
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1985

SCOUT| An automated football scouting system SCOUT| An automated football scouting system

K. Garry Dyer
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Dyer, K. Garry, "SCOUT| An automated football scouting system" (1985). Graduate Student Theses,
Dissertations, & Professional Papers. 3491.
https://scholarworks.umt.edu/etd/3491

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F3491&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/3491?utm_source=scholarworks.umt.edu%2Fetd%2F3491&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

COPYRIGHT ACT OF 1976

THIS IS AN UNPUBLISHED MANUSCRIPT IN WHICH COPYRTGHT SUB­
SISTS. ANY FURTHER REPRINTING OF ITS CONTENTS MUST BE APPROVED
BY THE AUTHOR.

MANSFIELD LIBRARY
UNIVERSITY OF MONTANA

9 ejj

SCOUT

An Automated Football Scouting System

by

K. Garry Dyer

B.A., University of Montana, 1975

Presented in Partial Fulfillment of the Requirements for the Degree of

Master of Science

UNIVERSITY OF MONTANA

1985

Approved by:

Chairman, Board of Examiner^

Dean; Graduate School

UMI Number: EP35982

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI
DwMrtation PfcMiiMng

UMI EP35982

Published by ProQuest LLC (2012). Copyright in the Dissertation held by the Author.

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest*

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

Dyer, K. Garry, M.S., March 14, 1985 Computer Science

Scout: An Automated Football Scouting System (235 pp.)

Director: Alden Wright

Football scouting is done in many ways. This paper explains how
a computerized scouting system was analyzed and designed. It
contains sections which discuss each of these phases of the
development of the system along with a discussion of the
implementation of the system. The system was made for the
University of Montana football team, written in PASCAL and
implemented on the University of Montana's DEC-2060 computer.

ii

ACKNOWLEDGEMENTS

I would like to thank the following members of my committee for
their help with the writing of this project: Dr. Alden Wright, Dr.
Kenneth Silvestro, and Dr. Keith Yale. I also want to thank Dr. John
Barr for his help while he was on my committee. A special thank you
goes to Gary Frazer for his assistance with proofreading. Last but
certainly not least I want to thank my wife Shirley for putting up with
the many nights I spent working and ignoring her. Without her
understanding I would never have been able to complete this project.

iii

TABLE OF CONTENTS

Abstract ii

Acknowledgements iii

Table of contents iv

Introduction 1

Justification 3

Analysis 6
Introduction 6
Input 9
Output 12
User Interface 18
Data Flow Diagrams and Data Dictionary 19

Design 22
Introduction 22
Data Structures 23
Structure Charts 24

Implementation 31
Introduction 31
Coding 31
Portability 32
Testing 33

Appendix I (Data Flow diagrams) 36

Appendix II (Data Dictionary) 47

Appendix III (Structure Charts d-SCOUT) 64

Appendix IV (Pseudocode d-SCOUT) 68

Appendix V (Structure Charts o-SCOUT) 117

Appendix VI (Pseudocode o-SCOUT) 122

Appendix VII (User Manual d-SCOUT) 198

Appendix VIII (User Manual o-SCOUT) 210

Appendix IX (Glossary) 229

iv

INTRODUCTION

Football game scouting is that activity which coaches go through to

learn the tendencies, strengths, and weaknesses of future opponents.

The most used and most effective methods are the taking of still or

motion pictures and/or notes by persons attending games played by the

opponent against other teams. The pictures and notes are then

analyzed and used to make game plans to best compete with the teams

scouted.

This thesis project is designed to improve the scouting procedure

by setting part of it up in computer form. It is more flexible,

comprehensive, and rapidly available than the prevoius manual system,

and thus it is a great time saver in game plan preparation.

My thesis consists of an automated football scouting system called

SCOUT primarily designed for the University of Montana coaches and

team. However it may be applied to any professional, college, or even

high school football program with only minor adjustments. The backbone

of the system is dependent on a thorough scouting activity of the

opponents offensive and defensive plays, along with a comprehensive

study of the home team's own offensive and defensive moves.

1

The function of this program is to take the data, collected by the

coach, and analyse it and return it in a form that will allow the

coaches to easily construct a game plan for playing against the scouted

team.

The University of Montana coaching staff indicated a great interest

in this project and were anxious to contribute to its development for

use as soon as possible. The program is now in working order and is

currently being used by the University coaching staff.

Football coaches, players, and fans over the years have created a

jargon for the game. These language expressions belong to the game of

football, and therefore will be used in this project and thesis where

they seem to work best. A glossary of these terms can be found at the

end of the thesis.

2

JUSTIFICATION

The use of computers for the purpose of collecting and analyzing

data has changed the scouting methods of most professional and college

athletic teams. The collecting and analyzing of data that took days

when done by hand can be done in a matter of a few hours when the

process is automated. In addition to speeding up the scouting process,

automation also allows much more data to be collected and analyzed.

These data are not only for other teams but also for the users team, and

for future players that the coaching staff may seek to recruit.

The University of Montana had no automated scouting system to

collect and analyze data about future opponents or the Grizzlies. They

were collecting the data and analyzing it but it was all being done by

hand and it took approximately three man days to collect and analyze. I

felt that this was an unnecessary burden on the coaching staff and

consumed valuable time that could better be used working directly with

the players.

3

With this system the coaches can enter the data from films into the

computer and the computer will do all the analyzing of the data

automatically. The charts containing the information that the coaches

need will then be rapidly available for use in coaching and game plan

preparation.

An automated system will provide the coaches with more information

in about one-fourth of the time (see fig.1). It will also make it much

easier to add new information to a scouting report that has already been

done at some earlier time.

4

Activity Time

using SCOUT using SCOUT
by hand no terminal with terminal

A. Transferring play
information from
film to paper

10 hr 10 hr

B. Travel to and from
terminal room

— -- .5 hr

C. Transferring play
information from
film to computer

—
--

—
-- 6 hr

D. Transferring play
information from
paper to computer

— — 6 hr

E. Sort and analyze
information on
paper

14 hr — — — —

F. Put necessary
charts on paper

6 hr — —

G. Request necessary
charts from
computer

— — .5 hr .5 hr

H. Pick up charts
from computer
center

— — .5 hr .5 hr

TOTALS 30 hr* 17.5 hr** 7 hr**

* These figures are estimates supplied to me by the
University of Montana coaching staff.

** These figures were calculated by entering and
analyzing 95 plays (approximately one game).

FIG.1

5

ANALYSIS

INTRODUCTION

The analysis phase of building a computer system to automate a

manual process is finding out exactly how a job is being done without

the computer and then deciding what steps a computer must take to

accomplish the same task. There are several methods of doing this,

including the one I shall describe in the following section of this

paper.

My analysis included several visits with the University of Montana

coaching staff, writing to professional football teams, using my own

knowledge of the game of football, and using both physical and logical

data flow diagrams.

I set up an appointment to meet with the University of Montana

coaching staff to work out the details about exactly what they wanted

the capabilities of such a program to be. At this meeting I found that

they knew very little about what could be done with an automated system.

6

I also decided to contact professional football teams to ascertain

what their scouting programs are like. Only five of the twenty-eight

teams that I contacted answered, but I was able to collect some very

valuable information from their replies. This information included what

the most important comparisons are and how much value should be placed

on each comparison in respect to the overall scouting report.

I set up another appointment with the University of Montana

coaching staff and asked them to show me exactly what data they had been

collecting and how they had been analyzing the data by hand. From

information gathered at this meeting I was able to get a rough idea of

what they wanted. When I informed them that I felt I could write a

program that would provide them with much more information in less time,

they seemed to like the idea and told me to do it the way I felt it

should be done.

With this information I did some preliminary analysis of the

project and made some preliminary physical data flow diagrams. Using

the physical data flow diagrams in addition to my personal knowledge of

football scouting I made some preliminary logical data flow diagrams.

Examples of data flow diagrams can be found in appendix I. I took these

diagrams to the coaching staff to see if they felt this was the way they

would like the program to work.

7

Using information received from the professional teams, I rewrote

the data flow diagrams to include some of the things they were doing

that could make the Grizzly system more useful. These new data flow

diagrams led to a set of specifications and requirements.

While writing the code for the scouting program it became so large

as one program that it had to be divided into two programs. I called

these programs d-SCOUT (the defensive program) and o-SCOUT (the

offensive program). By this time I had enough of an idea about the

overall program that I did not need new data flow diagrams to complete

it.

Because of the high school recruiting duties of the coaching staff

it began to get very difficult to find any of them in town or with time

to give me for collecting more information, or determining additional

requirements. I wrote a requirements document from what I had, and

finally found a coach to look at it. He told me that it was just fine

with a couple of revisions he thought would be needed. With this

information I was able to revise my data flow diagrams and requirements

document to include the new information.

The game of football is played in a way that naturally separates

the information needed for offense from that needed for defense. It is

therefore necessary to divide the data items into two categories, one

for offense and one for defense.

8

INPUT

With the information received from the coaches I had a good idea of

the data items that the user would need to supply to the system to

produce the charts required. Following is a list of these data items

and a brief explanation of why each is necessary.

OFFENSE

1. The opponent of the team being scouted. This is necessary
because the plays called are often very dependent on what the
opponent does and the tendencies may not hold if our team is
found to be very different from the opponent on the scouting
report.

2. The hash mark from which the play originated. This is
important as many teams have a tendency to do certain things
from one side of the field that they never or seldom do from
the other.

3. The yardage zone on the field that the play originated
from. This is necessary because most teams use a completely
different set of plays and philosophy while on one area of the
field than when on another.

4. The down and distance of the play. This is necessary to
allow the coaches to determine what the team tendencies are for
the different yardage situations.

5. The formation used. This is important so that the coaches
can get an idea of what plays the team likes to use from the
various formations.

6. Was the play a run or a pass. This will tell the coaches in
which situations the team likes to run and in which ones they
prefer to pass.

7. The actual play that was run. This is the crux of the whole
scouting idea. It allows the coaches to get some idea of which
plays the opponents are likely to use in the various situations
provided by the other data items.

9

8. The position of the ball carrier. This will let the user
determine if the team likes to use a certain position as the
ball carrier in specific situations or has a position that is
used to carry the ball a large percent of the time.

9. The number of the ball carrier. This will allow the user to
determine which players are used in which situations and if
certain ball carriers are used more often then others in
certain positions.

10. The hole to which the play is run. This will let the user
know if the team has tendencies to run to certain hole in
certain situations. Thereby giving the user an idea of what
defenses to use.

11. Is the play to the strong or the weak side of the
formation. This informs the user as to what defenses may be
best to use with each formation.

12. The yards gained or lost by the play. This lets the user
see which plays have been most successful and give him an idea
of what the opponent is likely to want to run again.

13- The action of the quarterback on pass plays. This will help
the coaches decide which defenses and stunts may work best in
rushing the quarterback and covering the receivers.

14. The result of a pass play. This will tell the user which
pass plays have been most successful and therefore which ones
the team is most likely to use again.

15. The position from where receiver started. This will tell
the coaches which receiver is most likely to have the ball
thrown to him in each situation.

16. The number of the receiver. This will let the coaches know
which receivers run certain patterns best and the one the
quarterback likes to throw to in this situation.

17. The pattern run by the receiver. This, combined with the
previous two items lets the user know what to expect from each
receiver.

18. The depth of the pass thrown. This lets the user know the
best coverages to use in each situation.

10

19. The zone on the field to which the pass is thrown. This
lets the user know what coverage will probably work best in
each situation.

20. The drive number in which the play occurred. This lets the
user know at what point in the game the given play took place.

21. The play number in the drive. This allows the user to see
which plays are used to set up other plays.

DEFENSE

1. The opposing team. As with offense this is necessary
because what a team does is often dependent on what the team
they are playing does.

2. The hash mark from where play started. This lets the user
know if the team has different tendencies on different sides of
the field.

3. The yardage zone in which the play started. This lets the
user know what the team is likely to do on defense at different
locations on the field.

4. The down and distance of the play. This will tell the user
what defenses the team is likely to use for different down and
distance situations.

5. The formation that the offense used. This will tell the
coaches what defenses to look for if they use certain
formations.

6. Any Motion that the offensive team used. This will tell the
coaches which coverages will be use if they put men in motion.

7. The defensive front that was used. This will let the
coaches know what blocking schemes they should use to best
block the opposing lineman.

8. Any variations to standard fronts that are used. This will
let the user know which blocking assignments need to be
adjusted from those used for standard fronts.

9. The secondary coverage used. This will give the coaches an
idea of which pass patterns will work best.

11

10. The line stunts that are used. This gives the user an idea
of what sort of blocking assignment will need to be adjusted to
block the stunting linemen.

11. Any blitzes that are used. This will give the coaches an
idea of how many men they can put into the pass patterns and
how to best plan to block any blitzing linebackers.

The coaches and I decided that the above items of information if

properly analysed would provide the necessary information to create a

complete scouting report.

OUTPUT

The next step in my analysis was to determine what form the output

should take to be of maximum value to the coaches using the program. I

talked to several of the coaches and it soon became apparent that the

system must combine any or all of the data elements, and that the user

should be able to select which of these he wanted each time.

It also became apparent that the system should be able to produce

at least two different types of charts. One chart that would show the

details of each play on the chart and another that would show at a

glance the frequency with which certain items occurred in given

situations.

My next step was to look at BLITZ and FOOTBALL SCOUTER two

commercially available football scouting programs to get some ideas

about how the output charts should be formatted. I showed these

formatting ideas to the coaching staff and received their approval on

two of the chart formats.

12

Examples of the two types of output and an explanation of each

follows.

COVER BY HASH
I 1 I 2 1 3 I 5 1 6 1 M MF | M2D|WMM|WM21WM31COM I ROB I other

R I 11 41 0| 51 31 0 ol 61 5l 71 111 01 31 2 I

M I 21 31 11 41 21 1 ol 5l 3l 4I 51 21 01 0 1

L I 01 11 01 61 31 0 ol 4| 41 51 101 ol 11 11

othr I 01 01 01 ol 11 0 ol 0| Ol ol 21 01 01 1 I

3 8 1 15 9 1 0 15 12 16 28 2 4 4
2$ 7$ 1$ 13$ 8% 1$ 0$ 13$ 10$ 13$ 23$ 2$ 3$ 3$

THERE ARE 118 PLAYS ON THIS CHART

FIG.2

Figure 2 is an example of a MATRIX type chart. The top line "COVER

BY HASH" is the name of the chart and tells which two items are being

compared. The first part of the name ("COVER" in the above example) is

the items in each column and the second ("HASH" in the above example) is

the items in each row. COVER in this heading means the secondary

coverage used by the team being scouted and HASH is for the hash mark

where the play originated. The actual codes such as WWM and ROB are the

ones I obtained from the Grizzly coaches and would probably be different

for another coaching staff.

Line two is the actual name of each column, in this case the name

of each of the coverages used. These names are the ones that the

University of Montana uses to describe the different defensive

coverages.

13

The first item in the next four rows are the names of the items in

each row, in this case the hash mark. L standing for the left hash

mark, R standing for the right hash mark,and M standing for the middle

of the field. The numbers that follow are the number of times that the

items in the intersecting row and column occurred in the same play.

The last column and row are to indicate any occurrences of items

that are not included in the standard items.

The numbers in the seventh row of this example indicate the total

number of times that the item in each column occurred. The next row is

the percentage of times that each item occurred.

The final line gives the total number of plays on the chart.

The actual size of each chart will vary according to the number of

items of each type to be compared, but the general format for all matrix

charts is to be the same.

It was decided that the following comparisons should be available

on the matrix charts.

OFFENSE

1. The number of times that each hole is run for each down and
distance.

2. The number of times that each hole is run from each hash mark.

3- The number of times each hole is run from each formation.

4. The number of times each play is used from each down and
distance.

5. The number of times each pass action is used from each hash
mark.

14

6. The number of times each pass route was used from each hash
mark.

7. The number of times each formation was used from each hash
mark.

8. The number of times each pass action was used from each yardage
zone.

9. The number of times each pass route was used from each yardage
zone.

10. The number of times each pass action is used from each down and
distance.

11. The number of times each pass route was used from each down and
distance.

12. The number of times each formation was used from each down and
distance.

13. The number of times that each play was run from each formation.

DEFENSE

1. The number of times each secondary coverage is used for each
front.

2. The number of times each secondary coverage is used for each
offensive formation.

3. The number of times each secondary coverage is used for each
yardage zone.

4. The number of times each secondary coverage is used for each
hash mark.

5. The number of times each secondary coverage is used for each
down and distance.

6. The number of times each front is used for each down and
distance.

7. The number of times each front is used for each offensive
formation.

15

8. The number of times each front is used for each yardage zone.

9. The number of times each front is used for each hash mark.

For the list charts it was decided to let the user select each

chart on any number of items he might desire. He will be asked for the

number of items he wishes to key and then he will be asked for the key

value for each item. In this way any conceivable game situation that is

wanted can be created for checking. Any of the items that were entered

about the plays can be keyed and the user will then select a particular

value for the chosen item.

CHART KEYED ON HASH MARK
I I I I 1 d l r l I I I I I M r I I M I
I d ninjj iiiul Ip In I I I j r I e n I p I j p j r |
Irulpulhl Idslnl |o |u |h|s| IeIcuI pa IpdI!Ip elgl
IimIlmI a I IotI!I Is Imblol |p- |c|em|at|ae|z|a slas
jvbiabisi jwalpl l! I be 111!I j!iibjstjsplols ujis

oppI eel ye|hI form Inn la I play lb le lei |act|p|ve|se|st|n|s l|ns
I r l r l l I e l s I I c l r l l w l | o | e r | r | h | e | t |
I I I I l&elsl I I I I I Islr I nl | |

MSUl 11 2(RlPRI I2MIRI34 |B 12214|SI I I I I I I I 6

MSUl 21 1iRlTWLII1L|P|107X1 I I IW17001Y18911 IM 131 COM| 12

MSUl 31 31R1SPLB12LIP1941 I I I IS19001Z18811 IVL181INC| 0

AVERAGE =6.00 MODE = 0 TOTAL NUMBER OF YARDS = 18
MEDIAN = 6 MEAN =6.00
NUMBER OF KEYED PLAYS = 3
THIS IS 5% OF ALL THE PLAYS
TOTAL PLAYS ENTERED = 55
STANDARD DEVIATION IS 3«7

FIG.3

16

Figure 3 is an example of a list chart. Basically it is a list of

all the plays that have been entered that meet the requirements that the

user has requested.

The first row tells the name of the chart and lets the user know on

what item the chart was keyed. If more than one key is used the last

key will be the one for which the chart is named. For example if the

user asked for three keys such as: drive number, play number, and hash

mark the chart will be named "CHART KEYED ON HASH MARK".

The next eight rows are the names of the items that appear in each

column. Because of the width of some of the colunms some of the names

are written vertically.

Each of the following rows contains the information about an

individual play that meet the requirements for this chart. In this

example the chart was keyed on the right hash mark and therefore all the

hash column entries are "R".

The next rows contain the statistical information about the plays

in the list. These statistics are figured on the gain or loss value of

the plays.

1. Average: This is the average gain or loss for the plays on
this list.

2. Mode: This is the gain or loss value that appears most
frequently in the list.

3. Total number of yards: This is the total number of yards
gained or lost by all the plays in the list.

4. Median: This is the middle play in the list if the plays are
taken in gain loss order from lowest to highest.

5. Mean: This is the average gain or loss if the lowest and the
highest values are not considered.

17

6. Number of keyed plays: This is the number of plays on this
chart.

7. Percent of all plays: This tells what percentage of all the
plays entered are included in this list.

8. Total plays entered: This tells the total number of plays that
have been entered about the team being scouted.

9. Standard deviation: This is the standard deviation of the gain
or loss values for the plays in this list.

The length of this chart will of course vary depending on how many

plays meet the necessary keyed values. In the event that there are no

plays that contain all the keyed values this will be reported to the

user.

The user is to be given two options for the order of the plays in

the list charts. He will be given the choice of having them in the

order they were entered or in ascending order according to the gain of

the play.

USER INTERFACE

At the start of the program the user is to be asked for the name of

the team being scouted. This name will then be used to create the names

for the input files to be read and the output file to be produced.

Next the user will be prompted for each item to be entered about

any new plays he wants to put into the scouting report. The program is

designed to allow the user to enter these item while viewing the game

films. This is to eliminate the time that it would take to write them

on parer and then enter then into the program. These new plays will be

added to any old plays that were read from a file.

18

The user is to be given a choice as to whether he wants matrix

charts or list charts. After selecting one, and having the charts

produced he, will again be given this choice in case he also wants the

other type.

A menu of the possible combinations for matrix charts is to be

given to the user and he can then choose which ones he wants by number.

The user will also be given a menu of items that can be used as keys for

the list charts he wishes to have produced. For the particulars of this

menu please refer to appendix VII and VIII.

I used the information that I had gathered and wrote a final

requirements document for the system. I presented this requirements

document to the coaching staff and they gave their approval.

DATA FLOW DIAGRAMS AND DATA DICTIONARY

With the requirements clearly defined I was able to draw my logical

data flow diagrams and make a data dictionary. The data flow diagrams

may be found in appendix I and the data dictionary in appendix II.

Data flow diagrams are a pictorial representation of the flow of

data through a program from the initial input to the final output. They

deal strictly with the flow, and transformation of data and control is

not considered.

Data flow diagrams consist of the following elements:

1. Circles which represent processes where data may be transformed
from one form to another. The name in the circle indicates
what the process does.

19

2. Vectors which represent data flow from one process to another.
The name of the vector is the data being transported.

3. Straight line segments which represent file from which may be
read or to which it may be sent.

4. Rectangular boxes which represent data sourses such as the
user.

Data flow diagrams are drawn in such a way that the first or top

level ones show the overall system as one process. The succeeding ones

divide the process into smaller processes until the lowest level

diagrams show a process representing a single transformation of data.

The number of each chart is the number of the process that is broken

down in the diagram. The number of incoming and outgoing data flows on

a chart must always be the same as the number coming and going from the

process it represents.

An explanation of a representative diagram such as (DIAGRAM 1

BUILD- DEFENSIVE-CHARTS, page 36) follows.

This diagram is the first break down of the whole defensive

scouting system shown as process 1 on diagram 0. It has two inputs -

Defensive-Play and Defensive-Play-Wanted here called by the alias D-P-W,

and two outputs - Defensive-Matrix-Charts (D-M-C) and Defensive-List-

Charts (D-L-C).

In this diagram process 1 is broken down to the three main

processes that take place in the system:

process 1.1 (READ-AND-LIST-THE-DEFENSIVE-PLAYS),

process 1.2 (BUILD-DEFENSIVE-MATRIX-CHARTS), and

process 1.3 (BUILD-DEFENSIVE-LIST-CHARTS).

20

Each of these processes will be further broken down in lower level

charts.

The chart shows that the defensive play is read into process 1.1

and it transforms this data into a defensive-play-record-list (D-P-R-L)

which it then passes on to processes 1.2, 1.3, and the defensive play

file.

Process 1.2 receives the defensive-play-record-list and transforms

it into the defensive-matrix-chart. Process 1.3 receives the defensive-

play-record-list and the defensive-play wanted and transforms them into

the defensive list chart.

The data dictionary is a document that must accompany a set of data

flow diagrams. It contains a precise definition of each data flow on

the data flow diagrams explaining exactly what information each holds.

It also contains an explanation of what transformations of data take

place in each process.

With both the requirements and the data flow diagrams completed I

was able to proceed with the next phase of developing the scouting

system. As requirements changed and/or I ran into difficulties with the

design I had to return to this phase and rework part of the analysis.

