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Lynn, Robert W., M. A., December 2004 History

Death by Electrocution? The Chicago, Milwaukee, Saint Paul, and Pacific Railroad’s 
Choice of Electrical Motors over Steam Engines in Montana, 1914-1974

Chairperson: Michael Mayer

The Chicago, Milwaukee, Saint Paul, and Pacific Railroad stands as a unique example 
o f a western freight railroad that had electrical locomotives as its primary power source in 
the Rocky Mountains for over sixty years. This railroad suffered three bankruptcies in the 
same time period. Other railroads, ultimately more successful than the Milwaukee, 
utilized steam locomotives until this type of power became obsolete after the Second 
World War. One might conclude that the unusual choice of electrifying operations had 
something to do with the Milwaukee’s bankruptcies. This thesis argues that an electrical 
rail system was hardly a foolish economic and engineering choice at the time, especially 
in cold and mountainous terrain in which the Milwaukee operated, and compares the 
mechanical and economic performance of late steam technology and early electrical 
motor technology, both used by the Milwaukee.

The railroad’s choice of electrical power broaches several interesting points. Electrical, 
steam, and internal combustion power were in keen competition at the turn of the century. 
This competition was not exclusive to train locomotives. Cars, trucks, trolleys, and 
stationary powerplants were all available in a bewildering array of electrical, steam, and 
internal combustion versions. At least for train locomotives, electricity proved to be an 
efficient power source. The Milwaukee had electrical trains running by 1914, and for a 
short time this railroad possessed one of the most advanced transportation technology 
systems in the world.

Although the Milwaukee was ultimately an economic failure, the electrical trains it used 
played an important role in the development of diesel-electric technology, which 
dominates the American rail system today. Most modem diesel locomotives can trace 
their origins to purely electrical designs used by this railroad. Although this railroad had 
incurable financial problems, the electrical locomotives it used were an outstanding 
example o f early twentieth century ingenuity.
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Introduction

The history of the Chicago, Milwaukee and St. Paul Railroad’s tenure in Montana 

remains one of the more unusual tales in the nation’s transportation history. While the 

railroad’s finances were a dismal failure, its unusual system of direct-current powered 

locomotives running off of an overhead trolley wire was the world’s most advanced rail 

technology at the time of its installation. Despite predictions of a short life-span and 

advancing diesel technology, the Milwaukee system endured for seven decades.

This thesis examines the Milwaukee’s unusual choice to electrify over 400 miles 

of rail infrastructure in western Montana and northern Idaho, and the economic and 

mechanical implications of this choice.’ Most observers conclude that the huge cost of 

installing and maintaining this vast electrical infrastructure is what drove the railroad to 

three bankruptcies and permanent demise in the late 1970s. This was not the case. If 

anything, efficiencies attained by the electrical system prolonged the Milwaukee’s 

troubled existence.

Today, there is scant remaining physical evidence that such a railroad ever came 

through Montana, and what little evidence remains usually evokes a kind of pity and 

bemusement rather than any sense o f wonder. Most people now living in Missoula do not 

know that the city was once served by a second railroad as recently as 25 years ago. 

People stroll along the south bank o f the Clark Fork, ignorant of the fact that they tread 

on a right-of-way that once connected Chicago to Tacoma.

’Although the railroad also eventually electrified portions of the line in 
Washington state as well, the Montana electrification was larger and need dictated that 
the Montana electrification proceed first.

1
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More enduring is the Milwaukee’s technological legacy. The Milwaukee’s 

electrical fleet did not revolutionize rail transport (as the Milwaukee and GE had hoped it 

would), but it was a quantum improvement over steam and showed a surprising resilience 

in its competition with diesel technology. Although financially troubled, this railroad was 

once the pride o f the American electrical community and left a lasting technological 

legacy for the modem American rail system. The now ubiquitous diesel-electric 

locomotive can trace its roots to the electric locomotives chosen by the Milwaukee in 

1914.

Chapter One, “A Brief Operational History of the Milwaukee,” deals examines the 

railroad’s general problems both before and after electrification and its attempts to solve 

these problems. Although this is primarily a technological history, the Milwaukee’s 

corporate history is relevant because economic and business factors shaped technological 

decisions. Consequently, this first section provides a general background of the railroad’s 

troubled history, and offers a cursory examination of the Milwaukee’s various financial 

crises, which show quite clearly that the expense of electrification was not the railroad’s 

main problem. Rather, the bankruptcies resulted fi-om the Milwaukee’s relatively late 

decision to compete as a true transcontinental line. The company’s late entrance meant a 

poorer route and a lack o f fi*ee land, two advantages enjoyed by the older 

transcontinentals. This first chapter also looks at the general rail operating conditions in 

Montana and briefly introduces the electrical locomotives and power system that the 

locomotives used.

Chapter Two, “Engines and the Limits of Steam,” describes the development of
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the conventional steam locomotive, a technology that, while showing remarkable 

improvements in performance, remained fundamentally the same for 130 years. The story 

of the Milwaukee’s opting for electrification is in large part the story of steam’s decline in 

the face Of competing technologies, as well as the increasing physical and financial 

constraints imposed on steam in the early years of the twentieth century. The final years 

of steam consisted of a series of refinements, and this work will examine some of the last 

attempts to improve the efficiency and performance of steam locomotives, such as 

streamlining, altering fuel, superheating, and other design modifications. Late steam’s 

overall performance when compared to even the most primitive electric motors reveals 

the superior efficiency of the latter.

Chapter Three, “Motors,” chronicles the development of commercially viable 

electrical power in mechanical form. Like the work of Isaac Newton, who once stated 

that he owed his brilliant career to standing on the shoulders of the giants who came 

before him, engineers working with the Milwaukee did not “invent” this technology. The 

electrical locomotives and all of their attendant infrastructure owed their collective 

existence to a number of gifted nineteenth century scientists and inventors, such as the 

famed Michael Faraday, Thomas Edison, and Nikola Tesla, as well as lesser known 

figures such as Frank Sprague and George Westinghouse. One of these five men 

developed virtually all of the components that the railroad used, such as such as high 

voltage transmission lines, alternating current transformers, generator sets, and the motors 

used for the locomotives themselves. The story o f the Milwaukee’s technology, therefore, 

is as much about the rise and eventual triumph o f electrical technology in the late
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nineteenth and early twentieth centuries as it is about the decline of steam power. How 

these early electric locomotives were operated is of additional interest, and this work will 

examine the four types of locomotives used by the Milwaukee in some detail.

Finally, this work deals with the first electrical system’s ultimate replacement by 

the modem diesel electric locomotive. If the Milwaukee’s motors could not exist without 

the work of the men mentioned above, it held equally true that the modem diesel could 

not exist without the pioneering work done by General Electric and Westinghouse on all 

o f the Milwaukee’s straight electric locomotives. Diesel performance has undeniably 

improved since the Second World War, but all of the basic design templates of the 

modem diesel - electric stemmed from work in trolley-type electrical traction from 1900- 

1920 — the era within which the

Milwaukee sponsored the development o f the most advanced rail system in the world. 

Although railroad technology advanced in the twentieth century, the industry itself 

declined. Accordingly, this thesis examines the rise of the modem American highway 

system and other trends deleterious to the American rail industry, particularly as these 

developments affected the Milwaukee.

To highlight the efficiencies o f electrical motors versus engines, this work also 

examines advances in non-railroad technologies as well, such as powerplants for cars, 

boats, and airplanes. These examples highlight the advantages and disadvantages of 

competing technologies, and show that the choice Milwaukee officials made to electrify 

the Montana section of its line made technology and economic sense at the time. There 

was no one perfect solution for train locomotion in 1915, so any choice the Milwaukee
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made had potential liabilities as well as benefits. Other large corporations faced similarly 

fateful technological choices, such as Henry Ford’s decision to go with a gasoline 

powerplant for his Model T rather than a steam or electrical one. The Milwaukee’ choice 

to electrify and Ford’s choice of a gasoline engine each had advantages and 

disadvantages. In the case of Ford, he made the right choice. For every success story, 

however, there was at least one cautionary tale where a company made the wrong 

decision. The choice of a given technological system was not determined by purely 

technical factors; financial, cultural, and human factors (such as greed, intellectual or 

physical laziness, or pridefiilness in one own’s creations) have also played some 

surprising roles.

Finally, this thesis relates the history of the Milwaukee line to the secondary 

literature on the history of technology. Themes such as sea-change transitions from one 

technological system to another, how human and economic factors influence technology, 

and how technological icons such as Thomas Edison have fared at the hands of historians 

are but a few examples of the wide variety of writings that have been produced in this 

field. The Milwaukee’s sundry choices and their consequences exemplify much of what 

scholars of technology have often said about electricity’s larger impacts on American 

society in the twentieth century. The railroad was indeed a failure, but its pioneering 

work with electricity was a significant technological success story. Here, then, is that 

story.
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Chapter I. A Brief Operational History of the Milwaukee

The Chicago, Milwaukee and St. Paul Railroad ultimately failed. Although many 

American railroads have failed, the Milwaukee was unique in that several hundred miles 

of its rail operations were electrified beginning in 1914.^ The railroad’s decision to 

electrify part of its line was unusual at the time. In pre-World War I America, opting for 

such an unproven system was quite bold, especially considering the line’s location. 

Electric operations were considered best suited to heavily populated, high-traffic 

situations. A western, low-traffic railroad, such as the Milwaukee, seemed an unlikely 

candidate for such an experimental and costly project. One might reasonably conclude 

that the railroad’s unusual technological path caused its eventual failure. Was the 

electrification an exercise in pursuing a false economy? The short answer is no. 

Electrification of the Chicago, Milwaukee, and Saint Paul Railroad’s line through 

Montana, begun in 1914, possessed economic and mechanical efficiencies that it a more 

reasonable choice than other forms of motive power available at the time.^

In the early twentieth century, railroads had an increasing number of options for 

powering their locomotives. Each of these options had both costs and benefits. The 

Milwaukee Road, like many other American railroads from 1900-1980, utilized a variety

^Like many other railroads, the Milwaukee underwent several name changes over 
time. It changed from the Chicago, Milwaukee, St. Paul and Pacific to the Milwaukee 
Road after its second bankruptcy in 1945. Earlier works refer to the railroad as the “St. 
Paul,” but after World War II, “Milwaukee” was more often used. In the interests of 
clarity, “Milwaukee” will be used throughout this work.

^Foreword by Jon A. Eliot, “Lie o f the Century, A.K.A ‘The Great Mistake,’” 
from Thomas H. Ploss, The Nation Pays Again: The Demise o f  the Milwaukee Road: 
1928 - 1986 (San Marino, California: Self Published, 1991.),v, vi.

6
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of available traction power. Like all of the other railroads operating in the United States, 

the Milwaukee’s management attempted to weigh, to a very fine measure, which 

combination o f power and cargo was the most profitable. The Milwaukee’s choice to 

electrify the Montana section of its nascent transcontinental line proved both 

economically and mechanically efficient.

While not an eighth wonder of the world, the electrified system in place by 1916 

remains an impressive engineering feat to this day. The Milwaukee’s electric 

locomotives, for a time, bisected some four-hundred thirty-four miles of some of North 

Americas’s worst terrain, and were far more efficient and cost-effective than any steam 

fleet then available. For a few shining years, this line was the most modem rail system in 

the world. The only other major American electrification project on this scale was the 

Pennsylvania Railroad, and the Penn’s layout in time, money, and material ultimately 

dwarfed the Milwaukee’s. While the Milwaukee had fewer assets than the Penn, the size 

and difficulty of electrifying the area which the Milwaukee traversed electrically was 

more challenging.

Many historians consider electrification to be the watershed event in the social 

history of the United States. Much has been written about the early “luxury 

electrifications,’’ such as J. P. Morgan’s Residence in Manhattan.'^ Such installations 

were undoubtedly high profile, little islands of modernity and made electrical pioneers 

such as Thomas Edison wealthy and famous. But the long-term trend was toward grittier.

^Jill Jonnes, Empires o f  Light: Edison, Tesla, Westinghouse and the Race to 
Electrify the World (New York: Random House, 2003), 107.
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more mundane applications that improved transportation, basic industrial lighting and 

power, and water pumping for those without the financial wherewithal of individuals 

such as Morgan. Railroads’ use o f electricity exemplifies the heavy industrial application 

of this power source.

