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Willliams, Margaret V., M.S., June, 1981 Microbiology 

The Effects of Oxygen Deprivation on Brain Metabolites in Various 
Gestational Age Sheep Fetuses 

Director: J. J. Taylor 

Fetuses are more resistant than adults to brain injury following oxygen 
deprivation. Although a metabolic basis for this resistance has been 
postulated, the mechanism for this resistance of the fetal brain has not 
been resolved. Previous biochemical and pathological studies in adult 
monkeys and goats established that the accumulation of lactic acid above a 
threshold concentration of 17-20 ̂ moles/g in brain tissue as a result of 
oxygen deprivation, led to injury. The purpose of this study was to 
determine if the metabolic basis for fetal brain tolerance tu anoxia 
during early gestation was its inability to accumulate lactic acid above 
threshold concentrations. This hypothesis was tested by examining the 
brain metabolite concentrations in sheep fetuses exposed to circulatory 
arrest at 50, 80, 110, and 140 days of gestation. These brain metabolite 
concentrations were compared to brain metabolites from normally oxygenated 
fetuses of the same gestational age. Cortical gray and white matter, and 
brain stem were sampled and fluorometric enzyme assays were performed to 
determine lactate, glycogen, glucose, fructose, ATP, ADP, AMP, and 
phosphocreatine concentrations. The results of this study indicated that 
lactic acid accumulated to threshold levels only in the brain stem of 110 
and 140 day sheep fetuses. These biochemical findings correlated very 
well with pathology studies which showed that the brain stem nuclei of 
late gestational age fetuses were the only structures damaged following 
anoxia. Lactic acid did not accumulate to supra-threshold levels because 
carbohydrate substrates, in particular glycogen, were not present in high 
enough concentrations until late in gestation. Although ATP, PCr, and 
energy charge values decreased significantly during anoxia, there was no 
correlation between energy charge, ATP, or PCr values and brain 
pathology. Thus, the conclusion was made that early gestational age 
fetuses were more resistant to brain injury following oxygen deprivation 
because lactic acid did not accumulate in vulnerable brain structures 
above threshold levels. 
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INTRODUCTION 

A variety of circumstances leading to severe oxygen deprivation in 

the human fetus ultimately result in brain injury (1,4,12;. In order to 

examine possible mechanisms underlying the development of brain injury, 

animal models are used. Results from these animal experiments have led to 

various explanations for the mechanism, of brain injury following oxygen 

deprivation (37, for reviews see 24-26,29,44). Most theories suggest that 

the lack of oxygen is the only determinant of brain injury although 

experimental evidence to the contrary exists (26,31). In 1976 Myers and 

Yamaguchi proposed that, during oxygen deprivation, lactic acid 

accumulation above a threshold concentration, leads to brain edema and 

tissue necrosis (30). A number of pathological and biochemical studies 

using different models of oxygen deprivation in Dr. Myers', and more 

recently, in four other laboratories support this theory (9-11, 23, 35, 

36,42,48,51). The present thesis will test this and other pathogenic 

mechanisms in fetal brains and will examine the correlation between lactic 

acid accumulation ana brain injury in the sheep fetus exposed to oxygen 

deprivation. Furthermore, this study will attempt to find a basis for the 

extended tolerance fo the fetal brain to lack of oxygen. 

I. Statement of the Problem 

This study will examine the effect of anoxia on several brain 

metabolites in various brain regions of sheep fetuses of different 

1 



gestational ages. Previous brain pathology studies in fetuses subjected 

to varying lengths of anoxia indicate that the fetal brain is more 

tolerant of anoxic exposure than the adult brain (5, 7, 11). Studies in 

adult animals show that lactic acid accumulation correlates well with the 

development of brain pathology following oxygen deprivation. As a result 

of this earlier work, biochemical studies are needed to test the 

hypothesis that the fetal brain is more tolerant to anoxia because the 

fetal brain accumulates less lactic acid during oxygen deprivation than 

the adult. 

The maximum concentration to which lactic acid accumulates during 

anoxia, as a result of circulatory arrest, depends primarily upon the 

levels of carbohydrate substrates in the tissue prior to anoxia. Lower 

glycogen, glucose and fructose concentrations may be found in the fetus 

compared to adults in the normally oxygenated state. In addition, 

specific structures of the brain may contain varied amounts of each 

carbohydrate and change as a function of gestational age. Thus, substrate 

availability determines the degree of lactic acid accumu ation during 

anoxic exposure and if the hypothesis is correct, defines the 

vulnerability of a particular structure to injury with varying gestational 

ages. 

Several investigators have proposed that brain injury occurs because 

of a deficient energy availability. This study will determine the 

concentrations of adenosine-5'-triphosphate (ATP), phosphocreatine (PCr) 

and energy charge and will attempt to correlate a decreased energy 

availability with brain injury. Although ATP, PCr and energy charge have 
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not been shown to be correlated with pathology in adults, the fetus has 

not been examined (25). 

The results of the present investigation will provide information on 

critical biochemical changes in brain causeO by oxygen oeprivation. The 

correlation between these biochemical investigations and brain pathology, 

will provide a better understanding of the remarkable tolerance of the 

fetal brain to injury from oxygen deprivation. 

II. Background 

A. The Influence of Magnitude and Duration of Oxygen Deprivation on 

Patterns of Brain Injury. 

Early studies concerned with the effects of oxygen deprivation on 

brain tissue focused on patterns of injury produced by exposure to 

Different magnitudes and durations of oxygen deprivation (39). In these 

studies the magnitude of oxygen deprivation ranged from anoxia to various 

levels of hypoxia. Anoxia, a state of total oxygen deprivation, has been 

used as a model for both adult and neonatal human brain injuries resulting 

from oxygen deprivation. Newborn rhesus monkeys exposed to total 

asphyxia, produced by clamping the umbilical cord and preventing 

breathing, exhibited a pattern of injury restricted to brain stem nuclei 

(24). In these animals the inferior colliculus was the primary brain stem 

structure injured. Frequent injury was also present in the superior 

olivary nucleus, descending nucleus of the fifth cranial nerve, lateral 
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and spinal vestibular nuclei, gracile and cuneate nuclei and the posterior 

and lateral ventral nuclei of the thalamus (24). Food deprived, juvenile 

and adult monkeys subjected to circulatory arrest also exhibited injury in 

these brain stem structures, in addition to the Illrd, IVth and Vlth 

cranial nerve nuclei (22). However, this pattern of restricted injury to 

brain stem nuclei without involvement of the cerebral hemispheres has 

rarely been reported in humans exposed to oxygen deprivation. These 

results suggested that the circumstances producing brain injury in the 

human were different from this experimental model of a total and sudden 

lack of oxygen (24,30,31). 

Hypoxia, another model commonly used, is a state of oxygen deprivation 

in which there is a decreased oxygen content in arterial blood. In the 

fetus arterial blood contents are normally 10-12 volumes percent. A 

reduction not exceeding 4 volumes percent did not produce neurological 

damage or significant changes in cardiovascular performance, while 3-4 

volumes percent or lower produced cardiovascular changes but not 

neurological damage (25). Brain injury began to occur in fetuses of food 

deprived animals when the fetus was exposed to an arterial bJood oxygen 

content equal to or less than 0.5 volumes percent for a duration of 25-30 

minutes (25). Fetuses exposed to less than 0.5 volumes percent oxygen 

(arterial blood) often developed severe cardiovascular collapse from which 

the animals could not be resuscitated if the expo.sure lasted longer than 

20 minutes (24). Those fetuses subjected to less than 1.5 volumes percent 

oxygen developed brain edema and necrosis of the cerebral hemispheres. 

This pattern of pathology is similar to the one observed in severely 
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asphyxiated human newborns, who subsequently develop cerebral palsy (20, 

24). This hypoxic exposure proved to be a valid model for brain injury 

due to asphyxia in the perinatal period. 

B. Theories of Brain Injury Following Oxygen Deprivation. 

Several theories have been proposed to explain the pattern of 

brain injury resulting from exposure to oxygen deprivation. In 1922 Vogt 

proposed that the selective vulnerability of the brain to injury from 

oxygen deprivation was the result of different patterns of metabolic or 

chemica1 organization in various brain structures (ref. ^n 26). In 

contrast to this chemical basis for tissue injury, Spielmeyer proposed 

that brain injury resulted from changes in vascular perfusion during or 

after oxygen deprivation (ref. in 26). An offshoot of the vascular theory 

of brain injury was the border zone hypothesis. Current supporters of the 

border zone hypothesis propose that, the most susceptible areas of the 

brain to injury lie furthest from the major cerebral arteries and are the 

first to suffer reductions in perfusion when a decrease in blood flow 

occurs (31). Another hypothesis, termed the "no-reflow phenomenon", was 

put forth by Ames and coworkers (2). In this theory they propose that 

brain cell injury occurs as a result of swelling in perivascular glial and 

endothelial cells which impairs recirculation after oxygen deprivation. 
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C. Other Variables Which Determine the Pattern of Brain Injury 

Following Oxygen Deprivation. 

Further studies from Myers and coworker defined a factor, unrelated to 

those proposed by earlier investigators, that was found to be a crucial 

determinant of brain pathologic outcome from anoxic exposures. These 

studies revealed that the magnitude and duration of oxygen deprivation 

were not the only variables involved in determining the development of 

brain injury. Evidence for this new variable came from studies in which 

monkeys were food deprived overnight and then received glucose injections 

prior to 10 minutes of anoxia (31). Surprisingly, these animals died 

hours after exposure with major cerebral necrosis and edema with 

herniation of the cerebellar tonsils and vermis, as well as a flattening 

of cerebral convolutions. In contrast, monkeys that received saline 

infusions and also were exposed to 10 minutes of anoxia developed injury 

restricted to the nuclei in the brain stem with no involvement of the 

cerebral hemispheres (23-31). Thus, the animal's serum glucose 

concentration and, by inference, the carbohydrate state, which was changed 

by food deprivation or glucose infusions, was proposed to be the important 

variable determining the pattern of brain injury following identical 

anoxic exposure (23-26). 

Biochemical studies with saline- and glucose-infused rhesus monkeys 

exposed to 10 minutes of anoxia indicated that the only significant 

difference between the two groups was that glucose-infused monkeys 

developed lactic acid levels greater than 30 pmoles/g while saline-infused 
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animals accumulated lactic acid to 10-12 |jmoles/g (25,30). The highly 

vulnerable brain stem nuclei in food deprived monkeys and goats exposed to 

circulatory arrest also accumulated the highest lactic acid concentrations 

in the brain (29, 49). Brainstem nuclei also contain more glycogen stores 

than other brain structures (28,49). Thus, there was a direct correlation 

between the pattern of brain pathology and the accumulation of lactic acid 

to high concentrations in the various brain regions. 