The data flow diagrams and data dictionary in the appendixes are the

final ones reflecting how SCOUT was finally constructed.

21

DESIGN

INTRODUCTION

The design phase of software development and how it applied to

SCOUT will be discussed in this section.

Design is the phase of software development in which the software

engineer takes the analysis of what is to be done and decides how to get

the computer to do it. There are many different methods of design and

no one is really best. The method I chose, which I will discuss in this

section, is structured design. I chose structured design because it is

a method designed to convert data flow diagrams into a satisfactory

design document called a structure chart. The structure charts for

SCOUT are in appendixes III and V.

During the design phase the designer must also decide on what types

of data structures will be used in the program. This was done at the

same time that the structure charts are drawn to assure that the modules

on the structure charts can accomplish the task each has to do.

22

DATA STRUCTURES

The two main data structures that I decided to use in SCOUT were a

linked list of records and two dimensional arrays indexed by the types

of the items for which they represent values for.

Each record corresponds to one play that has been entered. The

records are to consist of a field for each item that is entered about a

play and one field to hold a pointer to the next record. The items that

are to be entered about each play are the ones that are enumerated in

the input section of analysis. The same type record can also be used to

hold the values of each field of the play that the user wants in the

list charts.

To generate the list charts, a "template" for the type of play

wanted and assigning a not-specified flag to each of the fields that the

user has not keyed can be made using one of the records. This will

allow the system to make a single pass through the list of plays and

print those plays that match the template.

The two dimensional arrays are to be used to hold the values for

the matrix charts. By using arrays that are indexed by the possible

values in the necessary fields for these charts the values can be

assigned to all of them with a single pass through the list of plays.

Then each array can be used to supply the values to the corresponding

chart.

23

STRUCTURE CHARTS

Having the main data structures for the system I drew the necessary

structure charts to define the modules of the system. These structure

charts were drawn using transformational design and analysis.

A structure chart is a pictorial diagram of the system showing each

of the modules, the interfaces between the modules, and the hierarchy of

the system. The basic elements of a structure chart are:

1. A module is represented by a rectangular box. The lowest level
modules will be procedures and functions in the program. This
box will contain the module name and number for referencing the
design document.

2. The connection between modules represented by a vector, >,
pointing from the calling module to the called module.

3. A diamond around the tail of a vector inside the calling module
indicates that a decision is made as to whether the module
should be called or not.

4. A curved arrow around the tail in the calling module indicates
that the call is being made in a loop and may be made several
times.

5. Data passed from one module to another, represented by an arrow
with an empty circle for a tail. 0 >.

6. Control information passed from one module to another,
represented by an arrow with a filled circle for a tail,
0 >.

7. A short description of what the data or control is written
beside the arrow.

To create the first level structure charts a designer analyses the

data flow diagrams and determines which ones are afferent (input), which

are efferent (output), and which are transformation modules. One of the

transformation modules is chosen as the driver for the system and placed

at the top of the structure chart while the afferent ones are usually

place below and to the left of it and the efferent ones are usually

placed below and to the right.

24

Once the first level structure chart is completed it may become

necessary to divide some or all of the modules into smaller subordinate

modules. This process should continue until each module represents a

single task and can be easily transformed into pseudocode to describe in

some detail what each module does. Each of the lowest level modules

should be equivalent to an independent function or task in the code for

the system.

By applying this methodology to the data flow diagrams that were

produced for SCOUT, I was able to draw the structure charts for the

system. These structure charts may be found in appendix III and V. A

brief explanation of each module follows. The complete algorithm for

each is included in appendix III and V. The number in front of each

module refers to the module number on the structure chart.

d-SCOUT

Chart 0.

1. DRIVERS: This is a composite module that includes all the
modules on chart 1.

2. REED-D-PLAYS: This module reads the plays to be added to
the scouting report from the terminal.

3. REED-OLDD-PLAYS: This module reads any plays that are in
a file and are to be included in this scouting
report.

4. DLIST-CHART: This module finds out which plays the user
include in any list charts that are produced.

5. PRINT-LIST-CHART: This module writes the list of plays
that match the values for which the user asked.

6. D-HEADING: This module writes the heading on any list
charts that are produced.

25

7 - 1 5 . The s e a r e t h e m o d u l e s t h a t w r i t e t h e m a t r i x c h a r t s
and include all the modules on chart 7-15.

16. BUILD-D-LIST: This is the module that puts the plays
read in by reed-d-plays and reed-oldd-plays
into a list that can be accessed by other
modules.

17. DLIST-CHART-TRAILER: This module puts the information
necessary at the end of the list charts.

18. DRAW-LINE: This module is used to draw any lines
needed on any of the output charts.

19. MAKE-D-FILE: This module writes a file containing
all the plays that have been input to the
system.

20. INIT-FIELD: This module initializes the name of the
charts to spaces before each new chart is
requested.

Chart 1.

1.1 MAIN: This is the module that introduces the system
and gets the general information about the
team being scouted.

1.2 INIT-FILENAME: This module initializes the input and
output file names to spaces.

1.3 FILENAME: This module puts the proper name in the
input and output filename variables.

1.4 SED-VARS-AND MATRIX-VALUES: This module accesses the
list of plays and set the variables to the
variables to the proper values according to
the information in the list. It consists of
the modules on chart 1.4.

1.5 WHAT-DCHART: This module finds out what type of charts
the user wants and calls the modules to produce
the required charts.

26

1.6 MATRIX-DCHART: This module finds which matrix charts
are wanted and calls the modules to write
them.

Chart 1.4

1.4.1 SET-MATRIX-ARRAY-VARS: This module looks at each
play list and increments the elements of the
arrays that are indexed by the values of
the play.

1.4.2 INIT-MATRIX-ARRAYS: This module initializes the
elements of the matrix arrays to 0.

1.4.3 ASSIGN-NAMES: This module put the proper names in
the name arrays.

1.4.4 COLUMN-TOTALS: This module finds the total
number of times that the event in each
column of the matrix arrays occurs.

1.4.5 COLUMN-PERCENTS: This module finds the percentage
of times that each column event occurs.

Chart 7-15

7.1 PRINT-FRONTBYHASH-AR: This module has the front by
hash array printed.

7.2 PRINT-COVER-HEADING: This module puts the heading on
the cover charts.

7.3 PRINT-FRONT-HEADING: This module puts the heading on
the front charts.

7.4 PRINT-FRONT-TOTALS: This module prints the column
totals for the front charts.

7.5 PRINT-COVER-TOTALS: This module prints the column
totals for the cover charts.

7.6 PRINT-FRONT-COLUMN-PERCENTS: This module prints the
percentages for the columns on the front
charts.

7.6 PRINT-COVER-COLUMN-PERCENTS: This module prints the
percentages for the columns on the cover
charts.

27

NOTE: Module 7-1 is a representative module of modules
7 through 15 on chart 0. Modules 7 through
10 which print front charts call modules
7.3 and 7.4. Modules 11 through 15 which are
for cover charts call modules 7-2 and 7.5.

o-SCOUT

Chart 0.

1. DRIVERS: These are the main driver modules for the
and are expanded on chart 1.

2. REED-O-PLAYS: This module reads the plays from the
terminal.

3. REED-0LD0-PLAYS: This module reads the plays from a
file.

4. OLIST-CHART: This module finds which plays the
user wants included in the list charts.

5. PRINT-LIST-CHART: This module prints the list
charts the user wants.

6. 0-TRAILER: This module puts the trailer on the end
of the list chart.

7 - 1 9 . The s e a r e t h e m o d u l e s t h a t p r i n t t h e m a t r i x
charts. The are expanded on chart 7-19.

20. INIT-FIELD: This module initializes the array that
holds the name of the list charts.

21. MAKE-O-FILE: This module writes the output file
of plays.

22. BUILD-O-LIST: This module makes the list of plays
in the order they are entered to be accessed
by other modules.

23. SORTED-LIST: This module makes the list of plays
in gain loss order.

24. 0-HEADING: This module writes the heading on the
list charts.

28

25. DRAW-LINE: This module writes lines on the output charts.

26. INIT-GAIN: This module initializes the elements of
the gain loss array to 0.

27. INIT-FILENAME: This module initializes the variables
that hold the file names to spaces.

28. FILENAME: This module puts the names of the input and
output files in the proper variables.

Chart 1

1.1 WHAT-OCHART: This module finds out what kind of
output charts the user wants.

1.2 SET-VARS-AND-MATRIX-VALUES: These modules are
expanded on chart 1.2.

1.3 MATRIX-CHARTS: This module finds out which matrix
charts the user wants.

Chart 1.2

1.2.1 SET-MATRIX-ARRAY-VARS: This module scans the
list of plays and puts the proper values
in the matrix variables and arrays.

1.2.2 INIT-MATRIX-ARRAYS: This module initializes the
elements of the matrix arrays to 0.

1.2.3 ASSIGN-NAMES: This module assigns the names to
the name arrays.

1.2.4 COLUMN-TOTALS: These modules find the totals
for the elements in each column of the
matrix charts.

1.2.5 COLUMN-PERCENTS: These modules find the percentage
of times the elements of each column are used.

1.2.6 PLAY-TOTALS: This module finds the total number
of times that each play is used.

1.2.7 PLAY-PERCENTS: This module finds the percentage
of times each play is used.

29

Chart 6.

6.1 O-MATRIX-TRAILER: This module calls the modules
that print the trailer on the list charts.

6.2 CALCULATE-MODE: This module finds the mode for the
gains of all the plays on the chart.

6.3 CALCULATE-MEAN: This module finds the mean for the
gains of all the plays on the chart.

6.4 CALCULATE-STANDARD-DEVIATION: This module finds the
mode for the gain of all the plays on the
chart.

6.5 CALCULATE-MEDIAN: This module finds the median for
the gain of all the plays on the chart.

6.6 CALCULATE-AVERAGE: This module finds the average
for the gains of all the plays on the chart.

Chart 7-19

7.1 MATRIX-CHARTS: These are the modules that have
the matrix charts the the user wants printed.

7.2 PRINT-MATRIX-HEADER: These modules print the
headers on the matrix charts.

7.3 PRINT-COLUMN-TOTALS: These modules print the column
totals on the matrix charts.

7.4 PRINT-COLUMN-PERCENTS: These modules print the column
percents for the matrix charts.

Note: There are 13 of these modules, one for each type
matrix chart that is available.

30

IMPLEMENTATION

INTRODUCTION

The implementation of a computer system consists of the coding

(actual writing of the computer code), testing, and usage of the

program. I wrote SCOUT in Pascal so that it could be used by the

University of Montana football team, and installed on the university's

DEC 2060 computer. Moreover, I wrote the program in such a manner that

it would be portable enough to be installed on any of several micro

computers which might be used in high school coaching.

CODING

The writing of the Pascal code for SCOUT posed very few problems.

The algorithms that had been written during the design phase of the

project made coding a relitivly easy task. One problem that did occur

however in trying to make it usable by as many football coaches as

possible, was that most football teams use different terminology for

naming plays, formations, front, coverages, etc. I used constants to

define these things to allow for easy changing of terms to make the

program usable by more than just the University of Montana team.

31

The other main coding problem arose from the fact that I originally

designed the program with a different set of data structures and spent

several months coding to meet this standard. The program was actually

finished and running with the original data structures before I decided

to change to the ones that are now being used. The changes were made to

make the program smaller to allow it to be used on micro computers.

The changes that were made concerning the data structures required

several additional months of effort. The extra months were required for

redesign, coding, and testing.

I chose not to use parameters to pass global variables to keep the

amount of memory space required as small as possible in order to be able

to install the system on micro computers. The global variables that are

used or modified are documented in each procedure. SCOUT could now

be written as one program but the university coaches like it as two so I

left that way.

32

PORTABILITY

The other reason for leaving it as two separate programs is for

portability to smaller computers. In the present state, the two

programs could easily fit into any micro computer with 64K or more

memory.

I estimated the memory requirements of the programs with the

assumption that 50 plays would be entered for each game. I made the

further assumptions that each character would require one byte of

memory, each integer would require two bytes, and each boolean variable

would require 2 bytes.

The two largest consumers of memory in the system are the list of

play records and the matrix chart variables. The memory requirements

for the system were estimated in the following manner:

1. A defensive play record contains eleven items with a total of
61 characters and one pointer. This is a total of 63 bytes. A
linked list of these records is made with one record for each
play for a total of 3150 bytes needed for fifty plays.

2. The program contains nine matrix chart arrays containing a
total of 1695 integers. This number is constant and not
dependent on the number of plays entered. Each integer
requires two bytes of memory for a total of 3390 bytes required
for the matrix arrays.

3. The other memory requirements were analysed in the same manner
and I found that they would require approximately 1000 bytes.

Pascal seems to have no standard method for handling interactive

input and output, Therefore if the system is to be implemented on a

micro computer the input and output may have to be changed. Other than

this the program is written in standard Pascal with no programming

tricks or things that may keep it from running on any computer with a

33

Pascal compiler.

TESTING

The testing of SCOUT was done in three phases. First,

preliminary testing was done as it was being coded. Second both my son

and I tested after coding was complete. Third, it was tested by the

University of Montana football coaches as they used it for the second

half of the 1984 season.

During the first phase, I carefully tested each procedure or

function by itself to be sure that it would perform as expected before

making it a part of the program. If it passed the initial tests I then

added it to that part of the program that was finished and then retested

the whole program again. I would not start to code a new procedure or

function until the ones coded before all worked together properly.

For phase two after the coding was complete my son and I spent two

weeks entering plays and generating charts to be sure that we obtained

the desired results from as wide a variety of inputs as possible. At

this point we also entered many errors into the data to make sure that

the error recovery would keep the previously entered data from being

modified or destroyed.

For the third phase of testing I installed the program in the

University of Montana's football team's computer area and the coaches

used it to scout several games. They were told that the system had not

been completely tested and that some errors might arise. Their

instructions were to inform me if the system had any problems and I

34

would try to correct them.

Errors were found and corrected during each phase of the testing.

Each phase produced fewer errors than the previous phase and during the

last three games that the University football team used SCOUT no

errors were found.

As with any computer program I can not guarantee that there are no

bugs left in the system. I do feel however that the program has been

tested as much as can be expected and should be relatively free of bugs

and quite reliable.

35

D£f-£/t/5/t'E- CHJtfri

(J-SCOUT)

PJAG-XAM

Scou t

O

Bun 0 - opftwws - c#a*ts

V\

37

SHfOZ - i N O } / J -A3 - A/OOO - Al> - J»'Pd

t-tSVH -AS -•armyoj -A# - t/tav-J I *m>0-AO

a t t r i g

jjnr# •>

<veU vtrt** - 4 & - j/3»e > 9*0 ! -A2-W>I J *'#4 -AS - #3t>o)

SJ1/VH7 -M/*J.(TH - 3ots/*3j3>
t ' (wy #-?# /<?

k
V

Vj

<V\

*r
V

•sc \

i

1 $

f

«sj

3i

>
t

r

C t /A / fT - H&A0/NG-

V\

40

41

V)

cv

42

VJ-4

0 - P - R - L

Q U I L O -

Heie - f t f - pow/J -

c nxnr

f>A$f - Rmrc - a* -M(h-\

2 - 2 . 6

HCt£ - 3*

Bu.H.0-

PASt-i • A*-A

CHA4T

2-2.6^

P/HG-XA/n. 2.%(A)
fftui p -aFFgMt/rg-maw*-as4frs

TO '•?< 5)

HOL£ - 0 V - HAin -

c HAfil

2 2. Z

?AS}-A<-T- t f v - Hton -

f0KmATim> - Of -HiM-

0-M- C

$uh lq

'-Of -HtfH-

2 - 2 . 1

7r<?,

T6 1U<!)

I

TV

NJ

ry
tv

«it££iA.

\ f£ l£crep - e r f i - ,
\ /*«•A f '

o f* - ,

** I nfAP£#~/*A*C

P/^C-/(Aa\
n*He-0 f f - - 1 f 4H(Q

AfuM 8E .X-0F - tLA f }

PIA1- ?E*~ C-ATV

CALCILLATB-

c A te 1 i t A re -

$r .A* /OA%D-
p£ v /AT te /K

c A t e U.LATE

DATA DICTIONARY

CONVENTIONS AND TERMS

Conventions:
1. {item} The item is repeated one or more

times.

2. [item or item] One item or the other but
not both.

3. and Both the preceding item and the
following one.

4. and/or Both the preceding item and the
following one or either one of them.

5. item : statement The item with the restrictions
such that the statement is true.

6. or Exclusive or— the preceding item
or the following item but not both.

Terms:
1. Aliases This is a name used on the data flow

charts that stands for the same data.

2. Composition This is the actual data items that
are contained in the data flow.

3. Name This is the name of the data or process
being described.

4. Process number This is the number of the circle
on the data flow digrams where this process
can be found.

47

d-SCOUT

DATA

NAME: Cover-by-down-chart
ALIASES: none
COMPOSITION: The number of times that each coverage

is used for each down and distance.

NAME: Cover-by-formation-chart
ALIASES: none
COMPOSITION: The number of times that each coverage

is used for each formation.

NAME: Cover-by-front-chart
ALIASES: none
COMPOSITION: The number of times that each coverage

is used for each front.

NAME: Cover-by-hash-chart
ALIASES: none
COMPOSITION: The number of times that each coverage

is used for each hash mark.

NAME: Cover-by-zone-chart
ALIASES: none
COMPOSITION: The number of times that each coverage

is used for each yardage zone.

NAME: D-c-h-n
ALIASES: defensive-chart-heading-name
COMPOSITION: Alias for defensive-chart-heading-name

NAME: D-l-c
ALIASES: defensive-chart-list
COMPOSITION: Alias for defensive-chart-list

NAME: D-m-c
ALIASES: defensive-matrix-chart
COMPOSITION: Alais for defensive-matrix-chart

NAME: D-p-r-1
ALIASES: defensive-play-record-list
COMPOSITION: Alais for defensive-play-record-list

48

NAME: D-p-w
ALIASES: defensive-play-wanted
COMPOSITION: alais for defensive-play-wanted

NAME: Defensive-chart-heading
ALIASES: none
COMPOSITION: defensive-chart-header-name and

the headings for the columns on the
defensive list charts.

NAME: Defensive-chart-heading-name
ALIASES: d-c-h-n
COMPOSITION: The name of the list chart wanted

NAME: Defensive-list-chart
ALIASES: d-l-c
COMPOSITION: Defensive-chart-heading and

Selected-play-record-list

NAME: Defensive-matrix-chart
ALIASES: d-m-c
COMPOSITION: cover-by-front-chart or

cover-by-formation-chart or
cover-by-zone-chart or
cover-by-hash-chart or
cover-by-down-chart or
front-by-formation-chart or
front-by-down-chart or
front-by-zone-chart or
front-by-hash-chart

NAME: Defensive-play
ALIASES: none
COMPOSITION: opponent and

hash mark and
yardage zone and
down and distance and
offensive formation and
motion and
front and
variation to front and
coverage and
stunt and
blitz

NAME: Defensive-play-file
ALIASES: none
COMPOSITION: {defensive-play}

49

NAME: Defensive-play-record-list
ALIASES: d-p-r-1
COMPOSITION: {defensive play}

NAME: Defensive-play-wanted
ALIASES: d-p-w,selected-defensive-play
COMPOSITION: [opponent or not-specified] and

[hash mark or not-specified] and
[yardage zone or not-specified] and
[down and distance or not-specified] and
[offensive formation or not-specified] and
[motion or not-specified] and
[front or not-specified] and
[variation to front or not-specified] and
[coverage or not-specified] and
[stunt or not-specified] and
[blitz or not-specified]

NAME: Front-by-down-chart
ALIASES: none
COMPOSITION: The number of times that each front

is used for each down and distance.

NAME: Front-by-formation-chart
ALIASES: none
COMPOSITION: The number of times that each front

is used for each formation.

NAME: Front-by-hash-chart
ALIASES: none
COMPOSITION: The number of times that each front

is used for each hash mark.

NAME: Front-by-zone-chart
ALIASES: none
COMPOSITION: The number of times that each front

is used for each yardage zone.

NAME: Selected-defensive-play
ALIASES: d-p-w,defensive-play-wanted
COMPOSITION: Alias for defensiv-play-wanted

NAME: Selected-play-record-list
ALIASES: none
COMPOSITION: {selected defensive play}
(Comment: a selected defensive play is a defensive

play in which selected fields are
restricted to selected values)

50

PROCESSES

NAME: Read-new-def-plays
PROCESS NUMBER: 1.1.1
DESCRIPTION: 1. If new plays are to be added then

A. While all new plays have not been
read.
a. Read each item of a defensive play

from the user.

NAME: Read-old-def-plays
PROCESS NUMBER: 1.1.2
DESCRIPTION: 1. If old plays are to be included then
DESCRIPTION: A. While all old plays have not been

read.
a. Read each item of a defensive play

from the user.

NAME: Build def-play-record-list
PROCESS NUMBER: 1.1.3
DESCRIPTION: 1. For each play read in put the play

into a list of defensive plays.

NAME: Build-cover-by-front-chart
PROCESS NUMBER: 1.2.1
DESCRIPTION: 1. For each play in the defensive-play-

record-list
A. Increment the element of the

cover by front array that is
indexed by the cover and front.

2. Output the cover by front array.

NAME: Build-cover-by-formation-chart
PROCESS NUMBER: 1.2.2
DESCRIPTION: 1. For each play in the defensive-play-

record-list
A. Increment the element of the

cover by formation array that is
indexed by the cover and formation.

2. Output the cover by formation array.

51

NAME: Build-cover-by-zone-chart
PROCESS NUMBER: 1.2.3
DESCRIPTION: 1. For each play in the defensive-play-

record-list
A. Increment the element of the

cover by zone array that is
indexed by the cover and zone.

2. Output the cover by zone array.

NAME: Build-cover-by-hash-chart
PROCESS NUMBER: 1.2.4
DESCRIPTION: 1. For each play in the defensive-play-

record-list
A. Increment the element of the

cover by hash array that is
indexed by the cover and hash.

2. Output the cover by hash array.

NAME: Build-cover-by-down-chart
PROCESS NUMBER: 1.2.5
DESCRIPTION: 1. For each play in the defensive-play-

record-list
A. Increment the element of the

cover by down array that is
indexed by the cover and down.

2. Output the cover by down array.

NAME: Build-front-by-formation-chart
PROCESS NUMBER: 1.2.6
DESCRIPTION: 1. For each play in the defensive-play-

record-list
A. Increment the element of the

front by formation array that is
indexed by the front and formation.

2. Output the front by formation array.

NAME: Build-front-by-down-chart
PROCESS NUMBER: 1.2.7
DESCRIPTION: 1. For each play in the defensive-play-

record-list
A. Increment the element of the

front by down array that is
indexed by the front and down.

2. Output the front by down array.

52

NAME: Build-front-by-zone-chart
PROCESS NUMBER: 1.2.8
DESCRIPTION: 1. For each play in the defensive-play-

record-list
A. Increment the element of the

front by zone array that is
indexed by the front and zone.

2. Output the front by zone array.

NAME: Build-front-by-hash-chart
PROCESS NUMBER: 1.2.9
DESCRIPTION: 1. For each play in the defensive-play-

record-list
A. Increment the element of the

front by hash array that is
indexed by the front and hash.

2. Output the front by hash array.

NAME: Select-def-list-chart
PROCESS NUMBER: 1-3-1
DESCRIPTION: 1 Get the defensive-wanted-play.

2. Assign the name of the defensive-
list chart.

NAME: Print-def-list-chart-header
PROCESS NUMBER: 1.3.2
DESCRIPTION: 1. Output the name of the chart.

