
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1991

String pattern matching algorithms: An empirical analysis String pattern matching algorithms: An empirical analysis

Edward J. Smith
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Smith, Edward J., "String pattern matching algorithms: An empirical analysis" (1991). Graduate Student
Theses, Dissertations, & Professional Papers. 5112.
https://scholarworks.umt.edu/etd/5112

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5112&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5112?utm_source=scholarworks.umt.edu%2Fetd%2F5112&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Maureen and Mike
MANSFIELD LIBRARY

Copying allowed as provided under provisions
of the Fair Use Section of the U.S.

COPYRIGHT LAW, 1976.
Any copying for commercial purposes

or financial gain may be undertaken only
with the author’s written consent.

STRING PATTERN MATCHING ALGORITHMS:
AN EMPIRICAL ANALYSIS

By
Edward J. Smith

B. A. Gonzaga University, 197 6

Presented in partial fulfillment of the requirements
for the degree of
Master of Science

University of Montana

1991

Approved by

Chairman, Board of Examiners

Dean, Graduate School

Date

UMI Number: EP40576

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

Disssftatisfift PsMsKfig

UMI EP40576

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Smith, Edward J., M.S., August 1991 Computer Science
String Pattern Matching Algorithms: An Empirical Analysis
Director: Ronald E. Wilson

The problem of searching through text to find a specified
substring, "pattern", is empirically examined. Several
existing pattern matching algorithms are surveyed including
the Knuth-Morris-Pratt and the Boyer-Moore algorithms as well
as Daniel M. Sunday's algorithms. A technique of Boyer and
Moore's, the fast loop, is extended to other algorithms with
a dramatic improvement in performance. A short and simplified
version of the Boyer-Moore algorithm is presented which is
easy to understand and is very fast. Combining ideas from
several different algorithms, a hybrid algorithm has been
developed which maximizes the efficiency of the Boyer-Moore
fast loop. This algorithm has excellent run time performance.
Algorithms which search strings of binary and quaternary

alphabets are also presented. These algorithms process four
and eight characters at a time by expanding a small sized
alphabet into what ostensibly is a much larger alphabet.

Table of Contents

Abstract...ii
Table of Contents.. iii
List of Tables...v
Acknowledgements...... vi
Introduction...1
1. Existing Algorithms................................. 4

1.1 Brute Force....................................4
1.2 Knuth-Morris-Pratt.............................6
1. 3 Boyer-Moore.................................... 10
1.4 Boyer-Moore Fast Loop..........................12
1.5 Sunday's Algorithms............................15

1.5.1 Quick Search............................ 18
1.5.2 Maximal Shift........................... 19
1.5.3 Optimal Mismatch........................ 2 0

1.6 Scan Least Frequent Character..................22
2. Algorithm Refinements................................ 25

2.1 The Ishift Loop................................ 25
2.2 The Str_Search (ss) Algorithm.................. 27
2.3 A Fast Loop Analogue For Sunday's Algorithms...29

3. Other Algorithms.....................................30
3.1 Least Frequent Character/Boyer-Moore Hybrid....30
3.2 Expanded Alphabet..............................32

3.2.1 Quaternary Alphabet..................... 33
3.2.2 Binary Alphabet......................... 36

iii

3.3 Sunday's Quick Search With Two Tables.....37
4. Testing... 38

4.1 Test Driver.................................... 38
4.2 Test Methodology............................... 40
4.3 Test Results................................... 42

5. Discussion.. 49
5.1 English Alphabet Algorithms....................4 9
5.2 Expanded Alphabet Algorithms...................50

6. Conclusion.. 52
Appendix A: C-Language Implementation...................54
Appendix B: English Text Alphabet Frequencies...........72
BIBLIOGRAPHY... 73

iv

List of Tables

Table 4.1. Key to algorithm acronyms..................... 42
Table 4.2. Timed results, English alphabet algorithms.... 43
Table 4.3. Text accessed vs. total text.................. 44
Table 4.4. Ishift loop algorithms vs. no ishift loop..... 46
Table 4.5. Deltal algorithms vs. deltal and delta2.......4 6
Table 4.6. Quaternary expanded alphabet results.......... 47
Table 4.7. Binary expanded alphabet results.............. 48

v

Acknowledgments

This research paper is dedicated to Dr. Ron Wilson whose
work on nucleic acid sequence data manipulation served as the
motivation for this paper. His expertise on this subject led
to the expanded alphabet algorithms presented in this paper.

I would also like to dedicate the paper to Dr. Alden
Wright whose help and inspiration was invaluable during all
phases of my graduate studies.

Special thanks are due to my colleagues and friends Yu
Shi and Jeff Heng who showed me more computer tricks than T
can remember.

Finally, and most importantly, gratitude is due my
father, Jack Smith, who taught me how to read. Without that,
none of this would have been possible.

vi

Introduction

Searching strings for patterns has long been a
cornerstone of software methodology. So fundamental is the
pattern matching task that most large programs employ it in
one form or another. Pattern matching is in wide spread use
in text editors, word processors, bibliographic search, data
retrieval, symbol manipulation as well as specific
applications such as nucleic acid sequence manipulation,
speech recognition and the study of bird songs. The string
searching field is continually expanding as scientists develop
ways to encode their data so that it can be stored in a
computer's memory and manipulated by computer programs. Some
text strings exceed a million characters in length emphasizing
the need for fast and efficient string searching algorithms.

The following paper examines and develops string
searching algorithms with the intention of improving their
performance. Several existing algorithms are discussed
including the Knuth-Morris-Pratt (KMP) [3], the Boyer-Moore
(BM) [1] and Daniel M. Sunday's [8] algorithms. Several
variations of these algorithms are developed which exhibit
improved performance. One variation of the BM algorithm,
called str_search (ss), is easy to understand and code and is
very fast. It is empirically shown that all Boyer-Moore
algorithm versions are substantially faster than Sunday's
algorithms when searching English text. This is in
contradiction to Sunday's claims of superior performance for

1

2
his algorithms.

The main improvement in the performance of all the
algorithms studied is based on the 'fast loop', an idea
originally presented by Boyer and Moore. This loop takes
advantage of the right to left scan order of the BM algorithm
thereby enabling the pattern to move rapidly along the text
string whenever a mismatch occurs between the text character
aligned with the character at the right end of the pattern and
p[m-l]. Analogues of the 'fast loop' have been added to all
the algorithms resulting in a dramatic improvement in speed
and efficiency. Mysteriously, the 'fast loop' concept has
been virtually ignored by researchers and text book authors
since it was first introduced in 1977 by Boyer and Moore.

Combining some of the best ideas from separate algorithms,
a hybrid algorithm referred to as least frequent character
Boyer-Moore (LFBM), has been developed which is very fast and
efficient and relatively simple to understand and code. This
algorithm attempts to maximize the efficiency of the 'fast
loop' .

Special case algorithms which search strings of binary
and quaternary alphabets are given. These algorithms expand
2 and 4 character alphabets into a much larger alphabet
enabling them to process 8 and 4 characters at a time
respectively. Quaternary strings, i. e. strings over a 4
letter alphabet, are of special interest since they include
DNA and RNA base sequence strings. These algorithms are based

3
on the Boyer-Moore algorithm and have relatively fast run
times.

Finally, any algorithm which is carefully and efficiently
coded displays improved performance over many versions which
appear in the literature.

Chapter One
Existing Algorithms

The string matching problem is defined as follows. Given
two strings, the text string, t, and the pattern string, p,
find the first occurrence of the pattern in the text. The
pattern and text strings are considered to be arrays whose
elements are characters. The text is indexed from 0..n-l and
the pattern is indexed from 0..m-l and are of lengths n and m
respectively with n >= m, (in practice, n » m) . When an
occurrence of the pattern is found in the text, the text
string index of the character which aligns with the first
character of the pattern is returned. If no match is found,
-1 is returned. The term "false start" will be used for
situations where a pattern begins to match its current
alignment by matching individual text characters but then
encounters a mismatched character before completing the entire
match.

1.1 Brute Force
The obvious string searching method, referred to as brute

force (bf), searches for an occurrence of the pattern at each
position in the text string. Initially, the pattern is
aligned at the left end of the text so that text[0] is aligned
with pattern [0] . If the first comparison of characters is
successful, brute force proceeds rightward comparing
characters until either a match is found or a false start is

4

5
encountered. If the initial character comparison is a
mismatch or a false start is encountered, the pattern is
shifted one character to the right and the text string index
is reset to align with the leftmost pattern character. This
search scheme continues until a match is found or the text is
exhausted.

In practice, a mismatch is usually detected at the first
comparison position. However, in a situation where a pattern
of 'aaaab' is searched for in a text of 'aa....ab', a worst
case situation, brute force is clearly O(nm) [8]. This 0(nm)
worst case complexity results from the way the algorithm
behaves when a false start is encountered. When this occurs,
the index of the text string must be 'backed up' from the last
comparison position of the false start to the text character
which aligns with p [0]. For example, when trying to match the
pattern 'aaab' in the text string 'aaaaaaab', a mismatch is
first detected at t[3] where the text character 'a' is
mismatched with the pattern character 'b' . The pattern is
shifted right one character to check for the next potential
match. To resume character comparisons, the text string index
backs up to t[l] to compare text[l] with p [0]. Thus a total
of n*m comparisons will be made before a match is found. The
backing up of the text string index can lead to more serious
inefficiencies if the whole text string is not available in
memory and buffering operations are necessary. However, when
searching English text, brute force usually does not exhibit

6
this worst case behavior and its empirically determined
running time is 0 (n) [8]. Taking into consideration the ease
of coding and understanding, brute force is a good choice for
searching short strings.

The brute force algorithm follows:

i := 0; (* text string index *)
j := 0; (* pattern string index *)
repeat

if (text[i] = pattern[j])
then begin i := i + 1; j : = j + l end;
else begin

i := i - j + 2; (* back up! *)
j := 1end;

until (j >= pattern_length) or
(i >= text_length);

if (j = pattern_length)
then (* found a match *)

return (i - pattern_length)
else (* no match found *)

return -1

1.2 Kunth-Morris-Pratt
In 1977, Knuth, Morris and Pratt (KMP) [3], sought to

develop an algorithm which would avoid the brute force problem
of backing up in the text string, i. e. decrementing the text
string index. Once a comparison was made at t[i], for
example, all subsequent comparisons would occur at positions
>= i. This would hopefully yield an algorithm with a worst
case running time of 0 (n).

In analyzing the brute force algorithm, Knuth, Morris and
Pratt observed that when a false start occurs, information

7
about the text string has already been collected. Possibly
one can take advantage of this information to avoid backing up
in the text string.

The key to the KMP algorithm is a table which stores
values indicating how far to "slide" the pattern to the right
after a mismatch is encountered. This table, referred to as
the "next" table, can be referenced at the same position at
which a mismatch occurs in the pattern. For example, if a
mismatch occurs at p[j], the next table is referenced at
riexttj]. The next table value at this location indicates
where the pattern should be checked next. The pattern is then
aligned j-next[j] places to the right of the current alignment
relative to the text.

