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Synthesis of conformationally constrained glutamate analogues and their preliminary 
evaluation as glutamate transport inhibitors

Director: Charles M. Thompson (JM /

The primary goals o f the research effort were to assess the reactivity of dimethyl 4- 
oxoglutaconate in the normal electron demand Diels-Alder reaction. Once the Diels-Alder 
reaction was deemed a success, the adducts were transformed into conformationally 
constrained analogues of 2-oxoglutarate by saponification. The cyclic 2-oxoglutarate 
analogues were evaluated as substrates and inhibitors of a number of transaminases and 
dehydrogenases. One transaminase was found to convert the oxoglutarate analogues to 
glutamate analogues. The Diels-Alder adducts were also chemically transformed into 
conformationally constrained analogues of glutamate by preliminary formation of the 
corresponding N, N-dimethylhydrazones and subsequent reduction with sodium hydrosulfite 
and saponification. The glutamate analogues were tested at four glutamate transporters and 
two compounds, namely 6-(amino-carboxy-methyl)-cyclohex-3-enecarboxylic acid and 3- 
(amino-carboxy-methyl)-bicyclo[2.2.2]oct-5-ene-2-carboxylic acid, 38 ± 2 and 35 ± 5 
percent of control, respectively, were found to be potent and selective inhibitors of the 
excitatory amino acid transporter 2 (EAAT2).
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Chapter l:Overvtew of the Glutamate Neurosystem

I. Glutamate as a Neurotransmitter

L-Glutamate (Figure 1.1) is an excitatory amino acid (EAA) that is responsible for 

neuronal signaling in the mammalian central nervous system (CNS). Immunostaining 

has revealed the involvement of L -glutamate utilizing proteins in optic nerve terminals

and terminals of the cortico-fugal axons in the 

+ thalamus (Salt, 1996; Kechagias, 1995) as well

Figure 1.1. Structure o f L-glutamate regions of the brain (Cotman, 1995). Excitatory

amino acids regulate the stimulation of the 

postsynaptic terminal of neurons by mediating 

changes in electric potential (caused by a flow of charged ions, i.e., Na+, Ca’"r and 1C). 

The involvement of glutamate as an EAA ranges from participation in excitatory 

neurotransmission to memory to neuropathology. Neuronal signaling is highly dependent 

on the transport and metabolism of neurotransmitters. The most common signal 

termination pathways being either enzymatic conversion to a non-transmissible 

compound or transport of the neurotransmitters back out of the synaptic cleft by 

neurotransmitter transporters. The glutamate neurosystem follows the latter mechanism. 

Neurotransmitter signaling can also be directly affected by agonists and/or antagonists 

interacting at the receptors or transporters, which will affect the associated biological 

response.

as the hippocampus, medial striatum, and cortex

1
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The receptors, transporters, and enzymes that bind L-glutamate during the process of 

excitatory neurotransmission comprise one o f the most diverse and broadly functional 

protein groups in the mammalian central nervous system (Cotman, 1995). L -Glutamate 

(Figure 1.1) is a conformationally flexible molecule containing three distinct functional 

groups. Owing to the three sp3 hybridized carbons in its structure, L -glutamate can exist 

in nine low energy conformations. The pKa's of the acidic and basic functional groups of 

L-glutamate play an important role in the overall chemistry o f the molecule and must be 

considered: pKa (a-C02H) = 2.10; pKa (a-NH3^) = 9.47; and pKa (S-CO^H) = 4.07 

(Carrigan, 1999). At physiological pH, L-glutamate is completely ionized and has a net 

charge o f -1. These pKa characteristics play an important role upon binding to various 

receptors, transporters, and enzymes.

Within the glutamate pre-synaptic neuron, the glutamate molecules exist in the 

cell cytosol at a concentration of 1-3 mM (Arriza, 1994). From the cytosol, glutamate is 

transported and packaged into synaptic vesicles where it is stored until the signaling 

event arrives (Figure 1.2) (Naito, 1985). Upon nerve stimulation, the vesicles are 

transported via fusion proteins (Cousin, 1999; Betz, 1994) to the pre-synaptic nerve 

terminal where they dock and release glutamate in a calcium-dependent manner into the 

synaptic cleft. Once glutamate is released into the cleft, it freely binds to various post- 

synaptic receptors and therefore, enables signals to be potentiated. The post synaptic 

EAA receptors can be placed into two groups: (a) the metabotropic receptors (where 

activation leads to the generation of a cascade o f second messengers) and (b) the 

ionotropic receptors (where activation leads to opening o f ion channels which gate Na~-,

2
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K+-, and Ca**- currents) (Monaghan, 1986). It is hypothesized that glutamate may bind 

and trigger unique responses at the corresponding

3
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receptors through its distinct conformations (Chamberlin, 1993). Once L-glutamate binds 

to the individual receptors and induces a signal, the high concentrations (1-10 pM) of L -  

glutamate must be cleared from the synaptic cleft and returned to the pre-synaptic neuron 

(Bridges, 1994; Garlin, 199S). The clearance of glutamate from the synaptic cleft is 

accomplished by high-affinity glutamate transporters. There are two groups of “high 

affinity” transporters currently classified: (a) synaptosomal transporters (those which 

directly transport glutamate back to the presynaptic cytosol where it can be taken up by 

vesicles), or (b) astroglial transporters (those which relocate glutamate from the synapse 

into astrocytes). Once in astrocytes glutamate is concurrently transformed into glutamine 

via glutamine synthetase (Figure 1.2) (Cotman, 1995). Glutamine is not an excitatory 

amino acid and is thus rendered inactive to post synaptic receptors and, in turn, may be 

transported back to the presynaptic neuron via transporters specific for glutamine 

(Chaudhry, 1999). Once the glutamine is relocated to the presynaptic neuron it is 

enzymatically converted back into glutamate by glutaminase. The glutamate is 

subsequently transported back into synaptic vesicles to await the next excitatory impulse.

L-Glutamate neurotransmission has critical impact on numerous biochemical 

processes (Cotman, 1995). In addition to mediating fast excitatory synaptic signaling, 

glutamate receptor activation participates in higher-order processes, such as development, 

learning and memory. L-Glutamate is also involved in neuropathology, as excessive 

stimulation of the post-synaptic neuron by excitatory amino acids trigger events which 

can lead to cell death (Rothman, 1995; Choi, 1988). This process, referred to as 

excitotoxicity, is thought to play a role in a number of neurological insults and diseases

5
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including ischemia, stroke, anoxia, hypoglycemia, epilepsy, Huntington’s disease, and 

Alzheimer’s disease (Rothman, 1995).

The focus of most of the L-glutamate EAA pharmacology over the last decade has 

resided in two areas: (1) differentiating the pharmacology of the ligand binding sites to 

the various EAA receptors and transporters, and (2) cDNA expression and structural 

studies o f the receptors and transporters (Cotman, 1995). Major advances in the 

pharmacology of glutamate binding sites has been added by the design and synthesis of 

conformationally restricted and isosterically similar analogues o f L-glutamate o f which 

mimic low energy conformations exist (Figure 1.3) (Chamberlin, 1993). These analogues 

have provided key information about the receptor types and the three dimensional 

pharmacophore models o f the receptor and transporter binding sites. These analogues 

have also played a pivotal role in differentiating the structure and function of the various 

receptors and transporters.

The study and design of conformationally restricted analogues o f  L-glutamate 

have led to selective and potent analogues which bind to and differentiate the receptor 

and transporter substrate binding sites. N-Methyl-D-aspartate (NMDA), (RS)-2-amino- 

(3-hydroxyl-5-methyl-4-isoxazol-4-yl) propionic acid (AMPA), and kainic acid (KA) are 

conformationally restricted and isosterically related analogues o f L-glutamate which were 

used to identify and distinguish the ionotropic L-glutamate receptors. The glutamate 

analogues, 1 -aminocyclopentane-trans-1,3-dicarboxylate (trans-ACPD) and L-2-amino-4- 

phosphonobutyrate (L-AP4) were the lead compounds (Salt, 1996; Cotman, 1995) in 

defining the pharmacology and function o f the metabotropic L-glutamate receptors 

(mGluR’s) (Conn, 1997). Several families o f analogues have proven valuable in

6
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n h 2

ho2c^ v -/ 'n' co2h

L-glutamic acid

H:jC'N H

— COaH

N-methyl-D-aspartate

NMDA

H02Cy - v

h^ ' C02H

trans 1 -aminocyclopentane-
1,3-dicarboxylic acid

ACPD

n h 2

L-aspartatic acid

c h 3  ^ c o 2h

f ^ ) —C02H
N
H

kainic acid 

KA

h o 2 c. c h 3

r y ^ c

(RS) 2-amino-3-(3-hydroxy-5- 
methylisoxazol-4-yl)propionic acid

AMPA

Figure 13. Examples of structurally constrained and unconstrained agents patterned 
after L-glutamate utilized in characterizing the glutamate receptors

characterizing the high-affinity, sodium dependent excitatory amino acid transporters 

(EAATs) that mediate the majority of glutamate uptake in the CNS, including: 2,4- 

pyrrolidinedicarboxylic acids (2,4-PDCs), 2-(carboxycyclopropyl)glycines (l-CCG -I- 

IV), f3-hydroxyaspartate derivatives, methyl-substituted glutamate analogues, and 

oxazoline-based derivatives (Bridges, 1991; Chamberlin, 1998; Shimamoto, 1991). In 

particular, the conformationally restricted PDC- and CCG-based mimics are locked into 

specific configurations at the substituent sites C3 and/or C4 (Figure 1.4) (Bridges, 1991; 

Chamberlin, 1998; Shimamoto, 1991). Transport assays have demonstrated that L-trans-

7
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2,4-PDC acts as a substrate o f the excitatory amino acid transporter subtypes EAAT1-4 

and as a non-substrate inhibitor o f the EAAT5 subtype (Arriza, 1997; 1994; Fairman,

H02C ^ < P C 0 2H
H

L-CCG-II
L-2-(carboxycyclopropyl)glycine II

H

L-CCG-III
L-2-(carboxycyclopropyl)glycine III

ho2c*.
>—c o 2h

N
H

2,4-PDC
L-CCG-IV

L-trans 2,4-pyrrolidine- 
dicarboxylic acid

L-2-(carboxycyclopropyl)glycine IV

Figure 1.4. Structurally constrained analogues of L-glutamate utilized in characterizing

199S; Koch, 1999). Similarly, the individual stereoisomers of the l-CCGs also exhibit 

interesting activities at these transporters. For example, l-CCG-Q and L-CCG-m (Figure

1.4) have both been reported to block the uptake of [3H]- L-glutamate into synaptosomal 

preparations (Robinson, 1993). More detailed studies using cellular expression systems 

have demonstrated that l-CCG-III potently inhibits EAAT1, EAAT2, and EAAT3, while

l-CCG-IV preferentially inhibits EAAT2 (Shimamoto, 1998; Yamashita, 1995).

The analogues described either mimic L-glutamate with structural locking of the 

backbone into specific orientations or utilize a functional group isostere (a substituted 

group which exhibits similar but unique characteristics and/or properties to the original 

functional group which may affect binding affinities). The affinities o f these analogues

the EAATs

8
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Figure 1.5. Overlay o f L -CCG-II and R, R-3,4-(4,5-cyclohexenyl)-L-glutamate 
rendered in PC Spartan Pro The numerical values from PC Spartan Pro for L -CCG-II 

was -40.88 and for R, R-3,4-(4,5-cyclohexenyl)-L-glutamate was -6.26

to bind to various receptors and transporters are likely influenced by the relative positions 

of the charged functional groups and orientation of the hydrocarbon backbone as 

evidenced by the structurally diverse L-glutamate analogues (Figures 1.3 and 1.4) 

(Chamberlin, 1993).

It is our goal to investigate cyclohexenyl locked analogues as glutamate mimics 

resembling 2 ,4-PDC and the L-CCGs. A minimized molecular modeling rendition 

performed in PC Spartan Pro (Version 1.0.5, Irvine CA) is provided in Figure 1.5. It is

9
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shown that the glutamate backbone in both l-CCG-II and the 3 ,4-(4,5-cyclohexenyl)- l -  

glutamate (one of our theoretical targets, Figure 1.3) overlay very well.

The fact that the molecules overlay well is key preliminary data promoting the synthesis 

of a new class of analogues for the study of the glutamate neurosystem. It can be 

predicted, by the modeling overlays, that at least one of the stereoisomers o f 3,4-(4,5- 

cyclohexenyl)-D/ L -glutamates should show some activity at a transporter or receptor in 

the glutamate

H f * 2 H x  H ,C°2 h

xY ' t c°2H iTyi c02H xT T »
x^ T ' c o 2h ^ T - C O jH

3,4-cyclohexenyl-fused 3,4-cyclohexenyl-fused 3,4-cyclohexenyl-fused
glutamate; X = H, alkyl, etc. glutamate; Y = CH2, CH2 CH2, etc. pyroglutamate; X = H, alkyl, etc.

Figure 1.6: Proposed target 3,4-(4,5-cyclohexenyl)-D/L- glutamate molecules

neurosystem. It has been shown by Robinson and co-workers (1993) that l-CCG-Q 

inhibits glutamate uptake in crude synaptasomes (presynaptic neuronal transport,

EAAT2) from rat cerebellum. With this data as groundwork, as well as the good overlay 

of the glutamate backbones o f l  -CCG-II and the 3,4-(4,5-cyclohexenyl)-L-glutamate 

shown in figure 1.6, it was decided to synthesize the 3,4-(4,5-cyclohexenyl)-D/L- 

glutamates which are good initial targets to explore as inhibitors at various transporters of 

the glutamate neurosystem, including EAAT2.

The various glutamate receptors and transporters tolerate a range of chemical

variation, and perhaps these tolerances can be exploited in identifying a new class of

10
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compounds whose structures can be attenuated and tailored for specific or multi-receptor 

/ transporter binding.

Our approach to further elucidate the stereochemical binding requirements of the 

transporters of the L-glutamate neurosystem is to conformationally lock the structure of 

the L -glutamate molecule about the 3 ,4  position utilizing a cyclohexenyl moiety. This 

hypothesis, to increase the size of the conformational locking group relative to the l-CCG 

compounds referred to above, may further help delineate the critical regions of space and 

the structural elements o f ligands must occupy to interact with specific transporters of the 

glutamate neurosystem. Again, Figure 1.6 shows some representative examples of the 

types o f molecules that are envisioned to further delineate the three-dimensional 

specificities of the transport binding sites. The design and chemical synthesis of this 

structural class of molecules, their intermediate structures and the biological implications 

of the products will be discussed in the following chapters.

11
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Chapter 2: Organic Synthesis

I. Introduction

Our development of the 3 ,4-conformationally restricted analogues of L-glutamate 

is based on the retrosynthetic analysis depicted in Figure 2.1. The key of the design is the 

Diels-Alder reaction between dimethyl-4-oxoglutaconate. Once the adducts are accessed

4  C 0 2H

L-glutam ate

N H 2

X ' i X ' C O ’H
>v / x o 2h

2 .1 : 3 ,4-conform ationally  
restricted glutam ate

' C 0 2H :

^— ^ co2h

2 .2: 3 ,4-conform ation ally  
restricted oxoglu tarate

xC co2ch3

h3co2c

2 J  dim ethyl 4 -oxog lu tacon ate  
(D O G )

Figure 2.1: Retrosynthetic disconnection scheme towards 3,4-conformationally
restricted glutamates

a chemical or enzymatic reductive amination was conceived to introduce the alpha-amino 

moiety.

One key feature of the synthesis is the need to develop o f a multigram synthesis 

o f the key intermediate, dimethyl 4-oxoglutaconate (DOG, 2.3). The synthesis of the
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ethyl analogue of DOG was first prepared by Comforth et. al. by the oxidation of diethyl 

glutaconate with selenium dioxide (Comforth, 1946). The percent yield was reported as 

2% and the molecule was characterized by boiling point, elemental analysis and 

UV/visible spectroscopy. In 1981, an alternate route for the synthesis of DOG was 

disseminated by Corey and co workers (Corey, 1981). The synthesis described is shown 

in Figure 2.2, although only the general experimental procedure was reported.

ho2c

2 .4  2 -o x o g lu ta n c  acid

O

SOCI2  r 'X O z C H a  Br2

CH3 OH* h 3 c o 2c  c h 2 ci2

2.5: D im ethyl 2 -oxoglutarate

H3 C02C

O
* s A c o 2 c h 3

2 .6: D im ethyl 3 -b rom o-2-  
oxoglu tarate

TEA
Et20 H3 C02C

c o 2 c h 3

23  D im ethyl 4 -oxog lu ta co n a te  
(D O G )

Figure 2.2: Synthesis o f DOG (2.3)

In 1987, it was discovered by Ananda, et. al. that the oxidation of dimethyl 

glutaconate with activated carbon could generate DOG in modest yields (Ananda, 1987). 

In this report, DOG was characterized by lH NMR for the olefinic protons, melting point 

and UV/visible spectroscopy. In 1996, a detailed analysis of the l3C NMR spectra of 

DOG in organic and aqueous media was performed by Kato and co workers (Kato, 1996).

15
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The authors reported that the molecule could be purchased from Fluka Chemical 

Company (Buchs, Switzerland), but it is no longer available.

Taken together, DOG has been characterized by its spectroscopic and physical 

properties, but a reliable, concise chemical synthesis with detailed spectral data for the 

individual steps had yet to be performed. Carrigan (1999) reported a multigram synthesis 

of DOG from readily available starting materials in modest yield, according to the 

original sequence reported by Corey (1981) (Figure 2.2). In the following sections we 

will report our synthesis o f DOG on a multigram scale and it’s utilization in chemical 

reactions with detailed spectral interpretation of the products and key chemical 

intermediates.

The Diels-Alder reaction is a fundamental carbon-carbon bond forming reaction 

in synthetic organic chemistry (DeGraw, 1960; Tokoroyama, 1978; Danishefsky, 1979; 

Snowden, 1986; Grieco, 1990). It is synonymously termed a [4+2]-cycloaddition 

reaction in reference to the formation of a cyclic system upon reaction of a 4rc-electron 

system with a 2rc-electron system (Carey, 1984). The products formed are typically 

referred to as cycioadducts and the significance o f this reaction in organic chemistry 

owes to the fact that two carbon-carbon bonds are formed and the reaction is very highly 

regio- and stereoselective. Experimental data supports the premise that the reaction 

occurs via a concerted mechanism. The stereoselective syn products resulting from this 

reaction strengthen this argument. If it were to occur in a stepwise mechanism, the 2nd 

addition step would have to occur at a rate faster than that of a rotation about a carbon- 

carbon bond, which is not likely.
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The Diels-Alder reaction is also under stereo- and regioselective control in a 

number of ways. First, in the construction of bicyclic adducts, there are two possibilities; 

a favored endo adduct, shown for the maleic anhydride cyclopentadiene adduct (Fig 2.3, 

A.), as well as an exo product (Fig 2.3, B). This selectivity is governed by the Alder rule, 

or the rule o f maximum accumulation of unsaturation. The comprehensive interpretation 

of this rule is such that when the maximum amount of unsaturated orbitals interact in the

transition state, the stereospecific isomer corresponding to this transition state will 

predominate. To fully interpret the stereo- and regioselectivity o f this reaction, a closer 

look into the reaction mechanism is required. The regioselectivity incorporated into the 

formation o f the unsymmetrical adducts must also be acknowledged.

Preferred Less Preferred

A
Transition state for 

endo product

B
Transition state for 

exo product

Figure 2 3 . Transition states for endo vs. exo regioisomers
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The Diels-Alder reaction is an example o f a pericyclic reaction. The conventional 

definition o f a pericyclic reaction envelops the idea that the mechanism involves the 

reorganization of molecular orbitals within two systems rather than the combination of 

ionic (i.e. carbanions, SN2) or radical species. Pericyclic reactions occur via the 

interactions of the highest occupied molecular orbital (HOMO) of one species with the 

lowest unoccupied molecular orbital (LUMO) of another (Fig 2.4).

Figure 2.4 shows generic representations of the molecular orbitals in a Diels-

diene dienophile diene dienophile

LUMO —  4 —  LUMO

HOMO
Y \

4 -

HOMO

I

LUMO —  

HOMO LUMO

HOMO

X ,  i .

Unperturbed system

System in which the diene possesses 
electron donating group(s) and the 

dienophile posesses electron withdrawing 
group(s)

Figure 2.4. Frontier orbital interactions in [4+2] cycloaddition reactions
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Alder cycloaddition reaction. In the case of a cycloaddition reaction, orbitals o f proper 

symmetry and energy are uniquely postured for interaction. In the case of Diels-Alder 

cycloaddition reactions, it is the interaction of the HOMO of the 4k system (the diene) 

and the LUMO of the 2ft system (the dienophile). As shown in Figure 2.5, the symmetry 

of the 4ft systems HOMO correlates to the symmetry of the LUMO 2ft system. The 

second factor, the similar energy element, is also uniquely set up for a cycloaddition 

reaction. The most similar molecular orbitals, in relation to energy, are the HOMO of the 

diene and the LUMO of the dienophile. These two factors together make for a favorable 

orbital interaction and subsequent reaction.

LUMO LUMO

HOMO HOMO

Diene Dienophile

Figure 2.5. Orbital symmetry o f 2 and 4 ft systems
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It has been shown that in the presence of electron withdrawing substituents on the 

2tc system as well as electron donating substituents on the 4tc system, the relative rates of 

reactivity increase as shown in Table 2.1 (Carey, 1984). The overall reactivity as well as 

the regioselectivity of the Diels-Alder reaction can be delineated using Figures 2.4,2.5 

and 2.6. Figure 2.6 shows the predicted outcome when dienes bear an electron donating 

group on either the 1 or 2 position and a single electron withdrawing group is present on 

the dienophile. The increased electron density on the a-carbon relative to the donating 

group at the 1 position increases the overall energy of the diene’s HOMO as well as

Table 2.1: Relative Reactivity Toward Cyclopentadiene in the Diels Alder
Reaction*

Dienophile Relative Rate

Tetracyanoethylene 4.3 X 107

1,1 -Dicyanoethy lene 4.5 X 10s

p-Benzoquinone 5.6 X 104

Maleonitrile 91

Fumaronitrile 81

Dimethyl Fumarate 74

Dimethyl Maleate 0.6

Methyl Acrylate 1.2
Acrylonitrile 1.0

a From second order rate constants in dioxane at 20 °C (Wuest, 1964).
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directing the major amount of electron density on the a-carbon, thus regioselectively 

governing the outcome of the reaction. The increased overall energy of the HOMO in the 

2- substituted case remains the same as the 1- substituted case although the 

regioselectivity has been reversed. The increased electron density is now on the ^-carbon 

relative to the electron donating group thus giving rise to the 1,4 cyclohexenyl adduct.