During the nineteenth century, there was a clear distinction between passenger 

trains and freight trains. Passenger trains were light; freight trains were heavy. By the turn 

of the century, however, passenger trains gained weight because safety legislation 

mandated the fortification of train cars. By 1910 a fifteen-car passenger train, up to code, 

weighed a hefty 1,000 tons.^ The diminishing physical distinction between freight and 

passenger traffic also reflected economic needs. A railroad could haul fewer long trains 

less often than several short trains in order to compete effectively. The logic was 

straightforward; since a greater number of passengers or a greater amount of freight could 

go on fewer trains, fuel and water costs went down, the per-trip cost dipped, and the 

railroad could pass savings on to the customer. Passenger service, with fast state-of-the- 

art locomotives, spotless, well-appointed cars, and more punctual schedules, certainly 

constituted a lucrative and image-enhancing endeavor in its own way.

The bulk of money to be made, however, was, and remains, in hauling freight. 

Regardless of the class of payload that a railroad line carried by the turn of the century, 

every line faced the problem of pulling increasingly heavy trains. Bigger trains meant 

increasing economies of scale in a brutally competitive market. However, this

^Robert L. Frey and Lorenz P. Schenk, Northern Pacific Supersteam Era: 1925- 
1945 (San Marino, California: Golden West Publishing, 2000), 78.

8
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necessitated more powerful locomotives. The technical problems imposed by this race for 

ever-bigger trains was especially acute for railroads that had to contend with mountainous 

terrain, either the Appalachians in the East, or the sundry mountain ranges in the West.

The Milwaukee’s choice of motive power for its transcontinental expansion 

provides a grand example of electricity’s wholesale insinuation into American society and 

commerce at the turn of the last century. Alone among the large American 

transcontinental freight lines, this company made a conscious, long-term commitment to 

electrical power, rather than utilizing electrical traction as an ad hoc solution to a specific 

operational problem, such as a lengthy tunnel.^ The Milwaukee made a deliberate 

decision to utilize electrical traction when other, ultimately more successful, railroads 

continued using steam until diesel-electrics became a practical option.

The electrical system the Milwaukee had in place by 1916, consisting of General 

Electric and Westinghouse locomotives, substations and overhead trolley wires, appears 

antiquated to the modem observer when compared to modem conveyances. Moreover, 

electric trains are most often associated with hauling passengers in urban settings, not 

long-haul freight traffic in the westem United States. Most disinterested observers, upon 

hearing that freight trains operated on over 400 miles of electric trolley wire for over 70 

years in Montana, doubt the wisdom of such a plan.’ This system that the Milwaukee

*The longest electrification project undertaken prior to GE’s Milwaukee project 
was 160 miles in length, and most trolleys installed were for smoke reduction in tunnels 
and heavily urbanized areas. Noel T. Holley, The Milwaukee Electrics: An Inside Look 
at Locomotives and Railroading Edmonds, Washington: Hudman Publishing, 1999), 210.

’This skepticism is valid, because if  electrification was such an efficient option, 
the major lines would have utilized this form o f traction much more often when the
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installed, however, was a quantum advance in motive power over existing steam 

locomotion, especially in the cold, mountainous environment in which the railroad 

operated.® For one, motors were more efficient in fuel consumption, since they ran on 

“white coal” - hydroelectric power - rather than conventional black coal for a steam 

engine. Motors were also cleaner, quieter, and hauled more tonnage at higher speeds. 

Additionally, motors were much simpler mechanically, and had few of the maintenance 

problems that plagued steam locomotives. Finally, the Milwaukee was able to use its

technology became available after 1910. Instead we see a virtual absence of this form of 
locomotion in American railroading, especially in the westem United States. Most 
assessments of the Milwaukee’s choice of electrics in such a remote, rugged, and sparsely 
populated setting note the unusual nature of such a choice. From “Those Classic Trains: 
Milwaukee Road Electrification,” available online at
http://www.northeast.railfan.net/classic/MILWdage5.html. “[The] Milwaukee’s 
electrification is something of an odd fish. Unlike the two other major electrified systems 
(PRR and New Haven), the Milwaukee is a long haul route through rugged, thinly settled 
country to the northwest.”

®Two key problems for the railroad, ironically, were fire and ice. In 1910, cinders 
from a Milwaukee steam locomotive started a major forest fire in northern Idaho and 
northwestern Montana. This fire caused considerable loss of life and destroyed several 
hundred thousand acres o f merchantable timber, as well as 16 of the Milwaukee’s 
wooden trestle bridges. The railroad was not held in any way liable for the fire. 
Nonetheless, the conflagration did little to enhance its public image. Although 1910 was a 
particularly bad fire year, similar episodes were always a possibility with steam engines. 
August Derleth, Milwaukee Road: Its First Hundred Years (New York: Creative Age 
Press, 1948), 193-94 and George Abdill, This Was Railroading, 166. The winter months 
posed no danger of fires, but subzero weather substantially curtailed any steam 
locomotive’s power. Trolley-powered motor performance actually improved in colder 
weather. This was especially evident in the Milwaukee’s “Rotary” snow plows used on 
the heavy, wet snow that fell in the Cascades. The rotaries were converted from steam to 
electrical power beginning in the 1950s. Their superior performance compared to 
existing steam plows was evident in a bad snowstorm of February 1954. A single 
electrical rotary operating in the Cascades effectively kept the track clear for the nine days 
that the storm lasted. Two of the three steam plows operating in the Bitteroots (where the 
snow was substantially lighter) failed during the same storm. Holley, The Milwaukee 
Electrics, 154. For more on cold weather performance, see the “Motors” chapter below.

10
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trains as generators and to use the power either to propel another train or to “give” it back 

to Montana Power.’ In all of these ways, electrical power had mechanical advantages 

over the mountainous stretch of terrain through Montana.'® Because of these efficiencies, 

the overbuilt, primitive motors of 1914 were still more advanced in terms of performance 

than the much touted “super” steam locomotives pressed into service during the Second 

World War.

Mechanical efficiencies gained through electrification enable the railroad to 

operate at a lower cost in the Rockies. For example, electrification achieved significant 

savings, according to the Milwaukee’s own figures -  almost $12 million in the Rocky

’Bill Wilkerson, Milwaukee Road EF-4 Locomotives (Harlowtown, Montana: 
Times Clarion Press, 1998), 18. A more technical description of regeneration follows in 
the chapter on motors. From a financial and regulatory viewpoint, accounts of the 
situation that developed with Montana Power (MPC) owing to regeneration are at best 
muddled, and the author has yet to find a satisfactory explanation for this particular 
arrangement between the two entities. While not as transparently corrupt as the worst 
rebating abuses of the major railroads that precipitated the Interstate Commerce 
Commission (ICC) in 1887, the financial aspects were doubtless contrived to be as 
convoluted as possible, with the intention of bewildering the most diligent muckraker or 
ICC auditor. Some sources, such as Noel Holley’s The Milwaukee Electrics, 160, indicate 
that regenerated power not used for any nearby locomotive was sold back to MPC; others 
indicate that minimum purchase agreements precluded MPC from buying back any power 
or issuing a rebate. To date, no one has cared enough about the matter to explore the 
distinction. Rebates aside, the Milwaukee accrued massive savings in wheels, brake 
shoes, hydraulic line, and skilled labor by dispensing with conventional braking methods 
at all but the mildest conditions (under 3 miles per hour on a level grade).

'"Interestingly, a significant portion of the railroad in eastern Washington was not 
electrified, presumably because the Milwaukee lacked funds to install electrical 
infrastructure all the way from Harlowtown to Tacoma. It is somewhat telling that the 
non-eiectrified “gap” from Avery, Idaho to Othello, Washington covered very flat terrain 
similar to that found east of Harlowtown. In other words, the Milwaukee applied the 
electrification where it was needed most, in the Rocky and Cascade Mountains. This 
thesis deals mainly with the Montana electrification, since it was more substantial in 
length and went in earlier than the electrical infrastructure in Washington.

11
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Mountain Division for the eight year period between 1916 and 1924, or over a million a 

year on average." Furthermore, in its 1928 investigation of the Milwaukee’s finances, 

the ICC concluded that the “aggregate cost of operating those division by means of 

electricity has been much less than the cost of operating those three divisions by means of 

the older type o f steam locomotives would have been.”*̂

The ultimate failure of the line, therefore, resulted not from the company’s choice 

to electrify its Rocky Mountain Division, but rather from its choice to construct a 

transcontinental expansion in the first place. Additionally, crushing debt, questionable 

management, changing economic and transportation trends, and overtly hostile 

competition from rival transcontinental lines in the region also contributed to the 

railroad’s multiple bankruptcies. Much o f the problem with the Milwaukee’s expansion 

lay with its timing, and also with the fact that it was an entirely different species of 

railroad when compared to the other transcontinental lines. It was the last of the 

transcontinental expansions in American railroad history, and the Milwaukee’s early 

growth was, in general, less spectacular and more risk-averse than the other 

transcontinentals.

Unlike the Union Pacific or Northern Pacific, the Milwaukee was originally a 

“granger” railroad, one with a preponderance of regional, farm-to-market traffic, in this

"Interstate Commerce Commission, Investigation Number 17021, 651. 

‘̂ Interstate Commerce Commission, Investigation Number 17021, 652.

12
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case centered in the Upper Midwest.’̂  Ostensibly, the Milwaukee’s first and foremost 

customers were the farmers, and the railroad had their interests closer to heart than the 

larger national lines, which farmers accused of predatory business practices. The other 

defining feature of a granger line was extensive installation of secondary track. Opposed 

to “trunk lines,” secondary track covered Midwestern farm territory and made it possible 

for remotely situated graingrowers to get their products to markets in Chicago and all 

points east. This arrangement of track was common before the construction of decent 

farm-to-market roads resulting from the 1916 Federal Aid Road Act and the 1921 Federal 

Highway Act.'^ A brief glance at a track map of the Milwaukee’s Midwest operations 

verifies the pattern of secondary track. No unbending law of economics stated that 

granger lines could not attempt transcontinental expansion, but the Milwaukee would 

have done well to rethink its strategy in this case. As a late comer, the Milwaukee could 

not effectively compete with long-established continental lines.

The northwestern expansion forced the railroad to take on too substantial of a 

debt. Before the expansion, the company had a sound financial record. In 1905, for 

example, the line earned its interest requirements three times over, even after paying

'^Ripley, Railroads^ 214. Granger lines were generally much less heavily 
capitalized than the eastern “Trunk” lines. The pre-expansion Milwaukee was no 
exception, rated at $30,800 per mile in 1906. By way of contrast, the Reading and Erie 
Lines -  which both had double track — were listed at $169,000 per mile in the same year.

•'‘Eric Foner and John A. Garraty, (Editors), The Reader's Companion to 
American History (New York: Houghton Mifflin, 1991), 65.
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dividends.'® During the years of the railroad’s transcontinental bid for greatness, the 

company’s debt roughly tripled.*^ Similarly alarming figures exist for the long-term debt 

from 1905 to 1925, which nearly quadrupled from $115 million to $440 million. Equally 

important, the nature of the debt posed particular problems. The ratio of stock to funded 

debt in the company was roughly fifty-fifty in 1905. By 1925, stock represented roughly 

a third o f the Milwaukee’s wealth, a perilously low figure when compared to healthier 

contemporary competitors.'^ Such figures, naturally, depressed the price of the stock 

itself, and the railroad found itself caught in a downward spiral, constantly having to 

borrow more and more money.

Part of the problem was that company officials grossly underestimated the cost 

o f expansion. For example, the Milwaukee’s President, Albert J. Earling, had originally 

projected expansion costs of roughly $60 million at the most, a substantial sum in 1911. 

Final costs, however, amounted to a staggering $256,968,126, although some disputed 

this as inflated.'* Interest payments on bonds that the Milwaukee was forced to sell over

*®By way of contrast, the Milwaukee did not issue a single dividend from 1917 to 
the 1925 bankruptcy. Interstate Commerce Commission, Investigation Number 17021, 
Investigation o f  the Chicago, Milwaukee & St. Paul Railway Company (Washington, D.
C. : Government Printing Office, 1928), 618, 626.

'^“Funded debt issued in hands of public” stood at $122,256,000 in 1900, and was 
$356,157,000 by 1915. Derleth, The Milwaukee Road, 306. The Interstate Commerce 
Commission’s examination of the Milwaukee’s first bankruptcy draws similar 
conclusions (see below).

’’The Hill Lines’ capitalization was all well over 50 percent company stock in the 
1920s. Interstate Conunerce Commission, Investigation Number 17021, 626.