The idea behind the next table involves shifting the
pattern to the right in order to align already scanned and
matched text with the nearest matching prefix of the pattern.
When this shift occurs, it is also necessary to bring a
different pattern character into the new alignment than the
one which initially caused the mismatch. Once a new alignment
is determined, comparisons resume at the point of the initial
mismatch thereby avoiding any backtracking in the text string.
This results in an 0 (n) worst case search time. The next
table can be preprocessed from the pattern string in 0 (m) time
giving an overall worst case performance for the KMP algorithm
of 0 (n+m).

Nexttj] is thus defined as the largest integer i < j such

8
that p [0] ...p[i-l] is a suffix of p[0] ...p[j—1] and p [i] <>

p[j] •
Nexttj] can be computed by the following algorithm:

next[Q] := -1;
for j := 1 to pattern_length-l do

begin
i := next[j—1];
while(i >= 0 and pattern[i] <> pattern[j-1])

i := next[i];
next[i] := (i+1)

end;
(* this loop ensures that a different pattern

char is brought into the mismatched position *)
for j ;= 1 to pattern_length-l do

if (nexttj] <> 0) and
(pattern[j] = pattern[next[j]])

nexttj] := next[next[j]];

Sedgewick [6] has devised a method to enable one to
intuitively grasp the meaning of the next table. For any
pattern string, one can construct a table and scan over
prefixes of the pattern to determine the longest suffixes
which match a prefix of these partial patterns. Thus for the
pattern 'abcabcacab', we can construct the following table:

J p[Q..j-i]__________H i l1 a| 0
2 ab | 0
3 abcI 0
4 abcI a 1
5 abcIab 2
6 abcIabc 3
7 abc|abca 4
8 abcabcacl 0
9 abcabcac|a 1

F [0] is predefined as -1. Thus for every partial pattern

9
P [0..j—1] of the pattern, we can check for a longest possible
suffix which matches a prefix of that partial pattern. The
length of this longest suffix is the 'f' tables value for the
partial pattern p[0..j-l]. For example, for the pattern
prefix at j = 7, 'abcabca', the longest suffix is 'abca' which
is a prefix of 'abcabca'. This longest suffix is of length 4
so 4 is the 'f' value at that position, i. e. f[7] = 4.

This table however, does not take into account the fact
that the new alignment must have a different pattern character
brought into the position at the original point of mismatch.
Otherwise, there will be another immediate mismatch. This
problem is easily remedied by checking for each j whether p[j]
= p[f[j]]. If so, the f [j] value must be changed to f[f[j]].
The resultant table would then be the 'next' table:

j = 0 1 2 3 4 5 6 7 8 9
nexttj] = - 1 0 0 0 0 0 0 4 0 0

This adjustment is not necessary for the correct function of
the algorithm, however, it does add efficiency to its
operation.

The KMP algorithm improves worst case efficiency for the
string search by never backing up in the text string.
However, preprocessing the pattern to gain the 'next' shift
does not add significant speed for searching English text over
that of the brute force algorithm [6, 8] . For highly
repetitive patterns, the KMP algorithm will perform more
efficiently than brute force however, search time statistics

10
are typically dominated by the event of a mismatch at the
first character tested, p[0], [8]. In most applications, KMP
and brute force perform about the same [2, 6, 7, 8].
The kmp algorithm follows:

repeat
if (j = —1) (* had a mismatch at p[0] *)

then begin i := i + 1; j : = j + l end;
if < text[i] = pattern[j])

then begin i := i + 1; j := j + 1 end;
else (* (t[i] <> ptj])f a mismatch *)

j := next[j];
until (j >= pattern_length) and

(i >= text_length);
if (j >= pattern_length)

then (* found a match *)
return (i - pattern_length)

else (* no match found *)
return -1;

1.3 Boyer-Moore
Early pattern matching algorithms aligned the pattern

with the text and compared characters of the two strings in a
intuitive left to right order. In 1977, Boyer and Moore
discovered that more information could be gained about the
text string if a right to left scan order of the pattern was
used. In fact, using this protocol, many text characters can
frequently be skipped without any comparisons leading Boyer
and Moore to claim their algorithm to have "average"
sub-linear complexity [1].

The Boyer-Moore algorithm initially aligns the pattern

i := 0;
j :« 0;

(* the text string *)
(* the pattern string *)

11
and text strings at their left but compares t[m-l] with p[m-l]
first, then t[m-2] with p[m-2], etc., until either a match or
a mismatch is found. Typically a mismatch occurs at the first
comparison, t[m-l]. If character t[m-l] does not occur in the
pattern string, the pattern can be shifted m characters to the
right so that t[m] is aligned with p[0] . If the character
t [m—1] does occur in the pattern, the pattern is shifted right
so that character t[m-l] is aligned with the first right most
occurrence of that pattern character. This heuristic is known
as the deltal shift. Values for every character in the string
alphabet are contained in the array, deltal. Values for
deltal are determined by a precomputation of the pattern where
a deltal value is the distance a character is located from the
end of the pattern string. For example, for the pattern
string 'zipper', deltal[r] = 0, deltal[e] = 1, deltal[p] = 2,
delta [i] = 4, etc. If a character does not occur in the
pattern, then its deltal value is m.

The Boyer-Moore algorithm uses another precomputed table,
delta2, to help maximize shifts of the pattern after a
mismatch beyond the first comparison has occurred. This idea,
analogous to Knuth, Morrison and Pratt's 'next' table, is
computed by taking the already matched suffix of the pattern,
p, to the right of the first mismatched character and by
finding the next leftward occurrence of it in p. Sliding the
left occurring suffix into the position of the already matched
one gives a new alignment however, the character at the

12
mismatch position must be different from the original
mismatched pattern character. Both deltal and delta2 values
are functions of where the mismatch occurs in the pattern.
The new alignment is determined by incrementing the text
string index by the maximum of the deltal and delta2 shift
values.

The preprocessing of the pattern string to construct the
deltal and delta2 tables takes 0 (m) time. Therefore, the
Boyer-Moore algorithm has a worst case complexity of 0(n+m).
The Boyer-Moore algorithm follows:

i := pattern_length - 1; (* init text index *)
while (i < text_length)

begin
j := pattern_length - 1;
while (text[i] = pat[j])

begin
i := i - 1;
j := j - 1;
if (j < 0) (* found a match *)

return (i + 1)
end;

i := i + max(deltal[textti]], delta2[j])
end;

return (-1); (* no match found *)

1.4 Boyer-Moore Fast Loop
Once Boyer-Moore [1] established the heuristics for their

search algorithm, they began looking for ways to further
improve its performance. They observed that whenever a new
alignment is determined, there is about a 93% chance of a
mismatch at the first comparison using English text. To take

13
advantage of this high probability of mismatch, they coded
their algorithm so that in this most frequent case, the
algorithm stays in a simple loop that is coded with a small
number of machine instructions. They called this loop the
' fast loop' .

The main idea of the fast loop is to scan down the text
string incrementing the text index by the value deltal['text']
where 'text' is the text string character opposite p[m-l].
However, instead of using deltal, Boyer-Moore defined a new
table, deltaO, which contains the same values as deltal except
that deltaO[pattern[m-1]] is set to integer 'large' which is
greater than text length (n) + pattern length (m). (Recall
deltal[pattern[m-1]] is always 0). When a match opposite
p[m-l] occurs, the text string index is incremented by the
large value. At this point, the text string index exceeds the
text string length. This condition serves as the loop
terminator. Control can also leave the loop when the text
string is exhausted indicating no match was found. A test
follows the termination of the loop which determines whether
the text actually is exhausted or whether a hit with
pattern[m-1] occurred. If a hit has occurred, then the text
index is restored by subtracting the large value from the text
index and comparisons proceed.

While in the fast loop, a short pattern is typically
shifted m characters for most loop iterations. Boyer-Moore
estimate that 80 percent of the search time is spent in this

14
short loop. As a result, a majority of the text string
remains unexamined leading Boyer-Moore to claim their
algorithm to be sub-linear [1].

The following code segment is taken directly from the
Boyer-Moore paper [1] and illustrates the 'fast' loop:

i <— pattern length - 1
fast: i <— i + deltaO[text[i]]

if (i <= text length) then goto fast

The Boyer-Moore algorithm with a variation of the fast loop
follows. The array name deltal is used instead of the
Boyer-Moore name deltaO.

i := pattern_length - 1; (* init text index *)
if (pattern_length > text_length)

return -1; (* error check input *)
while (true)

begin
repeat (* 'fast' loop *)

i := i + deltal[text[i]];
until (i >= text_length);
if (i < deltal[pattern[pattern_length-l]])

(* text string expired *)
return -1; (* no match found *)

(* reset string indexes *)
i := i - deltal[pattern[pattern_length-l]];
j := pattern_length - 1;
while (text[i] = pattern[j]) do

begin
if (j = 0)

return i; (* match found *)
i := i - 1;
j := j - 1

end
if (deltal[textfi]] < delta2[j]) or

(deltal[text[i]] > pattern_length)

15
then i := i + delta2[j]
else i := i + deltal[text[i]]

end; (* while (true) *)

1.5 Sunday's Algorithms
In August, 1990, Daniel Sunday published a paper

entitled: "A very fast substring search algorithm" [8]. In
his paper, Sunday actually presents three algorithms all of
which he claims to out perform the Boyer-Moore algorithm.
They are: quick search, maximal shift and optimal mismatch.

Unlike the Brute Force (BF), the Knuth-Morris-Pratt (KMP)
and the Boyer-Moore (BM) algorithms, Sunday's algorithms do
not require the pattern to be searched in any particular
order. One can use a right to left search order like the BM
algorithm or a left to right order like KMP or any other
order. The scan order is stored in an array of records
'pattern[]'. Each record contains two fields: location and
character. The location field stores the actual index of the
character in the pattern string. Thus, for a BM scanning of
the pattern, 'string', the character 'g' would have location
5 but would be stored as the 0th element in the array of
records, each record of type 'PAT'.

Sunday's algorithms rely heavily on the BM and the KMP
algorithms for its searching conventions. Two tables are
defined: TD1 which is analogous to BM's deltal table and TD2
which is analogous to BM's delta2 and KMP's next tables. Both
tables are created by preprocessing the pattern string.

16
TD1 is computed by taking the distance of each pattern

character from the end of the pattern plus one. For example,
for the pattern 'string', TD1[g] = 1, TD1[n] = 2 etc. TDl
values are 1 greater than BM deltal values because when a
mismatch is encountered, the algorithm relies on the first
text character past the current alignment for the TDl index
and not the pattern character which caused the mismatch.
Since the TDl table is referenced by a character outside of
the current alignment, the TDl shift is independent of the
order in which the pattern is scanned.

The second table, TD2, is a function of the position in
p where a mismatch first occurs. TD2 is calculated after a
scan order of the pattern is determined. When a mismatch is
encountered, it is necessary that the TD2 shift give an
alignment such that a different pattern character than the
one which caused the mismatch be brought into the
corresponding text location. Otherwise, there would be
another mismatch. For an ordering of the pattern I[], TD2[j]
is defined as the minimum left shift such that
p [I[0]]...p[I[j—1]] match their aligned characters in the
pattern string but p [I[j]] does not. TD2[0] is predefined as
1.

