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INTRODUCTION

This paper follows the work done hy Artin and Schreier, 
A basic algebraic property of the field of real numbers is 
that the only relations of the form Z a. = 0  which can1=* -L 2 2hold in this field are the trivial ones : 0 + 0  + c.. +
0 ^ = 0 .  This observation led Artin and Schreier to call 
any field having this property formally real. Any such 
field can be ordered and any ordered field is formally 
real. Of central interest in the theory are the real 
closed fields which are the formally real fields maximal 
under algebraic extension. A real closed algebraic exten­
sion of an ordered field, whose ordering is an extension 
of that of the given field, is called the real closure of 
the ordered field.

The purpose for studying the material is to see which 
results of the classical theory of equations are due to 
the properties of the rational numbers as an ordered field, 
and which are due to the properties of the real numbers as 
an order closed field.

The main source of the material is the section on 
Artin and Schreier Theory in Jacobson’s Lectures [51.
The approach follows the outline of DuBois’s series of 
lectures at the University of Oregon in the summer of 1966.
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Section I presents the general theory of an ordered 
field and an order closed field. In this section, we ob­
serve that a real closed field has a unique ordering which 
can be specified by the requirement that a > 0 in this 
field if and only if a = b^ / 0. Also if ? is real closed, 
F( jpT) is algebraically closed.

In Section II, we shall derive a classical result, 
Sturm's Theorem, which permits us to determine the exact 
number of distinct roots in a real closed field of a poly­
nomial equation f(x) = 0. We will prove some other classi­
cal results, such as Rolle's theorem, the mean value 
theorem, and Budan's theorem. Most definitions and back­
ground material are adapted from Cl]. The approach follows 
the exercises given in C5].

In Section III, we shall show that for any ordered 
field ?, there exists a real closure which contains F, and 
the ordering of the real closure is an extension of that
of F. Moreover, we shall see that real closures of an
ordered field are equivalent and we may therefore speak 
of the real closure of F.

In Section IV, we shall prove the Fundamental Theorem
of Algebra.
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SECTION I

ORDERED FIELDS AND ORDER CLOSED FIELDS

Definition 1.1. An ordered field is a field F toge­
ther with a subset P (the set of positive elements) of F 
such that :

(1) 0 / P,
(2) if a e F, then either a e P ,  a = 0 ,  o r - a e P ,
(3) P is closed under addition and multiplication.
We shall denote the ordered field by (F, P) or F if

P is understood.

Since any field has at least two elements, the subset 
P is not empty. Let -P = {-a I a e P}. Clearly 
F = P Û {0} Û -P. We observe that (-a) + C-b) = -(a + b) 
e -P if a, b e P, and (-a)C-b) = ab e P if a, b e P. In 
particular, (-a)(-a) = a e P i f a / O .

We can introduce a partial ordering in the ordered 
field (F, p ) by defining a > b i f a - b e P .  Then if a, 
b are any two elements of F, we have the trichotomy: one
and only one of the relations ; a > b, a = b, a < b holds. 
Thus F is linearly ordered by the relation a > b. If 
a > b, then a + c > b + c for all c e F, and if c > 0, 
ac > be. Conversely, we can define an ordered field in
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4
case there is in F a linear ordering > such that a > b 
implies a + c > b + c ,  and ac > be if c > 0. Let P denote
the set of elements a > 0. Then (P, P) is an ordered
field in the original sense and the relation > defined by 
(F, p ) is the given ordering relation.

We will list some of the elementary properties of the
—1ordering in an ordered field: 1 > 0, a > 0 implies a > 0,

and a > b > 0 implies b”^ > a“^ >0. If a > b, then
-a < -b and, if a > b and c > d, then a + c > b + d. Let
I a| be defined as a if a e P, -a if a jgf P, then I a + bl
^ I aI + Ib1 and IabI = I aIIbI.

If F' is a subfield of an ordered field (F, p ), then 
F ’ is ordered relative to P" = F' fl P. We shall call this 
the induced ordering in F'. Evidently a* > b' in (F*, P')
if and only if a» > b* in (F, p). If (F, p) and (F*, P")
are any two ordered fields, then an isomorphism s of F 
into F' is called an order isomorphism if s(p) = P*.

Note 1. In any ordered field F, a / O implies a > 0;
, n 2hence if a,, a-, , . . , a^ are / 0, then 2 a. > 0,X XL C.5I X

This shows that any ordered field is formally real in the
sense of the following:

Definition 1,2, A field F is called formally real 
if the only relations of the form S a.^ = 0 in F areL-i 1
those for which every a^ = 0.
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5
Note 2, P is formally real if and only if -1 is not 

a snm of squares of elements of F, and the characteristic 
of P is necessarily 0.

Proof; If “1 = S a_. ̂  , then 0 = -1 + 1 = .2 â  ̂  + 1^,— —— —— L&t ]_ 1
a contradiciton. Conversely, if P is not formally real, 
there exists a^ e P, i = 1, ..., n such that .2 a^^ = 0,
not all a^*s are zero. We may assume that a^ / 0, This

2 2 2 implies + h2 + ,,, + + 1  = 0, where = a^/a^,
for i = 1, ,,, , n-1. Then -1 = 2 b.^ .C, — I i 2If the characteristic of P is p / 0, then 0 = 1  +
p Q

1 + ,,, + 1 (p times). Thus if P has order p , then
0 e P, a contradiction.

Thus the only fields which have orders are of charac­
teristic 0, so all fields considered are assumed to be of 
characteristic 0 unless otherwise specified. Any such 
field has a subfield isomorphic with the field Q of rational 
numbers, which we may identify with Q,

Note 5, The field of rational numbers has a unique 
order, i.e. the set of positive rational numbers,

Note 4 . If 0 / a e P, and a = Ê â ^̂ , then a”^ = 
(a"^)2.a . & (a.a“ l)2 .

Î-I 1

Definition 1.3. Let S be a subset of a field. ' Let 
“S = C-x I X e S} . Then S is conic if S n -S <= [o] .
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6
Definition 1.4. Let S be a subset of a field. Then 

S is a prenrime if :
(1) S is closed under addition and multiplication,
(2) -1 i S.

Eote 3. Let S be a subset of a field F, with S 
closed under addition, multiplication and division. Then 
S is conic if and only if S is a preprime.

Proof : Suppose -1 e S, then (-l)(-l) = 1 e S and
since -1 e S, l e  -S. Hence S fl -S 9̂ {O}, a contradiction.

Conversely, suppose S n -S 9^ C O } ,  then there exists 
an X, X  / 0, with x e S n  -S, i.e. x e S  and x e -S,
- X  E 8 . Since S is closed under division, -1 = (-x)/x e 8 , 
a contradiction.

Definition 1.3. A cone is a conic preprime. A 
division cone is a preprime closed under division.

Note 6, Division cones do not contain zero.

Lemma 1,6. If 8 is a cone in a field F, 0 8, then
S* = {x I xy e 8 for some y e 8} is a division cone con­
taining 8.

Proof : Clearly 8 c= s*. If x e 8*, y e 8*, let
XX* = s e 8 with x* e 8, yy* = t e 8 with y* e 8; then
(x + y)x’y* = sy* + x*t e 8, and x*y* e 8, so x + y e 8*.
(xy)x'y’ = St e 8, x'y* e 8, so xy e 8*. y / 0 since
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7
0 / 8 ,  and. (x/y)x'1; = sy* e 8, x*t e 8, so x/y e 8*.

If 8* n -8* {O}, then -1 e 8* since 8* is closed
under division. Hence -l*b = -h e 8 for some h e 8, b / 0,
which implies 8 n -8 çf C o } ,  a contradiction.

Theorem 1,7. (Baer, Artin - 8chreier) Let D be a 
division cone of ?. Then D contains all non-zero squares 
in ¥ if and only if D is the intersection of all orders of 
F containing D, i.e. D = 0 {P I P an order of P and D c p],

Proof: Let D be a division cone, such that a e F,
2a / 0 implies a s D. 8uppose 0 / x e F, x / D; we need

to show there is an order P of F such that : (l) D «= P,
and (2) x / P.

