. The distribution of estimated snowshoe hare mortalities in relation to the 4 

moonlight categories from full moon (0-3.5 days from full) to new moon (10.5 -  14.7 

days from full). The two columns represent the snowshoe hare mortalities recorded 

during snowy periods and periods without complete snow cover. There was pronouncedly 

higher mortality near the full moon when the ground was snowy but not when it was 

snow-free; the distribution of mortality dates with respect to the four relative moonlight 

categories was nonrandom in the winter (% ; P=0.0285), but may have resulted from
' j

chance in the summer (% ; P=0.239).

Days from full moon Snowy Snow-free

0 -3 .5 7 7

3 .5 -7 9 12

7 -1 0 .5 3 4

10.5-14.7 1 8

Total 20 31
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Figure Legends

Figure 1. Four categories of relative moonlight illumination used to examine patterns of 

snowshoe hare mortality, as defined by length of time from a full moon. The four 

moonlight categories are overlaid on the 29.5 day lunar cycle. The moon is ~ 85% to 

50% as bright as the nearest full moon in the 3.5-7 d period, ~ 50% to 15% as bright in 

the 7-10.5 d period, and ~ 15% to 0% as bright in the 10.5-14.7 d period 

Figure 2. In snowy conditions, snowshoe hares moved less during the full moon (light 

bars) than the new moon (dark bars). Values are chronologically ordered means + 1 S.E., 

based on all snowshoe hares in each five-day observation period, and up to nine 

movements per snowshoe hare. There was snow during the first full moon in summer 

2001, but all other summer observation periods were snow-free.

Figure 3. Expected movement distances under the most parsimonious model for 

snowshoe hares under new moons (dark circles) and full moons (open circles) ± 1 S.E. 

Full moons reduced movement when conditions were snowy (right pair), but not when 

conditions were snow-free (left pair).
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Appendix C. Forest microhabitats associated with dead snowshoe hares 

Abstract

The vegetation structure microhabitat at 49 locations where dead radio-collared snowshoe 

hares were found were compared to 98 locations sampled systematically throughout a 

study site in the Seeley Lake region of western Montana. No dead radio-collared hares 

were located in patches with high sapling density (e.g., > 13,000 / h a ), although they 

were found in all other vegetation structures represented on the site. Conversely, dead 

radio-collared snowshoe hare remains were found more often in microhabitats with very 

little understory cover (e.g. ,<  800 saplings / ha) than samples of available microhabitats 

at the site would have predicted. These observations support conclusions that patches 

with high sapling density can play a role in snowshoe hare survival.

Introduction

Snowshoe hares, Lepus americanus, are the principal prey of the Canada lynx, 

Lynx canadensis, which was recently listed as threatened in the coterminous 48 states 

south of Canada (USFWS 1999). As a result there is increased attention on managing 

forested landscapes within the range of Canada lynx to maintain landscape and vegetative 

features that increase snowshoe hare abundance, thereby potentially increasing the 

abundance of Canada lynx (Ruggiero et al. 2000).

Throughout their wide range in North America; highest snowshoe hare densities 

occur with abundant young conifer saplings and tall shrubs (Adams 1959, Dolbeer and 

Clark 1975, Wolff 1980, Wolfe et al. 1982, Pietz and Tester 1983, Fuller and Heisey 

1986, Koehler and Brittell 1990, Koehler 1991, Hodges 2000a, Shaw 2002). The 

observed high densities could result from some combination of preferential movement 

into; higher survival in; or higher reproduction in such habitats.

Wolff (1980, 1981) hypothesized that stands with high understory density act as 

net sources of emigrant snowshoe hares that supplement hare populations in nearby, 

lower-quality habitats. The predicted outflow of hares can only result if the microhabitats 

with dense shrub and sapling cover have higher survival and / or reproductive rates than 

surrounding habitats.

We investigated the vegetation structures within stands that would be valuable to 

maintain high snowshoe hare abundance in the overall landscape. We tested test whether
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there was an association between vegetation structure at the microhabitat scale and 

snowshoe hare mortality locations.

Methods

The study site was in the Seeley-Swan region of western Montana, where forested 

landscapes have relatively high densities of snowshoe hares, snowy winters and a mesic 

climate. The region is also a center of ongoing Canada lynx ecological studies (Squires 

and Laurion 2000). At the elevations of the site (1,450 -  1,600 m), dominant conifers are 

lodgepole pine (Pinus contort a), Douglas-fir (Pseudotsuga menziesii), western larch 

(Larix occidentalis), subalpine fir (Abies lasiocarpa), and Engelmann spruce (Picea 

engelmannii). A wide variety of montane and subalpine shrubs and forbs also provide 

some cover and forage during the summer and fall.