If the pattern string is scanned left to right, then TD2
is KMP's next table. If the pattern string is scanned right
to left, then TD2 is similar to the BM delta2 table. For a
right to left scan order, TD2 values do not match BM delta2

17
values as one might intuitively expect. However, this
discrepancy is easily reconciled by examining how each
algorithm handles the pointer or index into the text string.
In Sunday's search algorithm, the text pointer, tx, points to
the position in the text which aligns with p[0]. As
comparisons proceed, 'tx' is not incremented, rather the
location field of the 'PAT' record is used as an offset to
check if individual characters match. If a false start is
discovered, tx is then incremented to point to the start of
the new alignment where the next check for a potential match
will occur. On the other hand, BM's text string index
initially points to the text character which is aligned with
p[m-l] and is decremented for each successful comparison.
When a false start occurs, it is incremented by the delta2
value corresponding to the location in the pattern of the
mismatched character. If these two very different protocols
are taken into account, the TD2 table and BM's delta2 table
are identical for the right to left scan order. An analogous
situation exists for a left to right scan order with KMP's
next table being identical to TD2.

As mentioned earlier, Sunday has developed three
algorithms: quick search (qs) , maximal shift (ms) and optimal
mismatch (om). Each algorithm is based on a different scan
ordering. Quick search is a brute force/Boyer-Moore hybrid.
It uses brute force's conventional left to right scan order
and the BM deltal analogue, TD1. Optimal mismatch and maximal

18
shift actually use the same search algorithm, however, they
both use an unconventional pattern scan ordering and the two
algorithms are quite different.

1.5.1 Quick Search
Quick search is basically the brute force algorithm with

the TD1 shift which adds considerable efficiency to the
search. Both pattern and text are initially aligned at the
left end of the strings (i. e., p [0] aligns with t[0]) and
scanning proceeds left to right. The pattern index is
incremented for every successful comparison and also is used
as an offset with the text string index which is only
incremented after a false start. When a false start is
encountered, the TD1 look up references the text character 1
character past the current alignment. This value is then
added to the text string index to give a new alignment which,
in turn, is checked for a match. The quick search algorithm
follows, [8] .

gotjmatch := false;
k := 0;

while (got_match = false) and (k + m <= n) do
begin

i := 0; (* init pat index for 1-r scan *)
while (i < m) and (p[i) = text[k+i]) do

i := i + 1; (* increment pat index *)
if (i = m) (* all pat chars match *)

then
got_match := true

else (* false start, shift pat *)
k ;= k + TD1[text[k+m]]

end;

19
if (got_match = true)

then QSearch := k (* match found at text[k] *)
else QSearch := -1 (* no match found *)

Sunday suggests that quick search can be improved by
adding the TD2 shift to the algorithm. This algorithm,
referred to as quick search 2, (qs2) , uses the pattern string
index at the place of mismatch for the index into the TD2
array. The maximum of the TD1 and TD2 shifts is then added to
the text string index. Any advantage gained in performance in
using a TD2 shift may be offset by the time lost in computing
TD2 .

1.5.2 Maximal Shift
The idea behind the maximal shift (ms) algorithm is to

maximize the TD2 shifts. A pattern scan ordering is created
where the pattern character whose next leftward occurrence is
a maximal distance is checked against its aligned text
character first. Of the pattern characters remaining, the
character whose next leftward occurrence is a maximum distance
is checked second etc. If a false start is encountered at a
subsequent comparison, then the TD2 shift will be maximized.

The ordering is computed by first calculating an array,
'Minshift', which holds the leftward distance to the next
occurrence for each character in the pattern. For example,
for the pattern: 'abcabcacdab', the Minshift array will
contain the values: 1 2 3 3 3 3 3 2 9 3 6 . The Minshift
array is then sorted into descending order and the

20
corresponding pattern characters and their locations in the
pattern string are stored in the array of records, 'pattern'.
This array will contain the values:

CHAR 1 d |i b | a |1 a !1 c 1 b I1 a I1 c I1 c 1 b |1 a I
LOC 1 8 |1 101 9 I1 6 j1 5 1 4 !1 3 I1 2 |1 7 1 1 11 0 |

Checking the character ' d' first, will give a maximal shift if
there is a mismatch past this character. Suppose the ' d'
character at position 8 in the pattern matches the
corresponding text character. As further comparisons proceed,
if any mismatch is encountered, the pattern can be shifted 9
positions before the possibility of a 'd' character in the
text comes into a position to match the 'd' of the pattern.
Notice that if two pattern characters have the same leftward
shift, the BM scan order is used and the right most character
is checked first.

1.5.3 Optimal Mismatch
The idea behind the ordering of the optimal mismatch (om)

algorithm is to compare characters in the pattern which occur
the least frequently in English text first. This increases
the probability of finding a mismatch early in text-pattern
comparisons and results in greater efficiency. The ordering
of the pattern is easily calculated by referencing a table of
alphabet frequencies for English text. Characters are
arranged in order of increasing frequency. For example, for

21
the pattern string 'extraordinary', the ordering would be:

CHAR 1 x | y 1 d | n 1 O 1 t 1 r | r 1 r | i 1 a I a I e |
LOC 1 1 I 12 1 7 | 9 1 5 1 2 1 HI 6 1 3 | 8 1 10| 4 | 0 |

lote, if two or more of the same letter occurs in the pattern,
the BM scan order is applied and the right most occurrence is
checked first.

Checking the character least likely to occur first can
dramatically improve performance. The most frequently
occurring character, 'e', has about a 10 percent occurrence
rate. Furthermore, about 20 percent of English words end in
the letter ' e' [8] . Using the BM right to left scan order
increases the likelihood of a match at this first comparison
whereas using the om heuristic minimizes this probability.
Sunday has estimated that the average ratio of the text
occurrence probability of the last letter of a word to the
least likely letter in it is almost 5. Therefore, if the
least likely letter of a word is tested first, it is 5 times
more probable that it will produce a mismatch.

The search algorithm for the maximal shift and the
optimal mismatch scan orders follows.

got_match ;= false;
k := 0;
while (got__match = false) and (k + m <— n) do

begin
j := 0; (* init pat index for scan *)
while (j < m) and

22

(Ptl[j]3 = text[k+Itj]]) do j := j + 1; (* increm pat index *)
if (j = m) (* all pat chars match *)

then got_match := true
else (* false start *)

begin (* shift pattern *)
deltal := TD1[text[k+m]];
delta2 := TD2[j];
k := k + max (deltal, delta2) ;

end;
end;
if (got_match = true)

then QSearch := k (* match found *)
else QSearch := -1 (* no match found *)

1.6 Scan Least Frequent Character
When searching English text for an occurrence of a

pattern, it may increase search efficiency to check the text
first for an occurrence of the least frequently used English
text character in the pattern. For example, if the pattern is
the English word 'extra', it would be most efficient to check
the text for an occurrence of the character 'x' first. Brute
force looks first for an occurrence of the character 'e' which
is the most commonly used letter in English text, occurring
once about every ten characters. The character 'x', however,
occurs about once in every 33 letters [8]. This increases the
likelihood of mismatches at the first comparison therefore
decreasing the number of false starts which improves the
efficiency of the algorithm.

This algorithm, scan least frequent character (slfc),
first preprocesses the pattern string to determine the least
frequently used character as well as its offset from the start

23
of the pattern, p [0]. This least frequent character is then
concatenated onto the end of the text string at
text[text_length] to prevent the text string index from
running off the end of the text in case a match is not found.
With these preliminaries aside, the algorithm enters a loop
which scans the text string left to right searching for an
occurrence of the least frequent pattern character. When such
an occurrence is located, the loop is terminated and a check
for end of text is made. If text still remains, comparisons
proceed left to right until either a match is found or a false
start is detected. If a false start is encountered, the text
index is incremented by one and the search resumes by
reentering the loop which scans the text string for the least
frequent character. The only added information needed for the
algorithm is a table of English text alphabet frequencies.
This is easily computed by running an information gathering
program on a large volume of English text. Such a table is
given in the appendix.

The scan for least frequent character algorithm which
follows is based on a similar algorithm by Horsepool [2].

if (pattern_length > text_length)
return -1; (* failed to match *)

least_freq := 25.0; (* 25.0, an init dummy value *)
(* find least frequent char *)
for j := 0 to pattern_length-l do

if (Freqt pattern[j]] < least_freq)
begin

least_freq := Freq[patterntj]];
char := pat[j]; (* store lfc in char *)

24
k := j (* store offset of lfc in k *)

end;
i := k; (* initialize text index *)
text[text_length] := char; (* cat char onto text *)
repeat

while (text[i] <> char) (* search for lfc *)
i := i + 1;

if (i >= text_length) (* match not found *)
return —1;

j := 0; (* init pat pointer *)
temp_i := i; (* store text index *)
while (text[i - k] = pattern[j]) and

(j < pattern_length) do
begin

i := i + 1;
j := j + 1

end;
if (j = pattern_length) (* found a match *)

then return (i - k - pattern_length);
i := temp_i + 1; (* continue search at i+1 *)

until (true);

Chapter Two
Algorithm Refinements

2.1 The Ishift Loop
In their original paper, Boyer and Moore showed that the

performance of their algorithm could be improved dramatically
when implemented with the fast loop. Therefore, a loop
analogous to the fast loop has been used to improve the
performance of a variety of algorithms. This loop is referred
to as the 'ishift' loop. The loop is essentially a reworking
of the 'fast' loop, the only difference being the absence of
the 'large' value. Algorithms which use the ishift loop keep
the value 0 at the deltal[pattern[m-1]] position. The loop
condition then becomes: while (ishift <> 0). The ishift
value must be primed before the loop condition is initially
tested. Once the loop is entered, the text index is
incremented by the ishift value. A new ishift value is then
fetched from deltal using the text character opposite p[m-l]
as the deltal array index. An example of the ishift loop
follows:

i := pattern_length - 1; (* init text index *)
ishift := deltal[text[i]]; (* prime ishift *)
while (ishift <> 0) (* the ishift loop *)

begin
i := i + ishift;
ishift := deltal[text[i]];

end;

By omitting the large value, it is now possible to

25

26
increment the text index past the end of the text string if a
match is not present. To offset this problem, the pattern can
initially be concatenated onto the end of text string and when
matches are found past the actual text length, a failure is
reported. Another way to deal with this problem is to add
another condition to the ishift loop: while (ishift <> 0 AND
text__index <= text_length) . However this solution is not the
most efficient because it adds another condition to a part of
the algorithm which is frequently executed. Yet another way
to cope with the problem of going off the end of the text is
to concatenate null values on the end of the text string.
These null values would then have corresponding values of -1
in the deltal array. The ishift loop condition now becomes:
while (ishift > 0).

