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Abstract

Reynolds, Jason C., M.S., April 2001 Chemistry

Distributed In Situ Gas Measurements for the Analysis and Modeling of Bio geochemical 
Changes in the Clark Fork River (118 pp.)

Director: Michael D. DcGrandpre

In situ time-series measurements of the partial pressure of carbon dioxide {pCOi) and 
dissolved oxygen (DO) were obtained in the Clark Fork River, Montana during 
September and December 1999. New instrumentation for measuring / 7CO2 was 
employed for the first time in a riverine environment. Instrument arrays were deployed at 
up and downstream locations with the purpose of evaluating sources of biogeochemical 
variability over a discrete stretch of impounded river. The present work focuses on 
strategies for distributing in situ instrumentation as well as the subsequent modeling of 
physical and biogeochemical processes. Instrument locations should be selected to 
minimize complicating factors, such as surface or groundwater input. In these locales net 
community metabolism and air-water gas transfer presumably dominate gas variabihty. 
Total rates of change originating from these processes can be determined directly from 
the difference of up and downstream data and water travel time. Analyses of September 
and December river data reveal that community metabolism is predominantly responsible 
for diel variability in CO2 and DO. Surface gas transfer was often masked by community 
metabohsm, though modeling suggests that it is significant. This work demonstrates that 
riverine monitoring using distributed in situ sensors is an effective approach for 
quantifying the processes that control biogenic gases in lotie systems.
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Chapter 1 

Introduction

1.1 Overview and Rationale

The dissolved gases oxygen and carbon dioxide regulate many biological and 

geochemical processes in riverine environments. They are termed biogenic gases 

because the utilization of each gas during metabolism is vital for all aquatic life. 

Dissolved O2 (DO) also controls redox conditions, and hence chemical oxidation states 

and spéciation. Similarly, dissolved CO2 , which is customarily represented as the partial 

pressure of CO2 (/7CO2), is involved in many geochemical processes, such as trace metal 

solubility, largely due to its effect on pH. For these reasons, understanding the processes 

that control these gases is o f great importance.

The study of biogenic gases in rivers is not new and much is known [e.g. Owens et 

a l, 1964; Simonsen and Harremoes, 1992; Melching and Flores, 1999], but few studies 

have adequately characterized short-term variability. Evaluations of short-term 

variability are often limited in duration or are undersampled, compromising 

interpretations and modeling. For example, Greb and Graczyk (1995) found that 

undersampling causes significant uncertainty in conclusions based upon changes in DO. 

Discrete sample analysis, which is a standard method used in riverine gas studies [e.g. 

Odum, 1956; Wright and Mills, 1967], is subject to contamination and other artifacts. 

The utilization of continuous-automated sensors in lotie, i.e. flowing, systems has 

revealed dynamic short-term variability in biogenic gas concentrations [e.g. Kelly et aL, 

1974b; Thyssen and Kelly, 1985; Neal et aL, 1998]. Much of this variability originates



from biological processes (see Section 1.2). Consequently, low-frequency measurements 

are inadequate for characterizing productive riverine systems.

Autonomous DO and pCOi sensors have been employed together for extended 

periods (>1 week) in lake studies [Carignan, 1998; Baehr, 2000], but river studies 

seldom measure in situ pCOz. Although simultaneous river DO and pCOj data have been 

obtained [Thyssen and Kelly, 1985; Gausch et aL, 1998], to my knowledge no one has 

autonomously monitored both in situ. Limited availability of in situ CO2 sensors is a 

principal reason for the lack of pCOi data. Direct measurements of river pCOi have been 

limited to bulky infrared gas analyzers [e.g. Park, 1969] that are not suitable for remote 

or submersed deployments. Changes in pC02 can also be determined from 

measurements of other carbonate parameters. Any two measured parameters of / 7CO2 , 

pH, alkalinity, and total dissolved inorganic carbon (DIC) are used to calculate the 

remaining two from equations of carbonate equilibria [Stumm and Morgan, 1996]. The 

carbonate system is often characterized using pH measurements [Wright and Mills, 1967; 

Simonsen and Harremoes, 1992; Thyssen and Kelly, 1985; Neal et aL, 1998; Ballester et 

aL, 1999], which can lead to significant errors due to potentiometric pH uncertainty. A 

typical pH error o f ±0.1 pH units for instance, can lead to -100 patm error in calculated 

/ 7CO2 . Another method of pCOj determination is headspace analysis, which utilizes the 

equilibration of CO2 in a very small air-filled space above a discrete freshwater sample. 

Once equilibrated via surface gas exchange, pC02 is determined from infrared gas 

analysis and Henry’s Law [Kling et aL, 1991; Dawson et aL, 1995; Raymond et aL, 

1997]. This method has proven useful, but it does not provide high frequency 

measurements.



DO and pCOj data are often used to develop models and/or estimate biological and 

physical rates. A more detailed background of the controlling processes and the methods 

used to evaluate the contributions fi*om each are presented in Section 1.2. Efforts by 

researchers to model stream productivity and gas exchange are numerous [e.g. Simonsen 

and Harremoes, 1978; Gulliver and Stefan, 1984; Marzolf et al., 1994], but there is little 

documentation of simultaneous modeling of DO and pCOi in a riverine system. The use 

of a new autonomous pCOi sensor in this study allows for the first continuous look at 

simultaneous in situ riverine DO and pCOi data. The ability to measure both DO and 

pCOz in situ allows the evaluation of combined modeling of both gases in detail never 

before accomplished. The utilization of the gas data also enables comparison and internal 

verification because river pCOj and DO are interrelated through metabolism. Therefore, 

the fundamental objective of this study was to improve upon past riverine CO2 and DO 

research.

1.2 DO and pCOz in Lotie Systems

1.2.1 Overview

Net community metabolism, or the net balance of photosynthesis and respiration, is 

the dominant influence on DO and pCOz in most riverine systems [Odum, 1956]. 

Photosynthesis consumes CO2 and produces DO during daylight periods, while 

respiration of organic matter occurs both day and night but typically dominates only 

during dark periods. The diel biological cycle results in pronounced inverse relationships 

between DO and pCOj [Thyssen and Kelly. 1985].



Riverine air-water gas transfer rates have been studied extensively because DO 

reaeration is critical to aquatic health in waters with high biological oxygen demand 

[Owens et al.^ 1964; Melching and Flores, 1999]. If the gas transfer rate is known, it can 

be used to estimate recovery times during periods of DO depletion. Accurate knowledge 

of reaeration rate is especially important in streams and rivers receiving large inputs of 

municipal or industrial wastes. Similarly, CO2 gas transfer can be very important with 

respect to river biological and geochemical processes. Photosynthesis can significantly 

lower pCOz during daylight hours [Kelly et aL, 1974a]. Surface gas exchange and 

community respiration act to replenish aqueous CO2 during the night, controlling pH and 

subsequently, river geochemistry [5/'/cA:and Moore, 1996].

Other riverine processes that can significantly affect DO and pC02 include heating 

and cooling, groundwater inputs, photo-oxidation of organic matter, and calcite 

dissolution and precipitation. Ideally, in studies focused upon metabolism and/or gas 

transfer, these processes are constrained or negligible.

1.2.2 Net community metabolism

1.2.2a Photosynthesis and respiration: Net community metabolism is the net

balance of photosynthesis and respiration. Community describes ail flora and fauna 

present in the river reach. Biota exist in the river water column, on substratum, and in 

benthic regions. Periphyton, or micro flora inhabiting cobble, etc., often comprise the 

majority of the biomass [Bott et aL, 1978; Boston and Hill, 1991; Bowker et aL, 1996]. 

Consequently, much research has focused on these organisms.

1.2.2b Mass balance: The upstream-downstream technique, hereafter referred 

to as the Odum method, is a principle method for determining the changes in gas



concentrations between two river locations [Odum, 1956]. The gas flux can be utilized in 

the estimation of metabolic and physical rates. In theory, this can be accomplished using 

a steady-state assumption and one monitoring station, or two monitoring stations 

separated by a practical distance. To the determine gas flux, the twin-station method 

requires accurate knowledge of travel time between monitoring stations. Utilizing the 

changes in biogenic gas concentrations (usually DO) over a stretch of flowing water, gas 

transfer velocities and biological processes can be estimated from mass balance. In fact, 

this technique is valuable for any parameter measured at two locations in a flowing 

system, providing the factors controlling variability are known. The single-station 

method can lead to erroneous results, since anomalous sources of variability upstream 

(e.g. impoimdments) can be misinterpreted. The success of the Odum method is largely 

dependent upon the validity of various simplifications. For example, assumptions are 

often made regarding flow hydraulics, mixing, residence time, groundwater interactions, 

and biology. To niinirnize sources of variability, and uncertainty in metabolic and 

physical rates, experimental streams or channels are often selected for study [Parkhill and 

Gulliver, 1998].

Photosynthetic and respiratory rates have been determined in streams using DO 

monitoring with both chamber [Bott et aL, 1978] and Odum methods [Odum, 1956; Kelly 

et aL, 1974b; Hornberger et aL, 1976; Thyssen and Kelly, 1985; Marzolf et aL, 1994; 

Parkhill and Gulliver, 1998]. In a comparison o f five different methods conducted on a 

benthic algae-dominated third-order stream, Bott et al. (1978) determined net community 

respiration and production. The three chamber methods examined utilize changes in DO 

or calculated DIC in a closed system, but only one method involves in situ measurements.



Although the in situ chamber technique better represents stream biology, water flow was 

restricted by the closed system. A problem associated with the closed chamber method is 

the shift from a lotie to a static system. The other two techniques maintain a flowing 

system, but involve incubated substrate removed from the natural environment. A 

significant feature of any lotie system is the continual replenishment of nutrients; 

metabolic studies employing a closed system inherently eliminate this factor.

1.2.2c Direct measurements: Metabolic rates of periphyton are often

determined through isolated studies of algal assemblages in troughs or on tiles placed in a 

lotie system [Jasper and BothwelU 1986; Boston and /////, 1991; Wellnitz and Rinne, 

1999]. These studies use periphyton grown in natural lotie systems and transfer them to 

laboratory incubation chambers for rate estimation. A principal motivation for this 

approach is to resolve photosynthetic rate under controlled light and nutrient conditions. 

Wellnitz and Rinne (1999) used measurements of O2 to determine net photosynthesis, 

while other studies utilize C "^-labeled CO2 or biomass measurements (chlorophyll-o) to 

quantify growth directly. These studies are classically referred to as “light- and dark- 

bottle” techniques because net metabolism is determined from incubations in lighted 

enclosures, while incubations in dark chambers yield net respiration rates [Wetzel, 1983]. 

The difference in rates between the two incubations is net production. The assumption is 

often made that respiration during daylight is equal to dark net respiration, essentially 

discounting photorespiration. Additional problems with the light- and dark-bottle 

techniques include nutrient depletion, biomass samples unrepresentative of whole stream 

life, and the loss of natural conditions (e.g. turbulence).



1.2.3 Surface gas exchange

1.2.3a Gas transfer: Surface gas exchange is driven by the concentration gradient 

between the water and atmosphere and turbulence at the air-water interface. For 

example, when DO exceeds atmospheric saturation, O2 outgases into the atmosphere in 

an effort to attain equilibrium. Likewise, CO2 outgases when aqueous pC02 is 

supersaturated, and ingases when it is below atmospheric / 7CO2 . K l, or the liquid gas 

transfer velocity, is a measure o f how rapidly a gas diffuses across the air-water 

boundary. Each gas has a different K l, primarily because of differences in diffusivity, 

though temperature-dependent empirical models predict that they are interrelated (see 

Section 3.1.2). Field and laboratory investigations have quantified Kl under a wide 

variety of natural and simulated conditions because of the importance of DO reaeration. 

These studies show that Kl can be dependent upon wind speed [Clark et a/., 1994 ; Chu 

and Jirka^ 1998], macroroughness of the streambed [Moog and Jirka^ 1998a], and bubble 

entrainment [Gulliver et aL, 1997]. Hydrological agitation also increases gas transfer, 

and in a study on a carbonate rich stream, calcite precipitation was observed in cascades 

due to CO2 outgEising [Hoffer-French and Herman, 1989]. The increased calcite (CaCOa) 

precipitation was caused by CO2 outgasing, which drives the equilibrium of dissolved 

CaCOs towards formation of solid CaCO] (see Section 1.2.4c).

1.2.3b Methods: Volatile and nonvolatile tracers are often utilized to determine 

gas transfer velocity. Tracer techniques work on the assumption that tracer gas transfer 

rates can be used as proxies for O2 and CO2 transfer velocities. Both deliberate (e.g. SFô, 

^He) and natural (e.g. ^^^Rn) tracers have been used [Elsinger and Moore, 1983; 

Wanninkhof et a i, 1990; Genereux and Hemond, 1992; Marzolf et aL, 1994]. Tracers are
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also used with the “helmet” method, where gas flux is measured over time in an inverted 

dome on top o f the water’s surface [Hartman and Hammond, 1984]. The helmet method 

perturbs the turbulent action of surface water and may not represent undisturbed systems. 

Although tracer gas studies are expected to provide the most accurate values of Kl, they 

are often difiBcult and time-consuming. Equation estimates based upon stream 

characteristics are often used for this reason.

Owens et al. (1964) summarized many equations for gas exchange determined from 

stream data. Reviews can also be found in Moog and Jirka (1998b) and Melching and 

Flores (1999). These predictive equations are often based upon lotie morphology and 

inaccuracies can arise between studies due to widely differing environments. Uncertainty 

in Kl is one of the most frequently cited concerns regarding river modeling.

1.2.4 Other processes affecting DO and pCO^

1.2.4a Heating and cooling: Temperature changes caused by weather variation 

and solar heating have many effects on biogenic gas concentrations. For example, 

solubilities for both DO and CO2 are temperature-dependent. A decrease in temperature 

will increase the solubility of both gases, however /7CO2 is more complex. In contrast to 

DO, when CO2 dissolves in water, the aqueous CO2 (C0 2 (aq)) does not all remain as 

CO2 . Further reaction with water, as shown in Equation I :

H ,0  + CO^faq) H2C0 3 (aq) , (1)

results in the formation o f carbonic acid. Subsequent acid dissociation results in the 

dissolved species HCO3 and/or CO]^. Concentrations of the carbonate species are 

dependent upon temperature. In contrast, 0 2 (aq) doesn't change with variation in 

temperature. Metabolic and gas transfer processes are also influenced by temperature



changes, and empirical models have been generated to estimate the effect (see Section 

3.3).

1.2.4b Groundwater input: The input of groundwater can have a significant 

effect upon the chemical composition of rivers. Microbial respiration in soil releases 

large amounts of CO2 into groundwater. Since there is often no contact with the 

atmosphere, groundwater can become highly supersaturated in CO2 . This tends to 

increase alkalinity in the groundwater through the dissolution of CaCOs and other 

minerals. High-alkaline groundwater affects the acid-base condition, and hence pH, of 

the surface water it reaches. Local geochemistry is also affected by gas exchange as 

groundwater / 7CO2 equilibrates with the atmosphere upon mixing with surfece waters 

[Hoffer-French and Herman, 1989]. Conversely, groundwater can be depleted in DO due 

to biological consumption. Relative to the river-groundwater gradient ofpCOi, however, 

DO differences are often not as significant \Stumm and Morgan, 1996]. Groundwater 

inputs need to be quantified to accurately determine rates of other processes such as gas 

exchange and biological metabolism.

1.2.4c Calcite precipitation and dissolution: Calcite (CaCOg) precipitation and 

dissolution occur in natural waters via the following reaction:

CaCO](s) + CO;(aq) + -----» Ca'" (aq)+2 HCO3" (aq). (2)

This reaction may proceed through a number of different pathways. For example, 

groundwater rich in Ca^\ HCO3 and CO]^ may enter the river and lose CO2 to 

outgasing, driving Equation 2 to the left, forming CaCO] and releasing more CO2 

[Hoffer-French and Herman, 1989; Dawson et a l, 1995; Cicerone et a l, 1999]. 

Temperature changes, evaporation, and biological processes also affect the
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precipitation/dissolution cycle of CaCOa [Stumm and Morgan^ 1996]. The saturation 

ratio (Q) is one gauge of whether the thermodynamic conditions in an aqueous system 

fevor CaCO] precipitation:

^ ^ { Ç a l H Ç O ^  (3)
ŝO

where {Ca‘ }̂ and {COs^ } are the activities of Ca^^ and , respectively, and Kso is 

the solubility product of CaCO] [Cicerone et a l, 1999]. If Q > 1, the reaction can 

proceed forming CaCO], while conditions support dissolution if Q < 1. CaCOs 

precipitation and dissolution are strongly affected by the kinetics (nucléation and crystal 

growth) of the aqueous system and therefore, Q simply indicates the potential for reaction 

[Stumm and Morgan, 1996; Cicerone et a l, 1999]. For example, Hoffer-French and 

Herman (1989 ) report that in an outgasing karst stream, most precipitation did not occur 

until Q > 5.

1.2.4d Photo-oxidation of organic matter: Photo-oxidation of colored dissolved 

organic matter (CDOM) is another abiotic process that can impact riverine CO2 and DO. 

Granelli et al. (1996) report that photodegradation is more significant with increasing 

CDOM. Additionally, they propose that photo-oxidation of CDOM to DIC is important 

in fi*eshwater with long residence times (e.g. lakes). Rivers with high flow rates and 

turbulent mixing probably do not experience significant short-term production of DIC 

fi-om photolysis.