A similar relationship between lactic acid accumulation and brain 

injury was found in monkeys exposed to 10 and 25 minutes of hypoxia (3.5 

volumes % 02) (25). Ten minutes of exposure to severe hypoxia did not 

lead to the development of brain injury and cortical lactic acid 

concentrations only reached 10-12 (jmoles/g. However, monkeys exposed to 

25 minutes of hypoxia accumulated lactic acid concentrations of 24 

umoles/g in the brain and they developed brain injury. Based upon these 

results and those from the anoxia studies, Myers concluded that the 

accumulation of lactic acid to concentrations greater than 17-20 pmoles/g 

was the threshold value for brain injury (25, 26). 

Additional biochemical studies were performed to determine whether the 

concentration or activity of other metabolites and enzymes, respectively, 

correlated with the development of brain injury. Investigators have long 

argued that a depletion of ATP or a severe decrease in energy charge 

caused brain injury (8, 32). Although ATP levels were markedly reduced, 

they were not significantly different between glucose- and saline-infused 

animals exposed to circulatory arrest, even though the animals with high 

serum glucose concentrations developed brain edema and tissue necrosis 
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while all animals with low serum glucose levels survived ano showed 

minimal or no neurologic damage (25). No significant correlation was found 

between brain injury and certain enzyme activities, including 

sodium-potassium ATPase (Na+K+ATPase), acid phosphatase and alkaline 

phosphatase (24, 25, 30). 

Lactic acid accumulation in brain tissue during oxygen deprivation can 

be understoou on the basis of brain carbohydrate metabolism. An increase 

in the production of lactic acid from pyruvate, rather than formation of 

acetyl coenzyme A (acetyl CoA), occurs because of the increase in the 

reduced nicotinamide (NADH) to oxidized nicotinamide (NAD) ratio in an 

oxygen deprived cell. The increase in the NADH/NAD ratio and the 

reduction in the concentrations of acetyl CoA slow tricarboxylic acid 

(TCA) cycle flux and result in lower levels of ATP and higher 

concentrations of adenine-5'-dinucleotide (ADP) and 

adenine-5'-mononucleotide (AMP) in the cell (16). Enhancement of ADP and 

AMP concentrations stimulate phosphofructokinase (PFK) activity, an enzyme 

which serves as a primary regulatory enzyme in the glycolytic pathway 

(18). This increase in activity of glycolysis and in addition, 

glycogenolysis results in a rapid depletion of tissue stores of glycogen 

and glucose and leads to a 5-10-fold increase in lactic acid 

concentrations in brain tissue (18). Thus, tissue stores of glycogen and 

glucose would determine the level to which lactic acid accumulated during 

a prescribed interval of oxygen deprivation (19,48). 
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D. Studies of Oxygen Deprivation and Metabolism in the Fetus 

In certain respects, fetuses and neonates do not resembl-e their 

adult counterparts with respect to brain injury induced by oxygen 

deprivation. For example, fetal and neonatal brain tissue is more 

resistant to injury from oxygen deprivation Q5). Furthermore, fetai 

metabolism differs in many respects from the adult (13). Many 

investigators utilize these metabolic differences to explain the higher 

susceptibility of the adult to brain injury, from oxygen deprivation, 

compared to the fetus. However, definitive experimental proof is not 

available to support these theories. The theory that lactic acid 

accumulation above threshold levels results in brain injury has not been 

tested with respect to fetuses. Therefore; biochemical studies are neeaed 

to test whether the greater tolerance of the fetal brain to injury 

following oxygen deprivation is due to decreased lactic acid production. 

Several different studies have demonstrated that fetuses and newborns 

were more resistant than adults to oxygen deprivation. In these studies 

young animals were consistantly more tolerant, on the basis of 

survival, behavioral deficits, physiologic reflexes and gross brain 

pathology (7,15,23). Thus, the theories proposed to explain the resistance 

of the fetal and neonatal brain to injury, following oxygen deprivation, 

must consider these earlier observations. 

Various animal and oxygen deprivation models were used to study the 

relationship of state of development to brain injury resulting from oxygen 

deprivation. Fetal and neonatal models, including monkeys, dogs, cats, 
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rabbits, mice, guinea pigs and rats were compared to each other and to the 

corresponding adults (5,7,13,15,25,44,46). Monkey fetuses were 

asphyxiated by clamping the umbilical cord, and fetal hypoxia was produced 

by respiring the mother with a decreased oxygen concentration 125). Term 

rat fetuses, as well as neonatal rats, were decapitated or placed in a 100 

percent nitrogen gas environment (7,45,46). The brains of neonatal 

puppies were exposed to anoxia either by occlusion of the ascending aorta 

(5) or by abrupt inflation of a cervical pressure cuff following 

laminectomy (15). Hypoxia was achieved by respiring animals with a 

decreased oxygen gas (25, 44). In these models it was demonstrated th; t 

fetuses were more resistant to brain injury than neonates t.7), while both 

fetuses and neonates were more resistant than adults (5,7,25,46). 

Several parameters were used to define resistance in the studies 

mentioned above. In 1941 Kabat examined three different parameters which 

revealed that puppies were more resistant than adults. He demonstrated 

that after anoxia puppies recovered normal behavior faster (revival time); 

survived longer periods of anoxia, without permanent changes in behavior 

(survival time); and regained corneal and respiratory reflexes more 

quickly (recovery time) (15). Similar results with survival and behavior 

were found with rats and dogs (5, 7). 

Studies from Dr. Myers' laboratory also revealed differences between 

newborn and young adult monkeys (25,26). Newborn monkeys of food deprivea 

mothers and food deprived, young adults monkeys exposed to 12.5 minutes of 

anoxia developed lesions in brain stem nuclei. However, in the newborn 

the inferior colliculus was more susceptible to injury, while in the adult 
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the Illrd, IVth and Vlth cranial nerve nuclei were more readily injured 

(25). Another investigation revealed that at least 25 minutes of 0.8-1.5 

volumes percent oxygen was needed for fetuses to develop brain edema and 

injury to the cerebral hemispheres (25). In contrast young adult brains 

exhibited a similar outcome after 25 minutes of respiring air with a much 

higher oxygen content (3.5 volumes percent). 

Different theories concerned with the increased resistance of the 

fetal brain to injury following oxygen deprivation have focused on 

differences between fetal and adult carbohydrate metabolism. These 

differences in carbohydrate metabolism include: 

1) pathways available to fetuses and adults; 

2) substrate concentrations in fetuses and adults; and 

3) rate of metabolism in both groups. 

The hypothesis of Dr. Myers and coworkers is that these differences in 

carbohydrate metabolism may result in lower levels of lactic acid and 

also, a lower rate of lactic acid accumulation in fetal brain tissue as 

compared to the adult. These 2 factors result in the extended tolerance 

of the fetal brain to anoxia. 

Adults and fetuses of the same species do not always have the same 

pathways available for carbohydrate metabolism. Radioactive tracer 

studies using chronically cannulated sheep fetuses revealed that glucose 

was broken down to lactate or carbon dioxide plus water and that 

gluconeogenesis did not occur (50). Both catabolism of glucose and 

synthesis of glucose from metabolites, such as lactate, occurred in adult 

sheep (14,50). The enzymes and hormones necessary to stimulate 
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gluconeogenesis were present in the fetus. However, the enzymes were 

either inactive or inadequately stimulated by the hormones (40,50). Fetal 

serum glucose came from the transport of glucose across the placenta and 

glycogen stores in the fetus (14,40,50). Glycogen was synthesized and 

broken down in sheep fetuses and adults (50). 

The radioactive tracer studies also demonstrated that the placenta 

converted maternal glucose to fructose (50). This conversion resulted in 

a favorable concentration gradient for glucose transport across the 

placenta (41). Subsequent radioactive tracer studies and analysis of loss 

of serum fructose in the urine suggested that sheep fetuses did not 

metabolize fructose (41, 50). However, other studies found that the 

amniotic membranes in the fetus utilize fructose and that stressful 

situations resulted in the use of serum fructose by the fetus (3, 6). 

Investigators found insignificant fructose levels in adult sheep which 

implied fructose did not make a major contribution to the carbohydrate 

pool (50). 

In addition to pathways, serum glucose, fructose, and lactate 

concentrations have been examined in sheep fetuses, neonates and adults. 

In these studies the investigators concluded that serum lactate levels 

were higher in fetuses (2.19_+0.6mM) than in suckling lambs 

(1.78+0.46mM)(50). However, serum glucose levels were lower in sheep 

fetuses (0.59+0.15mM) than in suckling lambs (3.61+0.58mM) or in adults 

(2.67+0.31mM)(50). Serum fructose values also were higher in fetuses 

(5.09+0.89mM) than in newborns and adult sheep, where they were 
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undetectable (14, 50). Subsequent studies showed that brain glucose and 

lactate levels were lower than serum values, but they followed the serum 

concentrations (21). 

Investigators also found that carbohydrate metabolism proceeded at a 

different rate in fetuses compared to adults. Chronical y cannulated 

sheep fetuses utilized glucose faster (10.5 mg/min/kg) than did adults 

(1.4 mg/min/kg) (14). It has been suggested that the increased rate of 

glucose consumption in the fetus resulted from a greater dependence on 

glucose metabolism; adults depended more on noncarbohydrate substrates. 

However, 30-day old rats consuming a high carbohydrate diet showed an 

increased rate of glucose metabolism compared to 2-day uld newborns 

(30-day=12.13 pmole glucose/min/100 g body wt., 2-day--6.62 |_imole 

glucose/minute/100 g body wt.) (47). 

Brain tissue of decapitated fetal rats also metabolized glucose to 

lactate at a slower rate i,0.27mM/min) than 7-day old postnatal rats 

(0.58mM/min) (7). Decapitated fetal rats also metabolized brain glycogen 

at a slower rate (O.OlmM/min) than similarly treated postnatal rats 

(0.17mM/min)(7). The maximal rate of lactate accumulation in brain tissue 

occurred faster in 7 day old postnatal rats (1.9mM/min) compared to 

fetuses (0.9rnM/min)(7). Based on ATP, phosphocreatine and ADP 

measurements, the study found adult rat brains used ene gy at about a 10 

times faster rate (26.6 mmole-P/kg/min) than did 7 day old (2.58 

mmole-P/kg/min), fetal (1.57 mmole-P/kg/min) and 1 day old (1.33 

mmole-P/kg/min) rats (7). 
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The results from these metabolic studies form the basis for the 

theories explaining the increased tolerance of the fetal brain to oxygen 

deprivation compared to adults. It is the hypothesis of this thesis that 

a decreased rate of glycolysis and/or a lower carbohydrate reserve is 

present in the fetal brain during anoxia. The higher rate of glucose 

utilization in decapitated postnatal rat brain (0.70 mmoles/kg/min) 

compared to fetal rat brain (0.08 mmoles/kg/min) supports the idea of 

decreased glycolytic rates in fetuses compared to older animals (7). 