The aim of this chapter is to assess the reactivity of DOG as a dienophile in the 

Diels-Alder reaction. The combination of some well known dienes and DOG will be 

examined. Specifically, the reactivity and regiochemical results obtained from the 

reaction of DOG with symmetrical and unsymmetrical dienes will be examined. The

Figure 2.6. Representative regioselective outcomes 
due to substituent effects

structure of DOG (2.6 on page 14) contains all the essential elements to be a productive 

dienophile in the Diels-Alder reaction. The olefinic portion o f the compound is flanked

D D

3,4-disubstituted cyclohexene

Favorable orbital overlap

1,4-disubstituted cyclohexene
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by two electron withdrawing groups, which should decrease the energy o f its LUMO 

(relative to an unsubstituted olefin) and activate it as a dienophile. Although the two 

groups adjacent to the olefin are electron withdrawing, they are not identical and, 

therefore, the molecule is not symmetrical and a regioselective reaction is expected. The 

keto-ester moiety is more electron withdrawing than is the ester group and thus should 

partially govern the regioselectivity of the reaction with unsymmetrical dienes. Namely, 

with 2-methyl-1,3-butadiene, the major regioisomer will should have the methyl group on 

the 4 position relative to the ketoester moiety etc.

Solvents are of particular interest in the Diels-Alder reaction. The Diels-Alder 

reaction is theorized to progress through an aromatic transition state (Carey, 1984). In 

the case o f a pericyclic reaction, the new carbon-carbon bonds are formed by the 

combination of 7? molecular orbitals o f the diene and dienophile. In general, this may be 

compared to that of electron delocalization in an aromatic system, therefore, an aromatic 

solvent allows the transition state to be more easily reached than a non-aromatic solvent. 

Although this rational tends to hold true, it has also been shown that various polar 

solvents can be just as effective in the Diels-Alder reaction, although the proposed 

interactions differ from that o f an aromatic solvent Carey, 1984).
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n. Results and Discussion

1. Multigram synthesis o f  the key intermediate dimethyl 2-oxoglutaconate (DOG) (2.3) 

(for a detailed analysis and spectral data see: Carrigan, 1999.

2-Oxoglutarate (89.4 g) was reacted with thionyl chloride in MeOH to afford 

dimethyl 2-oxoglutarate (2.5) in quantitative yield. The resulting diester was treated with

2 .4  2-oxog lu taric  acid

0

SOCI2  p X 0 2 CH3  Br2

c h 3o h  m h 3 c o 2c  CH2 CI2

2 .5 : dim ethyl 2 -oxog lu tarate

O

c o 2 c h 3

h 3 c o 2c

2 .6 : d im ethyl 3 -b ro m o -2 -  
oxogiu tarate

TEA
Et20 h 3 c o 2c

c o 2 c h 3

23  d im ethyl 4 -o x o g lu ta co n a te  
(D O G )

Figure 2.7: Synthesis o f DOG as described by Corey and Co-Workers

bromine in CH2CI2 and stirred at reflux to afford the crude dimethyl 3-bromo-2-

oxoglutarate (2.4) in quantitative yield. In the final step in the preparation o f DOG,

dimethyl 3-bromo-2-oxoglutarate was dehydrohalogenated with triethylamine in diethyl

ether to afford DOG (23, 102.5 g, 97.3% overall) after filtration through a plug of silica
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gel and subsequent recrystallization with ethyl acetate and hexanes. The product DOG 

showed physical and spectral details identical to that reported (Carrigan, 1999).
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2. Survey o f DOG as a dienophile in the Diels-Alder cycloaddition reaction

Figures 2.8 - 2.11 show the products of the reactions that have been attempted in 

the laboratory. The reaction conditions and percent yields (Table 2.2) reveal the high

C0 2 CH3

c o 2 c h 3

c o 2 c h 3

c o 2 c h 3

c o 2 c h 3

c o 2 c h 3

2.7 (58 - >95%) 2.8 (71 - >95%) 2.9 (>95%)

Figure 2.8. Monocyclic Diels-Alder adducts from symmetrical dienes

reactivity and success o f DOG as a dienophile in the Diels-Alder reaction. As is evident 

in the table, high temperatures and pressures are not needed for this reaction to proceed.

In the cases where a non-aromatic solvent was used, either the diene was lower boiling 

than benzene, or was so reactive that an aromatic solvent was not required. In the case of 

the reaction utilizing furan as the diene, increased temperatures were required to 

overcome, or break, the aromaticity o f the diene. In utilizing anthracene as the diene, 

high temperature was required to solubilize the anthracene.

The trans orientation o f DOG presents additional interesting features in this 

reaction. With symmetrical open chain dienes, the adducts obtained will have two newly
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Table 2.2. Conditions and yields for Diels-Alder reactions between DOG and select
dienes

Adduct number Diene Solvent Conditions Percent Yield

2.7
2.7

2.8 

2.8 

2.8

2.9

2.10 
2.10

2.11

2.11

2.12

2.12

2.12

2.13

2.14

2.14

2.14

2.15

2.16

2.17

2.18

2.19

2.20

Sulfolene
1.3-butadiene
2.3-dimethyl-
1.3-butadiene
2.3-dimethyl-
1.3-butadiene
2.3-dimethyl-
1.3-butadiene
1.4-diphenyl- 
1,3-butadiene

Cyclopentadiene
Cyclopentadiene

1.3-cyclohexadiene

1.3-cyclohexadiene 

Furan 

Furan 

Furan

2-methylfuran

2.5-dimethylfuran

2.5-dimethylfuran

2.5-dimethylfuran

2.3.4.5-tetraphenyl- 
cyclopentadienone

Anthracene

Acridine

Phenazine

Isoprene
furfural
amine

m-xylene
CH2C12
hexanes

benzene

CH2CI2

CH2CI2

CH2CI2
benzene

benzene

benzene

furan

CH2CI2

CH2CI2

CH2CI2

benzene

CH2CI2

CH2CI2

benzene

benzene

benzene

CH2CI2

CH2CI2

CH2CI2

reflux
rt

0 °C — reflux

sealed tube 
80 °C

reflux

rt 
0°C 

sealed tube 
150 °C 
reflux 

sealed tube 
150 °C 
reflux 

rt 
AlClj 
reflux 

sealed tube 
110°C 
reflux 

rt 
A1CU 

sealed tube 
150 °C 

sealed tube 
150 °C 

sealed tube 
150 °C 

sealed tube 
150 °C 
reflux

58
>95

71

88

>95

>95

90
86

83 

58 

28 

8

67

>95

N/Ra

N/Ra

N/Ra

N/Ra

67

N/Ra

N/Ra

>95

84

“N/R = no reaction

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A co2ch3 

co2ch3

2.10 (86 • 90%)

A  c o 2c h 3 

0  c o 2c h 3

2.11 (58 - 83%)

Q C02CH3

0< ^ co2ch3

2.12 (8 -67%)

^ a c o 2c h 3 ^ C Cq2CH3 

h 3̂ S <  h35 ^ Y

co2ch3 co2ch3

2.13 (>95%) 2.14 (N/R)

Figure 2.9. Bicyclic Diels-Alder adducts

2.15 (N/R)

2.16 (67%) 2.17 (N/R)

co2ch3

2.18 (N/R)

Figure 2.10. Diels-Alder adducts from extended aromatic dienes
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formed chiral centers. The interesting feature of this system is that only two 

stereoisomeric products are obtained. Since the dienophile is the trans isomer, the

o O

T  C 0 2 CH3  'n

°= < CF„ C0 2 CH3

CO2CH3

2.19 (>95%) 2.20 (84%)

O

H3i

CO2 CH3

C02 CH3  

2.13 (>95%)

Figure 2.11. Diels-Alder adducts derived from unsymmetrical dienes

cycloaddition adducts will be trans across the 4-5 bond o f the cyclohexenyl products, 

therefore, producing a mixture of only two enandomers. For the adducts 2.7 and 2.8 the 

lH NMR spectra indicate the trans ring junction by affording a doublet of triplets at 2.81 

and 2.95 ppm, respectively with coupling constant values o f 11.1 and 14.6 Hz, 

respectfully. In the case of the diphenyl substituted cyclohexenyl adduct (2.9), there will 

be four total chiral centers, but the product mixture will contain only four stereoisomers. 

In the formation o f the adduct, the phenyl rings at the 3 and 6 position o f the cyclohexene 

will be cis relative to one another, in turn, limiting the number o f stereoisomers obtained. 

With this limitation, as well as the trans orientation about the 4-5 bond, indicated by the
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coupling constant o f the triplet corresponding to the proton alpha to the ester of 11.4 Hz, 

the number of isomers is well short of that which would be obtained if a non- 

stereospecific reaction sequence was used (i.e. 2" = 24 = 16).

Table 2.2 also reveals that the relative rates o f reaction for furan, 2-methylfuran 

and 2, 5-dimethylfuran differ considerably. The interaction of the dienes with DOG in 

the transition state is highly dependent on the energy o f  the HOMO of the dienes. The 

HOMO energies (calculated using PC Spartan Pro 1.0.S, Irvine CA) for the dienes are 

given in Table 2.6. The consistent feature of the calculations is that the respective 

HOMO energies o f furan, 2-methylfuran and 2, 5-dimethylfuran increase with the 

addition of electron donating substituents and this, in turn, should increase the reactivity 

with DOG, although the reactions utilizing furan and 2, 5-dimethylfuran as the diene are 

extremely more sluggish than that with 2-methylfuran. This is most likely due to the fact 

that the HOMO of furan is too low in energy to interact constructively with the LUMO of 

DOG and that the HOMO of 2, 3-dimethylfuran may have been increased so much that it 

has surpassed the level o f energy that is required to interact favorably with DOG in the 

Diels-Alder reaction. Another piece of evidence that adds confidence to this hypothesis 

is that when a catalytic amount o f AlCb was added to the reaction mixture of furan and 

DOG, the reaction was complete in less than five minutes and the yield was increased to 

68% (not optimized). This supports the theory that the LUMO o f DOG is too high to 

interact with furan under non-catalytic conditions but once the catalyst is added, the 

coordination of the ketone o f DOG with the aluminum atom leads to a decrease in DOG’s 

LUMO enough to interact considerably with the HOMO o f furan. Also, when a catalytic 

amount o f AICI3 was added to the reaction mixture o f  2, 5-dimethylfuran and DOG, no
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increase in percent yield was achieved and more by-products were detected by thin layer 

chromatographic (TLC) analysis. This adds further evidence in support of the

Table 2.3. Energies and yield o f substituted furan Diels-Alder adducts

Diene HOMO Energy 
(eV)a Percent Yield Percent Yield 

with AICI3

2, 5-dimethylfuran -8.755 N/Rb N/Rb
2-methylfuran -9.015 >95 N/Ac

Furan

a i _.i j

-9.312

twVo ■' « bvr

8 68

a as calculated with PC Spartan P ro,b N/R = no reaction,
c N/A = not assessed due to the high reactivity in the absence of catalyst

interpretation that the HOMO of 2, 5-dimethylfuran has risen above that of DOG and a 

productive HOMO / LUMO interaction can not be achieved.

The low reactivity of 2 ,3 ,4 ,5-tetraphenylcyclopentadienone may be due to a 

collection o f factors including the crowded nature about the diene due to the four 

aromatic groups, the slight electron withdrawing nature of the phenyl groups as well as 

the electron withdrawing nature of the ketone moiety (Figure 2.12).

The aromatic molecules anthracene, phenazine and acridine also show much 

different reactivities in the Diels-Alder reaction with DOG. As is shown in Table 2.5, 

anthracene was able to undergo the Diels-Alder reaction with DOG in modest yield but 

the reaction with phenazine and acridine resulted in no reaction. The incorporation of the 

nitrogen atoms in the ring may slow the reaction by having the aromatic nature removed
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Figure 2.12. Structure of 2, 3,4, 5-tetraphenylcyclopentadienone
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at the end o f the reaction. Although the two rings next to the nitrogens are aromatic, the 

activation energy needed to achieve the transition state may be too high with phenazine 

and acridine.

Since the overall goal of the project was the synthesis of structurally constrained 

amino acid analogues, the survey of the regioselective nature o f DOG in the Diels-Alder 

reaction with DOG was examined only briefly. Three dienes were used: isoprene, 2- 

methylfuran and N-trifluoroacetyl furfuralamine (Figure 2.11). With isoprene, the 

reaction mixture produced two regioisomers collectively with excellent yield and a 

regioisomer ratio o f66:34 as determined by integration of the ester a-proton doublet of 

triplets in the lH NMR (Figure 2.13).

The ketone group appears to control the regioselectivity of the reaction as 

evidenced by the 'H NMR chemical shifts and coupling patterns of the DOG adducts 

with furan, 2 -methylfuran and N-trifluoroacetylfurfural amine. Figure 2.14 shows a stack 

of the three *H NMR spectra of the resulting adducts. As is seen in the spectra of the 

furan-DOG adduct there is a broad doublet of doublets at 7.34 ppm assigned to the 

bridgehead proton (Ha) adjacent to the proton alpha to the ketone functionality. The 

spectra o f the 2-methylfuran-DOG adduct contains no resonance between 7 and 8  ppm 

but there is an additional singlet appearing at 2.18 ppm corresponding to the newly 

introduced bridgehead methyl group. In the spectra for the N- 

trifluoroacetylftirfuralamine-DOG adduct, there is a broad triplet at 7.48 ppm 

corresponding to the amide hydrogen and a new resonance at 4.36 ppm corresponding to 

the methylene carbon alpha to the amide nitrogen. These data suggest that the 

regiochemistry of the reaction is consistent and controlled by the carbonyl groups such
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that the donor group in the diene aligns with the ketoester moiety (Figure 2.14).

Although the regiochemistry of this reaction was only slightly researched, the potential to 

synthesize regiochemically specific keto-esters in route to the corresponding glutamate 

analogues may be of tremendous benefit in the future.

It was shown that DOG is a highly reactive dienophile in the Diels-Alder reaction. 

The reaction was successful with the dienes sulfolene (1, 3-butadiene), 2, 3-dimethyl-1, 

3-butadiene, 1,4-diphenyl-1,3-butadiene, cyclohexadiene, cyclopentadiene, furan, 2- 

methylfuran, 2 ,3 ,4 ,5-tetraphenylcyclopentadienone, anthracene, isoprene and N- 

trifluoroacetyl furfuralamine. It was also shown that the dienes acridine, phenazine and 

2, 5-dimethylfuran were not of sufficient reactivity to partner with DOG in the Diels- 

Alder reaction.
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3. Ketone to amine transformation: Formal reductive amination

The justification for the use o f DOG as a dienophile in the Diels-Alder reaction 

was predicted on the fact that the keto-ester cyclic products are potential starting 

materials for the synthesis o f 3 ,4-conformationally-restricted L-glutamate analogues.

The key chemical transformation to access the conformationally constrained glutamate 

analogues is the conversion of the a-keto ester moiety into an a-amino ester. The 

reductive amination of ketones is well documented (for a review see, Hutchins, 1979). 

One common route used to convert a ketone into an amine is reduction of an imine 

formed by the condensation of a ketone with a 1° amine (Figure 2.15) including: a) 

hydrogenation over a nickel (Norton, 1954), b) platinum (Freifelder, 1966) or c) 

palladium catalyst (Eleveld, 1986), d) NaBFL (Hutchins, 1983, and references therein) 

and one o f the most mild and selective, to date, e) NaCNBH3 (for a good review see, 

Lane, 1975). The reductive amination success relies on high conversion of the carbonyl 

and the amine to the imine and many different procedures have been adapted to increase 

the formation of the imine including the use of: a) dehydrating agents such as molecular 

sieves (Bonnett, 1965), b) removal of water under azeotropic conditions using benzene or 

toluene (Wrobel, 1981) c) acid catalysis utilizing acetic acid (Hutchins, 1979) and d) 

TiCL is used as a Lewis acid catalyst as well as the dehydrating agent (Weingarten, 

1967).

A vast number o f different conditions were employed in the laboratory to effect 

the reductive amination o f the structurally constrained keto esters via an imine
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intermediate, but, the structures do not appear to be good substrates for this reaction. 

There are a number of reasons that the reaction may fail. The steric constraints

Solvent—H

( r•v*
Ri^Rz :nh2r ‘

Intramolecular 
proton transfer

: oh

NHR*

: oh

Ri- |~ R 2
NHR'M

Intramolecular 
proton transfer

OfRi^-R2

Dehydration

—Solvent 

■71-R2

R1 fj~R2

nn' r-

Intermediate
imine

Figure 2.15. Formation of the imine intermediate in route to reductive amination

imposed about the ketone moiety make the region too crowded for an effective imine

formation. This seems to be highly unlikely due to the fact that the ketone can be

converted to the corresponding oxime and dimethylhydrazone, which proceed by a

similar mechanism (discussed later). Another factor that may effect the imine formation

is that the ketone may readily enolize in the presence of certain acid catalysts that prevent

the nucleophilic addition of the amine to the ketone functionality but, once again, this

argument may be contradicted, in part, by the relative ease of formation o f the oxime and

dimethylhydrazone products, hi the case where ammonia and primary amines were used

as the initial nucleophile, there is a large opportunity for amide formation with the ester

functionalities o f the starting materials. Although this is a distinct possibility, it was not

researched exhaustively due to the fact that, although the problem is an interesting one in
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mechanistic organic chemistry, the product amino acids were highly desired and the 

search for a procedure to produce them in good yields predominated over a mechanistic 

investigation. Table 2.4 summarizes some of the conditions we explored unsuccessfully 

in route to the imine.

Table 2.4. Conditions employed for chemical reductive amination 

Starting Material Amine Eq. Reducing agent Solvent Conditions

dimethyl 2-oxoglutarate NHJJr NaBHsCN CH3OH HC1 (cat.)
rt

dimethyl 2-oxoglutarate benzylamine NaBHaCN CH3OH HOAc (cat.)
rt

dimethyl 2-oxoglutarate benzylamine NaBHsCN CH3OH HOAc (cat.)
rt

4A sieves

dimethyl 2-oxoglutarate benzylamine NaBHsCN CH3OH HOAc (cat.)
reflux

2-oxoglutarate benzylamine NaBHsCN CH3OH HOAc (cat.)
reflux

The ketoxime of compound 2.8 (Figure 2.16) was synthesized by the addition of 

ammonium acetate trihydrate to a solution of 2.8 and hydroxylamine hydrochloride in 

ethanol. The resultant ketoxime was isolated as a white solid in 42 % yield after
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recrystallization from ethanol As mentioned above, it has

n »OH been shown that ketoximes can be reduced to their

^ j ^ ^ ^ ^ C 0 2 CH3 corresponding amines by hydrogen and Raney nickel (Norton,

C02CH3 1954). This reaction was attempted in the lab, but was

Figure 2.16. Ketoxime initially unsuccessful and not highly researched according to
(2 .2 1 ) of compound 2 .8  6

the arguments stated above as well as the fact that there is a 

high potential for the reduction of the olefin moiety in the molecule, which is a necessary 

component of our final amino acid molecules to impose the conformational restriction 

about the 1, 2 bond. In addition, the reduction of the olefin double bond would introduce 

two new centers of chirality which, even though the reduction is stereoselective, will 

double the number of product stereoisomers and render product isolation more difficult, 

therefore, a more selective reagent was sought.

Serckx-Poncin and co-workers (1982) have shown that the nitrogen-nitrogen bond 

of a hydrazine can be broken using zinc in acetic acid. With this in mind, it was 

postulated that the double bond of a hydrazone could also be reduced under these 

conditions, therefore, introducing a new hydrazine bond which would be subsequently 

reductively cleaved under the reaction conditions to afford the desired amino diesters. 

With this in mind, we set out to synthesize the N, N-dimethylhydrazone derivatives o f the 

keto diester adducts previously obtained in the Diels-Alder reaction and survey their 

potential as substrates for the reductive cleavage reaction in the preparation of the 

corresponding conformationally restricted analogues of glutamate (figure 2.17). The
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X

X
o

x o 2CH3

C0 2CH3

(CH3)2NNH2 x 
HOAc

X

CH2C12

c o 2c h 3

c o 2c h 3

Figure 2.17. Synthesis o f N, N-dimethylhydrazones o f the Diels-Alder adducts. The
identity of X is described in table 2.2

hydrazones were accessed by the condensation of N, N-dimethylhydrazine with the keto 

diester adducts, catalyzed by acetic acid in dichloromethane, ranging from 79-91 percent 

yield. One very important factor in this reaction is its convenience and ease o f execution. 

The dichloromethane solvent and the hydrazine reagent are both very low boiling and 

thus readily removed in vacuo. The acetic acid catalyst is readily removed by an aqueous 

workup and the hydrazone products are readily obtained via flash chromatography (see 

the Experimental section). Four hydrazones were successfully synthesized from the 

ketone precursors (Figure 2.18).
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n 'n 'c h 3

c o 2c h 3 

c o 2c h 3

2.22

N CH3

c o 2c h 3

c o 2c h 3

2.23

c o 2c h 3

h r  'N= \3 N C02CH3
c h 3

c o 2c h 3

c o 2c h 3

2.24 2.25

Figure 2.18. Hydrazone products from select Diels-Alder adducts

Once the hydrazones were synthesized, their ability as substrates was assessed in

a tandem reduction, reductive cleavage reaction. It was brought to our attention that the

tandem reduction, reductive cleavage reaction has been accomplished with the use of

sodium hydrosulfate under aqueous conditions (DeGraw, personal communication).

With this information, as well as the evidence that under the conditions using zinc and

acetic acid, double bonds are readily reduced (Serckx-Poncin, 1983), conditions to

perform the sequence with sodium hydrosulfate were first considered. The reader is

advised that sodium hydrosulfate may also be called sodium thiosulfite.

It is essential that a solvent capable of dissolving the sodium hydrosulfate to a

substantial amount that it can interact with the hydrazone is used. It was determined that

a mixture of water and methanol ( 1 : 1) under reflux was a favorable set o f conditions.
41
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Figure 2.19 shows the reagents and products of the reactions of compounds 2.22 -  2.24 

with sodium hydrosulfate in water-methanol (1  :1).

The products arising from the reduction of the monocyclic cases are lactam esters 

and lactam acids 2.26 - 2.29, resulting from initial formation of the desired amine 

followed by cyclization and hydrolysis. In the bicyclic cases, the products 2.30 - 2.31 are 

obtained as amino diesters. It is assumed that the lactams are not formed in the bicyclic 

cases due to the extra rigidity of the molecules exerted by the bridging methylene groups.

Due to the nature o f these compounds to form lactams, the number of 

glutamate analogues has increased due to an intermediate structure showing activity in 

biological preparations.

For compounds 2.24 and 2.25, the intermediate amino esters (2.30 and 2.31) were 

isolated by a simple aqueous extraction, identified by electrospray mass spectrometry
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Figure 2.19. Sodium hydrosulfate reduction o f hydrazones
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d y ° * H
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Figure 2.20. Saponification to afford the target amino acids

(ESI-MS) and used directly in the next reaction without further purification or 

characterization.

To access the amino acid analogues, the lactam acids, lactam esters or amino 

esters were subsequently saponified with sodium hydroxide (Figure 2.20) and purified by
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ion exchange chromatography to afford the amino acid hydrochorides 2.32, 2.33, 2.34 

and 2.35 in 58, 85, >95 and 76 % yield, respectively. These newly formed, 

conformationally restricted glutamate analogues were tested as inhibitors of the sodium 

dependent excitatory amino acid transporters EAAT2 and EAAT3, the chloride 

dependent glial cystine/glutamate exchanger system Xc\ and the glutamate vesicular 

transport system (VGLUT) (for details, see Chapter 4).
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4. Synthesis o f l-dimethylamino-3-methoxyoxalyl-l,2,3,4-tetrahydro-pyridine-2- 

carboxylic acid methyl esters. Reaction o f DOG with azadienes (a, fi-unsaturated N, N- 

dimethylhydrazones).