'*Ripley, Railroads, Finance and Organization, 37. Ripley argued that the total 
debt was inflated by approximately $100 million in order to conform to Washington State

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the years constantly ate into the bottom line.*’

Opting for electrification was an incidental expense of the decision to expand to 

the Pacific.^’ Only $22,990,254 of this total went for electrification. A significant sum, 

but still less than 10% of the total expense. Furthermore, if one considers what was 

gained in terms of performance, it seems a bargain.^* Schedules tightened up 

considerably, and electrical operating costs were only 54 percent of pre-electric levels. A 

corporate report in 1925 pegged annual savings from electrification, after bond and 

interest payments, at one million dollars.^^ As will be seen in the second and third 

chapters which compare these two technologies in depth, electrical traction was clearly 

superior to the contemporary technology, steam.

One of the problems of the debt incurred by the Milwaukee was the way in which 

it financed expansion. Fundamentally, there are two ways to finance a railroad’s

Laws on bond sales. Essentially, something had to be added to the property investment 
side of the company’s ledger in order to balance the total long term obligation of the 
company. Also, Washington State laws mandated that bonds could only be sold up to a 
level o f double a company’s stock capitalization.

'’Holley, The Milwaukee Electrics, 210.

’̂Although it is true that electrification could be more easily justified for heavier 
traffic lines, such as the Pennsylvania. See Alboro Martin, Enterprise Denied: Origins o f  
the Decline o f  the American Railroad. 1897-1817 (New York: Columbia University 
Press, 1971), 67.

^'August Derleth, The Milwaukee Road: Its First Hundred Years (New York: 
Creative Age Press, 1948), is considered the definitive account of the railroad’s finances 
and corporate operations up to 1950. See 198-99.

^^Holley, The Milwaukee Electrics, 210.
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expansion: sales of company stock and sales of bonds.^^ In order to sell stock, the 

preferred method, a railroad required a good deal of genuine confidence in any proposed 

expansions. If the company’s confidence faltered, there remained little chance that 

investors would purchase a share of such an enterprise. Realistically, however, a railroad 

depended on the flintier outlook of American and British bankers, and this meant bond 

sales. Alboro Martin, an expert on regulatory and financial practices in the Progressive 

era, explains the increased prevalence of bond-based financing at the turn of the century:

The relatively small proportion of the nation’s wealth which was invested in 
exchange-listed corporate enterprises was overwhelmingly concentrated in 
railroads and the industrial enterprises which had grown up to supply the steel and 
the rapidly growing variety o f equipment and mechanical devices which they 
required. In its monthly summary of stock price movements, the authoritative 
Commercial and Financial Chronicle listed thirty-eight railroad stock and twenty- 
two “miscellaneous” stocks. O f the latter group, three were municipal railways 
and the majority were dependent to a considerable degree on purchases by 
railroads. The few pages of stock prices, however, were preceded by page after 
page of bond prices, for debt securities still dominated equities in the nation’s 
financial center. And most o f these bonds were railroad issues. '̂*

Although all o f the more successful railroads were rapidly expanding in the first

^^Until the mid-nineteenth century, common stock sales were the dominant 
method of financing a railroad’s expansion. Bonds became more and more prevalent as 
the century progressed. Alfred D. Chandler, Jr. “Patterns of American Railroad Finance 
1830-1850,” 28 Business History Review 261 (1954).

This work is a severe, yet erudite, critique of Progressivism’s dilatory effects on 
the railroads. Martin holds that the rail companies were over-regulated, and that the long 
term development of rail technology that would have made the rail system more 
competitive with the nascent (but booming) network of American highways was 
systemically stunted by the government. Regulation, or a lack of it, remained a key factor 
in transportation in this period. Alboro Martin, Enterprise Denied: Origins o f the Decline 
o f  the American Railroad, 1897-1917. (New York: Columbia University Press, 1971),
97.
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ten years of the twentieth century, the Chicago, Milwaukee, and St. Paul was thinking 

especially big: a 1700-mile expansion from its then western terminus in western South 

Dakota to Tacoma. This obviously would require borrowing money, and many of the 

bonds sold by the railroad’s financial agents would ultimately have European buyers. For 

example, Kuhn, Loeb, and Company negotiated a 1910 sale of $50 million worth of 

Milwaukee construction bonds to a group of French banks.^^ With such a far-flung array 

of absentee investors and money handlers, none of whom were particularly interested in 

the daily affairs of a remotely situated American rail-line, the potential for questionable 

decisions rose sharply.

Indeed, the Milwaukee’s management made a series of poor decisions that 

contributed to the railroad’s financial woes. For example, the railroad overstated its 

income by five million dollars in 1910. The company did so in order to inflate the price 

of the stock. Essentially the company classified all interest, rents, and revenues resulting 

from construction as income -  a highly dubious practice, but one that temporarily 

bolstered stock p r i c e s . T h i s  type of scheme informed the Milwaukee’s finances to an 

alarming degree.

The company’s decision to undertake the expansion was a reflection of this bad

Enterprise Denied, 134.

^^William Zebina Ripley, Railroads: Finance and Organization. (London: Long, 
Green and Company, 1915), 23, 214. Ripley was the Nathaniel Ropes Professor of 
Economics at Harvard University, and in Alboro Martin’s view, epitomized the well- 
meaning but misguided proponent o f heavy federal regulation of the railroads. The 
company’s stock rose from $113 to $133 a share in the 1909-1910 period, but the effect 
was temporary, and the stock fell well below $113 by 1912.
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management. In 1928, the Interstate Commerce Commission examined the Milwaukee’s 

operations up to the first bankruptcy o f 1925.^’ This document examined the Puget 

Sound Extension, electrification, and the railroad’s finances. In the report, the ICC 

concluded that the Milwaukee’s management developed the transcontinental expansion 

not because traffic surveys indicated another line was needed, but rather in response to 

maneuvers by both the Hill (Great Northern and Northern Pacific) and Harriman (Union 

Pacific, et al) lines.^* The project, which moved both freight and passengers by 1909, 

represented 37 percent of the entire railroad’s property investment, but continually turned 

in dismal returns considering the monetary layout. Returns were less than one half of one 

percent as late as 1925.^^ Simply put, hoped-for traffic never developed. The Board 

wrongly assumed that the Milwaukee could make good any cost overruns, and that the 

expansion would bring about the same spectacular early growth of the older railroads. 

The twentieth century railroad industry was much more static than it had been in the 

nineteenth. As a result, the railroad did experience the expected spectacular growth. 

Being twenty-five years behind the other transcontinental lines put the Milwaukee at a

’̂The bankruptcies attracted additional attention as well. Attorney Max 
Lowenthal’s best-selling expose of the Milwaukee’s 1930s bankruptcy and 
reorganization, The Investor Pays (New York: Alfred A. Knopf, 1933), was especially 
damning.

^^Interstate Commerce Commission, Investigation Number 17021, Investigation o f  
the Chicago, Milwaukee & St. Paul Railway Company, 618.

Although all major railroads in this era suffered from similarly low returns. The 
key difference is that the Milwaukee spent a great deal more money in this period than 
did the Hill Lines. Interstate Commerce Commission, Investigation Number 17021, 619- 
20.
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significant disadvantage, and the railroad’s three bankruptcies are proof enough of this. 

No amount of borrowing and crash construction programs could turn back the clocks. As 

the ICC concluded, the decision to expand led inexorably to bankruptcy: “The record 

leaves no doubt that first among the causes of receivership was the failure of that 

extension to earn anywhere near a return sufficient to help the system carry the burden 

incurred in its construction.” ”̂

The ICC also criticized the Milwaukee’s minimum purchase arrangement with 

Montana Power. The railroad had a 99-year, minimum purchase, so -called “sweetheart” 

deal with the utility. However, with the railroad essentially paying for its power twice, the 

only one getting a sweetheart deal was Montana Power.^* This uniquely symbiotic 

relationship of a railroad with a major public service utility further differentiated the 

Milwaukee from the other transcontinental lines. The fortunes of the Milwaukee and 

Montana Power were much more closely intertwined than that of, say, Union Pacific and 

Standard Oil, or one of its major coal suppliers. The money the Milwaukee wasted on 

Montana Power was negligible when compared to its bond debt, but this arrangement 

certainly did not help matters in a situation where such overruns were so clearly not an 

affordable luxury.

The man who benefitted most from the circumstances electrification imposed on 

the Milwaukee and Montana Power was copper tycoon John Ryan. Ryan’s role in the 

fortunes o f the railroad are well known in the peculiarly esoteric field of railroad

“̂Interstate Commerce Commission, Investigation Number 17021, 620. 

^'Interstate Commerce Commission, Investigation Number 17021, 646.
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scholarship. Ryan had controlling interest in Montana Power, and was President of the 

planet’s largest copper company. Additionally, Ryan held substantial amounts of the 

railroad’s stock. Approached by fellow shareholder William Rockefeller to become a 

board director in 1909, Ryan accepted.^^ Any substantial transaction involving copper, 

railroads, or electrical power in Montana (or in North America for that matter) had to get 

past John Ryan. Ryan’s ultimate financial benefit from electrification would be a fiuitful 

subject for a gilded age business historian to pursue, but failing that, it will probably 

never accurately be known. He is held up as an unfairly besmirched saint in the Anaconda 

Company’s official histories; on the other hand, the mere mention of Ryan put local 

populist newspapers with an anti-Anaconda bent in high dudgeon. The truth probably 

lies somewhere in the middle. For his own part, Ryan categorically denied any sort of 

malfeasance and claimed that he studiously avoided Milwaukee board meetings dealing 

with electrification.^^ Ryan’s alleged conflict o f interest was not his only stint of 

notoriety; he stood accused of copper price fixing and pooling schemes during the First 

World War.^'' Whatever ethical shortcomings Ryan possessed, however, they hardly 

made him responsible for the bankruptcies. With so many other above-mentioned 

financial machinations going on in the same period, Ryan’s “sharp” business dealings vis-

^^Ryan, with others, formed Montana Power in November 1912. Isaac F. 
Minrcvi&son, Anaconda (New York: Dodd, Mead, & Company, 1957), 144. William, and 
later Percy, Rockefeller controlled substantial blocks of Milwaukee stock until the mid- 
1920s. Interstate Commerce Commission, Investigation Number 17021, 633-35.

^^Interstate Commerce Commission, Investigation Number 17021, 638.

^*y[dirc\xsson. Anaconda, 164-65.
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a-vis the Milwaukee were hardly unique.

While over the long term electrification saved on operational costs, it nonetheless 

came at considerable initial expense. From 1915 to 1920, the railroad purchased 11,000 

tons o f copper from Anaconda Copper and 46 transformers and motor generators from 

General Electric.^^ And, a significant portion of the construction overruns went toward 

the purchases of land along the planned right o f way, which effectively split the 

difference between the Great Northern’s route on the so-called “High-Line” and the 

Northern Pacific, which followed the Yellowstone River for much of its course through 

Montana. The Milwaukee’s route on the Great Plains section of its expansion was not 

markedly inferior, topographically speaking. More costly was the relative tardiness of the 

railroad’s entry into the Musselshell drainage. By the time the Milwaukee entered the 

transcontinental game, the Musselshell Valley, while sparsely populated, still had its 

share of wheat bonanza farmers and ranchers who were not happy about sharing land and 

water easements with the Milwaukee, whatever the company’s promotional literature 

said. The railroad had to settle, dearly, with several landowners in the Mussleshell 

drainage before it could lay track.

Unlike the earlier transcontinental lines, with the exception of the Great Northern, 

the Milwaukee had to purchase right-of-way, rather than having it granted by the federal 

government. Unfortunately for the Milwaukee, free land for railroads had died in the 

wake o f Trust Busting and Progressivism. The company’s plight was further aggravated 

by the fact that its real competitors then in Montana, the Great Northern and Northern

Holley, The Milwaukee Electrics, 210.
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Pacific, had shrewdly anticipated the Milwaukee’s expansion to the Coast, and had 

purchased the remaining vacant parcels on the route. They then sold the parcels to the 

Milwaukee at whatever price they saw fit. While without question a predatory practice, 

there was little the Milwaukee could do except purchase right-of-way at an exorbitant 

cost.

The Milwaukee did find ways to limit the expense of the line. Unlike all of the 

other transcontinental projects, the Milwaukee did not have to construct the line from a 

single point at the rail’s head, which increased the constmction’s time and expense. 

Rather, the Milwaukee parceled the project out to four subcontractors, which began their 

respective rail construction projects from intermediate points in Montana, Idaho, and 

Washington. All concerned utilized both the Great Northern and Northern Pacific in 

freighting construction materials, such as rails and ties, as close to the immediate 

construction termini as was possible.^^ The speedy construction of the line was one of the 

few areas in which the railroad trimmed construction costs in its Pacific expansion. But 

even with such savings, the project cost almost four times the original estimate.