Carbohydrate reserves also may be lower in fetuses as shown by sheep serum 

glucose levels (fetus= 0.59+0. 5mM, mother- 2.67_+0.31mM) (50). These 

lower serum glucose levels Indicate lower levels of glucose will be found 

in the fetal brain compared to adults (2r) During anoxia, these two 

factors could lead to lower lactic acid levels, thus preventing injury to 

the fetal brains (29). 

Other investigators have proposed that the fetal brain has a lower 

rate of energy consumption than do adult brains, and, therefore during 

anoxia the rate of energy reserve depletion would allow the brain of the 

fetus to survive longer than the adult brain (7,13,46). Himwich proposed 

that during oxygen deprivation, the fetus was able to obtain an adequate 

amount of energy from glycolysis to sustain neurological function, while 

in the adult these energy requirements could not be met by this pathway 

(13). This theory was based on experiments in which fetuses of different 

species survived asphyxia for longer periods than did adults (13). 

However, metabolic studies were not done to prove that different energy 

utilization rates existed for fetuses, neonates and adults. 
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Duffy et al. focused on this theory when they reported that cerebral 

energy utilization rates during anoxia were higher for adult rats (26.8 

mmole-P/kg/min) than for term fetuses (1.57 mmole-P/kg/min) (7). However, 

the brains of the term fetuses exhibited a higher energy utilization rate 

than 1 day old rats (1.33 mmoles-P/kg/min), yet fetuses survived anoxia 

for twice as long as these neonates (Survival was based on the presence of 

the gasping reflex which previously has been defined as a neurological 

function that indicated survival of brain tissue.) (7). These 

investigators concluded other factors, in addition to energy requirements, 

were involved in fetal brain tolerance to oxygen deprivation. Subsequent 

studies revealed that the availability of readily mobilizable glycogen 

plus the decreased energy requirements of the neonate increased the 

ability of the neonatal rat brain to survive asphyxia (46). However, 

fetal studies were not performed to determine whether glycogen was more 

easily mobilizeo by fetal, 2 day old or 10 day old postnatal rat brains. 

Thus, insufficient evidence exists to support the theory that the 

resistance of fetal brains to the cessation of the gasping reflex, 

resulting from oxygen deprivation, is caused by a decreased energy 

utilization rate. Furthermore, these results suggest a correlation 

between survival and the development of brain injury which may not be a 

valid extrapolation since a brain may survive anoxia, despite the presence 

of brain pathology (injury) (24, 25). 

The experiments in this thesis will examine the change of several 

metabolite concentrations (i.e. lactic acid, glucose, glycogen) during 

anoxia and compare the results with brain injury (.gross and histologic 
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brain damage). Alterations in ATP and PCr concentrations and energy 

charge will also be examined to determine whether the energy deficit 

correlates with the occurrence of fetal brain injury. 
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MATERIALS AND METHODS 

I. Animal Preparation 

Pregnant ewes of Dorset or mixed stock are used for this study. Ewes 

carrying fetuses of approximately 50, 80, 110 or 140 days gestation are 

food deprived for 48 hours prior to the experiment. Then, the pregnant 

ewe is anesthetized with pentobarbital (35 mg/kg). In audition, 

individual 3.8-6.0 mg/kg doses of pentobarbital are given to maintain 

anesthesia as needed, at approximately 20 minute intervals. Following 

induction of anesthesia, the ewe is intubated and mechanically ventilated 

with a Harvard respirator. Body temperature is maintained at 39+2°C with 

a warm water mattress. Adequate oxygenation of the fetus is ensured by 

ventilating the mother with 100% oxygen. The femoral artery of the mother 

is then catheterized and arterial blood is sampled for determinations of 

pH, p02, pC02, base excess (BE), hematocrit, glucose ana lactate. 

The period between the conclusion of surgical manipulations and the 

initiation of the cesarean section is referred to as the "control 

period". During this period blood gases, pH, and base excess are measured 

using a Corning blood gas analyzer. The pH, p02 and pC02 are measured 

directly by electrodes within the blood gas analyzer.. Base excess is a 

valued derived from the^ plasma concentrations of hemoglobin, bicarbonate 

(a value calculated from the pC02) and pH. The base excess is defined as 

the amount of acid or base needed to titrate 1 liter of blood back to a pH 

of 7.40. Hematocrit measurements also are made and converted to 

hemoglobin values to be used to determine base excess. Hematocrit is the 
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packed red blood cell volume which is measured by centrifuging a capillary 

pipet filled with blood and determining the red cell volume from a 

Critocap chart (Lancer Co.). At the time of sampling arterial blood for 

blood gases and pH determinations, a 0.3 ml sample is thken and 

centrifuged immediately. The resulting plasma is then assayed for lactate 

and glucose as described in the "Assay" section. Prior to the initiation 

of the cesarean section, the respirator rate is adjusted to achieve the 

following control values in arterial blood: p02= 80 mmHg, pC02=30-40 mmHg, 

pH=7.40-7.50, 8E=0+2 rnmoles/1. 

The experiment is initiated at 1 hour following induction of 

anesthesia, if the blood gases and pH values of the mother s arterial 

blood are within the limits indicated above. Following the cesarean 

section the fetus, which s still attached to the mother via the umbilical 

cord, is removed from the uterus and samples of blood are taken from the 

intact umbilical artery and vein for blood gases, pH, and plasma lactate, 

glucose and fructose. 

1. Cardiac arrest. Immediately following blood sampling, the heart 

of the fetus is extirpated. The umbilical cord is then clamped and cut 

and the fetus is placed back in the abdomen of the mother to maintain its 

body temperature. These fetuses are referred to as "arrested fetuses". 

To determine the maximum concentration of lactic acid in brain tissue, the 

fetus is left in the abdomen for 1-2 hours depending upon the gestational 

age. The fetal brain is then frozen by pouring liquid nitrogen over the 

fetal head while the body of the fetus is cooled in dry ice. 
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2. Controls - in situ freezing. In control animals, the brain is 

frozen in situ as previously described for rats and cats (33, 32). The 

bottom of a styrofoam cup is cut out and the cup is attached to the head 

of the fetus with silicone grease (Dow-Corning). Liquid nitrogen is 

poured into the cup and refilled as required. This method permits 

continued circulation to the various brain regions until the time of 

freezing, thus preventing anoxic alterations in metabolite concentrations. 

After the brain is frozen, the entire animal is then frozen in dry ice or 

alternatively the animal is decapitated and the head is frozen. 

II. Tissue Sampling 

Brain and other tissue specimens are stored in the -8CPC freezer 

until they can be sectioned and sampled. All sectioning and sampling is 

performed in a -20°C room to prevent alterations of metabolite 

concentrations. Coronal sections of the brain are cut using a band saw. 

Small samples (mg) are taken from different brain regions which are 

exposed by the sectioning process. The structures sampleo in each age 

group are listed in Table 1. These brain regions are clearly defined by 

their location and their morphology. These tissue samples are weighed on 

a Boiler-Smith precision balance and placed in Tenbroeck homoogenizers 

containing 100 pi of 0.1N-HC1 in methanol. The homogenize!s are placed in 

a dry ice-ethanol bath at -40°C and the samples are dispersed with a glass 

rod. Next, the homogenizer is placed in ice at 0°C and 1.0 ml of 

0.02N-HC1 is added. Samples are then homogenized by hand and a 200 JJI 
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TABLE 1 

Structures Sampled from Sheep Fetus Brain at 
Each Gestational Age 

Structure 50 Day 80 Day 110 Day 140 Day 

Cortex Hernispheral Cortex Precentral Precentral 
Wall(Mid.) (gray matter) Gyrus Gyrus 

Hernispheral Superior Superior 
Wall(Post) Parietal Parietal 

Occipital Occipital 
Superior Superior 
Temporal Temporal 
Gyrus Gyrus 

White Matter Occipital Centrum Centrum 
Anterior Semiovale Semiovale 

Brain stem Medulla Tegmentum Inferior Inferior 
Inferior Inferior Colliculus Colliculus 
Colliculus Colliculus Tegmentum Tegmentum 

Vestibular Vestibular 
Nucleus Nucleus 

Inferior Inferior 
Olive Olive 

Gracile Gracile 
Nucleus Nucleus 

Cuneate Cuneate 
Nucleus Nucleus 

Sub Sub 
Gelatinosa Gelatinosa 
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aliquot is removed from the brain hornogenates for glycogen assays. The 

aliquots of brain and hornogenates of liver, heart and muscle are heated at 

100°C for 10 minutes and stored at -80°C until assayed. To precipitate 

protein, 112.5 pi of 3M perchloric acid is added to the brain tissue 

hornogenates and the homogenate is then centrifuged at 12,500 g for 20 

minutes. The perchlorate extract is neutralized to pH 6 to 7 by the 

addition of 2.5M-KHC03. The tubes are left on ice for 30 minutes in order 

to precipitate potassium perchlorate. Next, the tubes are centrifuged for 

10 minutes at low speed and the supernatant is removed and stored at -80°C 

until assayed. 

III. Assays 

1) Introduction 

All metabolite concentrations are determined by enzymatic assays 

employing either fluorometric or spectrophotometry methods (17). 

Fluorescence techniques are used to measure nmole quantities of a 

metabolite. In this study, a Farrand Optical fluorometer will be used. 

This instrument measures the fluorescence emitted by NADH or NAUPH at 450 

nm following the excitement of these compounds at 355 nrn. Tissue 

metabolite concentrations are calculated on the basis of standards which 

have been standardized by spectrophotometry methods and run along with 

the tissue extracts. Along with standards, calculations take the mg of 

sample/pl of supernatant into account, such that the fluorescence of a 

sample is expressed as umoles of metabolite/gram of tissue. 
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Spectrophotometry assays are employed when pmole. or mmole quantities 

of a metabolite are present. For all assays except serum glucose 

determinations (see Serum Assays) the absorbance of NADH or NADPH is 

measured at 340 nm. In all reactions the concentration of NADH or NADPH 

is stoichiometrically related to the particular metabolite being assayed. 

Only one reading of the sample tube plus a blank reagent tube is required 

for the spectrophotometry assays. The concentration of the metabolite is 

calculated from the absorbance and the molar extinction coefficient of 

6270 for NADH or NADPH at 340 nm. 