Once it was determined that DOG was a reactive dienophile in the Diels-Alder 

reaction and the subsequent adducts were starting materials for the synthesis of 

conformationally restricted glutamates with biological activity, it was in our interest to 

synthesize a number o f amino acid derivatives that will mimic glutamate. It has been 

shown that a , (3-unsaturated hydrazones derived from a , (3-unsaturated aldehydes readily 

undergo the Diels-Alder reaction with electrophilic dienophiles. Data has supported the 

theory that the mechanism o f the reaction is not truly a 4 + 2 cycloaddition reaction, but 

an initial 1,4  addition o f the hydrazone with the double bond of the dienophile, followed 

by an intramolecular nucleophilic ring closure of the intermediate enolate onto the newly 

formed iminium ion (Figure 2.21).

Figure 2.21. Proposed mechanism and reaction outcome between DOG and a , (3
unsaturated N, N-dimethylhydrazones

Cjj^COzCHa o '  c o 2c h 3

h3co2c .h3c o 2c X c o 2c h 3 

>2c h 3
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The mechanism of this reaction has been substantiated by a number of methods. 

Serckx-Poncin and co workers (1983) have shown when the N, N-dimethylhydrazone 

derived from methacrolein (Compound 2.36) undergoes reaction with electrophilic 

dienophiles, specifically, acrylonitrile and methyl vinylketone, the regiochemistry of the 

reaction is inverse to that which is expected in a typical, molecular orbital driven, Diels- 

Alder cycloaddition reaction (Figure 2.22). Further evidence that the mechanism is 

following the path described in Figure 2.21 is that when the cycloaddition is performed 

between the N, N-dimethylhydrazone o f acrolein with dimethyl fumarate and dimethyl 

maleate, the resulting cycloadducts have the same trans configuration about the 5-6 bond

Figure 2.22. Regiochemical outcomes of the reaction of methacrolein N, N- 
dimethylhydrazone with acrylonitrile and methylvinylketone (Serckx-Poncin, 1983)

as determined by the coupling constants o f the vicinal protons on carbons C5 and C6 (J =

8  Hz). The authors further confirmed the trans stereochemistry by the synthesis o f the cis 

isomer and subsequent analysis o f the coupling constants o f the vicinal vicinal protons on 

carbons C5 and C6 ( ./= 4  Hz) (Serckx-Poncin, 1983). The trans orientation could only 

have resulted in a stepwise mechanism with dimethyl fumarate as an electrophile.

With this data in hand, we set out to perform the cycloaddition reaction o f the 

hydrazones o f methacrolein and acrolein as an exploratory but direct route to a new class
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of structurally constrained glutamate analogues, namely, l-dimethylamino-3- 

methoxyoxalyl-l,2,3,4-tetrahydro-pyridine-2-carboxylic acid methyl esters. Figure 2.23 

shows the two model adducts (2.36 and 2.37) formed by the reaction between the N, N- 

dimethylhydrazones of acrolein and methacrolein and DOG. The regiochemistry was 

determined to be consistent with the structure depicted in Figure 2.23 by utilizing the 

knowledge of the reaction mechanism (figure 2.21) for the 1,4 addition-cyclization as 

well as interpretation of the ‘H NMR of the adducts. Adducts 2.36 and 2.37 both have a

X C02CH3

)2c h 3N A c o 2c h 3

2.36 2.37

Figure 2.23. Adducts of the reaction between the N, N-dimethylhydrazones of acrolein
and methacrolein and DOG

triplet of doublets appearing at 3.41 and 3.21 ppm, respectively. This indicates that the

proton giving rise to this resonance is alpha to the ketone, for example, in compound 2.7

the chemical shift for the proton alpha to the ketone is 3.45 ppm while the chemical shift

for the proton alpha to the ester resonates at 2.81 ppm and in the adduct 2 .8  the chemical

shift o f the proton alpha to the ketone is 3.56 ppm where the proton alpha to the ester

resonates at 2.95 ppm.

The adducts formed in this sequence provide the intermediate materials for the

synthesis of a new class o f structurally constrained glutamates which incorporate the

nitrogen of the amino acid within the ring. Besides having the conformation o f glutamate
48
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locked about the 2-3 bond o f the glutamate backbone, there is also a new feature 

introduced into the chemical structure, a ketone at the 4 position. This additional feature 

in the glutamate backbone may serve to further elucidate the structural requirements for 

analogues to bind constructively at glutamate transporters. The introduction of the 

ketone group in the intermediates also adds a functional group that can be further 

manipulated numerous ways to incorporate many new functional groups into the amino 

acid structure (see Chapter S).

To access the final amino acid analogue structure requires the reductive cleavage 

o f the hydrazine bond. This reaction has been accomplished with zinc in acetic acid, 

although the olefin moiety was also reduced. Although this potentially detracts from the 

structural rigidity of

Figure 2.24. Reduction o f hydrazine and olefin with zinc in acetic acid

the analogues, there is one positive note. In the case o f the acrolein adduct, if the tandem 

reduction-reductive cleavage were to occur without reduction of the olefin, the new 

product will be an enamine, which has a high potential o f ring opening to form the 

aldehyde containing molecule 2-amino-4-oxo-3-(2-oxo-ethyl)-pentanedioic acid dimethyl 

ester. This molecule itself is a new analogue o f glutamate with potential for further

X C02CH3 

)2CH3 HOAc

Zn

X C02CH3

>2c h 3

2.36 2.38
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manipulation, but it’s synthesis, characterization and manipulation is only theoretical to 

date.
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5. Investigations into the synthesis o f  4-oxoglutamate

Once it was determined that the Diels-Alder reaction with a , [3-unsaturated 

hydrazones was a success and had potential for accessing 4-oxoglutamate analogues, the 

synthesis of the most simple 4-oxoglutamate (Compound 2.40, Figure 2.2S) was 

undertaken. Although the synthesis as shown in figure 2.25 is logical, the actual

sequence of events which take place are outlined in Figure 2.26. Upon initial 1,4 

addition of benzylamine to DOG, the subsequent amino compound readily cyclizes to 

form the substituted pyrrolidine (2.41) which subsequently reacts with a second 

equivalent of amine to form the pyrrolidinoenamine (2.42). This molecule is easily 

hydrolyzed back to the pyrrolidine under aqueous conditions. When only 1 equivalent of 

amine was used, the yield o f product, 1-benzyl-4-benzylamino-5-oxo-2,5-dihydro-1H-

H3C02C c o 2c h 3

H3C0 2Cv ^ 'n s^.C0 2CH3

ch2ci2

2.39

2. NaOH NH2 O 

2.40

Figure 2.2S. Proposed synthesis of 4-oxoglutamate

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



pyrrole-2-carboxylic acid methyl ester (2.41), was isolated in less than 50 % yield. If two 

equivalents of amine were used, the yield was increased substantially. This indicates that 

the formation o f the enamine is equally or more rapid as the initial 1,4  addition,

A .H3 CO2 C OCH3

N H

H3co2cr xn h o c h 3

DOG

' \

2.39

2.41

N H

2.42

H+

H20

2.41

Figure 2.26. 1,4 Addition-cyclization-enamine formation of benzylamine with DOG
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therefore, to access the pyrrolidine 2.41, it is necessary to use two equivalents of amine 

and subsequently hydrolize the enamine product (2.42) back to the intermediate target 

molecule, 1 -benzyl-4,S-dioxo-pyrrolidine-2-carboxylic acid methyl ester (2.41).

Preliminary investigations into the hydrogenolysis of compound (2.41) have been 

attempted, and reduction of the ketone is evident in the 'H NMR and ESI-MS of the 

crude reaction mixture. Future manipulations of compound (2.41) will be discussed in 

Chapter 5.
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6. Synthesis o f structurally constrained 2-oxoglutarate analogues: potential substrates o f  

dehydrogenases and aminotransferases

One o f the initial goals o f the project was to synthesize the conformationally 

constrained glutamate analogues in a stereoselective manner utilizing an enzymatic 

transformation to convert the keto ester to an amino acid. For this route to be researched, 

it was necessary to synthesize the substrate 2-oxoglutarates. A brief panel o f substrates 

(2.43, 2.44,2.45, 2.46 and 2.47) was synthesized by the saponification of the Diels-Alder 

adducts 2.7, 2.8,2.10 and 2.11 (Figure 2.25). A solution of the keto ester in MeOH was 

saponified with an excess of aqueous sodium hydroxide (NaOH). The resultant 

ketocarboxylate salts were protonated with hydrochloric acid, extracted with diethyl 

ether, dried over anhydrous magnesium sulfate and the crude oils were obtained after 

evaporation of the solvent. Further purification of the keto diacids by ion exchange or 

traditional chromatography (below) was very difficult; therefore, the crude keto diacids 

were used as substrates in the transamination reaction (see Chapter 3).

Purification of the ketoacids was attempted by a number of methods. First, the 

acids were subjected to anion exchange chromatography. The aqueous solutions o f the 

ketoacid sodium salts were prepared by the addition o f NaOH to a vigorously stirred 

slurry/solution of ketoacid in water until all of the oil was dissolved (ca. pH 8 ). The 

solution was added to a cation exchange column (BioRad, AG 1-X2,, 20 g resin / gram 

ketoacid), and washed with water to remove any inorganic ions. It was attempted to elute 

the keto acids with an increasing gradient o f aqueous acetic acid, but the acids were only 

sparingly soluble in aqueous solution and became virtually inseparable from the resin.
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Figure 2.27. Saponification of keto ester Diels-Alder adducts
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Attempts to extract the keto acids from the resin with hydrochloric acid and methanol or 

as their pyridinium salts with aqueous pyridine also failed.

It was also attempted to form a salt that may be isolated by crystallization. In an 

attempt to form an insoluble barium salt a solution/slurry of keto acid in water was 

treated with saturated Ba(OH)2 until pH > 10. The resultant solution was let stand at rt 

for up to thirty days with no appreciable precipitation.

In an attempt to form the salt with the organic base N, N-dicyclohexylamine, a 

solution o f keto diacid in diethyl ether was treated with the amine and the resultant 

solution was allowed to stand at rt °C in excess of 60 days with no appreciable 

precipitation of the salt.

It was then attempted to purify the keto diacids by high performance liquid 

chromatography (HPLC). Because the keto diacids have a poor chromophore, it was 

very difficult to detect them with a UV/visible detector coupled to the HPLC, although it 

was attempted. The keto diacids were injected into the HPLC eluting with various ratios 

of MeOH in water (0-50 %) containing 0.08 % trifluoroacetic acid (TFA). Conditions for 

the preparative purification o f the keto diacids were not optimized due to the fact that the 

use o f TFA in the mobile phase spawned a new idea for the isolation of the keto diacids, 

the use of TFA as the proton source in the isolation of the keto diacids after 

saponification.

It was attempted to precipitate the previously synthesized keto diacids by the 

neutralization of their sodium salts with TFA in water. This method was unsuccessful, 

however, it lead to the discovery that the keto diacids could be obtained as brown solids
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after saponification of the keto diesters with 2.1 equivalents of NaOH, evaporation of the 

solvent, reconstitution in a minimum amount of water and subsequent protonation with 

dilute TFA.

Once the initial crude keto diacids were obtained, it was necessary to choose an 

enzyme capable of converting the ketone moiety of our keto diacids into an amine group. 

Upon discussion with Dr. Richard Bridges about which enzyme would be the most 

logical starting point, we contacted Dr. Arthur Cooper o f the Weill Medical College of 

Cornell University (an expert in the field o f aminotransferases and dehydrogenases). A 

collaboration was established with Dr. Cooper in which he would preliminarily survey 

our keto diacids as substrates and/or inhibitors of a panel of aminotransferases, 

dehydrogenases and dehydrogenase complexes (for experimental details, see Chapter 3).
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7. Synthesis o f phosphono analogues o f 2-oxoglutarate, 2-oxoisocaproate, 2- 

oxoisovalerate and 2-oxo-3-methylvalerate

The collaboration with Dr. Cooper (section 2.6)initiated a research plan to investigate the 

synthesis o f a number of phosphonate analogues o f 2 -oxoglutarate in the search for a 

potent and selective inhibitor o f the 2 -oxoglutarate dehydrogenase complex as a model 

for neurodegenerative diseases (for an overview of this subject, see: Brown, 2000; 

Cooper, 1996, 1998). Compounds 2.48 -  2.50 (Figure 2.28) and 2.51 and 2.52 (Figure 

2.29) were identified as targets and were synthesized using a modification o f previously

_  1  P(OCH2 CH3 ) 3  „  /^ ~ ^ A „ ' O C H 2 ° H 3

c h 3c h 2o 2c —  Cl -------------------  • •  c h 3c h 2o 2c  P ' O C H j C H j

Ethyl succinyl chloride 2.48

n  0
T *ien  II OH NaOH .ONa

CH3CH20 2c r ^ ^ P ^ OH H'ONa
neat, rt 3  2  z q  0

2.49 2.50

Figure 2.28: Synthesis o f phosphonate analogues o f 2-oxoglutarate

published work (Khomutov, 1978). Compound 2.48 is obtained via a modified Arbuzov 

reaction between ethyl succinylchloride and triethyl phosphite. Compound 2.49 is 

obtained via the dealkylation o f the phosphonate esters with bromotrimethylsilane 

followed by treatment of 2.49 with 3 equivalents of NaOH in water to afford the trisodio
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salt 2.50. Compound 2.51 was synthesized from triester 2.48 by monodealkylation with 

sodium iodide (Nal) in refluxing acetone. The disodium salt 2.52 was synthesized by the

O O
IT pCH 2 CH3  Nal ^  ¥  ,0Na

CH3 CH2 0 2C P"OCH2 CH3  acetone CH3 CH2 0 2C ^"OCH 2 CH3

O O

2.48 2.51

NaOH j ?  pNa
Na02C P^OCH2 CH3

O

2.52

Figure 2.29: Synthesis of phosphono analogues of 2-oxoglutarate

saponification of the carboxylate ester o f compound 2.51 with NaOH in water. All o f the 

products gave satisfactory 'H NMR, l3C NMR and ESI-MS properties (see Experimental 

Section).

The molecules described above are phosphono analogues o f 2-oxoglutarate, 

which is a substrate for the enzyme complex o f 2-oxoglutarate dehydrogenase. The 

reduced capacity o f this enzyme complex is implicated in neurodegenerative diseases. 

The selective inhibition o f this complex with a synthetic molecule will decrease its 

activity and mimic the disease state which can then be studied. The biological evaluation 

o f these compounds to inhibit 2 -oxoglutarate dehydrogenase in vitro and in vivo is being 

done by collaborators Dr. Arthur J. L. Cooper and Dr. Gary E. Gibson at the Weill
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Medical College o f Cornell University. The results are pending at the time of this thesis 

preparation.

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



III. Experimental

Unless otherwise noted, reactions were run in flame-dried apparatus under argon 

atmosphere. Anhydrous reagent grade solvents (methylene chloride, CH2CI2: 

dimethoxyethane, DME: dimethyl formamide (DMF): tetrahydrofiiran (THF)), toluene, 

methanol (MeOH), triethylamine (TEA), were purchased from Aldrich Chemical Co. 

Melting points were determined on a Mel-Temp n  metal block apparatus and are 

uncorrected. Analytical thin-layer chromatography (TLC) was performed on silica gel 

(Whatman) aluminum-backed plates. Flash chromatography was performed with silica 

gel. Compounds were detected using UV absorption at 254 nm and/or stained with 

ninhydrin or I2 (iodine). lH NMR (400 MHz), 13C NMR (100 MHz) and3lP (161 MHz) 

spectra were recorded with a Varian 400 MHz Unity Plus spectrometer. Chemical shifts 

are reported in parts per million (ppm, 5) using residual solvent signals as internal 

standards. High resolution mass spectra (HRMS) were obtained from the University of 

Montana Mass Spectrometry facility with a Micromass LCT HRMS. Elemental analyses 

for C, H, and N were performed by Midwest Microlab, Indianapolis, IN. For most 

compounds described in this section, analytical (HRMS or elemental analysis) data are 

presented. For those compounds devoid o f this data it is because at the time o f synthesis 

either the spectrometer was dysfunctional or the amount o f material obtained was 

insignificant for an elemental analysis.
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COaCH, '*** “*.
reflux

j  c o 2 c h 3  

ĉ o 2c h 3

2.72.3

Methyl 6-methoxyoxalyl-cyclohex-3-eiiecarboxylate (2.7)

A solution of DOG (1.19 g, 6.89 mmol) and butadiene sulfone, (8.41 g, 68.90 mmol) in 

m-xylene (20 mL) was heated to reflux and stirred for 6  h. The solution was allowed to 

cool to rt and the solvent was removed in vacuo. The resultant brown oil was 

chromatographed (Si02, 25% EtOAc : hexanes) to afford the product 2.7 (1.17 g, 58.8%) 

as a gold oil:

lH NMR (CDCl3, 400 MHz): 8  5.55 (t, J -  1.9 Hz, 2 H), 3.72 (s, 3 H), 3.48 (s, 3 

H), 3.45 (td ,y=  5.7, 11.1 Hz, 1 H), 2.81 ( td ,/=  5.7 Hz, 11.1 Hz, 1 H), 2.40-2.25 (m, 

2H), 2.06-1.85 (m, 2 H);

l3C NMR (CDCI3, 100 MHz): 8  196.8, 175.3, 161.5, 125.3, 125.0, 52.8, 52.0,

43.0,41.4,27.5 (2 C);

IR (liquid cell, CDC13):3156, 1727, 1438, 1302, 1267, 1232, 1200, 1179, 1081

Anal. Calcd for C nH l40 5: C, 58.40; H, 6.24. Found: C, 58.44; H, 6.25;

HRMS Calcd for C uH lsQs 227.0919. Found: 227.0925 (M+H)+.
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2.3 2.8

Methyl 6-methoxyoxalyl-3,4-dimethyl-cyclohex-3-enecarboxyate (2.8)

A. To a solution o f DOG (9.02 g, 51.85 mmol) in hexanes (30 mL) was added 2,3- 

dimethyl-1,3-butadiene (11.73 mL, 103.7 mmol) and the solution was heated slowly to 

reflux until TLC indicated consumption of starting material. The solvent was removed in 

vacuo and the resultant brown oil was chromatographed (S1O2, 25% EtOAc : hexanes) to 

afford the product 2.8 (9.39 g, 70.7%) as a gold oil:

B. To a solution o f DOG (1.14 g, 6 .6  mmol) in CH2CI2 (30 mL) was added 2,3-dimethyl-

1,3-butadiene (3.97 mL, 33.1 mmol) and the solution was heated to reflux and stirred for 

5 min. The solvent was removed in vacuo and the resultant brown oil was 

chromatographed (Si02,25% EtOAc: hexanes) to afford the product 2.8 (1.66 g, 98.1%) 

as a gold oil:

C. To a sealable pressure tube was added DOG (1.14 g, 6.61 mmol), 2,3-dimethyl-1,3- 

butadiene (1.49 mL, 13.21 mmol) and benzene (5 mL). The solution was heated to 80 0 

C and stirred for 2 h. The solvent was removed in vacuo and the resultant brown oil was
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chromatographed (SiCh, 25% EtOAc : hexanes) to afford the product 2.8 (1.49 g, 88.3%) 

as a gold oil:

lH NMR (CDCI3, 400 MHz): 5 3.87 (s, 3 H), 3.63-3.56 (m, 4 H), 2.95 (td, J=  5.7, 

14.6 Hz, I H); 2.37-2.24 (m, 2 H); 2.17-1.98 (m, 2 H); 1.53 (s, broad, 6  H);

13C NMR (CDCI3, 100 MHz): 5 197.5, 175.9, 162.0, 124.8, 124.5, 53.3, 52.4, 

44.4,42.6,34.1 (2 C), 18.7 (2 C);

IR (liquid cell, CDC13) 3155, 2998,2954,2917,2844, 1722, 1438 cm'1;

A nal. C a lcd  f o r C i 3H ,8 0 5: C, 61.41; H , 7.13. F ound: C, 61.29; H , 7.13.
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2.3 2.9

Methyl 6-methoxyoxalyl-2,5-diphenyl-cyclohex-3-enecarboxylate (2.9)

To a solution o f DOG (0.708 g, 4.07 mmol) in benzene (10 mL) was added 1,4-diphenyl-

1,3-butadiene (1.68 g, 8.14 mmol) and the resulting solution was heated to reflux and 

stirred for 12 h. The solvent was removed in vacuo and the residue was chromatographed 

(Si02. 25% EtOAc : hexanes) to afford the product 2.9 (1.20 g, 77.4%) as an off white 

solid:

mp 109-113 °C

'H NMR (CDC13, 400 MHz): 5 7.39-7.13 (m, 10 H), 5.98-5.88 (m, 2 H), 4.49- 

4.46 (br m, 1 H), 4.30 (dd, J=  11.4,6.2 Hz, 1 H), .3.87 (s, 6  H), 3.64-3.61 (m, 1 H), 3.33 

(s, 6  H), 3.02 (t, J  = 11.4 Hz, 1 H);

l3C NMR (CDCh, 100 MHz): 6  193.2, 175.1, 160.4, 141.9, 138.6, 131.9, 131.0,

128.8, 128.8, 128.6, 128.0, 127.8, 127.6,127.3,53.0,(51.3,51.1), 46.5,44.7,42.3;

Anal. Calcd for C23H22O5: C, 73.00; H, 5.86. Found: C, 72.83; H, 6.08.