2. Output the column headings for
the defensive-list-chart.

NAME: Write-adjusted-list
PROCESS NUMBER: 1-3-3
DESCRIPTION: 1. For each record from the

defensive-play-record-list.
A. If for each field
a. Defensive-play-wanted field

is not specified.
or
b. Defensive-play-wanted field =

defensive-play-record field,
then output defensive-play-record.

53

DATA DICTIONARY
o-SCOUT

Data

NAME: Adjusted-off-play-list
ALIASES: none
COMPOSITION: {selected offensive play}

(comment: an adjusted offensive play is an
offensive play where selected fields
are restricted to selected values)

NAME: average-gain
ALIASES: none
COMPOSITION: The average of the yards gained or

lost by the plays on the
offensive-list-chart.

NAME: Down-by-play-chart
ALIASES: none
COMPOSITION: The number of times that each play is used

for each down and distance.

NAME: formation-by-down-chart
ALIASES: none
COMPOSITION: The number of times that each formation is

used for each down and distance.

NAME: formation-by-hash-chart
ALIASES: none
COMPOSITION: The number of times that each formation is

used for each hash mark.

NAME: formation-by-play-chart
ALIASES: none
COMPOSITION: The number of times that each formation is

used for each play.

NAME: gain-mode
ALIASES: none
COMPOSITION: The mode of the yards gained or

lost by the plays on the
offensive-list-chart.

54

NAME: Hole-by-down-chart
ALIASES: none
COMPOSITION: The number of times that each hole is used

for each down and distance.

NAME: Hole-by-formation-chart
ALIASES: none
COMPOSITION: The number of times that each formation is

used for each down and distance.

NAME: hole-by-hash-chart
ALIASES: none
COMPOSITION: The number of times that each hole is used

for each hash mark.

NAME: Mean-gain
ALIASES: none
COMPOSITION: The mean of the yards gained or

lost by the plays on the
offensive-list-chart.

NAME: Median-gain
ALIASES: none
COMPOSITION: The median of the yards gained or

lost by the plays on the
offensive-list-chart.

NAME: Number-of-plays
ALIASES: none
COMPOSITION: the number of plays on the

offensive-list-chart.

NAME: 0-c-h-n
ALIASES: offensive-chart-header-name
COMPOSITION: Alias for offensive-chart-header-name

NAME: 0-1-c
ALIASES: offensive-list-chart
COMPOSITION: Alias for offensive-liat-chart

NAME: 0-m-c
ALIASES: offensive-matrix-chart
COMPOSITION: Alias for offensive-matrix-chart

NAME: O-p-r
ALIASES: offensive-play-record
COMPOSITION: Alias for offensive-play-record

55

NAME: O-p-w
ALIASES: offensive-play-wanted,selected-offensive-play
COMPOSITION: Alias for offenslve-play-wanted

NAME: Offensive-chart-header-name
ALIASES: o-c-h-n
COMPOSITION: The name of the list chart wanted.

NAME: Offensive-list-chart
ALIASES: o-l-c
COMPOSITION: offensive-chart-heading and

adjusted-offensive-play-list and
offensive-list-chart-trailer

NAME: Offensive-chart-heading
ALIASES: none
COMPOSITION: offensive-chart-header-name and

the column headings for the plays
on the offensive-list-chart.

NAME: Offensive-list-chart-trailer
ALIASES: none
COMPOSITION: number-of-plays

average-gain
median-gain
mean-gain
gain-mode
standard-deviation

NAME: Offensive-matrix-chart
ALIASES: o-m-c
COMPOSITION: hole-by-down-chart

hole-by-hash-chart
hole-by-formation-chart
down-by-play-chart
pass-act-by-hash-chart
pass-route-by-hash-chart
formation-by-hash-chart
pass-act-by-zone-chart
pass-route-by-zone-chart
pass-act-by-down-chart
pass-route-by-down-char t
formation-by-down-chart
formation-by-play-chart.

and
and
and
and
and

or
or
or
or
or
or
or
or
or
or
or
or

56

NAME: Offensive-play
ALIASES: none
COMPOSITION: o-opponent and

o-hash mark and
o-yardage zone and
o-down and distance and
o-formation and
run or pass and
play ran and
ball carriers position and
ball carriers number and
hole number and
strong or weak side and
gain or loss and
pass action and
pass result and
receivers number and
receivers position and
pass pattern and
pass depth and
pass zone and
drive number and
play number

NAME: Offensive-play-file
ALIASES: none
COMPOSITION: {offensive-play}

NAME: Offensive-play-wanted
ALIASES: o-p-w,selected-off-play
COMPOSITION: [o-opponent or not-selected] and

[o-hash mark or not-selected] and
[o-yardage zone or not-selected] and
[o-down and distance or not-selected] and
[o-formation or not-selected] and
[run or pass or not-selected] and
[ball carriers position or not-selected] and
[ball carriers number or not-selected] and
[hole number or not-selected] and
[strong or weak side or not-selected] and
[gain or loss or not-selected] and
[pass action or not-selected] and
[pass result or not-selected] and
[receivers number or not-selected] and
[receivers position or not-selected] and
[pass pattern or not-selected] and
[pass depth or not-selected] and
[pass zone or not-selected] and

57

[drive number or not-selected] and
[play number or not-selected]

(comment: not-selected means that this is not one
of the keys that the user wants
considered for this chart.)

NAME: Offensive-play-record
ALIASES: o-p-r
COMPOSITION: {offensive-play}

NAME: pass-act-by-down-chart
ALIASES: none
COMPOSITION: The number of times that each pass action

is used for each down.

NAME: pass-act-by-hash-chart
ALIASES: none
COMPOSITION: The number of times that each pass action

is used for each hash mark.

NAME: pass-act-by-zone-chart
ALIASES: none
COMPOSITION: The number of times that each pass action

is used for each yardage zone.

NAME: pass-route-by-down-chart
ALIASES: none
COMPOSITION: The number of times that each pass route

is used for each down and distance.

NAME: pass-route-by-hash-chart
ALIASES: none
COMPOSITION: The number of times that each pass route

is used for each hash mark.

NAME: pass-route-by-zone-chart
ALIASES: none
COMPOSITION: The number of times that each pass route

is used for each yardage zone.

NAME: play-for-gain
ALIASES: none
COMPOSITION: The number of offensive plays that

have each gain or loss value.

NAME: Selected-offensive-play
ALIASES: o-p-w,offensive-play-wanted
COMPOSITION: Alias for offensive-play-wanted

58

NAME: standard-deviation
ALIASES: none
COMPOSITION: The standard deviation for the gain

or loss value of the plays on the
offensive-list-chart.

PROCESSES

NAME: Read-new-off-plays
PROCESS NUMBER: 2.1.1
DESCRIPTION: 1. If new plays are to be included then

A. While all new plays have not been read
a. Read the items of the new play form

the user.

NAME: Read-old-off-plays
PROCESS NUMBER: 2.1.2
DESCRIPTION: 1. If old plays are to be included then

A While all old plays have not been read
a. Read the items of the old play from

the offensive-play-file.

NAME: Build-off-play-record-list
PROCESS NUMBER: 2.1.3
DESCRIPTION: 1. For each play read in add it to a

linked list in the order that the
plays are read in.

NAME: Build-sorted-off-play-record-list
PROCESS NUMBER: 2.1.4
DESCRIPTION: 1. For each play read in add it to a

linked list in ascending order by
the number of yards gained or lost.

NAME: Build-hole-by-down-chart
PROCESS NUMBER: 2.2.1
DESCRIPTION: 1. For each play in the defensive-play-

record-list.
A. increment the element of the hole

by down array indexed by the
hole and down.

2. Output the hole by down array.

59

NAME: Build-hole-by-hash-chart
PROCESS NUMBER: 2.2.2
DESCRIPTION: 1. For each play in the defensive-play-

record-list.
A. increment the element of the hole

by hash array indexed by the
hole and hash.

2. Output the hole by hash array.

NAME: Build-hole-by-formation-chart
PROCESS NUMBER: 2.2.3
DESCRIPTION: 1. For each play in the defensive-play-

record-list.
A. increment the element of the hole

by formation array indexed by the
hole and formation.

2. Output the hole by formation array.

NAME: Build-down-by-play-chart
PROCESS NUMBER: 2.2.4
DESCRIPTION: 1. For each play in the defensive-play-

record-list.
A. increment the element of the play

by formation array indexed by the
play and formation.

2. Output the play by formation array.

NAME: Build-pass-act-by-hash-chart
PROCESS NUMBER: 2.2.5
DESCRIPTION: 1. For each play in the defensive-play-

record-list.
A. increment the element of the pass

action by hash array indexed by
the pass action and hash mark.

2. Output the pass action by hash array.

NAME: Build-pass-route-by-hash-chart
PROCESS NUMBER: 2.2.6
DESCRIPTION: 1. For each play in the defensive-play-

record-list.
A. increment the element of the pass

route by hash array indexed by
the pass route and hash mark.

2. Output the pass route by hash array.

60

NAME: Build-formation-by-hash-chart
PROCESS NUMBER: 2.2.7
DESCRIPTION: 1. For each play in the defensive-play-

record-list.
A. increment the element of the

formation by hash array indexed by
the formation and hash mark.

2. Output the formation by hash array.

NAME: Build-pass-act-by-zone-chart
PROCESS NUMBER: 2.2.8
DESCRIPTION: 1. For each play in the defensive-play-

record-list.
A. increment the element of the pass

action by zone array indexed by
the action and zone.

2. Output the pass action by zone array.

NAME: Build-pass-route-by-zone-chart
PROCESS NUMBER: 2.2.9
DESCRIPTION: 1. For each play in the defensive-play-

record-list.
A. increment the element of the pass

route by zone array indexed by
the pass route and zone.

2. Output the pass route by zone array.

NAME: Build-pass-act-by-down-chart
PROCESS NUMBER: 2.2.10
DESCRIPTION: 1. For each play in the defensive-play-

record-list.
A. increment the element of the pass

action by down array indexed by
the pass action and down.

2. Output the pass action by down array.

NAME: Build-pass-route-by-down-chart
PROCESS NUMBER: 2.2.11
DESCRIPTION: 1. For each play in the defensive-play-

record-list.
A. increment the element of the pass

route by down array indexed by
the pass route and down.

2. Output the pass route by down array.

61

NAME: Build-formation-by-down-chart
PROCESS NUMBER: 2.2.12
DESCRIPTION: 1. For each play in the defensive-play-

record-list.
A. increment the element of the

formation by down array indexed by
the formation and down.

2. Output the formation by down array.

NAME: Build-formation-by-play-chart
PROCESS NUMBER: 2.2.13
DESCRIPTION: 1. For each play in the defensive-play-

record-list.
A. increment the element of the

formation by play array indexed by
the formation and play.

2. Output the formation by play array.

NAME: Select-off-list-chart
PROCESS NUMBER: 2.3-1
DESCRIPTION: 1 Get the selected-off-play.

2. Assign the name of the offensive-
list chart.

NAME: Print-off-list-chart-header
PROCESS NUMBER: 2.3.2
DESCRIPTION: 1. Output the name of the chart.

2. Output the column headings for
the offensive-list-chart.

NAME: Write-adjusted-list
PROCESS NUMBER: 2.3-3
DESCRIPTION: 1. For each record from the

offensive-play-record-list.
A. If for each field
a. Offensive-play-wanted field

is not specified.
or
b. Offensive-play-wanted field =

offensive-play-record field,
then output offensive-play-record.

62

NAME: Calculate-median
PROCESS NUMBER: 2.3.4.1
DESCRIPTION: 1. Beginning with the most yards lost

or the least yards gained if no yards
lost and counting each play toward the
largest gain select the play that
is half of the number-of plays and
return the gain of this play.

NAME: Calculate-mean
PROCESS NUMBER: 2.3.4.2
DESCRIPTION: 1. Determine the play with the largest

gain and the one with the largest
loss.

2. Find the average gain or loss if
the play with the largest gain and
the play with the largest loss are
not counted.

NAME: Calculate-average
PROCESS NUMBER: 2.3.4.3
DESCRIPTION: 1. Find the average gain for all the

plays on the chart.

NAME: Calculate-standard-deviation
PROCESS NUMBER: 2.3.4.4
DESCRIPTION: 1. Find the standard deviation for the

gain and loss values of the plays
on the offensive-list-chart.

NAME: Calculate-mode
PROCESS NUMBER: 2.3-4.5
DESCRIPTION: 1. Find the gain or loss of the middle

play on the offensive-list-chart.

63

C H A 8 T O
d-scout

CT\
•p*

DP, I VERS

o£p-yla f
u i r otr-rc*

t-/sr fh£a>*w WHICH - C k thRl olo-wafiv
ve v~ wArrec *-k»r£p

DLtST-CHAHT hz£p-d- plays

PA**r sr HATfi

PAC#T ffi *gyg vafirrgp psfi-fil*1

ftl£#a*n.
vu«M- f-a*vr g<f p/nt-rv WA*tSO h6*0s(-

mms fh"t PAHVT B T tvKMAritA'
u i r

co*i/z s<f powv
lNtr-f/6tD\ JO PRiNr -i/tr-l S

chaut
$£ep- atooa 3
plays cet/gk 8tr hash

v C 9 t f g . f i i g r s

C.a\fe.K. XV It/lOtOT
v>»g*t-n-
fAtvr ct/mr/ i ic hmxt-

CUtf tLK RY 9S 4 A A? to f i t

pbf- mi ttfi.ru
play hltmmf

MAtfe-p-Ul.
f/c£

o-hzaoing• 8vil0-p
t-nr

wh6h{z-rt>-
p4tvt

draw- is
liaie

lt*£th

t 1 V
$ $
<

1

K
J ̂
1 s

Mi * « f\ ^ *

c*
**+

«t»
\ *
? >4
H.
K.
J

65

mi
*

I
*

< *

«C i

* J,
<J &
5

<»4
v>

V
af-
wa

1
* *
* V*.
*

V

VJ
Mi
<V

66

I
K

V

V
V
t

u

. r- K.
* i
VJ ^

J

N.

•v

/
f <*
<*

X
1

t*.
* -s \ uc
«v \

VN
rs.

i
K.
> ill
QC ? 1-
tx ̂ <i U K

§?. £ |fi| 5 «>.

\
rs.

<X Vf

>-
<\

1

2
Q t-

°c ̂ <a
CLU.t-

?•* S£« ̂'-ft.

K,
——J K\ u
*- ^ *
«: t vu
tV. U. Q,

«Y
K

vb
*

^55

o-S *

67

DESIGN DOCUMENTATION FOR SCOUT

-by- K. Garry Dyer

68

Scout was orininally written as one program but it grew to a size

such that the facilities at the U. of M. would not run it so I divided

it into two programs, d-SCOUT for defense, and o-SCOUT for offense.

The design documentation for them is separated here and even though

some of the procedures are very similar in both programs I have included

them in both.

69

d-SCOUT

CONSTANTS

These constants are the names that the University of Montana
football teams use and the program can be adopted for any coaching staff
by changing these names and the headings on the output charts.

front 1 = •OKIE ' front9 = '42
front2 = •GRIZ • front10 = •42SK
front3 = 'SLST • front 11 = '43SK
front4 = 'SLWK • front12 = •44SK
front5 = 'SLTE • front13 = '61
front6 = •43 • front 14 = •62
front7 = 'P43 • front 15 = 'EST
front8 = 'C43 ' front16 = 1EWK
forml = SPLA • form10 = PRS
form2 = SPRA ' form11 = 1SLI
form3 = SPLB ' form12 = •SRI
form4 = SPRB ' form13 = ' SLQ
form5 = PRI ' form14 = SRQ
form6 = PLI < form15 = SLS
form7 = PLQ • form 16 = SRS
form8 = PRQ ' form17 = TWRI
form9 = PLS ' form18 = TWLI
cover 1 = '1 1 cover8 = M2D
cover2 = >2 ' cover9 = WMM
cover3 = •3 ' cover 10 = 1WM2
cover4 = '5 * cover 11 = ' WM3
cover5 = •6 ' cover 12 = 'COM
cover6 = •M 1 cover 13 = 'ROB
cover7 = 'MF

70

TYPES

COVERS = (one,two,three,five,six,M,MF,M2D,WMM,
WM2,WM3,COM,ROB,othercover)

FRONTS = (OKIE,GRIZ,SLST,SLWK,SLTE,F43,P43,CM3,
F42,F42SK,F43SK,F44SK,F61,F62,EST,
EWK,otherfront)

FORMATIONS = (SPLA,SPRA,SPLB,SPRB,PRI,PLI,PLQ,
PRQ,PLS,PRS,SLI,SRI,SLQ,SRQ,SLS,
SRS,TWRI,TWLI,otherform)

ZONES = (zone,ztwo,zthree,zfour,zfive,zsix,
otherzone)

HASHMARKS = (RIGHT,MIDDLE,LEFT,otherhash)
DOWNS = (OL,OM,OS,OG,SL,SM,SS,SG,TL,TM,TS,

TG,FL,FM,FS,FG,otherdown)
D_PTR a pointer to a record of defensive plays
TEAM_NAME a packed array of 15 elements to be
used to name files.

TWO_STRING a packed array of two elements
THREE_STRING a packed array of three elements
FOUR_STRING a packed array of four elements
FIVE_STRING a packed array of five elements
EIGHT_STRING a packed array of eight elements
TWELVE.STRING a packed array of twelve elements

D_PLAY_RECORD a record of the defensive plays containing
the following fields:
OT of type three.string to hold the opponent
HASH of type char to hold the hash mark
ZONE of type char to hold the yardage zone
D_D of type two.string to hold the down

and distance
FORM of type eight.string to hold the

offensive formation
MOTION of type three_string to hold any

motion the offense uses.
FRONT of type eight_string to hold the

front used by the defense
VARS of type three_string to hold any

variation to the front
COVER of type eight_string to hold the

secondary coverage
STUNT of type eight.string to hold the

stunts
BLITZ of type eight_string to hold the

blitzes

71

NEXT.DP of type d.ptr to point to the next
record in the linked list of defensive
plays

72

GLOBAL VARIABLES

COVER_TOTALS a packed array of 14 elements of type
integer to hole the totals for the coverage charts.

FRONTNAMES an array of 17 elements of type four.string
to hold the names of the fronts.

COVER_BY_FRONT_AR a two dimensional array of covers
by fronts of type integer to hold the number of
times each coverage is used with each front.

FORMATIONNAMES an array of 19 elements of type
four_string to hold the names of the formations.

COVER_BY_FORMATION_AR a two dimensional array of covers
by formations of type integer to hold how many times
each coverage is used for each formation.

COVER_BY_ZONE_AR a two dimensional array of covers by
zones of type integer to hold how many times each
coverage is used for each zone.

COVER_BY_HASH_AR a two dimensional array of covers by
hashmarks of type integer to hold how many times each
coverage is used for each hash mark.

HASHNAMES an array of 7 elements of type
four_string to hold the names of the hash marks.

DOWNNAMES an array of 17 elements of type
four.string to hold the names of the downs.

COVER_BY_DOWN_AR a two dimensional array of covers by
downs of type integer to hold how many times each
coverage is used for each down.

FRONT_BY_FORMATION_AR a two dimensional array of fronts
by formations of type integer to hold how many times
each front is used for each formation.

FRONT_BY_DOWN_AR a two dimensional array of fronts
by downs of type integer to hold how many times
each front is used for each down.

FRONT_BY_ZONE_AR a two dimensional array of fronts
by zones of type integer to hold how many times
each front is used for each zone.

FRONT_TOTALS an array of 17 elements of type integer
to hold the total number of times that each front
is used.

FRONT_BY_HASH_AR a two dimensional array of fronts
by hashmarks of type integer to hold how many times
each front is used for each hash mark.

ZONENAMES an array of 7 elements of type four_string
to hold the names of the zones.

73

INFILE,OUTFILE of type text
D.ANCHOR of type d_ptr to point to the first
defensive record

FILE.INO,FILE.IND,FILE.OUT1,FILE.0UT2,
FILE_OUT3,FILE_OUT4 of type team.narae
to hold the names of the input and output files

ALLDONE of type char
D.RECORD of type d.play.record, a record of the
defensive play

DCURREMT,DTEMP.PTR of type d.ptr
DHASH of type char to hold the hash mark
DZONE to hold the yardage zone
DD.D of type two.string to hold the down and

distance
DFORM of type eight.string to hold the
formation of the play

DOT of type three.string to hold the opponent
DFRONT of type eight.string to hold the defensive
front

DVAR of type three.string to hold any variation
to the front

DCOVER of type eight.string to hold the secondary
coverage

DSTUNT of type eight.string to hold any defensive
stunts

DBLITZ of type eight.string to hold any blitzes
DMOTION of type three.string to hold any motion
used by the offense.

DC of type char to hold if charts are wanted.
TOTAL.DPLAYS of type integer to hold the total
number of plays entered.

D.HEADED of type boolean to tell if a chart
has a heading

WRITE.TO.DFILE of type boolean to tell if the
chart is to a file or to the terminal

FIELD a packed array of twenty elements
NUMPLAYS of type integer
ODD.DKEY of type boolean
NUMDKEYS of type integer
MANY.DKEYS of type boolean
FIRSTD of type boolean
DREQUEST of type five.string
WHICH.DKEY of type integer
DFILE.SET of type boolean to tell if the
outfile has been set to the proper name

MMENU,LMENU of type boolean to tell if the
user has seen the menus.

COVERPERCENTS an array of 15 elements of type

74

integer to hole the percentage of times that
each coverage is used.

FRONTPERCENTS an array of 18 elements of type
integer to hole the percentage of times that
each front is used.

75

PROCEDURES

1.1 MAIN

This is the main driver for the rest of the program.

ALGORITHM
1. Repeat until the user is finished with the

program. (all.done = 'n')
A. Assign false to and dfile.set.
B. Write d-scout in large letters on lines
10 through 15.
C. Assign nil to d_anchor,dtemp_ptr.
D. Assign nil to t1_danchor,t12_danchor.
E. Assign false to o.headed, and d_headed.
F. Assign 0 to total_dplays.
G. Call procedure init_filename.
H. Reset the input to the terminal.
I. Ask the user what team is being scouted.
J. Assign his answer to file_out1.
K. Assign file_out1 to file_ino.
L. Call procedure filename.
N. Call procedure reed_d_plays.
M. Ask the user if he wants defensive charts.
0. If he does call procedure what_dchart.
P. Ask the user if he wants to run the program

again.
Q. If he is finished then
a. Assign N to alldone.

76

1.2 INIT.FILENAME

This procedure initializes the file name variables to spaces at the

start of each run. It is called from main.

Local variable
i of type integer.

ALGORITHM
1. Assign space to each of the elements

2. Assign file_out1 to file_out2.

3- Assign file_out1 to file_out3-

4. Assign file_out1 to file_out4.

5. Assign file_out1 to file_ino.

6. Assign file_out1 to file_ind.

77

1.3 FILENAME

This procedure assigns the proper names to the variables to be used

as file names by the program. It is called from main.

Local variable
i of type integer

ALGORITHM
1. Assign file_out1 to file_out2.

2. Assign file.outl to file_out3.

3. Assign file_out1 to file_out4.

4. Assign 1 to i.

5. Repeat until file_out1 indexed by i is a space
A. Increment i.

6. Assign a period to file.outl indexed by i.

7. Assign a period to file_out2 indexed by i.

8. Assign a period to file_out3 indexed by i.

9. Assign a period to file_out4 indexed by i.

10. Assign a 0 to file_out1 indexed by i+1.

11. Assign a D to file_out2 indexed by i+1.

12. Assign a 0 to file_out3 indexed by i+1.

13- Assign a D to file_out4 indexed by i+1.