1.2.5 Summary

A comprehensive determination of every variable is often too expensive, time- 

consuming, or impossible, even in the simplest lotie systems. To determine metabolic
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and gas transfer rates, simplifications often need to be made. The assumption that 

photosynthesis, respiration, and surface gas exchange are the dominant processes is 

justified, providing other sources of variability are minimal. Although laboratory studies 

provide constrained and reproducible conditions, it is uncertain how accurately they 

represent gas transfer in natural flowing waters. Many previous studies focus on small 

streams and it is not known how they compare to larger streams and rivers. More 

research is needed on large rivers to refine current understanding of the major processes 

controlling DO and pCOz.

1.3 Principal Objectives

The work included herein was motivated principally by interest in riverine CO2 gas 

exchange and specifically, the evaluation of new pC0 2  instrumentation in supplementing 

present understanding o f riverine biogeochemical cycles. We hoped to improve upon 

past river research by monitoring both pCOi and DO at distributed locations. 

Comparison of pCOi and DO data can show the importance of in situ biological 

processes. The dense temporal coverage obtained from the autonomous sensors allows a 

more detailed examination o f the processes that control gas variability than previously 

possible. Another principal objective was the development and evaluation of a riverine 

biogeochemical gas model. The known biological relationships between CO2 and O2 can 

link the gas models developed from in situ data. Models assist researchers in the 

examination o f biological, physical, and geochemical components of variability. They 

forecast variability during a wide variety of conditions without the need for sampling 

procedures. Therefore, the development of models is essential in interpreting gas data, 

since the contributions to variability can be individually analyzed. Increased success in
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river gas modeling will increase our understanding of the specific processes controlling 

variability.
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Chapter 2 

Methods

2.1 Field Site Description

The river reach studied in both September and December 1999 is located along the 

Clark Fork River in the Upper Columbia River Basin (Figure 1). Great interest in the 

geochemistry of this high-order river has been generated as a result of persistent mine 

tailings pollution [Brick and Moore^ 1996; Lambing et aL, 1994]. The river is alkaline 

(pH > 8) due to signihcant upstream groundwater input. The portion of the Clark Fork 

River examined in this study is greater in elevation than the local aquifer, so groundwater 

accrual is assumed to be negligible [Gestring, 1994]. Marshall Creek, a small drainage, 

empties into the river about 5 km above the downstream location, but its efiect on the 

water chemistry was also assumed insignificant as its discharge was very small. 

Likewise, other surface inputs were also assumed negligible. The surface water of the 

reach ranges between rapid to slow moving, with little whitewater or wave breaking. The 

riverbed is comprised largely of cobble. Periphyton dominates the biomass over the 

study reach. Diatoms and filamentous green algae (e.g. Claudophora) are the dominant 

species, although some blue green algae species (e.g. Nostoc) are also important [Vicki 

Watson, pers. comm.].

In September 1999, two sensor arrays were deployed in the river separated by 8.69 

km (Figure 1). The upstream sensors were deployed approximately 1 km downstream 

from the Milltown Dam. A second deployment was made in December and upstream
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Figure 1: The Clark Fork River from the Milltown Dam to Missoula, Montana. The dam 
(represented by a black line) is situated at the confluence of the Blackfoot (BFR) and Clark Fork 
Rivers (CFR). During the September deployment, up and downstream sensor arrays were located 
at a and c, respectively. In December, the upstream monitoring station was moved to b, while the 
downstream station remained at c. MC represents Marshall Creek, the small drainage mentioned 
in the text. Transportation routes (i.e. roads, highways) are omitted for clarity.

sensors were located 3.80 km from the dam. The downstream location remained the 

same for a total travel distance of 5.04 km. The average slopes of the river for the 

September and December study reaches, determined from topographic maps, are 0.0014 

and 0.0017 m m"% respectively. Table 2.1 lists the location, types of sensors, and 

parameters measured during both study periods.
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Table 2.1: In situ instrumentation deployed at both up and downstream monitoring locations 
during September and December 1999. Descriptions of instrument calibration and operation are 
given in Section 2.2.

Location Sensor P aram ete r

Upstream YSI Sonde 
(model 6000)

DO, temperature, depth, 
and conductivity

(a, b in F ig .l)
SAMI-CO2 PCO2 and temperature

YSI Sonde 
(model 6000)

DO, temperature, depth, 
and conductivity

Downstream
SAMI-CO2 pCOj and temperature

(c in Fig. 1) Chelsea Instruments Ltd, 
Minitrack II Chlorophyll-a fluorescence

LiCOR 
(model LI-192SA) PAR

2.2 Analytical Methods

2.2.1 pQOt

River pCOj was recorded every 15 minutes using Submersible Autonomous Moored 

Instruments for CO2 (SAMI-CO2) at both up and downstream locations. This is the first 

investigation using a SAMI-CO2 in a riverine environment. DeGrandpre et al. 

(1995,1999) provide a thorough description of the performance and operational principles 

of the SAMI-CO2 , so only a brief overview of the calibration procedure is given here.

The SAMI-CO2 instruments were calibrated prior to deployment using a LiCOR 

infrared gas analyzer (model LI-6251) and CO2 gas standards. The SAMI-CO2 in-lab
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accuracy is estimated at ±3 ^latm at 360 jaatm, based upon CO2 standards used during 

calibration. Unless otherwise noted, reported errors represent one standard deviation. 

Precision is estimated at better than ±1 patm (@ 200-600 patm) [DeGrandpre et a l, 

1999], except where noted in December (see Section 4.3.1). Instrument response is less 

sensitive at higher pQOi, which results in increased uncertainty. To validate the accuracy 

of the in situ response, discrete samples were obtained daily at both sites and analyzed for 

pH and total alkalinity. The pCOj was calculated from these parameters at the in situ 

temperature using carbonate equilibria equations and freshwater equilibrium constants in 

a model (C02SYS vl.05) [Lewis and Wallace, 1998]. In December, an additional check 

on drift and reproducibility was obtained by placing the CO2 sensors in the river at the 

same location after the 13-d deployment. Data quality is discussed in Section 4.3.

Following a review of the pCOz data, it was determined that direct measurements of 

atmospheric pQOi would have been valuable. As a result, during September 2000 

atmospheric pCOi and temperature were continuously monitored during a wide range of 

conditions to determine the likely range of variability. This was accomplished using a 

meteorological station containing a LiCOR infrared CO2 gas analyzer (model LI-6251) 

and Tattletale (Onset Computer Corp.) data logger. Measurements were recorded every 

half-hour for three weeks. The autonomous station was located on the riverbank across 

from the downstream monitoring location (c in Figure 1).

2.2.2 Dissolved Oxygen

DO measurements were made every 15 minutes using YSI DO sondes (Yellow 

Springs Instruments, model 6000). Each sonde included a temperature probe with 

reported accuracy and resolution of ±0.15 and ±0.01 ®C, respectively. The sondes also
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included conductivity and depth sensors. The depth and conductivity sensors have 

reported accuracies of ±0.018 m and ±0.001 mS cm’', respectively. Prior to deployment, 

DO probes were calibrated in water-saturated air corrected for local barometric pressure. 

The depth sensors rely upon changes in hydrostatic pressure and were zeroed in ambient 

air, while the conductivity probes were calibrated in a freshwater standard provided by 

YSI. In December, once the sondes were recovered from the river they were placed in 

deionized water in a refrigerator (~4 °C) for two days. DO data were compared to 

triplicate Winkler titration analyses performed on the refrigerated water [Wetzel and 

Likens, 1991]. Following both deployments, DO sensors were allowed to equilibrate in 

water-saturated air to establish if any drift had occurred. A discussion of DO data 

quality can be found in Sections 4.2.2 and 4.3.2. Saturation concentrations of DO were 

determined from temperature and barometric pressure using an empirically-determined 

relationship given by {Wetzel and Likens, 1991):

DO^, = P-Exp(7.117-1.31403-ln(T+45.93)) (4)

where P is local barometric pressure (atm) and T is temperature ("C).

2.2.3 Chlorophyll-fl

Suspended chlorophyll-ûr concentrations were determined during both deployments 

using an in situ fluorometer (Chelsea Instruments, Minitrack II) as a part of the 

downstream sensor array. Chlorophyll-^ pigment fluoresces when excited by the 470 nm 

light and emits at a wavelength of 685 nm. Chlorophyll-^ concentrations are determined 

from a linear calibration equation and measurements of in situ fluorescence. Matt Baehr 

performed instrument calibration, and accuracy is based upon discrete freshwater lake 

samples analyzed using a bench top fluorometer (Shimadzu, Model RF-1501).



18

Measurements of chlorophyll-a extracted in acetone were used. Concentrations 

determined from the laboratory and in situ measurements agreed within 1.2 ±1.0 pg L * (n 

= 6).

2.2.4 pH

Discrete water samples were obtained once or twice daily at both monitoring sites. 

Samples were analyzed for pH using a spectrophotometric method developed for ocean 

water [Byrne and Breland^ 1989] and adapted for freshwater [Carr, 2000; French et a l, 

2001]. During collection, freshwater samples were spiked with 100-pL aliquots of 

mercuric chloride (HgCh) to suppress further metabolism. Two or three samples were 

taken at each site in clean 500-mL glass bottles. Bottles were completely filled following 

three rinses of freshwater to minimize the headspace in each bottle. Although exchange 

of carbon dioxide with the atmosphere will not affect alkalinity, it will alter the pH of 

freshwater. For this reason, spectrophotometric analyses of pH were performed prior to 

alkalinity determination. Bottles of freshwater were kept on ice imtil they reached the 

laboratory (-30 min). Samples were then placed in a laboratory refrigerator (-4  ”C) and 

stored until analysis. Freshwater sample was added to a 10-cm thermo stated cell and 

absorbances at 439, 577, and 724 nm were recorded at 20 °C using a Lambda 11 UV-Vis 

spectrophotometer (Perkin Elmer). After addition of the sulfonephthalein-indicator 

cresol red, absorbances were once again measured. The measurement sequence was then 

repeated for a total of three replicates. The pH was calculated using [Byrne and Breland, 

1989]:

R-e
pH = p K / + l o g - - ^ '  (5)

ê  -  R ê
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where R equals the ratio of absorbances at 577 and 439 nm, and ei, ez, and es are the 

molar absorptivity ratios for cresol red equaling 0.000, 2.740, and 0.105, respectively 

[Carr, 2000]. The pH accuracy is dependent upon the accuracy of cresol red’s pKa. In 

Equation 5, pK@' is defined as the apparent pIQ, which includes the ion activity 

coefficients for cresol red. Calculations o f pH in this study utilized a pKa' of 8.3495 at 20 

°C. The probable error in pH is <±0.01 pH units, but more investigation into the pK@' is 

required for verification [French et al., 2001]. Measurements of pH during September 

had an average standard deviation of ±0.0064 between 28 sets of three replicates. In 

December, replicate measurements of pH yielded an average standard deviation of 

±0.0041 (n = 29 sets).

2.2.5 Alkalinity

Freshwater alkalinity (ALK) is often defined by;

ALK = [HCO,“] + [2CO/ ] + [OH ] -  [H*], (6)

though any other source of acid or base must be included to be fully accurate. In 

freshwater however, carbonate alkalinity (CA) is typically the principal component of 

alkalinity.

Total alkalinity was determined by potentiometric titration and Gran plot analysis 

[Edmond, 1970]. The titration pH was monitored using a ROSS combination electrode 

(ATI ORION, model 8102) and an accumet pH/ion meter (Fischer Scientific, model 25). 

The nearly fuU titration cell was sealed with a large rubber stopper to niinirnize errors 

from gas exchange, while solution temperature was monitored using a ±0.1 

temperature probe. HCl standard (-0.1 N) was added to -180 mL of preweighed 

freshwater sample using an automatic titrator (Denver Instruments, model 85). HCl
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(Aldrich) was standardized before each study using titration of dried primary standard- 

grade sodium carbonate (Na2C0 3 ) and bromocresol green indicator [Harris, 1995]. 

Alkalinity is determined from the plot o f FI, the Gran function, versus the volume of acid 

standard added (VhcO- FI is given by:

F1=(V,+V^^,)[HC1]-'.[H^] (7)

where Vi is the initial volume of freshwater sample and is determined from the 

electrode measurements. The equivalence point was determined using 10-15 points 

beyond the apparent equivalence point. A representative Gran plot is shown in Figure 2, 

and illustrates the linear increase in FI beyond the equivalence point. This method 

yielded an average precision of ±6 peq kg'’ for freshwater analyses (n = 28) and an 

accuracy o f ±3 peq kg'’ when using standards (n = 11). Gran alkalinity was assumed to 

equal total alkalinity, though any unknown sources of weak acid (e.g. dissolved

100
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Figure 2: Typical Gran plot of FI vs. volume of HCl added, with circles representing the 
points on the titration curve used for alkalinity determination. The triangles are points near the 
bicarbonate equivalence point where the data are not linear. The line has an = 1.0000, a
characteristic value for the Gran plots used for analysis in this study.
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organic or humic acids) could result in an over or underestimation of carbonate alkalinity 

[Hemond, 1990; Hongve, 1990]. Anions of weak acids can act as buffering agents during 

Gran titration and be misinterpreted as carbonate alkalinity. Conversely, weak acids can 

act to neutralize carbonate alkalinity. Under certain conditions, iron and aluminum 

hydroxides can also have a significant effect on alkalinity determination [Hemond, 1990; 

Hongve^ 1990].

2.2.6 Meteorology

Local meteorological data were obtained &om the NOAA National Climatic Data 

Center in Missoula, Montana. The site is located at Johnson-BeU Field, ~11 km west of 

the downstream monitoring station. Meteorological time-series included hourly wind, 

barometric pressure, precipitation, air temperature, and cloud cover. The downstream 

sensor array was also equipped with a photosynthetically-active radiation (PAR) sensor 

(LiCOR, model LI-192SA) to determine in situ irradiance.

2.2.7 Hydrology

Discharge data (every 15 min.) were obtained from the USGS gauging station 

12340500, located -6.3 km downstream from the Milltown Dam.
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Chapter 3 

Data Analysis and Modeling

3.1 Mass Balance Method

3.1.1 CO] and DO equations

Changes in DIG (defined in Table 3.2), rather than just / 7CO2 , must be considered in 

the analysis of the carbonate system because of the distribution of CO2 throughout its 

dissolved species. Rates of change of CO2 in a river with negligible longitudinal 

dispersion, or mixing (discussed in Section 5.2.5), are described by:

dDIC 
dt

H — -—  — K(-S(/iC025 — ) — P + R + A — C (8)

where H is river depth, is the rate of change of DIG, S is CO2 solubility, and Kc is
dt

the gas transfer velocity of CO2 . Local atmospheric CO2 partial pressure (pC02s) needs 

to be measured because of its dependence on local CO2 sinks and sources (e.g. biomass, 

anthropogenic sources). Additional effects on pC02w include photosynthesis (P), 

respiration (R), groundwater accrual (A), and calcite formation (C). In the particular 

Clark Fork River reach studied however, effects fi*om groundwater and calcite cycling 

were initially assumed negligible. A similar mass balance can be written for O2 :

H ^  = Ko( 0 , , - 0 , „ )  + P - R  + A (9)

where O2S and O2W are the saturation and bulk water concentrations, respectively, and Ko 

is the gas transfer velocity of O2 . In contrast to CO2 , O2 comprises more of the 

atmosphere (>20%) and saturation concentrations of O2 (O2S) can be estimated using
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reliable equations based upon atmospheric pressure (Equation 4). P and R represent 

photosynthetic production and respiratory consumption of O2 , respectively. In 

comparison to the CO2 system, differences in groundwater O2 are much less important as 

discussed earlier.

Equations 8 and 9 Can be solved by finite approximation by fixing dt as a time step 

of the total residence time between the two river locations (At). The total measured 

changes in DIC and DO can likewise be divided into increments approximating dDIC and 

dO:. The theoretical mass balances are used to model downstream gas concentrations 

using semi-empirical expressions for metabolism and gas transfer (see Section 3.1.2). 

Accurate travel time is essential for estimating rates or downstream concentrations of DO 

and pCOi. This parameter is often measured using conservative salt [Marzolf et al^ 

1994] or dye tracers [Wright and Mills, 1967; Kelly et al., 1974b]. If nighttime data is 

used, the flux due to photosynthesis can be omitted from the equations. Community dark 

respiration is then estimated using DO (or / 7CO2) time-series and a Kl (Ko or Kc) 

estimated from equations dependent on river hydraulic conditions [Simonsen and 

Harremoës, 1978] or conservative gas tracers [Wanninkhof et al., 1990; Marzolf et a l, 

1994]. If daytime respiration is simplified as nighttime respiration, daytime 

photosynthetic gas flux is determined by excluding contributions from respiration and gas 

transfer.

3.1.2 Gas Exchange Flux

In this study, estimates of Ko and Kc (20 °C) were obtained directly from river gas 

data (5.1.5) and predictive equation approximations. Tsivoglou and Wallace (1972) 

derived Equation 10 based upon the energy dissipation in a flowing system:
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( 10)

where S is the slope of the reach (m m*'), L is its length (m), Th is the residence time, and 

c is a constant equal to 0.177 and 0.154 for O2 and CO2 , respectively. K2 (d’‘) is the 

reaeration coefficient for O2 converted to Ko (cm h"') using depth [Moog and Jirka, 

1998b]. Past gas exchange research often reported reaeration coefficients in terms of K2 

[e.g. Owens et a l, 1964; Thyssen and Kelly, 1985; Simonsen and Harremoës, 1992], 

however more recent studies take flow depth into consideration and focus upon the liquid 

gas transfer velocity, or Kl. Except where noted, in this work Kl is used exclusively. 