The Milwaukee’s competitors enjoyed another advantage. The other lines, 

especially the Northern Pacific, shared many towns along the Milwaukee’s eventual 

route. However, the Northern Pacific had the incalculable advantage of a twenty-year 

head start in the Rocky Mountain West, with industrial sidings in the logging and mining 

towns, such as Butte and Missoula, dwarfing the number the Milwaukee eventually 

installed in both number and physical size. The practical outcome of this disadvantage

^^Derleth, The Milwaukee Road, 182.
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was that the usual location of the Milwaukee’s sidings ran on the outskirts of a given 

town, and correspondingly limited service to prospective customers, a problem that 

hounded the line until its ultimate demise.

The competing lines also actively sought to disadvantage the Milwaukee. 

Railroads are not generally prone toward peaceful coexistence, and both the Northern 

Pacific and Great Northern used their senior status as transcontinental lines to gain certain 

advantages over the Milwaukee, such as the aforementioned buying land along the 

Milwaukee’s planned right-of-way. The Milwaukee’s problems did not end with the 

consolidation of these two lines, along with the Chicago, Burlington, and Quincy 

Railroad into the Burlington Northern in 1970. The entities making up Burlington 

Northern resented the Milwaukee’s presence in the region and unabashedly did 

everything within the bounds of the law to drive it out of business, even before the 1970 

merger.37

Poor management was also an issue for the Milwaukee after World War II- 

Former employee Jon Elliot claimed that the Milwaukee’s directors not only neglected 

the electrical facilities in favor of the steam (and later diesel) infrastructures, but also 

grossly favored the Milwaukee’s pre-expansion network of track in terms of budgeting 

both capital and management talent. Elliot colorfully referred to this east-west schism in 

the company as a “Chinese Wall at Mobridge.” ®̂ Chicago businessman Frank Quinn’s 

was equally unimpressed by the Milwaukee’s management. Quinn had been a major

^^Ploss, The Nation Pays Again, 88, 132-33. 

^®Ploss, The Nation Pays Again, vi.
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player making the “piggyback” system a workable reality, and had been forced to work 

with the railroad in the 1970s because o f the ICC’s stated desire to have competition in 

the northwest after consolidation of Hill’s “Northern Lines” ( Burlington Northem).^^

The Milwaukee became the government’s hope to keep “impermissible” monopoly out of 

the region.^ Quinn’s assessment of the Milwaukee’s management was quite unflattering; 

“If I am smart enough to come up with a new system of running a railroad I am sure smart 

enough to not work with the worst financial, worst run and worst managed railroad in the 

U.S.”'"

The Milwaukee’s history reads like a tragedy. The decision to build the 

transcontinental line sealed the company’s fate. From a technological standpoint, 

however, the Milwaukee’s transcontinental line was a marvelous success. Not only did 

the Milwaukee employ the most current construction techniques, it looked to the new 

motive force o f the twentieth century, electricity, to move its freight. The notion was not 

a fanciful one. In contemporary plants and factories, electricity had supplanted steam in a

39 Piggybacking had been contemplated as early as 1926 and theoretically 
combined the scales of economy of rail transport with the flexibility o f truck hauling. 
Piggybacking, more formally known in the parlance of the trade as trailer-on-flatcar 
(TOFC), tend to haul finished rather than bulk goods. A 1980 corporate report pegs the 
relative fuel efficiency o f a diesel-electric-towed boxcar at 340 net-ton miles per gallon, a 
piggyback unit at 167, and a 45 foot semi trailer at 63. Corporate cheerleading aside, 
piggybacking seems to have found a niche, judging by the rail traffic. Booz-Allen and 
Hamilton, Inc. for Transamerica Interway: Piggyback: The Efficient Alternative fo r  the 
80's (New York: Transamerica Interway Inc.; 1980), xiii, 44. Tuplin, The Steam 
Locomotive, 84-5.

^Ploss, The Nation Pays Again, 84.

'"Letter from Frank Quinn to Congressman Henry Hyde, August 21, 1990, from 
Ploss, The Nation Pays Again, Appendix Two.
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number o f applications. What had been a whirling maze of troublesome and potentially 

deadly belts and chains running off of large, centralized steam engines had been replaced 

by a greater number o f more compact, and from the workers’ and underwriters’ 

perspective, much safer electric motors. While electricity did not end the need for 

maintenance, and the new technology had a number of early problems, electricity had 

clear advantages over steam on the shop floor. Moreover, the two major players in the 

then nascent electrical industry, General Electric and Westinghouse, thought that applying 

electromotive force to yet another field that had been the almost exclusive province of 

steam power had immense potential. With the land bought and the track laid, the task that 

the Milwaukee asked of electricity’s state of the art was a formidable one.

Electrification had unquestioned advantages in terms of theoretical performance, 

but initial costs were much higher; moreover, the technology was unproven. Very large 

DC motors used in this fashion had never before been attempted. Steam had cut overhead 

costs as much as possible, and they were still ruinous. The hoped-for payoff would come 

in lowered maintenance and fuel costs, complimenting the Milwaukee’s sensibility of 

lowered long term, but ultimately unfixed, costs. On whatever plane, the decision of the 

Milwaukee to use their trains as generators powered by potential kinetic energy (gravity 

acting on a massive object in a controlled fall) exemplified one of the great energy 

conservation schemes o f the twentieth century. And yet, in all likelihood, the railroad did 

not electrify out of any sense of conservationism or conscientiousness. The new 

technology made sense because of its economic efficiencies.

The Problem of Terrain in the Rocky Mountain Division
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When the Milwaukee Road first considered the transcontinental expansion, it 

intended to rely solely on steam for motive power because it was the only option available 

at the turn of the century. Despite 130 years of development and almost exclusive 

dominance, steam had severe performance problems, especially in cold and mountainous 

terrain. By 1915, however, electrical traction motors had become a realistic option. The 

terrain the new Milwaukee line had to cover over the Rockies made electricity an 

attractive option.

Historically, the American rail lines had taken an altogether different approach 

from those of other industrializing nations, opting for speed over more solid construction. 

The situation the Milwaukee faced in going to the Pacific Coast wa common to all of the 

railroads in western North America. Distances the Great Plains and Rockies were much 

longer, grades more severe, and turns much tighter than anything attempted in Britain, the 

nation considered the longtime authority in constructing locomotives and putting in 

railbeds. When American rail surveyors encountered an obstacle such as a mountain, 

they would attempt to go around it if possible. British surveyors would go through the 

obstacle, whether practical or not. Perhaps the most telling example of the differing 

philosophies was the early British practice of using rail ties hewn from granite rather than 

wood. A similar distinction also applied to British and American steam locomotive 

design; British locomotives, while admirable products of the finest precision machine 

shops in the nineteenth century, were much less flexible on track and much more difficult 

for yard mechanics to service, because o f various, apparently sacrosanct, English
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machine shop traditions/^ Even a neophyte rail fan can spot the differences between 

British and American designs. The Milwaukee Road attempted, at least in public, to take 

a leaf out of the book of the British school of rail-laying. While not quite reaching the 

point of using granite ties, the Milwaukee their approach featured solid, quality 

construction the first time. Given the terrain, it did not pay to scrimp on materials. Worst 

of all was the problem of almost unrelenting grade any train going over the Continental 

Divide faced. Arguably, the Milwaukee received the worst route in this respect, because it 

chose last.

Grade is the enemy of any land vehicle’s performance, particularly one as massive 

as a twentieth century train. Things happen more slowly when pulling a train than when 

driving a car, but making a mistake on a train obviously has more irreversible results. 

Perversely, climbing with such a vehicle is was easier than going downhill. Stopping a 

runaway vehicle of such a massive size, on steel rails, is a dangerous, complex, and

'*^From Alfred Williams’s classic Life in a Railway Factory (New York: Augustus 
M. Kelley, Publishers, 1969), 150-51 : “There is a considerable amount of American 
made machinery at the works, and the percentage of it increases every year, though it is 
often far from being successful. At the same time, it must be conceded that our kinsmen 
over the sea are very clever in the designing and manufacture of tools and plant, and 
many of their ideas are particularly brilliant. The English maker of manufacturing tools 
follows at some little distance with his wares. These, though not actually as smart as the 
others, are yet good, honest value, the very expression of the Englishman’s character.
The chief features of American machinery are -  smartness of detail, the maximum 
usefulness o f parts, capacity for high speed and flimsiness, styled ‘economy’ of structure: 
everything o f theirs is made to ‘go the pace.’ English machinery, on the other hand, is 
more primitive and cumbersome, more conservative in design and slower in operation, 
though it is trustworthy and durable; it usually proves to be the cheaper investment in the 
long run. One often sees American tackle broken all to pieces after several years’ use, 
while the British-made machine runs almost ad infinitum.” Williams’s work also 
highlights the incredibly stratified world o f the various British trade castes: “coalies,” 
bricklayers, carpenters, various subspecies o f machinists, and management.
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sometimes futile endeavor. Even today, for a semi truck-sized vehicle on a 30 foot wide 

interstate highway, runaways are rare but always looming experience. One of a motorist’s 

more sobering sights going east on Interstate 90's Homestake Pass out of Butte is a 

runaway truck ramp on the pass’s east side, a massive incline with gravel at least a foot 

deep to arrest 80,000-pound trucks whose brakes have failed. The Milwaukee’s route into 

Butte went over identical topography only a few miles from the Interstate, and a train 

makes a semi truck look like a sports car in terms of lightness and maneuverability. One 

can imagine the terror and powerlessness a crew with a 4,000 ton runaway train could 

potentially face under similar circumstances, but without the benefit of a runaway ramp. 

With all of mankind’s current masteries over nature, in the country with the best 

industrial and transportation infrastructure on the planet, Homestake Pass on Interstate 90 

is closed two or three times each winter, briefly, but still at considerable inconvenience to 

everyone involved: the drivers, the customers, and the underwriters, at a comfortable 

remove. Even today transportation is risky, but getting a train over any substantial 

mountains in the Gilded Age cost lives and money.

Even the primitive, light trains of the early nineteenth century posed 

unprecedented braking problems for designers and engineers. For the first time in 

history, the distance required for braking was beyond the driver’s line of sight. Among 

other things, this necessitated a telegraph or other system of communication faster than 

the train."^ By the time the Milwaukee undertook its transcontinental expansion program.

^^William L. Withuhn, (ed. ), Rails Across America (New York: Smithmark 
Publishers, 1993), 73.
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braking’s many potential deficiencies were arguably the most serious hazard confronting 

train traffic over the Rocky Mountains. Grade could doom a train climbing or 

descending.

There are two major approaches to determining grade: degrees and percent. 

Degrees are obviously measured with a protractor, inclinometer, or equivalent device, but 

rise/run in percentage is far more frequently used to express steepness. Thus, a rise of a 

half of a mile over the length of a mile had a 50 percent grade. Such severe grades are 

never encountered in railroading, with the notable exception of cog railways; 2.5 percent 

iss considered the practical upper limit for a main line locomotive hauling anything over 

1000 tons. Locomotives for grades more excessive than that are considered oddities. 

Geared locomotives on logging lines could handle grades of up to 10 percent, but this 

type of machine traded speed for traction, and cogged drivers with corresponding rails 

represented the extreme extension of this logic. Railroads and automobile roads almost 

without exception employ percentage measurements, because they have a greater amount 

of precision and are easier to use in civil engineering calculations. A four percent grade 

stood as the limit for performance, oddities such as geared locomotives and cogwheel 

railways aside. In both heavy-automotive and rail circumstances, a four percent grade is a 

potent obstacle to overcome. This might not sound like much, but moving a 4,000-5,000 

ton train over such a grade remains a herculean task, even for today’s machinery. Other 

grade examples include:

1.6 percent = 87.6 feet per mile.

1.7 percent = 89.7 feet per mile.
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2 percent =105 feet per mile.

Getting a train over a steep grade is not simply a matter of tacking more 

locomotives onto the front end. If railroads did this on a more frequent basis, there would 

be far more accidents than there now are. The tensile and compressive forces at work on 

the couplings of a train anywhere from a half mile to a mile long are colossal. Whenever 

possible, helper units were placed either in the middle of an ascending train, or failing 

that, dispatchers tacked pusher units onto the train’s end. Operators understood this from 

the earliest days of rail commerce. Prior to the Westinghouse air brake, a train’s usual 

two brakemen were always instructed to apply the primitive friction brakeshoes for each 

individual car from the ends of the train inwards. The brakeman made his way from car 

to car by scrambling along the top of a hurtling train. Prior to the airbrake’s invention in 

1869, the brakeman’s job was thankless, underpaid, and incredibly dangerous. Wlien it 

came time to slow the train, he was damned any number of ways even under ideal 

conditions; failure to apply brakes in the correct sequence, and with alacrity, could 

decouple a train; failure to apply enough pressure to the shoes would not sufficiently slow 

the train in time with the potential for catastrophe; over tightening the shoes resulted in 

flattened wheels, for which the brakeman would be fined $45 each (the cost of the wheel, 

and coincidentally a month’s pay).'*  ̂Things improved considerably after the introduction 

of Westinghouse’s design, which applied almost instant even pressure to all brakes 

remotely. Still, braking trains on a steep grade taxed the nerves of even the most skilled 

and experienced train crews in the western United States.