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o C0 2 CH3

O +

h3c o 2c

c o 2c h 3
EtOAc/CH2C12

0 °C to rt 0 = \
C02CH3

cyclopentadiene 2.3 2.10

3-Methoxyoxalyl-bicyclo[2.2.1 ] hept-5-ene-2-carboxylic acid methyl ester (2.10)

Two methods were used to prepare compound 2.10, which is isolated as a mixture of 

diastereomers:

A. To a solution o f DOG (3.00 g, 14.5 mmol) in benzene (25 mL) at 0 °C was added 

freshly cracked cyclopentadiene dimer (> 1.75 mL, 20.94 mmol) and the reaction was 

complete upon addition as determined by TLC analysis. The solvent was removed in 

vacuo and the resultant clear/yellow oil was chromatographed (SiOi, 25% EtOAc : 

hexanes) to afford the product 2.10 (3.57 g , 85.8 %) as a clear/yellow oil:

B. To a solution of DOG (0.44 g, 2.5 mmol) in CH2CI2 (10 mL) at rt was added freshly 

cracked cyclopentadiene dimer (> 0.425 mL, 5.1 mmol) and the solution was stirred for 

10 min. The solvent was removed in vacuo and the resultant clear/yellow oil was 

chromatographed (Si02,25% EtOAc: hexanes) to afford (2.7.a) (0.05 g , 90.2%) as a 

yellow oil:

'H NMR (CDCI3, 400 MHz): 8  6.31 (dd, J - 3.1, 5.7 Hz, 0.5 H), 6.23 (dd, J  = 3.1,

5.7 Hz, 0.5 H), 6.10 (dd, J  = 2.5, 5.7 Hz, 0.5 H), 5.91 (dd, J=  2.5, 5.7 Hz, 0.5 H), 3.96,

(dd ,y=  3.5,4.5 Hz, I H), 3.86 (s, 1.5 H), 3.83 (s, 1.5 H), 3.67 (s, 1.5 H), 3.60 (s, 1.5 H),
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3.44-3.39 (m, 1 H), 3,26 (s, 0.2 H) 3.14 (s, 0.8 H), 2.72 (dd, J  = 1.6,4.8 Hz, 1 H); 1.71 (d, 

J -  8.8 Hz, 0.5 H); 1.48 (dd ,./=  1.6, 8.8 Hz, 0.5 H), 1.38 (s, 1 H);

13C NMR (CDCU, 100 MHz): 5 (194.3, 193.4), (175.0, 173.8), (162.1, 162.0) 

(138.3, 137.5), (136.2, 134.4), (53.1, 52.8), 52.0, 51.7, (47.7,47.6), (46.2,46.1), (45.9, 

45.6), 45.1

IR (liquid cell, CDC13)3155, 2986,2956, 1727, 1438, 1381, 1253, 1091 cm'1;
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C 0 2 CH3
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diene 2,3 2.11

Methyl 3-methoxyoxalyl-bicyclo(2.2.2]oct-5-ene-2-carboxylate (2.11)

Two methods were used to prepare compound 2.11, which was isolated as a diastereomer 

mixture:

A. To a solution of DOG (0.742 g, 4.27 mmol) in benzene (6 mL) was added 1,3- 

cyclohexadiene (0.577 mL, 8.52 mmol) and the resulting solution was heated to reflux 

and stirred for 24 h. The solvent was removed in vacuo and the resultant brown oil was 

chromatographed (Si02.25% EtOAc : hexanes) to afford the compound 2.11 (0.63 g,

58.1%) as mixture o f endo/exo isomers as a gold oil:

B. To a sealable pressure tube was added DOG (1.51 g, 8.78 mmol), 1,3-cyclohexadiene 

(1.25 mL, 13.17 mmol) and benzene (10 mL). The solution was heated to 150 0 C and 

stirred for 72 h. The solvent was removed in vacuo and the resultant black tar was 

chromatographed (Si02, 25% EtOAc : hexanes) to afford compound 2.11 (1.84 g, 82.5%) 

as a gold oil:

lH NMR (CDCI3, 400 MHz): 8 6.33 (t, J=  8.3 Hz, 1 H), 6.22 (t, J = 7.6, 1 H),

3.85 (s, 3 H), 3.83 (s, 3 H), 3.78 (dd, J -  1.9,5.7 Hz, 1 H), 3.17 (dd, J -  1.9, 5.4 Hz, 1 H),
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3.00-2.89 (m, 2 H), 1.78-1.70 (m, 1 H), 1.58-1.50 (m, 1 H), 1.36-1.27 (m, 1 H), 1.17-1.09 

(m, 1 H);

l3C NMR (CDC13, 100 MHz): 8 (195.2, 194.4), (175.2, 174.9), 162.8, (136.2, 

135.1), (134.2, 132.3), (54.1, 54.0), (53.2, 53.1), (51.5, 50.7), (44.6,44.3), (33.4, 33.2), 

(32.8, 32.6), (25.9, 25.1), (21.5,21.0);

IR (liquid cell, CDCb) 3156, 2955, 1728, 1466, 1437, 1382, 1273, 1225, 1094 

cm'1;

Anal. Calcd for Ci3H |60s: C, 61.90; H, 6.39. Found: C, 61.99; H, 6.41.
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2.12furan 2.3

Methyl 3-methoxyoxalyl-7-oxa-bicyclo[2.2.1]hept-5-ene-2-car boxy late (2.12)

Three methods were used to prepare compound 2.12:

A. To a sealable pressure tube was added DOG (0.415 g, 2.39 mmol) and furan (5 mL) 

as the solvent. The solution was heated to 120 °C and stirred for 72 h. The solvent was 

removed in vacuo and the resultant black tar was chromatographed (S i02, 33% EtOAc : 

hexanes) to afford the product 2.12 (0.14 g, 24.8%) as a yellow oil.

B. To a solution o f DOG (0.50 g, 2.88 mmol) in CH2C12 (10 mL) was added fiuran (0.69 

mL, 14.40 mmol) and the resulting solution was heated to reflux and stirred for 14 h. The 

solvent was removed in vacuo and the resultant yellow oil was chromatographed (Si02, 

25% EtOAc : hexanes) to afford the product 2.12 (0.06 g, 8.0%) as a gold oil.

C. To a solution o f DOG (0.504 g, 2.93 mmol) and fiiran (0.703 mL, 14.67 mmol) in 

CH2C12 (25 mL) was added A1C13 (ca. 0.1 g) and the resulting solution turned black in 5 

min. The reaction mixture was filtered through a pad o f Celite, the solvent was removed
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in vacuo and the brown oil was chromatographed (SiCh, 25% EtOAc : hexanes) to afford 

the product 2.12 (0.47 g, 66.7%) as a gold oil:

'H NMR (CDC13, 400 MHz): 8 7.34 (dd, J - 0.6, 1.9 Hz, 1 H), 6.32 (dd, J  -  1.9, 

3.5 Hz, 1 H), 6.21 (d, J = 3.5 Hz, 1 H), 4.29 (dd, J  = 4.6,9.7 Hz, 1 H), 3.88 (s, 3H), 3.77 

(dd, J  -  9.8, 19.0 Hz, 1 H), 3.72 (s, 3 H), 3.24 (dd, J - 4.8, 19.0 Hz, I H);

13C NMR (CDClj, 100 MHz) 8 192.1, 171.9, 161.5, 150.8, 143.2, 111.2, 108.0,

53.5, 53.1,40.4,40.0;

IR (liquid cell, CDCb) 3154, 1793, 1735, 1472, 1382, 1095 c m 1;

Anal. Calcd for C 11H12O6: C, 55.00; H, 5.04. Found: C, 55.05; H, 5.09
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2-methylfuran 2.3 2.13

Methyl 3-methoxyoxalyl-4-methyl-7-oxa-bicyclo(2.2.1lhept-5-ene-2-carboxyIate

To a solution of DOG (1.05 g, 6.11 mmol) in CH2CI2 (25 mL) was added 2-methylfuran 

(2.76 mL, 30.55 mmol) and the resulting solution was heated to reflux and stirred for 14 

h. The solvent was removed in vacuo and the resultant gold oil was chromatographed 

(Si02.25% EtOAc : hexanes) to afford the product 2.13 (1.54 g, 99.0%) as a gold oil:

'H NMR (CDCI3, 400 MHz): 8 6.05 (d, br, J - 3.2 Hz, 1 H), 6.04 (dd, br, J  -  3.2,

1.0 Hz, 1 H), 4.21 (dd, J = 4.5,10.0 Hz, 1 H), 3.85 (s, 3 H), 3.73 (dd, J = 10.0, 19.1 Hz, 1 

H), 3.68 (s, 3 H), 3.18 (dd, J = 4.5, 19.1 Hz, 1 H), 2.23 (s, 3 H);

I3CNMR(CDC13, 100 MHz): 8 191.1, 171.0, 160.5, 152.0,147.9, 107.9, 106.3,

53.0, 52.6,40.2, 39.7, 13.4

(2.13)
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Anthracene 2.3 2.16

Dimethyl 9,10-dihydroanthraceno-3,10-[3,4-(2-oxo)]-giutarate (2.16)

To a sealable pressure tube was added DOG (l.SS g, 9.02 mmol), anthracene (1.78 g ,

10.0 mmol) and benzene (30 mL). The solution was heated to ISO °C and stirred for 48 

h. The heat was removed, the tube was opened and the unreacted anthracene was 

removed by filtration. The mixture was recrystallized with benzene to remove more 

anthracene and the mother liquor was chromatographed (Si02, 25% EtOAc : hexanes) to 

afford the compound 2.16 (2.22 g, 67.4 %) as a yellow solid:

m.p. 131-133 °C;

lH NMR (CDCI3, 400 MHz): 8  7.25 (m, 8  H), 4.84 (d, J -  2.5 Hz, 1 H), 4.79 (d, J

= 2.5 Hz, 1 H), 4.08 (dd, J  -  1.9, Hz, 1 H), 3.93 (s, 3 H), 3.63 (s, 3 H), 3.48 (dd, J  -  3.2,

5.1 Hz, 1 H);

l3CNMR(CDCl3, 100 MHz): 5 192.8, 173.3, 162.4, 142.7, 142.4, 141.2, 139.7,

127.5, 127.2, 127.2,125.5,125.3, 124.5,124.4,53.4,52.5,46.7,46.3,46.2;

IR (liquid cell, CDCI3) 1730.1, 1260.5, 1221.9,1087.7 cm*1;

Anal. Calcd for C2IH l80 5: C, 71.99; H, 5.18. Found: C, 71.17; H, 5.14.
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isoprene 2.3 2.19.a 2.19.b

Methyl 6-methoxyoxalyl-4-methyl-cyclohex-3-enecarboxyIate (2.19.a) and

Methyl 6-methoxyoxalyl-3-methyl-cyclohex-3-enecarboxylate (2.19.b)

To a sealable pressure tube was added DOG (0.53 g, 3.09 mmol), isoprene (1.55 mL, 

15.45 mmol) and CH2C12 (30 mL). The solution was stirred at rt for 1 h and subsequently 

heated to 75 °C and stirred for 0.5 h. The solvent was removed in vacuo and the resultant 

oil was chromatographed (S i02, 25% EtOAc : hexanes) to afford the products (2.19.a and 

2.19.b) as a mixture of regioisomers (0.71 g, 95.4 % combined). A 64 : 36 regioisomer 

ratio was determined for the crude isolate by integration of the ester a-protons doublets 

o f triplets arising at 2.92 and 2.83 ppm in the 'H NMR, respectively.

'H NMR (CDC13, 400 MHz): 8  5.31 (s, 1 H), 3.80 (d, 3 H), 3.61-3.44 (m, 4 H), 

2.92 (td, J  = 5.8, 11.6 Hz, 0.64 H), 2.83 (td, J=  5.8, 11.6 Hz, 0.36 H), 2.42-1.88 (m, 4 H),

1.59 (s, 3 H);

l3CNMR(CDCl3, 100 MHz): 8  198.5, 198.3, 176.9, 176.8, 163.0, 163.0, 134.1, 

133.9, 120.8, 120.4, 54.2,53.4,45.0,45.6,43.4,42.9, 33.5, 33.4,24.1 

HRMS Calcd for C 12H it05: 241.1076. Found: Pending.
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NH

O

c o 2 c h 3

O

C 0 2 CH3

h 3c o 2c c o 2c h 3

2.50 2.3 2.20

Methyl 3-methoxyoxaly l-4-[(2,2,2-trifluoro-acetylamino)-niethyl|-7-oxa 
bicyclo[2.2.1 ] hept-S-ene-2-carboxy late (2.20)

To a solution of DOG (0.46 g, 3.0 mmol) in CH2CI2 (15mL) was added compound 2.50 

N-trifluoroacetylfurfuralamine (0.57 g, 3.0 mmol) and the resulting solution was stirred at 

rt forlO min. The solvent was removed in vacuo and the resultant gold oil was 

chromatographed (Si02, 25% EtOAc : hexanes) to afford the product 2.20 (0.83 g, 84.0 

%) as a gold oil:

lH NMR (CDCI3, 400 MHz): 5 7.49 (br, t, 1 H), 6.13 (d, J  -  3.2 Hz, 1 H), 6.06 (d, 

J -  3.2 Hz, 1 H), 4.36 ( d , /=  5.8 Hz, 2 H), 4.14 (dd,.7=9.1, 5.2 Hz, 1 H ),3 .77(s,3  I3C 

NMR (CDCI3, 100 MHz) 8 191.9, 170.7, 160.2, 156.9 ( q , /C-F = 36.6 Hz), 149.8, 148.6,

109.6, 108.2, 53.0, 52.5,39.9,39.5,36.4 (2 C)
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xfC 0 2 CH3
h2noh> hci

NaOAc* 3H2o '

H C02CH3

2.8

CO2CH3

C02CH3

Methyl 6-(Hydroxyimino-methoxycarbonyl-inethyl)-3,4-diinethyl-cyclohex-3-
enecarboxylate (2.21)

To a solution of ketoester 2.8 (0.33 g, 1.30 nunol) in absolute ethanol ( 6  mL) was added 

hydroxylamine hydrochloride (0.09 g, 1.20 mmol) and sodium acetate trihydrate (0.18 g,

I.30 mmol) and the resultant solution was stirred at rt for 21 h, heated to reflux and 

stirred an additional 3.5 h. The EtOH was removed in vacuo and the residue was 

partitioned between CH2CI2 (10 mL) and brine (10 mL). The organic layer was collected 

and the aqueous was subsequently extracted with CH2CI2 (3 x 1 0  mL), dried (MgSCU), 

filtered and the solvent was removed in vacuo to afford the crude product (0.32 g) as a 

white solid. Recrystallization from EtOH afforded the product 2.21 (0.15 g, 41.5 % as a 

white solid.

'H NMR (CDCI3, 400 MHz): 8  3.78 (s, 3 H), 3.58-3.50 (m, 4 H), 3.39 (td, J =

II.7  Hz, J - 5.8 Hz, 1 H), 2.45-2.38 (br t, 1 H), 2.24-2.09 (br m, 2H), 2.01-1.95 (br m, 1 

H), 1.60-1.58 (brd, 6  H);

,3C NMR(CDC13, 100 MHz): 5 176.2,164.6, 154.0, 125.1, 124.6, 52.8, 52.1, 

41.7,35,2,35.1,33.!, 18.8, 18.6;
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o c h 2ci2

c o 2c h 3 (CH3)2NNH2
n“n 'c h 3

*^C02CH3 HOAc
•j C02CH3 

2.22

c o 2c h 3

2.7

Methyl 6-[(dimethyl-hydrazono)-methoxycarbonyl-methyl]-cyclohex-3
enecarboxylate (2.22)

To a solution of ketoester 2.7 (4.42 g, 19.57 mmol) in CH2CI2 (25 mL) was added HOAc 

(3.26 mL, 58.70 mmol) and the solution was stirred at rt for 5 min. To the resultant 

solution was added N,N-dimethylhydrazine (7.42 mL, 97.83 mmol) and the solution was 

heated to reflux and stirred for 24 h. The CH2CI2 and HOAc were removed in vacuo and 

the resultant slurry was triturated with CH2CI2 and filtered through a pad (40 g) o f silica 

gel (CH2CI2 ; 50 mL) then 50% EtOAc : hexanes (200 mL). The solvent was removed in 

vacuo and the resultant yellow oil was chromatographed (Si0 2 , 50% EtOAc : hexanes) to 

afford the compound 2.21 (4.48 g, 77.4%) as a yellow oil:

lH NMR (CDCI3, 400 MHz): 8  5.53 (d, J - 3.2 Hz, 2 H), 3.65 (s, 3 H), 3.51 (s, 3

H), 2.81 (td, J - 5.2, 11.0 Hz, 1 H), 2.68 ( td ,/=  5.2, 11.0 Hz, 1 H); 2.46 (s, 6  H), 2.29-

1.87 (m, 4 H);

l3C NMR (CDCI3, 100 MHz) 8  176.1, 165.9, 151.8, 125.7, 125.1, 51.6, 51.3,47.3,

47.2, 39.9,39.8,29.6,28.8;

IR neat 3025,2951-2850, 1736, 1293-1126 cm;

Anal. Calcd for C 13H20N2O4*. C, 58.19; H, 7.51; N, 10.44. Found: C, 58.16; H,

7.59; N, 10.25;
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HRMS Calcd for Q 3H20N2O4 269.1501. Found: 269.1493 (M+H)
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o c h 2ci2
9 H3

r C02CH3

n  c o 2c h 3

(CH3)2NNH2

HOAc
Y  c o 2c h 3 

T "co 2c h 3

2.8 2.23

Methyl 6>[(dimethyl-hydrazono)-methoxycarbonyl-methyl]-3,4-dimethyl-cyclohex-
3-enecarboxylate (2.23)

To a solution of keto diester 2.8 (S.67 g, 22.34 mmol) in CH2CI2 (25 mL) was added 

HOAc (3.72 mL, 67.01 mmol) and the solution was stirred at rt for 5 min. To the 

resultant solution was added unsymmetrical N,N-dimethylhydrazine (8.47 mL, 111.6 8  

mmol) and the solution was heated to reflux and stirred for 24 h. The CH2CI2 and HOAc 

were removed in vacuo and the resultant slurry was triturated with CH2CI2 and filtered 

through a pad (80 g) o f silica gel with CH2CI2 (100 mL) then 50% EtOAc : Hexanes (600 

mL). The solvent was removed in vacuo and the resultant yellow oil was 

chromatographed (Si0 2 , 50% EtOAc : hexanes) to afford the product 2.23 (6.02 g,

91.1 %) as a yellow oil:

‘H NMR (CDCi3, 400 MHz): 8  3.70 (s, 3 H), 3.56 (s, 3 H), 2.84 (td, J  = 5.5, 11.0,

1 H), 2.65 (td, 7 = 6 .5 , 11.00, 1 H), 2.49 (s, 6  H), 2.16-1.91 (m, 4 H), 1.51 (s, 6  H); 

13C NMR (CDCI3, 100 MHz): 8  177.6,167.4, 154.7, 125.9, 125.4,53.0, 52.6,

48.7,48.6,44.5,42.0,37.1,36.4,19.7,19.6;
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Anal. Calcd for C isHmNsO*: C, 60.79; H, 8.16; N, 9.45. Found: C, 60.62; H, 

8.04; N, 9.50.

HRMS Calcd for Q 5H25N2O4 297.1814. Found: 297.1810 (M+H)+.
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° = \

C 0 2CH3

(CH3 )2 NNH2

HOAc H*C'N

CH2CI2

CO2CH3

C 0 2CH3

CO2 CH3 CH3
\

2.10 2.24

Methyl 3-[(Dimethyl-hydrazono)-methoxycarbonyl-methyl]-bicyclo [2.2.1 ] hept-5-
ene-2-carboxylate (2.24)

To a solution of ketoester 2.10 (2.03 g, 8.52 mmol) in CH2CI2 (20 mL) was added HOAc 

(1.42 mL, 25.57 mmol) and the solution was stirred at rt for 5 minutes. To the resultant 

solution was added N,N-dimethylhydrazine (3.23 mL, 42.61 mmol) and the solution was 

stirred at rt for 5 h when TLC indicated consumption of starting material. The solvent, 

HOAc and hydrazine were removed in vacuo and the resultant yellow oil was 

chromatographed (Si0 2 , 25% EtOAc : hexanes) to afford 2.24 (2.14 g, 89.5 %) as a 

yellow oil, as a lH NMR discriminable mixture of E / Z isomers:

H NMR (CDCI3, 400 MHz): §6.13 (dd, J - 5.8,3.2 Hz, 0.3 H), 6.07 (dd, J - 5.8,

3.2 Hz, 0.7 H), 5.93 (q, J  = 5.8,3.2 Hz, 0.3 H), 5.90 (q, J -  5.8, 3.2 Hz, 0.7 H) 3.67 (s,

0.9 H), 3.66 (s, 2.1 H), 3.57 (s, 2.1 H), 3.50 (s, 0.9 H) 3.42 (t, J  = 3.9 Hz, 0.3 H), 3.29 (t,

J  = 3.2 Hz, 0.7 H), 3.08 (br s, 0.3 H), 2.98 (br s, 0.7 H), 2.93 (br s, 0.7H), 2.90 (br s, 0.3

H), 2.70 (dd, J = 4 .5 ,1.9 H z,0.7 H), 2.63 (dd, J = 4 .5 ,1.9 Hz, 0.3 H) 2 .44(s, 1.8 H), 2.38

(s, 4.2 H), 1.52 (b d t,7 =  9.1 Hz, 1H), 1.32 (brt, 9.1,3.9, 1.9 Hz, 1 H));
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13C NMR(CDC13, 100 MHz) 5 176.0, 167.0, 154.9, 136.8, 135.5, 51.9,51.6,47.4,

47.0,46.9,46.5,46.3,45.7,45.4;

HRMS Calcd for Ci^feiNiCU 281.1501. Found: 281.1492 (M+H)+.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



A  c o 2c h 3 

c h 2ci2 J X y

(ch3)2n n h 2 *

HOAc H3C 'N .CH3 2 ’

2.25

Methyl 3-[(Dimethyl-hydrazono)-methoxycarbonyl-methyl]-bicycIo[2.2.2]oct-5-ene-

2-carboxylate (2.25)

2.11

To a solution of keto diester (2.11) (3.61 g, 14.20 mmol) in CH2CI2 (30 mL) was added 

HOAc (2.37 mL, 42.60 mmol) and the solution was stirred at rt for S min. To the 

resultant solution was added N,N-dimethylhydrazine (5.39 mL, 71.00 mmol) and the 

solution was heated to reflux and stirred for 2 h. The CH2C12 and HOAc were removed 

in vacuo and the resultant slurry was triturated with CH2CI2 and passed through a pad of 

silica gel (1% MeOH : CH2CI2). The solvent was removed in vacuo and the resultant 

yellow oil was chromatographed (Si02,25% EtOAc : hexanes) to afford 2.25 (3.61 g, 

86.4%) as a yellow oil:

lH NMR (C D C I3, 400 MHz): 8  6.25 (br t, J -  7.1 Hz, 1 H), 6.06 (br t, / =  7.1, 1 

H), 3.71 (s, 3 H), 3.64 (s, 3 H), 3.18 (dd, J - 6.5,2.6 Hz, 1 H), 2.95 (m, 1 H), 2.84 (m, I 

H), 2.72 (m, 1 H), 2.42 (s, 6  H), 1.58 (m, I H), 1.47 (m, 1 H), 1.24 (m, I H), 1.07 (m, 1 

H);
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l3C NMR (CDCls, 100 MHz): 8  175.8, 167.5, 158,6, 134.6, 133.4, 52.9, 52.7,

48.6,48.5,46.2,45.1,33.9,26.1,25.8, 21.7

HRMS Calcd for Q 5H23N2O4 2 9 5 .I6 5 8 . Found: 295.1666 (M +Hf.