Let 8 = [a - bx I a^ + b^ / 0, a, b e D U C o } } .  8 is
2closed under addition and multiplication, since x e D. 

0 / 8  since a -bx = 0 implies x = ab”^ e D ( b~^ e D since
D is a division cone), 1 = 8 ,  and -x e 8 since -x = 0 -l*x

2(l E D since 1 = 1  e D). By Lemma 1.5, we know there 
exists a division cone S* with 8 = 8 * .  Note that if y e F, 
y / 0, then y^ e 8*, since y^ e D = 8 = 8*.

Let Z = [T* I 8* = T*, T* a division cone}. Z is not
empty since 8* e Z, Z is inductively ordered by s. By
Zorn*s Lemma, Z has maximal elements. Let P* be maximal 
in Z.

Claim: P* is an order.
Bub-proof : Clearly 0 / P*, since P* is a division
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8
cone. Let 0 / y e F and y ^ P*. Let T = {a + by I 
a^ +  b^ / 0, a, b are in P* U C o } } .  T is closed under 
addition and multiplication since y^ e S* <= P*. Also 
P* c= T, and y = 0 + i-y e T. Thus 0 e T, otherwise
applying Lemma 1,6 to T would contradict the maximality 
of P*. Therefore 0 = a + by, a / 0 / b, y = -a/b, -y = 
a/b G P*. So P* is an order.

Thus P* is an order, D c: p* and x £ P* since -x e P*„
Conversely, suppose D = n P^, P^ an order and D <=

2for each a. If 0 / x s F, then x G P^ for all a, so 
x^ G D.

Corollary 1,8. Any ordered field is formally real 
and any formally real field has an order.

Proof: By Note 1 we know that any ordered field is
formally real.

Let F be a formally real field. Let L (f) = {Î: x.^  II 1
x^ G F \{0}3o S (f) is closed under addition, multiplica­
tion, and division, and E (f) n -E (f) = 4> . So E (f) is 
a division cone. By Theorem 1.7, there exists an order in 
F which contains E (F).

Corollary 1,9. F has an order if and only if 
E (f) = {E x^^ I Xĵ  G F\{0}} is a preprime.

Proof : Suppose P is an order on F. (F, p )  is an
ordered field. F is formally real by Corollary 1.8, and
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9
-1 / Z (p) by Note 2.

Conversely, Z (p) is a division cone since it is 
closed under division as noted in the proof of Corollary 
1.8. Thus Theorem 1.7 applies.

Corollary 1.10. Let P be an order on P, P c= p*, p
is a subfield of P ’ and P* is an ordered field. Set
Z (P’, P) = C Z p.x. ̂  I p. e P, X. e P'\{0}}. Then% ]_ 1 1.
Z (P*, P) is the intersection of all orders of P* contain­
ing P.

Proof : Note that Z (P', P) is closed under addition,
multiplication, and division. If -1 e Z (P“, P), then 
there are no orders of P' containing P. In this case, for 
all X e P*, X = ((x + l)/2)^ - l*((x - l)/2)^ e Z (P“, P), 
so Z (P*, P) = F' is the intersection of all orders of P® 
containing P. Otherwise we apply Note 5 and Theorem 1.7.

Corollary 1.11. (Artin in connection with Hilbert*s 
l7th Problem^) If P is a formally real field, then the

One of the problems proposed by Hilbert in his 
address to the 1900 Paris Congress of Mathematicians was 
the following:

Let Q be a rational function of n variables with 
rational coefficients such that Q(a^, ag, . . . , a^) ^ 0
for all real (a^, ag, . . . , a^) for which Q is defined.
Then is Q necessarily a sum of squares of rational func­
tions with rational coefficients?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10
set S of all sums of squares of members of F is the inter­
section of the orders of F.

Proof : Let Q denote the field of all rational numbers,
and let Q'*’ denote the set of all positive rational numbers. 
We know that Q"̂  is an order on Q «= p. Since (p/q)x^ =
pq(q-^x)^, S = { S (a./b. )x.^ I a. /b. e Q'*', x. e F\{0}}

L"’ 1  U. ZL J. jL 1

= S (F, Q"*”). By Corollary 1,10, S is the intersection of 
all orders of F containing Q"*", hence the intersection of 
all orders of F,

Theorem 1.12. Let (F, p ) be an ordered field and 
f(x) an irreducible polynomial over F. Suppose f(a)f(b)
< 0 for some a, b e F. Then:

(1) There is an order on F[x]/(f(x}) extending P,
(2) If a < b, then there is an extension field F

of F with an order extending P and a § e F with a < § < b
and f(?) = 0,

Proof : (l) If the theorem does not hold, there is
an irreducible polynomial f of smallest degree for which 
it fails. Let f be such a polynomial. Assume f(a)f(b) < 0, 
and let F* = F[x]/(f(x)).

We must have 0 e S (F*, p ) ,  since otherwise 2 (F*, p) 
is contained in an order. Therefore there exists q̂ Ĉx) 
e F[x] with q^(x) à (f(x)) for some i, p^ e P, and h(x)
e F[x] such that

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



11
z p.q.^(x) = h(x)f(x) ....................(l)1. 1
Clearly we can require that deg q^(x) < deg f(x), so 

that deg h(x)f(x) < 2 deg f(x), which implies deg h(x) < 
deg fCx).

If h(t) = 0, t E F, then Z p^q^^^Ct) =0, so that 
q^̂ Ct) = 0 for each i and we can divide both sides of (l) 
by (x - t) . Hence we can assume h(t) / 0 for all t e F, 
Thus h(t)f(t) = S p .q.^(t) > 0 for all t e F.

Let h(x) = TT h.(x) be a factorization of h(x) into 4=» J
irreducible factors.

If h.(x) I q.(x) for each i (some j) we could divide 
out hj (x) in (l). So we can assume for each j, there 
exists an i with q.(x) / (h.(x)),1 J

We know f(a)fCb) < 0 and h(a)f(a) > 0, h(b)fCb) > 0, 
thus h(a)hCb) = (h.(a)h.(b)) < 0, so h.(a)h.Cb) < 0 ford Ü d d
some j. Assume j = 1.

Now deg h^(x) ^ deg h(x) < deg f(x) so, by assumption, 
F" = F[x3/(h^(x)) has an order extending P, so 0 ^ Z (F*, p)

But f p. q.^(x) = [f (x)] [fr h .(x)] Ch-, (x)] e (h-,(x))Jb ZL j = % ^ Jp. JL
and q^(x) (h^(x)) for some i, i.e. 0 e L (F’, p), a
contradiction.

(2) Let f(x) be irreducible with f(a)f(b) < 0. Let 
T be a splitting field of f(x) over F. Let & = {(S, Pg)I 
S a subfield of T, Pg an order on 8, Pg n F = P]. ^ is
not empty since (F, p) is in It is inductively ordered
by the relation defined by: (S^, Pĝ  ) < Pg ) if Sg
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is an extension field of and is an order on Sg
which extends , By Zorn's Lemma, there exist maximal 
elements. Let (P, 'p) be maximal in

Let f(x) = "TT (x - §. ) 7T f (x) be the factorization ofI 1 1
f over F, where each f i s  irreducible over F and deg f^
^ 2. Since f^ has no zero in "F, f^(a)f^Cb) > 0 for all i.
Thus f(a)f(b) < 0 implies (a - § .)(b - § .) < 0 for some j ;

o u
i.e. § . is between a and b.U

Corollary l.l3. Under the same hypothesis as Theorem 
1.12, F[x]/tf(x)) has an order extending P for which there 
is a § in F[x]//(f(x)) such that a < § < b and f(§) = 0.

Proof: Let F be the same as in the second part of
the proof of Theorem 1.12. Let § e ̂  with a < § < b and 
f(§) = 0.

Consider uu : F[x]----- »F by (o(x) = §.
Then uu(F[x] ) = F[§3 — F[x]/(f (x)). Note that F[§ ]

c F, 'F ordered, its order. Using the restriction of 
order 'F to F[§ ] , we have K = F[x]/(f (x)) ordered and § is 
a root of f(x) in K with a < § < b.