14. Assign a C to file.outl indexed by i+2.

15. Assign a C to file_out1 indexed by i+2.

16. Assign each element of file.outl to file.ino.

17. Assign each element of file_out2 to file_ind.

78

1.4.1 SET_MATRIX_ARRAY_VARS

This procedure is used to put the values into the elements of the

matrix array variables.

Local variables
tempptr of type d_ptr
f of type fronts
h of type hashmarks
z of type zones
d of type downs
fo of type formations
c of type covers

ALGORITHM
1. Assign the pointer to the first play

in the linked list of plays to tempptr.

2. For each play in the linked list of plays do
A. Assign otherfront to f.
B. Assign otherhash to h.
C. Assign otherzone to z.
D. Assign otherdown to d.
E. Assign otherform to fo.
F. Assign othercover to c.
G. Check the necassary fields of the play

that tempptr points to and
a. If the front field is front(n) assign

the nth element to fronts to f.
b. If the hash field is hash(n) assign

the nth element to hashmarks to h.
a. If the zone field is zone(n) assign

the nth element to zones to z.
a. If the d_d field is down(n) assign

the nth element to downs to d.
a. If the form field is formation(n) assign

the nth element to formations to fo.
a. If the cover field is cover(n) assign

the nth element to covers to c.
H. Assign front_by_hash_ar[f,h] + 1 to

front_by_hash_ar[f,h].
I. Assign front_by_zone_ar[f,z] + 1 to

front_by_zone_ar[f,z].
J. Assign front_by_down_ar[f,d] + 1 to

front_by_down_ar[f,d].
K. Assign front_by_formation_ar[f,fo] + 1 to

front_by_formation_ar[f,fo].

79

L. Assign cover_by_down_ar[c,d] + 1 to
cover_by_down_ar[c,d].

M. Assign cover_by_hash_ar[c,h] + 1 to
cover_by_hash_ar[c,h].

N. Assign cover_by_zone_ar[c,z] + 1 to
cover_by_down_ar[c,z].

0. Assign cover_by_formation_ar[c,fo] + 1 to
cover_by_formation.ar[c,fo].

P. Assign cover_by_front_ar[c,f3 + 1 to
cover_by_front_ar[c,f].

Q. Assign what the next.dp field points to
to tempptr.

80

1.4.2 INIT.MATRIX.ARRAYS

This procedure initializes each element of the matrix value arrays

to zero.

Local variables
f of type fronts
h of type hashmarks
z of type zones
d of type downs
fo of type formations
c of type covers

ALGORITHM
1. For all the fronts do
A. For all the hashmarks do
a. Assign zero to the elements of

front_by_hash_ar.

2. For all the fronts do
A. For all the zones do
a. Assign zero to the elements of

front_by_zone_ar.

3. For all the fronts do
A. For all the downs do
a. Assign zero to the elements of

front_by_down_ar.

4. For all the fronts do
A. For all the formations do
a. Assign zero to the elements of

front_by_formation_ar.

5. For all the covers do
A. For all the downs do
a. Assign zero to the elements of

cover_by_down_ar.

6. For all the covers do
A. For all the hashmarks do
a. Assign zero to the elements of

cover_by_hash_ar.

81

7. For all the covers do
A. For all the zones do
a. Assign zero to the elements of

cover_by_zone_ar.

8. For all the covers do
A. For all the formations do
a. Assign zero to the elements of

cover_by_formation_ar.

9. For all the covers do
A. For all the fronts do
a. Assign zero to the elements of

cover_by_front_ar.

82

1.4.3 ASSIGN.NAMES

This procedure puts the names that are to be printed in the first

column of the matrix charts into the "names" arrays.

ALGORITHM
1. Assign the name of each front to an element
of frontnames.

2. Assign the name of each formation to an element
of formations.

3. Assign the name of each down to an element
of downnames.

4. Assign the name of each zone to an element
of zonenames.

5. Assign the name of each hash mark to an element
of hashnames.

83

1.4.4 COLUMN.TOTALS

This procedure figures the totals for the columns in the matrix

charts.

Local variables
i of type integer
h of type hashmarks
f of type fronts
c of type covers

ALGORITHM
1. For i from 1 to 16 do
A. Assign zero to front_totals[i].

2. For i from 1 to 13 do
A. Assign zero to cover_totals[i].

3. Assign zero to i.

4. For f from okie to otherfront do
A. Assign i + 1 to 1.
B. For h from right to other hash do
a. Assign front_totals[i] + front_by_hash_ar[f,h]

to front_totals[i].

5. Assign zero to i.

6. For c from one to othercover do
A. Assign i + 1 to 1.
B. For f from okie to otherform do
a. Assign cover_totals[i] + cover_by_front_ar[c,f]

to cover_totals[i].

84

1.4.5 COLUMN.PERCENTS

This procedure finds the percentage of times that each front and

cover is used.

Local variables
tct of type integer
tft of type integer
i of type integer

ALGORITHM
1. Assign zero to tct and tft.

2. For i from 1 to 17 do
A. Assign tft plus front_totals[i] to tft.

3. For i from 1 to 18 do
A. Assign ((front_totals[i] / tft) * 100) rounded

off to the closest integer to frontpercents[i].

4. Assign tft to frontpercents[18].

5. For i from 1 to 14 do
A. Assign tct plus cover_totals[i] to tct.

6. For i from 1 to 14 do
A. Assign ((cover_totals[i] / tct) * 100) rounded

off to the closest integer to coverpercents[i].

7. Assign tct to coverpercents[15].

85

1.5 WHAT_DCHART

This procedure finds out if the user wants list charts of matrix

charts.

Local variables
typedcharts of type char.
another_d of type char
dfile of type char
do_d_again of type boolean.

ALGORITHM:
1. Repeat until all charts needed have been made

(do_d_again is false)
A. Assign false to do_d_again.
B. Ask the user if he wants list charts or

matrix charts.
Use this menu;
L for LIST CHARTS
M for MATRIX CHARTS

C. Assign the answer to typedcharts.
D. If the answer is M then
a. Ask if the charts are to be to the

terminal or to a file.
b. Assign the answer to dfile.
c. If the chart is to be to a file then
i. If dfile_set is false then
ii. Rewrite the outfile to file_out4.
iii. Assign dfile_set to true.

d. If to a file then
i. Call procedure matrix.dcharts

passing outfile.
else

ii. Call procedure matrix_dcharts
passing tty.

else
e. Call procedure dlist_chart.

E. Ask the user if he wants another defensive
chart.
a. If he does then
i. Assign true to do_d_again.
else
ii. Assign false to do_d_again.

86

2 REED_D_PLAYS

This procedure asks the user what information he wants in the

program to build the charts that he wants. He can use only newly

entered plays, only plays that are all ready on file, of a combination

of both.

Local variables
done of type boolean
finished of type char.
old_dplays of type char.
more.d of type char.

ALGORITHM:
1. Assign false to done.

2. Ask the user if he wants to include a
previously built file of plays.

3. If he does then
A. Call procedure reed_oldd_plays.

4. Ask the user if he wants to add new
plays to the program.

5. If he does then
A. Ask who the opponent is for this set of plays.
B. Assign the answer to dot.

6. Tell the user to enter the indicated information
about each new play that he wants to enter.

7. Repeat until all the plays have been entered.
(done = true)

A. Ask the user for the following information
about each play to be entered.

"HASH MARK" assign it to dhash;
"YARDAGE ZONE" assign it to dzone;
"DOWN & DISTANCE" assign to dd_d;
"OFFENSIVE FORMATION" assign to dform;
"OFFENSIVE MOTION" assign to dmotion;
"DEFENSIVE FRONT" assign to dfront;
"VARIATION TO FRONT" assign to dvar;
"SECONDARY COVERAGE" assign to dcover;
"DEFENSIVE STUNT" assign to dstunt;

a. Ask for
b. Ask for
c. Ask for
d. Ask for
e. Ask for
f. Ask for
g. Ask for
h. Ask for
i. Ask for

87

j. Ask for "BLITZ" assign to dblitz;
B. Call procedure build_d_list passing it dterap_ptr;
D. Ask the user if that was the last play to be entered
a. If it is then
i. Assign true to done.

8. Call procedure make_d_file.

88

3 REED_OLDD_PLAYS

This procedure is used to read any file of plays that has been

built with a previous run of this program on the same team that is now

being scouted.

Local variables
j of type integer
ch of type char

ALGORITHM:
1. Reset the infile to the name contained in file_ind.

2. While you have not reached the end of the file do
A. Read the information on the file into the proper

variables and read off the spaces between the items.
C. Call procedure build_d_list to put this information

into the list of records of defensive plays.

89

4 DLIST.CHART

This procedure finds out what type play the user wants a chart for

and calls the procedure to print all the plays that match it.

Local variables
wantedptr of type d_ptr
dkey of type integer
dh_key of type character
dz_key of type character
ddd_key of type two.string
dform_key of type eight.string
dmotion_key of type three.string
dfront_key of type eight.string
dvar_key of type three.string
dcover.key of type eight.string
dstunt.key of type twelve.string
dblitz.key of type twelve.string
dfile of type character
another_dl of type character

ALGORITHM
1. Repeat until no more list charts are wanted
A. Ask the user if he wants the files written to

a file or to the terminal.
B. If to a file then
a. If the outfile has not been set then
i. reset the outfile to a file named by the

value of file_out4
ii. Assign True to dfile.set

b. Set write.to.dfile to true.
C. Call procedure init.field.
D. Assign 'N' to another.dl.
E. Ask the user how many items he wants the

chart keyed on and read the answer into
numdkeys.

F. While the answer is greater than 10 do
a. Tell the user that there are only 10

keys and ask how many he wants again.
i. Assign the answer to numdkeys.

G. Assign 1 to which.dkey.
H. Create a new D.play.record with wantedptr

pointing to it.
I. Assign a flag character meaning not.selected

tp each field of the new record.
J. Assign nil to the next.dp field of the

new record.

90

K. While there are more keys to be entered do
(numdkeys is greater than 1)

a. Call procedure init.field.
b. If which.dkey = 1 then
i. Assign "FIRST" to drequest.
else
i.i Assign "NEXT " to drequest.

c. Assign zero to which_dkey.
d. Ask the user "WHAT DO YOU WANT THE " drequest

" KEY TO BE?".
e. Write the following menu to the terminal.

1: HASH MARK 5: FRONT
2: DOWN and DISTANCE 6: COVERAGE
3: YARDAGE ZONE 7: STUNTS
4: OFFENSIVE FORMATION 8: BLITZES
9: ALL PLAYS 10: MOTION

f. Read the answer into dkey.
g. If dkey = 1 then
i. Assign "HASH MARK " to field.
ii. Ask the user which hash mark he wants.
iii. Assign the answer to dh_key.
iv. Assign dh.key to the hash field of the

record that wantedptr points to.
h. If dkey = 2 then
i. Assign "DOWN and DISTANCE " to field.
ii. Ask the user which down he wants.
iii. Assign the answer to ddd_key.
iv. Assign ddd_key to the d_d field of the

record that wantedptr points to.
i. If dkey = 3 then
i. Assign "YARDAGE ZONE " to field.
ii. Ask the user which yardage zone he wants.
iii. Assign the answer to dz_key.
iv. Assign dz_key to the zone field of the

record that wantedptr points to.
j. If dkey = 4 then
i. Assign "OFFENSIVE FORMATION" to field.
ii. Ask the user which formation he wants.
iii. Assign the answer to dform.key.
iv. Assign dform_key to the form field of the

record that wantedptr points to.
k. If dkey = 5 then
i. Assign "FRONT " to field.
ii. Ask the user which front he wants.
iii. Assign the answer to dfront.key.
iv. Assign dfront.key to the front field of the

record that wantedptr points to.
1. If dkey = 6 then

91

i. Assign "COVERAGE " to field.
ii. Ask the user which coverage he wants.
iii. Assign the answer to dcover_key.
iv. Assign dcover_key to the cover field of the

record that wantedptr points to.
m. If dkey = 7 then
i. Assign "STRUT " to field.
ii. Ask the user which stunt he wants.
iii. Assign the answer to dstunt.key.
iv. Assign dstunt.key to the stunt field of the

record that wantedptr points to.
n. If dkey = 8 then
i. Assign "BLITZ " to field.
ii. Ask the user which blitz he wants.
iii. Assign the answer to dblitz_key.
iv. Assign dblitz_key to the blitz field of the

record that wantedptr points to.
o. If dkey = 9 then
i. Assign "ALL PLAYS " to field,

p. If dkey = 10 then
i. Assign "MOTION " to field.
ii. Ask the user which motion he wants.
iii. Assign the answer to dmotion_key.
iv. Assign dmotion_key to the motion field of the

record that wantedptr points to.
q. Assign numdkeys - 1 to numdkeys.

L. If to a file then
A. Call procedure print_list_chart passing

wantedptr and outfile.
else
B. Call procedure print_list_chart passing

wantedptr and tty.
M. Assign false to d.headed.
N. Ask the user if he wants another list chart,
a. Assign the answer to another_dl.

92

5 PRINT_LIST_CHART(WP : D_PTR;var out.dv : text)

This procedure writes the plays that are in the linked list of

plays that match the play wanted by the user.

Local variables
tp of type d_ptr

ALGORITHM
1. Assign d.anchor to tp.

2. Call procedure djieading
passing out.dv.

3. While tp is not nil do
A. If the ot field of the wanted

play is not-selected or the
same as the ot field of the
play that tp points to then
a. If the hash field of the wanted

play is not-selected or the
same as the hash field of the
play that tp points to then
i. If the zone field of the wanted

play is not-selected or the
same as the zone field of the
play that tp points to then
i.a If the zone field of the wanted

play is not-selected or the
same as the zone field of the
play that tp points to then
i.b If the d_d field of the wanted

play is not-selected or the
same as the d_d field of the
play that tp points to then
i.c If the form field of the wanted

play is not-selected or the
same as the form field of the
play that tp points to then
i.d If the motion field of the wanted

play is not-selected or the
same as the motion field of the
play that tp points to then
i.e If the front field of the wanted

play is not-selected or the
same as the front field of the
play that tp points to then

93

i.f If the vars field of the wanted
play is not-selected or the
same as the vars field of the
play that tp points to then
i.g If the cover field of the wanted

play is not-selected or the
same as the cover field of the
play that tp points to then
i.h If the stunt field of the wanted

play is not-selected or the
same as the stunt field of the
play that tp points to then
i.i If the blitz field of the wanted

play is not-selected or the
same as the blitz field of the
play that tp points to then
i.k Write all the fields of the

play that tp points to to the
output.

i.l Call procedure draw_line
73 and out_dv.

B. Assign what the next_dp field points to to tp.

94

6 D_HEADING(var out_dv : text)

This procedure will print the proper heading on the top af

defensive chart that is requested to the outfile. It is called

print_d_frecord.

ALGORITHM
1. Write the following heading to the output.
I I h I z I d d I | | I I I I I
I |a|oI oil off I m I II I I |
lopplslnlwsl I o I front Ivarlcover I stunt I blitz I
I j hIeIntI form II II I I I

95

7 PRINT_FRONTBYHASH_AR(var out.dv : text)

This procedure writes the front by hash mark matrix chart.

Local variables
f of type fronts
h of type hashmarks
i of type integer

ALGORITHM
1. Write " FRONT BY HASH" to the output.

2. Call procedure print_front_heading.
passing out_dv.

3. Assign zero to i.

4. For h from right to otherhash do
A. Assign i + 1 to i.
B. Write hashnames[i] to the output.
C. For f from okie to otherfront do
a. Write front_by_hash_ar[f,h] to the output.

D. Call procedure draw_line passing 74
and out_dv.

5. Call procedure print_front_totals
passing out.dv.

96

7.1 MATRIX_DCHARTS(var out.dv : text)

This procedure asks the user which matrix charts he wants and calls

the procedures to write the wanted charts.

Local variables
tydmat of type integer.
another.dm of type char.
done of type boolean.

ALGORITHM
1. Call procedure assign_names.

2. Call procedure init_matrix_arrays.

3. Call procedure set_matrix_array_vars.

4. Call procedure column.totals.

5. Call procedure column_percents.

6. Repeat until finished with matrix charts
A. Assign true to done.
B. Write "ENTER THE NUMBER THAT INDICATES

THE TYPE OF MATRIX CHART YOU WANT" to the
terminal.

C. Write the following menu to the terminal:
1 for COVER BY FRONT
2 for COVER BY FORMATION
3 for COVER BY ZONE
4 for COVER BY HASH MARK
5 for COVER BY DOWN AND DISTANCE
6 for FRONT BY FORMATION
7 for FRONT BY DOWN AND DISTANCE
8 for FRONT BY ZONE
9 for FRONT BY HASH
10 for ALL THE ABOVE CHARTS

D. Read the answer into tydmat.
a. If tydmat is 1 then
i. Call procedure print_coverbyfront_ar.

passing out_dv.
b. If tydmat is 2 then
i. Call procedure print_coverbyformation_ar.

passing out_dv.
c. If tydmat is 3 then
i. Call procedure print_coverbyzone_ar.

passing out_dv.

97

d. If tydmat is 4 then
i. Call procedure print_coverbyhash_ar.

passing out_dv.
e. If tydmat is 5 then
i. Call procedure print_coverbydown_ar.

passing out_dv.
f. If tydmat is 6 then
i. Call procedure print_frontbyformation_ar.

passing out_dv.
g. If tydmat is 7 then
i. Call procedure print.frontbydown.ar.

passing out_dv.
h. If tydmat is 8 then
i. Call procedure print_frontbyzone_ar.

passing out_dv.
i. If tydmat is 9 then
i. Call procedure print_frontbyhash_ar.

passing out_dv.
j. If tydmat is 10 then
i. Call procedure print_coverbyfront_ar.

passing out_dv.
ii. Call procedure print_coverbyformation_ar.

passing out_dv.
iii. Call procedure print_coverbyzone_ar.

passing out_dv.
iv. Call procedure print_coverbyhash_ar.

passing out_dv.
v. Call procedure print_coverbydown_ar.

passing out_dv.
vi. Call procedure print_frontbyformation_ar.

passing out.dv.
vii Call procedure print_frontbydown_ar.

passing out_dv.
viii Call procedure print_frontbyzone_ar.

passing out_dv.
ix. Call procedure print_frontbyhash_ar.

passing out_dv.
E. Ask the user if he wants another matrix chart.

If he does repeat this procedure.

98

7.2 PRINT_COVER_HEADING(var out_dv : text)

This procedure writes the heading to the cover by matrix charts.

ALGORITHM
1. Write the following heading on one line:
" | 1 | 2 I 3 I 5 I 6 | M IMF IM2D|WMM|WM21
WM31 COM I ROB I other" to the output.

2. Call procedure draw.line passing it 62
and out_dv.

99

7.3 PRINT_FRONT_HEADING

This procedure writes the heading to the front by matrix charts.

ALGORITHM
1. If the chart is to be written to a file then
A. Write the following heading on one line:
" |OKI|GRZ|SLS|SWSISLTI 431P^31C431 42142SI
43S144SIR62I EST IEWKI other" to the outfile.

else
A. Write the following heading on one line:
" |OKI|GRZ|SLS|SWSISLT| 431P431C431 42142SI
43s 144SIR621 EST IEWKI other" to the terminal.

2. Call procedure draw.line passing it 74.

100

7.4 PRINT_FRONT_TOTALS(var out_dv : text)

This procedure is the one that writes the totals at the bottom of

the front matrix charts.

Local variable
i of type integer

ALGORITHM
1. Write four spaces to the output.

2. For i from 1 to 17 do
A. Write front_totals[i] to the output.

3. Call procedure print_front_column_percents
passing it out_dv.

101

7.5 PRINT_COVER_TOTALS(var out.dv : text)

This procedure is the one that writes the totals at the bottom of

the cover matrix charts.

Local variable
i of type integer

ALGORITHM
1. Write four spaces to the output.

2. For i from 1 to 14 do
A. Write cover_totals[i] to the output.

3. Call procedure print_cover_column_percents
passing out_dv.

102

7.6 PRINT_FRONT_COLUMN_PERCENTS(var oub.dv :text)

This procedure writes the percentages to the front by matrix

charts.

Local variables
i of type integer

ALGORITHM
1. Write four spaces to the output.

2. For i from 1 to 17 do
A. Write frontpercents[i] three spaces wide

followed by a "%n sign to the output.

3. Write "THE TOTAL NUMBER OF PLAYS ON THIS
CHART IS " frontpercents[18] to the output.

103

7.7 PRINT_COVER_COLUMN_PERCENTS(var out.dv:text)

This procedure writes the percents on the bottom of the cover

matrix charts.

Local variables
i of type integer

ALGORITHM
1. Write four spaces to the output.

2. For i from 1 to 14 do
A. Write coverpercents[i] three spaces wide

followed by a sign to the output.
B. Write "THE TOTAL NUMBER OF PLAYS ON THIS

CHART IS " coverpercents[15] to the output.

104

8 PRINT_FRONTBYZONE_AR(var out.dv:text)

This procedure writes the front by zone matrix chart.

Local variables
f of type fronts
z of type hashmarks
i of type integer

ALGORITHM
1. Write » FRONT BY ZONE" to the output.

2. Call procedure print_front_heading
passing out.dv.

3. Assign zero to i.

4. For z from zone to otherzone do
A. Assign i + 1 to i.
B. Write zonenames[i] to the output.
C. For f from okie to otherfront do
a. Write front_by_zone_ar[f,z] to the output.

D. Call procedure draw.line passing 74
and out.dv.

5. Call procedure print_front_totals
passing out.dv.

105

9 PRINT_FRONTBYDOWN_AR(var out.dv : text)

This procedure writes the front by down matrix chart.

Local variables
f of type fronts
d of type downs
i of type integer

ALGORITHM
1. Write " FRONT BY DOWN" to the output.

2. Call procedure print_front_heading.
passing out.dv.

3. Assign zero to i.

4. For d from ol to otherdown do
A. Assign i + 1 to i.
B. Write downname[i] to the output.
C. For f from okie to otherfront do
a. Write front_by_down_ar[f,d] to the output.

D. Call procedure draw.line passing 74
and out_dv.

5. Call procedure print_front_totals
passing out_dv.

106

10 PRINT_FR0NTBYF0RMATI0N_AR(var out_dv : text)

This procedure writes the front by hash mark matrix chart.

Local variables
f of type fronts
fo of type formations
i of type integer

ALGORITHM
1. Write " FRONT BY FORMATION" to the output.

2. Call procedure print_front_heading
passing out_dv.

3. Assign zero to i.

4. For fo from spla to otherform do
A. Assign i + 1 to i.
B. Write formationnames[i] to the output.
C. For f from okie to otherfront do
a. Write front_by_formation_ar[f,fo] to the output.

D. Call procedure draw_line passing 74
and out_dv.

5. Call procedure print_front_totals
passing out_dv.

107

11 PRINT_COVERBYDOWN_AR(var out.dv:text)

This procedure writes the cover by down matrix chart.

Local variables
c of type covers
d of type downs
i of type integer

ALGORITHM
1. Write " COVER BY DOWN" to the output.

2. Call procedure print_cover_heading
passing out.dv

3. Assign zero to i.

4. For d from ol to otherdown do
A. Assign i + 1 to i.
B. Write downnames[i] to the output.
C. For c from one to othercover do
a. Write cover_by_down_ar[c,d] to the output.

D. Call procedure draw.line passing 62
and out_dv.

5. Call procedure print_cover_totals
passing out_dv.

108

12 PRINT.COVERBYHASH.AR(var out_dv:text)

This procedure writes the cover by hash matrix chart.