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



c h 3

y N-N'CH3  Na2 S204
i_i c o 2c h 3  c o 2h

y  C0 2 CH3  Me0H/H20

^ co2ch3
2.22 2.26 2.27

Methyl 3-oxo-2,3,3a,4,7,7a-hexahydro-lH-isoindole-l-carboxylate (2.25)

3-Oxo-2,3,3a,4,7,7a-hexahydro-lH-isoindole-l-carboxylic acid (2.26)

To a solution o f hydrazonoester (2.22) (1.24 g, 5.06 mmol) in MeOH : H2O (1 : 1,20 

mL) was added sodium hydrosulfite (1.85 g, 11.88 mmol) and the solution was stirred at 

reflux for 6.5 h. The MeOH was removed in vacuo and the remaining aqueous solution 

was brought to pH 9 with solid potassium carbonate, extracted with Et20  (3 x 50 mL), 

dried (Na2S0 4 ) and filtered. The solvent was removed in vacuo and the resultant brown 

oil was chromatographed (Si02, 5% MeOH : CH2C12) to afford 2.26 (0.26 g, 25.8%) as a 

tan oil:

lH NMR (CDCI3, 400 MHz): 5 5.70-5.62 (m, 2 H), 4.07 (m, 1 H), 4.31-3.83 (m, 3 

H), 2.43-1.75 (m, 6  H);

,3C NMR(CDC13, 100 MHz): 8  179.5, 173.1, 128.3, 128.0,61.4,53.8,45.0,44.9,

30.4,26.8;

HRMS Calcd for C l0Ht4NO3 196.0974. Found: 196.0973 (M +Hf.
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The remaining aqueous layer was brought to pH 3 with 6  N HC1, extracted with Et2 0  (3 x 

SO mL), dried over MgS(>4 and filtered. The solvent was removed in vacuo and the 

resultant yellow/white solid was triturated with Et2 0  and the solid was collected by 

filtration to afford 2.27 (234 mg, 25.5%) as a white solid:

lH NMR (CDC13, 400 MHz): 8  7.88 (s, 1 H), 5.72-5.66 (m, 2 H), 4.04-3.87 (m, 1 

H), 2.31-2.08 (m, 4 H), 1.95-1.77 (m, 2 H);

13C NMR (CDC13, 100 MHz): 8  178.6, 175.1, 129.0, 128.8, 61.2,45.0,44.5, 30.3,

27.3;

HRMS Calcd for C9H,2N 0 3 182.0817. Found: 182.0819 (M +Hf.

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



c h 3

N"N'CH 3  Me0H/H20
b II  1

H C0 2 CH3

\ m

H c o 2h

I C0 2 CH3  Na2 S204 

^ c o 2c h 3 H o  

2.28

H o

2.23 2.29

Methyl 5,6-Dimethyl-3-oxo-2,3,3a,4,7,7a-hexahydro-lH-isoindole-l-carboxylate

5,6-Dimethyl-3-oxo-2,3,3a,4,7,7a-hexahydro-lH-isoindole-l-carboxylic acid (2.28)

To a solution of hydrazonoester (2.23) (1.40 g, 4.71 mmol) in MeOH : H2O (1 : 1, 20 

mL) was added sodium hydrosulfite (2.09 g, 13.42 mmol) and the solution was stirred at 

reflux for 12.5 h. The MeOH was removed in vacuo and the remaining aqueous solution 

was brought to pH 9 with solid potassium carbonate, extracted with EtiO (3 x 50 mL), 

dried (Na2S0 4 ) and filtered. The solvent was removed in vacuo and the resultant brown 

oil was chromatographed (Si0 2 , 5% MeOH : CH2CI2) to afford 2.28 (0.23 g, 21.6%) as a 

tan oil.

(2.27)

H NMR (CDCI3, 400 MHz): S 6 .8 6  (s, 1 H), 3.95 (d, J = 9.7, 1 H), 3.74 (s, 3 H),

2.30-1.96 (m, 6  H), 1.62 (s, 6  H);

I3C NMR (CDC13, 100 MHz); 5 178.4, 172.1, 126.19, 125.9, 60.2, 52.7,44.5,

35.4,31.5, 19.3;

HRMS Calcd fo rC 12Hl8N 0 3 224.1287. Found: 224.1281 (M +Hf.
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The remaining aqueous layer was titrated to pH 3 with 6  N HC1, extracted with Et2 0  (3 x 

SO mL), dried (MgSCL) and filtered. The solvent was removed in vacuo and the resultant 

yellow/white solid was triturated with EtiO and the solid was collected by filtration to 

afford 2.28 (0.30 g, 29.7%) as a white solid:

*H NMR (CDClj, 400 MHz): 8  7.83 (s, 1 H), 4.01-3.85 (m, 2 H), 4.04-3.87 (m, 1 

H), 2.25-1.99 (m, 4 H), 1.60 (s, 6  H);

13C NMR (CDCI3, 100 MHz): 8  178.6,175.2, 127.5, 127.3, (61.1, 60.9), 45.7, 

45.3, 36.5, 33.2,20.8;

HRMS Calcd for C ,,Hl6N 0 3 210.1130. Found: 210.1139 (M+H)+.
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2.25

MeOH/H20

2.30

Methyl 3-(amino-methoxycarbonyl-methyl)-bicyclo[2.2.2]oct-5-ene-2-carboxylate
(2.30)

To a solution of hydrazono ester (2.25) (1.23 g, 4.19 mmol) in MeOH (10 mL) was added 

water (10 mL) and the resultant suspension was heated to reflux and Na2S2C>4 was added 

in one portion and the resultant solution was stirred for 4 h. The MeOH was removed in 

vacuo and the resultant slurry was partitioned between Et20  (20 mL) and water (20 mL) 

and the pH was adjusted to ca. 9 with K2C0 3  (10%, aqueous) and extracted with Et20  (4 

x 20 mL), dried (MgS(>4) and concentrated in vacuo to afford the crude amino diester

(2.29) (0.90 g, 85.1 %) as a yellow semisolid. This material is used directly in the 

saponification reaction without further purification.

ESI-MS indicates 1 major product with an m/z o f254 which corresponds to the product 

amino diester.
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c o 2 c h 3 C0 2 CH3
N 3 2 S 2 0 4

H3W ,N=\ MeOH/H20 h 2 n - - \\ c o 2 c h 3 c o 2 c h 3c h 3

2.24 2.31

Methyl 3 -(4 nuno-methoxycarbonyl-methy l)-bicyclo[2.2.1 ] hept-5-ene-2-carboxylate
(2.30)

To a solution of hydrazono ester (2.24) (0.95 g, 3.39 mmol) in MeOH (10 mL) was added 

water (10 mL) and the resultant suspension was heated to reflux when Na2S20 4  (1.43 g,

9.14 mmol) was added in one portion and the resultant solution was stirred for 4 h. The 

MeOH was removed in vacuo and the resultant slurry was partitioned between Et20  (20 

mL) and water (20 mL) and the pH was adjusted to ca. 9 with K2CO3 (10%, aqueous) and 

extracted with Et20  (3 x 20 mL), dried (MgS0 4 ) and concentrated in vacuo to afford the 

crude amino diester (2.31) (0.76 g, 93.7 %) as a yellow semisolid. This material is used 

directly in the saponification reaction without further purification.

ESI-MS indicates 1 major product with an m/z of 240 which corresponds to the product 

amino diester.
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U CO0CH3
U
I NH

1. NaOH
COzH

N H 3CI
2. Ion Exchange

H b • c o 2h

2.26 2.32

6-<Ainino-carboxy-methyl)-cyclohex-3-enecarboxyUc acid (2.31)

To a solution of lactam ester (2.26) (0.22 g, 1.13 mmol) in MeOH (10 mL) and water (4 

mL) was added NaOH (2 N, 6.21 mL) and the resultant solution was stirred at rt for 10 

min. The solution was heated to reflux and stirred for S h, cooled to rt, stirred an 

additional 12 h, re-heated to reflux and stirred for 3 h (HPLC/MS indicated consumption 

of starting materials). The solution was cooled to rt and the MeOH was removed in 

vacuo. The aqueous was titrated to pH 3 with 6  N HC1 and washed with Et2 0  (20 mL) 

and loaded onto an ion exchange (Bio-Rad, AG-1X2, acetate form)column. The column 

was eluted with 1 N HC1 to afford 232 (0.IS g, 58.0 %) as a white solid.

lH NMR (D20 , 400 MHz): 8  5.74-5.65 (br m, 2 H), 4.24 ( d ,J =  3.2 Hz, 0.5 H),

2 H), 2.07 (br s, 1H);

l3C NMR(CDC13, 100 MHz): 8  179.9, 179.7, (126.5, 126.3), (126.1, 125.6),

4.07 (d, 7 =  3.2 Hz, 0.5 H), 2.90-2.05 (br m, 2 H), 2.57-2.35 (br m, 3 H), 2.29-2.16 (br m,

(56.6, 55.8), (43.1,42.2), (37.0, 36.8), (30.3,29.3), (26.1,25.6)

HRMS Calcd for C9H 14NO4 200.0923. Found: 200.0918 (M +H f.
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w c o 2h

1. NaOH H | H3CI 
'K x O j.H

2. Ion Exchange

2.29

H o ^ » c o 2H

2.33

6-(Amino-carboxy-methyl)-3,4-diinethyl-cyclohex-3-enecarboxylic acid (2.33)

To a solution of lactam acid 2.29 (0.10 g, 0.47 mmol) in THF/water (1 : 1, 10 mL) was 

added NaOH (2 N, 2.34 mL, 4.67 mmol) and the reaction was heated to 50 °C and stirred 

for 7 h followed by stirring at rt for 10 h. The THF was removed in vacuo and the 

remaining aqueous was titrated to pH 3 with 6  N HC1 and stirred for 15 min. The 

solution was washed with Et2 0  (3 x 20 mL) and the remaining aqueous layer was added 

to an ion exchange (Bio-Rad, AG-1X2, acetate form) column. Elution with 1 N HC1 

afforded 2.33 (0.09, 85.2 %) as an off white solid:

‘H NMR (D20 , 400 MHz): 6  3.73-3.67 (br m, 1 H), 2.17-1.61 (br m, 6  H), 1.56- 

1.37 (br m, 6  H)

l3C NM R(D20 , 100 MHz): 6  182.14, 179.35, 127.58, 126.52, 71.45, 64.08, 

(45.93,45.26), 35.40,31.91, 19.44:

HRMS Calcd for CuHigNOt 228.1236. Found: 228.1236 (M +Hf.
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2.30

c o 2h
1. NaOH

f t2. Ion Exchange

2.34

3-(Amino-carboxy-metliyl)-bicyclo[2.2.2]oct-5-ene-2-carboxylic acid (2.34)

To a solution of amino diester (2 JO) (0.180 g, 0.712 mol) in MeOH (2.5 mL) was added 

NaOH ( 6  N, 475 pL, 2.847 mmol) and the resultant solution was stirred at rt for 30 min 

and subsequently heated to reflux and stirred for 5 min. The solution was cooled to rt and 

the MeOH was removed in vacuo. The remaining aqueous solution was brought to ca. 

pH 6  with 1 N HC1 and loaded to an ion exchange (Bio-Rad, AG-1X2, acetate form) 

column and the amino acid eluted with 0.25 -  0.5 N HC1, the solvent was removed in 

vacuo to afford 2J4 (185.3 mg, 99.5%) as a white solid.

lH NMR (CDCI3, 400 MHz): 5 6.68-6.57 (m, 1 H), 6.41-6.34 (m, 1 H), 4.12 (d, J  

= 4.8 Hz, 0.6 H), 3.78 (d, J  = 9.7 Hz, 0.4 H), 3.10-3.09 (m, 1 H), 2.89-2.66 (m, 3 H), 

1.73-1.24 (m, 4 H);

,3C NMR (CDCU, 1 0 0  MHz): 8  (179.7, 179.4), (173.8, 173.2), (138.0, 137.7), 

(133.6, 132.9), (58.2,57.9), (49.0,48.6), 47.2, (42.8,42.6), (32.3, 31.8), (26.8,26.3), 

2 0 .1 ;
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CO2CH3
1. NaOH

C 02H

2. Ion Exchange CIH3 N-^\
c o 2 c h 3 c o 2h

2.31 2.35

3-(Amino-carboxy-methyl)-bicyclo[2.2.1]hept-5-ene-2-carboxyIic acid (2.34)

To a solution of amino diester (2.31) (0.40 g, 0.15 mol) in MeOH (2.5 mL) was added 

NaOH (6 N, 101 |iL, 0.61 mmol) and the resultant solution was stirred at rt overnight. 

The MeOH was removed in vacuo and the remaining aqueous solution was titrated to ca. 

pH 6  with 6  N HC1. The crude amino acid was loaded onto an ion exchange (Bio-Rad, 

AG-1X2, acetate form) column and the amino acid eluted with 0.25 N HC1. The solvent 

was removed in vacuo to afford 2.35 (0.03 g, 75.7%) as a white solid.

‘H NMR (CDCI3, 400 MHz): 8  6.35-5.98 (m, 2 H), 3.41 (br d,7 =  10.4 Hz, 0.5

H), 3.28 (br d, J  = 11.6 Hz, 0.5 H), 3.02 (br s, 1 H), 2.94 (br s, 1 H), 2.69-2.59 (br m, 1

H), 2.27 (br s, 0.5 H), 2.14 (br s, 0.5 H), 1.43-1.35 (br m, 2 H);

l3CNM R(CDCl3, 100 MHz): 8  (180.0, 180.1), (173.8, 173.2), (141.6, 139.7),

(136.5,134.5), (58.4, 57.3), (49.4,48.9), (48.6,48.5), (47.7,47.5), (46.9,46.2), (45.7,

45.1);

HRMS Calcd for CioHt4N0 4 212.0923. Found: 212.0914 (M+H)+.
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c Ni
H3 C 'N'CH 3

Acrolain
dimethylhydrazone

h 3 c o 2c

c o 2c h 3
c h 2 c i2

2.3

r T t A '<( 'c o 2 c h 3

k N ^ C 0 2CH3 
NH3 C ' 'c h 3

2.36

Methyl l-dimethylamino-3-inetlioxyoxalyl-I,2,3*4-tetrahydro-pyridine-2-
carboxylate (236)

To a solution o f DOG 2.3 (0.32 g, 1.88 mmol) in CH2C12 (2.S mL) was added a solution 

of acrolein dimethylhydrazone (0.28 g, 2.81 mmol) in CH2C12(2.5 mL) and the resultant 

solution was stirred at rt for 3 h. The solvent was removed in vacuo and the crude red oil 

was chromatographed (Si02, 50% EtOAc : hexanes) to afford 2.36 (0.21 g, 41.4 %) as a 

red oil:

lH NMR (CDCI3, 400 MHz): 8 6.48 (d,J =  5.8 Hz, 1 H), 6.11-6.10 (br m, 1 H), 

4.51 (ddd, J  = 12.9, 5.2, 1.9 Hz, 1 H), 3.74 (s, 3 H), 3.68 (s, 3 H), 3.43-3.38 (m, 1 H),

2.78 (s, 6 H), 2.31-2.24 (m, 1 H), 2.06-1.97 (m, 1 H);

l3C NMR(CDC13, 100 MHz): 8 173.6,164.1, 145.5, 132.0, 109.2, 53.4 (2 C), 

44.0,43.5, 39.2,34.8,29.5;

HRMS Calcd for Ci2Hi9N2Os 271.1294. Found: 271.1298 (M +Hf.
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o
h 3 c.

Y  Y  c °2 ch 3 
n ^ c o 2 c h 3

Nh 3 c '  'c h 3

c o 2 c h 3
CH2 CI2

H3 C02C rt

methacrolain
dimethylhydrazone

l-Dimethylamino-3-methoxyoxalyl-5-metliyl-l,2,3'4-tetraliydro-pyridine-2-
carboxylic acid methyl ester (2.36)

To a solution of DOG 2.3 (0.72 g, 4.21 mmol) in CH2CI2 (10 mL) was added a solution 

of methacrolein dimethylhydrazone (0.28 g, 2.81 mmol) in CH2CI2 (2 mL) and the 

resultant solution was stirred at rt for 4 h. The solvent was removed iin vacuo and the 

crude red oil was chromatographed (Si02,25% EtOAc : hexanes) to afford the product 

23 5  (0.88 g, 73.3 %) as a red oil:

lH NMR (CDCI3, 400 MHz): § 6.44 (s, 1 H), 6.10 (d, J  = 3.2 Hz, 1 H), 3.71 (s, 3 

H), 3.64 (s, 3 H), 3.21 (td, J - 8.4, 3.2 Hz, 1 H), 2.67 (s, 6  H), 2.22 (q, J -  14.2, 8.4 Hz, 1 

H), 1.99 (q ,y =  14.2, 7.1 Hz, 1 H), 1.34 (s, 3 H);

l3C NMR (CDCI3, 100 MHz): 5 172.4, 163.2, 142.9, 108.2, 107.1, 52.1, 52.0,

42.5,42.4, 35.8,32.3, 27.2,23.0

HRMS Calcd for Q 3H21N2O5 285.1450. Found: 285.1458 (M +Hf.
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NH
NH2 O

CH2CI2
+ c o 2 c h 3

rt
H3 C 02C

benzylamine 2.3 2.42

Methyl l-benzyl-5-oxo-4-phenylamino-2,5-dihydro-lH-pyrrole-2-carboxylate (2.42)

To a solution of benzyl amine (6.92 mL, 63.41 mmol) in CH2CI2 (20 mL) was added 

DOG (2.3) (5.19 g, 30.19 mmol) in CH2CI2 (30 mL) dropwise over 20 min. The resultant 

solution was stirred at rt for 10 min., the solvent was removed in vacuo and the resultant 

crude oil was chromatographed (Si02, 25 % EtOAc : hexanes) to afford the 2.42 (6.73 g, 

90.2 %) as a yellow oil:

‘H NMR (CDCI3, 400 MHz): £ 7.38-7.19 (m, 10 H), 5.19 (d, J =  14.9, 1 H), 5.06 

(d, J - 2.6 Hz, 1 H), 4.36 (d, J -  2.6 Hz, 1 H), 4.26-4.14 (m, 3H), 3.68 (s, 3 H);

l3C NMR (CDCI3, 100 MHz): 6 171.8, 169.8, 142.3, 139.6, 130.6, 130.4, 130.2,

129.5, 129.3,97.5, 61.6, 53.9,46.8;

HRMS Calcd for C2oH2lN203: 337.1552. Found: 337.1542 (M +Hf.

HRMS Calcd for C2oH2oN20 3 Na: 359.1372. Found: 359.1388 (M +N af.

HRMS Calcd for C22H23N3O3: 400.1637. Found: 400.1636 (M+CH3CN + N af.
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H3CO2C |̂ j o

H3C02C<̂ | g ' /^ 0 h2o

2.42 2.41

Methyl 1-benzyl-4,5-dioxo-pyrrolidine-2-carboxylate (2.41)

To a solution of enamine 2.41 (0.16 g, 0.48 mmol) in wet MeOH (3 mL) was added HC1 

( IN ,  10 drops) and the solution was stirred at rt for S min. The MeOH was removed i in 

vacuo and the resultant slurry was partitioned between Et2 0  (10 mL) and HC1 (0,25 N, 5 

mL) and the organic layer was collected and the aqueous layer was extracted with Et2 0  

(10 mL), the organics were combined, dried over MgS0 4  and filtered to afford 2.41 (0.11 

g, 93.4 %) as a brown oil:

lH NMR (CDCI3, 400 MHz): $ 7.36-7.24 (m, 5 H), 5.16 (d, J  = 14.2 Hz, I H), 

4.33-4.27 (m, 2 H), 3.68 (s, 3 H), 2.89-2.82 (m, 1 H), 2.72-2.67 (m, 1 H);

l3C NMR (CDCI3, 100 MHz): 8  196.4, 170.9, 160.0, 134.5, 129.8, 129.6, 129.4, 

53.2,47.9,35.2,29.8;

HRMS Calcd for Q 3H14NO4: 248.0923. Found: 248.0917 (M +Hf.
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o
H J  NaOH b 11

r r ^  CTC02H
^ T ' C O jCHj ^ T -C O a H

2.7 2.43

6-Oxalyl-cyclohex-3-enecarboxylic acid (2.43)

To a solution of 2.7 (0.32 g, 1.44 mmol) in MeOH (2.5 mL) was added NaOH (2 N, 2.0 

mL, excess) and the solution was stirred at rt overnight. The MeOH was removed in 

vacuo and the aqueous solution was extracted with Et20 ( 3 x 7  mL) then titrated to pH 2 

with 6 N HCl and extracted with EtjO (3 x 20 mL), dried (MgS0 4 ) and the solvent was 

removed in vacuo to afford the diacid 2.43 (0.26 g, 90.4 %) as a yellow oil.

‘H NMR (D20 , 400 MHz); 8 7.64 (br s, 2 H), 5.25 (br s, 1 H), 4.77-4.70 (m, 1 H), 

4.36-4.30 (m, 2 H), 4.12-4.04 (m, 1 H), 3.95-3.88 (m, 1 H);

13C NMR (D2O, 100 MHz); 8 180.7, 170.9 (2 C), 126.2, 126.0,45.3,41.5, 28.1,

27.0

HRMS Calcd for C9H u0 5 199.0606. Found: 199.0602 (M +Hf.
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o o
NaOH

Y  c o 2 c h 3  

t ^ c o 2 c h 3

MeOH/H20 Cc o 2h 

n c o 2h

2.8 2.44

3,4-Dimethyl-6-oxalyl-cyclohex-3-enecarboxylic acid (2.44)

To a solution o f 2.8 (0.45 g, 1.76 mmol) in MeOH (3.6 mL) was added NaOH (IN, 3.62 

mL, 3.62 mmol) dropwise over 5 min and the resultant solution was heated to 50 °C and 

stirred for 48 h. The solvent was removed with a stream of air and the resultant solid was 

dissolved in a minimum amount of water and brought to pH 3 by the addition of 25% 

aqueous TFA. The precipitate was isolated by centrifugation to afford 2.44 (0.40 g, 

67.0%) as an off white solid.

‘H NMR (D20 , 400 MHz): 6 3.25 (br s, 1 H), 2.70 (td, J=  10.4, 5.8 Hz, 1 H), 

2.21-1.84 (m, 4 H), 1.51 (s, 6 H);

l3C NMR (DzO, 100 MHz): S 180.6, 170.9 (2 C), 125.5, 125.2,46.0, 43.3,42.0,

33.9, 32.7, 18.9, 18.8;

HRMS Calcd for Q  flisOs 227.0919. Found: 227.0920 (M+H)+.
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A c o 2 c h 3

c o 2 c h 3

NaOH

MeOH/H20

C 02H

c o 2h

2.10 2.45

3-Oxalyl-bicycIo[2.2.1]hept-5-ene-2-carboxylic acid (2.45)

To a solution of 2.10 (0.52 g, 2.20 mmol) in MeOH (4.5 mL) was added NaOH (1 N,

4.50 mL, 4.50 mmol) and the resultant solution was stirred at rt overnight. The solvent 

was removed in vacuo and the resultant solid was dissolved in a minimum amount of 

water and brought to pH 3 by the addition of 25% aqueous TFA. The precipitate was 

isolated by centrifugation to afford 2.45 (0.40 g, 67.0%) as a brown solid. 1H NMR 

indicates an 80 : 20 mixture o f stereoisomers by integration o f the resolved alkene 

protons:

'H NMR (CDCU, 400 MHz) 8 6.26 (q, J -  5.8 Hz, 0.2 H), 6.18 (q, J  -  5.8 Hz, 0.8 

H), 6.06 (q, J  -  5.8 Hz, 0.2 H), 5.92 (q, J  -  5.8 Hz, 0.8 H) 3.71 (t, J  -  5.2 Hz, 1 H), 3.25 

(br s, 1 H), 3.06 (br s, 1 H), 2.54 (d, J  -  5.2 Hz, 1 H), 1.53 (br d, J - 9.1 Hz, 1 H), 1.39 

(brd, 7= 9 .1  Hz, 1 H);

13C NMR(CDC13, 100 MHz) 5205.7, 179.6, 171.6, 138.8, 135.4, 54.1, (48.3,

48.2), 47.7,47.1,46.8, (46.4,46.3);

HRMS Calcd for C l0HiiO5 211.0606. Found: 211.0597 (M +Hf.