Corollary 1.14. If (F, p ) is an ordered field and F' 
is an extension field of F with [F* : F] = n, where n is 
odd, then F' has an order P' extending P.

Proof : If f(x) is the field polynomial, then f(x) =
x^ +^2^a^x^ with a^ e F, n = [ F* : F]. Let t > max (l, nb]
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13
where b = max {la.I}. Then f(t) = + S a . +ZL J-
"s -ja^i ^ - (nb)t^”  ̂> 0, and f(-t) = (-t)^ +
S a.(-t)^ ^ -t^ + s' la.It^ ^ + Cnb)t^"^ < 0. ByL=0 1 ^ 1
Theorem 1.12, F' has an order P* extending P.

Corollary 1.15. If (F, p ) is ordered, p e P, then 
F(j^) can be ordered to extend P.

Proof : We can assume that Jp" idP; i.e., x - p = f(x)
is irreducible. Note that f ( o )  < 0 and f(t) > 0 for t^ > p.

Definition I.l6. (F, p ) is order closed if and only
if there is no ordered field (F*, P') with 1 < [F' : F] < oo
such that P' extends P.

Definition l.l7. F is real closed if and only if F 
has an order but no proper algebraic extension is orderable.

Theorem 1.18. F is real closed if and only if (F, p)
is order closed for some order P. If F is real closed, then
F has a unique order. Thus if (F, p ) is order closed, then 
P is the only order on F.

Proof : Let F be real closed; then E (F, Q"*") = D is
the intersection of all orders of F by the proof of Corol­
lary 1.11. Suppose a, -a D, then there is an order P 
with a E P, and since a / D, x - a is irreducible over F. 
Hence, by Corollary 1.15» P can be extended to an order on 
FCTâJ. This contradicts F being real closed. Thus D is
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the unique order on F and (F, D) is order closed.

Conversely, let F be order closed, D as above. We 
show that D = P. If p e P \D, then by Corollary 1.15» P 
can be extended to F(fp) and F(jp) is a proper extension 
of F, yielding a contradiction. Thus there is no order 
on an extension field which extends P, so F is real closed.

Note 7. If F is real closed, then
(1) F[x] has no irreducible polynomial of odd degree,

by Corollary 1.14.
(2) If a e D, then a = b^ for some b e F, by 

Corollary 1.15.

Corollary 1.19. If F is real closed, then any ele­
ment of F is either a square or the negative of a square.

Proof : This is clear from Note 7 since a e F implies
a = 0, a e D or -a e D.

Corollary 1.20. Let F be real closed. Any automor­
phism of such a field is an order isomorphism.

Proof : If s is an automorphism of F, then s maps the
2set of non-zero squares into itself, since s(a ) = s(a)s(a)

2= (s(a)) . Hence s is an order isomorphism.

Theorem 1.21. If F is a real closed field, then 
r-T i F and F(J^) is algebraically closed.
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Proof : Since P is formally real, j£ P. That

P(J-l) is algebraically closed will follow if we can show 
every non-constant polynomial with coefficients in P has 
a root in P(nl-l) .

Since we know P = P(J"^), let a— >a be the automor­
phism of P(J-l) over P such that i = -i for i = J -1. If 
f(x) e P(4-i)[x], then f(x)f(x) e P[x], and if this has a 
root in P(aT^), then f(x) will have a root in pCJ^oL),

Prom Corollary 1.14, we know that if P is real closed, 
P[x] has no irreducible polsmomial of odd degree. We show 
next that every element of P(f^) has a square root in this 
field.

2Pirst, if a G P, and a > 0, then a = b , b e P, by
2Corollary 1,1^. I f a e P ,  a < 0, -a > 0, -a = b and 

a =
If t = a + bi, i = J ^ ,  a, b e P, and b / 0, set

g
a + b i  = (c + di) , c, d e P .  This is equivalent to :

2 2 / \ a = c - d , b = 2cd ......o...... 11/
Since b / 0, we may (by multiplying by a suitable

element of P) assume that b = 2. So 1 = cd, d = c~^, and
2 2 2 - 2  2 a = c - d becomes a = c - c . If we let c = k, then

—T_ 2we get a = k - k “ or k - ak -1 = 0. This has a solution 
(a + J SL̂ + 4 ^/2 in P since a^ + 4 > 0, and a + /a^~+~4"> 0, 
So there exists c in P with c^ = (a + j a^ + 4)/2. Then 
c^ = (2a^ + 4 + 2aja"̂  + 4)/4, - c^a = 1 and c^ - c~^ = a.
Hence c, and d = c ^ satisfy (l) with b = 2. We therefore
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proved that every element of has a square root in
this field. Consequently there exists no extension field 
A of F(j -l) such that [A : = 2.

Let f(x) he any polynomial of positive degree with 
coefficients in F, Let E he a splitting field over F of 
(x^ + l)f(x). Then E = F(J-l). Since F, a real closed 
field, is of characteristic zero, E is Galois over F with 
group G of order 2^m where m is odd. By Sylow's theorem,
G has a subgroup H of order 2^. Let A he the suhfield 
over F of E-invariants ; i.e., A = Cx e F 1 a(x) = x for
all X e H}. Then [E : A] = 2^ and [A : F] = m. Since F 
has no proper odd dimensional extension field we must have 
A = F and m = 1, Hence [E : F] = 2^, and [E : F(J-l)]
= 2̂ "“̂ . If n = 1, we are done. Suppose not ; hy Sylow's
theorem, G has a subgroup H* of order 2^“ .̂ Let A* he 
the suhfield over F of H'-invariants, Then [E : A"] =
2^~^ and [A’ : F(A-i )] =2, As we have shown earlier in
this proof, this is impossible. Therefore n-1 = 0, or
n = 1, [E : F] = 2, and E = F Ü  -l), Hence F(/-1) is a
splitting field of (x + l)f(x), and f(x) has a root in 
F(rPl), Thus we have proved that F(J^) is algebraically 
closed.

The above result is the generalization to real closed 
fields of the Fundamental Theorem of Algebra,

Theorem 1.22, If F is a field such that d F and
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F(J^) is algebraically closed, tben F is real closed.

Proof : Let f(x) be an irreducible polynomial in F[x]
and let g be a root of f (x) contained in F ( V ^ ) . Then 
[F(ç ) : F] = deg f(x), and [F(§) : F] [F(J%1) : F] = 2. 
Hence deg f(x) = 1 or 2,

How let a, b / 0 s F and g(x) = (x - a) + b 
= (x^ - a - bi)(x^ - a + b i )
= (x - Ja + bi)(x + Ja + bi)(x - Ja - bi)(x + ^a - bi), 
where i = Jf-l. Since any irreducible polynomial in F[x] 
has degree 1 or 2, g(x) is a product of two irreducible 
quadratic polynomials. The one divisible by x - ^a + bi 
can not be

(x - Ja + bi)(x + Ja + bi) = x^ - (a + bi); 
for this would imply a + b i  e F. Hence we have either 
(x - Ja + bi)(x - Ja - bi) or (x - ^a + bi)(x + J a - bi).
Either possibility implies that J sl + b^ = t e F,
2 2 2a + b = t e F, i.e., the sum of two squares of elements 

in F is a square in F. Since -1 is not a square, -1 is 
not a sum of squares in F. Therefore F is formally real. 
If P is a proper algebraic extension of F, then P is 
isomorphic to FÇ/-l). Then P is not formally real so F 
is real closed.

Theorem 1.23. (Darboux property - DuBois - Bourbaki) 
If (F, p ) is an order closed field, f(x) a polynomial over 
F with f(a)f(b) < 0, then there exists c e F such that
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a < c < b with f(c) = 0,

Proof: By Theorem 1,12, there is such a c in an
extension Cf , p) where "P extends P. Since F is real
closed, (F, "P) = (F, P).

Theorem 1.24, Let (F, p ) be an ordered field and 
let P be an algebraic closure of F , Then F contains a 
real closed field A containing F.