2. Fluorometric Assays 

a. General 

All of the assays except one utilize the reagents in 

Table 2. The reactions are run in a total volume of 1.0 ml at the final 

concentrations indicated. Tris, in these reactions, is employed as a 

buffer while the dithiothreitol (DTT) stabilizes the thiol groups of 

enzymes in the mixture. The magnesium chloride (MgC12) is required as a 

cofactor for the hexokinase (HK) (EC 2.7.1.1) reactions. Both glucose and 

ATP are substrates for HK and therefore, the reduced nicotinamide 

dinucleotide phosphate (NADPH) produced as a result of coupjing the HK 

reaction with glucose-6-phosphate dehydrogenase (G6PD) (EC 1.1.1.49) 

reflects the original quantitity of the particular metabolite which was 

present in the tissue. The specific reactions catalyzed by HK and G6PD 

are: 
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Figure 1 

H K  
Glucose + ATP ^ G-6-P + ADP 

G-6-P + NADP — 6-Phosphogluconate + NADPH + H+ 

b. Brain Tissue Metabolite Assays 

(1) Glycogen and Glucose 

Glycogen and glucose are assayed on unneutralized 

hornogenates of tissue samples as described by Passonneau and Lauderdale 

(34). Initially, glycogen is converted to glucose using <-1,4-<C-l ,6-

amyloglucosidase (AG). The reagents employed to determine glucose 

concentrations are listed in Table 2. The assay is carried out as 

follows: aliquots (50 pi) of brain tissue hornogenates are added to tubes 

containing 100 ul of 100 mM sodium acetate (NaAc), pH 4.7. AG (0.0015 U), 

which hydrolyzes the <.-l,4-<C-l,6 bonds of glycogen to yield free glucose, 

is added to those tubes in which glycogen will be assayed. Parallel tubes 

are similarly assayed without AG to determine the concentration of free 

glucose present in the hornogenates. The NaAc buffers the incubation 

mixture at a pH optimum for AG of 4.7. Following addition of AG the tubes 

are incubated for 30 minutes at room temperature, and the reaction is 

stopped by adding 1.0 ml of the tris reaction mixture (Table 2) without 

the HK and G6PD to all the tubes. This reaction mixture elevates the pH 

to 7-8 which inhibits AG and is an optimum pH for HK and G6PD. Following 

addition of the tris reaction mixture, the blank fluorescence of all tubes 

is read. Then HK and G6PD are added to all the tubes to start the 
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TABLE 2 

Metabolite Tris-HCl MgC12 DTT NADP HK G6PD Other 
Measured [jmoles-pH8.1 (jmoles pmoles (jrnoles units units Additions 

Glucose 50 1.0 0.5 0.05 0.15 0.05 ATP-0.3 
pmoles 

NaAc -lOmM 
(pH 4.7) 

ATP and 50 1.0 0.5 0.05 0.15 0.03 ADP-0.1 
PCr pmoles 

AMP-0.1 
pmoles 

Creatine 
kinase-
1.0 unit 
Glucose-

O.lmM 

Note: For explanation of reagent abbreviations, see text. 
All enzymes diluted with bovine serum albumin (20 ul/ml)and 20mM 
Tris. 
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reaction and the tubes are incubated at room temperature for 30 minutes 

(for reaction see Fig. 1). The fluorescence is then read. The 

concentration of glycogen is determined by subtracting the tubes assayed 

without AG (glucose) from the parallel tubes to which AG is added. These 

later tubes contain the sum of glucose units from glycogen plus the free 

glucose in the tissue. 

(2) Fructose 

The tubes without AG in the glycogen-glucose 

assay are assayed for fructose after the fluorescence resulting from the 

presence of glucose has been determined. Phosphoglucose isomerase (PGI) 

(EC 5.3.1.9; 3.5 U) is added to these tubes and the change in fluorescence 

is read after 30 minutes. The HK present in the reaction mixture converts 

the fructose to fructose-6-phosphate (F6P). PGI converts the F6P to 

glucose-6-phosphate (G6P). The G6P and NADP then can be converted to 

6-phosphogluconate and NADPH, respectively (See Fig. 1). Thus, the 

fructose present in the brain tissue is stoichiometric with the NADPH 

fluorescence measured by the fluorometer. 

(3) ATP and Phosphocreatine 

The ATP and PCr tissue assay also utilizes the 

reaction mixture described in Table 2. ATP and PCr are assayed on the 

same tissue samples. Aliquots (100 jjl) of the neutralized perchlorate 

extracts are added to 1.0 ml of the reaction mixture listed in Table 2-

Following the reading of sample blank fluorescence, the reaction is 

started with HK-G6PD (for reaction see Fig. 1) and the fluorescence (which 

is a measure of the ATP present) is read after 30 minutes. Next, ADP, AMP 
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and creatine kinase are added to the reaction mixture. Creatine kinase 

breaks down PCr to creatine and catalyzes the phosphorylation of ADP to 

ATP. The fluorescence is then read after 30 minutes. This third 

fluorescence reading is a measure of the amount of PCr present. 

Falsely high PCr values result if AMP is not .included in the PCr assay 

to inhibit adenlyate kinase. This enzyme is present in the tissue 

extracts and is acid stable (i.e. not precipitated by HC104)(17). 

(3) ADP and AMP 

ADP and AMP are assayed on the same tissue sample. 

Aliquots (200 pi) of each extract are added to 800 pi of reaction 

mixture. The reaction mixture for each tube consists of 50 mM imidazole, 

pH 7.0, 0.-01 mM NADH, 2.0 mM MgC12, 75 mM potassium chloride (KC1) and 

0.02 mM phosphoenolpyruvate. After the sample and lactate dehydrogenase 

(LDH) (0.4 U) are added to the tubes, the blank fluorescence is read. 

Pyruvate kinase (0.8 U) (PK) is then added and the decrease in 

fluorescence for ADP is determined after 15 minutes. The AMP 

concentration is determined by adding myokinase (0.4 U) (MK) plus 0.005 mM 

ATP to the tubes. Following a second 15 minute incubation the 

fluorescence is measured. The sequence of reactions involved in this 

assay are listed in Figure 2. 
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Figure 2 

ATP + AMP — 2 ADP 

ADP + Phosphoenolpyruvate —Pyruvate + ATP 

Pyruvate + NADH + H —Lactate + NAD 

(A) Lactic Acid 

Lactic acid is assayed in a reaction mixture 

containing 200 mM hydrazine, pH 9.7, 60 mM NAD, and 1 mM ethylened;amine 

tetraacetate (EDTA). The reaction is started by adding LDH (7.8 U) which 

converts lactate present in the brain tissue extract and NAD to pyruvate 

and NADH, respectively. This reaction is pulled toward pyruvate formation 

by hydrazine which reacts with pyruvate to form pyruvate hydrazone. The 

EDTA binds manganese (Mn++) whose presence in the sample inhibits LDH. 

The reaction mixture is incubated for 30 minutes and then the fluorescence 

from the NADH is measured. The NADH concentration is stoichiometric with 

the lactate concentration. 

3. Spectrophotometry Assays 

a. Serum Assays 

(1) Lactic Acid 

This assay uses the same reagents described in the 

tissue assay. However, a ten-fold higher NAD concentration is required. 

Absorbance is read at 340 nm. . 97 



(2) Glucose 

Glucose is assayed by a colorometric method 

described in Sigma Technical Bulletin No. 510. The reagent purchased from 

Sigma Chemical Co. consists of glucose oxidase-and peroxidase. Glucose 

oxidase catalyzes the formation of gluconic acid and hydrogen peroxide 

from the glucose present in serum. The peroxide then reacts with 

colorless o-dianisidine to form o-dianisidine (brown.). Reagent blanks, as 

well as standards are required for this assay. The absorbance of 

o-dianisidine (brown), is read at 450 nm and the serum glucose 

concentration is calculated from the values of the standards. 

concentrations described in the glucose fluorometric assay (see Tabie 2) 

with 2 exceptions. In the tris reaction mixture a 10-fold higher 

concentration of NADP is. used. PGI also is added as described in the 

fructose fluorometric assay. 

1. Energy charge is calculated from the concentrations of 

AMP, ADP and ATP obtained from brain tissue assays. The formula used to 

calculate energy charge is: 

(3) Fructose 

This assay employs the same reagents and the same 

D. Calculations 

EC 1ATP] + 1/2 [ADR! 
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2. The metabolite concentrations for each group were compared 

to each other with an unpaired Student's t-test. Metabolite 

concentrations were significantly different if p 0.05. The equation used 

for this t-test is: 

* - y 

t = ( n„Sy - n^Sy) ( 1_ + jJ 

(nx + n y + 2) ( nx n^) 

Note: n = number of samples in each group. 

a,b = group letter. 

x,y = mean for groups a and b, respectively. 

S = standard deviation. 

29 



RESULTS 

I. Arterial and Venous Blood Gas, pH and Metabolite Concentrations. 

Blood gases, pH and serum metabolite concentrations were determined in 

the ewes and fetuses to provide knowledge of their oxygenation and 

acid-base status prior to exposure. One hour following the induction of 

anesthesia (i.e. end of the "control period"), ewes of control or arrested 

fetuses did not exhibit significantly different pri, blood gas or serum 

metabolite values with respect to gestational age. Thus, these data were 

pooled to determine if control pH, blood gas and serum metabolite values 

in ewes of control fetuses were different than the values observed in the 

ewes of arrested fetuses (Table 3). The arterial blood gas and pH values 

present in the ewes of control and arrested fetuses were within the ranges 

specified in the Materials and Methods. Lactate, glucose and fructose 

concentrations, in ewes of control and arrested fetuses, were not 

significantly different during the control period (Table 3). The arterial 

and venous blood were not significantly different between control and 

arrested fetuses with 2 exceptions (Tables 4, 5). First, the mean 

arterial pC02 during the control period was significantly lower (p 0.05) 

in the 80 day fetuses subsequently exposed to anoxia compared to the 

control fetuses (Table 4). Arterial serum fructose levels also were 

significantly lower (p 0.05), during the control period, in 50 and 110 day 

arrested fetuses compared to the corresponding control fetuses (.Table 4). 
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TABLE 3 

Ewe Arterial Blood Gas, pH and Metabolite 
Concentrations During Control Period 

Sample Control Arrest 

pH 7.45+0.01 7.47+0.01 pH 
(18) (16) 

p02 344+21 354+29 
(mmHg) (18) (16) 
pC02 35+1 33+1 
(mmHg) (18) (15) 
HC03 23+1 23+1 
(mmole/1) (16) (14) 
base Excess 2+1 1+1 
(mmole/1) (18) (16) 
02 Saturation 100+1 100+1 
(vol %) (14) (13) 
02 Content 15+1 14+0 
(mmo.les/1) (13) (13) 
Hematocrit 29+1 29+1 
(vol %) (17) (15) 
Glucose 4.25+0.18 4.20+0.15 
mM (18) (16) 