Melching and Flores (1999) provide a semiempirical equation determined fi*om 65 gas 

exchange studies using tracer gases in lotie systems with flows similar to the Clark Fork 

River. This equation differs fi-om Equation 10 because it is based upon lotie morphology 

and is given by;

5 °  = K = 142(VS)"” ^D'““ W ”̂ ''̂  (11)
H

where V is flow velocity (m s'*), and D and W represent mean river depth (m) and width 

(m), respectively.

CO2 gas transfer velocity and nighttime community respiration at 20 ^C, or Kc(20>

and R20, can also be determined mathematically using multiple linear regression on

nighttime data \Thyssen and Kelly, 1985]. Using Equation 8, and applying a finite 

approximation, two independent variables are derived:

xl,

x2, (13)
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where 0k and 0r are modified Arrhenius constants fixed at 1.0241* and 1.045 (see 

Section 3.3), respectively. These constants adjust for temperature effects on surface gas 

transfer and respiration, respectively. In the equations, pCOjm and Tm represent the mean 

pC02 and temperature measured at up and downstream locations. The means are used 

instead of upstream measurements on the assumption that they better approximate the in 

situ processes. For instance, the pCOz gradient between the water and atmosphere 

changes appreciably as the water flows downstream. Change in DIC, calculated from 

pCOi and discrete measurements of alkalinity, becomes the independent variables' 

response. Assuming respiration and gas transfer are only dependent upon temperature 

(i.e. Kc(20) and R20 are constant),

+R x2, (14)
At H  ■ '

is used to solve for Kc(20) and R20 using time-series’ o f /2CO2 , atmospheric partial

pressures of CO2 , and temperature. A similar set of equations can be derived for O2 and

Ko(20) and R20 are determined using time-series’ of DO concentration, temperature, and

DO saturation. Multiple regressions were performed using Microsoft EXCEL Analyze-it

software. A discussion of the technique’s accuracy and results is given in Section 5.1.5.

In all subsequent modeling. Ko and Kc are adjusted for temperature using a 

proportional relationship to the dimensionless Schmidt number (SJ, Kl gc Sc'*̂  ̂ yielding 

the equation;

‘ The modified Arrhenius relationship (Equation 13) and the Schmidt number dependence (Equation 16) 
agree within ±0.3 when 0k = 1.0241. This value o f 0k is taken from Thyssen and Kelly (1985), though it is 
widely used by other researchers [Daniil and Gulliver^ 1988]. In this study, multiple regression analyses 
utilize the modified Arrhenius equation for simplification; otherwise the Schmidt number relationship is 
preferred.
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^L(T) L̂{20"C>
'c (T )

sV c(2o"c) y
(15)

where Sc is defined as the kinematic viscosity of fi-eshwater divided by the diffiisivity of 

the gas. Freshwater Schmidt numbers are determined using Sc = A -  Bt + Ct  ̂ -  Dt  ̂ (t in 

degrees Celsius) where A, B, C, and D are given in Table 3.1 [Wanninkhof, 1992]. The 

Schmidt numbers for CO2 and O2 at 20 °C are equal to 600 and 530, respectively.

Kl is related to wind speed, but mathematical relationships dependent on wind are 

often developed using ocean data [Wanninkhof, 1992]. In the ocean, wind is the primary 

source of turbulence driving surface gas transfer. Wind was not used to predict Kl in this 

study however, because turbulence is intrinsic in a riverine system and not simply 

dependent upon wind.

Surface gas transfer o f CO2 is also driven by chemical reactions in surface waters. 

CO2 reacts with OH and water in the surface boundary layer, which increases the 

difference in pCOi between the surface and water boundary layers [Wanninkhof^ 1992]. 

The greater difference causes increased CO2 gas exchange, however chemical 

enhancement of CO2 gas exchange is assumed insignificant in the river’s pH range.

Table 3.1: Coefficients for least squares third-order polynomial fits of Schmidt number versus 
temperature for freshwater (0 - 30°C). Sc (dimensionless) at 20°C is also given for CO2 and O2 

[Wanninkhof^ 1992].

Gas Se (20 ^C) A B C D

CO 2 600 1911.1 118.11 3.4527 0.041320

O 2 530 1800.6 120.10 3.7818 0.047608
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3.2 Photosynthesis

3.2.1 Rate model

Photosynthetic rates are dependent upon nutrient availability, biomass, and light. 

Models derived from field studies do a reasonable job of predicting observed rates 

[Hornberger et a l, 1976; Platt et al, 1980; Jasper and Bothwell, 1986]. Equations used 

to model net photosynthesis are similar, the major distinction being their 

parameterizations. A commonly used relationship utilizing chlorophyll-a concentration 

and a hyperbolic tangent function of light intensity was first introduced by Jasby and Platt 

(1976). This model, derived from marine data, was further modified by Platt et al. (1980) 

to include a photoinhibition parameter. The modified model has been used to predict 

lotie periphyton photosynthesis [Jasper and Bothwell, 1986]. Photosynthetic rates 

normalized to chlorophyll-a, P® (mg C (mg Chl-a)'* h ') are predicted using [Jasper and 

Bothwell, 1986]:

P® = P f  (l-e")e '"  (16)

where a = a  I / Pf and b = p I / P f . The parameters a  and P regulate photosynthetic

efficiency and photoinhibition effects, respectively, while I symbolizes solar irradiance. 

The initial slope of the photosynthesis-irradiance (P-I) curve, or a, was estimated from 

rate of change-irradiance curves normalized to chlorophyll-a during the earliest part of 

the day when photosynthesis was assumed to be the dominant process (see Section 5.1.3). 

P characterizes the effects of photo inhibition on photosynthetic rate and is discussed 

fiirther in Section 5.1.3. Pf (mg C (mg Chl-a)*’ h '‘) represents the maximal rate of 

photosynthesis without photoinhibition. By setting p = 0, the photosynthesis relationship
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becomes equivalent to earlier models that did not include photoinhibition. Typical values

of P® in lotie systems fall between 0.11-5.49 mg C (mg Chl-ti)’' h*‘ [Jones and Adams,

1982; Jasper and Bothwell, 1986; Boston and Hill, 1991; Wellnitz and Rinne, 1999], so

we selected a Pf the fell within this range. Although periphyton is the dominant life

form along the study reach and the focus for developing the model, photosynthesis 

determined through modeling actually represents community net photosynthesis, 

including contributions from all lotie autotrophic and heterotrophic flora and fauna.

3.2.2 Irradiance

PAR irradiance, or I (pE m'  ̂ s'^) in Equation 16, had to be estimated in September 

due to saturation o f the PAR sensor output during midday over the deployment period. 

This shortcoming was corrected prior to the winter deployment allowing in situ 

measurements of PAR to be used for December modeling. PAR, defined as irradiance in 

the range of 400-700 nm, is the primary portion of the spectrum used in plant 

photosynthesis. It is estimated as 46% of the total solar surface irradiance. The model 

relies on the solar angle, dependent on geographic position, date, and local time, to 

determine the maximum irradiance. A complete description is given in Baehr (2000). 

Local NOAA cloud cover time-series’ and sensor depth (1 m) are used to model the 

amount of irradiance reaching the sensor location. Hourly cloud cover data, described 

using 6 different meteorological terms, were converted to transmissivity and interpolated. 

Total solar irradiance was then adjusted for transmissivity to model the effects of clouds. 

A difSculty with PAR modeling is the determination of an appropriate extinction 

coefficient (ti) for the water. In the aqueous environment, r| is the measure of irradiance 

absorbed by the water and varies with wavelength and depth. An average r\ for
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September was estimated using PAR measurements early in the day, prior to circuit 

saturation. PAR modeling for one cloudy day in December resulted in overestimation of 

the maximum in situ PAR by <20 pE m'  ̂ s'' (-13 %). The difference is likely caused by 

an underestimation of p, although seasonal changes in water composition (e.g. dissolved 

organic matter) are expected to alter r|.

3.2.3 Biomass

In situ measurements of suspended chlorophyll-^? were made during both 

deployments. However, as in many lotie systems, the majority of algae inhabit the 

substrata. Spéciation and biomass analyses were not performed; so suspended 

chlorophyll-a is used as a proxy for attached biomass. The resulting chlorophyll-a 

concentrations are used in Equation 16 for modeling periphyton photosynthetic rates. 

Bowker et al. (1996) tested the hypothesis that suspended algae originate from 

periphyton. They report that greater than 80% of the lotie organisms inventoried were 

found both in suspended and attached communities. The study also indicates that the 

physical action of the flow was not the primary factor dislodging the biota. They suggest 

that biological processes are a significant source of suspended periphyton. The 

relationship utilized to determine periphytic biomass from chlorophyll-a measurements is 

given by:

In x = 4.392+ 0.315 In y (17)

where y = suspended algal biomass (mg m'^) and x = periphytic biomass (mg m*̂ ) 

[Bowker et a/., 1996]^. The mean suspended chlorophyll-a for each deployment period

^Bowker et al. (1996) report suspended algal and periphytic biomasses as “standing crops”, however, due to 
confusion regarding the term’s definition, biomass is used instead. Evaluation of their sampling technique 
indicates that biomass is an accurate description o f the sampled quantities.
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was chosen for use in modeling to maintain simplicity and, in part, as a result of 

unforeseen complications (see Section 4.4). Once the periphytic biomass is estimated 

(per unit area), the concentration of chlorophyll-^ is determined using the average area of 

the reach and USGS discharge data.

Possible sources of error using this method include differences between the Clark 

Fork River and the Welsh river where Equation 17 was determined. The surface area 

used to calculate total chlorophyll-a, estimated from river length and width, is also 

possibly much larger due to the greater surface area of cobble. This would result in 

increased chlorophyll-a concentrations and subsequently, greater photosynthesis 

estimates. However, this source of error is offset, in part, by the photosynthetic model, 

which is based upon the assumption that the chlorophyll-a originates from suspended 

phytoplankton. Comparisons between suspended and attached periphyton suggest that 

periphytic suspensions have greater photosynthetic rates than attached communities 

[Jasper and Bothwell^ 1986]. It is not known if the suspended chlorophyll-a determined 

from field measurements arises from living or dead organisms, so an assumption was 

made that its contribution to community production was negligible.

3.2.4 Photosynthetic quotient

Conversion of photosynthetic rates between pQOi and DO models is often 

accomplished assuming a widely accepted aquatic photosynthetic quotient (PQ) of 1.2 

[Kirk, 1994], where PQ equals the molar ratio of O2 produced to CO2 consumed. The PQ 

is expected to agree closely with Redfield stoichiometry (Equation 18), which predicts a 

PQ =1.3 [Stumm and Morgan, 1996]. The Redfield equation:

IO6 CO, + 16N03“ + 1 2 2 H , 0 + I 8 H* {C,oaH,„0,,„N„P,j + 138 0 ,  (18)
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provides a simplification for a plethora o f complex metabolic process involving a large 

range of aquatic organisms [Stumm and Morgan, 1996]. The stoichiometry of reaction 

between the nutrients will vary to some degree for each locale, but the simplification is 

quite valuable nonetheless. The PQ used in our model however, was estimated from 

plots of daytime ADO vs. -ADIC, where both fluxes were adjusted for gas transfer effects 

(see Section 5.1.7).

3.3 Respiration

3.3.1 Rate model

Community respiration (R) can be modeled using the modified Arrhenius 

relationship:

R = R2o0 -̂'"  ̂ (19)

where R20 is the respiratory rate at 20 °C, T is in situ temperature (°C), and 0 is the 

Arrhenius coefficient. In other studies, 0 was estimated as 1.07 [Erlandsen and Thyssen, 

1983] and 1.045 [Parkhill and Gulliver, 1999]. In this study a value of 1.045 was chosen. 

Estimates of R20 were found using a multiple regression technique discussed in Section 

5.1.5. Photorespiration, or the increase in respiratory rate due to light, is known to occur 

in many plants including algae, but is not adequately quantified because of the difficulty

determining its contribution to daily net metabolism [Wetzel, 1983]. Recent efforts to

model photorespiration have shown increased agreement with field data when compared 

to Equation 19 [Parkhill and Gulliver, 1999]. They use the equation:

r - ( R 20 + M t )  -0‘™ .  (20)
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where Pr is termed the photorespiration constant and It is the mean irradiance for the 

previous t hours. Respiratory contributions were modeled using both equations; a 

discussion of the results can be found in Section 5.1.8.

3.3.2 Respiration quotient

Net community respiratory rates are typically converted between pCOj and DO 

models using a respiration quotient (RQ) o f 0.85, where RQ is the molar ratio of CO2 

produced to O2 consumed [Wetzel^ 1983]. Redfield stoichiometry predicts a RQ = 0.77 

for comparison. In modeling respiration effects on pCOi and DO, an RQ was also 

estimated fi*om plots of nighttime AO2 vs. -ADIC (see Section 5.1.7).

3.4 pCO i and DO models

The modeling programs, RIVERC02.BAS and RIVERDO.BAS, given in 

Appendices 1 and 2, solve Equations 8 and 9 iteratively using upstream field 

measurements as initial values. Community respiration is modeled using Equation 20. 

Photosynthetic rates are determined using Equation 16 in a commercial spreadsheet 

application and input into the model as an array. Likewise, upstream in situ gas 

measurements, atmospheric pC02, PAR, temperature, and alkalinity are stored as 

individual files for input into the model. Temperature input from up and downstream in 

situ measurements is linear interpolated as the water travels downstream. The pC02 

model uses temperature in calculations of DIC, / 7CO2 , Kc, and respiratory rates. In the 

DO model, temperature is used to calculate saturation concentration and adjust Ko and 

respiratory rates. In the CO2 model, upstream alkalinity and pCOz are used to calculate 

the upstream DIC. Alkalinities, determined from discrete sample analyses, are linearly
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interpolated between available data. Metabolic eSects on alkalinity are estimated using 

Redfield stoichiometry, which results in an 18/106-mo 1 increase in alkalinity for each 

mol of CO2 consumed (Equation 18). Other information such as Kl, respiration (R20), 

travel time, number o f iterations, and filenames are input directly by the user. This 

format allows flexibility for evaluating sensitivity to parameter changes.

Carbonate equilibria in the model are solved using the Newton-Raphson method. 

Table 3.2 provides a summary of the equations and constants used in these calculations. 

Total travel time is divided into time steps (dt) using the number of iterations chosen by 

the user (dt = travel time/ # steps). Beginning with the initial upstream DIC, flux due to 

metabolism is imposed and the new DIC is used in conjunction with the new alkalinity to 

determine a new pCOi. The new / 7CO2 is then used to calculate the ADIC resulting fi'om 

gas transfer. This new DIC is used to calculate pCOi and begin the process at the next 

time step. The whole process is continued until the total residence time has been reached. 

A similar structure without equilibrium calculations is used in modeling changes in DO.

The model allows for iterations < 100, though 20 and 10 where convenient for 

September and December, respectively. This resulted in a time step, dt = 13 min. As 

mentioned, the models assume negligible longitudinal dispersion and similarly, water in 

the reach is assumed well mixed, both vertically and laterally.



34

Table 3.2: Thermodynamic constants and mass balance equations defining the aqueous
carbonate system for use in calculations and modeling.

Carbonate System

Mass Balance Equations

Equilibrium Constants Source

_ [H X 0 3 * ]
p c o .

Weiss (1974)

=[H"][OH-] Millero (1979)

^  _  [HC0 3 -][H^]
[H3C0 3 *]

Millero (1979)

y  _ [C O / '] [H  ]
[HCO3-]

Millero (1979)

=  [Ca^*][C0 3 ^-] Stumm and Morgan ( 1996)

[HXO3*] = [CO,(aq)] + [H,C03]

D ie = [HjCO,*] + [HCO3 ] + [ C O / l  
ALK = [HCO; ] + 2 [C O / ] + [OH ] -  [H* ] 

CA = [HC03 ] + 2 [ C O / l
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Chapter 4 

Results

4.1 Travel times

A conservative tracer was not used during either September or December, so travel 

time between up and downstream locations was determined via an alternative method. 

Short-lived increases in discharge during each study period resulted in obvious 

conductivity spikes (presented later) at both monitoring stations (Figures 16a and 17a). 

These isolated surges, caused by changes in Milltown Dam discharge, were validated 

through comparison between USGS gauging station and YSI depth sensor data. Spikes in 

conductivity that coincided with distinctive discharge events were used to estimate travel 

time. This approach resulted in travel times of 4.25 and 2.5 h in September and 

December, respectively. Travel time error is estimated to be ±0.5 h, based upon 

conductivity data and the sensor measurement intervals. Travel time estimates were also 

calculated using flow velocity and stream parameters. The average discharge divided by 

the vertical area of the river (width • depth) results in an estimate of average velocity. 

The reach’s distance is divided by the velocity, which results in travel times of 3.69 and 

1.93 h for September and December, respectively. Calculated travel times closely agree 

to within the uncertainty of those determined from in situ conductivity measurements. 