The ishift loop can be employed in any algorithm which
uses a deltal or TDl table. Even if a deltal table is not
used, an analogous idea can be employed to take advantage of
mismatching at the first character position. For example, in
the KMP and BF search, p[0], the first character of the
pattern can be checked against the present text position.
While these two characters are not equal, the text index can
be incremented. As with the ishift loop, care must be taken
to not ."run off" the end of the text string. The ishift
analogue for the KMP and BF algorithms follows:

first_pattern_char := pattern[0];
i := 0;

27
while (text[i] <> first pattern char) do

i := i + 1;

These modifications greatly enhance the performance of
the algorithms. When the loop is executing, the text string
index is rapidly moving down the text string scanning for a
hit with the appropriate pattern character. As long as this
pattern character is not found, the text index continues to be
incremented. Only when the target pattern character is found
do text-pattern comparisons actually take place.

2.2 The Str_Search (ss) Algorithm
To quickly and easily code a fast string search

algorithm, the BM algorithm with one delta table, deltal, can
be implemented with the 'ishift loop' to give very good
overall performance. No delta2 table is used.

This algorithm concatenates the pattern onto the end of
the text string to prevent running off the end of the text
while in the ishift loop. If a character match occurs between
the last pattern character and the aligned text character, the
ishift loop is exited and comparisons proceed in the right to
left BM order. If a false start is encountered, the text
string index is incremented by the maximum of deltal [text[i]
] and m - j where i and j are the text and pattern string
indexes of the characters which caused the mismatch.

The ss version of the BM algorithm is kept simple and
short to facilitate ease of coding and understanding while at
the same time it retains over all performance as good as any

28
other algorithm.

The ss algorithm follows:

j := 0;
(* concat pattern onto text *)
for i := text_length to (text_length +

pattern_length - 1) do
begin

text[i] := pattern[j];
j := j + 1

end;
i := pattern_length - 1; (* init text string index *)
while { i < text_length) (* while more text remains*)

begin
ishift := deltal[text[i]];
while (ishift <> 0) (* ishift/fast loop *)

begin
i := i + ishift;
ishift := deltal[text[i]];

end
if(i < text_length) (* text still left? *)

begin
j := pattern_length - 1;
repeat (* make r—1 comparison*)

i := i - 1;
j := j - 1;until (j < 0) or

(text[i] <> pattern[j]);
if (j < 0)

then (* match found *)
return i + 1;

else
(* false start; incr text index *)

if (deltal[text[i]] >
pattern_length - j)

then i := i +
deltal[text[i]];

else i := i +
pattern_length - j;

end (* if *)
end (* while *)

return (-1); (* failed to match *)

29
2.3 A Fast Loop Analogue For Sunday's Algorithms

An analogue of the BM fast loop has been added to the
three algorithms developed by Sunday [8] . The addition of
this loop shows a marked improvement in the algorithms
performance. All three algorithms have been altered in the
same way by the addition of the following lines of code:

i : = 0;
j := 0;
while (text[i] <> pattern[j]) do

i := i + TD1[text[i + pattern_length]];

This loop, like Boyer-Moore's fast loop, takes advantage
of the likelihood of a mismatch at the first comparison
location. It therefore checks that the characters do indeed
mismatch and if they do, the text index is incremented by the
TD1 value. This value will usually increment the text index
by m allowing much of the text string to be skipped over
without any comparisons whatsoever. Only when the text
character aligned with the first pattern character match do
further comparisons take place.

Chapter Three
Other Algorithms

3.1 Least Frequent Character/Boyer-Moore Hybrid
In an attempt to create even faster more efficient string

searching algorithms, some of the better ideas from two of the
algorithms have been synthesized. The least
frequent/Boyer-Moore algorithm (lfbm) is essentially a
reworking of the Boyer-Moore algorithm with one delta table,
deltal. The algorithm uses the 'ishift' loop to scan down the
text string as efficiently as possible. If the loop
terminating condition is encountered, (ishift = 0), the first
character comparison made is the character in the pattern
which occurs least frequently in English text. If this
comparison is a mismatch, the text string index is incremented
and the ishift loop is immediately reentered. If the least
frequent character comparison is a match, comparisons then
proceed in a right to left, Boyer-Moore fashion until either
a match is found or a mismatch is detected. If the condition
is a false start, the text index is incremented by the deltal
value fetched from deltal[j] where j is the pattern string
index of the character which caused the mismatch.

This algorithm attempts to discover false starts as early
as possible, thus avoiding needless comparisons. As soon as
a single character match at the right end of the current
alignment is detected, (i. e. ishift = 0), the algorithm then
checks if the text character opposite the least frequent

30

31
pattern character matches. If the characters match, there is
a high probability the current alignment will yield a match
thus avoiding a false start. If there is a mismatch after
this single comparison, the ishift loop is immediately
reentered and the search for the next potential match
alignment resumes.

The scan least frequent character/Boyer-Moore algorithm
follows:

(* error check input *)
if (pattern_length > text_length)

return -1;
j := 0; (* concat pattern onto text *)

for i := text_length to
(text_length + pattern_length - 1) do

begin
text[i] := pattern! j];
j := j + 1

end;
temp_freq := 25.0; (* init temp_freq w/ dummy *)
(* find least freq char *)
for j := 0 to pattern_length - 1 do

if (Freq! pat[j]] < temp_freq)
begin

temp_freq := Freq! pat[j]];
k ;= j (* store offset from p10) *)
least_freq_char := pat[j];

end;
(* store offset from p[pattern_length-l] *)
from_jpattern_end := pattern_length - k - 1;
while (i < text_length) do

begin
repeat

repeat (* ishift loop *)
ishift := deltal[i];
i := i + ishift;
(* until t[i] = p[plen-l] *)
until (ishift = 0);

32
(* check if least freq char matches *)
if (text[i - from_pat_end] =

least_freq_char)
begin

temp_i := i; (* store text index*)
break;

end;
i := i + deltal[i+1]; (* reset text index*)

until (true) (* leave loop via break only *)
if (i >= text_length) (* gone off end text *)

return -1; (* no match found *)
j := pattern_length - 1; (* init pat index *)
repeat (* make right to left compar *)

i := i - 1;
j := j - 1;

until (j < 0) or (text[i] <> pattern[j]);
if (j < 0) then (* found a match *)

return (i + 1)
else (* a false start *)

begin
i := temp_i; (* retrieve text index *)
i ;= i + deltal[i+1];

end;
end;

3.2 Expanded Alphabet
Not all string searching tasks involve looking for

English words in English language text. In nucleic acid
sequence manipulation, for example, pattern strings consisting
of only four characters, A, C, G, and T, are searched for in
text of the same alphabet size. Another useful string
searching application involves searching binary strings. Both
these applications involve small alphabets. The following is
a discussion of the Boyer-Moore algorithm applied to these
string searching problems. The BM algorithm has been modified
to add efficiency to the string search when a small sized

33
alphabet string is searched.

3.2.1 Quaternary Alphabet
When searching strings composed of a small alphabet, the

chances of a mismatch at the first comparison are greatly
reduced, thus reducing the amount of text the Boyer-Moore
algorithm can skip over. When working with a four character
alphabet: {A, C, G, T}, one can easily expand the alphabet
into a 256 character alphabet by examining four characters at
a time. With 'A' encoded as 00, 'C' as 01, 'G' as 10 and 'T'
as 11, four character chunks of the text can be encoded into
an eight bit binary word which indexes an array with bounds
0..255. The Boyer-Moore deltal and delta2 tables can be used
along with a third table, delta3. The delta3 shift handles
cases where some or all of the first three characters of the
pattern occur in the mismatched portion of the text.

The deltal array is built by encoding four character
chunks of the pattern and using these encodings as the indexes
into the array. These four character chunks will be referred
to as 'quadruplets'. The actual deltal values are determined
the same way they are determined in the 'traditional'
Boyer-Moore algorithm, i. e. by computing the distance from
the right end of the quadruplet to the end of the pattern.
For example, the right most quadruplet, p[m-4]..p[m-1] has a
deltal value of 0. The next quadruplet to the left, p[m-5] to
p[m-2] has a deltal value of 1 etc. The leftmost quadruplet,
p[0] to p [3], has as its value the distance from p[3] to

34
p[m-l]. All other quadruplets which do not exist in the
pattern take a deltal value of m.

Since the deltal array is indexed with quadruplets only,
it is necessary to define a delta3 shift for the three
characters at the far left of the pattern: p[0], p[l], p[2].
For example, for a pattern beginning with ' acg ' of length
10, delta3[aacg] = delta3[cacg] = delta3[gacg] = delta3[tacg]
= 7. Using the same example, delta3[aaac] = delta3[acac] =
delta3[agac] = delta3[atac] = delta3[caac] =
delta3[ttac] = 8, etc. Thus for every {A, C, G, T}
permutation of length 3 followed by p[0], there is a delta3
entry for that quadruplet equal to m-1. For every permutation
of length 2 followed by p[0], p[l], there is a delta3 entry
for that quadruplet equal to m-2 etc.

A delta4 table has also been defined which is
minimum(deltal, delta3) to streamline the search. Now, if the
following alignment is encountered, a reference to the delta4
array will provide the proper shift.

text: ...ttacgt
pattern: acgt

The text string quadruplet 'ttac' does not exist in the
pattern, therefore its deltal value is m which in this case is
4. For the same text substring, there is a delta3 entry of 2.
Then minimum (4, 2) = 2 which is the proper shift and the
correct match will be found.

With this bookkeeping aside, one can preserve the
efficiency of the Boyer-Moore algorithm by coding the 'fast'

35
loop which enables the algorithm to skip over text without
doing comparisons. However, instead of using a 'large' value,
the deltal table remains unaltered and the value of 0 at
deltal[p[m-4]..p[m-1]] serves as the loop terminator. To
prime the loop, the right most four characters of the text
which line up with the pattern are encoded. Using this
encoding as an index into delta4, the delta4 value is fetched
and the text index is incremented by that value. When this
shift value becomes 0 or the text is exhausted, the loop is
exited. If text remains and the shift value equals 0, there
is no need to check the current quadruplet for a match since
the deltal value is 0. Comparisons then begin four characters
to the left of the current text index. Comparisons proceed
leftward until either a match is found or a mismatch is
discovered. If a mismatch is encountered, delta2 is
referenced using the pattern string index of where the
mismatch occurred and that delta2 value is added to the
current text index. Deltal is not referenced because the
lookup requires a four character encoding. We therefore
settle for the delta2 shift in place of the Boyer-Moore
maximum (deltal, delta2) . The search is then resumed with this
new text index. The algorithm for the quaternary alphabet
string search follows:

i := pattern_length - 1; (* init text index, i *)
while (true)

begin
if (i > text_length) (* end of text? *)

36
return -1;

encoded 4 := 0;
(* then no match *)
(* init encoded 4 *)

encoded_4 := encoding of
text[i — 3]..text[i];

ishift := delta4[encoded_4]; (* init ishift *)
while (ishift > 0 and i < text_length)

begin (* BM's 'fast' loop analogue *)
i := i + ishift;
encoded_4 := 0;
encoded_4 := encoding of

text[i - 3]..text[i];
ishift := delta4[encoded_4];

end;
i := i — 4; (* since ishift = 0 then *)
j := pat_length - 5; (* last 4 chars match *)
while (true)

begin
if (j = -1)return (i + 1); (* match found *)
if (text[i] = pattern[j]) then

begin

i := i + delta2[jl; (* increment text index *)
end;

3.2.2 Binary Alphabet
Using the same methods of the expanded alphabet algorithm

for a four character alphabet, an algorithm which expands the
binary alphabet: {A, T} has been encoded. The characters A,
T have been chosen for the binary alphabet instead of the
traditional {0, 1} to facilitate comparisons with the A, C,
G, T algorithm. Random strings composed of {A, T} can be
generated [4] and both the quaternary and the binary alphabet
algorithms can be executed using these strings as input.

j := j - 1;
i := i - 1;

end;
else break; (* a false start *)

end;

37
The binary algorithm encodes A as 0 and T as 1 and

examines eight character chunks at a time making an alphabet
of size 256. This expanded binary alphabet algorithm is
essentially a two character reworking of the quaternary
algorithm described above.