Local variables
c of type covers
h of type hashmarks
i of type integer

ALGORITHM
1. Write " COVER BY HASH" to the output.

2. Call procedure print.cover.heading
passing out.dv.

3- Assign zero to i.

4. For h from right to otherhash do
A. Assign i + 1 to i.
B. Write hashnamesti] to the output.
C. for c from one to othercover do
a. Write cover_by_hash_ar[c,h] to the output.

D. Call procedure draw.line passing 62
and out.dv.

5. Call procedure print.cover.totals
passing out.dv.

109

13 PRINT.COVERBYZONE.AR(var out.dv:text)

This procedure writes the cover by zone matrix chart.

Local variables
c of type covers
z of type zones
i of type integer

ALGORITHM
1. Write " COVER BY ZONE" to the output.

2. Call procedure print.cover.heading
passing out.dv.

3. Assign zero to i.

4. For z from zone to otherzone do
A. Assign i + 1 to i.
b. Write zonenames[i] to the output.
C. for c from one to othercover do
a. Write cover_by_zone_ar[c,z] to the output.

D. Call procedure draw.line passing 62
and out.dv.

5. Call procedure print.cover.totals
passing out.dv.

110

14 PRINT_COVERBYFRONT_AR(var out.dv:text)

This procedure writes the cover by front matrix chart.

Local variables
c of type covers
f of type fronts
i of type integer

ALGORITHM
1. Write " COVER BY FRONT" to the output.

2. Call procedure print_cover_heading
passing out.dv.

3. Assign zero to i.

4. For f from okie to otherfront do
A. Assign i + 1 to i.
B. Write frontnames[i] to the output.
C. for c from one to othercover do
a. Write cover_by_front_ar[c,f3 to the output.

D. Call procedure draw.line passing 62
and out.dv.

5. Call procedure print.cover.totals
passing out.dv.

111

15 PRINT_COVERBYFORMATION_AR(var out.dv:text)

This procedure writes the cover by formation matrix chart.

Local variables
c of type covers
f of type formations
i of type integer

ALGORITHM
1. Write 11 COVER BY FORMATION" to the output.

2. Call procedure print.cover.heading
passing out.dv.

3. Assign zero to i.

4. For f from spla to otherform do
A. Assign i + 1 to i.
B. Write formationnames[i] to the output.
C. for c from one to othercover do
a. Write cover_by_formation_ar[c,f] to the output.

D. Call procedure draw.line passing 62
and out.dv.

5. Call procedure print.cover.totals
passing out.dv.

112

16 BUILD.D.LIST(VAR TEMP.DPTR:D_PTR)

This procedure is used to assign the proper values to the fields in

the record of defensive plays and to add the new record to the linked

list of plays. Each new record is added to the end of the linked list

so that the charts when written will have the plays in the same order

that they were entered.

ALGORITHM:
1. Increment total_dplays.

2. Create a pointer to a new defensive play record.

3. If this is the first play then
A. Assign it to the anchor.
B. Assign it to temp_dptr.
else
C. Assign it to the next play field of the record

that temp.dptr is pointing to.
D. Assign it to temp_dptr.

4. Assign the defensive variables to the proper
field of the new record.

5. Assign nil to the next record field of the
new record.

113

18 DRAW_LINE(LENGTH : INTEGER;VAR OUT.DV:TEXT)

This procedure draws lines on the output charts.

Local variable
i of type integer

ALGORITHM
1. For i assigned 1 to length
A. Print length dashes to the output device.

114

19 MAKE_D_FILE

This procedure writes the defensive records to a file so they can

be used in a later run of the program.

Local variable
df_ptr of type d_ptr

ALGORITHM:
1. Rewrite the outfile to the name

contained in file_out2.

2. Assign d.anchor to df_ptr.
Repeat until all the plays have been written.

(df_ptr = nil.)
A. Write to the outfile the values of the fields

of the record that df_ptr points to in the
following order. They are to be on the same
line and each followed by a space.
1. ot
2. zone
3. d_d
4. form
5. motion
6. front
7. vars
8. cover
9. stunt
10. blitz
11. hash
B. Assign what the next_dp field of the record

points to df_ptr.

115

20 INIT_FIELD

This procedure initializes the elements of the array that holds the

names of the charts to spaces.

Local variable
I of type integer.

ALGORITHM
1. For i from 1 to 20
A. Assign a space to field indexed by i.

116

7̂ ?? ̂ 5 sT-i *5 <

K <*

c *

a

1 1 7

K Of
Qr ui

U>

1 1 8

u

5

< <

rv

•
*»

S;
? x
K

* <
**

1 1 9

1?0

C H ARTS

we/ te
X » -

PRINT- T*AT/?LR. 7. 2
hsapeh

C H A R T 7-/?
print - omatr ix - c haf t t$

7 .1

whsrb- to
V r*t*rt

pr imt-c t iu .""
x»rals

#ne/ te -
T» •

palv t

f>ai*r- rc iumf- j i f
(>£hb t̂t —:

o-SCOUT
CONSTANTS

playl ;
play2 =
play3 =
play4 :
play5 =
play6 =
play7 =
play8 :
play9 =
play10
play11
play12
play13
play14
play15
play16

These are

'59
'59S

: '58
: '58S
*57
•56
•55
•55B
•55C

= '55R
= '55CR
= '54
= »54B
= '54C
= *54R
= '54CR
the offensive

play17 =
play18 :
play19 :

play20 :
play21 :
play22 :
play23 :
play24 :
play25 =
play26 :
play27 =
play28 =
play29 =
play30 =
play31 :

play32 =
plays that

'53
•52
•41T
•40T
•39
•39S
•38
•38S
•34
»35
'31
'30
'15
'14
*13
• 1 2

the Grizzly
change the coaching staff wants included. To

plays that are handled by the program all that
is necessary is to change these to the proper
plays and change the heading on the output
charts.

forml = 'PRI
form2
form3
form4
form5
form6
form7
form8

•PLI
»PRQ
'PLQ
'SRI
•SLI
'SRQ
'SLQ

form9 = 'SRS
form10
forml1
form12
form13
form 14
form15
form16

•SLS
'SPRA
'SPLA
'SPRB
1SPLB
' TWRI
•TWLI

These are the formations used by the Grizzlies.

122

passaetl
passact2
passact3
passact4
passact5
passact6
passact7
passact8

'500
•700
'900
'80
'90
•BOOT
'SCREEN
' YSC

route1
route2
route3
route4
route5
route6
route7
route8

•1
' 2

'3
'3SW
•4
'4SW
•5
'5SW

These are the pass actions and pass routes used
by the Grizzlies.

123

TYPES

0_PTR a pointer to a record of offensive plays
TEAM.NAME a packed array of 15 elements to be
used to name files.
TWCLSTRING a packed array of two elements
THREE_STRING a packed array of three elements
FOUR_STRING a packed array of four elements
FIVE_STRING a packed array of five elements
EIGHT.STRING a packed array of eight elements

0_PLAY_REC0RD the record for an offensive play
containing the following fields:

OT of type three.string to hold the opposing team
HASH of type char to hold the hash mark
ZONE of type char to hold the yardage zone
D_D of type two_string to hold the down

and distance
FORM of type eight.string to hold the formation
R_P of type char to hold run or pass
PLAY of type eight.string to hold the play
POS_BC of type two.string to hold the ball

carriers position
B_C of type two.string to hold the ball

carriers number
HOLE of type char to hold the hole number
S_W of type char to hold strong or weak side
RESULT of type integer to hold the gain of loss
P_ACT of type eight.string to hold the pass action
P_RESLT of type three.string to hold the pass

result
REC of type two_string to hold the receivers number
P.PATTERN of type eight_string to hold the pass

pattern
P.DEPTH of type two.string to hold the depth the

pass is thrown
P.ZONE of type char to hold the zone to which the

pass is thrown
REC_P of char to hold the position of the receiver
DRIVE.NO of type integer to hold the number of the

drive the play was in
PLAY.NO of type integer to hold the number of the

play in the drive
NEXT.OP of type o_ptr to point to the next play

124

HOLES = (hnine,hseven,hfive,hthree,hone,hzero,htwo,
hfour,hsix,height,pass,otherhole)

DOWNS = (ol,om,os,og,sl,sm,ss,sg,tl,tm,ts,tg,
f1,fm,fs,fg,otherdown)

HASHMARKS = (right,middle,left,otherhash)
FORMATIONS = (pri,pli,prq,plq,sri,sli,srq,slq,

srs,sis,spra,spla,sprb,splb,twri,
twli,otherform)

PLAYS = (p59,p59s,p58,p58s,p57,p56,p55,p55b,p55c,
p55r,p55cr,p54,p54b,p54c,p54r,p54cr,p53»
p52,p41t,p40t,p39,p39s,p38,p38s,p34,p35,
P31,p30,p15,pl4,p13,p12,otherplay)

PASS.ACTIONS = (a500,a700,a900,a80,a90,abot,ascr,
aysc,otherpassaction)

ROUTES = (r1,r2,r3,r3sw,r4,r4sw,r5,r5sw,otherroute)
ZONES = (zone,ztwo,zthree,zfour,zfive,zsix,otherzone)

125

GLOBAL VARIABLES

DOWN_BY_PLAY_AR an array of downs by plays
of type integer

TDOWNCHART an array of 17 integers
PDOWNCHART an array of 18 integers
HOLE_BY_FORMATION_AR an array of holes by
formations of type integer

THOLECHART an array of 12 integers
PHOLECHART an array of 13 integers
HOLE_BY_DOWN_AR an array of holes by downs
of type integer

HOLE_BY_HASH_AR an array of holes by
hashmarks of type integer

PACT_BY_HASH_AR an array of pass.actions
by hashmarks of type integers

TPACTCHART an array of 9 integers
PPACTCHART an array of 10 integers
ROUTE_BY_HASH_AR an array of routes by
hashmarks of type integer

TROUTECHART an array of 9 integers
PROUTECHART an array of 10 integers
F0RM_BY_HASH_AR an array of formations

by hashmarks of type integer
TFORMCHART an array of 17 integers
PFORMCHART an array of 18 integers
R0UTE_BY_Z0NE_AR an array of routes by
zones of type integer

PACT_BY_Z0NE_AR an array of pass.actions
by zones of type integer

PACT_BY_D0WN_AR an array of pass_actions
by downs of type integer

R0UTE_BY_D0WN_AR an array of routes by
downs of type integer

FORM_BY_DOWN_AR an array of formations
by downs of type integer

FORM_BY_PLAY_AR an array of formations
by plays of type integer

TPLAY an array of 33 integers
PPLAY an array of 33 integers
DOWNNMAES an array of 17 four.string
FORMATIONNAMES an array of 17 four_string
HASHNAMES an array of 4 four.string
ZONENAMES an array of 7 four.string

126

PLAYNAMES an array of 33 four.string
INFILE,OUTFILE of type text
0_ANCH0R of type o_ptr to point to the first

offensive record
CLRECORD of type o_play_record, the record of an

offensive play
FILE.INO,FILE.IND,FILE_0UT1,FILE_0UT2 of type team_name

to hold the names of the input and output files
ALLDONE of type char
OCURRENT,T_PTR of type o_ptr
T_PTR of type o_ptr
SO_CURRENT,SO_ANCHOR of type o_ptr
SORTED of type boolean
00T of type three_string to hold the opposing team
OHASH of type char to hold the hash mark
OZONE to hold the yardage zone
OD_D of type two.string to hold the down and
distance

OFORM of type eight_string to hold the
formation of the play

0R_P of type char to hold whether the play
is a run or a pass

OPLAY of type eight_string to hold the play
OPB_C of type two.string to hold the position
of the ball carrier

OB_C of type two_string to hold the number of
the ball carrier

OHOLE of type char to hold the hole the play
is run to

OS_W of type char to hold weak or strong side
ORESULT of type integer to hold the loss or
gain of the play

0P_ACT of type eight.string to hold the action
of the quarterback on a pass play

0P_RESLT of type three.string to hold the result
of a pass play

OREC of type two_string to hold the receivers
number

OP_ZONE of type char to hold the zone that a
pass is thrown to.

OREC.P of type char to hold the position of the
receiver

OP_PATTERN of type eight.string to hold the pattern
run by the receiver

OP.DEPTH of type two_string to hold the distance
the pass was thrown

ODRIVE_NO of type integer to hold the drive number
of the play

127

OPLAY.NO of type integer to hold which play of
the drive

OC of type char to hold if charts are wanted or not
TOTAL.OPLAYS of type integer to hold the total

number of plays entered
OLD.OPLAYS of type char to hold if a file of old

plays should be read or not
0_HEADED of type boolean to hold if the charts have

headers or not
WRITE_TO_OFILE of type boolean to hold if the charts

are to be written to a file or to the ternimal
FIELD a packed array of 20 characters to hold the

name of the chart being produced
TOTAL of type integer holds the total yards for

the chart being produced
NUMPLAYS of type integer to hold the number
of plays on the chart being produced

T0TAL_0PLAYS of type integer
GAIN an array -100 to 100 of 201 elements
0DD_KEY of type boolean
NUMKEYS of type integer
MANY.KEYS of type boolean
FIRST of type boolean
REQUEST of type five_string
WHICH_KEY of type integer
TPL_PTR of type o_ptr
FILE.SET of type boolean
0MMENU, 0LMENU of type boolean

128

PROCEDURES

1 MAIN

This is the main driver for the rest of the program.

ALGORITHM
1. Assign false to ommenu.

2. Assign false to olmenu.

3. Assign false to file_set.

4. Print the following heading "o-SCOUT"

to the terminal.

5. Assign nil to o.anchor, so_anchor,t_ptr.

6. Assign nil to t1_oanchor,t12_oanchor.

7. Assign false to o_headed.

8. Call procedure init.filename.

9. Reset the input to the terminal.

10. Ask the user what team is being scouted.

11. Assign his answer to file_out1.

12. Assign file_out1 to file_ino.

13- Call procedure filename.

14. Call procedure reed_o_plays.

15. Ask the user if he wants offensive charts.
A. If he does then
a. Call procedure what_ochart.

17. Ask the user if he wants to run the
program again.

18. Assign the answer to alldone.

129

1.1 WHAT.OCHART

This procedure finds out if the user wants matrix charts of list

charts, and if the are to to be written to a file or to the termianl.

Local variables
another_o, wfile, typecharts,
more_o of type char
do_o_again of type boolean

ALGORITHM
1. Repeat until no more charts are wanted.
A. Call procedure init.field.
B. Call procedure init_gain.
C. Ask if list or matrix charts are wanted.
D. Assign his answer to typecharts.
E. If martix charts wanted then
a. Ask if charts are to be to a file or to the terminal.
b. Assign answer to wfile.
c. If they are to a file then
i. If file_set is false then
ii. Rewrite the outfile to file_out3.
iii. Assign true to file_set.

iv. Assign true to write.to_file.
d. If they are to a file then
i. Call procedure matrix_charts passing outfile.
else
ii. Call procedure matrix_charts passing tty.

else
e. Call procedure olist_chart.

F. Ask if more offensive charts are wanted.

130

1.2.1 SET_MATRIX_ARRAY_VARS

This procedure puts the proper values into the elements of the

matrix arrays.

Local variables
tempptr of type o_ptr
d of type downs
f of type formations
hm of type hashmarks
z of type zones
pi of type plays
pa of type pass_actions
r of type routes
ho of type holes

ALGORITHM
1. Assign o_anchor to tempptr.

2. While tempptr is not nil do
A. Assign otherdown to d.
B. Assign otherform to f.
C. Assign otherhash to hm.
D. Assign otherzone to z.
E. Assign otherplay to pi.
F. Assign otherpassaction to pa.
G. Assign otherroute to r.
H. Assign otherhole to ho.
I. Check all the necessary fields of the

play that tempptr points to
a. If the d_d field is play(n) assign

the nth element of plays to d.
b. If the form field is form(n) assign

the nth element of formations to f.
c. If the hash field is hash(n) assign

the nth element of hashmarks to hm.
d. If the play field is play(n) assign

the nth element of plays to pi.
e. If the p_act field is passact(n) assign

the nth element of pass.actions to pa.
f. If the p.pattern field is route(n)

assign the nth element of pass_actions
to r.

g. If the hole field is (n) assign
the nth element of holes to ho.

h. If the r_p field is "P" assign
pass to ho.

131

i. If the zone field is zone(n) assign
the nth element of zones to z.

j. Assign down_by_play_ar[d,pl] + 1 to
down_by_play_ar[d,pi].

k. Assign form_by_hash_ar[f,hm] + 1 to
form_by_hash_ar[f,hm].

1. Assign form_by_down_ar[f,d] + 1 to
form_by_down_ar[f,d].

m. Assign form_by_play_ar[f,pl] + 1 to
form_by_play_ar[f,pi].

n. Assign hole_by_formation_ar[ho,f] + 1 to
hole_by_formation_ar[ho,f].

o. Assign hole_by_down_ar[ho,d] + 1 to
hole_by_down_ar[ho,d].

p. Assign hole_by_hash_ar[ho,hm] + 1 to
hole_by_hash_ar[ho,hm].

q. If the r_p field is "PM then
i. Assign pact_by_hash_ar[pa,hm] + 1 to

pac t_by_hash_ar[pa,hm].
ii. Assign route_by_hash_ar[r,hm] + 1 to

route_by_hash_ar[r,hm].
iii. Assign route_by_zone_ar[r,z] + 1 to

route.by_zone_ar[r, z].
iv. Assign pact_by_zone_ar[pa,z] + 1 to

pact_by_zone_ar[pa,z].
v. Assign pact_by_down_ar[pa,d] + 1 to

pact_by_down_ar[pa,d].
vi. Assign route_by_down_ar[r,d] + 1 to

route_by_down_ar[r,d].
r. Assign the next_op field to tempptr.

132

1.2.2 INIT_MATRIX_ARRAYS

This procedure initializes the elemenats of the matrix arrays to

zero.

Local variables
d of type downs
f of type formations
hm of type hashmarks
z of type zones
pi of type plays
pa of type pass_actions
r of type routes
ho of type holes

ALGORITHM
1. For d from ol to otherdown do
A. For pi from p59 to otherplay do
a. Assign zero to down_by_play_ar[d,pl].

2. For ho from hnine to otherhole do
A. For f from pri to otherform do
a. Assign zero to hole_by_form_ar[ho,f].

3. For ho from hnine to otherhole do
A. For d from ol to otherdown do
a. Assign zero to hole_by_down_ar[ho,d].

4. For ho from hnine to otherhole do
A. For hm from right to otherhash do
a. Assign zero to hole_by_hash_ar[ho,hm].

5. For pa from a500 to otherpassaction do
A. for hm from right to otherhash do
a. Assign zero to pact_by_hash_ar[pa,hm].

6. For r from r1 to otherroute do
A. for hm from right to otherhash do
a. Assign zero to route_by_hash_ar[r,hm].

7. For f from pri to otherform do
A. for hm from right to otherhash do
a. Assign zero to form_by_hash_ar[f,hm].

8. For r from zone to otherzone do
A. for z from zone to otherzone do
a. Assign zero to route_by_zone_ar[r,z].

133

9. For pa from a500 to otherpassaction do
A. for z from zonet to otherzone do
a. Assign zero to pact_by_zone_ar[pa,z].

10. For pa from a500 to otherpassaction do
A. for d from ol to otherdown do
a. Assign zero to pact_by_down_ar[pa,d].

11. For r from r1 to otherroute do
A. for d from ol to otherdown do
a. Assign zero to route_by_down_ar[r,d].

12. For f from pri to otherform do
A. for d from ol to otherdown do
a. Assign zero to form_by_down_ar[f,d].

13. For f from pri to otherform do
A. for pi from p59 to otherplay do
a. Assign zero to form_by_play_ar[f,pl].

134

1.2.3 ASSIGN_NAMES

This procedure assigns the names to the "name" arrays so they can

be printed in the first column of the matrix arrays. ALGORITHM
1. Assign the names of the downs to each

element of dowmnames.

2. Assign the names of the formations to
each element of formationnames.

3. Assign the names of the hash marks to
each element of hashnames.

4. Assign the names of the zones to
each element of zonenames.

5. Assign the names of the plays to
each element of playnames.

135

1.2.4 COLUMN.TOTALS

This procedure finds the totals for each column in the matrix

charts.

Local variables
i of type integer
d of type downs
f of type formations
hm of type hashmarks
pi of type plays
pa of type pass_actions
r of type routes
ho of type holes

ALGORITHM
1. For i from 1 to 17 do
A. Assign zero to tdownchart[i].
B. Assign zero to tformchart[i].

2. For i from 1 to 9 do
A. Assign zero to tpactchart[i].
B. Assign zero to troutechart[i].

3. For i from 1 to 12 do
A. Assign zero to tholechart[i].

4. Assign zero to i.

5. For d from ol to otherdown do
A. Assign i + 1 to i.
B. For pi from p59 to otherplay do
a. Assign tdownchart[i] + down_by_play_ar[d,pl]

to tdownchar t[i].

6. Assign zero to i.

7. For ho from hnine to otherhole do
A. Assign i + 1 to i.
B. For hm from right to otherhash do
a. Assign tholechart[i] + hole_by_hash_ar[ho,hm]

to tholechart[i].

8. Assign zero to i.

9. For pa from a500 to otherplay do
A. Assign i + 1 to i.

136

B. For hm from right to otherhash do
a. Assign tpactchart[i] + pact_by_hash_ar[pa,hm]

to tpactchart[i].

10. Assign zero to i.

11. For r from r1 to otherroute do
A. Assign i + 1 to i.
B. For hm from right to otherhash do
a. Assign troutechart[i] + route_by_hash_ar[r,hm]

to troutechart[i].

12. Assign zero to i.

13. For f from pri to otherform do
A. Assign i + 1 to i.
B. For hm from right to otherhash do
a. Assign tformchart[i] + form_by_hash_ar[f,hm]

to tformchart[i].

137

1.2.5 COLUMN.PERCENTS

This procedure finds the percentage of times that the items in each

column of the matrix charts is used and puts that amount into the

percent arrays.

Local variables
i of type integer
tdt of type integer
tht of type integer
tpt of type integer
trt of type integer
tft of type integer

ALGORITHM
1. Assign zero to each of the local

variables.

2. For i from 1 to 17 do
A. Assign tdt + tdownchart[i] to tdt
B. Assign tft + tformchart[i] to tft

3. For i from 1 to 17 do
A. Assign ((tdownchart[i] / tdt) * 100)

rounded to the nearest integer to
pdownchart[i].

B. Assign ((tformchart[i] / tft) * 100)
rounded to the nearest integer to
pformchart[i].

4. Assign tdt to pdownchart[18].

5. Assign tft to pformchart[18].

6. For i from 1 to 12 do
A. Assign tht + tholechart[i] to tht.

7. For i from 1 to 12 do
A. Assign ((tholechart[i]) * 100)

rounded to the nearest integer
to pholechart[i].

8. Assign tht to pholechartt13]•

9. For i from 1 to 9 do
A. Assign tpt + tpactchart[i] to tpt.

138

B. Assign trt + troutechart[i] to trt.

10. For i from 1 to 9 do
A. Assign ((tpactehart / tpt) * 100)

rounded off to the nearest integer
to ppactchart[i].

B. Assign ((troutechart /rt) * 100)0)
rounded off to the nearest integer
to proutechart[i].

11. Assign tpt to ppactchart[10].

12. Assign trt to proutechart[10].

139

1.2.6 PLAY.TOTALS

This procedure finds the total number of times that each play is

run.