Based upon these calculations, travel time increases ~ 6  min for every 1 m̂  s ' decrease in 

discharge. However, travel times determined from conductivity spikes are used for 

calculations and modeling.
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4.2 September Biogeochemical Data

4.2.1 p C 0 2

The September pC02 time-series are shown are shown in Figure 3a. Autonomous 

pCOz measurements were compared with pCO i’s calculated from discrete sample 

measurements of pH and alkalinity (Figure 3a). A summary of these data is given in 

Table 4.1. Discrete samples deviate ±42.6 patm from in situ measurements (n = 28). 

Instrument biofouling was minimal on upstream instruments, however the downstream 

sensor array had significant growth. Slower moving water at the downstream sensor 

array was probably a major factor, as periphyton were given a better opportunity to 

proliferate. Calculated and measured pCOi does not agree better, in part due to 

biofouling of the downstream instrument towards the end of the deployment period, but 

pH uncertainty is also a factor. During this time, downstream field measurements of 

pQOi are also consistently lower than calculated values (Table 4.1).

In situ pCOi time-series’ reveal a considerable range of variability during September, 

ranging from 118 patm during the day and 604 patm at night (Figure 3a). Although up 

and downstream data are difficult to interpret, the difference plot shown in Figure 3b 

reveals a clear diel A/7CO2 . The inverse correlation of the A/7CO2 plot with PAR (Figure 

3c) suggests that the trend is dominated by community metabolism. Net community 

photosynthesis appears to be primarily responsible for decreases in pC 0 2  during the day 

and net respiration causes the subsequent increase at night.
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Figure 3: Measured pCOz in the Clark Fork River during September 1999 (GMT). Up and 
downstream data are represented in plot a by blue and black curves, respectively. The red curve 
represents an estimate of local atmospheric saturation. Calculated up and downstream pCOi are 
black circles and gray triangles, respectively. Downstream data is shifted back 4.25 h to account 
for travel time, so that up and downstream measurements represent the same water. Note the 
reduced complexity of the A/?C02 curve (b) and its negative correlation with PAR (c), signifying 
the importance of net community metabolism.
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Figure 4: September in situ DO measurements in the Clark Fork River 1999 (GMT). In plot 
a, up and downstream data are represented by blue and black curves, respectively. The red curve 
in plot a represents downstream DO saturation. Downstream data is shifted back 4.25 h for travel 
time. Note the reservoir effect on the upstream DO cycle. The change in DO from up to 
downstream (b) is correlated with PAR (c), indicating that metabolism is the dominant process at 
work.
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4.2.2 Dissolved oxygen

Like pCOi^ DO also varied significantly in September, ranging fi-om 8.43 to 13.12 mg L** 

(Figure 4a). Using pre- and post-deployment data, it was determined that the upstream 

sensor drifted -6%  during the deployment period. A linear drift was assumed, as claimed 

by the manufacturer, and a linearly interpolated correction factor was applied. The diel 

increase in ADO coincides with increases in PAR and a decrease in pCOz^ supporting that 

community metabolism is the principal factor controlling variability (Figures 3 and 4). A 

consistent pattern in the ADO plot is observed throughout the first half of the deployment 

period, when conditions were similar (Figure 4b). Up and downstream minimum DO 

concentrations correlate with saturation concentration (Figure 4a), and hence temperature 

(Figure 14a).

4.2.3 Alkalinity

River alkalinities were generally higher upstream than downstream, with an absolute 

mean difference of 18 (±11) peq kg ’ (n = 14) (Figure 5). Upstream alkalinity varied 

firom 2704 to 2777 peq kg ’ with a mean concentration of 2731 peq kg’’ (n = 14). The 

addition of Hg“̂  to suppress biological consumption of CO2 had no discernible effect on 

alkalinity. Comparisons between spiked and unperturbed samples yielded results within 

the error of measurement technique (i.e. ±6 peq kg ’). Concentrations downstream 

ranged fi*om 2688 to 2767 peq kg ’ with a mean of 2714 peq kg ’ (n =14). A plot of both 

up and downstream concentrations is given in Figure 5. Tables 4.1 and 4.2 summarize 

the measurements of alkalinity and pH used for / 7CO2 calculation. On September 21, up 

and downstream alkalinities increased sharply and remained high, apparently caused by a
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discharge spike. Both conductivity and discharge plots support this interpretation (Figure 

16). Photosynthesis increases alkalinity through the consumption of ions (e.g. NO] , 

HP0 4 ’̂, and H^) (e.g. Equation 18).

2800 -I
2780 - 
2760 -0Û
2740 -rr
2720 -
2700 -

c 2680 -

1
<

2660 -
2640 -
2620 - 
2600 -

16 Sept 18 Sept 20 Sept 22 Sept 24 Sept 26 Sept 28 Sept 30 Sept 1 Oct

Figure 5: Up (gray triangles) and downstream alkalinity (black circles) data in the Clark Fork 
River during September 1999 (GMT). Error bars representing one standard deviation are 
included but not visible on this scale.

Since discrete sampling was performed during the day, alkalinity is expected to increase 

downstream as a result of photosynthesis. However, lower downstream alkalinities 

suggest a source o f CO2 over the reach if the trend is consistent between available data. 

Sampling at both sites was performed within 0.5 h, much less than the travel time. The 

differences in alkalinity between up and downstream measurements do not necessarily 

represent processes occurring over the reach because of effects from the impoundment 

(Section 4.5). The long-term trend over the study period is one of increasing alkalinity.

4.2.4 pH

Discrete spectrophotometric pH measurements were performed as described in 

Section 2.2.4. It was discovered that the addition of Hg"^ to inhibit metabolism
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significantly altered sample pH. The addition of affects sample pH through two 

mechanisms: 1) Freshwater is hydrolyzed by Hg^^ to form Hg(OH)2 , and 2)

complexation with the sulfiir-moiety in cresol red perturbs the indicator’s response to pH. 

The effect of pH perturbation by Hg^^ was not discovered until the December study. A 

mean pH offset of 0.196 (±0.031) pH units (n = 4) was applied to September pH data to 

correct for Hg^^ perturbation. This offset was determined by comparing discrete sample 

pH to pH’s calculated from in situ pC02 and alkalinity.

During September, discrete sample analyses indicate that downstream pH was higher 

than upstream on all but one day (Table 4.1). The mean absolute difference between up 

and downstream pH was 0.180 (±0.053) pH units. Although the pH trend appears to 

contradict associated alkalinity measurements, the seeming inconsistency can be 

explained by examining the pCOi data. The river is supersaturated with respect to 

dissolved CaCOg and subsequently, well buffered. Alkalinity is expected to be relatively 

constant, so pCO: is probably the dominant factor controlling pH. As a consequence of 

the unsynchronized up and downstream diel patterns (discussed in Section 4.5), pC02 is 

greater upstream during sampling times, which results in a lower pH (Table 4.1). No 

long-term trends in pH data are apparent (Figure 6).
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Figure 6: September spectrophotometric pH measurements, where up and downstream data 
are represented by triangles and circles, respectively. Lines are presented for clarity only.

4.2.5 A tm ospheric  p C O i

In September and October 2000, atmospheric pC02 was monitored in order to learn 

more about local atmospheric pCOi variability. Oceanographers often utilize 360 patm 

for a mean pCOi at sea level. When this is corrected to 0.89 atm, the typical local 

barometric pressure, the resulting pCOj is 320 patm. Post-deployment calibrations 

revealed that the CO2 system drifted, resulting in atmospheric /7CO2 accuracy of ±7 patm. 

Over the course o f ~3 weeks, pC02 experienced diurnal fluctuations with a minimum and 

maximum of 311 and 411 patm, respectively (Figure 7a). The mean / 7CO2 during this 

period was 333 patm (n = 884). A clear pattern of increasing / 7CO2 is observed after 

dark, returning to a baseline o f —320 patm during the day. Given the inverse correlation 

with the photoperiod, nightly increases in local atmospheric / 7CO2 must be significantly 

influenced by local respiration. Atmospheric pCOi remains closer to 320 patm when 

local wind speeds, measured at the NOAA meteorological station, are clearly higher and
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sustained (Figure 7c). The correlation with wind indicates that local sources o f  

atmospheric pC O i are less important during periods o f  high winds. Photosynthesis also 

appears to be an important sink for CO2 , since the pC O i also decreases daily during 

periods o f low wind.

Table 4.1: Discrete alkalinity and spectrophotometric measurements in the Clark Fork River 
during September 1999. Samples marked with an (x) in the column were spiked to deter 
further metabolic CO2 consumption or production. Perturbed sample pH is offset using methods 
described in Section 4.2.4. Calculated and measuredpCO]  ̂are given for comparison.

Location Date
1999
GMT

Year
Day

GMT

Hg'" pH
ALK
pmol
kg'

SAMI
pC O i
patrn

Calculated
PC O 2

jiatm

A
patm

9/17 259.7326 X 8.4378 2717 467 472 5
9/18 260.7319 X 8.4811 2712 472 423 -49
9/19 261.7292 X 8.4866 2718 464 405 -59
9/20 262.7319 X 8.4804 2726 428 404 -24
9/21 263.7319 X 8.4573 2763 426 430 6
9/22 264.7257 X 8.6353 2715 379 278 -101

Upstream 9/23 265.7340 X 8.4242 2716 414 473 59
9/24 266.7319 X 8.5013 2728 366 398 32
9/26 268.7250 X 8.4479 2704 400 398 -2
9/27 269.7257 X 8.4785 2735 410 360 -50
9/28 270.7271 X 8.4185 2745 371 397 26
9/30 272.0042 X 8.4554 2768 406 367 -39
9/30 272.7299 X 8.4112 2774 425 418 -7
9/31 273.0063 X 8.5039 2777 405 336 -69
9/17 259.7632 X 8.4821 2690 260 274 12
9/18 260.7535 X 8.4765 2694 261 274 13
9/19 261.7507 X 8.4711 2697 284 272 -12
9/20 262.7507 X 8.4667 2722 277 270 -7
9/21 263.7514 X 8.5612 2767 337 216 -121

1 9/22 264.7465 X 8.2897 2708 311 414 103

Downstream 9/23 265.7500 X 8.4386 2694 329 291 -38
9/24 266.7479 X 8.4542 2688 323 277 -46
9/26 268.7403 X 8.3542 2705 312 312 o'

1 9/27 269.7417 X 8.4908 2712 250 216 -34
9/28 270.7417 X 8.4036 2719 200 259 59
9/30 272.0201 X 8.3472 2750 228 303 75
9/30 272.7465 X 8.3836 2756 190 275 85
9/31 273.0174 X 8.4744 2759 169 232 63
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Figure 7: Atmospheric pC02 (a), air temperature (b), and wind speed (c) during September 
and October 2000 (GMT). Note nighttime pC02 remains near 320 laatm during periods of high 
winds (e.g. October 12 and 15). The temperature spike observed every morning in plot b is 
probably a result of sunshine striking the sensor for a short period.
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4.3 December Biogeochemical Data

4.3.1 pC02

During December 1999, mean absolute differences between calculated pCOi and in 

situ levels are ±15.4 foatm (n = 27). Both pH data from unperturbed samples (i.e. no 

Hg^^) and spiked samples were used for calculation o fpCOi (Table 4.2). Once corrected 

for the perturbation, the spiked sample pCOz calculations agree closely with unperturbed 

sample calculations (Figure 8). Near the end of the 13-d deployment, when both SAMI- 

CO2 sensors were located together at the downstream site, data reveal differences up to 

20 patm during short periods when the pQOi was changing rapidly (i.e. during the day). 

This effect was much less at night (±5 patm) when the rate of change o f pCOi was not as 

rapid. A poorly functioning pump in the downstream instrument likely played a role in 

these offsets. Reduced flushing in the cell increased instrument response time.

Diel trends in pCOi are dramatically smaller in magnitude than in September, but 

again suggest that net community photosynthesis was significant (Figure 8a). Reduced 

PAR (Figure 8c), lower temperatures, and a shorter transit time between sites were all 

contributing factors. Changes in pCOi are very small during the night, suggesting that 

respiration was not as important as in the autumn deployment (Figure 8b).

4.3.2 Dissolved oxygen

DO concentrations ranged from 11.87 to 14.16 mg L ' in December (Figure 9a). Pre- 

and post-deployment calibrations and Winkler titration data indicate that the downstream 

DO sensor drifted ~15%. A linear drift correction was also applied to the downstream 

data in this instance. As a consequence, DO field measurements are considerably more
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reliable towards the end of the study period when Winkler data were available. DO 

accuracy late in the study period is estimated at ±0.2 mg L*̂  from comparisons between 

corrected DO data and Winkler titrations. These analyses yielded a standard deviation of 

0.05 mg DO L ' (n = 3). During the night when respiration is expected to control DO 

flux, pCOi data reveal <20 patm changes over the study reach (Figure 9b). Since 

respiration caused large nightly changes in pCOz during September, this is strong 

evidence that respiration did not dominate DO flux. Consequently, surface gas exchange 

would be significant. This conclusion is supported by strong agreement between 

downstream field DO measurements and saturation at dusk (Figure 9a). As available 

PAR diminishes, respiration and gas transfer drive DO towards saturation. During the 

night, gas transfer maintains DO near saturation.
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Figure 8: Measured pCO] in the Clark Fork River during December 1999 (GMT). Up and 
downstream data are represented in plot a by blue and black curves, respectively. The red curve 
represents a local estimate of atmospheric saturation. Up and downstream calculated pCOi's are 
circles and triangles respectively. Downstream data is shifted back 2.5 h to account for travel 
time, so that up and downstream data represent the same water. The more interpretable ApCOa 
curve (b) reveals a decrease inversely correlated with PAR, but with little change at night. 
Reduced PAR (c) (compared to September data) is a significant factor in December’s smaller 
daytime change. Note SAMI-CO2 agreement midway through Dec 22 when instruments were 
located beside each other.
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Figure 9: December in situ DO measurements in the Clark Fork River 1999 (GMT). In plot 
a, up and downstream data are represented by blue and black curves, respectively. Downstream 
data is shifted back 2.5 h for travel time. Note the reservoir’s influence is still evident in the 
upstream DO cycles. The change in DO (b) correlates with PAR (c). Downstream DO saturation 
is represented by the red curve in plot a. Note scale difference in plots a and b compared to 
September.
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4.3.3 Alkalinity

Upstream alkalinity ranged from 2622 to 2753 peq kg'' with a mean concentration of 

2660 peq kg"' (n = 15). Mean downstream alkalinity was 2662 ^eq kg'* (n = 12), ranging 

from 2619 to 2724 peq kg'*. December alkalinities do not follow the same trend as in 

September; rather the data suggest that very little change occurs along the reach (Figure 

10). The mean absolute difference between up and downstream is 7 (±8) peq kg'* (n = 

12). The long-term trend indicates a gradual decrease in both up and downstream 

concentrations, with a subsequent increase towards the end of the study period. This 

trend is also observed in December conductivity data (Figure 17). Reduced metabolism 

(due to winter conditions) and a shorter reach are believed to be important factors.
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Figure 10: Alkalinity data for December 1999: Up and downstream data are represented by 
gray triangles and black circles, respectively. Error bars are included, but not visible on this 
scale.

4.3.4 pH

December spectrophotometric pH measurements are given in Table 4.2 and Figure 

11. Sample perturbation by Hg^^ was discovered early in the December study, allowing
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time to quantify the effect. A mean offset of 0.1230 (±0.0067) pH units (n = 7) was 

determined by comparing spiked and unperturbed samples collected in December. The 

offset was subsequently applied to correct for this systematic error in December’s pH 

data.

Upstream pH in December often exceeded downstream measurements, but agreement 

was much closer than in September (Figure 6). The mean absolute difference between up 

and downstream was 0.059 (±0.056) pH units (n = 10). Differences in pCOi are more 

likely to be the major source of pH disagreement, since alkalinities are similar between 

up and downstream locations (Figure 10). No long-term trends in pH data are apparent 

over the course of study (Figure 11).
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Figure 11: December spectrophotometric pH measurements, where up and downstream data 
are represented by gray triangles and black circles, respectively. Lines are presented for clarity 
only.



51

Table 4.2: Discrete alkalinity and spectrophotometric pH measurements in the Clark Fork River 
during December 1999. Samples marked with an (x) in the column were spiked to inhibit 
metabolism. Perturbed sample pH is offset using methods described in Section 4.3.4. Original 
pH is utilized for pCOi calculations when Hĝ  ̂ is not a factor. Calculated and measured pQOjS 
are given for comparison.