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



c o 2 c h 3

c o 2c h 3

MeOH/H2Q

NaOH

c o 2h

c o 2h

2.11 2.46

3-Oxalyl-bicyclo[2.2.2]oct-5-ene-2-carboxylic acid (2.46)

To a solution of 2.11 (0.45 g, 1.79 mmol) in MeOH (2.5 mL) was added NaOH (1 N, 2 

mL) and the resultant solution was stirred at it overnight. The MeOH was removed in 

vacuo and the remaining aqueous was washed with Et20  ( 3 x 7  mL), adjusted to pH 2 

with HC1 (6 N, aqueous) and extracted with Et20  (5 x 20 mL), dried (MgSO<0 and 

concentrated in vacuo to afford the diacid 2.44 (0.38 g, 96.6%) as a tan oil:

'H NMR (E^O, 400 MHz): 5 6.53-6.14 (m, 2 H), 3.90-2.90 (m, 4 H), 1.85-1.17 

(m, 4 H);

,3C NMR (CDC13, 100 MHz): 6(197.5, 196.8), (177.5, 176.1), (163.5, 163.3),

136.9, 136.2), (134.7,133.5), (50.2,50.1), (44.9,44.5), (33.7, 33.6), (33.0, 32.7), (25.8,

25.2), (21.3, 20.8);

HRMS Calcd for C uH l30 5 225.0763. Found: 225.0763 (M+H)~.
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h 3 c o 2c - ^ 0  / C 0 2 c h 3

MeOH/H2Q

NaOH

2.16 2.47

9,10-Dihydroanthraceno-3,10-[3,4-(2-oxo)]-glutaric acid (2.47)

To a solution of 2.16 (0.18 g, 0.51 mmol) in MeOH (S mL) was added NaOH (2 N, 2.0 

mL) and the solution was stirred at rt overnight. The MeOH was removed in vacuo and 

the aqueous was washed with Et20  ( 3 x 7  mL) then titrated to pH 2 with 6 N HC1 and 

extracted with Et20  (S x 20 mL), dried (MgS0 4 ) and the solvent was removed in vacuo to 

afford 2.47 (0.13 g, 76.8 %) as a white solid.

‘H NMR (CD3CN, 400 MHz): 8 7.41-7.07 (m, 8 H), 4.85 (d, J  = 2.6 Hz, 1 H),

4.78 (d, J  = 2.6 Hz, 1 H), 4.00 (dd, J=  5.2, 1.9 Hz, I H), 3.32 (dd, J=  5.2, 2.6 Hz, 1 H);

13CNM R(CD3CN, 100 MHz): § 195.2, 174.6, 162.7, 144.3, 143.9, 142.5, 141.4, 

128.2, 126.5, 125.4, 119.0, 52.2,47.6,47.0,46.5

HRMS Calcd for C19H1505 323.0919. Found: 323.0926 (M+H)~.

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



o

ch3c h 2o 2c

P(OCH2CH3) 3
» ch 3c h 2o 2c

n pCH 2 CH3

TTOCH2 CH3
O

Ethyl Succinyl 
Chloride

4-(Diethoxy-phosphoryl)-4-oxo-butyric acid ethyl ester (2.48)

To triethylphosphite (3.97 mL, 23.16 mmol) under argon was added ethyl succinyl 

chloride (3.00 mL, 21.05 mmol) dropwise. The resultant solution was stirred at rt for 8  h. 

The by-products were removed by distillation (below 85 °C, 0.050 mm Hg) and 2.48 was 

collected by distillation (98-100 °C, 0.050 mm Hg, 5.37 g, 95.6%) as a colorless oil:

'H NMR (CDCU, 400 MHz): 8  4.12 (m, J - 7.1 Hz, 4 H), 4.03 (q, J -  7.1 Hz, 2 

H), 3.04 (td, yP.H = 2.6, J - 6.5 Hz, 2 H), 2.51 (t, J - 6.5 Hz, 2 H), 1.26 (t, J=  7.1 Hz, 6  

H), 1.13 ( t ,7 =  7.1 Hz, 3 H);

,3C NMR (CDCI3, 100 MHz): 8  210.0, 208.3, 63.6 (d, JC-p = 6.0 Hz), 60.5, 37.9 

(d, Jc-p = 57.7 Hz), 26.6 (d, JC-p = 6 .1  Hz); 16.1 (d, Jc.p = 6 .1  Hz), 13.8;

3,P NMR (CDCI3, 161 MHz) 8  -2.7;

HRMS Calcd for C,oH2o06P 267.0998. Found: 267.0993 (M +Hf.
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c h 3 c h 2 o 2c
^ 1 1  OCH2 CH3  TMS-Br

P '-n ru .p u . -------------^O C H 2CH3
O

CH3 CH2 0 2C

O

2.48

O

2.49

4-Oxo-4-phosphono-butyric acid ethyl ester (2.49)

To 2.46 (1.27 g, 4.78 mmol) under argon was added bromotrimethylsilane (5.68 mL, 

43.04 mmol) dropwise over 5 min. The resultant solution was stirred at rt overnight. The 

excess bromotrimethylsilane and ethyl bromide were removed in vacuo and the 

remaining residue was partitioned between water (50 mL) and EtOAc (50 mL). The 

aqueous layer was collected and subsequently washed with EtOAc (2 x 50 mL) and the 

combined organic fractions were back extracted with water (2 x 20 mL). The combined 

aqueous portions were concentrated in vacuo to afford 2.49 as a clear semisolid in about 

80% purity as determined by 'H NMR analysis.

lH NMR (D2 0 , 400 MHz): 5 3.41 (q, J -  7.1, 5.2 Hz, 2 H), 2.46 (br t, 2 H), 1.93 

(br t, 2 H), 0.50 (br t, 3 H);

l3C NMR (DaO, 100 MHz): 5 218.1 (d, Jc-p = 167.1 Hz); 175.6,62.7,38.3 (d, J c. 

P = 51.1 Hz), 27.8, 14.0;

3,P NMR (D2O, 161 MHz): 5 -3.97;

HRMS Calcd for CsH^OfiP 211.0372. Found: 211.0364 (M +Hf.
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o
11 .OH

o
CH3CH2 0 2 C N a02C

2.49

trisodium 4-oxo-4-phosphonobutyrate (2.50)

To a solution o f 2.49 (0.28 g, 1.38 mmol) in deionized water (10 mL) was added NaOH 

( I N ,  4.40 mL, 3.20 mmol) and the resultant solution was heated to 50 °C and stirred 

overnight. The solvent was removed in vacuo to afford trisodium 4-oxo-4-phosphono- 

butyrate, as a clear semisolid, >95% purity as determined by 'H NMR analysis.

2H);

,3C NMR (D2O, 100 MHz) 8 228.6 (d, JC-p = 156.6 Hz); 183.4,40.4 (d, Jc-p = 

42.8 Hz); 31.5 (d, Jc.? = 3.6 Hz);

3lPN M R(D 20, 161 MHz) 8 0.5;

H R M S C alcdforC ^O eP  180.9902. Found: 180.9904 (M-H)*.

HRMS Calcd for C^sOgNaP 202.9721. Found: 202.9713 (M+Na-H)*.

H NMR (D20 , 400 MHz): 8 2.94 (t, J - 7.1, 6.5 Hz, 2 H), 2.22 (t, J -  7.1, 6.5 Hz,
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pCH2CH3 ,ONa
CH3CH20 2C fi"OCH2CH3  CH3CH20 2C ff"OCH2CH3

o  o

2.48 2.51

Ethyl 4-(ethoxy-sodium-hydroxy-phosphoryl)-4-oxo-butyrate (2.51)

To a solution o f2.48 (0.72 g, 2.71 mmol) in acetone (15 mL) under argon was added a 

solution o f Nal (0.43 g, 2.84 mmol) in acetone (2 mL) over 10 min. The resultant 

solution was heated to reflux and stirred 14 h. Solid Nal (0.43g, 2.84 mmol) was added 

in one portion and the resultant solution was heated to reflux and stirred for 6 h when all 

starting material was consumed as indicated by TLC. The solvent was removed in vacuo 

to afford 2.51 as a pale yellow solid with > 99 % purity as determined by lH NMR 

analysis. This material was used in biological assays and additional reactions without 

further purification:

‘H NMR (de-acetone, 400 MHz): 8 4.01 (q, J - 7.1 Hz, 2 H), 3.86 (t, J  -  7.1 Hz, 2 

H), 3.10 (br s, 2 H), 2.54 (b t , / =  5.8,3.9 Hz, 2 H), 1.14-1.10 (m, 6 H):

l3C NMR (de-acetone, 100 MHz): 8 208.6, 174.2, 62.6,61.7,38.2 (d, JC-p = 45.6 

Hz), 28.1, 17.3 (d,Jb-p = 6.1 Hz), 14.9;

3lP NMR (de-acetone, 161 MHz): 8 4.7:
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‘H NMR (D20 , 400 MHz): 8 4.05 (q, J - 7.1 Hz, 2 H), 3.85 (p ,7 =  7.1 Hz, 2 H),

3.07 (td, J — 6.5, 5.8, 1.9 Hz,2H),  2.54 (t, J - 6.5, 5.8 Hz, 2 H), 1.15 (qd, J - 7.1, 1.9 Hz, 

6 H):

l3C NMR (D20 , 100 MHz): 5 220.5 (d, Jc-p = 165.1 Hz), 176.2, 63.7 (d, JC-p = 6.1 

Hz), 63.0, 39.3, 38.8, 28.2 (d, J c-p = 4.1 Hz), 17.0 (d, Jc.p = 5.1 Hz), 14.4;

3lP NMR (D20 ,  161 MHz): 8 1.35:

HRMS Calcd for C8H,606P 239.0685. Found: 239.0684 (M +H)\
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ch3c h 2o 2c fPOCH2CH3
O

NaOH
- Na02C ^O C H 2CH3

O
2.51 2.52

Sodium 4-oxo-4-(ethyl, sodium phosphono)-butanoate (2.52)

To a solution of 2.49 (1.35 mmol, used directly from the previous reaction) in deionized 

water (3 mL) was added NaOH ( IN ,  1.35 mL, 1.35 mmol) and the resultant solution was 

stirred at rt for 4 h. The solvent was removed in vacuo to afford 2.52 as a yellow oil with 

> 95 % purity as determined by lH NMR analysis.

‘H NMR (D20 , 400 MHz): 8 3.95 (m, J -  7.1 Hz, 2 H), 3.07 (t, J -  7.1 Hz, 2 H), 

2.41 (m, 2 H), 1.25 (t, J -  7.1, 6.5 Hz, 3 H);

l3C NMR (D20 , 100 MHz): 5 221.8, 183.2,63.9 (d, JC-p = 6.4 Hz), 41.0 (d, JC.P =

46.7 Hz), 31.4 (d, J C-p = 4.2 Hz), 17.5 (d, J C-p = 6.4 Hz);

3,P NMR (D20 , 161 MHz): 8 -0.6.

HRMS Calcd for CfiH^OeP 209.0215. Found: 209.0203 (M-H)‘.
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Chapter 3: Enzymatic transformation of keto diacids to glutamic acid analogues

I. Introduction

Over the past few decades, explosive growth has occurred in the use o f enzymes 

in organic synthesis (Davies, 1992). The chemoselectivity, enantioselectivity and, in 

general, benign reaction conditions utilized in enzyme-mediated transformations remain 

unrivaled by chemical reagents. Some of the most difficult transformations and 

assemblies have been accomplished using enzymes at both analytical and preparative 

levels. Although enzyme-mediated transformations in organic synthesis hold great 

promise, the application o f a given biocatalyst is often limited to a narrow range of 

substrate possibilities. Specifically, only modest structural variation to the natural 

substrate is tolerated owing to restrictions in the active site topology. A more thorough 

understanding of the structural limits for potential substrates is often helpful in 

determining the synthetic diversity of an enzyme or enzyme class, and its catalytic 

mechanism. The evaluation o f substrate tolerance is especially useful when crystal 

structures are lacking or several engineered mutants have been derived that show subtle 

variances in activity. Based on the possible favorable outcomes for biocatalysts, it is 

important to prepare and screen potential enzyme substrates that have been custom- 

tailored with incremental changes in structure such that the rate and extent o f product 

formation may be used to derive salient differences in the topographies of the active sites 

among different enzymes. Likewise, the relative rates o f conversion to products and the
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Km values derived from a structurally similar panel of substrates can reveal important 

elements of the catalytic mechanism.

One o f the most strategically important enzyme-mediated organic reactions is the 

conversion o f an a-keto acid to an a-amino acid (Equation 3.1). The substrate a-keto 

acids may be obtained by a variety of chemical and biochemical procedures (Cooper, 

1983), but importantly, the product a-amino acid contains a new stereogenic center.

Amino acid substrate Keto acid product

Ri^.aNH2 

Cy ' OH

Rl'SjjjS-0

c t ' oh

Transaminase

OH

Keto add substrate Amino add product

Equation 3.1: Reaction cycle catalyzed by a transaminase

Because microbiological production of natural a-amino acids is now commonplace, an

interesting challenge at this point is to prepare innovative unnatural a-amino acids. An

important example o f a class o f unnatural a-amino acids resides in the glutamate
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neurotransmitter system in which the conformationally-restricted analogues o f glutamic 

acid have been shown to selectively regulate various receptors and transporters 

(Chamberlin, 1993). Surprisingly, very few analogues o f glutamic acid have been 

prepared via enzyme-mediated syntheses despite the fact that a number of enzyme 

systems are capable of producing or using glutamic acid. Importantly, in an enzyme- 

based strategy, a single stereoisomer can be produced, a likely structural requirement for 

selectivity in the glutamate neurotransmitter system.

The goal o f this section is two fold: (1) to identify an enzyme capable o f 

transaminating the 3 ,4-conformationally restricted analogues of a-ketoglutarate 

compounds 2.43 - 2.47, Figure 3.1)] to produce structurally constrained analogues of L- 

glutamate with the S configuration at the new stereogenic center, and (2) to test the 

ability o f the constrained ketoglutarate analogues to inhibit the action of certain enzymes. 

Due to the principle of microscopic reversibility, if  the structurally constrained a-keto 

acid is an inhibitor of an enzyme, it is thought that the product a-amino acid will, in turn, 

inhibit the enzymatic transformation. If the a-keto acids are found not to inhibit these 

glutamate-utilizing enzymes it is a good indication that these 3,4-conformationally 

restricted analogues of L-glutamate will not be metabolized by this system in vivo.

In this section, five 3,4-conformationally restricted analogues of a-ketoglutarate 

(Figure 3.1) were surveyed as substrates o f cytosolic aspartate aminotransferase 

(AspAT), alanine aminotransferase (AlaAT), glutamate dehydrogenase (GDH), lactate 

dehydrogenase (LDH), a-ketoglutarate dehydrogenase complex (KGDHC), L-leucine 

dehydrogenase (LeuDH), glutamine transaminase K (GTK), L-phenylalanine
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dehydrogenase (PDH) and five then^ostable aminotransferases obtained as a kit 

(CloneZyme™) from Sigma Chemical company designated as AT-1 through AT-5.

r ^ S ^ C 0 2H

H
' C 0 2H

2.43

> ^ S ^ co2h 

^ ^ t ^co2hH
2.44

2.46

2.45

.0 c o 2h

2.47

Figure 3.1: 3,4-Conformationally restricted analogues of a-ketoglutarate

The 3,4-conformationally restricted analogues o f a-ketoglutarate were also testea as 

inhibitors of AlaAT, AspAT, GDH and GTK.
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n. Results and Discussion

/. Analysis o f Compounds 2.43 — 2.47 as Substrates o f  L-Amino Acid Dehydrogenases

Because compounds 2.43 -  2.47 (Figure 3.1) are rigid analogues of aKG, it 

seemed possible that they would be substrates o f GDH. Moreover, GDH converts 

hydrophobic a-keto acids, such as a-keto-y-methiolbutyrate (aKMB) and a-ketobutyrate 

to their corresponding amino acids (Cooper, 1981 and refs, therein). However, 

compounds 2.43 -  2.47 were not converted to the amino acids even in the presence o f 50 

|ig of GDH (see Experimental Section). Presumably, compounds 2.43 -  2.47 are too 

large to be productively accommodated at the active site of GDH. Although the idea that 

compounds 2.43 -  2.47 might be substrates o f GDH proved to be untenable, the result 

was useful nevertheless. Since compounds 2.43 -  2.47 did not interact with GDH, the 

findings show that GDH could be used as an indicator enzyme to quantitate 

transamination between GLU and the 3,4-conformationally restricted analogues o f a -  

ketoglutarate.

Two of the a-keto acid substrates of LeuDH, namely a-ketoisovalerate and a - 

keto-(3-methylvalerate, contain a hydrophobic branch point immediately adjacent to the 

keto group and, therefore, bear some resemblance to compounds 2.43 -  2.47. However, 

no activity could be detected when the natural substrates (i.e. a-ketoisocaproate) were 

replaced by compounds 2.43 -  2.47 even when 50 pg o f enzyme was present in the 

reaction mixture (see Experimental Section). Either the compounds are too large to fit
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into the active site or the additional carboxylic acid group is involved in a charge 

repulsion at the active site.

In addition to phenylpyruvate, PDH exhibits some activity toward p- 

hydroxyphenylpyruvate, indolyl 3-pyruvate, otKMB and certain branched chain a-keto 

acids (Asano, 1987). Therefore, it was reasoned that PDH has a somewhat large and 

flexible active site and might show activity toward compounds 2.43 -  2.47. However, no 

activity of PDH toward compounds 2.43 -  2.47 could be detected in the presence o f 50 

|i.g of enzyme within the assay mixture (see Experimental Section). The result was useful 

because it showed that, again, since the compounds did not interact with the protein, PDH 

could be used as an indicator enzyme to verify the formation o f phenylpyruvate in 

transamination reactions between L-phenylalanine (PHE) and compounds 2.43 -  2.47.
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2. Analysis o f Compounds 2.43 — 2.47 as Substrates ofLDH, GTK, AspAT, AlaAT and 

KGDHC

As first shown by Meister fifty two years ago, LDH catalyzes the reduction of 

many a-keto acids with NADH to the corresponding a-hydroxy acid (Meister, 1950). 

However, no reduction of compounds 2.43 -  2.47 could be detected with LDH at enzyme 

concentrations as high as 150 p.g per assay (see Experimental Section). The results show 

that LDH could be used as an indicator enzyme in an assay to determine whether the 

aKG analogues could participate in transamination reactions using L-alanine (ALA) as 

the amine donor.

Compared to many other aminotransferases, GTK has a relatively broad 

specificity. For example, it may be regarded as a fully reversible glutamine (methionine) 

aromatic aminotransferase (Cooper, 1982). In addition, GTK catalyzes transamination 

reactions with phenylglyoxylate (Cooper, 1982) and cyclohexylpyruvate (Cooper, 1982). 

Moreover, the enzyme utilizes cystine, cystathionine and lanthionine as amino donor 

substrates (Cooper, 1989 and ref. therein). These amino acids contain charged groups 

distal to the binding site for the a-amino carboxyl grouping. Inasmuch as GTK can 

accommodate large hydrophobic groups and distally charged groups at the active site it 

was reasoned that compounds 2.43 -  2.47 might be substrates for GTK. As was found 

with the dehydrogenases, however, no conversion to products was evidenced with GTK 

(PHE as amino donor) for compounds 2.43 -  2.47 - even at an enzyme concentration of 

25 |ig per 50-pl assay mixture (see Experimental Section).
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AspAT exhibits some reactivity toward aromatic a-keto acids and L-a-amino 

acids (Shrawder, 1972). Therefore, it was considered that the active site o f this enzyme 

might be large enough to accommodate compounds 2.43 -  2.47. However, the ability of 

these compounds to act as amino acceptors in a reaction catalyzed AspAT (or AlaAT) 

was not observed - even at a concentration of enzyme as high as 50 |ig per 200-p.l assay 

(see Experimental Section). In a separate experiment, it was found that the 3,4- 

conformationally restricted analogues o f a-ketoglutarate had no effect on malate 

dehydrogenase (MDH). Therefore, the inability to detect AspAT-catalyzed 

transamination between ASP and aKG analogues was not due to inhibition of the 

coupling enzyme MDH. During the transamination reaction catalyzed by AspAT, the 

active site becomes closed over (Saier, 1967). Presumably, the 3,4-conformationally 

restricted analogues of a-ketoglutarate are too large to bind productively at the active site 

o f AspAT or the active site cannot attain a closed conformation.

Finally, the ability of compounds 2.43 -  2.47 to act as substrates o f KGDHC was 

determined. No reduction o f NAD+ was noted under conditions in which KG was very 

rapidly oxidatively decarboxylated, which indicates the inability of compounds 2.43 —

2.47 to act as substrates of this enzyme complex.
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3. Preliminary Screening o f the CloneZyme™ Library

The recommended amino donor for screening of potential a-keto acid substrates 

for the CloneZyme™ library is L-glutamate (GLU). However, according to the suppliers 

information, each of the enzymes in the CloneZyme™ library (i.e., AT-1 through AT-5) 

is active with phenylalanine (PHE) as amino douor and L-methionine (MET) serves as a 

good substrate of all the enzymes in the library except AT-3. Therefore, by invoking the 

principle of microscopic reversibility, it was assumed that the enzymes AT-1, AT-2, AT-

4, and AT-S would catalyze transamination between PHE and aKMB (the a-keto acid

analogue of MET). The transamination product of PHE (i.e., phenylpyruvate) is easier to

quantitate than is the transamination product of GLU (i.e., aKG). The PHE -  aKMB

transamination procedure measures appearance of product (phenylpyruvate) rather than

disappearance o f substrate and is 2 .0  to 2.5 times more sensitive than the procedure in

which loss of NADH absorbance is measured. In typical reactions, the product of the

transamination with aKG is coupled to an indicator enzyme which reduces the newly

generated a-keto acid with NADH. In preliminary experiments with PHE as amino

donor, aKMB as amino acceptor and AT-1 (or AT-5) as catalyst, it was established that

pyridoxal 5'-phosphate (PLP) is essential for maximal activity. Moreover, activity in the

presence o f 132 mM potassium borate buffer (pH 8.0) is considerably greater than the

activity in 100 mM potassium phosphate buffer (pH 7.4) or ammediol buffer (pH 9.0)

(data not shown). Based on the above considerations, procedures were devised as

convenient standard assays to screen the usefulness o f the CloneZyme™ library for the

transamination of compounds 2.43 -  2.47. The enzyme (0.02 to 5 |xg) is incubated at
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45°C in a 50-|il reaction mixture containing 10 mM PHE, 5 mM aKMB, 20 |xM PLP and 

132 mM potassium borate buffer (pH 8.0). After 2 to 10 min, 150 |il o f 1 N NaOH is 

added and the absorbance due to phenylpyruvate-eno/afe is immediately determined at 

320 nm (e ~ 16,000 cm'1). By using this procedure, high PHE - aKMB transaminase 

activity was found with AT-1 and AT-5. Surprisingly, no activity was detected with AT-2 

and AT-4, but the reasons were not investigated. When aKMB was replaced by aKG, 

transamination was somewhat slower. The results obtained with AT-1 and AT-5 as 

catalysts for PHE -  aKMB/aKG transamination are shown in Table 3.1. [Note that in 

order to prevent problems with evaporation, the well plate should be covered with a tight 

fitting lid. Wells surrounding the “test” wells should be filled with water.]