Local variables
p of type plays
d of type downs
i of type integer

ALGORITHM
1. For i from 1 to 33 do
A. Assign zero to tplayti].

2. Assign zero to i.

3. For p from p59 to otherplay do
A. Assign i + 1 to i.
B. For d from ol to otherdown do
a. Assign tplay[i] + down_by_play_ar[i]

to tplay[i].

140

1.2.7 PLAY.PERCENTS

This procedure finds the percentage of times that each play is

used.

Local variables
tplayt of type integer
i of type integer

ALGORITHM
1. Assign total_oplays to tplayt.

2. For i from 1 to 33 do
A. Assign ((tplay[i] / tplayt) * 100)

rounded off to the closest integer
to pplayti].

141

1.3 MATRIX_CHARTS(var out.dv : text)

This procedure calls the procedures that set up the matrix array

values and the ones to write the matrix charts that the used wants.

Local variables
tymat of type integer to hold which type of

matrix chart is wanted
another.m of type char
done of type boolean
cform of type eight.string

ALGORITHM
1. Call procedure assign.names.

2. Call procedure init_matrix_arrays.

3. Call procedure set_matrix_arrays.

4. Call procedure colunm_totals.

5. Call procedure column_percents.

6. Call procedure play_totals.

7. Call procedure play.percents.

8. Repeat until done is true
A. Assign true to done
B. Write the following menu to the terminal:

ENTER THE NUMBER THAT INDICATES THE TYPE OF
MATRIX CHART THAT YOU WANT

1 for
2 for
3 for
4 for
5 for
6 for
7 for
8 for
9 for
10 for
11 for
12 for
13 for
14 for

C. Read the

142

D. If tymat is 1 then
a. Call procedure print_hole_by_down_ar

passing out.dv.
E. If tymat is 2 then
a. Call procedure print_hole_by_hash_ar

passing out_dv.
F. If tymat is 3 then
a. Call procedure print_hole_by_formation_ar

passing out_dv.
G. If tymat is 4 then
a. Call procedure print_down_by_play_ar

passing out_dv.
H. If tymat is 5 then
a. Call procedure print_pass_action_by_hash_ar

passing out_dv.
I. If tymat is 6 then
a. Call procedure print_pass_route_by_hash_ar

passing out_dv.
J. If tymat is 7 then
a. Call procedure print_formation_by_hash_ar

passing out_dv.
K. If tymat is 8 then
a. Call procedure print_pass_action_by_zone_ar

passing out_dv.
L. If tymat is 9 then
a. Call procedure print_pass_route_by_zone_ar.

passing out_dv.
M. If tymat is 10 then
a. Call procedure print_pass_action_by_down_ar

passing out_dv.
N. If tymat is 11 then
a. Call procedure print_pass_route_by_down_ar

passing out_dv.
0. If tymat is 12 then
a. Call procedure print_formation_by_down_ar

passing out_dv.
P. If tymat is 13 then
a. Call procedure print_formation_by_play_ar

passing out_dv.
Q. If tymat is 14 then
a. Call procedure print_hole_by_down_ar

passing out_dv.
b. Call procedure print_hole_by_hash_ar

passing out.dv.
c. Call procedure print_hole_by_formation_ar

passing out.dv.
d. Call procedure print_down_by_play_ar

passing out_dv.

143

e. Call procedure print_pass_action_by_hash_ar
passing out_dv.

f. Call procedure print_pass_route_by_hash_ar
passing out_dv.

g. Call procedure print_formation_by_hash_ar
passing out_dv.

h. Call procedure print_pass_action_by_zone_ar
passing out_dv.

i. Call procedure print_pass_route_by_zone_ar.
passing out_dv.

j. Call procedure print_pass_action_by_down_ar
passing out_dv.

k. Call procedure print_pass_route_by_down_ar
passing out.dv.

1. Call procedure print_formation_by_down_ar
passing out_dv.

m. Call procedure print_formation_by_play_ar
passing out_dv.

R. Ask the user if he wants another matrix
chart and read the answer into another_m.

S. If the answer is yes then set done to false.

144

2 REED_Q_PLAYS

This procedure askes the user what information he wants in the

program to build the charts that he wants. He can use only newly

entered plays, only plays that are all ready on file, of a combination

of both.

Local variables
done of type boolean
finished, more.o of type char

ALGORITHM:
1. Assign false to done

2. Ask the user if he wants to include a previously built
file of plays.

3. If the answer is yes then
A. Call procedure reed_oldo_plays.

4. Ask the user if he wants to add more plays.

5. If the answer is yes then
A. Ask for "THE OPPONENT" assign to oot.
B. Tell the user to enter the indicated information

for each play he wants to enter.
C. Repeat until done equals true
a. Ask for "DRIVE NUMBER" assign to odrive.no.
b. Ask for "PLAY NUMBER" assign to oplay.no.
c. Ask for "HASH MARK" assign to ohash.
d. Ask for "YARDAGE ZONE" assign to ozone.
e. Ask for "DOWN & DISTANCE" assign to od_d.
f. Ask for "FORMATION" assign to oform.
g. Ask for "RUN or PASS" assign to or_p.
h. Ask for "PLAY" assign to oplay.
i. If or_p is a run then
i. Assign a to op_act.
ii. Assign a "-" to op.result.
iii. Assign a to orec_p.
iv. Assign a to orec.
v. Assign a "-" to op.pattern.
vi. Assign a to op.zone.
vii. Ask for "THE POSITION OF THE BALL CARRIER"

assign to opb_c.
viii. Ask for "BALL CARRIERS NUMBER" assign to ob_c.

145

ix. Ask for "HOLE NUMBER" assign to ohole.
x. Ask for "STRONG or WEAK SIDE" assign to os_w.

j. If or_p is a pass then
i. Assign a to opb_c.
ii. Assign a "-" to ob_c.
iii. Assign a "-" to ohole.
iv. Ask for "PASS ACTION" assign to op_act.
v. Ask for "PASS RESULT" assign to pr..result.
vi. Ask for "STRONG OR WEAK SIDE" assign to os_w.
vii. Ask for "POSITION OF INTENDED RECIEVER"

assign to orec.p.
viii. Ask for "INDENDED RECEIVERS NUMBER"

assign to orec.
ix. Ask for "PATTERN RUN BY RECEIVER"

assign to op_pattern.
x. Ask for "ZONE PASS THROWN TO" assign to op_zone.
xi. Ask for "DEPTH OF PASS THROWN" assign to op_depth.

k. Ask for "YARDS GAINED OR LOST" assign to oresult.
1. Ask the user if he wants to enter any more plays
m. If the answer is no set done to true
n. Call procedure build_o_list passing it t_ptr

6. Call procedure make_o_file

146

3 REED.OLDO.PLAYS

This procedure reads a file of plays that was build by an earlier

run of the program.

Local variables
j of type integer
ch of type character

ALGORITHM:
1. Reset the infile to the name contained in file_ino.

2. While you have not reached the end of the file
A. Read the information on the file into the proper

variables and read off the spaces between the items.
B. Call procedure build_o_list to put this information

into the list of records of offensive plays.

147

4 PL1ST,CHART

This procedure askes the user for the plays he wants included in

the list charts and calls the procedure to have them printed.

Local variables
wantedptr of type o_ptr
okey,d_no,p_no,gl_key of type integer
oh_key,z_key,rp_key,ohole.key,ows.key
pz_key,another_o of type char
dd_key,obcp_key,obc_no,rn_key,pd_key,
of type two_string
rp_key of type three_string
oform_key,op.key,pa_key,pp_key of
type eight_string
do_o_again of type boolean
wfile,typecharts,more_o,srted of
type char

ALGORTHIM
1. Repeat until all the required charts have

been made. (do_o_again = false)
A. Create a new play record with wantedptr pointing to it.
B. Assign 999 to the result, drive_no, and play_no

fields of the new record.
C. Assign nil to the next_op field of the new record.
D. Assign a not-selected flag to all other fields of

the new record.
E. Ask if the charts are to be written to a file or to

the terminal. Assign the answer to wfile.
F. If they are to a file then
a. If file_set is false then
i. Reset the outfile to file_out3»
ii. Assign true to file_set.

b. Assign true to write_to_ofile.
G. Ask if the user wants the plays in the

order entered or in gain-loss order.
H. Assign the answer to srted.
J. If the plays are to be in gain-loss

order then
a. Assign true to sorted.
else
b. Assign false to sorted.

K. Ask the user how many keys he wants the
charts keyed on. Assign the answer to
numkeys.

L. If numkeys equals 1 then

148

a. Assign false to many_keys.
else
b. Assign true to many.keys.

M. Assign true to odd.key.
N. Assign 1 to which_key.
0. Assign true to first.
P. While numkeys is greater than zero do
a. Call procedure init_field.
b. If which key = 1 then
i. Assign "FIRST" to request.
else
ii. Assign "NEXT " to request.

c. Increment which_key.
d. Call procedure init.field.
e. Call procedure init.gain.
f. Write to the terminal"WHAT DO YOU WANT THE"

request"KEY TO BE"
Give the user the following choices:

1. DRIVE NUMBER 11. HOLE
2. PLAY NUMBER 12. STRONG OR WEAK SIDE
3. HASH MARK 13. RESULT (GAIN OR LOSS)
4. ZONE 14. PASS ACTION
5. DOWN & DISTANCE 15. POSITION of RECEIVER
6. FORMATION 16. NUMBER of RECEIVER
7. RUN or PASS 17. PASS RESULT
8. PLAY 18. PASS PATTERN
9. POSITION of BALL CARRIER 19. DEPTH of PASS
10. NUMBER of BALL CARRIER 20. ZONE OF PASS
21. ALL PLAYS
g. Assign his choice to okey
h. If okey = 1 then
i. Assign "DRIVE NUMBER" to field.
ii. Ask which drive number he wants plays for
iii. Assign his answer to the drive_no field of

the record that wantedptr points to.
i. If okey = 2 then
i. Assign "PLAY NUMBER" to field.
ii. Ask which play number he wants plays for
iii. Assign his answer to the play_no field of

the record that wantedptr points to.
j. If okey = 3 then
i. Assign "HASH MARK" to field.
ii. Ask which hash mark he wants plays for
iii. Assign his answer to the hash field of

the record that wantedptr points to.
k. If okey = 4 then
i. Assign "YARDAGE ZONE" to field.
ii. Ask which yardage zone he wants plays for

149

iii. Assign his answer to the zone field of
the record that wantedptr points to.

1. If okey = 5 then
i. Assign "DOWN and DISTANCE" to field.
ii. Ask which down and distance he wants plays for
iii. Assign his answer to the d_d field of

the record that wantedptr points to.
m. If okey = 6 then
i. Assign "OFFENSIVE FORMATION" to field.
ii. Ask which formation he wants plays for
iii. Assign his answer to the form field of

the record that wantedptr points to.
n. If okey = 7 then
i. Assign "RUN or PASS" to field.
ii. Ask if runs or passes are wanted.
iii. Assign his answer to the r_p field of

the record that wantedptr points to.
o. If okey = 8 then
i. Assign "THE PLAY RUN" to field.
ii. Ask which play he wants plays for
iii. Assign his answer to the play field of

the record that wantedptr points to.
p. If okey = 9 then
i. Assign "BALL CARRIER POS" to field.
ii. Ask which ball carrier position he wants plays for
iii. Assign his answer to the pos_bc field of

the record that wantedptr points to.
q. If okey = 10 then
i. Assign "BALL CARRIERS #" to field.
ii. Ask which ball carrier he wants plays for
iii. Assign his answer to the b_c field of

the record that wantedptr points to.
r. If okey = 11 then
i. Assign "HOLE NUMBER #" to field.
ii. Ask which hole he wants plays for
iii. Assign his answer to the hole field of

the record that wantedptr points to.
s. If okey = 12 then
i. Assign "STRONG OF WEAK SEDE" to field.
ii. Ask which side he wants plays for
iii. Assign his answer to the b_c field of

the record that wantedptr points to.
t. If okey = 13 then
i. Assign "YARS GAINED#" to field.
ii. Ask which gain he wants plays for
iii. Assign his answer to the result field of

the record that wantedptr points to.
u. If okey = 14 then

150

i. Assign "PASS ACTION" to field.
ii. Ask which pass action he wants plays for
iii. Assign his answer to the p_act field of

the record that wantedptr points to.
v. If okey = 15 then
i. Assign "RECEIVER POSITION" to field.
ii. Ask which receiver position he wants plays for
iii. Assign his answer to the rec_p field of

the record that wantedptr points to.
w. If okey = 16 then
i. Assign "RECEIVER NUMBER" to field.
ii. Ask which receiver number he wants plays for
iii. Assign his answer to the rec field of

the record that wantedptr points to.
x. If okey = 17 then
i. Assign "PASS RESULT" to field.
ii. Ask which pass result he wants plays for
iii. Assign his answer to the p.reslt field of

the record that wantedptr points to.
y. If okey = 18 then
i. Assign "PASS PATTERN" to field.
ii. Ask which pass pattern he wants plays for
iii. Assign his answer to the p.pattern field of

the record that wantedptr points to.
z. If okey = 19 then
i. Assign "PASS DEPTH" to field.
ii. Ask which pass depth he wants plays for
iii. Assign his answer to the p.depth field of

the record that wantedptr points to.
aa. If okey = 20 then

i*. Assign "ZONE OF PASS" to field.
ii. Ask which pass zone he wants plays for
iii. Assign his answer to the p_zone field of

the record that wantedptr points to.
bb. If okey = 21 then

i. Assign "ALL PLAYS" to field.
cc. decrement numkeys.
Q. If the chart id to a file then
a. Call procedure print_list_chart passing

wantedptr and outfile.
else
b. Call procedure print_list_chart passing

wantedptr and tty.
R. Assign false to o.headed.
S. Ask the user if he wants another list chart
T. assign the answer to another.o.
U. If his answer is yes then
a. Assign true to do_o_again

151

5 PRINT_LIST_CHART(rp : o.ptr; out.dv :text)

This procedure writes the list of plays that match the plays that

the user wants.

Local variables
tp of type o_ptr.

ALGORITHM
1. If the list is to be in gain loss order then
A. Assign so_anchor to tp.
else
B. Assign o_anehor to tp.

2. Call procedure o_heading passing out_dv.

3. While tp is not nil do
A. If each field of the record that rp points to

is not-selected or it equals the same field of
the record that tp points to then
a. Increment gain indexed by the result field that

tp points to.
b. Increment numplays.
c. Write to the output the fields of the record that

tp points to separated by "I" in the following order.
1. ot.
2. drive_no.
3. play_no.
4. hash.
5. zone.
6. form.
7. d_d.
8. r_p.
9. play.
10. pos_bc.
11. b_c.
12. hole.
13. s_w.
14. p_act.
15. rec_p
16. rec.
17. p.pattern.
18. p.depth.
19. pzone.
20. p.reslt.
21. result.

152

d. Call procedure draw_line passing 79
and out_dv.

B. Assing the next_op field that tp points to
to tp.

Call procedure o_trailer passing out_dv.

Write 3 blank lines to the output.

153

6 Q_TRAILER(var out_dv : text)

This procedure prints the trailer to the offensive charts that are

written to the terminal.

ALGORITHM
1. Call function average and write what it

returns to the output.

2. Call function mode and write what it returns
on the next line.

3. Write "TOTAL NUMBER OF YARDS = " total
on the next line.

4. Call function median and write what it
returns on the next line.

5. If numplays is greater than 2 then
A. Call function mean and write what it

returns on the next line.
else
B. Write"TWO OR LESS PLAYS ON THIS CHART

SO NO MEAN IS CALCULATED"

6. Write "TOTAL NUMBER OF PLAYS ON THIS
CHART = " numplays on the next line.

7. Write the percent of all the plays that
numplays is on the next line.

8. Write "TOTAL PLAYS ENTERED = " total.oplays
on the next line.

9. Call function st.dev and write what it
returns on the next line.

154

6.2 MODE
This is a function of type integer.

This function finds the most frequent gain or loss. If there are

two or more that are equal it will find the lowest gain or loss value of

the ones that are equal.

Local variables
temp.mode, i of type integer.

ALGORITHM
1. If numplays = 0 then
A. Assign 0 to mode.
else
B. Assign the value of the gain[-100]

to tempjmode.
C. For i from -100 tp 100 do
a. If gain[i] is greater than temp_mode then
i. Assign gain[i] to temp_mode.
ii. Assign i to mode

155

6.3 MEAN
This is a function of type real.

This function finds the average gain if the highest and lowest

values are not counted.

Local variables
i, highest,lowest of type integer
lowfound of type boolean.

ALGORITHM
1. Assign false to lowfound.

2. For i assigned -100 to 100 do
A. If lowfound is false then
a. If gain[i] is greater then 0 then
i. Assign i to lowest.
ii. Assign true to lowfound

b. If gain[i] is greater then 0 then
i. Assign i to highest.

3. Assign what ((average returns times numplays)
minus (highest plus lowest)) all divided by
(numplays minus two) to mean.

156

6.4 ST.DEV
This is a function of type real.

This function will find the standard deviation for the gain or loss

values on the chart being produced.

Local variables
i, j of type integer;
sum, a of type real.

ALGORITHM
1. If numplays = 0 then
A. Assign 0 to st_dev.
else
B. Call function average and assign what it returns

to a.
C. Assign 0 to sum.
D. For i assign -100 to 100
a. If gain[i] does not equal then
i. For j assigned 1 to gain[i] do
ii. Assign sum plus the square of

the absolute value of i - a to sum.
E. Assign the square root of sum divided by

numplays to st_dev.

157

6.5 MEDIAN
This is a function of type integer.

This function finds the middle gain or loss value for a chart of

plays.

Local variables
got_it i of type integer;
key of type real;
done of type boolean.

ALGORITHM
1. If numplays = 0 then
A. Assign 0 to mode.
else
B. Assign -100 to i.
C. Assign numplays divided by two to key.
D. Assign 0 to got.it.
E. Assign false to done.
F. Repeat until done is true or i equals 100
a. If gain[i] is greater then 0 then
i. Assign got.it plus gain[i] to got.it.

b. If got.it is greater than or equal
to key then
i. Assign i to median.
ii. Assign true to done.

c. Assign i plus 1 to i.

158

6.6 AVERAGE
This is a function of type real.

This function finds the average number of yards gained.

Local variable
i of type integer.

ALGORITHM
1. Assign 0 to total.

2. For i assigned -100 to 100 do
A. Assign total + (gain[i] * i) to total
B. Assign total divided by numplays to average.

159

7 PRINT_DOWN_BY_PLAY_AR(var out.dv : text)

This procedure writes the down by play chart.

Local variables
i of type integer
d of type downs
pi of type plays

ALGORITHM
1. Write the title " DOWN BY PLAY"

to the output.

2. Call procedure print_down_heading
passing out_dv.

3. Assign zero to 1.

4. For pi from p59 to otherplay do
A. Assign i + i to i.
B. Write playnamesti] to the output.
C. For d from ol to otherdown do
a. Write down_by_play_ar[d,pl]

to the output.
D. Write tplayti] and pplay[i]

to the output.
E. Call procedure draw_line passing

74 and out_dv.

5. Call procedure print_down_totals
passing out.dv.

160

7.2 PRINT_DOWN_HEADING(var out_dv : text)

This procedure writes the heading on the down matrix charts.

ALGORITHM
1. Write the following heading on one

line to the output.
"I 1LI 1MI 1S| 1G| 2L| 2M| 2S| 2G| 3L|

3M| 3S| 3GI 4l| 4M| 4S| 4G|oth| # I Jt"».

2. Call procedure draw.line passing
79 and out_dv.

161

7.2 PRINT_FORMATION_HEADING(var out.dv : text)

This procedure prints the heading on the formation matrix charts.

ALGORITHM
1. Write the following heading on one

line to the output.
"|PRI|PLIIPRQ|PLQI SRI ISLIISRQISLQISRSI
SLSIPRA|PLA|PRBIPLB|TWRITWLIothI # I

2. Call procedure draw.line passing 79
and out_dv.

162

7.2 PRINT_PASS_ROUTE_HEADING(var out_dv : text)

This procedure prints the heading on the pass route matrix charts.

ALGORITHM
1. Write the following heading on one

line to the output.
"I 1 I 2 I 3 I3SWI 4 |4SW| 5 l5SW|other".

2. Call procedure draw_line passing 42
and out_dv.

163

7.2 PRINT_PASS_ACTION_HEADING(var oub.dv : text)

This procedure prints the heading on the pass action matrix charts.

ALGORITHM
1. Write the following heading on one

line to the output.
"1500170019001 801 901B0TI SCR IYSClother".

2. Call procedure draw.line passing 41
and out_dv.

164

7.2 PRINT_HOLE_HEADING(var out.dv : text)

This procedure prints the heading on the hole matrix charts.

ALGORITHM
1. Write the following heading on one

line to the output.
" I 9 I 7 I 5 I 3 I 1 I 0 I 2 I 4 I 6 I
8 I PAS I other".

2. Call procedure draw.line passing 54
and out_dv.

165

7.3 PRINT_FORMATION_PERCENTS(var out_dv : text)

This procedure writes the percents for the columns in the formation

matrix charts.

Local variable
i of type integer

ALGORITHM
1. Write four spaces to the output.

2. For i from 1 to 17 do
A. Write pformchart[i] to the output.

3. Write " THERE ARE " pformchart[18] " PLAYS ON
THIS CHART" to the output.

166

7.3 PRINT_PASS_ROUTE_PERCENTS(var oub_dv : text)

This procedure writes the percents for the columns in the pass

route matrix charts.

Local variable
i of type integer

ALGORITHM
1. Write four spaces to the output.

2. For i from 1 to 9 do
A. Write proutechart[i] to the output.

3. Write " THERE ARE " proutechart[18] " PLAYS ON
THIS CHART" to the output.

167

PRINT_PASS_ACTION_PERCENTS(var out.dv : text)

This procedure writes the percents for the columns in the pass

action matrix charts.

Local variable
i of type integer

ALGORITHM
1. Write four spaces to the output.

2. For i from 1 to 9 do
A. Write ppactchart[i] to the output.

3. Write » THERE ARE " ppactchartC18] " PLAYS ON
THIS CHART" to the output.

168

7.3 PRINT_HOLE_PERCENTS(var out.dv ; text)

This procedure writes the percents for the columns in the hole

matrix charts.

Local variable
i of type integer

ALGORITHM
1. Write four spaces to the output.

2. For i from 1 to 12 do
A. Write pholechart[i] to the output.

3. Write " THERE ARE " pholechartt18] " PLAYS ON
THIS CHART" to the output.

169

7.3 PRINT_DOWN_PERCENTS(var oub_dv : text)

This procedure writes the percents for the columns in the done

matrix charts.

Local variable
i of type integer

ALGORITHM
1. Write four spaces to the output.

2. For i from 1 to 17 do
A. Write pdownchart[i] to the output.

3. Write " THERE ARE " pdownchartt18] " PLAYS ON
THIS CHART" to the output.

170

7.4 PRINT_FORMATION_TOTALS(var out.dv : text)

This procedure prints the totals at the bottom of the columns for

the formation matrix charts.

Local variables
i of type integer

ALGORITHM
1. Write four spaces to the output.

2. For i from 1 to 17 do
A. Write tformcharts[i] to the output.

3. Call procedure print_formation_percents
passing out_dv.

4. Put two blank lines on the output.

171

7.4 PRINT_PASS_ROUTE_TOTALS(var oub.dv : text)

This procedure prints the totals at the bottom of the columns for

the pass route matrix charts.

Local variables
i of type integer

ALGORITHM
1. Write four spaces to the output.