Location Date
1999
GMT

Year
Day

GMT

Hg'" pH ALK
pmoi
kg*

SAM I
p C O i

l̂atrn

Calculated
p C O j
patm

A
patm

12/12 345.9965 X 8.1820 2753 404 414 10
12/14 347.6701 X 8.2823 2687 344 312 -42
12/15 348.6618 X 8.2172 2680 364 368 4
12/16 349.6451 X 8.2129 2674 396 377 -19
12/16 349.7792 X 8.2218 2668 371 370 -1
12/18 351.8438 X 8.2288 2636 349 372 23
12/19 352.8458 X 8.2830 2622 316 317 I

Upstream 12/20 353.8576 X 8.2149 2663 361 372 11
12/21 354.6785 X 8.2013 2647 392 r 381 -11
12/21 354.8396 X 8.2661 2644 330 324 -6
12/18 351.8438 8.3529 2636 349 371 22
12/19 352.8458 8.4033 2619 316 319 3
12/20 353.8576 8.3503 2664 361 360 -I
12/21 354.6785 8.3266 2651 392 379 -13
12/21 354.8396 8.3868 2651 330 327 -3
12/12 345.9875 X 8.3379 2724 274 277 3
12/14 347.6806 X 8.2922 2695 339 304 -35
12/15 348.6757 X 8.2082 2680 349 374 25
12/16 349.6521 X 8.1930 2686 382 398 16
12/16 349.7882 X 8.2486 2669 326 346 20

Downstream 12/18 351.8576 X 8.2701 2643 307 336 29
12/19 352.8542 X 8.4025 2619 242 233 -9
12/20 353.8701 X 8.2914 2660 319 305 -14
12/21 354.6889 X 8.2062 2643 390 373 -17
12/21 354.8486 X 8.3900 2638 272 237 -35
12/21 354.6889 8.3279 2646 390 374 -15
12/21 354.8486 8.5034 2641 272 243 -29
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4.4 In  situ Chlorophyll-a

In situ suspended chlorophyll-cf measurements ranged from 0.00 to 8.96 pg L'  ̂ during 

September and 2.01 to 11.54 pg L'* in December (Figure 12). The recurring diel pattern 

is in both data sets shows a decrease in fluorescence during the photoperiod. The effect 

is not an instrumental artifact, but rather non-photochemical quenching of fluorescence 

primarily caused by increased irradiance {Kiefer and Reynolds, 1992; Marra, 1997]. 

Changes in chlorophyll-a per unit cell can also influence diel variability in fluorescence, 

but this effect is likely more significant over larger time intervals > 1 day. The objectives 

for deploying the fluorometer were to quantify in situ biomass and observe any short or 

long-term trends. The effect of irradiance on fluorescence was not anticipated however, 

so to avoid the associated complications, fluorescence during the photoperiod was 

Linearly interpolated between adjacent dark periods. Trends in chlorophyll-a were 

assumed to correlate with nighttime fluorescence. Following this adjustment, mean 

chlorophyll-a concentrations for September and December were 6.51 (±0.76) and 5.49 

(±1.18) pg L*‘, respectively (n = 690 for each deployment). Mean chlorophyll-a 

concentrations were used in modeling photosynthesis for both September and December 

(see Section 5.1.2).
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Figure 12: September (a) and December (b) in situ chlorophyll-a measurements (blue)
plotted with PAR (black) (both monitored from downstream location). The plots reveal diel 
quenching of fluorescence. Note that decreased fluorescence during the photoperiod is 
apparently reversible on a short-time scale,

4,5 Impoundment Effects

This section focuses upon an interesting impoundment efleet observed in all 

upstream data. We observed that upstream variability in September is out of sync with
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the diel PAR cycle. Examples of the effect are visible in expanded plots of Figures 13. 

At the upstream location, DO concentrations are highest in the middle of the night, 

contrary to expected variability. Metabolism is not the source of increasing DO since 

there is no light available for photosynthesis. Upstream DO concentrations are nearly 

always greater than saturation concentrations, so ingasing is not the source of the DO 

increase. There is also no known pattern in the Milltown Dam discharge that would 

cause the shift [James StilwelU Montana Power Co., pers. comm.] We believe the effect 

was caused by the reservoir and is discussed in more detail below.

The odd inverse relationship is also apparent in December data, both in up and 

downstream data. Since the upstream station is much farther downstream from the dam 

than in September (Figure 1 ), the effect is less prominent. However, nighttime humps in 

DO data and the related dips in pCOi data are evidence of the same upstream variability 

(Figures 8a and 9a).

The effect is believed to occur when river water upstream from the Milltown Dam 

reservoir meets the deeper slack water held behind the dam (see Figure 1). Biomass 

concentrations in the deeper reservoir waters are expected to be much lower than in the 

natural shallow waters. Periphyton are also not as prolific in the deeper water, with less 

available light at the river bottom. Chlorophyll-a measurements downstream indicate 

that suspended biomass is insignificant when compared to attached algae (see Section 

5.1.2). The river chemistry in the reservoir is therefore believed to experience little 

change due to community metabolism during the residence time behind the dam. 

Similarly, the deeper water is less affected by diel changes in air temperature due to 

reduced mixing when compared to the turbulent, shallow water. Once the water returns
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to its natural course, high local concentrations of periphyton once again begin utilizing 

the available nutrients (DO, pCOi, etc), renewing the natural diel variability. In Figure 

13a and b, upstream DO and ^00% are out of sync with PAR (Figure 13c) by as much as 

12 hours. Using estimates of the slack water volume [James Stilwell, MPC, pers. comm.] 

and USGS discharge, the residence time of water behind the dam is calculated to be 

approximately 10 hours. The close agreement between the apparent shift in the diel cycle 

and estimated residence time supports the conclusion that less productive reservoir water 

essentially suspends the metabohc diel gas cycle during residence behind the dam.
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Figure 13: DO (a), pCOj (b), and PAR (c) data in the Clark Fork River during September 
1999 (GMT). Downstream data in both plots and PAR are shifted back 4.25 h to account for 
travel time. At any point in time, each curve is expected to represent the same section of water. 
Note that upstream DO is as much as 12 h out of sync with PAR, and hence the downstream 
curve.
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4.6 Study Conditions

4.6.1 September

In situ temperature time-series for September are shown in Figure 14a. Temperature 

data on DO sondes and SAMI-CO2 instruments agree to within better than 0.1 ""C during 

both periods of study. The heating and cooling cycle was very dynamic during 

September as temperatures ranged from 7.38 to 15.76 '’C (Figure 14a). Solar heating 

drove much of this variability, resulting in a strong diel signature as shown by the 

positive correlation of PAR with the temperature cycle (Figure 14c). Local weather 

conditions early in the study were marked by clear and sunny days, resulting in high PAR 

and air temperatures. On September 24 however, a cold front moved into the region 

bringing clouds but no significant precipitation. Lower air temperatures and diminished 

PAR resulted in a drastic reduction in river temperature. Over the course of the study, up 

and downstream temperature data differ both in magnitude and pattern. The reservoir 

residence time (see Section 4.5) results in maximum upstream temperatures occurring 

during the middle of the night, while downstream temperatures peak late in the afternoon 

as expected. Differences between up and downstream temperatures, however, reveal the 

anticipated diel variability (Figure 14b). The value of distributed sensors is further 

exemplified by the reduced complexity of the AT plot.

4.6.2 December

In December, water temperatures ranged from 0.09 to 2.97 °C, with little (<1 °C) or 

no increases during the day (Figure 15a). Downstream data show a weak diel trend from 

solar heating, which is more apparent in the AT plot (Figure 15b). However, the long-
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Figure 14: Temperature (a), AT between up and downstream (b), and modeled PAR 
data (c) in the Clark Fork River during September 1999 (GMT). Up and downstream 
data are represented by blue and black curves, respectively. The downstream data is 
shifted 4.25 h to account for travel time. Note diel temperature cycle corresponds with 
PAR. The upstream diel temperature cycle in plot a reveals effects from the reservoir.
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Figure 15: Temperature (a), AT between up and downstream, (b) and measured PAR (c) data 
in the Clark Fork River during December 1999 (GMT). Up and downstream data are represented 
by blue and black curves, respectively. The downstream data is shifted 2.5 h to account for travel 
time. Note lower PAR compared to September (Figure 14).
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term variability dominates. Characteristic cold and cloudy days caused the reduced 

variability. However, there was no significant precipitation during the period of study. 

The daily maximum PAR, shown in Figure 15c, is <40% that of September.

4.7 Depth, Discharge, and Conductivity

4.7.1 September

Discharge, depth, and conductivity time-series for September are shown in Figure 16. 

Discharge does not vary greatly during the study period and depth data show that the 

local effects of changing discharge are similar in magnitude for both sensors (Figure 

16c). During September, mean discharge was 36 (±1.8) m  ̂ s'̂  (n = 1383) (Figure 16b). 

On September 21 an anomalous discharge spike occurred, which is also observed in both 

depth and conductivity plots. Validation of this event and other discharge spikes is 

critical to travel time estimates (see Section 4.1).

Since ionic CO2 species (and their cations) are likely the dominant source of 

conductance in the river [WetzeU 1983], CO2 consumption during photosynthesis should 

decrease conductance during the day. Conductivity is also temperature dependent, 

however, increasing about 2-3%/ [Wetzel and Likens, 1991], so specific conductance 

(25 °C) is presented to eliminate temperature effects. A diel cycle in conductivity is seen 

as a result of its dependence on CO2 . A much stronger pattern is seen in the upstream 

data, perhaps influenced by better sensing conditions. The river was much more 

turbulent at the upstream location, leading to increased flushing of the conductivity 

sensor inlet on the YSI sonde.
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Figure 16: Specific conductance (a), discharge (b), and depth (c) data in the Clark Fork River 
during September 1999. Up and downstream data are represented by blue and black curves, 
respectively. The effects of distinctive discharge events are seen in all plots. The time axis is in 
GMT. Midnight GMT occurs at 6:00 pm MST, or right before dark.
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4.7.2 December

The YSI sensors’ batteries died on December 22, so analyses involving DO, depth, 

and conductivity do not extend beyond this date. Discharge over the 13-d time-series 

(Figure 17b) was 40 (±1.4) m  ̂ s'’ (n = 1295), similar in magnitude and variability to that 

measured downstream in September (Figure 17b). A large discharge peak was observed 

on December 16, which is also seen in both depth and specific conductance data (Figures 

17a and c). Conductivity does not show a pronounced pattern throughout the time-series, 

though a trend similar to that observed in September is apparent on some days.
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Figure 17: Specific conductance (a), discharge (b), and depth (c) data in the Clark Fork River 
during December 1999 (GMT). Up and downstream data are represented by blue and black 
curves, respectively. In plot a, note upstream and downstream conductivity spikes used for travel 
time determination.
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Chapter 5 

Modeling and Discussion 

5.1 Modeling parameters

5.1.1 Overview

The following sections describe important modeling parameters and the rationale for 

their values. A compiled list of the parameters is also provided in Table 5.1. It is 

worthwhile to note that each time series can be modeled with exceptional agreement by 

changing various parameters as required. However, this subjective method does not 

reveal the model’s efficacy when using available data. Parameter estimates determined 

fi*om river data or published values are therefore employed whenever possible. Modeling 

assists in the evaluation of these estimates.

5.1.2 Biomass

Mean concentrations of chlorophyll-^? were 108 (±4) and 74 (±2) pg L'* for 

September and December, respectively. Chlorophyll-^? concentrations were determined 

using Equation 18 and are assumed constant over the study reach. These values lie 

within a range o f 25 to 250 pg L‘‘ (assuming a mean river depth of 1 m) determined fi*om 

recent in situ sampling of Clark Fork River periphyton [Vicki Watson, pers. comm.] 

Modeled periphyton (given as concentration), determined from in situ measurements of 

fluorescence, are relatively constant for each study period. Mean in situ chlorophyll-^? 

measurements and other pertinent parameters (e.g. mean width, depth) are held constant, 

so differences in concentration depend upon changes in discharge (Section 3.2.2).
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5.1.3 Photosynthetic efficiency and photoinhibition

The photosynthetic efBciency normalized for chlorophyll-a, a, is a significant 

parameter in the photosynthesis model (Equation 16). Values of a  were estimated from

Table 5.1: Summary of important model parameters used in pCOi and DO modeling.

Photosynthesis September December Source
PQ 1.54 2.17 Field data

P^S, mg C (mg Chl-a)‘‘ h‘‘ 3 3 Modeling

a , \ig C (mg Chl-a) '(|Æ m‘V*) ‘ 15 15 Field data

P 0 0 Modeling

Chl-a, îg L ' 108 74 Field data; modeling

Respiration
RQ 0.85 0.85 Wetzel and Likens (1983)

R20 , mol C h‘* 5.6 X 10"* 5.6 X 10^ Field data

9 1.045 1.045 Parkhill and Gulliver (1998)

Pr 0 0 Modeling

Gas Transfer
Kc(20).» cm h ’ 44 44 Field data

K<X20), cm h ' 47 47 Field data

plots of DO flux against PAR and normalized for chlorophyll-a (Table 5.1). Assuming 

that photosynthesis is the dominant process in the early hours of the day, the initial slope, 

or a, is determined using standard linear regression of data over ~2 h and fixing the 

intercept to zero. Respiratory processes and surface gas exchange are ignored for 

convenience. Since only a short time period was used, their contributions are assumed 

negligible. Only December downstream DO data were used for a  estimation. The travel 

time is long enough that changes in PAR over the reach make it difficult to determine
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when the initial effects of photosynthesis are occurring. ADO was calculated using 

sequential measurements, assuming a steady-state condition above the monitoring 

location. Regression estimates o f a  (converted to rate of carbon flux) typically fell 

between 6 and 15 pg C (mg Chl-a)*‘ h ' (pE m'  ̂ s ’) *. The upper limit, a =  15, was 

chosen for modeling both September and December community photosynthesis. This 

value lies within the range of 0.8-53.6 reported for other lotie systems [Jones and Adams, 

1982; Carpenter, 1985; Jasper and Bothwell, 1986; Boston and Hill, 1991]. Higher a  

represents a more efficient light collecting ability, but an established seasonal trend has 

not been shown with other studies [Jones and Adams, 1982; Jasper and Bothwell, 1986]. 

Variations in a  can reasonably be expected in response to shifts in the dominant species 

o f periphyton throughout the seasons. However, more knowledge of local biology is 

required to quantify these differences.

Modeled photosynthesis allows for photo inhibition effects through the 

photo inhibition parameter, P (pg C (mg Chl-a)'* h* (pE m^ s'*)'*) (Equation 17).

Photo inhibition did not appreciably increase the model’s agreement with field data

however, so its contribution was removed. This is not without precedent, as Homberger 

et al. (1976) observed no photoinhibition in a stream study and found instead that 

photosynthesis increased linearly with light, Kirk (1994) also suggests that

photo inhibition is less significant in attached plant communities because of adaptation to 

the light intensities available at their depth.

5.1.4 Photosynthetic potential

The maximal rate of photosynthesis, Pf (Equation 17) for both seasons was fixed at 

3 mg C (mg Chl-a)'* h * (Table 5.1). This value lies in the middle of previously
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mentioned literature values of 0.11-5.49 mg C (mg Chl-a)'^ h '\  Nighttime estimates of 

R20 and gas transfer velocities were used to constrain the photosynthetic rate during 

modeling of daytime data. It is reasonable to assume that a rapid and significant change 

in biomass during comparatively static conditions is unlikely, so P®is held constant.

Since Pf and a  are both constant, modeled variation in gas concentrations from 

photosynthesis is primarily regulated by irradiance.

5.1.5 Regression Analysis 

5.1.5a September: As described in Section 3.1.2, estimates of gas transfer

velocity and respiration are obtained through multiple linear regressions. A summary of 

the results is given in Table 4.3. Evidence of bio fouling late in the study prevents the use 

of the full data set. For each nighttime period, 41 sets of pCOi and temperature 

measurements were used. DIC was calculated from in situ pCOi and mean alkalinity 

data determined fi-om both monitoring locations. Atmospheric pQOi was estimated from 

data obtained during similar days (based upon meteorological conditions) in September 

2 0 0 0 . Analysis of nighttime CO 2 data over 9 days in September yields a mean Kc(2 0) = 

48 (±24) cm h*’ and a mean R20 = 5.6 x 1 0 "̂  (± 2 .1  x 1 0 ^) mol CO2 L * h '\

Similar analyses were also performed using nightly DO concentration and 

temperature data, in combination with saturation estimates determined from Equation 4. 

The same number of nights and measurements per night were used as in the CO2 analysis. 

Multiple linear regressions yield a mean Ko(20) “  43 (±4) cm h'̂  and a mean R20 = 0.18 

(±0.05) mg O2 L’’ h'* consumed. The R20 estimated from DO corresponds to a R20 = 6 . 8
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X 10 (±1.9 X 10*) mol CO2 L h ' using a RQ = 0.85. If RQ is not used in conversion, 

CO2 and O2 analyses predict a RQ = 1.00.

5.1.5b December: Corresponding regression analyses were also performed using 

December CO2 , O2 , and temperature data. Estimates of Ko and R20 were made over 12 

nights with 51 data sets per night. Regression results from CO2 data yield a mean Kc(20) 

= 11 (±1) cm h ' and a mean R20 = 1.22 x 10^ (± 6.5 x 10*̂ ) mol CO2 L"' h '\

DO analyses are similar to September regression results, generating a mean Ko(20) -  

50 (±24) cm h*’ and a mean R20 = 0.17 (±0.25) mg O2 L*̂  h ' consumed. The respiration 

estimate is equivalent to R20 = 6.1 x 10 * (±1.9 x 10'*) mol CO2 L‘‘ h ‘ applying a RQ = 

0.85. The R20 estimated from CO2 regression is much less than the rate predicted by O2 

data, resulting in a low RQ = 0.24.

5.1.5c Regression error analysis: Respiratory rates agree well between PCO2

and DO regressions in September, and surface gas transfer estimates are also similar. 

December regression results using DO agree with September analyses, in both estimates 

o f Kch2 0) and R20. December CO2 data however, do not reveal comparable rates. 

Predictions of Kc(20) are the lowest during the study by a factor of 4, while R20 is an order 

of magnitude lower.

The apparent inconsistency in regression results is probably a result of invalid 

assumptions. Evidence of some unknown error is seen in the plots of studentized 

residuals against the response, though a statistical discussion is not presented here. 

Deviations in linearity by gas transfer and respiration will certainly introduce error. 