3.3 Sunday's Quick Search With Two Tables
In Sunday's [8] discussion of his quick search (qs)

algorithm, he mentions that performance may be enhanced if one
augmented the algorithm with the TD2 table. A quick search
algorithm with two tables has been implemented and is called
quick search2, (qs2). The TD2 shift is employed only when a
false start is encountered. When this condition occurs, the
text index is incremented by the maximum of TDl[text[i+m]]
and TD2[j] where i is the text index opposite p[0] and j is
the pattern index of the pattern character which caused the
mismatch.

This algorithm, along with Sunday's original quick
search, are well suited to illustrate the tradeoffs of the
disadvantage of taking the additional time to preprocess the
pattern to make the TD2 table versus the advantage gained
during the search of having the TD2 shift.

Chapter Four
Testing

4.1 Test Driver
To test each algorithm, a driver program was constructed

and coded in C to call each search function and collect
statistics on the algorithm's performance. These statistics
include: the location of the pattern in the text string or -1
if the search failed, the time elapsed for the algorithm to
complete the search, the number of times the text string was
accessed and the total amount of text the search passed in
order to complete the search. After having executed the
algorithms, the driver outputs all the statistics pertaining
to the search. The driver also has exception handling built
in to flag conditions where one algorithm reports a different
result than another. As new algorithms are developed and
'plugged in' to the driver, this exception handling capacity
greatly aids the debugging process.

To invoke all the algorithms from within a common
programming block, an array of pointers was set up containing
a pointer to each search function. Each algorithm resides in
a separate file and has a common interface. That interface
contains four parameters: the text string, the text length,
the pattern string and the pattern length. When text accesses
are tallied, two more parameters are added to the interface:
text accessed and the total amount of text involved in the

38

39
search. All algorithms call subsidiary functions, such as
pattern preprocessors, from within their own module. Search
functions are declared as type 'integer' and return a -1 for
a failed search or the text string index of where a successful
search originated.

For each iteration through a standard 'for' loop, a
different search function is called. Another loop is embedded
within the outer loop which allows the driver to search a text
file for several patterns sequentially. For each iteration
through the inner loop, a new pattern is fetched and the
current search algorithm is invoked. The patterns are stored
in a separate file and must be separated by carriage returns.
This allows each search algorithm to search a text file for as
many patterns as desired. The total amount of time taken to
find all pattern (non)-occurrences is stored for each
algorithm as well as cumulative text accesses to total text
ratios.

When any search function is added or deleted to/from the
driver, only three changes need be made. A constant,
NUM_ALGS, must be altered to reflect the new number of search
algorithms to be executed. The name of the search function (s)
must be added to the function pointer array and a string, an
abbreviation of the algorithm name, to be printed out when the
driver terminates, must be added to an array of function name
strings.

The algorithm for invoking the search functions and

gathering all statistics follows:
40

for i := 1 to NUMBER_ALGORITHMS do
begin

total_time := 0.0;
for k := 1 to number__patterns do

begin
get_next_pattern(next_pattern);
Plen := strlen(next_pattern);
total_text ;= text_accessed ;= 0;
if (i = 1) then

begin (* first alg run *)
before_time ;= get_time();
/* str search function call */
answers[k] := fn_ptr_array[i]

(text, Tien, pat, Plen);
after_time := get_time();

end
else (* i > 1, all other algs *)

begin
before_time := get_time();
answer := fn_ptr_array[i]

(text, Tien, pat, Plen);
after_time ;= get_time();
/* error check; same results?*/
if answer <> answers[k]

print "*****ej'ror*****n;
end

(* accumulate run time statistics *)
total_time := total_time +

after_time - before_time;
frac_totals[Plen][i] ;=

frac _totals[Plen][i] +
text_accessed / total_text;

end (* inner loop *)
time[i] := total_time;

end (* outer loop *)

4.2 Test Methodology
Test runs were performed on all algorithms using a

DECStation 5500 RISC machine. The test file used for the
English text algorithms is the file 'words' found in the

41
"/usr/dict" directory on UNIX systems. It contains all words
used on the UNIX system for spelling checks. The text string
consisted of the entire 'words' file concatenated together.
The patterns searched for were each individual word from the
'words' file. Random text and pattern strings were generated
to test the expanded alphabet algorithms [4].

All algorithms were implemented in the programming
language 'C', (a listing of the algorithms is given in the
appendix). Three versions of each algorithm were tested: an
array version and a pointer version which were both timed, and
an untimed pointer version which counted text accesses.

Two statistics were collected to judge the performance of
algorithms: time of execution, in l/60ths second, and text
string accesses versus total text passed in the search. The
time of execution is machine dependent while the amount each
algorithm accesses the text string in machine independent.
Text accesses were counted whenever a comparison between a
pattern character and text character occurred as well as any
time a text character was used in a deltal array look up.
Listing 4 in the appendix contains a C code function version
which illustrates how the text accesses and total text
variables were counted.

The results of these tests follow.

42
4.3 Test Results

Table 4.1. Key to algorithm acronyms
ACGT: expanded/quaternary alphabet, 1 delta table
ACGT2: expanded/quaternary alphabet, 2 delta tables
BF: brute force
BFI: brute force with ishift loop analogue
BIN: expanded/binary alphabet, 1 delta table
BIN2: expanded/binary alphabet, 2 delta tables
BM1F: Boyer-Moore, 1 delta table, fast loop
BM1S: Boyer-Moore, 1 delta table, no fast loop
BM2F: Boyer-Moore, 2 delta tables, fast loop
BM2S: Boyer-Moore, 2 delta tables, no fast loop
KMP: Knuth-Morris-Pratt
KMPI: Knuth-Morris-Pratt with ishift loop analogue
LFBM: least frequent Boyer-Moore
MS: maximal shift
MSI1: maximal shift, 1 delta table, ishift loop
MSI2: maximal shift, 2 delta tables, ishift loop
OM: optimal mismatch
0MI1: optimal mismatch, 1 delta table, ishift loop
0MI2: optimal mismatch, 2 delta tables, ishift loop
QS: quick search
QSI1: quick search, 1 delta table, ishift loop
QSI2: quick search, 2 delta tables, ishift loop
QS2: Sunday's quick search with 2 delta tables
SLFC: scan least frequent character
SS: string search; (simplified Boyer-Moore)

43

Table 4.2. Timed results, English alphabet algorithms

Pointer Versions Array Versions
LFBM 151.7 LFBM 164 .8
SS : 178.0 SS: 189.7
0MI1 190.8 MSI1 203.4
MS 11 192.0 BM1F 204 .5
BM1F 194.6 OMI1 204.6
QSIl 194.7 QSIl 205.2
0MI2 197.6 MSI2 209.4
MSI2 200.2 OMI2 210 .0
QSI2 201.7 BM2F 211.5
BM2F 202.8 QSI2 211.9
BM1S 269.2 BM1S 290 .7
QS: 316. 6 QS: 294.9
SLFC 342.4 QS2 : 381.3
BFI: 375.6 BM2S 386.3
BM2S 386.2 OM: 451.6
KMPI 391.3 MS : 457 .7
QS2 : 415. 9 SLFC 469.0
OM: 456.8 BFI: 505.2
MS: 458 . 6 KMPI 517 .4
BF: 1014.5 BF: 1076.3
KMP: 1482.1 KMP: 1402 .4

44

Table 4.3. Text accessed vs. total text passed in search

TEXT ACCESSES/TOTAL TEXT

'kic'k'k'k'k'k'k'k'k'k'k'k^'k'k'kii'k'k'k'k'k'k'kic'k'k'k'kic'k'kic'k'kic'k'k'k'k'k'k'k'k'k'k'k'kic-k'k'k'k-k'k'k'k'k'k

The total number of words is: 24474
Plen Words msil/2 om/ms omil/2 qs ss lfbm bmlf/2 bmls2
1 26 1.08 1.03 1.08 1.08 1.00 1.09 1.05 1.03
2 91 0.73 0.71 0.74 0.76 0.56 0.56 0.57 0.72
3 759 0.57 0.56 0.57 0.59 0.40 0.40 0.41 0.57
4 2142 0.47 0.46 0.47 0.49 0.31 0.31 0.32 0.48
5 3097 0.40 0.40 0.41 0.42 0.26 0 .25 0 .27 0.41
6 3796 0.36 0.35 0.36 0.37 0.23 0.22 0 .24 0.37
7 4045 0.32 0.32 0.32 0.34 0 .20 0 .20 0.21 0.33
8 3578 0.30 0.29 0.30 0.31 0.18 0.18 0.19 0.31
9 2970 0.28 0.27 0.28 0.29 0.17 0.16 0.18 0.29

10 1890 0.26 0.26 0.26 0.28 0.16 0.15 0.17 0.27
11 1072 0.25 0.24 0.25 0.26 0 .15 0.15 0.16 0.26
12 547 0.24 0.23 0.24 0.25 0.14 0.14 0.15 0.24
13 275 0.23 0.22 0.23 0.24 0.14 0 .13 0.14 0.24
14 111 0.22 0.21 0.22 0.23 0.13 0.13 0.14 0.23
15 41 0.21 0.20 0.21 0.22 0.12 0.12 0.13 0.22
16 17 0.20 0.19 0.20 0.21 0.12 0.12 0.13 0.21
17 8 0.19 0.18 0.19 0.20 0.11 0.11 0.12 0.20
18 5 0.19 0.18 0.19 0.20 0.10 0.10 0.11 0.18
20 1 0.19 0.17 0.19 0.20 0.10 0.10 0.10 0.18
21 2 0 .17 0.16 0.17 0.18 0.09 0.09 0.09 0.17
22 1 0.16 0.15 0.16 0.17 0.08 0.09 0.09 0.16
the number of mis matches = 0

45

Table 4.3. Text accessed vs. total text (cont)

TEXT ACCESSES/TOTAL TEXT

The total number of words is : 24474
Plen Words kmp kmpi bf bf i slfc
1 26 1.06 1.12 1.00 1.05 1.05
2 91 1.04 1.04 1.04 1.04 1.03
3 759 1.04 1.04 1.04 1.04 1.04
4 2142 1.04 1.04 1.04 1.04 1.04
5 3097 1.04 1.04 1.05 1.05 1.03
6 3796 1.04 1.04 1.05 1.05 1.03
7 4045 1.04 1.04 1.05 1.05 1.03
8 3578 1.05 1.05 1.05 1.05 1.03
9 2970 1.05 1.05 1.06 1.06 1.03