From August 1999 to April 2002 we radio-collared snowshoe hares and followed 

their movements and fates (Griffin and Mills, in press). We used handheld GPS 

recorders accurate to <10 m to mark locations where radio collars of dead snowshoe 

hares were found. To assess the vegetation structure characteristics of surrounding 

microhabitats we returned to all 49 of these “mortality locations” that were found before 

July 2001 and that had precise coordinate positions; these were distributed throughout the 

site. We measured vegetation structure at plots centered on the point where the radio 

collar was found. Around each plot center where the dead snowshoe hare was found we 

recorded sapling density, shrub cover, coarse woody debris, horizontal cover and 

overhead canopy cover in 3 subplots per plot. The 2 m radius subplots were centered at 

the end of 3 lines (5 m long) emanating from the plot center, with 120° angles between 

each line. We used a relaskop (Speigel Ltd., Germany) to determine the extent of 

variable-radius plots, in which we measured basal area and diameter of large trees (>10 

cm diameter at 1.4 m height). For comparison to other available microhabitats, we made 

the same measurements at 98 plots throughout the Richmond Ridge study site. These 

were sampled from a population of 348 snowshoe hare trap locations, which were placed 

systematically throughout the study site. The vegetation plot locations were centered 10 

m away from the trap location in a direction perpendicular to any trap line, to ensure that 

the vegetation measured was not influenced by human foot traffic.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



138

To test the null prediction that the 49 hare mortality locations were typical of 

vegetation structures found throughout the site, we used principle components analysis 

(Johnson 1998) to classify the vegetation structure at the 98 systematic plots. This 

identified a combination of variables that separates vegetation structures at the Richmond 

Ridge study site into orthogonal axes. We then used the resulting equations to project the 

49 mortality locations in the same coordinate space, and looked for differences in the two 

distributions.

Results

Four out of seven total vegetation structure variables were selected in a PC A 

model that described 81% of variation between the 98 vegetation plots that were not 

associated with dead hares. These variables were sapling density (mean = 1318 /ha; S.D. 

= 1604 /ha), large tree basal area (mean = 12.8 m2/ha; S.D. = 14.9 m2/ha), overhead 

canopy cover (mean = 24 % ; S.D. = 21%) and horizontal cover (mean = 33 %; S.D. = 

21 %). Principal component axis 1 (PCI; 43% of variation explained) was heavily 

influenced by large trees and canopy cover; the value on this axis is high when a plot 

includes many large trees and has dense overhead cover. Principal component axis 2 

(PC2; 38% of variation explained) was heavily influenced by saplings and horizontal 

cover; the value on this axis is high when a plot has high understory cover. Principal 

axes 3 and 4 were less informative, comprising 11% and 8% of variation explained, 

respectively.

Vegetation structures at snowshoe hare mortality sites were mostly similar to 

those sampled in plots throughout the site, as indicated by the largely overlapping 

distribution of vegetation structure for the two sets of vegetation plots projected into two 

dimensions (Figure 1). We found, however, a region of available vegetation structure 

space where no dead hare locations were found; six of the 98 systematic plots, but none 

of the 49 mortality locations, had PC2 axis values > 2.3. Sapling densities at PC2 of 2.3 

would be > 5,500 / ha at mean values for basal area, canopy cover, and horizontal cover. 

Two measured plots with PC2 values of ~ 2.5 held sapling densities over 13,000 / ha. 

Three mortality sites, but no systematic plots, were found at values of PC2 < -1.6; these 

were microhabitats with very low sapling density (0, 530, and 795 / ha) and little 

horizontal cover.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



139

Discussion

The only microhabitats where we did not find remains of dead, radio-collared 

snowshoe hares were those with extremely dense understory cover (i.e. sapling density > 

5,500 / ha). The lack of mortality locations in such microhabitats support the prediction 

that snowshoe hares are safer where understory cover is particularly dense. We recognize 

that some locations where we found radio collars may have reflected the locations where 

predators took dead hares to consume, although we did not identity any locations as such. 

Even if this was the case for some radio collar locations, the lack of locations in 

extremely dense microhabitats suggests that predators there have limited predation 

success.

Our results help to explain the well-documented prevalence of snowshoe hares in 

habitats with very high understory density. The lower proportion of dead individuals in 

habitats with dense understories suggests that such microhabitats provide safe refuge for 

hares from their many predators.
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Figure Legend

Figure 1. Scatterplot of vegetation structure attributes at snowshoe hare mortality sites 

(crosses) and systematically located sites (circles). Coefficients in the PCI and PC2 

principle component axes are multiplied by standardized overhead canopy (CAN), basal 

area (BA), sapling density (SAP), and horizontal cover (HOR) values. PCI = 

0.898*(CAN) + 0.843*(BA) + 0.163*(SAP) + 0.427*(HOR). PC2 = -0.184*(CAN) -  

0.360*(BA) + 0.866*(SAP) + 0.767*(HOR).
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