‘‘̂ Keith Wheeler, The Railroaders (New York: Time Life Books; 1973), 182.
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It was in this hazardous setting that the Milwaukee employed the industry 

standard: steam. For both freight and passenger service from Harlowtown and all points 

east, the railroad employed a wide variety of steamers. Although there was a 2510 feet 

difference in elevation between Mobridge, South Dakota and Harlowtown, Montana, 

grades on this stretch of the Milwaukee’s right o f way were well suited to using steam 

locomotives. To calculate the mean grade on this stretch, one takes the difference in 

elevation between Mobridge and Harlowtown (2510 feet)and divide this number by the 

distance (503 Miles = 2,801,568 feet) to get the grade, which is roughly an average of 

.08 to .09 percent. Contemporary steamers could handle this mild grade, but the situation 

worsened considerably west of Harlowtown. Indeed, the steepness of the terrain west of 

Harlowtown accounted for the railroad’s selection of Harlowtown as the eastern terminus 

for the proposed electrification.

The railroad’s path from Miles City to Harlowtown is the last gasp of the High 

Plains. From Miles City, on the Yellowstone River bottom, to Roundup, in the Bull 

Mountains (actually a series of sandstone hills), is one of the most forlorn rail sections 

North America can offer. U.S. Highway 12 follows the old Milwaukee Road grade very 

closely. The climb to the divide between the Yellowstone and Musselshell drainages is 

gradual but unmistakable. Sumatra, an old sheep shearing depot, is at the top of this 

divide. Sumatra’s location and appearance are fairly bleak considering the exotic name, 

and the site consists o f a motley collection o f abandoned buildings. Roundup, the next 

town o f any size, was at one time an important coal production center for all of the 

region’s railroads.
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Moving further west, the right of way comes to Harlowtown. Harlowtown was 

originally the result of the bonanza wheat farming era, named after the owner of a small 

upstart enterprise, the Montana Railroad, which eventually sold out its right-of-way over 

the Belt Mountains to the Milwaukee, The electrical trolley line began here, and the line 

first had to attack the relatively small Castle Mountains, followed by the much larger Big 

Belt Range. After summitting the Belts, a train would then descend down the narrow and 

winding Sixteen Mile Canyon into the Missouri River’s main drainage. The town of 

Three Forks had a fairly large depot and steam repair facilities, and this was the last point 

of respite for a westbound train before it had to tackle the main spine of the Rockies. The 

grade from Three Forks to the next substation (necessary to keep the direct current 

voltage at adequate operational levels; see “Motors” below) at Piedmont was a relatively 

mild .3 percent, but the next 20 plus miles to the Donald summit were a harrowing two 

percent and taxed every bit of added performance that the electrics could give. The slope 

downhill into Butte and the nearby roundhouse at Deer Lodge was 1.66 percent -  not so 

bad as the east slope but still a serious enough situation to instill respect and a sense of 

alertness in the train’s crew. The stretch from Piedmont into Butte was known as a 

“helper district,” because the severity of the terrain required additional electrical (and 

later diesel) units to move, and just as importantly, brake the train. The only other helper 

section in Montana was over the Bitterroot divide, with a maximum grade of 1.7 percent. 

Helpers were placed in the middle o f the train, and the company took pains to instruct a 

helper’s engineers that they were to concentrate on pulling the load behind them, rather 

than pushing the load in front of them, in order to avoid decouplings. Once safely into
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Butte, however, a train had relatively smooth sailing down the Clark Fork of the 

Columbia River before having to climb to the Bitteroot divide.'*^

The proposed electrical installation faced a formidably entrenched opponent in the 

existing steam infrastructure, even though the inadequacies of steam were becoming more 

and more apparent in the early twentieth century. Inertia often accounts for a number of 

the more perverse examples of why the machinery we use periodically defies common 

sense (especially in hindsight). A good example of inertia is the QWERTY keyboard’s 

continued dominance in the face of superior keyboard layouts to explain this 

phenomenon. The QWERTY layout was the result of a desire deliberately to slow, rather 

than speed, the number of words per minute of even the most adept typist, in order to 

avoid double key strikes and other machinery jams.**® The first mechanical typewriter that 

successfully “stored” the data in a double strike and kept the typewriter from jamming 

was not available until 1961, when IBM introduced the 72 Selectric, a revolutionary, and 

complicated, machine.'*’

A layout that deliberately put the frequently used letters at the far points of the 

keyboard paradoxically improved the early machine’s performance, and rewarded

'*^For a far more detailed account o f the towns along the right of way in Montana 
and Idaho, consult Steve McCarter, Guide to the Milwaukee Road in Montana (Helena, 
Montana: Montana Historical Society Press, 1992), 31-88.

^^Robert Pool, Beyond Engineering: How Society Shapes Technology,(Hew York: 
Oxford University Press, 1997), 159-60.

'*’Simon & Schuster, The Way Things Work: An Illustrated Encyclopedia o f  
Technology (New York: Simon & Schuster, 1967), 290. This particular typewriter uses 
several AC motors. IBM sold millions o f this model after its introduction in 1961.
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deliberate and plodding typing over fast, relatively imprecise keystrikes. No arrangement, 

however cunning, of cams and levers could match human hand eye coordination in the 

1880's. Over the years, electric and electronic keyboards have rendered the QWERTY 

layout obsolete. Any number of keyboard arrangements have been proposed, but people 

have grown accustomed to QWERTY, and unknown numbers of QWERTY textbooks 

exist. The system has insinuated itself into an unthought number of instances in the life 

o f anyone who uses a keyboard during the course of the day, and in the age of personal 

and business computers, that is quite a boast. The amount of effort that would go into 

making a change is not worth the trouble, according to efficiency experts who make 

careers out of feasibility studies. Office machine manufacturers would have to retool 

plants, instructors of the old method would be as ignorant as their students, computer 

programs would have to be rewritten on a massive scale, and all the rest. Given inertia 

and familiarity with a given system o f machinery, proponents of any improved system 

sometime face an uphill fight. QWERTY has triumphed, by the intersection of several 

odd facts no one considered important when they first came to light.

Similarly, both steam technology and direct current wiring and machinery became 

entrenched in many unforeseen facets of life for many years - much longer even than 

QWERTY has been in our world to date.'̂ ® Many of the decisions that railroads other

The layout seems baffling to modem sensibilities, but simultaneous key strikes 
were a major problem, until the IBM Selectric, and then the advent of digital word 
processing. The QWERTY layout originally rewarded a deliberate, plodding approach, a 
legacy of mechanical rather than digital machines. The layout of a stenographer’s 
keyboard, by way o f contrast, took into account ergonomic and linguistic factors (a legacy 
o f Isaac Pitman’s Shorthand) much better than did any Remington or IBM product. 
QWERTY is widely invoked as an example for various agendas and is an all but
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than the Milwaukee made, such as adhering to steam much longer than was practicable, 

reflected the “QWERTY principle.”

Direct current enjoyed a number of similar advantages, in terms of technological 

inertia, over the alternating variety. Early on, the chief enemy of a practical direct current 

transmission system was distance. A metallic wire conducting either direct or alternating 

current has two physical properties germane to resistivity and conductance: its diameter 

and length. Simply put, the longer a given wire, the higher its resistance; the greater the 

diameter, the lower the resistance. Edison’s heralded accomplishment of a practical, mass 

produced lightbulb orbited around these two facts and finding an efficient, long burning 

filament was not only a matter o f the much ballyhooed world-wide search for the right 

material, but the less glamorous search for a proper mixture of the filament’s diameter 

and length.

The Milwaukee’s problem was that the circuit in question was hundreds of miles 

long, rather than the inch-long filament Edison’s team had toiled over almost forty years 

earlier. Granted, the science and art of electrical engineering in general, and DC circuits 

in particular, had come a long way, and much larger systems of DC circuitry were then in 

use. Still, these were small compared to what the Milwaukee was attempting. Although 

most of the passenger trolley lines in the United States used DC, they differed a great 

deal, both in degree and kind, from what the Milwaukee eventually adopted. The 

distances passenger trolleys were less than a tenth of what the Milwaukee would have to

hackneyed theme in technological history. See Robert Pool, Beyond Engineering: How 
Society Shapes Technology (New York: Oxford Press, 1997), 159-161.
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deal with, and although the interurban trolleys carried freight often enough, the loads 

were nothing in comparison to taking a 4,000 ton train over five mountain ranges. Most 

inter-urban trolleys ran on about 500 volts; no one in 1910 had contemplated utilizing 

higher “electrical pressures.” The Butte, Anaconda and Pacific Railroad (BAP) used 2400 

volts DC, the highest voltage attempted up to that time and sorely needed in view of the 

“industrial strength” loads of ore that Butte shuttled up to the smelter. Incredibly, 

because of the problems that using steam engines 16 hours a day had imposed, the 

Anaconda Company even considered scrapping the rail system altogether, and installing a 

26 mile-long conveyor belt from the mine to the smelters for all of the ore. This was a 

case of thinking big if there ever was one and an excellent example of a company’s 

willingness to explore every fixed cost cutting avenue even remotely plausible."’ 

Completed in 1913, the SAP’s electrification (yet another concern and project in which 

John Ryan played an integral part) was of great use to the Milwaukee’s electrical 

engineers; it not only demonstrated that moving freight in such a manner was feasible, but 

also did much of the pioneering in the peculiarly restricted field of industrial electric 

traction.^’ The Milwaukee already had committed to electrification by the time the BAP 

was complete, but it nonetheless closely examined the day-to-day experiences and hard

"’Charles R. and Dorothy M. Wood, Milwaukee Road West (Seattle: Superior 
Publishing, 1972), 67.

’̂Unique among the SA P’s operational practices was the use of a GE 40 ton 
Tractor Truck as a pusher unit in especially severe grades. It was pure motor unit on four 
wheels, with room for the motors bolted to the truck assembly, and nothing else. Ira. L 
Swett, Montana Trolleys - IIButte, Anaconda. & Pacific, Interurbans Magazine (South 
Gate, California, volume 26 Number 4, Winter 1969), 114,
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earned lessons that had accrued from BAP’s transition and applied them in the 

construction of their own electric line.

One key difference that the Milwaukee opted for was a mean operational voltage 

of 3000 volts, which would vary by two hundred volts either way depending on 

circumstances at a given moment. The Butte, Anaconda, and Pacific had opted for 2400 

volts, largely owing to the fact that higher direct current voltages were unavailable at the 

time.^' Because length greatly increased resistance in a direct current circuit, a single 

trolley wire 432 miles in length that did not have an appreciable drop in voltage would 

have required such enormous girth that this option was impractical. Direct current trolley 

wires then in use (approximately one-half an inch in diameter) required substations to 

convert alternating cuirent transmission line power at regular intervals, to keep the 

voltages up. The mean distance between substations was 32 miles." This, then, was the 

electrical system the Milwaukee installed in Montana in the early teens -  and that 

endured, with slight modifications, for the next sixty-odd years. While undeniably 

advanced for its time, such a system was expensive and, more important, unproven on

^'Charles V. Mutschler, Wired fo r  Success: The Butte, Anaconda & Pacific 
Railway, 1892-1985 (Pullman, Washington: Washington State University Press, 2002), is 
an exhaustive examination of the BAP’s operations. The main difference between the 
BAP and the Milwaukee was obviously one o f scale -  the Milwaukee’s electrification 
was well over ten times the length o f the BAP’s. The BAP also did not have locomotives 
with regenerative braking and relied instead on Westinghouse brakes. But the railroad 
and GE were close students of the BAP’s fleet’s performance, since it had been installed 
a scant three years earlier.

^^Holley, The Milwaukee Electrics, 4,166. Telegraph lines, the earliest type of 
practical long distance direct current motor, also had substations, in the form of battery 
boosters, to achieve the same effect.
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such a scale.