10 1890 1.05 1.05 1.06 1.06 1.03
11 1072 1.06 1.06 1.06 1.06 1.03
12 547 1.06 1.06 1.07 1.07 1.03
13 275 1.06 1.06 1.07 1.07 1.03
14 111 1.06 1.06 1.07 1.07 1.03
15 41 1.07 1.07 1.08 1.08 1.02
16 17 1.07 1.07 1.08 1.08 1.02
17 8 1.06 1.06 1.07 1.07 1.02
18 5 1.09 1.09 1.10 1.10 1.03
20 1 1.10 1.10 1.11 1.11 1.02
21 2 1.09 1.09 1.09 1.09 1.03
22 1 1.10 1.10 1.11 1.11 1.02
the number of mis matches = 0

46

Table 4.4. Ishift loop algorithms vs. no ishift loop

NO ISHIFT ISHIFT
OM: 456.8 OMI1: 190.8

OMI2 : 197.6
MS: 458.6 MSIl: 192.0

MS 12 : 200.2
BM1S: 269.2 BM1F: 194 . 6
BM2S: 386.2 BM2F: 202.8
QS: 316. 6 QSIl: 194 .7
QS2: 415.9 QSI2 : 201.7
BF: 1014 .5 BFI: 375.6
KMP : 1482.1 KMPI: 391.3

LFBM: 151.7
SS : 178.0
SLFC: 342 .4

Table 4.5. Deltal algorithms vs. deltal and delta2

DELTA1 DELTA1,DELTA2
OMI1 : 190.8 OMI2 : 197.6
MSIl: 192.0 MSI2 : 200.2
BM1F: 194. 6 BM2F : 202.8
QSIl: 194 .7 QSI2 : 201.7
BM1S: 269.2 BM2S: 386.2
QS: 316. 6 QS2: 415. 9
LFBM: 151.7
SS: 178.0

OM: 456.8
MS: 458.6

47

Table 4.6. Quaternary expanded alphabet results

POINTER VERSIONS: { A, C, G, T }

TIMES
plen fwords ss-time acgt-time acgt2--
50 500 1.3 0.6 0.7
100 500 3.0 0.9 1.0
150 500 3.9 0.9 1.0
200 500 5.5 1.0 1.2
450 500 12 . 6 1.7 2.1

**

ARRAY VERSIONS: f A. C, G, T }

TIMES
plen fwords ss-time acgt-time acgt2-
50 500 1.3 0.6 0.7
100 500 3.0 0.9 1.0
150 500 3.9 0.9 1.0
200 500 5.5 1.0 1.2
450 500 12.6 1.7 2.1

TEXT ACCESSED/TOTAL TEXT
plen fwords ss-acc acgt-acc acgt2-
50 500 .53 .1 .1
100 500 .54 .06 .06
150 500 .53 .05 .05
200 500 .52 .04 .04
450 500 .53 .03 .03

* *

48

Table 4.7. Binary expanded alphabet results

POINTER VERSIONS: f A. T >

TIMES
plen fwords ss-time acgt/2--time bin/2-time
50 500 5.9 1.4 / 1.3 0.8 / 0.7
100 500 12.1 2.6 / 2.1 0.9 / 1.0
150 500 17.6 4.0 / 2.8 1.0 / 1.2
200 500 24 .5 5.3 / 3.5 1.3 / 1.4
450 500 55.1 12.6 / 7.2 2.1 / 2.5

* *

ARRAY VERSIONS : { A, T }

TIMES
plen fwords ss-time acgt/2-time bin/2-time
50 500 5.0 1.5 / 1.3 0.8 / 0.8
100 500 9.6 2.7 / 2.1 0.9 / 1.0
150 500 14 .4 4.0 / 2.8 1.0 / 1.2
200 500 23.0 5.6 / 3.6 1.2 / 1.4
450 500 50 .2 14.1 / 8.1 2.5 / 3.0

TEXT ACCESSED/TOTAL TEXT
plen fwords ss-acc acgt/2-acc bin/2-acc
50 500 1.92 .34 / .27 .20 / .19
100 500 1.98 .32 / .23 .11 / .11
150 500 1.92 .33 / .21 .08 / .08
200 500 1.98 .32 / .20 .07 / .07
450 500 1.97 .32 / .17 .05 / .05

* *

Chapter Five
Discussion

5.1 English Alphabet Algorithms
The least-frequent-Boyer-Moore (lfbm) and str_search (ss)

outperform all other algorithms tested. Lfbm performs the
best in both timed runs and as well as the text accessed
versus total text measure. Other strong algorithms include
optimal mismatch and maximal shift with ishift loop (omil,
omi2, msil, msi2), Boyer-Moore fast with ishift loop (bmlf,
bm2f) and quick search with ishift loop (qsil, qsi2).

Adding the ishift loop to any string searching algorithm
dramatically improves performance. In most cases, algorithms
with an ishift loop improve running times by a factor of 2.
In the case of Knuth-Morris-Pratt, the algorithm with the
ishift loop analogue runs more than three times faster than
the "standard" KMP algorithm. Sunday's algorithms all run
approximately 2.5 times faster with the ishift loop. Text
accesses however, are not different between versions with the
ishift loop and those without. When iterating in the ishift
loop, the text string still must be accessed in order to
lookup the ishift value in the deltal table.

The tests conducted show that adding a delta2 table to
any algorithm does not improve performance. In all cases,
versions with a deltal table outperform versions with both a
deltal and a delta2 table. This includes Sunday's algorithms
since his TD1 and TD2 tables are based on the exact same

49

50
heuristics as the Boyer-Moore delta tables.

Sunday's algorithms do not outperform the Boyer-Moore
algorithm as he claims. In timed runs, optimal mismatch (om)
and maximal shift (ms) run slower than all Boyer-Moore
versions tested. Quick search runs faster than om and ms,
however it still runs slower than all Boyer-Moore versions
except bm2s.

Empirical results show that Sunday's algorithms access the
text string more frequently than do any of the Boyer-Moore
algorithms. In fact, the text accessed versus total text
results of this paper differ substantially from the same runs
made and published in Sunday's paper [8]. Om and ms access
the text string about 2 percent less than bmls and bm2s
however, ss accesses the text string approximately 25 percent
less than any of Sunday's algorithms. The bmlf and bm2f
algorithms access the text string just slightly fewer times
than Sunday's algorithms. With the addition of the ishift
loop, Sunday's algorithms do exhibit improved performance
however, that is the work of this paper and not Sunday's.

5.2 Expanded Alphabet Algorithms
Random binary and quaternary alphabet strings were

generated to test the expanded alphabet algorithms. The ss
algorithm was included in runs with these algorithms as a
measure of comparison with a good performing English alphabet
algorithm. Both the binary and quaternary algorithms were run

51
on binary strings in order to determine how efficient the
tailor made binary algorithms performed.

In the test runs performed, it is empirically shown that
adding a delta2 table does not improve performance and in
almost all cases it hinders performance. Any time saved by
using a delta2 shift is apparently offset by the time it takes
to build the delta2 array.

Both the binary (at) and the quaternary (acgt) algorithms
display fast run times. They also access the text string
fewer times than any algorithm tested. This is due to the
parallel nature of the algorithm which enables it to make
large consistent jumps in the text string while in the ishift
loop. In comparison to ss, both expanded alphabet algorithms
display excellent performance.

Chapter Six
Conclusion

This paper has attempted to examine pattern matching
algorithms through empirical analysis. This method has shown
that two long standing ideas of Boyer and Moore, the "fast
loop" and the deltal table, increase performance in any exact
pattern matching algorithm. In every algorithm tested,
analogues of the fast loop have dramatically decreased search
times. It has been shown that the deltal table when used
without the delta2 table maximizes search efficiency in the
tests conducted. In no case did an algorithm using both a
deltal and a delta2 table outperform an analogous version
using just a deltal table. Furthermore, considering the
difficulty in understanding the delta2 shift, it is suggested
the delta2 table be left out of any exact pattern matching
algorithm used for searching English language text or nucleic
acid sequences.

The least frequent Boyer Moore algorithm performs the
best of all algorithms tested. The simplified version of the
Boyer-Moore algorithm, str_search, also performs very well.
It is a highly recommended algorithm due to its brevity,
simplicity and efficiency.

It has been shown that Sunday's algorithms do not
outperform the Boyer-Moore algorithm, contrary to his claim.
With the addition of the ishift loop however, the optimal
mismatch and maximal shift algorithms do give good

52

53
performance.

Expanded alphabet algorithms for processing binary and
quaternary strings perform considerably better than any of the
other algorithms when tested on random strings.

Of all the algorithms presented in this paper, none stand
out as a panacea for all pattern matching applications. It is
important to examine the criteria under which specific string
searching is being conducted and choose the algorithm which
best suits those conditions.

Appendix A
C-Language Implementaion

Listing 1: Quaternary expanded alphabet function: acgt2.
This function searches strings composed of characters from a
four character alphabet: { A, C, G, T }. It uses two delta
tables and has its own version of the ishift loop. Also
included are all pattern preprocessing functions.

int acgt2 (char text[], int tlen, char pat[], int plen)
{ int deltal[MAX_ALPHABET], delta2[MAX_PATTERN_LENGTH],

delta3[MAX_ALPHABET], delta4[MAX_ALPHABET];
int i, j, m, ishift, encoded_4;
char *tx, *p; /* string scan pointers */
char *last_text_char = text + tlen;
/* call pattern preprocessing functions */
create_deltal_2(deltal, delta2, pat, plen);
create_delta3(delta3, pat, plen);
create_delta4(deltal, delta3, delta4);
/* concat pattern onto end of text */
for (i = tlen, j = 0; (i < MAX_TEXT_LENGTH) &&

(i < tlen + plen); i++, j++)
text[i] = pat[j] ;

text[plen+tlen] = '\0';
tx = text + plen - 1;
while (1) {

if (tx > last_text_char) /* no match found */
return -1;

/* calculate initial encoding */
encoded_4 = 0 ;
for (m = 0; m < 4; ++m) {

encoded_4 « = 2;
switch (*(tx - 3 + m)) {

0x00000002;
0x00000003;

case 'a' : break;
case ' c' : encoded_4 |=

break;
case 'g' : encoded_ A

break;
case #t#: encoded__4

break;

54

55
/* ishift loop */
ishift = delta4[encoded_4];
while (ishift != 0) {

tx += ishift;
encoded 4 = 0 ;

(m = 0; m < 4; ++m) {
encoded__4 <<= 2;
switch (* (tx - 3 + m)) {

case 'a' : break;
case 'c' : encoded_

break;
_4 1 = 0x00000001

case 'g' : encoded_
break; J 1 = 0x00000002

case 't' : encoded _4 | = 0x00000003

}
break;

}
ishift = delta4[encoded 4];