Inaccuracy in pC02 saturation estimates and closeness to in situ pC02 could contribute to 

gas transfer errors. R20 is assumed constant throughout the night, yet contributions from
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photorespiration could cause respiratory rates to degrade over night [Parkhill and 

Gulliver, 1998]. Applying a linear correction factor to DO data (to correct for drih) also 

introduces the possibility of systematic error. Regression accuracy depends upon 

normally distributed measurement error throughout the data set. Other significant 

riverine processes not considered in Equations 12 and 13 (e.g. calcite cycling) would also 

introduce error into the regression results.

5.1.6 Equation estimates of Kc and Kq

Tsivoglou and Wallace’s (1972) widely used equation ( 1 1 ) based upon changes in 

hydraulic energy results in an estimates of Ko(20) = 62 cm h * and Kc(2 0) = 54 cm h ' for 

September. Using December’s parameters. Equation 11 yields Ko(2o> = 50 cm h*’ and 

Kc(20) ~ 43 cm h \

The semiempirical relationship (Equation 12) provided by Melching and Flores 

(1999) yields a Ko(20) = 23 cm h '‘ for September, which corresponds to a Kc(20) = 22 cm 

h‘‘ using Equation 15. The results are the same using hydraulic conditions (Equation 12) 

during December. Melching and Flores (1999) estimate error are anywhere between 44 

and 78% for this equation.

The predictive Equations 11 and 12 yield dissimilar results for both O2 and CO2 gas 

transfer velocities. Regression estimates agree closer with the energy dissipation model, 

while hydraulic conditions indicate much lower gas transfer rates. Values of Kc and Ko 

used for modeling are discussed in Section 5.1.9.
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Figure 18: Representative plots used in the estimation of PQ and RQ during September and 
December 1999. September daytime data is used in plot a, yielding a slope and PQ = 1.52 (R^ = 
0.97). Similarly, in plot b September nighttime data is used to determine RQ = 0.44 (R“ = 0.99). 
The grouping of data points occurs just before and after sunset in plots a and b, respectively.
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5,1.7 PQ and RQ

Field measurements of pC02, DO, alkalinity, and temperature data were also used to 

estimate the local values of PQ and RQ. Prior to plotting the data, modeled gas flux as a 

result of gas transfer was subtracted from the total changes between up and downstream. 

The resulting slopes of the plots were taken as PQ. Contributions from respiration and 

other processes were assumed negligible for convenience. One plot for each is given in 

Figure 18 to show the linear relationship typically found. September field data produced 

a mean PQ = 1.54 (±0.69) and a RQ = 0.47 (±0.12) (n = 9).

Mean values were also determined from December field measurements, resulting in a 

PQ = 2.17 (±0.26) and RQ = 0.47 (±0.17). In contrast to September, December data did 

not produce linear relationships on each night. Only linear regressions revealing a visible 

linear trend (R^ > 0.5) were used in computing the mean, so 11 days and 6  nights were 

used.

During both deployments, PQ estimates are greater than the typical value of 1.2, most 

likely a combined result o f inaccuracies in modeled DIC and surface gas transfer. The 

assumption that respiration and calcite cycling are negligible may also be a significant 

factor. RQ estimates agree between seasons, but are much lower than the literature value 

of 0.85. Literature values of RQ are typically not lower than 0.85 however, so the 

accepted value o f 0.85 was used for converting between CO2 and O2 respiration rates. 

Inaccurate modeling assumptions and measurement error are possible sources of this 

discrepancy. Without additional knowledge on local biology however, no conclusions 

can be drawn. In general, PQ and RQ determination in natural aquatic systems is 

difficult.
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Table 5.2: Results from multiple regression analyses for determining estimates of Kc(2o>, K0 2 0 ), 
and R20. Estimates of R30 using DO data are converted to mol L"' h ' using a RQ = 0.85 for 
comparison to CO2 regression results.

September 1999
CO2 Regression O 2 Regression

Day
(GMT)

K c (20> 

(cm h" )
R 20

(mol CL*’ h ')
R o (20> 

(cm h' )
R20

(molCL-' h ')
17 90 1.03 X 10"̂ 40 3.99 X 10-*
18 66 3.16 X 10'^ 44 5.64 X 10 *
19 38 3.61 X 10"̂ 48 4.69 X 10 *
20 32 4.34 X 10"̂ 39 6.70 X 10 *
21 49 5.48 X 10*̂ 39 8.21 X 10*
22 48 5.65 X 10*̂ 42 9.04 X  10"*
23 48 6.19 X  10*̂ 43 8.36 X  10"*
24 55 6,45 X 10*̂ 51 8.68 X 10**
25 1.2 5.36 X 10*̂ 44 5.60 X  1 O'*

December 195►9
10 13 1.38 X  10-* 60 3.16 X  10"*
11 18 1.53 X  10-* 43 7.02 X  10-̂
12 -15 -3.56 X 10'^ 84 4.68 X  10 *
13 13 5.93 X 10'^ 59 4.89x 10'7
14 12 7.04 X  10*̂ 49 -5.88 X 10*7
15 15 1.18 X  10* 53 1.71 X  10*
16 12 6.53 X 10'^ 5 2.04 X  10'^
17 7.2 1.09 X  10-* 13 3.14 X IQ-̂
18 21 2.25 X 10-* 38 -1.70 X 10"*
19 6.4 1.37 X 10^ 79 2.16 X  1Q-*
20 15 1.75 X 10-* 40 3.05 X  10*
21 13 2.12 X 10-* 78 7.35 X  10 *

5.1.8 Respiration

Values of R20 (Equation 20) that agree best with the data vary for O2 and / 7CO2 , as 

well as seasonally. However, in the interest of modeling consistency, one R20 was chosen
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to represent all seasons (Table 5.1). Differences in community structure and function 

during seasons will almost certainly alter R20 , but lacking more specific knowledge on 

local species’ seasonal metabolism, utilizing a constant R20 is appropriate. A R20 -  5.6 x 

10"̂  mol CO2 L’* h'* was selected for modeling during both September and December. 

This rate was estimated fi*om multiple regressions of nighttime data since respiration and 

gas transfer are assumed to be the only major processes contributing to gas variability. 

Variations with temperature are modeled using Equation 20, whüe respiration rates for 

DO are calculated using RQ = 0.85 with R20 equal to that used forpC02.

Photorespiration was incorporated into modeling respiratory rates using Equation 20. 

The predicted fluxes in pC02 and DO however, generally resulted in recurring 

inconsistencies when compared to field data. On a few individual days early in 

September, during maximum irradiance, modeled photorespiration did slightly increase 

agreement. The effect was minor however, and the photo inhibition parameter, or (3r , was 

eventually fixed at zero.

5.1.9 Gas transfer velocities

Values for Kc and Ko, in conjunction with R20, were taken fi*om the multiple 

regression results. Regression and equation estimates differed by as much as 40 cm h^ 

with little consistency between methods. A mean Ko(20) = 47 cm h * was chosen for 

modeling and fi*om this estimate, using Equation 16, Kc(20) = 44 cm h‘‘ (Table 5.1). 

Since surface gas transfer is primarily a physical process, seasonal differences in Kc(20) 

and Ko(20) are not expected to be significant. Since mean discharge is similar between 

study periods (Figures 16b and 17b), this is a reasonable assumption. These estimates 

were therefore utilized for modeling during both September and December.
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5.2 Model Results

5.2.1 Sep tem ber

Modeled and field changes in pCOi and DO are given in Figure 19. Although 

agreement is often quite good, it is apparent that metabolism and surface gas transfer 

cannot alone model changes in pCOi at all times during September. Model predictions
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Figure 19: Modeled (blue) and in situ changes (black) in pQOi (a) and DO (b) during 
September 1999 (DTC).
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agree with field data for several days, but they do not match a gradual net increase over 

the time period. The mean absolute difference between the pC02 curves is ±70 jiatm (n -  

1383), a significant variation. Overall, modeled PAR (Section 3.2.2) works remarkably 

well in predicting community photosynthesis. Nightly increases as a result of respiration 

appear to remain relatively constant, however field pCOi flux indicates a decrease in the 

net loss of pCO]. Decreased photosynthesis or an additional source of CO2 can affect the 

same response. As mentioned, available PAR and river temperatures were similar for 1 

week at the beginning of the deployment period. Although, chlorophyll-6f concentrations 

change slightly (Figure 12), significant and rapid variations in metabolic rates are not 

expected. CaCOs precipitation is one possible source of CO2 and is discussed further in 

Section 5.2.3. Inaccuracies in modeled PAR are also a potential source of disagreement, 

however this would also affect the DO model and likely be constant. In comparisons 

with changes in field PCO2, this error would not result in a gradual divergence. The days 

following September 27 reveal effects fi-om biofouling and the model cannot predict 

these changes.

Field DO patterns do not vary greatly over the first half of the deployment period and 

modeling results are in strong agreement through the first 9 days (Figure 19). The mean 

absolute difference between the model and field changes in DO is ±0.48 mg DO L”' (n = 

1415). The success of the DO model strongly suggests that a process affecting the CO2 

system is not present in the CO2 model. Towards the end of the deployment period, as 

with pC02, DO field and model results deviate more significantly. At least part of this 

disagreement is suspected to be a result of instrument biofouling.
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Plots revealing modeled contributions from gas transfer, photosynthesis, and 

respiration are given in Figure 20. Each plotted point represents the mean effect over the 

entire travel time. For instance, as a modeled section of water travels from up to 

downstream, contributions from each process are calculated at every time step and stored 

for computation of the mean. It is apparent from the plots in Figure 20 that contributions 

from gas exchange are more important to DO than pCOi^ Surface O2 gas exchange is a 

major component opposing photosynthetic production of O2 (Figure 20b). In contrast, 

daily respiratory production of CO2 is more significant (Figure 20a). During the night, 

DO losses from respiration and gas transfer are comparable, with gas transfer effects 

gradually decreasing until just before sunrise as DO nears saturation. On this scale, 

respiratory changes in both O2 and CO2 appear constant, suggesting that temperature has 

a minimal short-term effect on respiration.

In Figure 21a, modeled changes in Kc and Ko are shown for the September 

deployment. The effect of diel and long-term temperature fluctuation is clearly visible.
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Figure 20: Modeled contributions from photosynthesis (black), respiration (red), and surface 
gas transfer (blue) during September 1999 (UTC). Molar effects on CO2 and O2 are shown in 
plots a and b, respectively.
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Figure 21: Modeled Kc (blue) and Kq (black) during September (a) and December (b) 1999 
(UTC). Variability is controlled solely by temperature.

5.2.2 December

Modeled changes in pCOi and DO are plotted with December field data in Figure 22. 

The seasonal differences between data in September and December are discussed in 

detail in Chapter 4, but briefly the winter temperatures and low PAR resulted in a 

substantial reduction in metabolic effects. Without varying either or a  used in 

September, the model predicts the lower photo synthetic rates based solely on the decrease
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in chlorophyll-a concentrations and irradiance in December. Changes in pCOi, as 

predicted by the model, agree relatively well with December field data. The mean 

absolute difference between field and modeled changes is ±20 patm (n = 1169). An over 

prediction of respiratory CO2 production is observed, but the overall pattern is consistent 

throughout the entire deployment period. A reduction in respiratory rates would increase 

agreement with in situ CO2 , but decrease agreement in DO modeling.

The DO model agrees well with December field data, with minor disagreement 

throughout the deployment period (Figure 22). Near the end of the winter study, modeled 

photosynthesis underestimates measured changes in DO. The mean absolute difference 

between the model predictions and field data is ±0.29 mg DO L*‘ (n = 1167), slightly 

better than the September model.

Modeled contributions fi*om gas exchange and metabolism are shown for December 

in Figure 23. Respiratory effects on DO are clearly negligible relative to the other 

processes. Surface gas transfer works against photosynthetic production of O2 , similar to 

September modeling results. DO is supersaturated throughout the deployment (Figure 

9a), so gas transfer is a sink for DO at all times. Figure 23a reveals that gas transfer is 

more significant in countering nightly production of CO2 than in September. In contrast 

to Figure 23b, respiration primarily opposes daytime consumption of CO2 rather than 

surface gas transfer.

The modeled fluctuation in Kc and Ko resulting fiom temperature changes is shown 

in Figure 21b. In contrast to the September model, long-term variation is more important 

than daily changes. Overall, December surface gas transfer velocities are smaller in
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contrast to September modeling. This is also observed when comparing the contribution 

plots between d^loyments.

5.2.3 Calcite cycling 

Contributions from precipitation and dissolution of CaCOs to pCOz variability were 

not quan#W dim:  ̂tW examination of modeled Q yields the only insight.
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Q was determined using Equation 3. Although Ca^^ concentration was not monitored 

during the deployment periods, a past record (1997) o f major ions yielded a mean 

concentration of 19 mg L ' [Mickey^ 1998]. Other reported major ion concentrations 

were also used to estimate ionic strength for calculation of activity coefficients. [CO3" ] 

was determined using in situpQO^ data and constants and equations in Table 3.2. During 

modeling of downstream gas concentrations, Q was output to a file. The results of the 

model indicate that at all times during both deployment periods the river was 

supersaturated in calcite (Q > 1) (Figure 24). Although this does not verify CaCOs 

precipitation, it is highly thermodynamically favorable in September, as Q increased to > 

4. Interestingly, downstream in situ pCOi data increase over several days during the 

period when Q reaches its greatest value (Figure 3a). Precipitation, and the subsequent 

release of CO2 , is a possible source of this pattern. Lacking more evidence during this 

period (e.g. Ca*  ̂ measurements), there can be no conclusion regarding the process’s 

affect on river pCOi.

Formation of CaCOs during December is also favorable, though to a lesser degree. 

For instance, Q < 3 during its highest value (Figure 24b). Effects from calcite cycling are 

not observed in December’s pCOi time-series because of the dominant metabolic pattern.
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Figure 24: Modeled calcite saturation ratio during September (a) and December (b) 1999. 
The dashed line at Q =  1 represents the partition between thermodynamic conditions favoring 
precipitation and dissolution of CaCÜ3.

5.2.4 E valuating  travel e rro r

Accurate travel time is imperative in the analysis of river data monitored at two 

locations. Since gas flux accuracy depends upon precise travel time, any rates 

determined from gas flux are similarly affected. As a result of relatively constant 

discharge during each study, the travel time was assumed to remain constant throughout



84

each deployment. A sensitivity analysis was performed in order to determine the effect 

o f travel time error. The difference in pCOi and DO flux between different travel times 

was examined. For instance, a 0.75 h error (-15%) in travel time yields a maximum 

absolute deviation of 1.47 mg L*‘ ADO between a travel time of 2.25 and 3 h. The same 

error in travel time yield’s a maximum difference of 194 patm in ApCOz (n = 2836). The 

maximum differences occur in the daylight periods when photosynthesis is the dominant 

process. This suggests that errors in metabolic and physical rates based upon daytime 

data will be more significant if travel time is inaccurate. Resolving a unique travel time 

everyday will achieve the greatest accuracy. If an average travel time is used for 

modeling long-term variability, uncertainty can result in significant errors in gas flux.

5.2.5 Longitudinal dispersion

The modeling assumption that longitudinal mixing is negligible has also been made 

by other researchers using the Odum method [e.g. Kelly et a l 1974b; Sitnonsen and 

Harremoes^ 1978; Gausch et al., 1998]. Differences in the hydraulic parameters of each 

study reach (especially length) make it difficult to assess the validity of this assumption. 

Day (1975) reports that effects from longitudinal dispersion are more significant with 

increasing reach length, suggesting that September data were likely more affected by 

dispersion than in December. September conductivity data cannot yield information on 

longitudinal effects because sensing conditions were not comparable (discussed in 

Section 4.6.1). Similar conductivity peaks in Figure 17a however, support the 

assumption that dispersion was negligible during December. Further investigation is 

needed to accurately determine the effects of longitudinal mixing on pCOj and DO 

variability in the Clark Fork River.
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5.3 Model evaluation summary

The pCOz and DO models prove to be valuable tools in assessing the relative 

contributions from surface gas transfer and metabolism in the Clark Fork River during 

deployments in 1999. Modeling is unable to accurately reproduce field measurements 

using estimated parameters, however the overall patterns of short-term and long-term 

variability are reproduced effectively. At least some of the disagreement is a result of 

measurement difficulties, however more knowledge of river biology and geochemistry 

(e.g. CaCOs) would certainly enhance the model’s efficacy. Likewise, more time-series 

of other important geochemical parameters (e.g. alkalinity) would increase the accuracy 

of the theoretical calculations.
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Chapter 6 

Conclusions

Time-series from in situ gas sensors have revealed the complex gas dynamics in a 

riverine environment. . Analyses indicate that diel fluxes in pC02 and DO are 

predominantly controlled by metabolism, with surface gas transfer exerting a significant 

effect during periods of supersaturation. Data analysis is simplified by using distributed 

in situ sensors since utilizing the difference between the two curves eliminates significant 

sources of variability upstream. The upstream diel pattern is shifted with respect to time, 

most likely as a result of the impoundment. Consequently, a single station analysis at this 

location would not yield accurate estimates of metabolic or physical rates. The Odum 

method’s advantage is clearly illustrated by comparing the complexity of the absolute and 

difference time-series’ (Figures 3, 4, 8 and 9). Furthermore, combining pCOj and DO 

data is clearly an effective tool, both for evaluating data quality, and for checking internal 

consistency between gas exchange and biological rate determination. Theoretical 

modeling compliments interpretations of in situ data, as well as providing a basis for 

future predictions.