Proof : Let ^ = {S I S is an ordered subfield of F
and S =3 F} . ^ is not empty since F e Moreover it is
inductively ordered by s. By Zorn's Lemma, it has a 
maximal element A. If A is not real closed, it has a 
proper algebraic extension A* which is an ordered field. 
Since F is algebraically closed, so we may assume that 
A' cr P. This contradicts the maximality of A in F, Hence 
A is real closed.
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SECTION II 
STURM’S THEOREM

In this section we shall derive a classical result, 
Sturm’s theorem, which permits us to determine the exact 
number of distinct roots in a real closed field of a poly­
nomial equation f(x) = 0,

Definition 2.1. Given a function f, the function f’ 
defined by

f  = {(x, y) I y = lim fCx h- h) - f(x) \
h-»0 h

is called the derived function of f . For x in the domain 
of f’, the number f’(x) is called the derivative of f at 
X, and

f  (x) = 11m + b) - f(x) _
h— >0 h

The familiar rules (f + g)“ = f’ + g* and
(fg)’ = f’g + fg’ can easily be shown to hold. Taylor’s
formula also holds.

Lemma 2.2. Let f(x) be a polynomial contained in 
F[x]. Let a be a root of f(x). Then a is a multiple root
of f(x) if and only if f’(a) = 0.

Proof : We have f(x) = (x - a)g(x), so that
f’(x) = g(x) + g’(x)(x - a). If a is a multiple root of
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f(x), g(a) = 0 and f' (a) = 0.

Conversely, if f*(a) = 0, then g(a) = 0, and a is a 
multiple root of f(x).

LeTTiTna 2-3- Let F be a real closed field. If a e F
is a root of f(x) e F[x], then there exists an h e F,
h > 0, such that f(x)f*(x) < 0 for all x in (a - h, a), 
and f(x)f'(x) > 0 for all x in (a, a + h).

Proof: Substituting (a - h) in f(x) and f®(x) and
expanding, we get

(2)
f(a - h) = f(a) - f'(a)h +   h^

nl

f’(a - h) = f  (a) - f^^^(a)h + . . , + C-h)^"^
(n-l)1

In case a is a simple root, then the signs of these 
expansions, which depend on those of their first nonzero 
terms, are unlike for positive small h. When the sign of 
h is changed, the signs of the expressions become the same,

If a is a r-multiple root of f(x) e F[x], then f(a), 
f'(a), p „ . , f^^ ^\a) all vanish. The first terms 
which do not vanish in the series expansion for f(a - h) 
and f*(a - h) are respectively,

é l l i s l  , f— (a), ,
rt (r-l)t
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Clearly they have different signs; hut when the 

sign of h is changed, they will have the same signs.

If we extend the reasoning above to every consecutive 
pair of the series, f(x), f^^^(x), . . . , f^^~^\x), we 
will have the following proposition

Proposition 2.4. If a is an r-multiple root of fCx)
e F[x], then signs in the series, f(b), f ̂ ^\b), , . , ,
^(r-l)alternate for b e  (a - h, a).

Lemma 2.5. Let P be a field of characteristic O, 
f(x) a polynomial contained in P[x]. If d(x) is the high­
est common factor of f(x) and f'(x), then g(x) = f(x)d(x)”  ̂
has simple roots which are the distinct roots of fCx).

Let F be a real closed field and let f(x) be a poly­
nomial with coefficients in P. We call a sequence of 
polynomials

Iq Cx ) = f(x), f^(x), , . , fg(x)
a Sturm sequence of polynomials for f(x) for the interval
[a, b] (i.e. a ^ x ^ b) if fĵ (x) e P[x] for i = 1, . . . , 
s, and

(1) fg(x) has no root in [a, b],
(2) f Ĉa) / 0, f Ĉb) / 0,
(5) if c E [a, b] is a root of f^(x), 0 < i < s, 

then f^__^(x)f^^^(x) < 0, and
(4) if f(c) = 0, where c e (a, b), then there exist
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intervals [c^, c) and (c, Cg] such that fQ(x)f^Cx) < 0 for 
X in the first of these and fQ(x)f^Cx) > 0 for x in the 
second, (i.e. fq(x)f^(x) is an increasing function of x 
at X = c. )

If r = {r^, r^, , . . , r^3 is a finite sequence of 
non-zero elements of F, then we define the number of vari­
ations in sign of r to be the number of i, O ^ i ^ m - 1 ,  
such that <0. If r = [t q , r^, . . . , r^} is an
arbitary sequence of elements of F, then we define the num­
ber of variations in sign of r to be the number of varia­
tions in sign of the abbreviated sequence r' obtained by- 
dropping the O's in r. For example,

Cl, 0, 0, 0, 5» -3, 0, 6, 9, ”3} 
has three variations in sign. We will denote the number 
of variations in sign of the sequence {fgCt), f^(t), . . . , 
fgCt)} by V(t).

Theorem 2.6. Let f(x) be a polynomial with coeffi­
cients in a real closed field F and let fgCx) = f(x), f^(x), 
. . . , fg(x) be a Sturm sequence for f(x) in the interval 
[a, b]. Then the number of distinct roots of f(x) in 
(a, b) is vCa) - vCb).

Proof : The interval [a, b] is decomposed into sub­
intervals by the roots of the polynomials f .(x) of the

0
given Sturm sequence. Thus we have a sequence a = a^ < a^
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< . . . < a = b such that none of the f.(x) has a root in m J
(a^, . Choose a^' e 1 ^ i ^ m and let
V(a^) he the number of variations in sign of the sequence 
Cfj(ai'), j = 0, 1, . . . , s}. Evidently, V(a) - V(b) = 
(V(a) - V(a^')) + S''(v(a^')- V(a^^^’)) + (v(a^' ) - V(b)).

The computation is divided into four parts,

(l) If f.(a) / 0 for all j, such that 0 < J < s,
V

then ) > 0 for k = 0, 1, . . . , s. Hence
V(a) = V(a^').

(ll) If f .(a) = 0 for some j, 0 < j < s. Then by (3)u
f . ,(a)f ..^Ca) < 0, Since f . . (x) and f (x) have no j-1 0+1 0-1 0+1
roots in (a, a,), f. ,(a)f . .(a,') > 0, and f ..,(a)f. (a.’)1 0-1 0-1 1 0+1 0+1 1
> 0, Hence f ^^j+l^^l' ̂ ^ 0. It follows that
fj_l(a), f(a) (= O), fj^^(a) and fj_^(a^'), f^(a^'), 
f ) contribute the same number of variations of sign 
to V(a) and V(a^) respectively. Taking into account all 
the j, we see that V(a) - v(a^') = 0. Similar argument 
shows that V(a^*) - V(b) = 0,

(ill) If fj(a^) = 0 for 1 < j < 8, 1 ^ i m - 1, the 
argument used above shows that f._,(a.'), f.(a.'), f. ,(a.') 
and  ̂» f  ̂ the same num­
ber of variations of sign,

(IV) If f(a^) = 0 for 1 ̂  i ̂  m - 1, then by (4)
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f ( a ^ ' ) < 0 and  ̂> 0. This implies
f(a^*), f2̂ (aĵ * ) has one variation and ^
has none. Hence we see that V(a^*) - V(a^^^') = 1  if
f C a ) = 0,

Hence V(a) - V(b) = V(a) - V(a^') +
s'(v(a.') - V(a. .-,*)) + V(a ' ) - v ( h )  is the number of a. i%t X 1+1 m X
such that i(a^) = 0,

Let f(x) be an arbitary polynomial such that f(a) / O, 
f(b) / 0. We define the standard sequence for f(x) by

fpCx) = f(x), f^(x) = f*(x) (formal derivative of f(x)) 
f^Cx) * q^Cx)f^(x) - fgCx), deg fg < deg f^
f^(x) = - f^(%), deg f^ < deg fg

fj__^(x) = q^(x)fj^Cx) - ^x+x^^^' deg i^+l deg f^ 
fg_l(x) = qgCx)fg(x)

Thus the f^(x) are obtained by modifying the Euclid 
algorithm for finding the highest common factor of fCx) 
and f*(x) in such a way that the last polynomial obtained 
at each stage is the negative of the remainder in the 
division process. Clearly, f^Cx) is the highest common 
factor of f(x) and f'(x) and this is a divisor of all the 
f^(x). How set g^Cx) = fj^Cx)fg(x)"^, and consider the 
sequence

g^Cx), g^(x), . . . , gg(x)
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Proposition 2.7. The sequence constructed above is a 

Sturm sequence for 6q (x ) in any interval [a, b] such that 
f(a) / 0, f(b) / 0.