}
tx -= 4; /* since ishift == 0 then */
p = pat + plen - 5; /* last 4 chars match */
if (tx < last_text_char)

while (1) {
if (p < pat) /* if yes; found match */

return (tx - text + 1);
if (*tx == *p) {

p— ;
tx— ;

}
else break;

}
/* false start; increment text string pointer */
tx += delta2[(p - pat)];

/**/

void create_deltal_2 (int *deltal, int *delta2,
char *pat, int plen)

{ int i, j, k;
int t, tp, f[MAX_PATTERN_LENGTH];
/* initialize deltal array */
for (i = 0; i < MAX ALPHABET; ++i) deltal[i] = plen;

56
/* fill in deltal array with values */
for (i = plen - 4; i >= 0; i—) {

j = create_4_hex(pat, i); /* call encoding func */
if (deltal[j] == plen)

deltal[j] = plen - i - 4;
}
/* initialize delta2 array */
for (j = 0; j < plen; j++)

delta2[j] = (2 * plen - j - 1) ;
j = plen - 1;
t = plen;
while (j >= 0) {

f C j1 = t;
while (t <= plen-1 && patfj] != pat[t]) {

delta2[t] = (delta2[t] < (plen-j-1)) ?
delta2[t] : (plen-j-1);

t = f[t];
}
j— ; t— ;

}
for (k = 0; k <= t; k++)

delta2[k] = (delta2[k] < (plen + t - k)) ?
delta2[k] : (plen + t - k);

/* This next section of code installs the correct delta2
values in case there is a highly repetitive pattern such
as ' aaaaa'. (G. De V. Smit, 1982). */
tp = f[t];
while (t <= plen - 1) {

while (t <= tp) {
delta2[t] = (delta2[t] < (tp - t + plen)) ?

delta2[t] : (tp - t + plen);
t++;

}
tp = f[tp];

}
}
J ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k - k - k ' k ' k ' k ' k ' k ' k k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k ' k - k ' k ' k ' k ' k - k ' k - k i t k ' k ' k k k k ' k ' k k ' k ' k k ' k ' k ' k ' k ' k ' k ' k J

void create_delta3(int *delta3, char *pat, int plen)
{ int encoded_3, k;

for (k = 0; k < MAX_ALPHABET; k++)
delta3[k] = plen;

57
/* encode leftmost 3 characters of pattern */
encoded_3 = 0;
for (k = 0; k < 3; k++) {

encoded_3 « = 2;
switch (pat[k]) {

case 'a b r e a k ;
case 'c': encoded_3 |= 0x00000001; break;
case 'g' : encoded_3 |= 0x00000002; break;
case 't': encoded_3 | = 0x00000003; break;

}
}

/* 4 different values will receive plen-3 */
for (k = encoded_3; k < MAX_ALPHABET; k += 64)

delta3[k] = plen - 3;
/* get encoding for leftmost 2 characters of pattern */
/* by right shifting by 2 */
encoded_3 » = 2;
/* 16 deltal values take plen-2 as their array entry */
for (k = encoded_3; k < MAX_ALPHABET; k += 16)

if (delta3[k] == plen)
delta3[k] = plen - 2;

/* get encoding for leftmost 1 character of pattern */
encoded_3 » = 2;
for (k = encoded_3; k < MAX_ALPHABET; k += 4)

if (delta3[k] == plen)
delta3[k] = plen - 1;

}
J * J

void create_delta4(int *deltal, int *delta3, int *delta4)
{ int i;

/* get max(deltal[i], delta3[i]) */
/* install max value into delta4 */
for (i = 0; i < MAX_ALPHABET; ++i)

delta4 [i] = (deltal[i] < delta3[i]) ?
deltal[i] : delta3[i];

}
/**/

int create_4__hex (char *seq, int position)

58
int i, upper_lim, encoded_4;
encoded_4 = 0;
upper_lim =4;
if (position < 0) {

upper_lim = position + 3;
position = 0;

}

/* encode pattern substring passed into function
for (i = 0; i < upper_lim; ++i) {

encoded_4 « = 2;
switch (seq[position + i]) {

*/

case
case
case
case

' a '
' c'
•q'
't'

break;
encoded_4
encoded_4
encoded 4

= 0x00000001; break;
= 0x00000002; break;
= 0x00000003; break;

}
return (encoded 4);

Listing 2: Brute Force
This is the standard brute force algorithm implemented with
pointers.

int bf(char text[], int tlen, char pat[], int plen)
{ char *tx = text; /* text pointer */

char *p = pat; /* pattern pointer */
char *text_end_ptr = text + tlen;
char *pat_end_ptr = pat + plen;
while ((p != pat_end_ptr) && (tx <= text_end_ptr)) {

if (*tx == *p) {
tx++; p++;

} else { /* back up! */
tx = tx - (p - pat) + 1;
p = pat;

}
}
if (p == pat_end_ptr) /* match found */

return (tx - text - plen);
else /* no match found */

return -1;
}

Listing 3: Brute Force with ishift loop analogue
59

This is the brute force algorithm implemented with pointers
and an ishift loop analogue.

int bfi(char text[], int tlen, char pat[], int plen)
{ char *tx = text; /* text pointer */

char *p = pat; /* pattern pointer */
char first_pat_char = pat[0];
char *last_match_ptr = text + tlen - plen;
char *text_end_ptr = text + tlen;
char *pat_end_ptr = pat + plen;
int i, j;
/* concat pattern onto end of text */
for (i = tlen, j = 0; (i < MAX_TEXT_LENGTH) &&

(i < tlen + plen); i++, j++)
text[i] = pat[j];

text[plen + tlen] = '\0';
do { /* ishift loop analogue */

while (*tx != first_pat_char)
tx++;

if (tx < text_end_ptr) {
tx++;
p++;

}
if (tx < text_end_ptr && *tx == *p)

do { p++;
tx++;

} while (*tx == *p && p < pat_end_ptr);
if (p < pat_end_ptr) { /* false start? */

tx -= p - pat - 1;
P = pat;

}
} while (tx <= last_match_ptr && p < pat_end__ptr) ;
if (p == pat_end_ptr) /* match found */

return (tx - plen - text);
else /* no match found */

return -1;
}

Listing 4: Boyer-Moore: bm2 fast.
60

This function uses two delta tables and also uses the 'fast'
loop adopted from the Implementation section ot the Boyer-
Moore paper [1]. Text accesses and total text counts are also
included in this listing.

int bm2_fast (char text[], int tlen, char pat[], int plen,
int *total_text, int *text_accessed)

{ char *tx = text + plen - 1; /* text string pointer */
char *p; /* pattern string pointer */
int temp__tx;
int large_pattern_value = deltal[*reset_p];
char *reset_jp = pat + plen - 1;
char *last_text_char = text + tlen;
int deltal[MAX_ALPHABET] ;
int delta2[MAX_PATTERN_LENGTH];
/* call pattern preprocessing function */
init_deltal_2 (pat, plen, tlen, deltal, delta2);
if (plen > tlen) /* error check input */

return -1;
while (1) {

/* the 'fast' loop */
do {

tx += deltal[*tx] ;
(*text_accessed)++;

} while (tx <= last_text_char);
/* if no text left, no match found */
if ((tx - text) < large_pattern_value) {

*total_text = tlen;
return -1;

}

/* text still left, subtract off 'large' value */
tx -= large_pattern_value;
p = resetjp; /* reset pattern pointer */
/* start doing comparisons between characters */
while ((*text_accessed)++ && (*tx == *p)) {

if (p == pat) { /* found a match */
*total_text = (tx - text + plen);
return (tx - text);

}
tx— ;

61
p— ;

}
/* false start; increment text string pointer */
temp_tx = deltal[*tx] ;
(*text_accessed)++;
tx += ((temp_tx > plen) ||

(temp_tx < delta2[p - pat])) ?
delta2[p - pat] : temp tx;

Listing 5: Knuth-Morris-Pratt
This is the standard Knuth-Morris-Pratt algorithm implemented
with pointers. The function which builds the 'next' table is
also included.

int kmp (char text[], int tlen, char pat[], int plen)
{ char *tx = text; /* text string pointer */

char *p = pat; /* pattern string pointer */
char *beyond_text = text + tlen;
char *beyond_pat = pat + plen;
int next[MAX_PATTERN_LENGTH];
int i;
/* make next table */
initpattern(pat, plen, next);
do {

if (p < pat) {
tx++;
p++;

}
if (*tx == *p) {

tx++;
P++;

} else /* false start */
p = pat + next[p - pat];

} while (p < beyond_pat && tx < beyond_text);
if (p >= beyond_pat) /* found a match */

return (tx - text - plen);
else /* no match found */

return -1;
}
j* j

62
void initpattern(char pstr[], int plen, int next[])
/* function which installs values into 'next' table to

assist KMP algorithm. */
{ int i, j;

next[0] = -1;
for(i = 1; i < plen; i++) {

j = next[i-1];
while(j >= 0 && pstr[j] != pstr[i-l])

j = next[j];
nextti] = (j+1);

}
for(i = 1; i < plen; i++) {

if (next[i] == 0)
continue;

if (pstr[i] == pstr[next[i]])
next[i] = next[next[i]];

}

Listing 6: Knuth-Morris-Pratt with ishift loop analogue
The KMP algorithm implemented with pointers and using the
ishift loop analogue.

int kmpi (char text[], int tlen, char pat[], int plen)
{ char *tx = text; /* text string pointer */

char *p = pat; /* pattern string pointer */
char *beyond__text = text + tlen;
char *beyond_pat = pat + plen;
char f irst_pat__char = pat[0];
int next[MAX_ALPHABET];
int i;
/* build 'next' table */
initpattern(pat, plen, next);
text[tlen] = first_pat_char;
do { if (p < pat) {

tx++;
P++;

}

63
if (p == pat) {

/* ishift loop analogue */
while (*tx != first_jpat_char)

tx++;
if (tx < beyond_text) {

tx++; p++;
}

}

/* do character to character comparisons */
while (*tx == *p && tx < beyond_text) {

tx++;
P++;

}

if (p < beyond_pat) /* false start? */
p = pat + next[p - pat];

} while (p < beyond_pat && tx < beyond_text);
if (p >= beyond_pat) /* found a match */

return (tx - text - plen);
else /* no match found */

return -1;

Listing 7: Least frequent Boyer-Moore
This algorithm attempts to maximize the time spent in the
ishift loop by comparing the least frequent character of the
pattern first. If that character is a mis-match, the ishift
loop is reentered. It uses only one delta table: deltal.

int lfbm (char *text, int tlen, char *pat, int plen)
{ float temp_freq =25.0; /* dummy frequency value */

int i/ jf k /
int deltal[MAX_ALPHABET];
char *reset_p = pat + plen - 1;
char *last_text_char = text + tlen;
char *tx = text + plen - 1;
char *temp_tx;
char *p = pat;
char lfc;
int ishift, from_pat_end;

if (plen > tlen)
return -1;

/* error check input */

64
comp_delta (plen, pat, deltal);
/* concat pattern onto end of text */
for (i = tlen, j = 0; (i < MAX_TEXT_LENGTH) &&