Fructose 0.27+0.09 0.20+0.05 
mM (16) (15) 

Lactate 2.95+0.25 3.12+0.24 
mM (18) (16) 

•Values expressed as mean _+ SEM. 
( ) = Number of samples. 
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TABLE 4 

Arterial Blood Gas, pH and Metabolite Concentrations 
During Control Period for Sheep Fetuses of Various 

Gestational Ages* 

50 Day 80 Day 

Sample Control Arrest Control Arrest 

pH 7.46 7.35 7.40+0.02 7.37+0.01 pH 
(1) (2) (4) (3) 

P02 21 17 9 o+2 17+2 
(mmHg) (1) (2) ^(4) (3) 
pC02 39 49 46+2 29+2 
(mmHg) (1) (2) (3) (3) 
HC03 27 27 27+0 27 
(mmole/1) (1) (2) (3) (2) 
Base Excess 4 3 3+1 1+2 
(mmole/1) (1) (2) (4) (4) 
02 Saturation 33 19 33+2 31+7 
(vol %) (1) (1) (3) (3) 
02 Content 4 3 6+0.5 8+1 
(mmole/1) (1) (2) (2) (3) 
Hematocrit 25 31 33+0.3 35 
(vol '%) (1) (2) (3) (2) 
Glucose 1.73+0.30 1.35+0.39 1.48+0.06 1.73+0.13 
mM (3) (3) (3) (4) 

Fructose 4.80+0.20 6.08+0.31 7.05+0.88 9.47+0.23 
mM (3) (3) (4) (3) 
Lactate 2.20+0.15 2.50+0.19 1.46+0.02 1.36+0.14 
mM (3) (3) (3) (4) 
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TABLE 4 (con't.) 

110 Day 140 Day 

Sample Control Arrest Control Arrest 

PH 7.33+0.01 7.38+0.02 7.33+0.01 7.33+0.00 PH 
(4) (3) (3) (4) 

P02 28+3 23+0 24+1 23+3 
(mmHg) (5) (4) (4) (4) 
pC02 53+1 49+1 53+1 54+2 
(mmHg) (4) (3) (4) (3) 
HC03 27+0 25+1 27+1 27+1 
(mmole/1) (4) (4) (5) (4) 
Base Excess 1+0 2+1 1+1 1+1 
(mmole/1) (5) (3) (4) (4) 
02 Saturation 38+5 28+2 26+1 35+3 
(vol %) (5) (4) (3) (3) 
02 Content 6+1 5+0 6+0 7+1 
(mmole/1) (4) (3) (4) (3) 
Hematocrit 38+1 39+1 49+1 45+0 
(vol %) (4) (4) (4) (3) 
Glucose 1.85+0.14 1.61+0.20 0.88+0.05 1.10+0.10 
mM (5) (4) (3) (3) 

Fructose 9.97+1.11 7.80+0.90 3.70+0.10 2.60+0.30 
mM (3) (4) (3) (3) 

Lactate 2.03+0.14 1.97+0.27 2.73+0.11 2.54+0.14 
mM (4) (4) (4) (3) 

*Values expressed as mean _+ SEM. 
( ) = Number of samples. 
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TABLE 5 

Venous Blood Gas, pH and Metabolite Concentrations 
During Control Period for Sheep Fetuses of Various 

Gestational Ages* 

50 Day 80 Day 

Sample Control Arrest Control Arrest 

PH 7.41+0.02 7.41+0.01 
(4) (3) 

P02 37+2 47 +4 
(mmHg) (3) (3) 
pC02 41+1 40+4 
(mmHg) (3) (3) 
HC03 26+1 27 
(mmole/1) (3) (2) 
Base Excess 3+1 4+1 
(mmole/1) (4) (3) 
02 Saturation 74+7 78+7 
(vol %) (4) (3) 
02 Content 10+1 14+2 
(mmole/1) (3) (3) 
Hematocrit 32+1 35 
(vol %) (3) (2) 
Glucose 2.13+0.20 1.96+0.06 
mM (5) (3) 

Fructose 9.04+1.22 9.77+0.15 
mM (5) (3) 
Lactate 1.59+0.15 1.47+0.13 
mM (5) (4) 



TABLE 5 (con't) 

110 Day 1A0 Day 

Sample Control Arrest Control Arrest 

PH 7.37+0.03 7.39+0.03 7.34+0.01 7.36+0.01 
(A) (A) (3) (4) 

P02 38+1 A3+3 35+2 32+A 
(mmHg) (3) (A) (4) (3) 
pC02 47+1 41+2 50+1 A8+1 
(mmHg) (3) (A) (4) (3) 
HC03 25+1 23+1 ?6+l 26+1 
(mmoles/1) (5) (A) (5) (3) 
Base Excess 2+0 2+0 1+1 1+1 
(mmoles/1) (A) (3) (5) (A) 
02 Saturatior 60+1 7A+3 47+2 58+10 
(vol %) (A) (A) (3) (A) 
02 Content 12+1 13+0 12+1 1A+1 
(mmoles/1) (A) (A) (4) (3) 
Hematocrit 39+0 39+1 49+1 45+0 
(vol %) (3) (A) (4) (3) 
Glucose 2.15+0.12 1.61+0.19 1.27+0.10 1.10+0.10 
(mM) (A) (A) (3) (3) 
Fructose 10.A3+0.93 9.10+0.30 3.89+0.11 3.00+0.30 
(mM) (A) O )  (4) (3) 
Lactate 2.2A+0.11 2.06+0.30 2.76+0.05 2.86+0.02 
(mM) (A) (A) (3) (3 J 

*Values expressed as mean _+ SEM. 
( ) = Number of samples. 
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Serum concentrations of lactate, glucose and fructose changed 

significantly with gestational age (p<0.05). Arterial lactate 

concentrations decreased significantly from 50 to 80 days in control and 

arrested fetuses during the control period (Table 4, Fig. 3;p<0.05). 

Arterial' and venous lactate levels increased significantly from 80 to 140 

days in control and arrested fetuses (Table 4, 5, Fig. 3;p<0.05). In 

contrast to lactate, arterial glucose levels peaked at 80 days of 

gestation and decreased significantly by 140 days of gestation in both 

control and arrested fetuses, during the control period (Table 4, Fig. 4;p< 

0.05). In venous blood, the glucose levels also decreased significantly 

between 80 and 140 days of gestation in the control period (Table 5, p< 

0.05). Although fructose levels were higher in serum, they tended to 

parallel the changes in glucose with respect to gestational age. Arterial 

fructose concentrations during the control period in control and arrested 

fetuses peaked between 80 and 110 days of gestation and then decreased 

significantly by 140 days (Table 4, Fig. 4;p<0.05). There was no 

significant difference between 80 and 110 day fructose levels in arrested 

or control fetuses during the control period (Table 4, Fig. 5). 

Furthermore, fructose levels decreased significantly between 110 and 140 

days for both groups of fetuses during the control period. Similar 

results were found in the venous samples from these fetuses (Table 5). 

II. Brain Metabolites in Control and Arrested Fetuses 

Carbohydrate and energy metabolites from several brain regions were 

determined for control and arrested fetuses at 50, 80, 110 and 140 days of 
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Figure b 
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gestation. The metabolite concentrations of cortical gray and white 

matter and brain stem were compared because previous pathologic studies 

with monkey and sheep fetuses, of various gestational ages exposed to 

anoxia, showed injury to brain stem nuclei but not cortex or white 

matter. Monkey fetuses of less than 80 days gestation rarely exhibited 

any brain injury following 30 minutes of anoxia (24). 

The lactate concentrations of all brain structures of control fetuses 

decreased with gestational age. The concentrations of lactate were 

similar in the cortex and white matter at all gestational ages examined. 

Brainstem lactate levels in control fetuses were similar to cortex levels 

at 50 and 80 days and significantly higher than cortex at 110 and 140 days 

of gestation (Table 6). 

Following circulatory arrest the lactate concentrations were higher 

compared to control lactate concentrations, in all brain regions at all 

gestational ages (p<0.05, Fig. 6). The concentration to which lactate 

accumulated also increased with gestational age in cortex and brain stem 

of arrested fetuses. However, only in the brain stem of arrested 110 and 

140 day fetuses did lactate accumulate to the threshold levels previously 

determined to cause injury (17-20 (jmoles/g) (Table 6). The lactate levels 

present in the brain stem of the arrested 80, 110 and 140 day fetuses were 

significantly higher than those concentrations in the corresponding cortex 

(p<0.05, Fig. 6). White matter lactate concentrations in arrestee fetuses 

did not change with gestational age (Table 6). Furthermore, lactate 

concentrations in the cerebral white matter of arrested fetuses were 

significantly higher at 110 days (p<0.05) than cortical gray matter 
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TABLE 6 

Lactate Concentrations in Control and Arrested 
Fetuses at Four Gestational Ages* 

Lactate - Controls 

Structure 50 Day 80 Day 110 Day 140 Day 

Cortex 

White Matter 

Brain stem 

3.25+0.14 
(6) 

3.64+0.27 
(6) 

2.84+0.72 
(5) 

2.61+0.24 
(10) 

3.71+0.47 
(8) 

1.51+0.10 
(25) 

1.66+0.15 
(5) 

2.20+0.17 
(25) 

1.30+0.14 
(25) 

1.56+0.17 
(5) 

2.05+0.15 
(30) 

Lactate - Arrest 

Structure 50 Day 80 Day 110 Day 140 Day 

Cortex 

/Jhite Matter 

Brain stem 

11.40+0.49 
(7) 

12.59+0.78 
(8) 

8.51+0.72 
(4) 

9.47+0.48 
(7) 

11.98+0.86 
(8) 

8.85+0.62 
(20) 

10.72+0.52 
(3) 

17.29+0.82 
(23) 

11.81+0.29 
(20) 

10.38+0.24 
(5) 

18.58+0.57 
(27) 

*Values expressed as mean _+ SEM. Units = pmoles lactate/g brain tissue 
( ) = Number of samples. 
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lactate concentrations (Table 6). Later, at 140 days gestation, the 

cortical gray matter lactic acid concentration exceeded the cerebral white 

matter concentrations (p<0.05). 

Because lactate accumulation following circulatory arrest uepends upon 

substrate availability (18), glycogen, glucose ana fructose were assayed. 