2. For i from 1 to 9 do
A. Write troutecharts[i] to the output.

3. Call procedure print_pass_route_percents
passing out_dv.

4. Put two blank lines on the output.

172

7.4 PRINT_PASS_ACTION_TOTALS(var out.dv : text)

This procedure prints the totals at the bottom of the columns for

the pass action matrix charts.

Local variables
i of type integer

ALGORITHM
1. Write four spaces to the output.

2. For i from 1 to 9 do
A. Write tpactcharts[i] to the output.

3. Call procedure print_pass_action_percents
passing out_dv.

4. Put two blank lines on the output.

173

7.4 PRINT_HOLE_TOTALS(var out.dv : text)

This procedure prints the totals at the bottom of the columns for

the hole matrix charts.

Local variables
i of type integer

ALGORITHM
1. Write four spaces to the output.

2. For i from 1 to 12 do
A. Write tholecharts[i] to the output.

3. Call procedure print_hole_percents
passing out_dv.

4. Put two blank lines on the output.

174

7.4 PRINT_DOWN_TOTALS(var oub.dv : text)

This procedure prints the totals at the bottom of the columns for

the down matrix charts.

Local variables
i of type integer

ALGORITHM
1. Write four spaces to the output.

2. For i from 1 to 17 do
A. Write tdowncharts[i] to the output.

3. Call procedure print_down_percents
passing out_dv.

4. Put two blank lines on the output.

175

8 PRINT_DOWN_BY.FORMATION_AR(var out.dv:text)

This procedure writes the down by formation matrix chart.

Local variables
i of type integer
ho of tyoe holes
f of type formations

ALGORITHM
1. Write the title 11 HOLE BY FORMATION"

to the output.

2. Call procedure print_hole_heading
passing out_dv.

3. Assign zero to 1.

4. For f from pri to otherform do
A. Assign i + i to i.
B. Write formationnamesCi] to the output.
C. For ho from hnine to otherhole do
a. Write hole_by_formation_ar[ho,f]

to the output.
E. Call procedure draw.line passing

74 and out_dv.

5. Call procedure print_hole_totals
passing out_dv.

176

9 PRINT_HOLE_BY_DOWN_AR(var out.dv:text)

This procedure writes the hole by down chart.

Local variables
i of type integer
d of type downs
ho of type plays

ALGORITHM
1. Write the title " HOLE BY DOWN"

to the output.

2. Call procedure print_hole_heading
passing out_dv.

3. Assign zero to 1.

4. For d from ol to otherdown do
A. Assign i + i to i.
B. Write downnames[i] to the output.
C. For ho from hnine to otherhole do
a. Write hole_by_down_ar[ho,d]

to the output.
E. Call procedure draw_line passing

54 and out_dv.

5. Call procedure print_hole_totals
passing out_dv.

177

10 PRINT_HOLE_BY_HASH_AR(var out.dv:text)

This procedure writes the hole by hash chart.

Local variables
i of type integer
hm of type hashmarks
ho of type plays

ALGORITHM
1. Write the title " HOLE BY HASH"

to the output.

2. Call procedure print_hole_heading
passing out_dv.

3. Assign zero to 1.

4. For hm from right to otherhash do
A. Assign i + i to i.
B. Write hashnamesti] to the output.
C. For ho from hnine to otherhole do
a. Write hole_by_hash_ar[ho,hm]

to the output.
E. Call procedure draw_line passing

54 and out_dv.

5. Call procedure print_hole_totals
passing out_dv.

178

11 PRINT_PASS_ACTION_BY_HASH_AR(var out.dv:text)

This procedure writes the pass action by hash chart.

Local variables
i of type integer
pa of type pass_actions
hm of type hashmarks

ALGORITHM
1. Write the title " PASS ACTION BY HASH"

to the output.

2. Call procedure print_pass_action_heading
passing out.dv.

3. Assign zero to 1.

4. For hm from right to otherhash do
A. Assign i + i to i.
B. Write hashnames[i] to the output.
C. For pa from a500 to otherpassaction do
a. Write pact_by_hash_ar[pa,hm]

to the output.
E. Call procedure draw.line passing

41 and out.dv.

5. Call procedure print.pass.action.totals
passing out.dv.

179

12 PRINT_PASS_ROUTE_BY_HASH_AR(var out.dv:text)

This procedure writes the pass route by hash chart.

Local variables
i of type integer
r of type routes
hm of type hashmarks

ALGORITHM
1. Write the title " PASS ROUTE BY HASH"

to the output.

2. Call procedure print.pass.route.heading
passing out.dv.

3. Assign zero to 1.

4. For hm from right to ptherhash do
A. Assign i + i to i.
B. Write hashnames[i] to the output.
C. For r from r1 to otherroute do
a. Write route_by_hash_ar[r,hm]

to the output.
E. Call procedure draw.line passing

42 and out.dv.

5. Call procedure print.hole.totals
passing out.dv.

180

13 PRINT.FORMATION.BY_HASH_AR(var out.dv:text)

This procedure writes the formation by hash chart.

Local variables
i of type integer
f of type formations
hm of type hashmarks

ALGORITHM
1. Write the title " FORMATION BY HASH"

to the output.

2. Call procedure print_formation_heading
passing out.dv.

3. Assign zero to 1.

4. For hm from right to otherhash do
A. Assign i + i to i.
B. Write hashnames[i] to the output.
C. For f from pri to otherform do
a. Write form_by_hash_ar[f,hm]

to the output.
E. Call procedure draw.line passing

74 and out.dv.

5. Call procedure print.formation.totals
passing out.dv.

181

14 PRINT_PASS_ROUTE_BY_ZONE_AR(var out.dv:text)

This procedure writes the pass route by zone chart.

Local variables
i of type integer
r of type routes
z of type zones

ALGORITHM
1. Write the title " PASS ROUTE BY ZONE"

to the output.

2. Call procedure print.pass.route.heading
passing out.dv.

3. Assign zero to 1.

4. For z from zone to otherzone do
A. Assign i + i to i.
B. Write zonenames[i] to the output.
C. For r from r1 to otherroute do
a. Write route_by_zone_ar[r,z]

to the output.
E. Call procedure draw.line passing

42 and out.dv.

5. Call procedure print.pass.route.totals
passing out.dv.

182

15 PRINT_PASS_ACTION_BY_ZONE_AR(var out.dv : text)

This procedure writes the pass route by zone chart.

Local variables
i of type integer
pa of type pass.actions
z of type zones

ALGORITHM
1. Write the title " PASS ACTION BY ZONE"

to the output.

2. Call procedure print_pass_action_heading
passing out_dv.

3. Assign zero to 1.

4. For z from zone to otherzone do
A. Assign i + i to i.
B. Write zonenames[i] to the output.
C. For pa from a500 to otherpassaction do
a. Write pact_by_zone_ar[pa,z]

to the output.
E. Call procedure draw_line passing

41 and out.dv.

5. Call procedure print_pass_action-totals
passing out_dv.

183

16 PRINT_PASS_ACTION_BY_DOWN_AR(var out.dv : text)

This procedure writes the pass action by down chart.

Local variables
i of type integer
pa of type pass_actions
d of type downs

ALGORITHM
1. Write the title " PASS ACTION BY DOWN"

to the output.

2. Call procedure print_pass_action_heading
passing out.dv.

3. Assign zero to 1.

4. For d from ol to otherdown do
A. Assign i + i to i.
B. Write donenames[i] to the output.
C. For pa from a500 to otherpassaction do
a. Write pact_by_down_ar[pa,d]

to the output.
E. Call procedure draw.line passing

41 and out.dv.

5. Call procedure print.pass.action.totals
passing out.dv.

184

17 PRINT_PASS_ROUTE_BY_DOWN_AR(var out.dv : text)

This procedure writes the pass route by down chart.

Local variables
i of type integer
r of type routes
d of type downs

ALGORITHM
1. Write the title » PASS ROUTE BY DOWN"

to the output.

2. Call procedure print_pass_route_heading
passing out_dv.

3. Assign zero to 1.

4. For d from ol to otherdown do
A. Assign i + i to i.
B. Write downnamesti] to the output.
C. For r from r1 to otherroute do
a. Write route_by_down_ar[r,d]

to the output.
E. Call procedure draw.line passing

42 and out.dv.

5. Call procedure print_pass_route_totals
passing out.dv.

185

18 PRINT_FORMATION_BY_DOWN_AR(var out.dv : text)

This procedure writes the formation by down chart.

Local variables
i of type integer
f of type formations
d of type downs

ALGORITHM
1. Write the title " FORMATION BY DOWN"

to the output.

2. Call procedure print_formation_heading
passing out.dv.

3. Assign zero to 1.

4. For d from ol to otherdown do
A. Assign i + i to i.
B. Write downnamesti] to the output.
C. For f from pri to otherform do
a. Write form_by_down_ar[f,d]

to the output.
E. Call procedure draw.line passing

74 and out.dv.

5. Call procedure print.formation.totals
passing out.dv.

186

19 PRINT_FORMATION.BY.PLAY_AR(var out_dv : text)

This procedure writes the formation by play chart.

Local variables
i of type integer
f of type formations
pi of type plays

ALGORITHM
1. Write the title " FORMATION BY PLAY"

to the output.

2. Call procedure print_formation_heading
passing out_dv.

3. Assign zero to 1.

4. For pi from p59 to otherplay do
A. Assign i + i to i.
B. Write playnames[i] to the output.
C. For f from pri to otherform do
a. Write form_by_play_ar[f,pl]

to the output.
E. Call procedure draw.line passing

74 and out.dv.

5. Call procedure print.formation.totals
passing out.dv.

187

20 INIT.FIELD

This procedure initializes the array that gives the charts thier

headings to spaces.

Local variables
i of type integer.

ALGORITHM
1. For i assigned 1 to 20 do
A. Assign a space to fieldfi].

188

21 MAKE_Q_FILE

This procedure writes the records of the plays entered into a file

so that the can be used again in another run of the program.

Local variable
l_ptr of type o_ptr

ALGORITHM
1. Rewrite the outfile to the name in file_out1.

2. Assign o_anchor to l_ptr.

3. Repeat until l_ptr is nil.
A. Write to the outfile on one line the values in the

the record that l_ptr points to in the following
order, each value is to be followed by a space.
1. opponent
2. drive_no (in a field of 2)
3. play_no (in a field of 2)
4. result (in a field of 2)
5. hash
6. zone
7. d_d
8. form
9. r_P
10. play
11. pos_bc
12. b_c
13. hole
14. s_w
15. p_act
16. p_reslt
17. rec_p
18. rec
19. p_pattern
20. p-depth
21. p.zone
B. Assign the pointer to the next offensive record

to l_ptr.

189

22 BUILD_Q_LIST(var temp.ptr : o_pbr)

This procedure creates a linked list of offensive play records in

the order that they are entered.

ALGORITHM:
1. Create a pointer to a new offensive play record.

2. Check to see if this is the first record to be
built. If it is then
A. Assign it to the anchor pointer.
B. Assign it to the temp_ptr.
else
C. Assign the new offensive record to the next_op

field of the last record.
D. Assign the new record to the temp.ptr.

3. Assign each of the values read into the offensive
information variables to the proper field in the
new record.

4. Assign nil to the next play field of the record.

5. Call procedure sorted.list passing the value of the
result field of the new record.

190

23 SORTED_LIST(GAIN : INTEGER)

This procedure builds a list of the plays in ascending order

number of yards gained.

Local variables
prev of type o_ptr to point to the last record looked at
pres of type o_ptr to point to the record being looked at
done of type boolean
bigger of type boolean

ALGORITHM
1. Initialize prev and pres to nil.

2. Initialize done and bigger to false.

3. Create a new offensive record with so_current pointing to it.

4. If the sorted list is empty then
A. Assign the new record to

so.anchor.
else
B. Assign pres to what so_anchor points to.

5. If gain is less than the result field of the record
that pres points to then
A. Assign so_current to so_anchor.
B. Assign what pres is pointing to to the next_op

field of the new record.
else

C. Repeat until done is true
a. If the next.op field that pres points to is nil or

gain is less than the result field that pres points
to then
i. Assign true to done.

else
ii. Assign pres to prev.
iii. Assign the next.op field of what pres is pointing

to to pres.
D. If gain is less than the result field that pres

is pointing to then
a. Assign true to bigger.

E. If bigger is true then
a. Assign the record that so.current points to to

the next_op field of the record that prev
points to.

b. Assign pres to the next_op field of the record

191

so_current points to.
else
c. Put the record that so.current points to at the.
end of the list.

6. Assign all the offensive play elements read in to the
proper fields of the record that so_current points to

192

24 Q HEADING(var out_dv : text)

ALGORITHM:
1. Print the following heading to the output,

dn | n 1
ru | pu h 1 z
i m | 1 m a | o
vb | ab s | n
ee | y e h | e
r j r 1

form

d I r |
i i u |

ds | n |
ot | ! |
wa|p|
nn | a |
c | s |
els

play

i
I P
i o
i s
i '•
i b
I c
i i i

i i i
In | I
I u j h | s
|mb|o|
I be| 1 1 !
I e | e |
| r | | w

i

I I r |
| r | en | ,
ie|cu|
|c|em| p

p-act i on| ! | i b |
| p|ve|pat t ern
i o|erj
I s I r |

i i i
I P I r |

d I!Ipe|g1
e|z|as|ao

pp|o|su|is
t | n | s 1 |ns
h j e j t j

193

25 DRAW_LINE(length : integer;var out_dv : text)

This procedure writes lines on the output charts.

Local variable
i of type integer

ALGORITHM
1. For i assigned 1 to length
A. Print a dash to the output.

194

26 INIT.GAIN

This procedure initilizes the array that holds the number of plays

for each gain and loss value.

Local variables
i of type integer to be used as a loop control

and an index counter

ALGORITHM
1. Assign 0 to each element of gain.

2. Assign 0 to numplays.

195

27 INIT.FILENAME

This procedure initializes the input and output filenames to

spaces.

Local variable
i of type integer

ALGORITHM:

1. Assign space to each of the elements of file_out1.

2. Assign file_out1 to file_out2.

3- Assign file_out1 to file_out3-

4. Assign file_out1 to file_out4.

5. Assign file_out1 to file_ino.

6. Assign file_out1 to file_ind.

196

28 FILENAME

This procedure assigns the proper names to the variables to be used

as file names by the program.

Local variable
i or type integer

ALGORITHM
1. Assign file_out1 to file_out2.

2. Assign file_out1 to file_out3.

3. Assign file_out1 to file_out4.

4. Assign 1 to i.

5. Repeat until file_out1 indexed by i is a space
A. Assign i+1 to i.

6. Assign a period to file_out1 indexed by i.

7. Assign a period to file_out2 indexed by i.

8. Assign a period to file_out3 indexed by i.

9. Assign a period to file_out4 indexed by i.

10. Assign a 0 to file_out1 indexed by i+1.

11. Assign a D to file_out2 indexed by i+1.

12. Assign a 0 to file_out3 indexed by i+1.

13. Assign a D to file_out4 indexed by i+1.

14. Assign a C to file_out3 indexed by i+2.

15. Assign a C to file_out4 indexed by i+2.

16. Assign each element of file_out1 to file_ino.

17- Assign each element of file_out1 to file_ind.

197

USER'S MANUAL

for

d SSSSS CCCCC 00000 u u TTTTr

d S C 0 0 u u T
d S C 0 0 u u T

ddddd === SSSS C 0 0 u u T
d d S C 0 0 u u T
d d S c 0 0 u u T
ddddd SSSSS CCCCC 00000 uuuuu T

by K. Garry Dyer

198

d-SCOUT

Scout is designed to be a user friendly, work saving, football

scouting program for any coaching staff with a computer capable of using

Pascal. This program will take specific input and sort and organize it

into several different charts which may be shown on the terminal or

written to a file to be printed on hard copy. The input from each

session is either saved in a file of its own or added to an existing

file so that it can be used at a later date.

The files containing the input information and the charts to be

printed will be named in the following manner: The file containing the

information put in about a team's defense will be named by the name of

the team being scouted followed by a period and the letter D e.g.

BOBCATS.D. The files containing the charts to be printed will have the

same names with the last letter followed by a C e.g. BOBCATS.DC.

199

When the program first starts the following display will appear on

the screen.

d SSSSS CCCCC 00000 u u TTTTTTT
d S C C 0 0 u u T
d S C 0 0 u u T

ddddd === = SSSS C 0 0 u u T
d d S c 0 0 u u T
d d S c c 0 0 u u T
ddddd SSSSS CCCCC 00000 uuuuu T

by K. Garry Dyer

press RETURN to start program

To start the main portion of the program you need to press the "RETURN"

key. Upon doing this you will be asked a series of questions to

determine exactly what use you want to make of the program with this

run. Please note that all responses must be followed by a carriage

return and that if a mistake is made in a response, it may be corrected

before the carriage return. These questions and proper type responses

are as follows:

200

GETTING STARTED

WHAT TEAM IS BEING SCOUTED?

The response to this question can be any set of up to fifteen

characters and will be the name attached to the files that are generated

for the purpose of scouting the team in question.

DO YOU WANT TO INCLUDE A PREVIOUSLY BUILT FILE OF PLAYS?

If you have a file on the team that you are scouting and want the

information that is in that file to be included in this report you

should respond with "Y" and the old file will be read into the data base

for this run. If you have a file on this team but do not want it

included in this set of reports you should be sure to name the team

being scouted by a different name than was used for the other file. If

you use the same name and do not include it in this run, the old file

will be destroyed and the new one by that name will contain only the

information entered during this run. If you do not have an old file of

defensive information that you want included in this run you should

respond with "N".

Next you will be asked if you want to enter new plays into the data

base.

DO YOU WANT TO ADD MORE PLAYS TO THE REPORT? (Y/N)

If you wish to add more plays to an old data base or start a new

one you should respond "Y" to this question. If you only want to

generate some reports from an old file of plays and not add any new ones

respond with "N". A response of "Y" will take you to the part of the

201

program that accepts information about new plays.

202

ENTERING DEFENSIVE PLAYS.

To get the information about defensive plays you will be asked the

following questions:

WHO IS THE OPPONENT FOR THIS SET OF PLAYS

This is the opponent of the team being scouted and the answer

should be no more than three characters long.

HASH MARK L, M, OR R?

This is to indicate which hash mark the play started from. You

should enter "R" for the right hash mark, "M" for the middle of the

field, and "L" for the left hash mark.

YARDAGE ZONE 1 TO 6?

This is the zone on the field that the play starts from and can be

any number from 1 to 6. The user may define these zones in whatever way

works best for him. In this program these zones are set up as follows:

1: goal to 10, 2: 10 to 30, 3: 30 to 50, 4: 50 to 30, 5: 30 to 10,

and 6: 10 to goal. The order of the zones is structured so that the

offense moves toward a higher numbered zone. You should enter a number

from 1 to 6 to indicate where the play started.

203

DOWN DISTANCE?

This is the down and distance of the play. You should enter a

number followed by a letter: 1 for first down, 2 for second down, 3 for

third down, 4 for forth down. L for long-more than seven yards, M for

medium-from 3 to 7 yards, S for short-less than 3 yards, and G-if it is

less than first down distance to the goal line e.g. 1L or 3M.

OFFENSIVE FORMATION?

This is to indicate the offensive formation of the opponent of the

team being scouted. This may be any group of characters up to eight.

Be sure to use the same characters to indicate the same thing each time

e.g. PRO-R-I, SHOTGUN, or VEER.

OFFENSIVE MOTION?

Enter any offensive motion that the opponent used. this can

contain a maxium of three characters.

DEFENSIVE FRONT?

This is to indicate the defensive front that the team used. This

may be any group of characters up to eight. Be sure to use the same

characters to indicate the same thing each time e.g. 3-4, stack-6,

gap-6, etc.

VARAITION TO FRONT

Enter any variation to the normal front that the team being scouted

used. A maximum of three characters can be used.

204

DEFENSIVE COVERAGE?

This is to indicate the coverage that the secondary is using. This

may be any group of characters up to eight. Be sure to use the same

characters to indicate the same thing each time e.g. ZONE, MAN, ZONE-R

etc.

DEFENSIVE STUNT?

This is to be used to enter any stunt that the offensive line or

linebackers may have used. This may be any group of characters up to

eight. Be sure to use the same characters to indicate the same thing

each time.

BLITZ?

This is to enter any type of a blitz that the defense may have

used. This may be any group of characters up to eight. Be sure to use

the same characters to indicate the same thing each time e.g. L-OLB,

ILB, etc.

This is the end of the defensive information. You will be asked if

this is the last play that you want to enter. If you have more

defensive plays to enter type "N" to return to the defensive play entry

part of the program. If you have no more plays to enter type "Y" and

you will exit to the part of the program that lets you have reports

generated.

205

DEFENSIVE CHARTS

After all the defensive play information has been entered into the

data base and you are finished entering defensive information, you will

be given the choice to have defensive charts generated.

DO YOU WANT DEFENSIVE CHARTS? (Y/N)

At this point if you want defensive charts you should type "Y", if

not type "N". If you choose "N" you will be given a choice to terminate

the run or to start over and enter more information or get different

charts.

DO YOU WANT LIST CHARTS OR MATRIX CHARTS?

L for LIST CHARTS

M for MATRIX CHARTS

Please enter the letter to indicate which type of chart you wish.

If you choose to have defensive charts you will be given the choice

of having them written to a file for printing on paper or to your

terminal for instant inspection.

DO YOU WANT THE CHARTS WRITTEN TO A FILE TO BE PRINTED
OR TO THE TERMINAL? T/F

If you want the charts to go to a file to be printed on paper you

should type "F" if you want them to be written to your terminal type

"T".

If you choose list charts you will now be asked how many items you

want the chart keyed on.

206

HOW MANY ITEMS DO YOU WANT THE CHART KEYED ON?

You must now decide how many items (up to 10) that you want the

chart keyed on. Type the number of keys that you want and you will be

asked for the first key.

You should now decide what report(s) you want and enter the correct

number. Next you will be askedone of the nine questions that follows to

find out what you want the value of key to be:

WHICH HASH MARK DO YOU WANT THE CHART FOR?

WHAT YARDAGE ZONE DO YOU WANT THE CHART FOR?

WHICH DOWN AND DISTANCE DO YOU WANT THE CHART FOR?

WHICH OFFENSIVE FORMATION DO YOU WANT THE CHART FOR?

WHAT DEFENSIVE FRONT DO YOU WANT THE CHART FOR?

WHAT COVERAGE DO YOU WANT CHARTS FOR?

WHAT STUNT DO YOU WANT THE CHART FOR?

WHAT BLITZ DO YOU WANT THE CHART FOR?

WHICH MOTION DO YOU WANT THE CHART FOR?

You must answer these questions with the exact same thing with

which you entered the information. You will continue to be asked for

the value of the keys until you have entered the value for each of the

keys that you wanted for this chart. The chart that you have requested

WHAT DO YOU WANT THE FIRST KEY TO BE?
TYPE THE APPROPRIATE NUMBER TO INDICATE THE KEY AREA

1: HASH MARK
2: DOWN and DISTANCE
3: YARDAGE ZONE
4: the offensive formation
9: ALL PLAYS

5: DEFENSIVE FRONT
6: SECONDARY COVERAGE
7: STUNTS
8: BLITZES
10: MOTION

207

will now be written to a file or onto your terminal, depending on where

you asked for it to be sent.

After the program has built the chart that you have requested, you

will be given a chance to go back and request another chart.

DO YOU WANT ANOTHER LIST CHART?

Answer either "Y" or "N" depending on whether you want another list

chart. If you answer "Y" the program will return to the above lines and

let you make another list chart. If you answer "N" you will be given

the chance to have matrix charts built.