Steam, on the other hand, reflected almost a century of constant and practical 

improvements in 1910. Steam locomotives were also relatively cheap to purchase when 

compared to the thousands of tons of copper for lines covering the vast distances, which 

meant in turn tens of millions of dollars for the AC Transmission, DC catenary, the 

substations, and most visibly, the radical new locomotives. Further, a large and skilled 

workforce, most likely somewhat suspicious and resentful of the proposed electrification, 

was already in place for steam technology as well. The steam engines were much 

admired, as were the engineers who operated them. Pre-World War II America 

considered both airplane pilots and locomotive engineers the astronauts of the age. 

Virtually everything about steam was familiar and charismatic. Why was such a proven, 

beloved source of power being replaced by such a drab newcomer? The following two 

chapters will explain, in depth, first the older technology, steam, and steam’s up-and- 

coming competitor, electrical traction.
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Chapter II. Blood from a Turnip -  The Limits of Steam Power.

It is dramatic testimony to the inexorable power of live steam and the strength of 
iron and steel that the steam locomotive was ever a practical vehicle. The 
demands upon it were almost ludicrous. First of all, it was very heavy (although 
the traction which resulted thereby was what made the flanged wheel, running on 
the low friction rail, practical in the first place), and in addition to its own 
lumbering self, it had to carry all of the makings of its power -  coal and water- on 
its back, so to speak. Its width was strictly limited by the woefully narrow gauge 
of four feet eight and one-half inches which George Stephenson had imposed on 
the industry, and its length was only somewhat less critical. (Until articulated 
locomotives came into use, length was rather strictly limited by curvature of the 
track.) Within the narrow space that was available a firebox had to be provided, 
the limited size of which necessitated all sorts of compromises with efficiency of 
fuel consumption, smoke pollution, and employee welfare in order to get the 
highest possible rate of combustion out of it. These limitations would have been 
serious in a stationary engine, but the steam locomotive had to perform all of its 
functions while propelling itself along at speeds of fifty or sixty miles an hour.

When it first contemplated transcontinental expansion, the Milwaukee had but one 

option to pursue, and the choice was a venerable technology over two hundred years old; 

steam power. In spite of its dominance at the turn of the century, steam technology was 

clearly starting to show its age. This show of age manifested itself in the form of a series 

of increasingly refined and ingenious improvements, while attaining less and less back in 

terms of performance as these improvements continued. There were other problems as 

well. Steam, for many applications in 1900, saw increasingly realistic challenges from 

internal combustion, and more important for the Milwaukee, electrical motors. It would 

be instructive to examine in some detail the evolution of this technology, seemingly still 

in its prime in 1900, because the story o f late steam technology’s improvements show 

how complicated and expensive this source o f power had become by the time the

^^Martin, Enterprise Denied, 63-4.
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Milwaukee opted for an electrical system for its Montana operations in the 1910s.

Matching engines or motors to loads has been one of the richer fields of study for 

the past five centuries.^'^ In many ways, organic engines, such as a horse or a human, are 

unexcelled in flexibility and responsiveness, but the power output is ver}' low, especially 

on grades. Organic engines have done very well in our species’ 10,000 year journey. Only 

in the last two hundred of those years have we successfully made synthetic mules — 

thoroughly powerful, durable, flexible, relatively cheap to operate versus competing 

forms of locomotion, and anthropomorphically stubborn in the face of adversity. The 

heavier an animal, the worse the efficiency on any slope -  one arena where artificial 

engines do very well. The “engine”of any load-hauling animal, whether a horse, ox, dog, 

elephant, or person, is for all intents and purposes a fuel cell. As far as modem medical 

science has been able to determine, these vehicles “bum” carbohydrates or fat in a non

combustible, chemical fashion, tuming them into electrical energy (of a sort, the 

electromechanical nature o f neuron and muscle interaction is well-documented) and 

possess a marvelous feedback control device for steering and sensible regulation of fuel

'̂^There are two basic approaches to designing an engine or motor specifically for 
a given task. In engineerese the first is known rather prosaically as “systematic parameter 
variation,” (cut- and-try). The other philosophy is an emphasis on basic theory and 
calculation prior to constmction. (Bayla Singer, “Engineering Successful Innovation,” 
from Launius (Ed), Innovation and the Development o f  Flight, 145. Both philosophies 
can be seen in the various GE locomotives in the Milwaukee’s fleet. The earlier models 
were constmcted in a time when little was known about electrical theory. They were 
certainly equal to the task asked o f them, but the massive overbuilding of the motors 
reflected the relative ignorance o f GE’s engineers in the teens. The Little Joe class 
locomotives were engineered to much finer tolerances after the Second World War 
because of advances in electrical theory.
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consumption, courtesy of a mammalian nervous system/^

Even though humans, mules, and dogs are renowned for their toughness and 

endurance as cargo carriers, mammalian engines have their limits. However grossly 

inefficient, the first true steam engine, the Newcommen, was a large improvement over 

horse or man-turned pumps. The English mine owners did not choose Newcommen’s 

engine out of a sense of progressive duty, or out of scientific or technological daring. 

They did so because it was ultimately profitable to do so. The board of the Milwaukee 

was governed by similar considerations.

Machinery is, rightly or wrongly, often maligned in this day and age, but there are 

few machines that mankind has contrived more evocative and possessing a quaintly 

human quality as a steam locomotive. Whenever a schoolchild is asked to draw a train 

locomotive, or to picture one in mind’s eye, the invariable result is a choo-choo train, also 

known as a steam locomotive. Indeed, the anthropomorphizing of the steam locomotive 

was a commonplace in children’s books of the last century, and still is a creative mainstay 

today.^* (See Plate I, page 42).

^^Steven Vogel, Prime Mover, a Natural History o f  Muscle (New York: W. W. 
Norton and Company, 2001),214-218. Vogel combines physiological analysis, physics 
and historical record in a very engaging fashion. There are many insights in this work 
regarding artificial engines, viewed in a biomechanical context, as well. In but one 
variation, modem fuel cells utilize the electrical charge that results from combining 
hydrogen and oxygen into water.

more recent example is Christopher Wormell, P uff Puff Chugga Chugga 
(New York: Margaret K. McElderry Books, 2000), title page. Steamers simply had some 
intangible quality that inspired affection. One possible explanation is the sound of the 
steam engine’s cycle under strain, which bears a remarkable similarity to the labored 
breath of a beast of burden’s toil. Diesel and trolley electric locomotives were positively 
boring in their efficiency, and more modem locomotives offered none of steam’s charm.
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Plate I: While technically obsolete, the reciprocating steam locomotive still endures in the 
popular imagination. The very imperfections of steam technology make it appear more 
human. Christopher Wormell, P uff P uff Chugga Chugga (New York; Margaret K. 
McEldeny Books, 2000), cover.
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Most of the electric locomotives used by the Milwaukee Road, or modem diesel 

electric units for that matter, looked drab and utilitarian, even sterile, by comparison. The 

boxy features of most electrics stood in direct contrast to the circular qualities of the 

steam engine’s boiler. The steam engine’s circularity resulted not from aesthetic 

sensibility, but necessity. With the manufacturing techniques of the seventeenth, 

eighteenth, and nineteenth centuries, it was far easier to fabricate air and water-tight 

components, whether it was a barrel or a cylinder (both crucial for the efficient operation 

of a steam engine) with circular rather than linear and riglit angle patterns. The strength to 

weight ratio was higher, but this was only one factor; lathe v/ork, both the boring and 

finishing of parts, was fundamentally circular.^'

It was far easier, in terms o f body design, to weld or fasten with bolts or rivets 

sections of sheet steel perpendicularly than to use steam components which used airtight, 

circular designs. The main part of the body of a steamer was the huge circular boiler, 

necessarily made of high grade steel to withstand the tremendous steam pressures that a 

locomotive’s pistons required . The outer boiler tube, which gave a steamer its 

unmistakable silhouette, was usually a one piece steel casting, up to 70 feet in length. An 

electrical locomotive’s exterior, however, was little more than a roof of 1/4 inch sheet 

steel; adequate shelter to keep the crews and machinery dry, but something that did not 

require high-skill machining. The boxy shapes of the electrics were only one possibility.

^^Early steam pioneer James Watt recognized that true precision in cylinders -  an 
increasingly vital factor -  was available only through boring. Consequently, he 
contracted much of his later work out to John Wilkinson, the world’s leading precision 
machinist at the time. Keith J. Laidler, To Light Such a Candle: Chapters in the History 
o f  Science and Technology (Oxford: Oxford University Press, 1998), 23.
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Perhaps the most famous of the Milwaukee’s electrical freight locomotives was not 

surprisingly its most aesthetically pleasing, the Bipolar. Among other distinguishing 

features of the Bipolar was its striking lines, which resembled a conventional steam 

locomotive far more closely than the other electrical types the railroad utilized. But the 

rounded front end of the Bipolar had nothing to do with the locomotive’s performance. A 

square shape would have sufficed as it had in past designs; General Electric opted for 

something more classic in appearance -  a good example of cosmetic atavism. Classic, 

circularly shaped designs were far better for boilers. Thus, most electrics looked 

unquestionably modem to the sensibilities of the average American in 1915. In all 

probability they also looked alarmingly alien when compared to the comfortable old 

steam engines.

The new motors did their work, hidden and conveying their mysterious force with 

“...no grinding, no jerking, no puffing, no pulling, no straining, no disturbed slumbers -  

just a keen sense o f moving swiftly, of being propelled by power vastly in excess of 

requirements. You ride with ease -  it is the very last word in transportation.” ®̂ This 

enthusiastic endorsement was putatively attributed to Thomas Edison, who toured the 

Milwaukee’s facilities circa 1920, presumably in an orgy of mutual admiration, and the 

language bears the facile and breezy stamp of a Milwaukee Road or General Electric 

public relations flack, rather than that of the blunt, coarse, and often profane Edison. But 

the image is similar, if  less articulately expressed, to the smooth, compact, and “occult”

^®William D. Middleton, When the Steam Railroads Electrified (Seattle; 
Kalmbach Publishing, 1974), 237.
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power o f Henry Adams’s dynamo. The power of electricity and its attendant magnetic 

fields confounded educated observers unable to use the by-now familiar and intuitive 

concepts of Newtonian mechanics. Even an ecumenical observer as perceptive as Henry 

Adams (a self-admitted ignoramus when it came to practical matters) was unable to wrap 

his brain around the new physics. Adam’s analysis of the new forces in nature, circa 1900 

-  the atom, the X-ray, and electromagnetic force -  were strongly informed by religious 

language. That so blase an observer could be so awed should tell us something. Adams 

stated that the seven year gap between expositions he analyzed had elicited quantum 

advances in scientific progress.”  Steam was like a comfortable, well-worn shoe when 

compared to electricity.

Considerable effort and nineteenth-century craftsmanship went into the design and 

construction o f steam locomotives. With a technology as entrenched as the basic 

Stephenson layout, which dominated locomotive design for over 130 years, locomotive 

designers went to considerable lengths to wring additional performance and efficiency 

from steam plants. The Stephenson layout -  horizontal cylinders, and a horizontal boiler -  

combined powerful traction and components that could be mass produced whenever 

possible. It had its limits, however.”

The only alternatives to the Stephenson template that had been attempted in the

” Heiiry Adams, The Education o f  Henry Adams (New York: Random House, 
1931), 279-290.

” Martin, Enterprise Denied, 62-64. One of Martin’s key points in this work was 
that the railroads were stymied technologically as well as financially in the pre-World 
War n  era.
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previous century were bizarre indeed. The first was an “atmospheric” form of locomotion, 

which took its inspiration from the earliest steam technology, Newcommen and Watt 

engines. The earliest steam engines derived their power stroke from atmospheric pressure 

rather than steam acting on the piston. Watt and Newcommen engines were very low 

pressure affairs, and the twelve pounds per square inch pressure of the atmosphere did the 

heavy lifting. Steam was simply a cheaper means (rather than horses or oxen) of raising 

the piston in preparation for the power stroke. The breakthrough in applying this prime 

mover to moving freight required high-pressure steam acting on both sides of the piston.

The sole “atmospheric” railroad of any consequence was a short line operation in 

Ireland during the mid-nineteenth century. Air pumps (running off of stationary steam 

engines placed at intervals) evacuated the air from a tube positioned underneath the rails, 

and a piston attached to the locomotive was literally sucked from one pump station to the 

next (an interesting parallel to the DC substation scheme employed by the Milwaukee) 

and a colossally-scaled forerunner of the pneumatic “message tubes” employed by 

department stores and drive-through banks in the twentieth century. While an elegant and 

promising concept in principle, the plan failed because of constant problems with creating 

airtight seals in the running tube. The oiled leather used as gasket material was never 

equal to the task asked o f it, and vulcanized rubber, let alone plastics, remained the stuff 

of science fiction at the time. The system also had practical upper limits to its size — 

power of the atmospheric locomotive was directly proportional to the surface area of its 

piston, and while no figures exist, the train this system pulled was a featherweight in
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relative terms compared to a 4000 ton North American “freight.” '̂ The future of 

locomotion obviously belonged to high pressure steam.