Glycogen concentrations increased dramatically while glucose and fructose 

concentrations were variable with gestational age in control fetuses 

(Table 7, 8, 9). However, all three substrate concentrations decreased 

significantly in the 110 and 140 day fetuses exposed to anoxia (Figure 7, 

8, 9). These changes in substrates with both gestational age in control 

fetuses, as well as between control and arrested fetuses indicate that all 

three substrates must contribute to lactate production (Table 10). 

The glycogen concentrations in all brain regions increased 

significantly from 50 days (80 days in white matter) to 140 aays of 

gestation in control fetuses (Table 7). Glycogen levels increased to the 

greatest extent in the brain stem reaching their maximal concentration of 

9.24+0.51 (jmoles/g at 140 days (Table 7, Fig. 7). At each gestational 

age, the glycogen concentrations in the brain stem were significantly 

higher (p<0.05) than the corresponding cortical gray matter levels (Fig. 

7). Glycogen levels were not significantly different between white matter 

and cortex. 

A comparison of glycogen concentrations between control and arrested 

brain structures revealed differences in the amount of glycogen utilizeu, 

during anoxia, with gestational age in each brain structure (Fig. 7). 

Glycogen levels in brain stem structures decreased significantly following 
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TABLE 7 

Glycogen Concentrations in Control and Arrested 
Fetuses at Four Gestational Ages* 

Glycogen - Controls 

Structure 50 Day 80 Day 110 Day 140 Day 

Cortex 

White Matter 

Brain stem 

2.18+0.36 
(6) 

3.81+0.60 
(6) 

2.23+0.40 
(4) 

1.33+0.35 
(9) 

3.75+0.52 
(9) 

3.21+0.23 
(22) 

2.45+0.52 
(4) 

5.11+0.35 
(27) 

4.90+0.17 
(23) 

4.41+0.56 
(5) 

9.24+0.51 
(29) 

Glycogen - Arrest 

Structure 50 Day 80 Day 110 Day 140 Day 

Cortex 

White Matter 

Brain stem 

1.65+0.54 
(7) 

1.33+0.17 
(7) 

1.95+0.17 
(4) 

0.72+0.14 
(7) 

0.55+0.15 
(6) 

1.85+0.23 
(11) 

1.68+0.06 
(3) 

1.57+0.22 
(20) 

2.04+0.36 
(20) 

1.87+0.67 
(4) 

1.43+0.23 
(26) 

*Values expressed at mean +_ SEM. Units = pinoles of glucosyl units/g 
brain tissue. 
( ) = Number of samples. 
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TABLE 8 

Glucose Concentrations in Control and Arrested 
Fetuses at Four Gestational Ages* 

Glucose - Controls 

Structure 50 Day 80 Day 110 Day 140 Day 

Cortex 

White Matter 

Brain stem 

1.07+0.11 
(6) 

1.41+0.25 
(6) 

1.04+0.21 
(4) 

1.27+0.26 
(8) 

0.96+0.39 
(9) 

1.49+0.07 
(25) 

1.27+0.25 
(4) 

0.77+0.10 
(26) 

0.95+0.09 
(25) 

0.68+0.18 
(5) 

0.90+0.14 
(30) 

Glucose - Arrest 

Structure 50 Day 80 Day 110 Day 140 Day 

Cortex 

White Mattel 

Brain stem 

0.35+0.11 
(7) 

0.25+0.08 
(7) 

0.60+0.14 
(4) 

0.51+0.14 
(7) 

0.31+0.10 
(8) 

0.66+0.23 
(20) 

0.43+0.17 
(3) 

0.39+0.08 
(22) 

0.58+0.14 
(20) 

0.19+0.05 
(4) 

0.31+0.08 
(23) 

*Values expressed as mean _+ SEM. Units = umoles glucose/g brain 
tissue. 
( ) = Number of samples. 



TABLE 9 

Fructose Concentrations in Control and Arrested 
Fetuses at Four Gestational Ages* 

Fructose - Controls 

Structure 50 Day 8Q Day 110 Day 140 Day 

Cortex 

White Matter 

Brain stem 

0.83+0.08 
(6) 

1.13+0.13 
(6) 

0.71+0.27 
(3) 

1.36+0.50 
(6) 

0.75+.14 
(6) 

1.28+0.15 
(25) 

0.75+0.30 
(4) 

0.79+0.11 
(32) 

0.52+0.11 
(25.) 

0.00+0.00 
(4) 

0.33+0.08 
(30) 

Fructose - Arrest 

Structure 50 Day 80 Day 110 Day 140 Day 

Cortex 

White Matter 

Brain stem 

0.43+0.08 
(7) 

0.58+0.28 
(8) 

1.07+0.06 
(3) 

1.34+0.19 
(6) 

0.32+0.10 
(6) 

0.20+0.06 
(25) 

0.28+0.11 
(4) 

0.15+0.02 
(24) 

0.12+0.05 
(20) 

0.14+0.09 
(4) 

0.08+0.05 
(27) 

*Values expressed as mean _+ SEM. Units = umoles of fructose/g of brain 
tissue. 
( ) = Number of samples. 
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TABLE 10 

Relationship of Carbohydrate Available in Control Fetuses 
with Lactate Produced in Arrested Fetuses 

for Four Gestational Ages* 

50 Day 

Structure Carbohydrate 
Available 

Theoretical 
Lactate 

Actual 
Lactate 

Cortex 

Brain stem 

A.09+0.A9 
(6) 

6.36+0.70 
(6) 

5.06-11.98 

8.64-17.26 

11.A0+0.A9 
(7) 

12.59+0.78 
(8) 

80 Day 

Structure Carbohydrate 
Available 

Theoretical 
Lactate 

Actual 
Lactate 

Cortex 

White Matter 

Brain stem 

3.82+0.94 
(3) 

4.79+0.55 
(A) 

5.06+0.35 
(6) 

3.08-10.A2 

6.76-12.6A 

7.32-12.9A 

8.51+0.72 
(A) 

9.A7+0.A8 
(7) 

11.98+0.86 
(8) 
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TABLE 10 (con't) 

110 Day 

Structure Carbohydrate 
Available 

Theoretical 
Lactate 

Actual 
Lactate 

Cortex 

White Matter 

Brain stem 

6.48+0.39 
(25) 

4.47+0.67 
(4) 

7.84+0.66 
(32) 

7.92-22.22 

5.38-12.76 

7.66-35.50 

8.85+0.62 
(20) 

10.72+0.52 
(3) 

17.29+0.82 
(23) 

140 Day 

Structure Carbohydrate 
Available 

Theoretical 
Lactate 

Actual 
Lactate 

Cortex 

White Matter 

Brain stem 

6.83+0.34 
(25) 

5.26+0.37 
(5) 

11.11+0.59 
(31) 

9.10-23.88 

8.94-13.48 

14.62-44.74 

11.81+0.29 
(20) 

10.38+0.24 
(5) 

18.58+0.57 
(27) 

Note: Carbohydrate Available = Glycogen + Glucose + Fructose 
concentrations in control fetuses 
Theoretical Lactate = This is the amount of carbohydrate 
X 2. 
The range indicates the lowest and highest individual 
carbohydrate levels within each structure. The values 
indicate the amount of lactate which all the carbohydrates 
could produce. 
Actual Lactate = Lactate values measured in arrested 
fetuses. 

*Values expressed as mean +_ SEM. Units = umoles/g of brain tissue. 
( ) = Number of samples. 
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arrest (p<0.001) in each age group (Table 7). Cortical glycogen 

concentrations also decreased following arrest at each gestational age 

although no significant changes occurred until 110 and 140 days of 

gestation. White matter glycogen concentrations showed no significant 

decreases with anoxia until 140 days. The overall decrease in glycogen 

between control and arrested fetuses was larger in the bra.in stem than 

cortex or white matter in each age group (Table- 7, Fig. 7). Thus, the 

change in glycogen contributed to the higher lactic acid levels in the 

brain stem compared to the cortex and white matter. 

Glycogen concentrations in the brain following circulatory arrest did 

not change significantly with gestational age in the cortex. White matter 

and brain stem glycogen concentrations following circulatory arrest were 

significantly lower in 80 day fetuses (p<0.05) while the concentrations in 

50, 110 and 140 day fetuses were similar iTable 7J. The glycogen 

concentrations following circulatory arrest were not significantly 

different between cortex and white matter or cortex and brain stem except 

for the lower concentration in the brain stem of 80 day fetuses (Table 7). 

Brain glucose concentrations also changed with gestational age in 

control fetuses (Table 8, Fig. 8). In cortex, the control glucose levels 

were significantly higher at 110 days of gestation (p^0.05) than 50, 80 or 

140 day fetuses which had similar glucose concentrations (Table 8, Fig. 

8). Glucose levels tendea to decrease with gestational age in the white 

matter of control fetuses although the changes were not significant (Table. 

8). The concentration of glucose in the brain stem of control fetuses 

decreased significantly between 50 and 110 days (p<0.05J. However, the 
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glucose concentrations present in the brain stem of 80, 110 and 140 day 

control fetuses were not significantly different (Table 8, Fig. 8). 

Cortical gray matter glucose concentrations were not significantly 

different from white matter levels in control fetuses. A comparison of 

brain stem and cortex showed that only 110 day fetuses exhibited higher 

glucose levels in cortex compared to brain stem (p<0.05). 

Following cardiac arrest, the glucose concentrations in the cortex, 

white matter and brain stem of 50, -110 and 140 oay fetuses decreased 

significantly from control levels (Table 8, Fig. 8,p<0.05). In these 

fetuses the glucose contributed a smaller proportion of substrate toward 

lactic acid production than glycogen, but the contribution was still 

significant. In 80 day fetuses exposed to anoxia, glucose levels were not 

significantly lower in cortex and brain stem than in control fetuses (Fig. 

8). Cortex and white matter glucose concentrations did not vary 

significantly in arrested fetuses. Cortex and brain stem glucose levels 

also did not vary significantly in fetuses exposed to anoxia. The final 

glucose concentrations following circulatory arrest in all three brain 

regions did not change significantly with gestational age (Table 8, Fig. 

8 ) .  

In general, the fructose concentrations in the brains of control 

fetuses tended to follow glucose levels (Table 8, 9). As with glucose, 

the fructose in the cortex of control fetuses peaked at 110 days (Fig. 

9). This peak fructose concentration was significantly higher than 140 

day fructose levels (p<0.05) but not significantly higher than 50 and 80 

day levels (Table 9). The fructose levels in the white matter and brain 
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stem of control fetuses also followed glucose levels in that both 

metabolites decreased with age (Table 9, Fig. 9j. In both structures the 

fructose concentrations were significantly lower (p<0.05) in 140 day 

fetuses compared to 50, 80 and 110 day control fetuses (Table 9). As with 

glucose, only the fructose levels in the cortex of 110 day fetuses were 

significantly higher than brain stem concentrations (p<0.05) (Fig. 8, 9). 