DO YOU WANT ANOTHER DEFENSIVE CHART? Y/N

If you want another chart type "Y" and the program will go back and

let you choose another chart. All of the charts from this run will be

put into the same file, so that they may all be printed at once. When

you have all of the defensive charts that you want, type "N" and the

program will ask you if you are finished or if you want to run it

longer.

DO YOU WANT ANOTHER RUN? Y/N

If you want to do another run for entering more plays or getting

more charts type "Y" to get back to the start of the program. If you

are finished for now type "N" and the program will stop.

If you choose to have matrix charts you will be given the following

menu from which to choose the charts:

1 for COVERAGE BY FRONT

2 for COVERAGE BY FORMATION

208

3 for COVERAGE BY ZONE

4 for COVERAGE BY HASH MARK

5 for COVERAGE BY DOWN AND DISTANCE

6 for FRONT BY FORMATION

7 for FRONT BY DOWN AND DISTANCE

8 for FRONT BY ZONE

9 for FRONT BY HASH MARK

10 for ALL OF THE ABOVE CHARTS

You should enter the number that indicates the type of matrix chart

you want created. After the chart has been created you will be given

the same choices as before. You can either have more charts created or

stop the program as explained above.

209

USER'S MANUAL

for

SSSSS CCCCC 00000 u u TTTT
S C 0 0 u u T
S C 0 0 u u T

0000 == = SSSS C 0 0 u u T
0 0 S c 0 0 u u T
0 0 S c 0 0 u u T
0000 SSSSS CCCCC 00000 uuuuu T

by K. Garry Dyer

210

o-SCOUT

Scout is designed to be a user friendly, work saving, football

scouting program for any coaching staff with a computer capable of using

Pascal. This program will take specific input and sort and organize it

into several different charts which may be shown on the terminal or

written to a file to be printed on hard copy. The input from each

session is either saved in a file of its own or added to an existing

file so that it can be used at a later date.

The files containing the input information and the charts to be

printed will be named in the following manner. The file containing the

information put in about a team's offense will be named by the name of

the team being scouted followed by a period and the letter 0 e.g.

BOBCATS.0. The files containing the charts to be printed will have the

same names with the last letter followed by a C e.g. BOBCATS.OC.

211

When the program first starts the following display will appear on

the screen.

SSSSS CCCCC 00000 u u
S C C 0 0 u u T
S C 0 0 u u T

oooo == == SSSS C 0 0 u u T
0 0 S C 0 0 u u T
0 o S C C 0 0 u u T
oooo SSSSS CCCCC 00000 UUUUU T

by K. Garry Dyer

press RETURN to start program

To start the main portion of the program you need to press the "RETURN"

key. Upon doing this you will be asked a series of questions to

determine exactly what use you want to make of the program with this

run. Please note that all responses must be followed by a carriage

return and that if a mistake is made in a response, it may be corrected

before the carriage return. These questions and proper type responses

are as follows:

212

GETTING STARTED

WHAT TEAM IS BEING SCOUTED?

The response to this question can be any set of up to fifteen

characters and will be the name attached to the files that are generated

for the purpose of scouting the team in question.

DO YOU WANT TO INCLUDE A PREVIOUSLY BUILT FILE OF PLAYS?

If you have a file on the team that you are scouting and want the

information that is in that file to be included in this report you

should respond with "Y" and the old file will be read into the data base

for this run. If you have a file on this team but do not want it

included in this set of reports you should be sure to name the team

being scouted by a different name than was used for the other file. If

you use the same name and do not include it in this run, the old file

will be destroyed and the new one by that name will contain only the

information entered during this run. If you do not have an old file of

offensive information that you want included in this run you should

respond with "N".

Next you will be asked if you want to enter new plays into the data

base.

DO YOU WANT TO ADD MORE PLAYS TO THE REPORT? (Y/N)

If you wish to add more plays to an old data base or start a new

one you should respond "Y" to this question. If you only want to

generate some reports from an old file of plays and not add any new ones

respond with "N". A response of "Y" will take you to the part of the

213

program that accepts information about new plays.

214

ENTERING NEW OFFENSIVE PLAYS

To allow for the entering of data about plays not all ready in the

data base, the program will ask you the following list of questions.

The order that plays are entered will be the relative order that they

will appear, so it is best to think of how you want them organized

before entering the information. You will be given the choice of having

the reports in this order or in ascending order according to the gain or

loss on the plays on the chart.

WHO IS THE OPPONENT?

This will put the opponent on the charts so the user will be able

to distinguish one game from another if several games are on the same

report. This will only be asked once for each set of plays entered,

therefore if more than one game is being entered during one session you

should start the program over for each new opponent.

DRIVE NUMBER?

You should answer this with the number of the possession for

which you are entering plays. This can be any number from 1 to 99.

PLAY NUMBER?

This is the number of the play in the current possession and can

be any number from 1 to 99.

215

HASH MARK— R, M, L?

This is to indicate from which hash mark the play started You

should enter "R" for the right hash mark, "M" for the middle of the

field, and "L" for the left hash mark.

YARDAGE ZONE 1 TO 6?

This is the zone on the field that the play starts from and can be

any number from 1 to 6. The user may define these zones in whatever way

works best for him. In this program these zones are set up as follows:

1: goal to 10, 2: 10 to 30, 3: 30 to 50, 4: 50 to 30, 5: 30 to 10,

and 6: 10 to goal. The order of the zones is so structured so that the

offense moves toward a higher numbered zone. You should enter a number

from 1 to 6 to indicate where the play started.

DOWN DISTANCE?

This is the down and distance of the play. You should enter a

number followed by a letter: 1 for first down, 2 for second down, 3 for

third down, 4 for fourth down, L for long-more than seven yards, M for

medium-from 3 to 7 yards, S for short-less than 3 yards, and G-if it is

less than first down distance to the goal line e.g. 1L or 3M.

FORMATION?

In response to this, you should enter the formation in which the

team set up. This can be any description that you choose up to 8

characters. Care should be taken always to use the exact same

description for the same formation e.g. PR0-R-I, SHOTGUN, or VEER.

216

RUN or PASS R or P? ENTER K FOR PUNT

ENTER F FOR FIELD GOAL

This is to enter whether the play was a run or a pass. For running

plays enter an "R" , a "P" for passes, a "K" for punts, and a "F" for

field goals.

PLAY?

This is where you enter the actual name or number of the play that

was run. You can use any combination of letters, numbers, dashes etc.

up to eight(8) characters. Be sure to use the exact same name or number

for the same play.

The next four questions pertain only to running plays and will not

be asked if you answered "P" to RUN or PASS.

THE POSITION OF THE BALL CARRIER?

The response to this is to be a letter or number indicating the

position of the player who carried the ball. You may use any numbering

scheme that you want e.g. 1 for quarterback, 2 for left halfback, 3 for

right halfback, 4 for fullback, etc.

BALL CARRIERS NUMBER?

This is where you enter the actual number worn by the player that

carried the ball.

217

HOLE NUMBER

This is to be the hole to whitch the ball carrier ran, the

numbering scheme for this program is as shown below.

9 7 5 3 1 0 2 4 6 8

0 0 0 0 0 0 0

0 0

0 0

STRONG OR WEAK SIDE?

This question is asked for both the running plays and the passes.

This is to indicate if the ball carrier ran or the pass was thrown to

the strong or weak side of the formation. Enter "S" for the strong

side, "W" for the weak side. If the formation does not have strong and

weak sides or if the ball was carried up the center (to neither side)

you may enter either "N" for neither or just enter a dash Be sure

to use the same character each time.

218

enter FUM if fumble on running play

If a fumble occurred on the play enter FUM at this time. If no

fumble, occurred please enter a dash

The following six questions apply only to passing plays and will

not be asked if you answered "R" to RUN or PASS.

PASS ACTION?

This is used to describe the action of the quarterback or other

passer on a pass play. You may enter any description up to eight

characters. Be sure to use the same characters each time you describe

the same type of action e.g. scramble, 5-drop, sprint-1. etc.

PASS RESULT—COM, INC, or INT?

This will let the user know if the pass was caught, dropped, or

intercepted.

POSITION OF INTENDED RECEIVER?

The response to this is to be a number to indicate the position

from which the intended pass receiver started. You may use any

numbering scheme that works for you. Any number from 1 to 99 will work.

Be sure to use the same numbering scheme for the entire program.

INTENDED RECEIVERS NUMBER?

This is to be the actual number worn by the intended receiver.

219

PATTERN RUN BY RECEIVER?

The response to this can be any combination of characters, It must

not be more than eight characters long. Be sure to use the same

characters each time you describe the same pattern e.g. Z-OUT, FLY,

CROSS.

ZONE OF PASS

This is to be a number of one or two characters to indicate to

which pass zone the ball was thrown. You may use any numbering scheme

that works best for you.

The last two question will be asked for both run and pass. They

will be asked if "K" for punt or "F" for field goal were answered to RUN

or PASS.

DEPTH OF PASS THE THROWN?

VS=0-5, S=5-10, M=10-20, L=20-30, VL=30+

ENTER YARDAGE IF PUNT OR FIELD GOAL

If the play is a pass, this is to be the indicated depth area that

the pass actually traveled in the air and is not to include any yards

that were gained or lost by the running of the receiver after he caught

the ball. If the play was a punt or a field goal the distance of the

punt or field goal may be entered. The distance of the punt or field

goal may be actual yards and does not need to follow the pass depth

zoning scheme. You may want to indicate that a field goal was missed by

entering the yardage of the attempt as a minus number.

220

YARDS GAINED OR LOST?

This is to be the actual number of yards that were gained or lost

on the play. It may be any number from -99 to 99.

This is the end of entering a play. You will now be asked if this

was the last play you wish to enter. A response of "N" will take you

back to the start and allow you to enter another play. A response of

"Y" will exit you from this part of the program and put you into the

part that generates output charts.

221

OFFENSIVE CHARTS

If you selected offense and you are finished entering plays or did

not want to enter any new plays you will be sent to this portion of the

program.

There are two types of offensive charts that can be generated, List

charts, and Matrix charts. A sample of each is shown belowi

LIST CHART

CHART KEYED ON HASH MARK

r

1 1 1 I I I d | r | 1 1 1 1 1 1 I r I I I I I I
1 1 P 1 r | I I d n | n | | | I l | u | 1 P In | | | |r|en|
I I I I I
1 1 P 1 r | I

| r u | pu|h|z| |ds|n| 1 o | u | h | s | |e|cu| 1 d | ! | p e | gl I

| i m | 1 m | a | o | Iot | ! | 1 s 1mb|o| I | c | e m | p I e | z | a s|ao|

|vb|ab|s|n| form |wa|p| play 1 ! I b e | 1 1 ! 1 P a c tion |!|ib| I p p | o | s u | i s 1

| e e | y e|h|e| |nn|a| lb le | e | | ' IpIve|pattern | t. j n j s 1 | n s |

1 r | r | | | I c | s | I c 1 r j | w | 1 o j e r | I h | e | t | |

1 1 1 1 1 | & e | s | 1 1 1 1 1 | s | r j I I I I I

| 1| 2 |R|3|T-T |2S|R|SWEEP-L 1 3 I 4 4 | 8 | S|- l-l- 1- | - |-|FUM t-2|

| 3| 3|R|6|PRO-L-T | 1 G | R I OPTION-L 1 1 I 1 3 | 9 1 S | - l-l- 1- 1- l -l- 1 7 |

| 6| 3|R|2|PRO-R-I |3M|P|SCREEN-R 1 - 1 - 1 — 1 S | 5 -DROP |B|89|HITCH IVS|2|COM| 8 |

| 6| 4|R|R|VEER-L |1L|P|1OBF 1- 1- 1 - 1S|7 - DROP |7|88|FLY I V L | 9 | I NC | 0|

| 6| 5|R|3|SPLIT-T | 2 L|R|SWEEP-L 1 2 | 2 2 | 8 | S | - l-l" 1- 1- l-l 1 4 |

| 6| 9|R|4|PRO-L-I I 1 L | P | SCREEN-Ll- 1- 1 ~ 1 S | 5-- D R OP |4|44|CURL 1VS|1|COM| 4 |

AVERAGE = 3 .5 MODE = 4 TOTAL NUMBER OF YARDS = 21
M E DIAN = 4 MEAN = 3 . 75 NUMBER OF KEYED PLAYS = 6
THIS IS 13% ALL T HE PLAYS
TOTAL PLAYS ENTERED = 4 5

222

MATRIX CHART

HASH BY HOLE CHART
I 9 l 7 l 5 l 3 l 1 l 0 | 2 | 4 l 6 l 8 l

L|
I

1 I
i

0 I
I

2 I
I

1 I
i

0 I
I

o I
i

1 I
I

0 I
I

1 I 1
I I

Ml
I

1 I
I

I
0 I

I

I
0 I

I

i

1 I
I

I
1 I

I

i

1 I
i

I
0 I

I

I
1 I

I

I
0 I 0

I

Rl
I

3 I 0 I
I

1 I 0 I
I

1 I 0 I
I

0 I
I

1 I 0 I 1

5
26%

O
 O

3
167

2
117

2
117

1
57

1
57

O
J

1 2
57 117

You will now be asked for some information about the charts that

you want to have created.

DO YOU WANT THE CHARTS WRITTEN TO A FILE TO
BE PRINTED OR TO THE TERMINAL? T/F

This is where you decide if you want the charts to be shown on your

terminal or to be put into a file so that you can have paper copies

printed. If you want them written to a file to be printed on paper type

"F" if you want them written to your terminal then type "T". If you

have them written to a file remember that the name of the file will

be the team name that you used to begin the program followed by a period

and the letters "OC" e.g. BOBCATS.OC. You may put as many files as you

want in one output file during each run, but remember, that if you turn

the program off and start again with the same team name, the old files

may get deleted.

Next you will be asked if you want list charts or matrix charts.

DO YOU WANT LIST CHARTS OR MATRIX CHARTS? ENTER
L for LIST CHARTS
M for MATRIX CHARTS

223

If you want list type charts you should type "L", if you want

matrix charts you should type "M".

If you have chosen list charts you will be asked the following

questions about how and what you want the chart to be keyed on.

DO YOU WANT THE CHARTS IN GAIN-LOSS ORDER OR
IN THE ORDER THAT THEY WERE ENTERED?

0 for GAIN LOSS ORDERED
D for AS ENTERED

Do you want the charts in ascending order of gain or loss, enter a

"O", if you want them in the order they were entered, type a "D".

HOW MANY ITEMS DO YOU WANT THE CHART KEYED ON?

At this time you must decide how many items (from 1 to 20) that you

want the list charts to be keyed on. You may enter any number from 1 to

20 and you will be asked for the value of that many keys by the

questions that follow the menu.

224

WHAT DO YOU WANT THE FIRST KEY TO BE?

TYPE THE APPROPRIATE NUMBER TO INDICATE THE KEY AREA
1: DRIVE NO 11: HOLE
2: PLAY NUMBER 12: STRONG OR WEAK SIDE
3: HASH MARK 13: RESULT-GAIN OR LOSS
4: ZONE 14: PASS ACTION
5: DOWN and DISTANCE 15: POSITION OF RECEIVER
6: FORMATION 16: NUMBER OF RECEIVER
7: RUN or PASS 17: PASS RESULT
8: PLAY 18: PASS PATTERN
9: POSITION of BALL CARRIER 19: DEPTH OF PASS
10: NUMBER OF BALL CARRIER 20: ZONE OF PASS
21: ALL PLAYS

You should now decide what report's) you want and enter the correct

key number. Next you will get one of the sixteen questions that follows

to find out what you want the key values to be:

WHICH DRIVE NUMBER DO YOU WANT THE PLAYS FOR?

WHICH PLAY NUMBER DO YOU WANT THE PLAYS FOR?

WHICH HASH MARK DO YOU WANT THE PLAYS FOR?

WHICH YARDAGE ZONE DO YOU WANT THE PLAYS FOR?

WHICH DOWN AND DISTANCE DO YOU WANT THE PLAYS FOR?

WHICH FORMATION DO YOU WANT THE PLAYS FOR?

DO YOU WANT THE RUNNING PLAYS OR THE PASSES?

WHICH PLAY DO YOU WANT THE CHART FOR?

WHICH BALL CARRIERS POSITION DO YOU WANT TO CHECK?

WHICH BALL CARRIER DO YOU WANT TO SEE THE PLAYS FOR?

WHICH HOLE DO YOU WANT THE INFORMATION FOR?

DO YOU WANT THE STRONG OR WEAK SIDE PLAYS?

WHAT GAIN OR LOSS VALUE DO YOU WANT TO SEE THE PLAYS FOR?

WHICH PASS ACTION DO YOU WANT THE PLAYS FOR?

225

WHICH PASS RESULT DO YOU WANT TO HAVE A CHART FOR?

WHICH RECEIVER POSITION DO YOU WANT A CHART FOR?

WHICH RECEIVER NUMBER DO YOU WANT A CHART FOR?

WHICH PASS PATTERN DO YOU WANT A CHART FOR?

WHAT PASS DEPTH DO YOU WANT A CHART FOR?

WHAT PASS ZONE DO YOU WANT A CHART FOR?

You must answer these questions with the exact same thing with

which you entered the information with. If you indicated that you

wanted more than one key, you will be asked for the next key value.

This will continue until you have entered values for each of the keys

for which you asked. The chart that you have requested will now be

written to a file or to your terminal depending on where you asked for

it to be written.

After the program has built the chart that you have requested, you

will be given a chance to go back and request another list chart.

DO YOU WANT ANOTHER LIST CHART? Y/N

If you want more list charts type "Y" and you will be returned to

the list chart part of the program. If you have all the list charts

that you want, type "N" and you will be asked if you want any more

offensive charts.

226

DO YOU WANT ANY MORE OFFENSIVE CHARTS? Y/N

If you want another chart type "Y" and the program will go back and

let you choose another chart. For example you may now want matrix

charts or charts ordered by gain, instead of as entered. All of the

charts from this run will be put into the same file, so that they may

all be printed at once. When you have all of the offensive charts that

you want type, "N" and the program will ask you if you are finished or

if you want to run it longer.

DO YOU WANT ANOTHER RUN? Y/N

If you want to do another run for entering more plays, scouting

defense, or getting more charts type "Y" to get back to the start of the

program. If you are finished for now, type "N" and the program will

stop.

If you requested Matrix charts, you will be asked to select which

type of matrix chart you want.

ENTER THE NUMBER THAT INDICATES THE TYPE OF
MATRIX CHART THAT YOU WANT.

1 for HOLE BY DOWN CHART
2 for HOLE BY HASH CHART
3 for HOLE BY FORMATION CHART
4 for PLAY BY DOWN CHART
5 for PASS ACTION BY HASH CHART
6 for PASS ROUTE BY HASH CHART
7 for FORMATION BY HASH CHART
8 for PASS ACTION BY ZONE CHART
9 for PASS ROUTE BY ZONE CHART
10 for PASS ACTION BY DOWN CHART
11 for PASS ROUTE BY DOWN CHART
12 for FORMATION BY DOWN CHART
13 for FORMATION BY PLAY CHART
14 for ALL THE CHARTS

227

When you enter the number of the type of chart you want, it will be

written to a file or to your terminal depending on where you asked for

it to be written.

You will now be asked if you want another matrix chart.

DO YOU WANT ANOTHER MATRIX CHART?

If you want another chart type "Y" and the program will go back and

let you choose another chart. All of the charts from this run will be

put into the same file so that they may all be printed at once. When

you have all of the offensive charts that you want, type "N" and the

program will ask you if you are finished or if you want to run it

longer.

DO YOU WANT ANOTHER RUN? Y/N

If you want to do another run for entering more plays or getting

more charts, type "Y", to get back to the start of the program. If you

are finished for now, type "N" and the program will stop.

228

GLOSSARY

BLITZ: A blitz is the action taken by any of the defensive players
that are not normally lined up on the line of scrimmage when they go
across the line to rush the passer instead of backing up to cover a
receiver.

COVERAGE: The type of defense that is used to cover the receivers
to try to prevent them from catching a pass. The two main types are
man-to-man when each defender has a specific receiver to cover where
ever he goes on the field, and zone when each defender has a specific
area of the field to cover regardless of which receiver comes into the
area. There are many variations on each of these coverages.

DEPTH OF PASS: This is how far beyond the line of scrimmage the
football travels in the air between the passer and the receiver. For
this program the depths are divided into zones but this is often refered
to in exact yardage.

DOWN and DISTANCE: In the game of football a team is given four
chances called downs to advance the ball ten yards. Down and distance
is the number of the current down and the distance needed to reach the
ten yard advance.

DRIVE NUMBER: A drive is a series of plays that a team uses to try
to advance the ball to the end zone and score points. During the course
of a game a team will have several of these chances and the drive number
is a number to indicate to which of these chances we are referring.

FORMATION: An offensive team can position its players in many
different places on the field to try to make the play they will run have
the best chance of success.

229

FRONT: This is the number of players and the way they line up that
the defensive team has on the line of scrimmage.

GAIN or LOSS: This is the number of yards that the offensive team
moves the ball from the line of scrimmage on any play.

HASH MARK: A hash mark is a mark 15 yards from each side of the
field that marks the closest place to the sideline that the ball may be
spotted to begin a play. Right or left is to be considered to be to the
right of left as in respect to the offensive players.

HOLE: In football a hole is an area on the line of scrimmage that
the ball carrier runs to to try to advance the ball down the field.
Holes a usually designated by numbers with the zero hole being over the
center and the odd numbers from 1 to 9 to the left and the even numbers
from 2 to 8 to the right.

MOTION: If any of the offensive players are moving, from one
position to another before or during the time that the ball is put into
play.

NUMBER OF PLAYER: This is the number that each of the players
wears on his uniform.

OPPONENT: This is the team against which the team being scouted is
playing the game.

PASS: One of the two basic types of plays used in the game of
football. A pass is a play in which one player throws the ball forward
to another player.

PASS ACTION: This is what the quarterback (or other player who
passes the ball) does between the time he gets the ball from the center
and the time he actually throws it.

PASS PATTERN: This is the route that the pass receivers take to
get to the area where they will catch the ball.

PLAY: In football a play is what ever action the offensive team
takes to try to advance the ball toward the goal line. A play is
decided on before the start of the action and each player has a
designated job to do in each one.

PLAY NUMBER: Each drive consists of a number of plays. The play
number is which one of the plays it is.

230

POSITION OF PLAYER: This is the position in the formation that the
player was at the start of the play. This can be designated by a
number, a letter, or a descriptive word.

RESULT OF PASS: There are three things that can happen when the
ball is passed, the result is which of these happened. The
possibilities are complete, incomplete, or intercepted.

RUN: This is a play in which a ball carrier receives the ball
either directly from the center or from the quarterback and runs with it
to try to gain yardage.

STRONG SIDE: This is the side of the offensive formation that has
the most players lined up on the line if scrimmage.

STUNTS: This is any method that the defensive linemen use to stop
the passer or ball carrier other than just moving straight across the
line of scrimmage.

WEAK SIDE: This is the side of the offensive formation that has
the least players lined up on the line if scrimmage.

YARDAGE ZONE: For scouting purposes a football field is broken up
into zones. These zones are usually designated as follows:

1. goal line to the 10 yard line.
2. 10 yard line to the 30 yard line.

3- 30 yard line to the 50 yard line.
4. 50 yard line to the 30 yard line.
5. 30 yard line to the 10 yard line.
6. 10 yard line to the goal line.

231

	SCOUT| An automated football scouting system
	Let us know how access to this document benefits you.
	Recommended Citation

	00001.tif