Table 3.1. Transamination Between PHE and aKMB (or aKG) Catalyzed by AT-1 and
AT-5a

__________________pmol/min/mg o f enzyme_________________

q-Keto acid substrate__________AT-1 (n=3)___________________ AT-5 (n=3)_______

aKMB (5 mM) 0.51 ± 0.01 2.20 ± 0.02
a-KG (20 mM) 0.29 ±  0.01 0.76 ± 0.01
a-KG (40 mM) 0.60 ± 0.04 1.31 ± 0.05

a The 50-pl reaction mixture containing a-keto acid at the concentration shown, 10 mM 
PHE, 20 |iM PLP, 132 mM potassium borate buffer (pH 8.0) and 2.5 pg o f either AT-lor 
AT-5 (batch 1) was incubated at 45°C. After 2 min (aKMB as substrate) or 5 min (a- 
ketoglutarate as substrate), phenylpyruvate-eno/a/e formation was measured as indicated 
in the experimental section.

hi preliminary experiments, it was found that AT-5 is several times more effective 

than is AT-1 in catalyzing transamination reactions involving glutamate, phenylalanine,
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aKMB and the various aKG analogues (data not shown). A comparison o f GLU versus 

PHE as an amino donor in the AT-5-catalyzed transamination of aKMB is shown in 

Table 3.2. The activity exhibited by AT-5 toward PHE in Table 3.2 is somewhat greater 

than that shown in Table 3.1. This may be due to the fact that a different batch o f AT-5 

was used in the experiment described in Table 3.1 (batch 1) from that used in the 

experiment described in Table 3.2 (batch 2). Clearly, although the V™* values with PHE 

and GLU are comparable, AT-S exhibits a much higher affinity toward PHE than toward 

GLU. Based on the above findings, it was decided to use AT-1 and AT-5 (batch 2) and 

10 mM PHE (or in some cases 320 mM GLU) as amino donor for screening 3,4- 

conformationally restricted analogues o f a-ketoglutarate as a-keto acid substrates.
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4. Ability o f AT-5 to Catalyze Amine Transfer from PHE to Compounds 2.43 —  2.47

In preliminary experiments, compound 2.44 was chosen as the prototype to establish a 

general procedure for measuring transamination of compounds 2.43 -  2.47. Both AT-1 

and AT-5 were found to catalyze transamination o f compound 2.44 (Figure 3.1). When 4 

mM compound 2.44 was incubated in a 50-pl reaction mixture containing 10 mM PHE, 

132 mM potassium borate buffer (pH 8.0), 20 (iM PLP and 20 pg o f enzyme at 45 °C for 

lh, the amount o f phenylpyruvate formed (as measured as the enolate after addition of 

base) was 7.2 ± 0.2 and 24 ± 1.6 nmol (n = 3) for AT-1 and AT-5 (batch 1), respectively. 

An additional experiment was also conducted in which phenylpyruvate formed after the

Table 3.2. Comparison o f PHE and GLU in the AT-5-Catalyzed Transamination o f a -
KMB®

a The 50-pl reaction mixture containing L-amino acid at the indicated concentration, 5 
mM aKMB, 20 |iM PLP, 132 mM potassium borate buffer (pH 8.0) and 0.2 pg o f AT-5 

(batch 2) was incubated for 10 min at 45°C. Phenylpyruvate formed from PHE was 
measured as its enolate after addition o f 150 pi o f 1 M NaOH. aKG formed from GLU 
was measured by addition of a 150-pl reaction mixture containing GDH, ammonia and 
NADH. See the Experimental Section. aKMB exhibits slight activity with GDH and 

therefore a correction was made for the drift in the blank lacking AT-5.

L-Amino acid pmol/min/mg of enzyme

PHE (10 mM) 
PHE (50 mM) 
GLU (10 mM) 
GLU (100 mM) 
GLU (320 mM) 
GLU (560 mM)

4.61 ±0.07
5.60 ±0.06
1.61 ±0.05 
4.35 ±0.15 
5.60 ±0.21 
5.83 ±0.31
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1 h incubation was quantitated using PDH (see Experimental section). The amount of 

phenylpyruvate found using this procedure was 10.1 ± 0.3 and 22 ± 1.2 nmol (n = 3), 

respectively. The two methods are in reasonably good agreement. Finally, it was shown 

that the transamination reaction between 10 mM PHE and 4 mM compound 2.44 was 

linear for 4 h at 45 °C when carried out in the presence o f either 20 pg of AT-1 or 20 pg 

of AT-S. These findings, together with those summarized in Tables 3.4 -  3.6, show that 

at a concentration o f 4 mM, compound 3-1 is about 1 % as effective as 5 mM aKMB in 

transamination reactions with PHE catalyzed by both AT-1 and AT-5. However, because 

of the generally greater activity exhibited by AT-5 than AT-1 toward a-keto acids 

(aKMB, aKG, compound 2.44), AT-5 was chosen for most studies involved in the 

screening of the ability of compounds 2.43, 2.45,2.46 and 2.47 to participate in 

transamination reactions. In addition to compound 2.44, compounds 2.43, 2.45,2.46 and

2.47 were found to be amine acceptors in the presence o f 10 mM PHE or 320 mM GLU 

and 10 pg of AT-5 (batch 2) in the 50-pl reaction mixture (Table 3.4). In general, the 

effectiveness of compounds 2.43 -  2.47 as substrates was similar whether PHE or GLU 

was used as the amine donor.

In a separate set of experiments, conditions were developed to characterize by

HPLC/MS the conformationally-restricted analogues of L-glutamate generated by

transamination o f the 3 ,4-conformationally restricted analogues of a-ketoglutarate with

PHE. Borate buffer is not recommended in these experiments because nonvolatile buffer

salts interfere with the electrospray ionization process and can cause contamination.

Ammonium acetate buffer (pH 7.5) was used in its place but this buffer is not optimal for

AT-5 activity. Therefore, to increase product formation, the temperature o f the assay
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mixture was increased from 45 °C to the optimal temperature o f 80 °C. Because the 

heating chamber of the well plate analyzer cannot be set to 80 °C, the reaction at this 

temperature was performed at the bench. The 250-|il reaction mixture contained 10 mM 

PHE, 20 pM PLP, 100 mM ammonium acetate buffer (pH 7.5), 10 pg o f AT-5 and 

compounds 2.43 -  2.47. After a lh  incubation at 80 °C in a screw-capped vial in a 

heating block, 50 pi was transferred to a 96-well plate containing 150 pi 1 N NaOH and 

the phenylpyruvate formed from transamination was measured as its enolate at 340 nm 

(see the Experimental section). Table 3.3 shows the amount of phenylpyruvate formed 

per h/mg o f AT-5 at 80 °C for compounds 2.43 -  2.47. The relative transamination rates 

between PHE and the 3,4-conformationally restricted analogues of a-ketoglutarate (as 

measured by phenylpyruvate formation/h/mg of enzyme) are slightly different between 

those shown in Table 3.3 (borate buffer, pH 8.0; 45 °C) and Table 3.4 (ammonium acetate

Table 3.3. Effectiveness of Compounds 2.41 -  2.45 as Substrates o f AT-5 in the
Presence of 10 mM PHE

Compound Cone. (mM) pmol/h/mg of enzyme (n=3)

2.43 4 0.84 ±0.08
2.44 4 1.23 ±0.08
2.45 25 0.26 ± 0 .0 1

2.46 25 0.60 ± 0 . 0 2

2.47 1 0.42 ±0.04

aThe 250-pl reaction mixture contained 10 mM PHE, 20 pM PLP, 100 mM ammonium 
acetate buffer (pH 7.5), 10 pg o f AT-5 and compounds 2.43 -  2.47 (concentrations 
indicated in Table). After a l-h incubation at 80°C in a screw capped vial in a heating 
block, 50 pL was transferred to a 96 well plate containing 150 pi 1 N NaOH and 
phenylpyruvate formed from PHE transamination was measured as its enolate. See the 
Experimental section.
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buffer, pH 7.5; 80 °C). This slight discrepancy may be due in part to different activation 

energies for transamination o f the various a-keto acids and different buffer conditions. 

Nevertheless, for three 3,4-conformationally restricted analogues of a-ketoglutarate, the 

yield o f transamination product was increased significantly at 80 °C relative to 45 °C 

despite the fact that the buffer used at the higher temperature and for mass spectral 

determinations was not optimal.

The remainder of the reaction mixture (i.e., 200 pi) was quenched by submersion 

in a -10  °C salt bath. Aliquots (5 pi) of the solution were injected into the HPLC/MS 

eluting at 1 ml/min. Two peaks were detected corresponding to PHE (m/z = 166) and 

newly formed amino acid (m/z values indicated in Table 3.4). The 3,4-conformationally 

restricted analogues o f a-ketoglutarate substrates and phenylpyruvate product were not 

observed owing to poor ionization under the experimental conditions. In accordance with 

the above observation, the mass spectrometer was set to the ion selective mode. The m/z 

values monitored correspond to the amine donor (PHE, m/z 166) and the newly formed 

amino acid (Figure 3.2). Representative examples o f the HPLC/MS (compound 2.44) 

chromatogram and spectra are shown in Figures 3.2 and 3.3, respectively.
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Table 3.4. Structures o f Compounds 2.43 -  2.47 and Their Corresponding Amino Acids

Compound Keto Acid 
Structure

Amino Acid 
Structure

m/z
(of the Amino Acid)

2.42

2.41

2.45

2.43

2.44

x £

c o 2h

H
c o 2h

c o 2h

c o 2h

h o 2c c o 2h

b f 2
N ^ Y " co2h
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H T

c L

n h 2 

c o 2h

h o 2c
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5. Survey o f  a-Ketoglutarate Analogues as Inhibitors o f Dehydrogenases and 

Aminotransferases

Some or all of compounds 3-1 - 3-5 were found to be inhibitors of GTK, AspAT, 

AlaAT or GDH (Table 3.5). Presumably, the compounds can bind non-productively 

through their carboxyl groups. However, inhibition of GTK, AspAT, AlaAT and GDH by 

compounds 2.43 -  2.47 is at best moderate. In this regard, it is interesting to note that 

simple monocarboxylic acids are weak inhibitors o f AlaAT (Saier, 1967), and 

dicarboxylate analogues of otKG are weak inhibitors of AspAT (Velick, 1962).

Table 3.5: Inhibition of Various Enzymes by Compounds 2.43 -  2.47

Cmpd Cone. (mM) GTK AspAT AlaAT GDH

None [ 1 0 0  ± 2 ] [100 ±3] [100 ±3] [100 ±3]

2.44 4 96 ± 2 98 ± 4 75 ± 4 b 111 ± 13

2.43 8 9 2 ± 2 b 102 ±3 83 ± 4 b 104 ± 4

2.47 I 93 ± 2 b 97 ± 1 6 2 ± 5 b 99 ± 6

2.45 2 0 73 ± lb 77 ± 4 b 47 ± 5b 91 ± 2 b

2.46 2 0 6 4 ± l b 4 2 ± 3 b 48 ± 2b 40 ± lb

aThe assay mixtures contained 10 mM PHE/5 mM ocKMB (GTK), 10 mM ASP/10 mM 
otKG (AspAT), 20 mM ALA/10 mM OtKG (AlaAT), and 10 mM OtKG (GDH). Details 
provided in the Experimental Section. 
b Different from control (no addition) with p  <0.05; n = 3 or 4.
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In addition, the effectiveness o f compounds 2.43 -  2.47 to act as inhibitors o f KGDHC 

was tested. None o f the aKG analogues were found to inhibit KGDHC when added to the 

standard assay mixture. Moreover, prior incubation o f KGDHC with 2-10 mM aKG 

analogue for 30 min at 30 °C had no effect on enzyme activity.
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in . Summary

In summary, an exhaustive survey o f L-amino acid dehydrogenases and 

aminotransferases as potential catalysts for the conversion of rigid aKG analogues to 

rigid GLU analogues was carried out. This search led to the discovery that two enzymes 

in the Sigma CloneZyme™ kit (AT-1 and AT-5) are capable o f catalyzing the conversion 

of compound 1 to its cognate L-amino acid in the presence of PHE. AT-S was the more 

effective of the two and was shown to be capable o f catalyzing transamination of all five 

rigid aKG analogues with PHE or GLU as amino donor.
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IV. Conclusion

The fact that compounds 2.43 -  2.47 are not substrates of major mammalian 

enzymes that can utilize otKG/GLU turns out to be an important finding in regard to our 

long-range goals. Because the 3,4-conformationally restricted analogues o f a - 

ketoglutarate (2.43 -  2 .47) are not substrates of GDH, AspAT or AlaAT, it is unlikely 

that the corresponding amino acids will be substrates. The compounds will at best be 

moderate inhibitors o f these enzymes. Thus, experiments designed to use the 

corresponding amino acids as probes for GLU receptor/uptake systems will be unlikely to 

suffer from complications due to interference with major ocKG/GLU-metabolizing 

enzymes.

The fact that PHE is a good amine donor for AT-S should prove useful in the 

isolation o f pure rigid GLU analogues. Because GLU and the rigid GLU analogues each 

have one amino group and two carboxyl groups, separation by ion-exchange 

chromatography may be difficult. On the other hand, separation of PHE (one carboxyl) 

from the rigid GLU analogues (two carboxyls) by ion-exchange chromatography should 

be relatively easy. Moreover, the co-product of the transamination reaction (i.e., 

phenylpyruvate) is strongly absorbed by charcoal whereas the rigid GLU analogues are 

not expected to bind strongly.

The present results show that it is possible to use thermostable aminotransferases

to bring about transamination o f some very bulky a-keto acids. As noted above, GTK is

able to catalyze transamination o f  some remarkably elongated amino acids containing

charged groups distal to the amino acid portion that binds to the active site. This finding
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suggests that the active site is groove-like and relatively open-ended. However, the 

present findings suggest that there is a limit to the width (i.e., bulkiness) o f the a-keto 

acid or a-amino acid that can bind within the active site “groove”.

To our knowledge, the aminotransferase that catalyzes transamination reactions 

with the largest substrates is 7, 8 -diaminopelargonic acid aminotransferase (Equation 3.2) 

(Eisenberg, 1971; Stoner, 197S). This aminotransferase, however, is unusual on two 

counts. First, the “oxo” substrate (i.e. 7-oxo-8-aminopelargonic acid) is not an a-keto 

acid. Secondly, the amine donor is 5-adenosyl-L-methionine. This amino acid is 

obviously much larger than the more common amino donors in transamination reactions 

(e.g. GLU, ALA, ASP). Moreover, in solution, there is no restriction to rotation at the 3 

and 4 positions in 5-adenosyl-L-methionine. In the present work, we showed that AT-S
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Figure 3.4. Transamination of very bulky substrates

is able to catalyze some remarkable transamination reactions with conformationally 

restricted OtKG analogues that contain large, bulky groups at the 3 -  and 4 carbons. To 

our knowledge, compound 3.3 is by far the largest a-keto acid with bulky substitutions at 

the 3- and 4 carbons that has been demonstrated to undergo an enzyme-catalyzed 

transamination. Our findings indicate that AT-5 must have a large and flexible active site. 

Thus, the enzyme may be o f general utility in the synthesis of bulky amino acids from 

their corresponding a-keto acids.
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AT-5 may also prove useful in other regards. Each of the compounds shown in 

Table 3.5 is composed o f a mixture of stereoisomers. Because o f the flexibility o f the 

active site, AT-5 may be able to accommodate all of the stereoisomers at its active site. 

Thus, the synthesis of a number of diastereoisomers of conformationally restricted 

glutamates may be possible using AT-5.
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V. Experimental

1. Enzymes and Reagents

Crystalline pig heart cytosolic aspartate aminotransferase (AspAT; 270 U/rng of 

protein at 37°C; suspension in 2 M ammonium sulfate), crystalline pig heart alanine 

aminotransferase (AlaAT; 80 U/mg of protein at 37°C; suspension in 2 M ammonium 

sulfate), beef liver glutamate dehydrogenase (GDH; 50 U/mg of protein at 37°C in 50% 

glycerol), rabbit muscle lactate dehydrogenase (LDH; type XXXDC; 720/U mg o f protein 

at 37°C in 50% glycerol), mitochondrial pig heart malate dehydrogenase (MDH; 910 

U/mg of protein at 37°C in 50% glycerol), pig heart a-ketoglutarate dehydrogenase 

complex (KGDHC; 0.8 U/mg of protein at 30°C in 50% glycerol), pyridoxal 5'-phosphate 

(PLP), NADH, ammonium acetate (NH4OAC), ADP, L-aspartate (ASP), L-alanine (ALA), 

L-phenylalanine (PHE), monosodium L-glutamate (GLU), phenylpyruvate and the 

sodium salts of a-ketoisocaproate, a-ketoglutarate (aKG) and a-keto-y-methio lbutyrate 

(aKMB) were obtained from Sigma Chemical Co. (St. Louis, MO). An aminotransferase 

library kit (CloneZyme™) was also obtained from Sigma (Warren 1998; 1999; 2000). 

This kit consists of five unique thermostable aminotransferases (60 to >95% purity) 

supplied as lyophilized powders together with a solution o f660 mM potassium borate 

buffer (pH 8.0). Each enzyme (1 mg of protein per vial) was dissolved in 1 ml o f 10 mM 

potassium phosphate buffer (pH 7.4) containing 20% glycerol (v/v). For simplicity, the 

aminotransferases designated as AMN-001-01 through AMN-001-05 by the manufacturer
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are referred to as AT-1 through AT-5. AT-5 was also purchased in bulk (500 mg) 

directly from the Diversa Corporation (San Diego, CA). In preliminary experiments with 

AT-1 and AT-5, the enzymes were found to be stable in solution for one week at 4°C. 

However, the two enzymes lost all activity by 2 weeks. Storage at room temperature in 

the glycerol/phosphate buffer did not improve the stability. L-Leucine dehydrogenase 

(LeuDH; lyophilized powder with a specific activity o f 38 U/mg of protein at 37°C) was 

obtained from Toyobo Co., LTD., Osaka, Japan. The concentrations o f solutions of AT-1 

through AT-5 and specific activities of the commercial enzymes were verified by means 

of standard assay procedures (data not shown). Cytosolic glutamine transaminase K 

(GTK) o f rat kidney was purified essentially as described by Cooper (Cooper, 1978). The 

preparation has a specific activity at 37 °C of 5 U/mg o f protein (PHE -  aKMB 

transaminase assay) (Cooper, 1978). L-Phenylalanine dehydrogenase from Sporosarcina 

ureae (PDH; crystalline suspension in 3 M ammonium sulfate with a specific activity in 

the direction o f PHE oxidation of ~100 U/mg o f protein at 25°C (Asano, 1987) was a 

generous gift from Professor Yasuhisa Asano (Toyama Prefectural University, Japan). A 

unit o f enzyme activity is defined as the amount of enzyme that catalyzes the formation 

of one iimoi o f product per minute at the specified temperature.
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2. Enzyme assays

To test the aKG analogues as substrates of various L-amino acid dehydrogenases, 

the a-keto acid was dissolved in a 200-jil reaction mixture containing 100 mM Tris-HCl 

buffer (pH 8.4), 0.1 mM NADH, 40 mM ammonium sulfate, 0.1 mM ADP and 

dehydrogenase (1 -  SO jig). The rate o f decrease in absorbance at 340 nm due to loss of 

NADH (e = 6,230) and concomitant with the reductive amination o f a-keto acid was 

continuously recorded at 37°C. The rates o f reductive amination were compared to those 

obtained with S mM standard a-keto acid substrates, namely aKG (for GDH), a- 

ketoisocaproate (for LeuDH) or phenylpyruvate (for PDH) in place of the aKG 

analogues. To test the aKG analogues as substrates o f LDH, the a-keto acid was 

dissolved in a 200-p.l reaction mixture containing 100 mM potassium phosphate buffer 

(pH 7.4), 0.1 mM NADH, and LDH (1 -  150 pg). The rate o f disappearance of NADH at 

21°C was compared to that obtained with a standard assay mixture containing 5 mM 

pyruvate in place o f the aKG analogues. To test the aKG analogues as substrates of 

GTK the a-keto acid was dissolved in a 50-|il reaction mixture containing 10 mM PHE, 

100 mM ammediol (2-amino-2-methyl-1,3-propan-diol) buffer (pH 9.0) and 25 |ig of 

enzyme. After incubation at 37 °C for 1 h, 150 |il o f 1 N NaOH was added and the 

absorbance at 320 nm was determined immediately in a 96-well plate analyzer and 

compared to that obtained with 5 mM aKMB in place o f the otKG analogues. The 

extinction coefficient o f phenylpyruvate-eno/afe under these conditions is 16,000 cm'1.

In some experiments, the absorbance at 340 nm was determined (extinction coefficient of
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phenylpyruvate-ewo/a/e at this wavelength = 10,400 cm '1). To test the aKG analogues as 

substrates of AspAT, the a-keto acid was dissolved in a 200-pi reaction mixture 

containing 20 mM ASP, 100 mM potassium phosphate buffer (pH 7.4), 0.1 mM NADH,

1 jig of MDH and 1-50 pg of AspAT. The rate of disappearance o f NADH at 2l°C was 

compared to that o f a standard assay mixture containing 10 mM aKG in place of the 

aKG analogues. To test the aKG analogues as substrates of AlaAT, the a-keto acid was 

dissolved in a 200-pl reaction mixture containing 20 mM ALA, 100 mM potassium 

phosphate buffer (pH 7.4), 0.1 mM NADH, 1 pg o f LDH and 1-50 pg of AlaAT. The rate 

of disappearance o f NADH at 21°C was compared to that of a standard assay mixture 

containing 10 mM aKG in place o f the aKG analogues. To test the aKG analogues as 

substrates of KGDHC, the standard 200-pl assay mixture (Park, 1999) was used except 

that aKG was replaced by the a-keto acid analogue. The rate of increase of absorbance 

at 340 nm due to reduction of NAD+ to NADH at 30°C was compared to that obtained 

with aKG. For all enzyme assay determinations, blanks lacked enzyme.