Proof : (i) Since g^Cx) = 1, g^Cx) has no roots in
[a, b],

(ii) Sq (x ) = fg(x)fg(x)"^, so ggCa) / 0, g^Cb) / 0 
since fg(a) / 0, fgCb) / 0,

(iii) Note that f . , (x) = q.(x)f .(x) - f. -,(x).j-i- J 0
Dividing both sides by f (x), we get g Cx) = q.(x)g.(x) -

^ d d d
* 0 <  ̂< s. If g ^ C c )  = 0, c e [a, b], we get 

g^_^(c) = -g^^^(c). Now gĵ _ĝ (c) = 0, implies Sj^+^Cc) = 0. 
Replacing i with i + 1 and continuing we eventually get 
g_(c) = 0, This contradicts that g.(c) = 1, Therefore,
Si_l̂ c)gi_̂ l(c) < 0.

(iv) Suppose c e (a, b) and g^Cc) = 0, then
fgCx) = (x - c)®h(x), where e > 0 and h(c) / Oj then
f*(x) = e(x - c)®~^h(x) + (x - c)®h*(x). Also,
f _ ( x )  = ( x  - c ) ® “ ^ k ( x ) ,  w h e r e  k ( x )  / 0. So h ( x )  = k ( x ) l ( x ) ,O
l ( c )  / 0, h ' ( x )  = k ( x ) m ( x ) .  Hence ggCx) = ( x  - c ) l ( x ) ,  

w h e r e  l ( c )  / 0, and g ^ C x )  = e l ( x )  + (x - c ) m ( x ) ,  

g ^ C c )  = e l ( c )  /  0.

Now choose an interval Cc^, Cg] containing c in its 
interior such that l(x) / 0 and g^(x) / 0 in [c^, Cg].
Then ĝ (̂x) and l(x) are either both positive or both nega­
tive. gQ(x)g^Cx) = (x - c)lCx)g^(x) < 0 for X e [c^, c).
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and gQ(x)g^(x) = (x - c)l(x)g^(x) > 0 for x e (c, C2]. 
Hence (4) holds.

Note : If f(x) has no multiple roots, then the se­
quence Cf^(x)} is a Sturm sequence for f(x) = f^Cx). Oth­
erwise, g^Cx) has the same number of distinct roots as f^. 
Hence we can use the sequence Cg^(x)} to determine the 
number of distinct roots of f(x) in (a, b), This is the 
content of Sturm's Theorem.

Theorem 2.8. (STUBM'S THEOREM) Let f(x) be any 
polynomial with coefficients in a real closed field F.
And let fgCx) = f(x), f^(x) = f*(x), fgCx), , , • , f^Cx) 
be the standard sequence for f(x). Assume [a, b] is an 
interval such that f(a) / 0, fCb) / 0. Then the number of 
distinct roots of f(x) in (a, b) is V(a) - V(b).

Proof: Let = f^(x)fg(x)“^ as above. Then
apart from the multiplicities, the polynomials f(x) and
ggCx) have the same roots in (a, b) by Lemma 2,5. Since
the sequence Cĝ Ĉx)] is a Sturm sequence for ggCx), the
number of these roots is V(a ) - V(b„) where v(o ) is theS S g
number of variations in sign in {g^^Cc)}. Since
f ^ C c )  = g ^ C c ) f g ( c ) ,  a n d  f g C a )  / 0, fg(b) / 0, it is c l e a r

that V(a ) = V(a), and V(b ) = V(b). Hence the number ofO O
distinct roots of f(x) in (a, b) is V(a) - V(b).

Theorem 2.9. CROLLE'S THEOREM) Let F be a real
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closed field. If f(x) e F[x] has roots a, h e F, with 
a < h, then there exists a c e F, with a < c < h, such that 
f*(c) = 0,

Proof; We can assume f has no roots in (a, h). Now 
by Lemma 2.3, there exist h^, h.2 positive with 

f(x)f'(x) > 0 for X e (a, a + h^)
f(x)f'(x) < 0 for X e (b - hg, b).
Choose x^, Xg with a < x̂  ̂< Xg < b and x^ < a + h^, 

b - h2 < X2 » then f (x̂ )̂f ' (x^)f(x2)f ' (xg) < 0. But 
f(x^)f(x2) > 0, since otherwise f has a root in (x^, X2) 
by Theorem 1.23. Thus f * (x̂ )̂f * (X2) < 0 and f  has a root 
in (x^, X2) by Theorem 1.23.

Lemma 2.10. Let F be a real closed field. Suppose 
a, b e F, and f(x) e F[x]. If f(a) = f(b) = 0, and 
f(x) / 0 for all X in (a, b), then f*(x) has an odd number 
of roots in (a, b).

Proof : Since f(x) has no roots in (a, b), either
f(x) > 0 for all X in (a, b) or f(x) < 0 for x in (a, b).
Say f(x) > 0 for all x in (a, b). Suppose f'(x) has an
even number of roots in (a, b), say a^, a2> . . , , 9-2̂ » 
where a < a^ < a2 < . . , < a2^ < b and r any non-negative 
integer, r = 0 will contradict Rolle*s Theorem, so con­
sider the case r > 0,

Since f(a) = f(b) = 0, we know that f(x)f*(x) > 0 for
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all X in (a, a^), and f(x)f*(x) < 0 for all x in
Since there is no root for f'(x) in Ca^, for i = 1,
2, ... , , 2r-l, hence f'(x) < 0 for all x in ^2i^
for i = 1, 2, , , . , r, f*(x) > 0 for all x in ^^2Xf ^2i+l^
for i = 1, 2, . . . , r-1, and f*(x) > 0 for all x in
(a^r» b). This would imply that f(x)f*(x) > 0 for all x in
C b) ,

A similar argument in case f(x) < 0 for all x in (a, h) 
leads the conclusion that f(x)f'(x) < 0 for all x in (a, a^), 
a contradiction.

Hence f'(x) has an odd number of roots in (a, b).

Theorem 2.11. (m EAH-VALUE THEOREM) If a < b in a
real closed field E, then there exists a c, with a < c < b,
such that f(b) - f(a) = (b - a)f*(c).

Proof : Since b > a, b - a / 0, (f(b) - f(a))/(b - a)
is defined. Let (f(b) - f(a))/(b - a) = t. Then
f(b) - f(a) = t(b - a), or f(b) = t(b - a) + f(a). Let
g(x) = -f(b) + f(x) + (b - x)t, then g’(x) = f*(x) - t.
But g(a) = 0, and g(b) = 0. Hence, by Rolle's Theorem, 
there exists a c e  (a, b) such that g*(c) = 0, Since 
g'(c) = f'(c) - t, f'(c) = t, Hence f(b) - f(a) =
(b - a)f'(c).

Lemma 2.12. Let f(x) be a polynomial in FCx], where 
F is a formally real field. Let f'(x) be its formal
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d e r i v a t i v e .  If f *Cx) h a s  n o  r o o t s  i n  (a, b), a n d  

M  = m a x  C f ( a ) ,  f ( b ) } , m  = m i n  C f ( a ) ,  f ( b ) 3 » t h e n  M  ^  f ( x )  

f o r  a l l  X  i n  [a, b ] , m  ^  f ( x )  f o r  a l l  x  i n  [a, b ] .

Proof : Let gCx) = f(x) - M, Note that g*(x) = f*(x).
Since g*(x) has no roots in (a, b), m / M; g(x) has no 
roots in (a, b) either, for otherwise, by fiolle's Theorem, 
we will get a contradiction. Since either g(a) < 0 or 
gCb) < 0, we see that gCt) < 0 for all t in (a, b). Hence 
gCx) = f(x) - 0 for all x in [a, b], i.e., f(x) ^ M
for all X  in [a, b].

A  s i m i l a r  a r g u m e n t  s h o w s  f ( x )  ^  m  f o r  a l l  x  i n  [a, b ] .