Although steam machinery in general had proved itself over three centuries of 

constant improvement, there were inevitable operational headaches attendant to using 

steam for locomotives. Although the steam locomotive underwent undoubted 

improvements in its 150 year history, the basic Stephenson layout remained the 

fundamental template of design, and improvements were small scale, along the lines of 

improved metallurgy (which led to higher boiler pressures), simplified valve design, and 

an increasing knowledge of steam’s physical properties (which led to superheating and 

compounding). All were marked improvements, to be sure, but none was fundamental in 

nature.

Of the virtually infinite number of modifications for the steam locomotive power 

plant in the twentieth century, there were essentially only two design modifications of a 

truly radical nature, and these applied to opposite ends of the performance spectrum: very 

heavy loads over steep grades at low speeds, and light passenger loads over flat grades at 

high speeds. For low speeds and heavy loads, the railroads opted for Ephraim Shay’s 

vertically bored, power-geared drive shaft “Slo-go” engines, but only under 

circumstances where steep grades, tight turns, bad track, low traffic, and heavy loads 

made conventional locomotives useless.“  In the United States, this meant service hauling

®'For a fuller description o f the atmospheric railroad, see George Basalla, The 
Evolution o f  Technology, (Cambridge: Cambridge University Press; 1988), 177-181.

James E. Benton, 4-10-2 -Three Barrels o f  Steam: A Complete Collector's File 
o f  the Only Three Cylinder 4-10-2 Locomotive Built fo r  Service in the U. 5. A. (Felton,
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ore or more often timber. The output shaft spun rather than reciprocated, and drove the 

wheels through a bevel gear. The design sacrificed speed for traction, and the engines 

could handle grades that would have been impossible for a conventional design to 

surmount -  up to 10% -  shy of a cogged track, an impossible grade for an ordinary 

Stephenson-type vehicle." (see Plate II, page 49).

The other major departure firom conventional steam design was the application of 

the steam turbine, which had achieved great success in maritime applications.

Eventually, however, a land-vehicle turbine engine proved itself even more of a curiosity 

than the geared locomotives. The typical steam turbine turned with speeds in the 

neighborhood of 40,000 rpm; even at the lowest speeds this meant employing reduction 

gears of very high ratios to convert the turbine’s speed to usable torque. At low speeds, 

which trains of any weight invariably encountered when starting from a standstill, the 

turbine could move the load, although it consumed fuel voraciously. The turbine was 

therefore only efficiently suited to express passenger runs on flat terrain, such as the 

Midwestern prairies or the Eastern Seaboard. Only wealthier eastern railroads, such as the 

Pennsylvania, could afford to experiment with turbine locomotives in passenger service; 

the Milwaukee never acquired one. (See Plate H, page 49). Other railroads also attempted 

gas-powered turbines, similar to most modem helicopter engines. For all intents and 

purposes, this consisted o f a very large version of a helicopter’s gas-turbine engine

California: Greenwood Publishers, 1973), 2.

"Brian Solomon, American Steam Locomotive (Osceola, Wisconsin: MBI 
Publishing, 1998), 109.
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Plate n: The ‘Tortoise and the Hare”: Late Steam Approaches to Improving Steam’s 
Performance

Above: A 1945 Shay geared locomotive, using vertical cylinders. This design was slow, 
but provided a great deal of traction and could negotiate very tight turns. This type was 
used primarily for hauling timber on severe grades. Though the Milwaukee used several 
types of steamers, it never acquired a Shay.

Below: This 1944 Baldwin turbine locomotive, designed for the Penn, essentially took the 
opposite approach. Designers applied a steam turbine to power the four linked driving 
wheels. While a promising concept, the design consumed a wasteful amount of fuel and 
lacked power at low speeds. The only terrain suited for this type of locomotive for the 
Milwaukee was east of Harlowtown, and such a financially strapped corporation could 
not afford to invest in an untried and expensive concept.
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harnessed to drive the direct current drivers on a land vehicle weighing 5000 tons —not a 

particularly promising concept. The design took every bad feature of land-based turbines 

and aggravated the situation with more heat, noise, and all-around inconvenience.^'*

In the setting of a stationary power plant, five to six times the energy can be 

squeezed from a portion of coal with turbine technology in the form of electricity as it can 

from burning the same amount it in a typical steam locomotive.^^ In light of this fact, GE 

locomotive designers attempted to mate both steam and gas turbines to mobile generators, 

with mixed results. It is no mystery why this particular mode of traction lost out to 

diesels. Some historians cite the fact that this particular type of power plant made its 

debut during the Second World War, when experimenting with fundamental design 

changes in any endeavor was not particularly fruitful ground, since proven designs held 

much more appeal than risky, experimental ones.^^ Unless the potential payoff was 

spectacular (for example, the devastating fruits of the Manhattan Project), why bother 

with experimentation in time of war? More importantly, diesels, reciprocation aside, were 

unbelievably robust and reliable prime movers. Turbines, with their high speeds and 

relatively delicate compressor fan blades could mean trouble, and tougher blades owing 

to metallurgical improvements remained something for the fviture.

Ultimately, the atmospheric railroad, turbine, and vertically bored engines were

^Interview with civil engineer and rail buff Rich Misplon, December 12, 2002.

®̂ W. A. Tuplin, The Steam Locomotive (New York: Charles Scribner’s Sons, 
1971), 127.

^^Solomon, American Steam Locomotive, 140-41.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



rather freakish exceptions to the Stephenson Layout’s primacy in an era spanning 130 

years, and the overall trend consisted of a series of incremental improvements on existing 

steam technology. These improvements (some of which took; some of which did not) 

included streamlining, superheating, altering the boiler fuel, compounding, using ball 

bearings, and converting from reciprocating to rotary engines. The Milwaukee’s steam 

fleet in Montana employed at least some of these innovations. Each of these incremental 

changes will be examined in turn, because such attempts show clearly how desperate 

steam locomotive designers were to get increased performance out of a technology that 

had run its course.

Streamlining

Streamlining consisted of applying a smooth cowling to the otherwise irregular 

surface of a heavily riveted locomotive. Aimed at extracting increased performance, it 

produced negligible “efficiencies.” Nevertheless, streamlining remained a popular 

technique, again because human considerations outweighed purely technical ones. A 

streamlined locomotive, simply put, looked good. Form supposedly followed function, 

but here form ultimately existed for its own sake. Even in the years of steam’s decline, the 

rail lines that could afford to do so made major considerations for a locomotive that had 

attractive lines, at least when it came to carrying passengers, and in a practical sense, this 

usually meant streamlining, or a distinctive paint job, or both. The image of the 

streamlined locomotive, and streamlining in general, was an artistic mainstay by the 

1930s as well as an avatar o f industrial power and progress. Everywhere one looked, the
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steam engine, for all its frailties in the hard-nosed world of commerce, rehised to die, at 

least as an icon in the world’s collective imagination, from the Little Engine That Could 

to Superman’s proverbial strength -  more powerful than a locomotive. The heyday of 

streamlining occurred in the 1920s and 1930s, and the result was a succession of elegant 

and beautiful machines that still have a grip on the popular imagination.

The state of the art of aerodynamics in the 1920s and 1930s was primitive by 

today’s standards, where the pertinent variables are crunched through supercomputers. 

Even in the twenties it was widely known that streamlining a locomotive had more to do 

its cosmetic enhancement and greater public relations than its performance.^^ Two factors 

were at play here. The first is the fact that for streamlining to have any real effect, the 

entire train, not the locomotive alone, would have to have been streamlined, from front to 

back, with some sort of cowling to be installed and removed at the appropriate time -  not 

a particularly efficient, safe, or convenient ritual for either the passengers, engineers, 

brakemen, or conductors. Consequently, longer, heavier, more frequently seperated 

freight trains were an even more unsuitable candidate for streamlining. Streamlining’s 

lack of efficiency for freight and ordinary passenger trains was evidenced by the fact that 

rail lines streamlined only “flagship” or “glamor” (in other words, express passenger)

Interestingly, the cowling of the first streamlined locomotives was actually 
riveted, giving it an “unfinished and clumsy look.” Designer Raymond Loe’wy, whose 
work defined the essence o f streamlining in the 30's, suggested welding the cowl for a 
more seamless appearance. Loewy designed everything from toasters and trash cans (his 
first commission from the Pennsylvania Railroad) to heavy industrial plant such as 
locomotives. For a more detailed account of streamlining and Loewy’s role, see Henry 
Petroski, The Evolution o f  Useful Things (New York: Alfred A. Knopf, 1993), 168-9.
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locomotives and trains more or less in totof'^ If it had cut costs appreciably, freight 

locomotives, and just as important, the freight cars, would have been streamlined as well, 

on every major rail line, and they were not.

More important, even if ideal streamlining could be effected, if one examines 

what happens to projectiles of various sizes moving at a speed of 56 miles per hour, it 

becomes quickly apparent that smaller projectiles at this speed suffer far more from drag 

than larger ones (such as a 3000 ton train with a frontal diameter of four and a half feet). 

The data in the table below only goes to 200 millimeters (about eight inches), but one 

does not have to be an aerodynamic genius to discern a trend;

A. Tuplin, 77ie5'?eawZocomorive(New York: Charles Scribner’s Sons,
1971), 141.
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Table I: “Drag Tax” for Round Object at 56 Miles per Hour

Diameter of Stone Ball at 56 Miles per 
Hour

Drag Tax®̂

.20 mm , 97.6%

.63 mm 90.8%

2 mm 73.1%

6.3 mm 48.4%

20 mm 26.3%

63 mm 9.8%

200 mm 1.3%

In spite of the restrictions imposed by this “drag tax,” with simple body design 

modifications, even a 750,000 pound machine appeared fleet and graceful, whether 

moving at 80 miles per hour or standing still. Streamlined or not, the harmony of 

hundreds of steel parts that intermeshed at dizzying speed, seamlessly, and almost 

hypnotically, was part of steam’s allure as well. Streamlining recently still has an almost 

achingly nostalgic effect, one that extends even to our own times (as evidenced by a 

current advertisement of the indisputably savvy marketing department of Daimler- 

Chrysler; see Plate HI, page 55).

®̂ For an explanation o f the math used in deriving the drag tax, see Steven Vogel, 
Prime Mover, a Natural History o f  Muscle. Pp. 272-73. Quite frankly I have no idea why 
the seemingly arbitrary figure o f 56 mph (presumably the integer aided with Vogel’s 
calculations) is used, but this is happily right on par with near the practical average 
maximum speed a freight train would achieve in the Rockies.
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Performance. Unlike any other.

4.

Plate EQ; Madison Avenue remains fully aware of the visceral appeal of late steam 
technology. Above, a Daimler-Chrysler ad, rather overstating the capabilities of one of its 
products, from a 2002 edition of The Atlantic Monthly.
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Superheating

Yet another attempt to squeeze more horsepower out of a Stephenson-layout 

engine was superheating. Unlike streamlining, superheating had everything to do with 

performance and left the power plant’s exterior unchanged to all but the most expert 

observers. In superheating, designers were responding to the heavier, more infrequent 

traffic o f the twentieth century’s first two decades. The Milwaukee was particularly 

prone to feel financial pain from this trend. Agricultural traffic was especially depressed 

in the twenties; the Great Depression actually began about ten years earlier in the 

agricultural sector. Railroads looked into any avenue that cut costs, and one possible 

solution to this situation was fewer, but larger and more powerful, locomotives. The 

answer to this trend was a series of modernizations in steam engines, among them 

superheating. The practice was a series of incremental changes, rather than a radical one, 

such as the abortive application of turbines to heavy motive power on land. Specifically, 

the process of superheating heated steam issuing from the boiler without raising its 

pressure to avoid recondensation of the steam.™ Engines thus achieved increased fuel 

economies and genuine increases in power. Most of the huge “simple” locomotives of 

the 1930s and 1940s (such as Union Pacific’s Bigboy) were superheated.