In a separate series of experiments, assays were developed for the

aminotransferases in the Sigma CloneZyme™ kit as a prerequisite for the search for

enzymes within the kit capable of catalyzing transamination of compounds 3-1 - 3-5

(Figures 1 and 2). Although the enzymes in the Sigma kit have high temperature optima

(80 °C for AT-1,2,3 , and 5; 50 °C for AT-4) preliminary experiments were conducted at

45 °C [maximum temperature setting in the well plate analyzer]. The development o f the

assays (final volume = 50 pi) with either PHE or GLU as amino donor is described in the

Results and Discussion section. The product of the transamination of GLU (i. e., aKG)
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was quantitated with GDH. To the 50-|il reaction mixture was added ISO p.1 of a solution 

containing 0.05 mM NADH, 0.1 mM ADP, 40 mM ammonium sulfate and 10 pg o f 

GDH. The disappearance o f NADH due to reductive amination of aKG was monitored at 

340 nm at room temperature. The amount of aKG formed in the initial 50-p.l reaction 

mixture was calculated from the A absorbance relative to a control reaction mixture 

lacking thermostable aminotransferase. Reductive amination o f aKG was complete in 

about one minute. The product of the transamination of PHE (i.e., phenylpyruvate) was 

routinely determined as its enolate as described above. However, in some cases, 

phenylpyruvate was also determined with PDH. In this case, the 50-pl reaction mixture 

was treated with a 150-pi solution containing 0.0S mM NADH, 40 mM ammonium 

sulfate and 10 pg o f PDH. The disappearance of NADH due to reductive amination of 

phenylpyruvate was monitored at 340 nm at room temperature. Reductive amination of 

phenylpyruvate was complete in about one minute. The amount of phenylpyruvate 

formed in the initial 50-pl reaction mixture was calculated from the A absorbance relative 

to a control reaction mixture lacking thermostable aminotransferase.

Enzyme activities are reported as the mean ± S. E. M.
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3. Apparatus

Spectrophotometric assays were carried out in either a SpectraMax or VersaMax 

96-well plate analyzer (Molecular Devises). High performance liquid 

chromatography/mass spectroscopy (HPLC/MS) was carried out using a MicroMass LCT 

mass spectrometer running in the positive ion mode. The HPLC was performed with a 

Waters 2790 pump on an (R, R) WHELK-0 1 column (5pM, 25 cm X 4.6 mm i.d.) 

(REGIS Technologies, Inc. Morton Grove, IL, USA), 5 pi injection with a (low rate of 

lml/min (50/50 acetonitrile:water v/v containing 1% v/v formic acid) with post column 

splitting to allow 180 pl/min of eluent into the MS source. Analytes of interest were 

observed as the protonated species yielding mass spectral peaks corresponding to MT+1.

In many cases, analytes were also observed as the protonated species clustered 

with acetonitrile yielding mass spectral peaks corresponding to M+ + 42.

The mass spectrometer settings were: capillary voltage = 2500 V; sample cone = 4 V; 

extraction cone = 4 V; Rf lens = 150 V; desolvation temperature = 400 °C; source 

temperature = 150 °C; gas flow (cone) ~ 2 -  10 1/hr; desolvation ~ 6501/hr.
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4. ce-Ketoglutaric Acid Analogues

The analogues tested were: 6-oxaiyl-cyclohex-3-enecarboxylic acid (2.43); 3,4- 

dimethyl-6-oxalyl-cyclohex-3-enecarboxylic acid (2.44), 3-oxalyl-bicyclo[2.2.1]hept-5- 

ene-2-carboxylic acid; and (2.45), 3-oxalyl-bicyclo[2.2.2]oct-5-ene-2-carboxylic acid 

(2.46) and 9,10-dihydroanthraceno-3,10-[3,4-(2-oxo)]-glutaric acid (2.47). Compounds 

2.43 -  2.47 were prepared as described in Chapter 2. Stock solutions o f the a-keto acids 

at 40 mM (compound 2.43), 20 mM (compound 2.44), 100 mM (compounds 2.45 and 

2.46) and S mM (compound 2.45) were made up in distilled water and stored frozen at -  

20 °C.
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Chapter 4: Evaluation of trans-3,4-Conformationally Constrained Glutamate

Analogues (2.31,2.32,233,2.34) as Excitatory Amino Acid Transport Inhibitors

I. Introduction

The conformationally constrained analogues of glutamate synthesized in Chapter 

2 have many useful features in the field o f glutamate pharmacology. These compounds 

are very similar to that o f known glutamate transport inhibitors such as 2 ,4-PDCs and L- 

CCGs (Chapter 1). The constrained analogues may prove beneficial in locking the 

glutamate backbone into a conformation that may interact specifically with one 

transporter. For example, if a compound is found that is specific for EAAT2, it is 

possible preferentially block the transport of glutamate through that protein and study the 

biological implications of this state. A potent and selective inhibitor may give valuable 

insight into the mechanisms and actions o f specific that transporter.

Specifically, the conformationally constrained analogues o f glutamate 2.27,2.29, 

232 - 2.35 (Figure 4.1) were screened as potential inhibitors of the sodium dependent 

excitatory amino acid transporters 2 (EAAT2) and 3 (EAAT3), the chloride dependent 

glial cystine/glutamate exchanger system Xc\ and the glutamate vesicular transport system 

(VGLUT). These transporters are responsible for the regulating of synaptic glutamate 

concentrations and if a transporter is found that the analogues are specific for, there is 

high potential for scientific and therapeutic use.
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Figure 4.1. Glutamate analogues tested as potential transport inhibitors.

In reference to Chapter 1, transport assays have demonstrated that L-trans-2,4- 

PDC acts as a substrate o f the excitatory amino acid transporter subtypes EAATl-4 and 

as a non-substrate inhibitor of the EAAT5 subtype (Arriza, 1997; 1994; Fairman, 1995; 

Koch, 1999). Similarly, the individual stereoisomers of the l-CCGs also exhibit 

interesting activities at these transporters. For example, l-CCG-II and l-CCG-III (Figure

1.4) have both been reported to block the uptake o f [3H]-L-glutamate into synaptosomal 

preparations (Robinson, 1993). More detailed studies using cellular expression systems
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have demonstrated that l-CCG-IH potently inhibits EAAT1, EAAT2, and EAAT3, while 

L-CCG-IV preferentially inhibits EAAT2 (Shimamoto, 1998; Yamashita, 1995).

II. Biological Activity

The well characterized transport inhibitor of EAAT2, dihydrokainate (Figure 4.2; 

Bridges, 1991) is used as a standard for comparison of inhibition o f glutamate transport.

The natural substrate for the transporter, L-glutamate is

Figure 4.2. Dihydrokainate
conducted by quantifying the ability o f the analogues to 

attenuate the uptake of [3H]-D-aspartate into synaptosomes prepared from rat forebrain.

into the synaptosomes was 4.9 ± 1 pM (Koch, 1999). While EAAT2 is generally 

considered a glial transporter, previous studies have demonstrated that synaptosomal 

preparations clearly exhibit a pharmacological profile consistent with EAAT2 (Koch, 

1999). As reported in Table 4.1, compounds 2.27,2.32, and 2.34 markedly reduced 

uptake below Control values, hi particular, 2.32 and 2.34 proved to be comparable in 

activity (i.e., 62% and 65% inhibition, respectively) to dihydrokainate (DHK), a well- 

characterized selective EAAT2 inhibitor. Further, as these analogues were tested as a 

stereoisomeric mixture, it is quite possible that the observed activity may reside in a 

single species that would, consequently, possess considerably greater activity. The

also included to as a standard reference for the inhibition

of EAAT3.
H

Testing of the potential inhibitors of EAAT2 was

Under the assay conditions employed, the Km value for the uptake o f [3H]- d -aspartate
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Table 4.1. Activity o f conformationally constrained glutamate analogs (2.27,2.29,2.32-
2.35) as transport inhibitors

Compound Synaptosomal C6 Cellular SNB-19 Cellular Synaptic Vesicular 
(conc.) (EAAT2). (EAAT3). (xcO-Uptake o f 3H- (VGLUT).

Uptake of 3H-D- Uptake of 3H-D- l-GIu (IOOuM ) Uptake of 3H-d-
Asp (5 pM) Asp (25 pM) Glu (250 pM)

2.27 (250 pM) 
(500 pM)

53 ± 6 (n =3)
93 ± 2 (n =3) 89 ± 7 (n =3)

103 ± 2 (n =3)

2.29 (250 pM) 
(500 pM)

77 ± 7 (n =3)
97 ± 3 (n =3) 103 ±9 (n=3)

96 ± 3 (n =3)

2.32 (250 pM) 
(500pM)

38 ± 2 (n =3)
95 ± 3 (n =3) 101 ±7 (n =3)

85 ± 5 (n =3)

2.33 (250 pM) 
(500 pM)

71 ± 14 (n =3)
100 ± 1 (n=3) 104 ± 8 (n =3)

99 ± 5 (n =3)

2.34 (250 pM) 
(500 pM)

70 ± 4 (n =3)
97 ± 3 (n =3) 88 ± 5 (n =3)

104 ± 4 (n =3)

235 (250 pM) 
(500 pM)

35 ± 5 (n =3)
87 ± 9 (n =3) 88 ± 5 (n =3)

93 ± 5 (n =3)

DHK (250 pM) 22 ± 3 (n =3) - - -
l-GIu (25 uM) 28 ± 5 (n > 3)

Compounds were evaluated at the concentrations indicated as inhibitors of several different 
glutamate transport systems. Na-dependent uptake of [3H]-D-aspartate into synaptosomes (Koch, 
1999) and C6 glioma cells (Palos, 1996) was used to evaluate activity at EAAT2 and EAAT3, 
respectively. Cl-dependent uptake of [3H]-L-glutamate into SNB 19 (Ye, 1999; Martin, 1979) was 
used to determine activity at system xc\ while the ATP-dependent uptake of [3H]-L-glutamate by 
isolated synaptic vesicles (Maito, 1985) was used to quantify activity at the vesicular glutamate 
transporter. Values shown are reported as mean % of Control ± SEM (n > 3). Dihydrokainate 
(DHK) and L-glutamate (L -Glu) are included as a reference for inhibition of EAAT2 and 
EAAT3. Control rates of uptake (pmol/min/mg protein) were as follows: synaptosomes, 1827 ± 
184 (n = 8); C6 cells, 26 ±1 (n = 8); SNB 19 cells, 629 ± 23 (n= 7); synaptic vesicles, 3328 ± 373 
(n = 5). All values have been corrected for non-specific uptake.
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potential cross reactivity of the analogues was also assessed at: a) EAAT3, by quantifying 

the uptake of [3H]-D-aspartate into rat C6 glioma cells (Palos, 1996); b) the system xc' 

glutamate/cystine exchanger, by quantifying the uptake of [3H]-L-glutamate into SNB-19 

human astrocytoma cells (Ye, 1999; Martin, 1979) and c) the vesicular glutamate 

transporter, by quantifying the uptake of [3H]-L-glutamate into synaptic vesicles prepared 

from rat forebrain (Carrigan, 1999; Naito, 1985) To provide an indication of activity at 

these other systems, the Km values for the respective substrates have been determined to 

be: 9 ± 2 pM (n = 9) for D-aspartate at EAAT3 in C6 cells, 111 ± 10 pM (n = 4) for L - 

glutamate at system xc' in SNB-19 cell, and 2.8 ± 0.2 mM for L-glutamate at the 

vesicular transporter in isolated synaptic vesicles. In each instance (Table 4.1), the 

compounds exhibited little or no activity at these alternative transporters. The activity 

and selectivity shown by inhibitors 2.32 and 2.35 at EAAT2 suggests a well-defined 

steric relationship. Analogs 2.32 and 2 3 5  differ from analogs 2 3 3  and 2 3 4  in the 

incorporation of two methyl groups and insertion of a ring methylene yet 2 3 3  and 2.34  

show significantly lower activity than analogs 2.32 and 2 3 5 . Molecular modeling 

studies and the separation of the stereoisomers and testing each one individually will 

even further refine the pharmacophore model of the EAAT2 transport binding site. For 

the most selective and potent analogues, the assay mixture contained four stereoisomers. 

If these were to be tested individually, their potency could be as much as four times what 

we have seen in the assays. Molecular modeling o f the inhibitors against the most potent 

and selective EAAT2 inhibitor, DHK, would also provide good insight into the elements 

o f the molecules required of inhibition at EAAT2. Taken together, these results identify 

the conformationally restricted glutamate analogs as a new structural class o f compounds
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that should prove useful in developing novel probes o f EAAT2 and help to further 

delineate a pharmacophore model for the substrate-binding site on the transporter protein.
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III. Experimental

1. EAAT2 uptake (Koch, 1999)

Na+-dependent uptake of [3H]-D-aspartate (Dupont NEN, Boston, MA) into 

synaptosomes was quantified as follows. Synaptosomes were prepared from forebrains 

of male Sprague-Dawley rats (200-300 g) using a discontinuous Ficoll gradient. The 

synaptosomal pellet was suspended in assay buffer (see below) at a final concentration of 

approximately 0.2 mg protein/mL. Uptake of [3H]-D-aspartate through the high-affinity, 

sodium-dependent EAAT2 was quantified in assay buffer containing 128 mM NaCl, 10 

mM glucose, S mM KCl, l.S mM NaH2P0 4 , 1 mM MgS0 4 , 1 mM CaCh, and 10 mM 

Tris (pH 7.4). Following a preincubation (S min, 25 °C), uptake was initiated by the 

simultaneous addition of [3H]-D-aspartate (final concentration 5 pM) and the 

conformationally constrained glutamate analogues. Uptake was allowed to proceed for 2 

min, after which time the reaction was stopped by the addition o f ice-cold assay buffer (6 

mL) and rapidly filtered on Whatman GF/F glass fiber filters. Following a rinse with ice- 

cold buffer (6 mL), the radioactivity retained on the filters was quantified by liquid 

scintillation counting. All values were corrected for background by subtracting [3H]-d- 

aspartate accumulated at 4 °C and are reported as mean ± SEM. Previous experiments 

have demonstrated that under these conditions, uptake is sodium-dependent and linear 

with respect to both protein content and time. Protein concentrations were determined by 

the Pierce BCA (bicinchoninic acid) assay.
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2. EAAT3 (Palos, 1996) and system xc' uptake (Ye, 1999; Martin, 1979)

The uptake o f (a) [3H]-L-glutamate or (b) [3H]-D-aspartate into cultured cells was

quantified as follows. Individual wells, after removal of culture media, were rinsed three

times and pre-incubated in 1 mL HEPES buffered (pH 7.4) Hank’s balanced salt solution

(HBHS) at 30 °C for 5 min. The HBHS was altered by ionic substitution to isolate the

Na+ and Cl' -dependent transport systems. The buffers contained: (a) CT-dependent

(EAAT3): 137.5 mM Choline Cl, 5.36 mM KC1, 0.77 mM KH2P04, 0.71 mM

MgS04.7H20 , 1.1 mM CaCl2, 10 mM D-glucose, 10 mM HEPES or (b) total Na~ and Cr

-dependent (system xc~): 137 mM NaCl, 5.1 mM KC1,0.77 mM KH2P 04, 0.71 mM

MgS04.7H20 , 1.1 mM CaCl2, 10 mM d -glucose, 10 mM HEPES and uptake was

initiated by aspiration of the preincubation buffer and the addition of a 500 |il aliquot of

the appropriate transport buffer containing (a) [3H]-L-glutamate (100 pM) or (b) [3H]-D-

aspartate (25 pM). A 500 pi aliquot of transport buffer contained both the (a) [3H]-L-

glutamate, (b) [3H]-D-aspartate and conformationally constrained glutamate analogues

(50, 500 pM, final concentration) to ensure simultaneous addition. Following a 5 minute

incubation at 30 °C, the assays were terminated by three sequential 1 mL washes with ice

cold buffer and then the cells were dissolved in 1 mL of 0.4 M NaOH for 24 hours. An

aliquot (200 pi) was then transferred into a 5 mL glass scintillation vial and neutralized

with the addition of 5 pi glacial acetic acid followed by 3.5 mL scintillation fluid to each

sample. Incorporation of radioactivity was quantified by liquid scintillation counting.

Values reported are corrected for non-specific uptake by subtracting the amount of

radioactive substrate accumulation at 4 °C. Previous experiments have demonstrated that
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under these conditions, uptake is sodium-dependent and linear with respect to both 

protein content and time. Protein concentrations were determined by the Pierce BCA 

(bicinchoninic acid) assay.
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3. VGLUTuptake (Corrigan, 1999; Naito, 1985)

Vesicular glutamate transport (VGLUT) was quantified in a pH 7.4 solution containing 5 

mM HEPES, 2 mM ATP, 4 mM KC1,4 mM MgCh and [3H]-L-glutamate (0.25-8 mM). 

The assays were initiated by the addition of [3H]- L -glutamate ± inhibitors (0.01-5 mM) 

to the synaptic vesicles (total vol. 100 pi, 0.1 mg protein). Uptake was allowed to 

proceed at 30 °C for 1.5 min, after which the vesicles were collected by vacuum filtration 

through Millipore HAWP filters. The filters were rinsed twice, after which the retained 

radioactivity was quantified by liquid scintillation counting. Non-specific uptake was 

determined in the absence of ATP.
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IV. Collaborators

All of the pharmacological data was collected in collaboration with Todd Seib 

(EAAT2), Fred Rhoderick (EAAT3), Brady Warren (system Xc*) and Kimberly Cybulski 

(VGLUT) under the advisement of Dr. Richard J. Bridges, Department of Pharmaceutical 

Sciences, COBRE Center for Structural and Functional Neuroscience, The University of 

Montana, Missoula, MT 59812, USA.
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Chapter 5: Conclusions and Future Directions

I. Conclusions

The goal of this project was to develop a novel synthetic route to 

conformationally constrained glutamate analogues using a novel dienophile to explore its 

reactivity in a normal electron demand Diels-Alder sequence. Exploration of the use of a 

chemical and/or enzyme mediated reductive amination. The goals that were achieved 

are:

• It was shown that dimethyl 4-oxoglutaconate is a highly reactive dienophile in the 

normal electron demand Diels-Alder reaction;

•  dimethyl 4-oxoglutaconate underwent formal Diels-Alder reactions with 

azadienes to form heterocyclic glutamate analogues;

•  several methods were found that chemically transform the ketone o f the Diels- 

Alder adducts into an amino group;

•  the conformationally-constrained analogues o f glutamate were synthesized by the 

reaction of the Diels-Alder adducts with N, N-dimethylhydrazine to form the 

hydrazones which were subsequently reduced using sodium hydrosulfite

•  conformationally-constrained analogues o f 2-oxoglutarate were synthesized and a 

procedure for their purification was developed

•  a broad survey of the 2-oxoglutarate analogues as substrates of aminotransferases 

and dehydrogenases was performed

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



•  an aminotransferase was found that converts the conformationally constrained 

analogues of 2-oxoglutarate to glutamate analogues

•  two conformationally constrained analogues of glutamate were found to be potent 

and selective inhibitors of EAAT2 and inactive at EAAT3, system x /  and 

VGLUT
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II. Future directions

It is important to expand the versatility of the Diels-Alder reaction with DOG as a 

dienophile. The resultant Diels-Alder adducts are excellent precursors for the synthesis 

of conformationally constrained glutamate analogues that are not normally accessible. A 

broadened panel of Diels-Alder adducts should include more regiodirecting dienes and 

the interpretation of their reactivity with DOG in both percent yield and regioselectivity.

With the utilization of DOG as the dienophile, the product mixture of the reaction 

has at least one pair of enantiomers which, in turn, are inseparable by traditional 

chromatographic techniques. If the synthesis was modified to bear the chiral alcohol 

menthol in the initial ester formation followed by bromination and dehydrohalogenation, 

a chiral dienophile will be generated (Figure S.l). This new dienophile can then be 

assessed for reactivity and stereoselectivity that goes above and beyond the retention o f 

regiochemistry about the olefin bond. This dienophile has the potential for controlling 

the enantioselectivity of the Diels-Alder reaction as well as producing a product pool that 

will contain chromatographically resolvable mixture o f stereoisomers. Once resolved, 

each stereoisomer may be used in the hydrazone formation and reductive amination 

producing a new resolvable set of amino esters or lactam esters. Further, each resolved 

amino ester or lactam ester can be saponified and tested as an individual stereoisomer of 

a conformationally constrained glutamate.
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HO—̂  ^  Menthol

$  °  p-TsOH

1. Br2

2. TEA

dimenthol 4-oxoglutaconate 

DMOG

Figure 5.1: Synthesis of dimenthol 4-oxoglutaconate

With the testing of individual stereoisomers being a very worthwhile cause, there 

a number of ways in which the stereoisomers can be resolved to obtain optically pure 

constrained glutamate analogues. For example, there are two stereoisomeric products of 

the reaction between 2 ,3-dimethyl-1 ,3-butadiene and DOG (Figure 5.2). Once the 

hydrazone is formed and reduced to produce the lactams, there are four stereoisomeric 

products. In either circumstance, it may be possible to transesterify with a chiral alcohol 

(S-2-butanol, for example) to form chromatographically separable stereoisomers (Figures 

5.2 and 5.3).
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As is shown in Table 4.1, two stereoisomer mixtures o f conformationally 

constrained glutamate analogues (2.31 and 2.33) were shown to be selective and 

modestly potent inhibitors of EAAT2. Therefore, if the individual stereoisomers can be

obtained and tested, there is a distinct possibility that a single stereoisomer will possess 

considerably greater activity.

The reactivity of the a , P-unsaturated N, N-dimethylhydrazones with DOG to 

form a new class of conformationally constrained glutamate analogues will also be of 

great interest With the distinct regiochemistry o f the reaction, the products that can be 

accessed by the reductive cleavage o f the hydrazine bond followed by saponification of 

the esters are much fewer than that o f a reaction under no regiocontrol. This is a very 

valuable method for the synthesis o f  a vast number o f conformationally constrained

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Initial Diels-Alder 
product mixture

S-2-butanol, NaH 
HPLC Separation

c o 2 c h 3

Figure 5.2: Functionalization and separation of keto diesters
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glutamate analogues with minimal synthetic variation, i.e. a large number o f analogues 

can be accessed by simply varying the a , [3-unsaturated aldehydes purchased for the 

synthesis of the a , (3-unsaturated N, N-dimethylhydrazones to be used as azadienes.

The initial studies into the synthesis of 4-oxoglutamate (Chapter 2) produced 

mixed results. The desired target molecule has yet to be synthesized, however, the 

intermediate structures may be of potential benefit in the study o f conformationally 

constrained glutamate analogues. Figures 5.4 and 5.5 illustrate some potential glutamate 

analogues that can be accessed from pyrrolidone (2.41) formed by the 1,4-addition of 

benzylamine to DOG. As depicted in Figure 5.4, the proposed synthesis of the glutamate 

analogue DL-f/rreo-p-benzyloxyglutamate (TBOG), which incorporates similar features 

to the well known competitive, non-transportable inhibitor o f glutamate transporters, d l-  

r/ireo-P-benzyloxyaspartate (TBOA), is outlined. Another possible addition to the 

chemistry proposed in figures 5.4 and 5.5 is that the chiral amine R-(+)-a- 

methylbenzylamine can be used as the nucleophilic addition reagent and the products 

obtained will possess the potential for chromatographic, stereoisomer resolution.

The utility o f the synthetic strategy o f this thesis has much potential for further 

exploration in the field of medicinal chemistry. The synthesis o f novel analogues of 

glutamate is o f great potential for experimental and therapeutic use in the glutamate 

neurosystem.
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Figures 5.3: Proposed synthesis o f DL-f/treo-P-benzyloxyglutamate
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Figure 5.4: Proposed synthesis o f 4-hydroxyglutamate and 4-oxoglutamate
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