The SAMI-CO2 proved to be an exceptional tool in the analysis of the dominant 

biogeochemical processes at work in the Clark Fork River. Its ability to monitor high- 

frequency in situ pCOj variability makes it a valuable resource for monitoring the CO2 

cycle. Much of the difficulty estimating biological and geochemical contributions to CO2 

flux arises when discrete sampling or incomplete data are utilized for analysis. In situ 

monitoring is crucial to understanding lotie system metabolism, as removing or 

disturbing community flora and fauna can change their natural response to variable
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conditions. Similarly, gas transfer or metabolic research conducted in experimental lotie 

systems may not accurately represent natural in situ processes. Data comparison between 

adjacent instruments revealed good precision and the instrument’s stability surpasses that 

o f pH electrodes often used to calculate pC02. The possible error associated with these 

methods can also result in erroneous predictions of metabolic rates. Much greater 

difficulty resolving the changes in pC02 would be expected if pH were relied upon for 

determination. Since the carbonate system is so important in riverine systems, the SAMI- 

CO2 has the potential to advance understanding of short-term biogeochemical 

interactions.

Despite limitations and simplifications, theoretical and empirical models are able to 

predict changes in / 7CO2 and DO over the reach quite well. Future studies with improved 

methodologies and models will continue to enhance our understanding of the processes 

that control biogenic gases in rivers.
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Appendix 1

Riverine pC02 model 
diffusion & metabolism 

River version 3.0 
Microsoft® QuickBASIC® 

Jason reynolds 
last modified 3/01

'» » » > t h i s  program models the effects of metabolism and surface gas transfer on 
'» » » > p C 0 2  in a flowing section o f water, the model is comprised of two tiers: 
' » » » > a )  one moving through the data measurement by measurement, and b) iterative 
'» > » » m o d e lin g  of the biological and physical effects over the travel reach

»SU B R O U rrN E S»

DECLARE SUB carbon (TNEW, PC02NEW, ALKNEW, TC02NEW)
DECLARE SUB diflftision (TNEW, PC02NEW, ALKNEW, TC02NEW) 
DECLARE SUB gas (TNEW, ALKNEW, TC02NEW, PC02NEW, OMEGA)

»D1M ENS10N VARIABLES»

DIM SHARED F AS DOUBLE, FPRIME AS DOUBLE
DIM SHARED dt AS SINGLE, d AS SINGLE, PC02SAT AS SINGLE
DIM SHARED ALKUP AS SINGLE, ALKDN AS SINGLE
DIM SHARED X AS INTEGER, KL AS INTEGER
DIM SHARED PARTM AS INTEGER, a AS SINGLE, flow AS INTEGER
DIM SHARED PHOTOS, MODELP, dTC02R, dTC02P, dTC02D
DIM SHARED ARRAY(1 TO 2000), ATMOS(l TO 2000), number%, hellgate%
DIM SHARED SMFTROL, SHIFT, ARRAY2(1 TO 2000), sun%, NUMERATOR
REDIM SHARED DIFF(1 TO 2000), FLD(1 TO 2000)
DIM SHARED YD, CALCIUM, C032, KSP 
DIM SHARED BETA, BETA2

included for troubleshooting only; comment out for proper fiinction 
CLOSE #1 : CLOSE #2: STOP

»E R R O R  T R A P «
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'note: will catch input past end of file error 
ON ERROR GOTO 999

»PARAM ETERS AND FILE INFORMATION«
'prints graphic 
11 CLS
COLORS, 8: CES

FOR M = 2 TO 78
LOCATE 1, M: PRINT CHR$(18)

NEXTM

'» » » » u s e r  screen information

LOCATE 3, 3: PRINT ".this model calculates the effects of metabolism, diffusion, &"

LOCATE 4, 4: PRINT "temperature fluctuation on river pC02"

LOCATE 7, 3: PRINT ".input data file must be comma or space delimited & formatted 
as:"
COLOR 6, 8

LOCATE 9, 3: PRINT CHR$(175); "year day(d), pC02(up, atm), temp(up, 
CHR$(248); "C), temp(down), alkalinity(up, mol/1)"

LOCATE 11,3: PRINT CHR$(175); "photosynthetic rates in mol C/l/h"
COLOR 10, 8

' » » » » u s e r  input (filenames)

LOCATE 14, 3: INPUT " enter field data filename (include path): (TESTALK.PRN) ", 
data$
IF data$ = "" THEN data$ = "TESTALK.PRN"

LOCATE 15, 3: INPUT ".enter full syntax for photosynthetic rate file: ", PHOTOS 
IF PHOTOS = "" THEN PHOTOS = "C:\QB45\PHOTO(S).PRN"

LOCATE 16, 3: INPUT ".enter full syntax for file with atmospheric pC02: ", ATMOS 
IF ATMOS = "" THEN ATMOS = "C:\QB45\ATMOS(s).PRN"

LOCATE 17, 3: INPUT ".enter full syntax for irradiance file: ", LIGHTS 
IF LIGHTS = "" THEN LIGHTS = "C:\QB45\LIGHT.PRN"

LOCATE 18, 3: INPUT ".enter file containing downstream pC02 data: ", feeldS
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IF feeldS = THEN feeldS = "FLDC02S.PRN"

LOCATE 25, 1: PRINT "Press any key to continue"

" » » » » w a i t s  for key press to continue 

DO: LOOP UNTIL INKEYS o  CLS

' » » » » s c r e e n  graphic

FOR M = 2 TO 79
LOCATE I, M: PRINT CHR$(18)

N EX TM

COLOR 11, 8
LOCATE 4, 5: PRINT ".enter the following to begin: "
COLOR 10, 8

' » » » » u s e r  input (storage filename, travel time, rates, depth)
'» » » » d e f a u l t  values set for September modeling

LOCATE 7, 5: INPUT ".save results to what filename? (DOODOO.DAT) ", savenameS 
IF savenameS = "" THEN savenameS = "DOODOO.DAT"

LOCATE 8, 5: INPUT ".travel time in hours? (4.25) ", tt 
IF tt = 0 THEN tt = 4.25

LOCATE 9, 5: INPUT ".how many iterations? (20) ", it 
IF it = 0 THEN it = 20 
COLOR 11, 8

LOCATE 11,5: PRINT ".enter metabolic and difiusional rates @ 20"; CHR$(248); "C" 
COLOR 10, 8

LOCATE 13, 5: INPUT ".respiration rate in mol C/l/h? {5.6e-6} ", R

LOCATE 14, 5: PRINT ".enter photorespiration constant, CHR$(225); ": (0 to omit) " 
LOCATE 14, 57: INPUT "", BETA

LOCATE 15, 5: INPUT ".gas transfer velocity for C02 in cm/h? (44) ", KL 
IF KL = 0 THEN KL = 15

LOCATE 17, 5: INPUT ".river depth in cm? (100)", d 
IF d = 0 THEN d = 100
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«PARAM ETER FOR UPDATING METABOLIC AND DIFFUSIONAL 
D A T A »

* » » » » t h i s  function calculates the "flow" parameter for determining the array 
'> » » » > lo c a t io n  (of light and photosynthesis) as the section of water travels over 
'» > » » > t h e  reach

dt = tt / it: flow = dt / .25

* > » » » >  <RETURN> continues; other key press returns to start

LOCATE 25, 5: INPUT ".press return to continue or enter any key to restart ", G$ 
IF G$ «  "" THEN 
GOTO 11 
END IF

» » > » > f i le n a m e  for storage of separate rate contributions 
LOGS = "CARBON.PRN"

CLS
COLOR 7, 8

» L O A D  PHOTOSYNTHESIS A R R A Y «
* » » > » in p u ts  photosynthetic rates into array for photo synthetic effects

OPEN PHOTOS FOR INPUT AS #1 
FOR number% = 1 TO 2000

INPUT #1, ARRAY(number%)
IF EOF(l) THEN EXIT FOR 

NEXT number%
CLOSE #1

» L O A D  ATMOSPHERIC pC02 A R R A Y «
'» » » » i n p u t s  atmospheric pC02 data into array for gas transfer calculations

OPEN ATMOS FOR INPUT AS #1 
FOR hellgate% = 1 TO 2000

INPUT #1, ATMOS(heUgate%)
IF EOF(l) THEN EXIT FOR 

NEXT heUgate%
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CLOSE #1

« G E T  FIELD IRRADIANCE D A T A »
'» » » » i n p u t s  PAR data into array for use with photorespiration model

OPEN LIGHTS FOR INPUT AS #1 
FOR sun% = 1 TO 2000’

INPUT #1, ARRAY2(sun%)
IF EOF(l) THEN EXIT FOR 

NEXT sun%
CLOSE #1

« G E T  DOWNSTREAM D A T A »
» » > » i n p u t s  field downstream data for statistical evaluation of model

OPEN feeldS FOR INPUT AS #5 
FOR X = 1 TO 2000

INPUT #5, FLD(X)
IF EOF(5) THEN EXIT FOR 

NEXTX 
CLOSE #5

» G E T  UPSTREAM FIELD D A T A «
OPEN dataS FOR INPUT AS #1

» » » > t i e r  1 modeling counter

SHIFTROL = 1

» » » > t i e r  1 modeling begins here 

DO
INPUT #1, YD, PC02UP, TUP, TDN 
INPUT #1, ALKUP

'» » » > c o m p u te  time and alkalinity steps
TSTP = (TDN - TUP) / (it - 1): ’ [not used] ALKSTP = (ALKDN - ALKUP) * .000001 / 
( it-1 )

’» » » > l o a d  initial values
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'» » » > c o n v e r t s  pC02 and ALK to proper units of microatm and microequ kg-1, 
respectively

TNEW = TUP: PC02NEW = PC02UP * .000001: ALKNEW = ALKUP * .000001

»ITERATIV E M O D E L «
'» » » > t i e r  2 begins here

'» » » > t i e r  2 counter

SHIFT = 0

'» » » > i te r a t iv e  loop 

FOR w = 1 TO it

'» » » > i n i t i a l  pC02 to DIG calculation

IF w = 1 THEN CALL carbon(TNEW, PC02NEW, ALKNEW, TC02NEW)

»M E T A B O L IS M «
* «photorespiration constants»

» » » » t h i s  function averages the previous 4 h PAR intensities for use in 
'> » > » » c a lc u la tin g  photo respiration; BETA is photorespiration constant

IF SHIFTROL > 20 THEN 
average% = SHIFTROL + SHIFT 
lave = 0
BETA2 = BETA

FO R U = 1 TO 20
lave = lave + ARRAY2(average%) 
average% = average% - 1 

NEXTU
lave = lave / 20

ELSE

BETA2 = 0 
END IF
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«R E S PIR A T IO N »
'» > » > m o d ified  Arrhenius coefficient for modeling temperature affects on respiration

THETA2= 1.045

RT = (R + (BETA2 * lave)) * (THETA2 ^ (TNEW - 20))

»PH O TO SY N TH ESIS«

'» > » » c o n t r o ls  shifting of photosynthesis file

PT = ARRAY(SfflFTROL + SHIFT)

'» > » » m e ta b o lic  contributions to change in DIG

dTC02R = RT * dt: dTC02P = PT * dt 
TC02NEW = TC02NEW + dTC02R + dTC02P

»  ALKALINITY CHANGE DUE TO METABOLISM« 
' » b ased  upon Redfield stoichiometry«

dALK = (dTC02R * (-18 / 106)) + (dTC02P * (1 8 / 106)) 
ALKNEW = ALKNEW + dALK

« p C 0 2  TO DIG, GAS TRANSFER EFFECTS, AND DIG TO p G 0 2 »

GALL gas(TNEW, ALKNEW, TG02NEW, PG02NEW, OMEGA)
GALL carbon(TNEW, PC02NEW, ALKNEW, TG02NEW)
GALL diffusion(TNEW, PG02NEW, ALKNEW, TG02NEW)
GALL gas(TNEW, ALKNEW, TG02NEW, PG02NEW, OMEGA)

« S A V E  DOWNSTREAM, SATURATION RATIO, AND CONTRIBUTION
D A T A »

IF w = it THEN
OPEN savenameS FOR APPEND AS #2
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WRITE #2, YD, PC02NEW 
CLOSE #2

OPEN "SALKY.PRN" FOR APPEND AS #69 
WRITE #69, YD, ALKNEW, ALKUP 
CLOSE #69

' «saturation ratio calculation info f ile »

OPEN "OMEGA.PRN" FOR APPEND AS #77 
PRINT #77, YD, OMEGA 
CLOSE #77 
END IF
OPEN LOGS FOR APPEND AS #3 
WRITE #3, YD, dTC02P, dTC02R, dTC02D 
CLOSE #3

'» > » » c h a n g e  temperature via temperature step [calculated by (tempdown- 
tempup)/travel time]

TNEW = TNEW + TSTP

«CONTROLS LONGITUDINAL CHANGE IN VARIABLES» 

SHIFT = SHIFT + flow

'» » » g r a p h ic  for modeling: blue screen during day; black during night

IF ARRAY2(SHIFTROL) > 0 THEN COLOR 10, 9: CLS 
IF ARRAY2(SHIFTROL) = 0 THEN COLOR 8, 8: CLS

’> » » > n e x t  step in tier 2 model 
> » » > t i e r  2 loop 
NEXT w

» M E A N  AND ABSOLUTE MEAN DIFFERENCE«  
'» » » s ta t i s t i c a l  calculation between field downstream data and model

DIFF(SmFTROL) = (PC02NEW  * 1000000!) - FLD(SHIFTROL)

'» > » > s te p s  tier 1 counter



102

SHIFTROL = SHIFTROL + 1

* » » » t i e r  I loop 
LOOP UNTIL EOF(l)

666 CLOSE #1

’> » » » a l e r t s  user that modeling is finished

COLOR 14, 8: CLS : LOCATE 13, 29: PRINT ".modeling complete"

'» » » > m o r e  statistical calculations

SUMMY = 0: ADDITUP -  0

> » » » s u m s  differences and absolute differences

FOR Z = 1 TO (SHIFTROL - 1)
SUMMY = DIFF(Z) + SUMMY 
ADDITUP = ABS(DIFF(Z)) + ADDITUP 

NEXTZ

'» » » > c o m p u te s  mean difference 

MEAN = SUMMY / (SHIFTROL - 1)

'» » » > c o m p u te s  absolute mean difference 

REALMEAN = ADDITUP / (SHIFTROL - 1)

NUMERATOR = 0

'» » » > s ta n d a r d  deviation firom mean

FOR V = 1 TO (SHIFTROL - 1)
NUMERATOR = ((DIFF(V) - MEAN) ^ 2) + NUMERATOR 

NEXT V

STD = SQR(NUMERATOR / (SHIFTROL - 2))

'» » » > p r i n t s  statistical information to screen 

COLOR 15, 8



103

LOCATE 15, 29: PRINT ".mean difference: ", MEAN
LOCATE 17, 31: PRINT ".absolute mean:", CHR$(241); REALMEAN
LOCATE 16, 26: PRINT ".standard deviation: ", STD

’» » » > c o n t in u e  with more modeling or stop

LOCATE 25, 1 : INPUT "Press return to restart or any key to stop ", STOPS
IF STOPS = "" THEN GOTO 11
CLS
END

»E R R O R  TRAP P A T H S «
999
IF ERR = 62 THEN RESUME 666 
PRINT ""
PRINT "quickbasic error code: "; ERR 
ERROR ERR

«R E F E R E N C E S »

Mihero, F.J., The thermodynamics o f the carbonate system in seawater, Geochim. 
Cosmochim. Acta, 43, 1651-1661, 1979.

Stumm, W. and Morgan, J. J., in Aquatic Chemistry, 3rd ed., John Wiley and Sons, 
Inc., New York, NY, 1996.