(i < tlen + plen); i++, j++)
text[i] = pat[j];

text[plen+tlen] = '\0';
/* find least frequent pattern char */
for (j = 0; j < plen; j++)

if (Freq[pat[j]] < temp_freq) {
temp_freq = Freq[pat[j]];
k = j;
Ifc = pat[j];

}
from_pat_end = plen - k - 1;
while (tx < last_text_char) {

p = reset_p;
do {

do { /* ishift loop */
ishift = deltal[*tx];
tx += ishift;

} while (ishift != 0);
if (*(tx - from_pat_end) == lfc) {

temp_tx = tx;
break; /* chars match; exit loop */

}
/* chars didn't match, incre text ptr */
tx += deltal[*(++tx)];

} while (1);
if(tx >= last_text_char) /* ran off text */

return -1; /* then no match found */
do /* start making comparisons */
while ((— p >= pat) && (*p == *(— tx)));
if (p < pat)

return (tx - text); /* found a match */
else { /* false start; incre text ptr */

tx = temp_tx;
tx += deltal[* (++tx)];

}

65

Listing 8: Search algorithm for om and ms, [81
This algorithm is almost an exact copy of Sunday's algorithm
given in [8]. A few changes have been made to speed up the
search speed.

int search(char *text, int Tlen, char *pstr, int Plen)
{ PAT *p; /* pattern scan pointer */

char *tx = text; /* text scan pointer */
int TD1[MAX_ALPHABET];
int TD2[MAX_PATTERN_LENGTH];
int temp_tx;
char *text_end_ptr = text + Tlen - Plen;
int i;
/* call preprocessing functions */
build_TDl(pstr, Plen, TD1);
order_pattern(pstr, Plen, optimal_pcmp, pattern);
build_TD2(pstr, Plen, TD2, pattern);
while (tx <= text_end_ptr) {

/* scan the pattern */
for (p = pattern; p->c; ++p)

if (p->c != *(tx + p->loc))
break;

if (p->c == 0) /* pat end=> got match */
return (tx - text);

/* no match, so shift to next text position */
temp_tx = TD1[* (tx+Plen)];
tx += (temp_tx > TD2[p-pattern]) ?

temp_tx : TD2[p-pattern];
}
return (-1); /* no match found */

}

66
Listing 9: Search algorithm for om and ms with ishift loop

analogue.
This search algorithm is patterned after Sunday's search
algorithm except it uses an analogue of the ishift loop in an
attempt to minimize search time.
int omi_2(char *text, int Tlen, char *pstr, int Plen)
{ PAT *p; /* pattern structure */

char *tx = text; /* text string pointer */
int TD1[MAX_ALPHABET] ;
int TD2[MAX_PATTERN_LENGTH];
char *text_end_ptr = text + Tlen - Plen;
int i, j, dl;
/* call preprocessing functions */
build_TDl (pstr, Plen, TD1);
order_j?attern (pstr, Plen, optimal_pcmp2, pattern);
build_TD2(pstr, Plen, TD2, pattern);
/* concat pattern onto end of text */
for (i = Tlen, j = 0; (i < MAX_TEXT_LENGTH) &&

(i < Tlen + Plen); i++, j++)
text[i] = pstr[j];

text[Plen+Tlen] = '\0';
while (tx <= text_end_ptr) {

/* ishift loop analogue */
while (*tx != *pstr)

tx += TD1[*(tx + Plen)];
/* check for a match */
for (p = pattern; p->c; ++p)

if (p->c != *(tx + p->loc))
break;

if ((p->c ==0) && (tx <= text_end_ptr))
return (tx - text); /* match found */

/* false start; increment text pointer */
dl = TDl[*(tx+Plen)];
tx += (dl > TD2[p-pattern]) ?

dl : TD2[p-pattern];
}

return (-1); /* no match found */
}

67
Listing 10: Quick search
This is Sunday's quick search function. It uses only one
delta table but is easily modified to take on two delta
tables. The following is close to an exact duplicate to that
given in [8] .

int qs(char *text, int Tien, char *pstr, int Plen)
{ char *p; /* pattern string pntr */

char *t, *tx = text; /* text string pointers */
int TDl[MAX_ALP HABE T];
char *text_end_ptr;
build_TDl(pstr, Plen, TDl) ;
text_end_ptr = text + Tien - Plen;
while (tx <= text_end_ptr) {

/* scan pattern string */
for (p = pstr, t = tx; *p; ++p, ++t)

if (*p != *t)
break; /* mismatch, so stop */

if <*p == 0)
return (tx - text);

/* no substring match, so shift to next tx pos */
tx += TDl[* (tx + Plen)]; /* shift by deltal */

}

return (-1); /* no substring found */
}

Listing 11: Sunday's preprocessing functions; called from
gs, om and ms functions.

This listing contains all functions used by Sunday's search
functions to preprocess the pattern. Included are the
functions to build the deltal and delta2 tables. Most of the
code is identical to that given in [8].

void build__TDl (char *pstr, int Plen, int TD1[])
{ int i;

char *p;
/* initialize the TDl table */

68
for (i = 0; i < MAX_ALPHABET; i++)

TDl[i] = Plen + 1;
/* fill in the values from the pattern string */
for (p = pstr; *p; p++)

TDl[*p] = Plen - (p - pstr);

/**/

void build_TD2 (char *pstr, int Plen, int TD2[],
PAT *pattern)

{ int lshift;
int i, ploc;
/* first init TD2[] for minimum matching left shift */
TD2[0] = lshift = 1; /* no preceeding chars, = 1 */
for (ploc = 1; ploc < Plen; ++ploc) {

/* scan leftward for first matching shift */
lshift = matchshift(pstr, Plen, pattern, ploc,

lshift);
TD2[ploc] = lshift; /* set initial match shift */

}
/* next get correct shift with current char mismatch */
for (ploc = 0; ploc < Plen; ++ploc) {

lshift = TD2[ploc];
while (lshift < Plen) {

/* already have a matching shift here */
/* also require current char must not match*/
i = (pattern[ploc].loc - lshift);
if (i < 0 || pattern[ploc].c != pstr[i])

break;
++lshift;
lshift = matchshift(pstr, Plen, pattern,

ploc, lshift);
}
TD2[ploc] = lshift; /* set final shift */

}
}
/•k'k'k'k'kic'kicic'k'jcic'k'k'k'k'kic'k'k'k'k'k'k'klc'k'k'klc'k'k'k'k'k'k'kic'kic'k'k'k'k'k'k'k'k'k'k'k'k'k'kic'kic'k/

int matchshift (char *pstr, int Plen, PAT *pattern,
int ploc, int lshift)

{ PAT *pat;

69
int j;
/* scan left for matching shift */
for (; lshift < Plen; ++lshift) {

pat = pattern + ploc;
while (— pat >= pattern) {

/* all preceding chars must match */
if ((j = (pat->loc - lshift)) < 0)

continue;
if (pat->c != pstr[j])

break;
}
if (pat < pattern)

break; /* all matched */
}
return lshift;

}

Listing 12: Scan least frequent character
This algorithm checks whether the least frequent character of
the pattern matches its aligned text character first. It uses
an ishift analogue and does no preprocessing of the pattern.

int slfc (char *text, int tlen, char *pat, int plen)
{ float temp_freq = 25.0;

int i, j, k;
char ch;
char *tx, *temp_tx, *p;
if (plen > tlen)

return -1;
for (j = 0; j < plen; j++) /* get lfc of pattern */

if (Freq[pat[j]] < temp_freq) {
temp_freq = Freq[pat[j]];
ch = pat[j];
k = j;

}
tx = text + k;
text[tlen] = ch; /* concat lfc onto end of text */
do {

while (*tx != ch) /* ishift loop analogue */
tx++;

if (tx >= text + tlen) /* pattern not found*/

70
return -1;

p = pat;
temp_tx = tx;
while ((p - pat < plen) && * (tx - k) == *p) {

tx++;
P++;

}
if (p - pat == plen) /* found a match */

return ((tx - text) - k - plen);

tx = temp_tx +1; /* resume search */
} while (1);

}

Listing 13: str search
This is the simplified Boyer-Moore algorithm which uses the
ishift loop and 1 delta table.

int str_search(char text[], int Tlen, char pat[], int Plen)
{ int i, j, ishift;

char *tx = text + Plen - 1; /* text scan ptr */
char *p; /* pattern scan pointer */
int delta[MAX_ALPHABET];
int temp_tx;
char *reset_p = pstr + Plen - 1;
char *last_text_char = text + Tlen;
/* get deltal */
compute_delta(Plen, pstr, delta);
/* concat pattern onto end of text string */
for (i = Tlen, j = 0; (i < MAX_TEXT_LENGTH) &&

(i < Tlen + Plen); i++, j++)
text[i] = pstr[j];

text[Plen+Tlen] = '\0';
while (tx < last_text_char) {

ishift = delta[*tx];
/* the ishift loop */
while (ishift != 0) {

tx += ishift;
ishift = delta[*tx];

}

71
if(tx < last_text_char) {

p = reset_p;
do /* do pattern-text char comparisons */
while ((— p >= pstr) && (*p == * (— tx)));
if (p < pstr)

return tx - text; /* found a match */
else { /* false start */

temp_tx = delta[*tx];
tx += { temp_tx > pstr + Plen - p) ?

temp_tx : pstr + Plen - p;
}

} /* if */
} /* while */
return (-1); /* no match found */

}

72

Appendix B
English Text Alphabet Frequencies

Char Freer
e 11.1
a 8.9
i 7.8
r 7.4
t 7.1
0 6.9
n 6.8
s 5.6
1 5.5
c 4.5
u 3.6
m 3.2
d 3.2
P 3.1
h 2.9
g 2.4
b 2.3
y 2.0
f 1.5
w 1.1
k 1.1
V 1.0
X 0.3
j 0.2
z 0.2
q 0.2

BIBLIOGRAPHY
1. Boyer, R. S., and Moore, J. S. A fast string

searching algorithm. Communications ACM 20, 10
(Oct. 1977), 762-772.

2. Horspool, R. N. Practical fast searching in
strings. Software-Practices and Experience, 10, 5
(May 1980), 501-506.

3. Knuth, D. E., Morris, J. H., and Pratt, V. R. Fast
pattern matching in strings. SIAM J. Computing 6,
2 (June 1977), 323-350.

4. Park, S. K., and Miller, K. W. Random number
generators: good ones are hard to find.
Communications ACM, 31, 10, (Oct. 1988), 1192-1201.

5. Rabin, M. O., and Karp, R. M. Efficient randomized
pattern-matching algorithms. IBM Journal of
Research and Development, 31, (March 1987),
249-260.

6. Sedgewick R., Algorithms, Addison-Wesley, Reading,
MA, 1983.

7. Smit, G. V., A comparison of three string matching
algorithms. Software-Practices and Experience, 12,
1 (Jan. 1982), 57-66.

8. Sunday, D. M., A very fast substring search
algorithm. Communications ACM 33, 8 (Aug. 1990),
132-142.

73

	String pattern matching algorithms: An empirical analysis
	Let us know how access to this document benefits you.
	Recommended Citation

	00001.tif