Proposition ^.13. Let S = { x  e [a, b ]  ( f '(x) = 0} U
{a, b]. Let M = m a x  [ f ( x )  I x  e S}, m = m i n  C f ( x )  I x  e S]
Then M ^ f C t )  for a l l  t in [a, b], m  ̂  f C t )  for a l l  t in
[a, b ] .

Proof : S is finite. Let S = {x q , x^, . . . , x^3
with X. < X. if i < j. The proposition follows from

X  J

applying Lemma 2.12 to the intervals [x^, » i = 0, 1,
. . . »  n-1.

Corollary 2.14. f(x) has a maximum and minimum on 
any closed interval [a, b].

Proof ; This follows immediately from Proposition
2.13.
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Theorem 2.15. CbuDAIT*S THEOREM) Let F he a real 

closed field. Let f(x) e F[x] have degree n and assume 
elements a, h satisfy a < h and are not roots of f(x).
For r e F, let V(r) denote the number of variations in 
sign in the sequence {f(r), f*(r), . . . , f^^^Cr)). Then 
V(a) - V(b) exceeds the number of roots of f(x) in F in 
(a, b), each counted with its multiplicity, by a non-neg­
ative even integer.

Proof : (i) If f(x) has a single root t in (a, b),
one change of sign is lost, for f(x) and f'(x) have unlike 
signs for all x in (t - h, t), and like signs for all x in 
(t, t + h), where h > 0, by Lemma 2.3.

(ii) If f(x) has an r-multiple root t in (a, b), r 
changes of sign are lost, for, by Proposition 2.4, f(x), 
f*(x), . . . , (̂i*) alternating signs imme­
diately before, and immediately after the passage have all

(r)the same sign as f
(iii) If f^“\t) = 0 for t e (a, b), but f^^"^\t) / 0, 

f(“̂'*’l)(t) / 0, then f^^'^\t) and f a r e  either of 
like sign or unlike sign. Suppose they are of like sign, 
either " + 0 + " or ” - 0 - ", By Proposition 2.4, imme­
diately before the root (x < t) we have + - +, or - + -,
and immediately after we have + + + ,  o r - - - .  So two 
variations of sign are lost. Suppose they are of unlike 
sign; then no change of sign is lost, for immediately
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before the passage, the signs of f^^^(x),

must be either + + - or - - + and after the pas­
sage these become + - and - + +, Therefore, on the
whole, we conclude that either no variation can be gained, 
or two variations may be lost.

(iv) Suppose f ( x )  = 0 has an r-fold root t e (a, b) 
and / 0; i.e., X 0,
= . . . = . 0.

Let*s look at the series of functions
............

There are two cases to consider:
(1) f^^'^^Ca) and f^“̂'*’̂ ^(a) have like signs. If r

is even, r changes of sign are lost. If r is odd, r+1 
changes of sign are lost. Because signs alternate to the 
left of t and are the same to the right oft,

(2) f^^”^^(a) and f̂ °̂ *''̂ (̂a) have unlike signs. If r
is even, r changes of sign are lost. If r is odd, r-1 
changes of sign are lost.

Since f(x), f'(x), , , , , f^^\x) have only finite 
number of roots, by induction, the theorem is proved.

Corollary 2,l6. (DESCARTES* RULE) Let f(x) = a^x^ +
+ . . . + â x̂̂ ”^, Sq / 0, a^ e F, for j = 1, 2, . . , ,

i. Let S denote the number of variations in sign in the
sequence {&q » . . . , a^}. Then S exceeds the number of 
positive roots of f(x), counting multiplicities, by a non-
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negative even integer.

Proof : When zero is substituted for x in f ̂ ^\x),
f^^”^^(x), , . , , f ̂ ^\x), f(x), the signs are the same 
as the signs of the coefficients a^, a^, , . , , a^. For 
sufficiently large x, the signs are the same as a^. By 
Budan's Theorem, the number of positive roots can not 
exceed the number of variations lost during the passage 
from 0 to +  C O  , that is the number of changes of sign in
the series a^, . , . , a^}.

We observe that f(r) =? f(-(-r)), and r is a negative 
solution of f(x) = 0 if and only if -r is a positive so­
lution of f(-x) = 0; thus, we can study the negative 
solutions of f(x) = 0 by examination of the positive solu­
tions of f(-x) = 0.

Proposition 2.17. Let F be an ordered field, 
fCx) = + a^x^”^ + . . . + a^ is a polynomial with coef­
ficients in F. Let M  = max (1, 5  1 a.I}. Then every root 
of f(x) in F is contained in the interval [-M, M ] .

Proof ; If f(x) = 0, then x*̂  = - ,2 â x^"*^,
0  /  l x | ^  = 1 - 2  a . x ^ ” ^ 1 ^ Z 1 a . I I X I , 1 2  (la. l/|xl^),

Suppose jxj > M ̂  1, then Ix|^ > M for all i, so
l a . I / 1XI^ <  l a . 1/ M; 1 ^  2  ( l a . I / 1 x I ^ ) <  2 (I a . 1/ M  )X X  ̂ X X
= ( 2  I a.I)/ M, so M  <  2  I a.1, a contradiction. Hence'̂*'1 t —4
- M  <  X  <  M .
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If we set |i = 1 + lâ l + , , . + la^i, then the roots 

of f(x) in F are in (-ti, p.). If fgCx) = f(x), f^Cx), . .
. , fg(x) is the standard sequence for f(x), then the num- 
her of roots of f(x) in F is V(-p) - V(p) where V(r) is 
the number of variations in sign in [fgCr), f^(r), . . , , 
f-(r)}. This gives a constructive way of determining the 
number of roots of f(x) in F.
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SECTION III 

REAL CLOSURE OR AN ORDERED FIELD

Any ordered field can be imbedded in a real closed 
field. We shall now show that, if F is an ordered field, 
then there exists a real closed algebraic extension field 
A of F whose (unique) ordering is an extension of that of 
F. Moreover, we shall see that A is essentially unique.

Definition 3.1. Let F be an ordered field. Then an 
extension field A of F is called a real closure of F if:

(1) A is real closed,
(2) A is algebraic over F,
(3) the ordering of A is an extension of that of F.

Similarily,

Definition 3.2. Let (F, p ) be an ordered field.
Then (A, P’) is an order closure of (F, p ) if and only if 
(a , P') 3 (F, p ), (a , P') is order closed and A is alge­
braic over F.

Theorem 3.3. Let F be an ordered field, v a real 
closed extension field whose order is an extension of that
of F. Then v contains a real closure of F,

Proof; Let T be an algebraic closure of F in v . Let
f be the algebraic closure of F in . Note that P
is algebraically closed since v[J^3 is.
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Let p(x) G T[x] €= v[x] be irreducible over T[x], and 

suppose § G F is a root of p(x). We want to show 
J-1 G T[§], so that no proper algebraic extension of T can 
be ordered.

Note that § ^ v .  S o ? = a +  bJ-1 for some a, b g  v, 
and b / 0 ,  f = a - bj^, p(f) = 0 ,  so f g  f, and g  P.

Thus 2a = ? + f G Î * n v ,  s o a s T ,
2b = ^-l(f - § ) G Î * n v ,  s o b e T .

Hence = (§ - a)/b g  TC§], T is a real closure of
P.

Theorem 5.4. Every ordered field has an order closure,

Proof: Let (P, P) be an order field and let P be the
algebraic closure of P. Let ^ = {(X, P^) I E = P, (e, Pĵ )
is an order extension of (P, P)}. Define (E, Pg) < (T, P^)
if (T, P^) is an order extension of (E, P̂ -). ^ is not
empty since it contains (P, P). Moreover, ^ is inductively 
ordered, so by Zom* s Lemma, ^  contains a maximal element 
(a, P*). If (a, P*) is not an order closure, it has a 
proper algebraic extension A* which is an ordered field. 
Since F is algebraically closed, we may assume that A’ «= p. 
This contradicts the maximality of A in P. Thus A is an 
order closure, hence a real closure.