White matter and cortex fructose levels were not significantly different 

in control fetuses. 

The fructose concentrations following arrest were significantly lower 

(p<0.05) than control levels in 110 and 140 day cortex and brain stem 

(Fig. 9). The data indicates glucose and fructose contribute similar 

amounts of substrate toward lactic acid production during anoxia in these 

fetuses. Cortex and brain stem levels at 50 and 80 days were either 

similar or slightly lower in fetuses exposed to circulatory arrest 

compared to the control group (Table 9, Fig. 9). The fructose in cortical 

white matter did not decrease significantly between control and arrested 

fetuses at 80, 110 and 140 days of gestation. Fructose levels within the 

arrested group decreased significantly with gestational age in cortex, 

brain stem and white matter (50 vs. 140 day; Fig. 9, p<0.05). In cortex, 

however, the fructose levels initially increased from 50 to 80 days 

followed by a decrease a 110 and 140 days of gestation (Table 9). 

Concentrations of ATP and PCr, as well as energy charge values fell 

significantly (p<0.05) during arrest at all gestational ages (Table 11, 

12, 13, Fig. 10). However, the changes between control and a rested 

fetuses were similar in cortex and brain stem at each gestational age for 

all three metabolites. 
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TABLE 11 

ATP Concentrations in Control and Arrested 
Fetuses at Four Gestational Ages* 

ATP - Controls 

Structure 50 Day 80 Day 110 Day 140 Day 

Cortex 

White Matter 

Brain stem 

2.12+0.06 
(5) 

1.91+0.15 
(6) 

1.93+0.12 
(5) 

0.89+0.05 
(10) 

1.52+0.07 
(7) 

1.54+0.07 
(23) 

1.20+0.08 
(3) 

1.48+0.06 
(26) 

1.85+0.02 
(25) 

1.78+0.09 
(5) 

1.66+0.03 
(29) 

ATP - Arrest 

Structure 50 Day 80 Day 110 Day 140 Day 

Cortex 

White Matter 

Brain stem 

0•08+0.01 
(7) 

0.10+0.01 
(8) 

0.11+0.03 
(4) 

0.07+0.02 
(7) 

0.03+0.01 
(7) 

0.09+0.003 
(20) 

0.08+0.01 
(4) 

0.08+0.01 
(22) 

0.04+0.01 
(20) 

0.04+0.01 
(4) 

0.05+0.01 
(27) 

*Values expressed as mean _+ SEM. units = jjmoles of ATP/g of brain 
tissue. 
( ) = Number of samples. 
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TABLE 12 

PCr Concentrations in Control and Arrested 
Fetuses at Four Gestational Ages* 

PCr - Controls 

Structure 50 Day 80 Day 110 Day 140 Day 

Cortex 

White Matter 

Brain stem 

2.47+0.19 
(6) 

2.00+0.31 
(5) 

2.06+0.29 
(5) 

0.79+0.05 
(8) 

0.95+0.13 
(6) 

2.23+0.14 
(24) 

1.04+0.35 
(5) 

2.45+0.13 
(31) 

3.49+0.15 
(24) 

2.22+0.27 
(5) 

3.72+0.11 
(27; 

PCr - Arrest 

Structure 50 Day 80 Day 110 Day 140 Day 

Cortex 

White Matter 

Brain stem 

0.62+0.05 
(7) 

0.49+0.08 
(8) 

0.41+0.14 
(4) 

0.17+0.06 
(7) 

0.14+0.05 
(8) 

0.22+0.15 
(18) 

0.12+0.06 
(40) 

0.48+0.07 
(23) 

0.39+0.05 
(19) 

0.16+0.05 
(A) 

0.40+0.05 
(27) 

*Values expressed as mean _+ SEM. Units = (umoles of PCr/g of brain 
tissue. 
( ) = Number of samples. 

56 



TABLE 13 

Energy Charge in Control and Arrested 
Fetuses at Four Gestational Ages* 

Energy Charge - Control 

Structure 50 Day 80 Day 110 Day 140 Day 

Cortex 

White Matter 

Brain stem 

0.92+0.01 
(6) 

0.86+0.01 
(6) 

0.91 
(2) 

0.87+0.04 
(4) 

0.84+0.01 
(4) 

0.88+0.01 
(5) 

0.88 
(2) 

0.87+0.01 
(6) 

0.85+0.02 
(13) 

0.89+0.01 
(3) 

0.86+0.02 
(17) 

Energy Charge - Arrest 

Structure 50 Day 80 Day 110 Day 140 Day 

Cortex 

White Matter 

Brain stem 

0.17+0.01 
(6) 

0.22+0.02 
(7) 

0.15 
(2) 

0.13+0.03 
(4) 

0.13+0.03 
(4) 

0.20+0.01 
(17) 

0.23+0.03 
(4) 

0.20+0.01 
(22) 

0.24+0.02 
(20) 

0.15+0.01 
(4) 

0.23+0.02 
(28) 

*Values expressed as mean + SEM. 
( ) = Number of samples. 
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Figure JO 
Energy Charge Concentrations in 
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The ATP levels in control fetuses changed with gestational age 

although the changes did not follow the same pattern in cortex, brain stem 

and white matter. Control ATP levels in cortex decreased significantly 

between 50 and 110 days (p<0.05) and then increased significantly between 

110 and 140 days (Table 11, p<0.05). A similar pattern occurred in the 

brain stem of control fetuses. White matter ATP levels increased 

significantly (p40.05) with age in control fetuses (Table 11). White 

matter and brain stem had significantly lower ATP levels (p<0.05) in 80 

day control fetuses than the corresponding cortex but not at other 

gestational ages. 

The levels of ATP in fetuses exposed to circulatory arrest also varied 

with gestational age. In cortex, the ATP concentrations were similar for 

50, 80 and 110 day fetuses but significantly lower (p<0.05) for 140 day 

fetuses (Table 11). Similarly, ATP concentrations in the white matter of 

arrested fetuses decreased significantly between 110 and 140 days (p< 

0.05). Brainstem ATP concentrations in arrested fetuses decreased 

significantly between 50 and 80 days as well as between 110 and 140 days 

of gestation (Table 11, p<.0.05). Between 80 and 110 days the ATP levels 

increased. Only the brain stem in 80 day arrested fetuses exhibited a 

significantly lower ATP concentration (p<0.05) than cortex (Table 11). 

Phosphocreatine concentrations tended to start at higher levels in 

control fetuses and decrease to a lesser extent in fetuses exposed to 

anoxia than ATP concentrations (Table 11, 12). In cortex, PCr tended to 

decrease from 50 to 110 day control fetuses, although the changes were not 

significant. Phosphocreatine levels increased significantly at 140 days 
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of gestation compared to 50 day fetuses in the cortex of control fetuses 

(Table 12, p<.0.05). This is the same pattern observed with ATP in the 

cortex of control fetuses. As with ATP, the PCr levels, in the white 

matter of control fetuses, increased with gestational age (Table 11, 12). 

Brainstem PCr concentrations increased significantly (p<0.05) from 80 to 

140 days in control fetuses (Table 12). Phosphocreatine levels in white 

matter were significantly lower (p<0.05) than cortex PCr levels in 80, 110 

and 140 day control fetuses (Table 12). However, only the PCr 

concentration in the brain stem of 80 day control fetuses was 

significantly lower than the cortical PCr level. 

Changes in PCr concentrations with gestational age also occurred in 

fetuses exposed to anoxia. As with control cortex PCr levels, the PCr in 

the cortex of fetuses exposed to circulatory arrest decreased from 50 days 

to 110 days (p<0.05) but increased significantly in 140 day fetuses (Table 

12, p<0.05). White matter PCr concentrations did not change with 

gestational age (Table 12). The white matter of arrested fetuses also did 

not vary significantly from cortex with respect to PCr levels. Only 80 

day PCr levels in the brain stem of arrested fetuses were significantly 

different (i.e. lower) (p<0.05) from other age groups. Both 80 and 110 

day fetuses exhibited significantly (p<0.05) lower PCr values in brain 

stem than the corresponding cortex in arrested fetuses. 

The energy charge values calculated for control sheep fetuses were 

similar in most age groups with two exceptions (.Table 13). In cortex, the 

energy charge in 50 day fetuses was significantly higher than 110 or 140 

day fetuses. Brainstem energy charge in 80 day fetuses was lower th?n 110 
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day values (pC0.05). The cortex, white matter and brain stem energy 

charge values in control fetuses were not significantly Different when 

other gestational age fetuses were compared. White matter also was not 

significantly different from cortex in control fetuses with respect to 

energy charge. However, the energy charge calculated for the brain stem 

of 50 day control fetuses was significantly lower than the energy charge 

for cortical gray matter (p<0.05). 

Energy charge in fetuses exposed to anoxia did not change much with 

gestational age (Table 13, Fig. 10). Cortical energy charge did not 

change with gestational age. In white matter, the only significant 

difference noted between energy charge values was that 110 day values were 

significantly higher than 140 day values (,p<0.05). White matter and 

cortex energy charge levels were not statistically different at any age. 

The energy charge in the brain stem of 80 day fetuses was significantly 

lower than other age groups. Only the energy charge in the cortex of 50 

day arrested fetuses was significantly higher than brain stem values (Fig. 

10, pCO.05). 
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DISCUSSION 

I. The Significance of Metabolite Changes in the Brains of Sheep Fetuses 

Exposed to Anoxia. 

Fetuses and neonates of several animal species are more tolerant than 

adults to brain injury following oxygen deprivation (5, 13, 15, 24). Many 

investigators postulate that the tolerance of the fetal brain can be 

explained on the basis of differences between fetal and adult brain 

metabolism (7, 13, 15, 43, 44). More specifically, they postulate that 

the decrease in energy utilization by the fetal brain during glycolysis 

protects the fetus during oxygen deprivation. However, previous 

experiments do not prove that the differences between adult and fetal 

carbohydrate or energy utilization are the basis for the tolerance of the 

fetal brain to injury (7, 13). 

Previous experiments from Dr. Myers' laboratory established that the 

accumulation of lactic acid above a threshold level of 17-20 jumoles/g in 

brain tissue results in brain injury in adult animals exposed to oxygen 

deprivation (24, 26, 29, 30). However, the hypothesis that fetuses are 

more tolerant to brain injury because lactic acid does not accumulate to 

threshold levels or accumulates more slowly has not been tested in 

fetuses. In addition, the relationship between an increased vulnerability 

of some brain stem nuclei to injury with gestational age and lactic acid 

accumulation above threshold concentrations has not been examined. Thus, 
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the purpose of this study is to determine whether the fetal brain 

accumulates less lactic acid than adults and whether less substrate is 

available for the production of lactic acid. 