Weiss, R.F., Carbon dioxide in water and seawater: The solubility of a non-ideal 
gas. Marine Chemistry, 2, 203-215, 1974.
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SUB carbon (TNEW, PC02NEW, ALKNEW, TC02NEW)

»COM PUTES DIG FROM pC02NEW AND ALKNEW @ TNEW USING 
NEWTON’S M ETH O D «

'» » » > te m p e ra tu re

KELVIN = 273.15 + TNEW

'» » » > d is so c ia tio n  constant for water [Millero, 1979]

KW = 10 ^ ((-4470.99 / KELVIN) + 6.0875 - (.01706 * KELVIN))

'» » » > c o m b in e d  constant for C02 gas dissolution and carbonic acid formation 
[Weiss, 1974]

KO = EXP(-60.2409 + (93.4517 * (100 / KELVIN)) + (23.3585 * LOG(KELVIN / 100))) 

’» » » > d is s o c ia t io n  constant for carbonic acid [Millero, 1979]

K1 = 10 ^ (-((6320.81 / KELVIN) - 126.3405 + (19.568 * LOG(KELVIN)))) 

'» » » > d is so c ia tio n  constant for hydrogen carbonate [Millero, 1979]

K2 = 10 ^(-((5143.69/K ELV IN )-90.1833 + (14.613 * LOG(KELVIN)))) 

'» » » > f i r s t  estimate for hydrogen in Newton’s method 

KNEW = ALKNEW

«ITTERATION RO U TIN E»

DO
h = KNEW

F = (-h ^ 3) + ((KW + K1 * KO * PC02NEW) * h) + (2 * Kl * K2 * KO * PC02NEW) - 
(ALKNEW * h ^ 2)

FPRIME = (-3 * h ^ 2) + (KW) + (K1 * KO * PC02NEW) - (2 * ALKNEW * h)

IF h <= 0 THEN 
h = ALKNEW 
ELSE
KNEW = h - (F / FPRIME)
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END IF

LOOP UNTIL ABS(HNEW - h) < lE-13 

« N E W  D IC »

TC02NEW = KG * PC02NEW * (1 + (K1 / HNEW) + (K1 ♦ K2 / (HNEW ^ 2))) 

END SUB
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SUB diffusion (TNEW, PC02NEW, ALKNEW, TC02NEW)

*

»M O D ELS FOR GAS TRANSFER EFFECTS«

’» » » > te m p e ra tu re  correction o f KL using modified Arrhenius relationship 
■K = KL * (L0241 ^ (TNEW - 20)) '[NOT USED]

’» » » > te m p e ra tu re  correction of KL using schmidt numbers (equivalent)
K = KL / ((600 / (1911.1 .(118.11 * TNEW) + (3.4527 * (TNEW ^ 2)) - (.04132 
(TNEW ^ 3)))) ^ (-.5))

’» » » > te m p e ra tu re

KELVIN = TNEW + 273.15

» > » » s e e  CARBON SUBPROGRAM FOR REFERENCE INFORMATION

KO = EXP(-60.2409 + (93.4517 * (100 / KELVIN)) + (23.3585 * LOG(KELVIN / 100)))

'» » » > c o m p u te s  water-atmospheric pC02 gradient

PC02DEF = (ATMOS(SHIFTROL) * .000001) - PC02NEW

'» » » > c o m p u te s  change fi*om surface gas transfer

dTC02D = K * (PC02DEF) * KO * dt / d

'» » » > c o m p u te s  new DIC

TC02NEW = TC02NEW + dTC02D

END SUB
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SUB gas (TNEW, ALKNEW, TC02NEW, PC02NEW, OMEGA)

»COM PUTES pC02 FROM DIC AND ALKNEW @ TNEW USING NEWTON'S 
M ETH O D «
’ » n o te : accuracy of results depends greatly upon constants«
' » n o te : this model computes fiigacity NOT pC02, but the difference is assumed
negligible

'» » » > te m p e ra tu re  
KELVIN = 273.15 + TNEW

» » » > s e e  CARBON SUBPROGRAM for reference information

KW = 10 ^ ((-4470.99 / KELVIN) + 6.0875 - (.01706 * KELVIN))
KO = EXP(-60.2409 + (93.4517 * (100 / KELVIN)) + (23.3585 * LOG(KELVIN / 100))) 
K1 = 10 ^ (-((6320.81 / KELVIN) - 126.3405 + (19.568 * LOG(KELVIN))))
K2 = 10 ^ (-((5143.69/ KELVIN) - 90.1833 +(14.613 * LOG(KELVIN))))

'» » » > i n i t a l  estimate for hydrogen ion concentration

HNEW = TC02NEW

«ITERATION RO U TIN E»

DO
h = HNEW
F = h  ̂4 + ((ALKNEW + K l) * h  ̂3) + (((Kl * ALKNEW) - KW - (K1 * TC02NEW) 
+ (Kl * K2)) * h  ̂2) + (((Kl * K2 * ALKNEW) - (2 * Kl * K2 * TC02NEW) - (Kl * 
KW)) * HNEW) - (Kl * KW * K2)
FPRIME = (4 * h ^ 3) + (3 * (ALKNEW + K l) * h ^ 2) + (2 * ((Kl * ALKNEW) - KW - 
(Kl * TC02NEW) + (Kl * K2)) * h) + ((Kl * K2 * ALKNEW) - (2 * Kl * K2 * 
TC02NEW) - (Kl * KW))

IF h <= 0 THEN 
h = TC02NEW 
ELSE
HNEW = h - (F / FPRIME)
END IF

LOOP UNTIL ABS(HNEW - h) < lE-17

« N E W  p C 0 2 »
'» » » > c a lc u la te s  new pC02
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HC03 = TC02NEW * Kl ♦ HNEW / (HNEW ^ 2 + Kl * HNEW + Kl * K2) 
H2C03 = HNEW * HC03 / Kl 
PC02NEW = H2C03 / KO

«CA LCITE PRECIP IN F O »
'> » » » c a lc u la te s  saturation ration

C023 =K2 * HC03 / HNEW 
CALCIUM = .000475# *

'> » » » K S P :  calcite solubility, [Stumm and Morgan, 1996]

KSP -  10 ^ (-171.9065 - (.077993 * KELVIN) + (2839.319 / KELVIN) + ((71.595 * 
LOG(KELVIN) / LOG(IO))))

'» » » > a c t iv i ty  coefficients = 0.7; extended Debye-Huckel 

OMEGA = (CALCIUM * (.7) * C023 * (.7) / KSP)

END SUE
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Appendix 2

Riverine DO model 
diflRision & metabolism 

RiverDO version 3.0 
Microsoft® QuickBASIC® 

jason reynolds 
last modified 3/01

'» » » > t h i s  program models the effects of metabolism and surface gas transfer on 
'» » » > D O  in a flowing section of water, the model is comprised of two tiers: 
’» » » > a )  one moving through the data measurement by measurement, and b) iterative 
’» » » > m o d e l in g  of the biological and physical effects over the travel reach

»S U B R O U T IN E S«

DECLARE SUB diffusion (TNEW, DONEW)

»DIM ENSION VARIABLES«

DIM SHARED dt AS SINGLE, D AS SINGLE, DOSAT AS SINGLE
DIM SHARED X AS INTEGER, KL AS INTEGER, SHIFTROL AS INTEGER, param
AS INTEGER
DIM SHARED PARTM AS INTEGER, SHIFT AS INTEGER 
DIM SHARED PHOTOS, MODELP, dDOD, itTIME, A 
DIM SHARED ARRAY(1 TO 2000), ARRAY2(1 TO 2000)
DIM SHARED number%, sun%, lave, BETA, BETA2 
DIM SHARED R
REDIM SHARED DIFF(1 TO 2000), FLD(1 TO 2000)

'» » » > u s e d  for troubleshooting only; comment out

'CLOSE#!: STOP

»E R R O R  T R A P «
'» » » > w i l l  catch input past end of file error

ON ERROR GOTO 999

»PARAM ETERS AND FILE INFORMATION« 
'» » » > p r i n t  graphics
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11 CLS
COLOR 10, 8: CLS

FOR M = 2 TO 79
LOCATE 1, M: PRINT CHR$(18)

NEXTM  
COLOR 11, 8

'» » » > p r m t  user information

LOCATE 3, 3: PRINT ".this model calculates the effects of metabolism, difilision, and 
temperature"

LOCATE 4, 4: PRINT "fluctuation on river DO using upstream field measurements as 
initial values"
COLOR 10, 8

LOCATE 7, 3: PRINT ".input data file must be comma or space delimited & formatted 
as:"

LOCATE 9, 3: PRINT CHR$(175); "year day, DO(upstream, mg/L), temp(up,"; 
CHR$(248); "C), temp(down)"; CHR$(16); " field data file"

LOCATE 11,3: PRINT CHR$(175); "photosynthetic rates (mg DO/L/h)"; CHR$(16); " 
net production file"

LOCATE 13, 3: PRINT CHR$(175); "irradiance, ("; CHR$(230); "E/m"; CHR$(253); 
"/s)"; CHR$(16); " PAR file"
COLOR 7, 8

" > » » » u s e r  input (filenames)

LOCATE 15, 3: INPUT " enter field data filename (include path): (DO(S).PRN) ", data$ 
IF data$ = "" THEN dataS = "DO(S).pm"

LOCATE 16, 3: INPUT ".enter full syntax for photo synthetic rate file: ", PHOTOS

LOCATE 17, 3: INPUT " enter full syntax for field irradiance file: ", LIGHTS

LOCATE 18, 3: INPUT ".enter full syntax for downstream DO data: (DNDO(S).PRN) 
feeldS

«D EFA U LT V A LU ES»
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'» » » > c le fa u l ts  for September modeling

IF feeldS = THEN feeldS = "DNDO(S).PRN"
IF PHOTOS = "" THEN PHOTOS = "DOPHOTO.PRN"
IF LIGHTS = "" THEN LIGHTS = "LIGHT(S).PRN"

COLOR 10, 8

’» » » > k e y  press continues

LOCATE 25, 1 : PRINT "Press any key to continue"
DO: LOOP UNTIL INKEYS o  CLS

' » > » »  screen graphic

FOR M = 2 TO 79
LOCATE 1, M: PRINT CHR$(I8)

NEXTM  
COLOR 2, 8

" > » » » u s e r  input (filenames, travel time, constants, depth)

LOCATE 4, 5: PRINT ".enter the following to begin: "
COLOR 10, 8

LOCATE 7, 5: INPUT ".save results to what filename? (WAMPUM.DAT) ", savenameS 
IF savenameS -  "" THEN savenameS = "WAMPUM.DAT"

LOCATE 9, 5: INPUT ".travel time in hours? (4.25) ", tt 
IF tt -  0 THEN tt = 4.25

LOCATE 10, 5: INPUT ".how many iterations? (20) ", it 
IF it = 0 THEN it = 20 

COLOR 13, 8

LOCATE 12, 5: PRINT ".enter metabolic and divisional rates @ 20"; CHRS(248); "C" 
COLOR 2, 8

LOCATE 14, 5: INPUT ".respiration rate in mg DO/L/h {-0.084}? ", R

LOCATE 15, 5: PRINT ".enter value for photorespiration constant, CHRS(225); ": (0 
to omit) "

LOCATE 15, 64: INPUT "", BETA

LOCATE 16, 5: INPUT ".gas transfer velocity for 02  in cm/h? {47} ", KL
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IF KL = 0 THEN KL = 47

LOCATE 17, 5: INPUT ".river depth in cm? (100)", D 
IF D = 0 THEN D = 100

’>^^»>^com putes parameter for finding correct irradiance and photosynthesis during 
travel

dt = tt / it: param = dt / .25

'» » » > f i le n a m e  for data file storage of metabolism and gas transfer contributions

changes = "CHANGE.PRN"
COLOR 10, 8

'» > » » c o n t in u e  or return to start

LOCATE 19, 5: INPUT ".press return to continue or any key to restart ", g$
IF g$ o  "" THEN GOTO 11

« G E T  PHOTOSYNTHESIS R A T E S» 
> » » » s t o r e s  photosynthesis rates in array

OPEN PHOTOS FOR INPUT AS #1 
FOR number% = 1 TO 2000

INPUT #1, ARRAY(number%)
IF EOF(l) THEN EXIT FOR 

NEXT number%
CLOSE #1

« G E T  FIELD IRRADIANCE D A T A » 
’» » » » s t o r e s  PAR in array for use in photorespiration

OPEN LIGHTS FOR INPUT AS #1 
FOR sun% = 1 TO 2000

INPUT #1, ARRAY2(sun%)
IF EOF(l) THEN EXIT FOR 

NEXT sim%
CLOSE #1
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'» » » > a l e r t s  user that modeling is in progress

COLOR 14, 10: CLS
LOCATE 13, 35: PRINT ".modeling"
LOCATE 25, 1 : PRINT "Press any key to stop" 
COLOR 7, 8

»O B T A IN  UPSTREAM FIELD D A T A «

OPEN dataS FOR INPUT AS #1

t » » » t i e r  1 modeling counter

SHIFTROL = 1

'» > » » b e g i n  looping tier 1 
DO

" » » > » k e y  press ends modeling 

IF INKEYS o  "" THEN CLOSE #1 : GOTO 11 

'» > » » in it ia l iz e s  tier 2 parameter 

SHIFT = 0

’> » » » g e t s  field data 

INPUT #1, YD, DOUP, TUP, TDN

'» » > » c o m p u te s  temperature step 

TSTP = (TDN - TUP) / (it - 1) 

'» » » > s e t s  initial values for DO and temp 

TNEW = TUP: DONEW = DOUP
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«O B TA IN  DOWNSTREAM DATA (SHIFTED FOR TRAVEL T IM E )»

OPEN feeldS FOR INPUT AS #5

FOR X = 1 TO 2000 
INPUT #5, FLD(X)
IF EOF(5) THEN EXIT FOR 

NEXTX

CLOSE #5

' »M O D EL (tier 2 ) «
'> » » » s t a r t  iterative modeling

itTIME = YD

FOR W = 1 TO it

«PHOTORESPIRATION CONSTANTS»
'» » » > B E T A  determines maximum photo respiration 
'» > » » c o m p u te s  4 h light average in determining photorespiratory effect

IF SHIFTROL > 20 THEN
average% = SHIFTROL + SHIFT 
lave = 0
BETA2 = BETA 

FOR U = 1 TO 20
lave = lave + ARRAY2(average%) 
average% = average% - 1 

NEXTU
lave = lave / 20 

ELSE
BETA2 = 0 

END IF

«R E S PIR A T IO N » 
'» » » > m o d L fie d  Arrhenius coefficient
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THETA2= 1.045

RT = (R + (BETA2 * lave)) * (THETA2 '' (TNEW - 20))

'» » » > c o n t r o l s  shift of photosynthesis as H20 travels downstream

PT = ARRAY(SfflFTROL + SHIFT)

'» » » > m e ta b o lic  effects

dDOR = RT * dt 
dDOP = PT * dt

DONEW = DONEW + dDOR + dDOP

» G A S  TRANSFER« 

CALL diffusion(TNEW, DONEW)

«S A V E  D A T A »

IF W = it THEN
OPEN savenameS FOR APPEND AS #2 
WRITE #2, YD, DONEW 
CLOSE #2 

END IF

itTIME = itTIME + (dt * 60 / 1440)
OPEN changes FOR APPEND AS #3 
WRITE #3, YD, itTIME, dDOR, dDOP, dDOD 
CLOSE #3

’» » » > n e x t  iteration (tier 2)

TNEW = TNEW + TSTP 
SHIFT = SHIFT + param 
NEXT W

»M E A N  AND ABSOLUTE MEAN DIFFERENCE«
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'» » » > c o m p u te s  difference between field measurements and model 

DIFF(SfflFTROL) = (DONEW) - FLD(SfflFTROL)

'» » » > n e x t  upstream field data point

SHIFTROL = SHIFTROL + 1

'» » » > l o o p s  to next tier 1 step

LOOP UNTIL EOF(l)
666 CLOSE #1

» S T A T IS T IC S «

SUMMY = 0: ADDITUP = 0

’» » » > a d d s  real and absolute differences

FOR Z = 1 TO (SHIFTROL - 1)
SUMMY = DIFF(Z) + SUMMY 
ADDITUP = ABS(DIFF(Z)> + ADDITUP 

NEXTZ

'» » » > c o m p u te s  mean difference

MEAN = SUMMY / (SHIFTROL - 1)

’» » » > c o m p u te s  absolute difference

REALMEAN = ADDITUP / (SHIFTROL - 1)

'» > » » s ta n d a r d  deviation about mean

NUMERATOR = 0

FOR V = 1 TO (SHIFTROL - 1)
NUMERATOR = ((DIFF(V) - MEAN) ^ 2) + NUMERATOR 

NEXT V

STD = SQR(NUMERATOR / (SHIFTROL - 2))
COLOR 15, 8
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'» » » > a l e r t s  user that modeling is finished

COLOR 14, 10: CLS : LOCATE 13, 29: PRINT ".modeling complete"
COLOR 0, 10

'» > » » p r i n t s  statistics to screen

LOCATE 15, 29: PRINT ".mean difference: ", MEAN 
LOCATE 16, 26: PRINT ".standard deviation: ", STD 
LOCATE 17, 31: PRINT ".absolute mean:", CHR$(241); REALMEAN

'» » » > c o n t in u e  with modeling or end

LOCATE 25, 1: INPUT "Press return to restart or enter any key to end ", STOPS
IF STOPS = "" THEN GOTO 11
CLS
END

»E R R O R  TRAP P A T H S «
999

IF ERR = 62 THEN RESUME 666 
PRINT ""
PRINT "quickbasic error code: "; ERR 
ERROR ERR
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SUB diffusion (TNEW, DONEW)

»M O D E LS FOR GAS TRANSFER EFFE C T S«

'> » » » te m p e ra tu re  correction of KL using modified Arrhenius relationship 

'K = KL * (1.0241 ^ (TNEW - 20)) [NOT USED]

'» » » > te m p e ra tu re  correction of KL using schmidt numbers (equivalent)
K = KL / ((530 / (1800.6 - (120.1 ♦ TNEW) + (3.7818 * (TNEW ^ 2)) - (.047608 * 
(TNEW ^ 3)))) ^ (-.5))

'» » » > te m p e ra tu re

kelvin = TNEW + 273.15

’» » » > D O  saturation (empirical model from: Wetzel, R.G. and Likens, G.E., in 
'» » > » L im n o lo g ic a l Analyses, 2nd ed., pp. 391, Springer-Verlag, New York, NY, 
1991.

DOSAT = .89 * (EXP(7.7117 - (1.31403 * (LOG(TNEW + 45.93)))))

'» » » > c o m p u te s  gradient between air and water

DODEF = DOSAT - DONEW

'» » » > c o m p u te s  change due to gas transfer

dDOD = K *  (DODEF) * d t / D

'» » » > c o m p u te s  new DO

DONEW = DONEW + dDOD

END SUB
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