Lemma 3.5. Let P^, and Pg be ordered fields with 
real closures A^ and Ag, respectively. And let a-----> a
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be an order isomorphism of onto Fg. If f(x) e F^[x],
then f(x) and its image î(x) under a >a have the same
number of roots in and respectively.

Proof ; Ve have seen that there exists a (i > 0, p. e F, 
such that every root of f(x) in A^ is contained in (-H-» H-)» 
Moreover, by Sturm's Theorem, the number of roots of f(x) 
in the interval (-p., p.), hence the total number of roots 
of f(x) in A^, is given by vC-p.) - V(p.), where V(r) is the 
number of variations in sign of the standard sequence of 
f at r. Since the standard sequence of f is contained in 
F^[x], all of this carries over to ?(x) in Ag. Hence the 
number of roots of î(x) in Ag is the same as the number 
of roots of f(x) in A^.

Tte-mma 3.6. Let F^, Fg, A^, Ag, be as in Lemma 3,5.
Let S <= A^, S finite; then there exists a subfield of 
A^ containing F̂  ̂and S and an isomorphism c of into
Ag which extends a and a(x) < cr(y) in Ag whenever
X, y G S and x < y.

Proof: Let S = {a^, a^, . . . , a_} be a finite sub-
_L ^  H

set of A^, and < ag < < . . . < a^. Let f(x) be a
polynomial in F^[x] which has a^, 1 i ^ n, b^ ^j+1 *
1 ̂  j ^ n-1, among its roots, Ve note that b. e A., since

V

A^ is real closed and a^^^ - a^ > 0. Let be the finite 
dimensional extension of F^ generated by the roots of f(x)
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in Then T^ = and, If g(x) is the minimum poly­
nomial of over g(x) has a root §2 ^2’ have
an isomorphism a of T^ onto such that a(a) = â,
a e Ft , and a($,) = Then d(a..̂ ) - o(a.) = o(a..̂  - &.)

X  X  ^  J  +  i. J  J - r X  J

= (o(h.))^ > 0. Hence oCa, ) < oCa^) < . . . < o(a_) in Ao J X C: n CL
as required.

Theorem 3.7. Let F^, Fg, A^, Ag he as above. Then 
any order isomorphism of F^ onto F2 has a unique extension 
to an isomorphism A^ onto A2. The extension is an order 
isomorphism.

Proof : Let ? e A^, and let p(x) be the minimum poly­
nomial of Ç over F^, Let a^ < a2 < , , . < a^ be the roots
of p(x) in A^, and suppose â  ̂= §. Then p(x) has exactly
m roots, a^' < a2* < . , , < a^* in A2 and we now set
Ti(§) = a^* .

r\ is well-defined and r)(a) = â for all a in F^,
Let X, y e A^.
Let p^ be the minimum polynomial of x.
Let P2 be the minimum polynomial of y .
Let p^ be the minimum polynomial of xy.
Let p^ be the minimum polynomial of x + y.
Consider the set S = £§ lpj^(§)=0 for some i,

1 ^ i ̂  4} . We have seen there exists a subfield T^ of A^
with S cr T^, and O; T^ >A2» an isomorphism preserving
order on S.
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As "before, let p(x) be the minimum polynomial of § 

over and let a^ < a2 < . . . < a^ be the roots of p(x) 
contained in A^. Then a^ e S and cr(â ) < o(a2) < . . .
< a(a^). We have p(cr(a^)) = 0 and it follows from the 
definition of r\ that n(§) = cr(§). Since a is an isomorphism, 
this implies ti(x + y) = t|(x) + T|(y) and ri(xy) = -n(x)r)(y). 
Hence -n is an isomorphism of A^ onto à2 extending the given 
isomorphism of onto î*2*

NoW if 11* is an isgmorphism of A^ onto Ag, then t]* 
preserves order (i.e., ti* maps squares into squares).
Suppose r\* extends the mapping a >a. Let § e A^, and
let a, < ao < . . . < a„ be the roots in A. of the minimum1. £1̂ m 1
polynomial p(x) of § over F^. Then ri'(â ) < , , . < T]*(â ) 
are the roots in A2 of p(x). It follows that ti*(§) = ti(§). 
Hence the extension is unique.

Remark: If A^ and A2 are two real closures of a given
ordered field F, then the identity mapping on F can be ex­
tended to an order isomorphism of A^ onto A2. In this 
sense real closures are equivalent and we may therefore 
speak of the real closure of F.

Proposition 3.8. The field Q(J~2) where Q is the field 
of rational numbers has exactly two distinct orders.

Proof : Consider Q[x]/(x^ - 2) = Q(§) where = 2.
It has two distinct natural isomorphisms from Q(§)
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into the real closure Q of rationale. One is given hy 
f̂ ĈÇ) = ,T2 and f^(a) = a for all a in Q; the other one is 
given hy f2(§) = and fgCa) = a for all a e Q.

Let P he the set of positive elements of Q. We claim 
f^”^(p) and f2~^Cp) are two distinct orderings for Q(§).

Sub-proof : (l) If 0 / x G Q(§), either f ĵ (x) e P,
X e fj|̂”^(p); or -f^(x) e P, ~x e f^”^(p), 'i = 1, 2.

(2) fj^~^(p) is closed under addition and multiplication 
for i = 1, 2. Whenever x e f^”’̂ (p), then f̂ Ĉx) e P and 
whenever y e f^”^(p), then fĵ (y) e P. It follows that 
whenever f̂ Ĉx + y) e P, then x + y e fj^~^(p), and whenever 
f^(xy) e P, then xy e f^”^(p).

(3) They are distinct because § e f^”^(p)\f2*’̂ Cp).
So we have established two distinct orderings for Q.

(i.e., a + b§ e f^~^(p) if and only if a + b^j% > 0; and 
a + b§ e f2~^CP) if and only if a - b|? > O).

Let P' be an order of Q(§). Let S be a real closure 
of (Q(§), P'); Let P** be the order of S. Note that 
S 2: Q by a map f: S  ̂Q, and f""̂ (p) = P'*.

flqCl^: Q---->0. . Since there are only two such maps,
flq(ç) = f^ for i = 1, 2. Also, P* = P'* fl Q(§)
= f“^(p) n Q(§) = flQ(g)’’̂ (p) = f^“^(p)j i.e., P* = fj,“^(p) 
for i = 1, 2.

Therefore the only orderings are f^^^Cp), i = 1, 2.

Proposition 3.9. Let Q be the field of rational
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numbers and let F = Q(§) where § is transcendental. Then 
F has xmcountably many distinct orderings,

Proof : Let R be the real nnmbers. We know there
are an uncountable number of transcendental elements t e R,

Let S = Ct e R I t transcendental}. For t e S, let
be the isomorphism )--- »R, which maps § to t and a

to a for all a e Q,
Let P be the order on R, then ^(p) = P^ is an order

on Q(§) by using the same argument as Proposition 3.8,
We claim P^ = P^i if and only if t = t*. If not, we

may assume t' < t. So there exists a rational number a
such that t' < a < t which implies p^i(§) < a < p^(§).
So § = p^i”^p^»(|) < p^,“^(a) = a and § = p^“^p^(§)
> P^^^(a) = a, i.e., § <„ a and % >_ a, t Pt' Pt

Hence there are uncountably many orderings on Q(§), 
if § is transcendental.
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SECTION IV 

FONDAMENTAL THEOREM OF ALGEBRA

Definition 4.1. An ordered field F is said to be 
Archimedean  ̂ (or Archimedean ordered) if there exists a 
positive integer n such that n > a for every a e F.

Examnle: Q,, the field of rational numbers, and R,
the field of real numbers, are Archimedean ordered.

Note ; If the ordering of a field is not Archimedean, 
there exist "infinitely large" elements, larger than any 
rational number, and "infinitely small" elements which 
are smaller than any positive rational number but larger 
than zero.

Example : ‘ Consider Q(t), where Q, is the set of ratio­
nale and t is an indeterminate. Define an order on Q(t) 
by: f(t) is positive if the leading coefficient of f is
positive, f(t) is negative if the leading coefficient of 
f is negative, f(t)/q(t) is positive if the leading coef­
ficient of fq is positive, and f(t)/q(t) is negative if 
the leading coefficient of fq is negative, where f(t), 
q(t) e Q[t], and q(t) / 0.