Previous pathology studies with sheep fetuses exposed to anoxia have 

not been done. However, pathology studies of monkey fetuses exposed to 

anoxia have been performed (24, 25). Monkey fetuses resemble sheep 

fetuses in that both species have a similar length of gestation (170 days 

in monkeys and 158 days in sheep) and both species are born as 

physiologically well developed individuals. 

The results of this study established that lactic acid accumulated to 

threshold levels only in the brain stem of 110 and 140 day sheep fetuses 

exposed to 1 hour of anoxia (Table 6, Fig. 6). Previous pathology studies 

with late gestational age monkey fetuses (90-140 days) also found that 

selective brain stem nuclei were injured following anoxia (24). The brain 

stem structures of 50 and 80 day sheep fetuses did not acccumulate lactic 

acid above threshold levels (Table 6, Fig. 6). Monkey fetuses of a 

similar gestational age (less than 80 days) survived and did not develop 

brain injury following 30 minutes of total asphyxia (24). Structures, 

such as cortical gray and white matter of 50, 80, 110 and 140 day sheep 

fetuses exposed to 1 hour of anoxia accumulated lactic acid although the 

concentrations did not reach the threshold for injury described by Myers 

and coworker (25, 26, 30). In monkey fetuses of different gestational 

ages, the cortical gray and white matter were not damaged following 

anoxia. Thus, there is an excellent correlation between lactate 

accumulation in late gestational age sheep fetuses and the development of 

63 



a brain stem pattern of injury following anoxia in monkey fetuses. 

Furthermore, recent studies with sheep fetuses exposed to hypoxia 

demonstrated a good correlation between lactic acid acccumulation and the 

pattern of brain pathology (unpublished results - Wagner Ting, Myers). 

The level to which lactic acid accumulates in brain depends upon 

substrate availability during anoxia, if the length of exposure is not a 

limiting factor. This study examines the concentration of substrates in 

the brains of control and arrested fetuses, in order to determine the 

amount and the carbohydrate substrates utilized by the sheep fetuses. 

Glycogen, glucose and fructose all were used as substrates for lactic acid 

production in fetal sheep brain tissue during anoxia. 

The glycogen concentrations in control fetuses increased significantly 

with gestational age in all brain structures (Table 7, Fig. 1). Thus, 

more substrate became available with increasing gestational age for lactic 

acid production during anoxia. Following arrest, the glycogen levels 

decreased significantly reaching similarly low levels at all gestational 

ages (Table 7, Fig. 7). Since glucose and fructose remain at relatively 

low levels throughout gestation (Table 8, 9), and practically all glycogen 

is broken down during anoxia, glycogen contributes the greater proportion 

of substrate for lactic acid production with increasing gestational age 

(Table 7). 

The glycogen concentration in each brain structure of control fetuses 

correlated closely with the lactic acid concentrations following arrest 

(Table 7, 10). The brain stem of 110 and 140 day sheep fetuses had 

significantly higher glycogen levels prior to anoxia compared to 50 and 80 
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day fetuses which explains the higher level of lactic acid accumulation in 

these late gestational age fetuses (Table 6, 7, Fig. 6, 7). The glycogen 

content in the brain stems of the late gestational age fetuses also was 

significantly higher than the levels in the corresponding cortex and white 

matter. However, glycogen by itself, does not account for all the lactic 

acid produced in each structure. Thus, other carbohydrates, such as 

glucose and fructose, must contribute smaller but significant amounts. 

Glucose levels in all brain structures of 50, 110 and 140 day fetuses 

decreased significantly following circulatory arrest (Table 8, Fig. 8). 

Fructose concentrations also decreased significantly in the brain 

structures of 110 and 140 day fetuses following circulatory arrest (Table 

9, Fig. 9). However, glucose and fructose contributed less to lactic acid 

production than did glycogen because of lower initial glucose and fructose 

concentrations (Tables 7, 8, 9). Thus, although glucose and fructose 

contribute only a small proportion to total lactic acid accumulation 

during anoxia, they can provide the substrate to boost lactic acid over 

the threshold concentration for injury. 

In control fetuses, the glucose and fructose concentrations within 

different brain structures were variable with gestational age. Cortical 

gray matter glucose levels peaked at 110 days while cortical white matter 

and brain stem concentrations tended to decrease with gestational age 

(Table 8, Fig. 8). Similar results were found with fructose in cortex and 

brain stem, although fructose concentrations were lower than glucose 

concentrations in each structure (Table 9, Fig. 9). Glucose levels in all 

brain structures decreased significantly following circulatory arrest and 
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were not significantly different with gestational age (Table 8, Fig. 8). 

In fetuses exposed to circulatory arrest, fructose concentrations 

decreased with gestational age although the decrease was ...ess than 1 

(jmole/g (Table 9, Fig. 9). The contribution of glucose and fructose to 

lactic acid production also was not significantly different between cortex 

and brain stern (Tables 8, 9, Fig. 8, 9) although lactic acid levels in 

these two structures were significantly different in late gestational age 

fetuses (Table 6, Fig. 6). 

The utilization of fructose by the brain during anoxia is of interest 

because it does not appear to be used in normally oxygenated ewes and 

fetuses (14, 50). Although fructose may not be used by normally 

oxygenated fetuses, serum fructose concentrations are much higher than 

serum glucose concentrations (Table 4, 5, Fig. 4, 5)(14, 50j. In the ewe, 

the serum glucose concentration is significantly higher than in the fetus 

(Table 3, 4). Some of the glucose crossing the placenta to the fetus is 

converted to fructose (6, 14, 40, 41, 50). This conversion results in 

high serum fructose levels in the fetus. However, fructose is only 

utilized by the fetus when the ewe is exposed to a stressful situation 

(e.g. food deprivation) (14, 40, 41, 50). In the present study, the 

results show that fructose levels decreased significantly ;n the cortical 

gray matter and brain stem of 110 and 140 day fetuses following cardiac 

arrest (Table 9, Fig. 9). Thus, the stressful situation of anoxia 

stimulates fructose utilization by the brain. 

When fructose is metabolized by the brain, it enters the glycolytic 

pathway at a different point than glucose (16, 53). Initially, fructose 

is phosphorylated by fructokinase to form fructose-l-phosphate (FIR) 
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(16). Fructose diphosphate aldolase cleaves the F1P to dihydroxyacetone 

phosphate (DHAP) and glyceraldehyde. Subsequently, the glyceraldehyde is 

phosphorylated to glyceraldehyde-3-phosphate (G3P). DHAP and G3P can then 

be metabolized to lactic acid by the glycolytic pathway during anoxia. 

Although sorbitol was not measured, a previous study showed that 

sorbitol is present in the serum of 80 day sheep fetuses (0.90+0.29 mM) 

and is used by fetuses (unpublished results - deCourten, Hirsch, Myers). 

The contribution of sorbitol to lactate production probably was very small 

because the serum levels are lower than glucose and fructose (glucose = 

1.42-1.86 mM, fructose = 6.17-9.70 mM in 80 day fetuses), which only 

contribute a small amount to lactate production. 

Several investigators have proposed that energy availability 

determines the survival of brain tissue during oxygen deprivation (7, 44, 

45). Thus, I performed assays to determine the concentrations of three 

adenine nucleotides (AMP, ADP, ATP) and phosphocreatine (PCr) and 

calculated the energy charge. The results indicated that ATP, PCr and the 

calculated value of energy charge decreased significantly during anoxia in 

cortex, white matter and brain stem (Tables 11, 12, 13). Brainstem PCr 

levels were also lower than cortical gray matter concentrations in 110 day 

arrested sheep fetuses (Table 12). Since brain stem nuclei of late 

gestational (i.e. 110 and 140 day) age fetuses are injured after 1 hour of 

anoxia (24), ATP, PCr and energy charge should be lower in the brain stem 

as compared to cortex of 110 and 140 day fetuses, if these parameters of 

energy availability are critical determinants of brain injury. However, 

the ATP levels and energy charge were not significantly different between 
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cortex and brain stem in 110 and 140 day arrested fetuses (Table 11, 13). 

Phosphocreatine levels were not different in the brain stem and cortex of 

140 day arrested fetuses (Table 12). These results suggest that although 

the energy state decreased significantly following arrest at all 

gestational ages, there was no correlation between energy state and the 

development of brain injury following arrest. 

The results from the present study show that: 

1. Lactate accumulation above threshold levels in the brain stem of 

late gestational age sheep fetuses correlates well with the brain stem 

pattern of injury seen in late gestational age monkey fetuses exposed to 

anoxia; 

2. Increased carbohydrate stores account for increased levels of 

lactic acid in late gestational age fetuses compared to early or 

mid-gestational age fetuses; 

3. Glycogen contributes a greater proportion of substrate for lactic 

acid production with increasing gestational age. Glucose and fructose 

also are utilized by sheep fetus brain tissue during anoxia: however, 

lower initial concentrations of these two metabolites result in a smaller 

contribution of substrate to lactic acid production compared to glycogen; 

and 

4. ATP, PCr and energy charge decreased significantly during anoxia, 

but these three parameters did not correlate with the pattern of brain 

pathology previously observed in monkey fetuses exposed to anoxia. 
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II. The Importance of pH, Blood Gas and Serum Metabolite Va..ues in 

Sheep Fetuses During the Control Period. 

The pH, blood gas and serum metabolites were not important during the 

anoxia portion of this particular study because there was no blood flow to 

the brain during exposure. However, they were extremely important 

indicators of the physiological condition of the mother and fetus during 

the control period. The arterial pH, blood gas and serum metabolites were 

not significantly different in the ewes of control and ewes of fetuses 

subsequently exposed to circulatory arrest, during the control period 

(Table 3). Similar results were observed in a comparison of fetuses 

subsequently exposed to circulatory arrest and control fetuses (Table 4, 

5). The few differences observed between the 2 groups of fetuses did not 

indicate significant physiologic differences because the other parameters 

specified earlier (see Materials and Methods) were within the previously 

defined range of values. Thus, the results from the ewes and fetuses 

suggested that control and arrested fetuses were not significantly 

different during the control period. As a result, any differences between 

control and arrested brain metabolites should indicate changes due to 

anoxia. 

The serum metabolites changed significantly with gestational age 

(Table 4, 5, Fig. 2-4). These changes were important because they 

indicate physiological differences between fetuses of different 

gestational ages. 
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