The "Archimedean axiom" in geometry runs as follows : 
Starting from a given point P ("zero point") a given 

line segment PQ ("unity segment") can always be laid off 
in the direction PR a number of times so that the last end 
point lies beyond any given point R,
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This ordered field is not Archimedean since if f(t) = t 

in Q(t), there does not exist an integer such that n > fCt), 
i.e., t is infinitely large. Since n < t for all integers 
n > 0, l/n > l/t for all integers n > 0. l/t is called 
as "infinitesimal".

Remark: An ordered field need not be dense (order
sense) in a finite ordered extension, as we can see in the 
example which follows.

p p 2
Example ; Let f(x) = Cx - t) - t e E[x], where

E = Q(t) is ordered with t a positive infinitesimal.
p p %

First we define f(a) = (a - t) - t and observe
f(a) = f(-a). Let x »  y mean for all positive integers

2 5n, X  >  ny. Rote that t »  t »  t since t is infinites­
imal and a »  t if a is positive in Q,.

If a = p(t) with rational coefficients and constant
p p

term zero, we can write a - t = (-t) + t (q(t)) for some 
q(t). Now (a^ - t)^ = t^ - 2t^q(t) + t^(q(t))^, so that
f(a) = (a^ - t)^ - t^ = t^- 2t^qCt) + t^Cq(t))^ - t^

= t^ - t^(hCt)) > 0 for all a e F. 
fCx) has four roots in any order closure of F, Two

are positive,  ̂t(l +fIT) and Jt(l - ^ ) , and two are negative, 
-J t(l-J^) , and - J t ( 1 +Jt ) . Call them x^, X2> x^, and x^ 
respectively. Rote that x^ > Xg > x^ > x̂ _̂, and 
fCx) = (x - x^)(x - X2)(x - x^)(x - x^). Let x̂  ̂> a > X2, 
then f(a) = (a - x^)(a - X2)(a - x^)(a - x^) < 0 ,  so a F.
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The above example is also a counterexample to the 

converse of Theorem 1.12.

Theorem 4.2. Let T be an ordered field, and T' a 
subfield of T with the induced ordering. Then T is Archi­
medean if:

(1) T' is Archimedean
(2) [T : T'] < CD .

Proof : Take any a e T\T* , a > 0, Since [T : T'] < oo ,
let f (x) = x:̂  + S â x°̂ "*̂  be the minimal polynomial of a in 
T'[x]. Since a is a root of f(x) in T, 0 < a ^ M where
M = max (l, S la.I), and M > 0 in T*, by Proposition 2.l7.1,̂1 jl
But T* is Archimedean, so there exists an integer n such 
that n > M and n > M ^ a > 0, Hence n > a and the theorem 
is proved.

Corollary 4.3. The order closure of an Archimedean 
ordered field is Archimedean.

Proof : Let T be an Archimedean ordered field, and T 
its order closure. Take any t e T, then T(t) with the 
induced ordering is an ordered field. And [T(t) : T] < oo , 
so T(t) is Archimedean, and there exists an integer n such 
that n > t. This is true for all t e T, so T is Archimedean,

If S is a set of real numbers, we say that b is an 
unner bound for S if for each x e S we have x ̂  b. We some­
times express this by writing 8 ^ b, A number c is called
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a least upper bound for S if it is an upper bound for S and
if c ̂  b for each upper bound b of S. Clearly the least
upper bound of a set S is unique if it exists. We shall 
denote the least upper bound of S by s u p  S .

We will take as known the fact that the field of real 
numbers satisfies the

Completeness Axiom; Every nonempty set S of real 
numbers which has an upper bound has a least upper bound.

We can define lower bounds and greatest lower bounds 
in a similar fashion. We denote the greatest lower bound 
of a set S by inf S .

Definition 4.4. A set A of rational numbers is said 
to be a cut if (l) A contains at least one rational, but 
not every rational;

(2) if p 6 A and q < p (q rational), then q e A;
(3) A contains no largest rational.

If A and B are any two sets of rational numbers such 
that: (l) every rational number is either in A or in B;

(2) no rational number is in A and in B;
(3) neither A nor B is empty;
(4) if a e A, and b e B, then a < b

hold. Then we say A and B define a Dedekind cut.

Lemma 4.3. Let R be the field of reals. E is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



45
Archimedean. Let a e R and a > 0. If 8̂  ̂= {t e Q c= h | 
t < a} and is the complement of 8̂  ̂in Q, then
sup = inf .

Proof : S_ is hounded above, since R is Archimedean,
And S '  is bounded below. Since S_ contains every s < r
for every r e S_. S_ and its complement S^* in the set ofcl oL 9.
positive nationals define a Dedekind cut. sup Ŝ  ̂= t ^ s 
= inf Sĝ ' . Suppose t < s, then there exist m e Q and 
t < m < s. Then either a < m or m < a, this can not be 
either if t < s. So t = s.

Theorem 4.6. If (P, p) is an Archimedean ordered
field, then there exists a unique order isomorphism from 
F into R.

Proof : We first define f : P---- >R via
f(a) = sup Sĝ  ( = inf Sĝ ' by Lemma 4.5). 
f is well defined. We will show that f is a homomor­

phism, i.e., f(a + b) = f(a) + f(b); f(ab) = f(a)f(b)
Let a, b be any positive elements of F and let 

m^/n^ e Sĝ , 212^2 e S^, where m^, n^ e P. Then
m^/n^ ̂  a; m^ ^ n^a m^n2 ̂  ̂ 1^2®̂ since n2 s P.

^ ™2 ^2^ n^m2 ̂  ̂ 1^2^ since n^ e. P.
+ “l®2 $ + mg/ng e .

But f(a + t>) = sup , so + m2^^2 ® sup
®a+-b “ Is true for all e ,

sup < sup - mg/ug .
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 ̂ ^a+lD “ "true for a l l  iû.2/^2 ^

sup S^ ^ sup - sup Sĝ  . Hence sup + sup S^ ^ sup
i.e., f ( a )  + f ( b )  f C a  +b).

On the other hand, a repetition of the argument just
given shows, that f (a) + f C b )  ^ f(a + b )  since f(a + b )  =
inf . So f(a) + f(b) = f(a + b).

By a similar argument we can show that f(a)f(b) = f(ab)„
Ve now extend the mapping f to all of F by defining
f(o) = 0 and f(-a) = -f(a) if a e P.
f is a homomorphism. If a e P, - b e  P, then f(a + b)

= f(a - (-b)) = f(a) - f(-b) = f(a) + f(b) and f(ab) =
-f(-ab) = -f(a)f(-b) = f(a)f(b).

If -a e P, -b e P; f(ab) = fC-a)f(-b) = f(a)f(b).
The other cases are similar.
We note that f(l) / 0, so f is not the zero map, E 

is a field, so f is an isomorphism. 8ince positive elements 
are mapped into positive elements by f, f is an order iso­
morphism of F into E. Also we observed that f maps any 
rational number m to m. Ve claim that f is unique. Sup­
pose not; there exists an order isomorphism g from F into 
E such that f(a) / g(a) for some a in E. Then either
f(a) < g(a), or f(a) > g(a). If f(a) < g(a), then there
exists a rational t such that f(a) < t < g(a). Then 
a < f"^(t) = t and a > g“^(t) = t, a contradiction.

Corollary 4.7. E, the field of real numbers, is
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order closed.

Proof : Let 5 be the order closure of R. Since R
is Archimedean ordered, R is also Archimedean ordered hy 
Corollary 4.3, Hence there exists a unique order isomor­
phism f from R into R, fig is an order isomorphism. But 
there is only one; and clearly the identity map on R is 
an order isomorphism, so fig = Ig . Hence f = Ig .

Therefore we can identify R as an order closed field. 
jt R and R(,T-1) is algebraically closed by Theorem 1.21, 

This is known as

FUHDAMHHTAL th eo re m of ALGEBRA: Every algebraic
equation f(x) = 0 with coefficients in the field of 
complex numbers has a root in this field.
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