Ball Bearings

Installing roller bearings was another example of incremental improvement: “In

™ W. A. Tuplin, The Steam Locomotive (New York: Charles Scribner’s Sons, 
1974), 43-44.
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the last days of steam (1930-1950), the Norfolk and Western Railway Company’s 

Mechanical Department described a modem locomotive as one designed with a high 

capacity boiler, equipped with roller bearings on all engine and tender wheels, 

constructed with integrally cast steel frame and cylinders, utilizing improved 

counterbalancing techniques and possessing complete mechanical and pressure 

lubrication systems.” '̂ Most railroads would have agreed with the Norfolk’s assessment 

of ball bearings as a vital component for any competitively equipped piece of plant.

Simply put, ball bearings reduced friction on the axles and made the locomotive easier to 

move. This simple but effective measure reduced maintenance and fuel consumption. 

Altering Fuel

One area that seemed potentially fruitful was finding a material with more 

potential thermal energy than coal or wood, the long- dominant boiler fuels. Could 

improvements be made by selecting a fundamentally different type of product for 

burning? The layman would quite rightly think that changing the nature of a prime 

mover’s fuel (however slightly) would do little to improve performance in the 

reciprocating steam engines o f the turn o f the century. From an engineering standpoint, 

however, even minor altering o f engine fuel has paid off handsomely in many cases. For 

example, take the improvement in aviation gasoline between the First and Second World 

Wars. The Wright “Cyclone” engine, conceived in the late 1920's (and the powerplant for

^'Robert L. Frey and Lorenz P. Schenk, Northern Pacific Supersteam Era: 1925- 
1945(San Marino: Golden West Books, 2000), 78. See also Solomon, American Steam 
Locomotive, 93. A favorite publicity stunt o f Baldwin’s was to have three harnessed 
women pull a bearing equipped engine weighing hundreds of tons from a standstill.
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the famed B-29 Bomber) enjoyed eye-opening improvements in performance, almost 

solely based on the quality of the fuel:

Table II: Octane Content in Gasoline and Its Effect on Aviation Engine 

Performance, 1929-1939

Year Horsepower Fuel Consumption Octane
(Lbs fuel/hp/hr)

1929 535 0.5 73

1930 580 0.5 80

1931 600 0.5 80

1932 650 0.5 87

1933 700 0.48 87

1934 780 0.46 87

1935 820 0.46 87

1936 1,000 0.44 87

1937 1,100 0.43 92

1938 1,150 0.41 92

1939 1,200 0.40 100

In this particular case, improved fuel more than doubled horsepower o f the 

existing engines, while the engine’s fuel consumption actually declined. While the 

payoffs were not usually as spectacular in the world of steam train locomotion, the 

advantages of a hotter burning, more compact fuel were obvious; therefore, the seemingly

’^Stephen L. McFarland, “Higher, Faster, Farther: Fueling the Aeronautical 
Revolution,” from Launius (Ed.), Innovation and the Development o f  Flight, 114-15.
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banal subject of boiler fuel became a matter o f keen interest to anyone involved in 

railroading (or transportation and industry in general, for that matter). Through the 

course o f  the nineteenth century, much more became known about the various burning 

properties and efficiencies of wood, coke, all types of coals, and oil.

In the beginning, there was wood, or alternatively, coal. Although brutal, a 

nineteenth century fireman’s job sounded deceptively straightforward. He shoveled coal 

into a locomotive firebox over a ten to twelve hour period. The job was not as 

uncomplicated as it sounds, however. In every other engine application, the fireman’s job 

had been replaced by the fuel pump. In early twentieth century railroading, human labor 

was being replaced gradually, if not quite for purely humanitarian reasons. Mechanized 

fuel feeders picked up where human endurance gave out, and the proof of the upper limits 

o f human performance can be found in the labor rules regarding the maximum size of 

firing grates to be tended to by firemen. After World War I, the federal government 

followed suit, mandating that any locomotive in excess of 240,000 pounds or having a 

fire grate of more than 70 square feet required a mechanical stoker, which for all intents 

and purposes was an Archimedes screw (a single helix enclosed in a cylinder, rotated on a 

lengthwise axis, used to lift both liquids and solids) pulling coal out of the tender.’  ̂ The 

fireman’s position also represented the last rung on a railroad’s corporate ladder just 

below the rank of engineer.

The job taxed both body and mind. Not only was there the back breaking work of

William L. Withuhn,(ed.), Rails Across America (New York; Smithmark 
Publishers, 1993), 76. The Archimedes screw is arguably one of the most elegant (and 
widely used) devices contrived by this brilliant Greek (287-212 BC).
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shoveling literally two-and-a-half tons of coal per hour over a ten hour shift; a fireman 

also had to be sure that he covered the grate evenly with coal and that the proper dampers 

and flues were suitably opened or shut. In addition, the fireman had to anticipate virtually 

every move that an (anecdotally obstreperous) engineer made. Failure to perform any one 

of the facets of his job properly meant trouble, and could jeopardize a fireman’s always 

tenuous position. ‘Trouble” meant everything from a ruined firebox to failing to maintain 

an adequate head of steam and falling behind schedule. Many a fireman was physically 

broken by the time he could even be considered for an engineer’s position.

Firemen as a group had a singular love-hate relationship with their “betters.”

There was something indefinably prissy and revolting, from the fireman’s viewpoint, 

about engineers as a class. The stereotypical engineer came to work nattily dressed, and 

was more than willing to lord it over a fireman, yard crew, or anyone else he considered 

beneath him, which, according to other railroad employees, was anyone not on the Board 

of Directors. Indeed, most of the nineteenth and tvv'entieth century railroads operated, and 

in some cases ossified, under a quasi-caste system. Firemen often envied engineers’ pay 

rating and accompanying status (often rightfully earned) and relations between the two 

groups of men could be quite strained.

An historiographical aside: rail buff literature makes much of this relationship, 

and while the sentiment conveyed in many accounts undoubtedly reflected the experience 

o f anyone who ever worked under a demanding or capricious engineer, the analysis of 

this management/operator tension is often obscured by a combination of overwrought 

prose and reverse snobbery. As one engineer recalled: “It was a caste system, pure and
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simple. Once a fireman was exposed as an evolutionary throwback, of Neanderthal blood, 

and lacking of Anglo-Saxon credentials, how could he be entrusted with our grandest 

machines? What fraternal order would permit a missing link into its gentlemanly ranks? 

Which enlightened management could allow its corporate image to suffer by permitting 

beasts to doff the cap to ladies and children form the exalted cab of the steam engine”?̂"*

’'’Dennis Boyer, Prairie Whistles: Tales o f Midwest Railroading (Black Earth, 
Wisconsin: Trails books, 2001), 16-17. Railroad buffs have even given their province of 
study a tailor- made name : Railroadiana. Like buffs in other fields, railfans concentrate 
on fact (significant or otherwise) for its own sake. They leave specialized analyses to the 
academics and general syntheses to pop historians. There are plenty of facts for buffs to 
seize on; they ruminate on everything fi'om a locomotive’s horsepower to its assigned 
number, point schemes, and blow-by-blow descriptions of routes covering hundreds of 
miles. Buffs commit these facts, and others even more arcane, to memory. There are 
many outlets for the buffs enthusiasm, from statistical sheets on locomotive 
performance, to collecting Lionel Trains (Direct Current, ironically enough). The quality 
of the writing by buffs varies. Some is quite well done; some is self-important, officious, 
breathless, obsessed with niggling details, and practically unreadable. John “Mr. Choo 
Choo” Elliot writes: “No one can write with authority on the history of railroading 
without making a pilgrimage to Old E 57 N (a GE EF-1 on display in Harlowtown)... so I 
say all you young squirts out there who are dreaming dreams and seeing visions about the 
great tomes you are to contribute to railroadiana, unless you can say you’ve made a visit 
to old E 57 B you are sounding an ‘uncertain’ trumpet.” Ploss, The Nation Pays Again, 
vii. The suggestion that no one knows anything about railroads at all unless he has visited 
Harlowtown, Montana (the author of this thesis, incidentally, has) speaks for itself.

Buff literature is also usually well-infused with a heavy dose of Norman 
Rockwell, making no pretense of objectivity. Brian W. Dippie’s wry essay on the conflict 
between buffs and academics over the dearly held subject of Custer’s Last Stand (“Of 
Bullets, Blunders, and Custer Buffs”) neatly encapsulates the issue. See Swartout and 
Fritz (eds.). The Montana Heritage: An Anthology o f Historical &.snys'(Helena, Montana: 
Montana Historical Society Press, 1992), 275-85. Most of the buff writing on electric 
traction deals with the interurban lines of the east and Midwest, in part because electricity 
makes much more sense in high traffic, short-distance situations. Some electrical inter- 
urbans, such as Princeton University’s New Jersey Transit Branch, less officially known 
as the “Dinky,” have achieved a certain degree of bizarre esoteric fame. See Lawrence 
Biemiller, “Where the Only Station Stop Is Princeton,” Chronicle o f Higher Education, 
16 May, 2003, 48(A).

The historian who dismisses buff literature out o f hand and scornfully ignores it 
loses a great deal o f potentially useful information, since railfans are often former
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Although many firemen did attain the rank of engineer, firemen were as a rule implacably 

hostile to engineers, and engineers warmly reciprocated the feeling. The tension between 

the two classes of laborers reflected the brutally difficult nature of the fireman’s job, and 

the grimness of his usual prospects in the company. Throughout steam’s two-century run, 

coal had become something more than simply a fuel. It was partially responsible for a 

relationship between two similar but separate castes of men, engineers and firemen. It 

would be another hydrocarbon, oil, that would challenge coal’s primacy as a fuel system 

in the late steam era.

Oil fired steamers, heavily utilized by the Milwaukee Road, obviated many of the 

problems attendant to firing with coal. The only major design changes dictated by firing 

oil were in the firebox, which had to be reconfigured substantially. The fuel in question, 

“bunker” oil, was the residue left over from early twentieth century refining processes, 

after gasoline, kerosene, and the various grades of diesel had been fractionated off. 

Bunker oil was roughly the consistency and viscosity of modem asphalt and burned more 

efficiently than even anthracite coal. It did not catch fire easily, but when lit, bunker oil 

burned ferociously hot - hot enough to melt the iron in a coal fire grate in very short

employees. Dismissing first hand accounts, however clouded by time or influenced by 
personal experience, is bad historical practice. Bill Wilkerson’s work was especially 
helpful for research purposes, and can generally be considered a primary source. This is 
not to say that many railroad buffs are not ridiculously territorial about their 
epistemological fiefdoms, and evince an almost perverse distmst of academics in general. 
Anyone who wholeheartedly believes everything he reads in “Railrodiana” literature 
needs to hone his skepticism.
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order, hence the hasty adaptation o f a modified fire box/^

This modification was substantial, since oil was obviously a fundamentally 

different material from coal, so modifications had to be made owing to factors other than 

a high burning temperature. Very viscous at normal temperatures, it could not be fed 

through pipes under pressure. To make it flow, the fuel had to be heated to a 125 degrees; 

to bum it had to be at about 190 degrees. The oil had to be heated in its tender to just 

under 200 degrees, and was pumped under pressure into the firebox where it was 

atomized and sprayed against a (theoretically) red-hot brick that lined the firebox. Oil 

firing was more popular with individual firemen, for obvious reasons. It eliminated much 

of the previous toil of their job.^^

Some employees, however, viewed the shift to oil with less enthusiasm, seeing it 

as a threat to job security. Oil firing, by the very nature of its labor-saving tendencies, 

tended to eliminate the need for additional personnel, especially cleaning and 

maintenance personnel. The added weight of another extra body was not a significant 

factor in the immediate performance of the engine, but the added expense of one more 

soul on the payroll, cutting into the bottom line of the stockholder certainly was. Since oil 

was for a number o f sensible reasons cheaper in the long run than coal, the railroads 

eagerly utilized it where they could. The move, like all other pursuits of increased

*̂In terms of thermal potential. Bunker C produces 12% more heat per gallon than 
diesel fuel. (In other words, very hot indeed). “You burned a whitish orange flame and it 
was so bright you needed sunglasses to look at it. You could get instant heat with oil, 
much faster than coal,” according to Ralph Danley, fireman for the Milwaukee in the late 
1940s. Holley, The Milwaukee Electrics, 175.

’®Holley, The Milwaukee Electrics, 172-77, 255.
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efficiencies, came with a cost. Because machinery replaced skilled men, it made jobs 

more scarce, enhanced the caste nature and nepotism of a given line, embittered the 

unemployed and unwilling, and made the railroads a popular target for scorn in the 

editorial pages of the regional newspapers. The Milwaukee Road was no exception.

Whether firing coal or oil, an engineer could make life pretty miserable for a 

fireman if the engineer wanted. A potentially capricious engineer’s every move still had 

to be anticipated. Especially with steam, there were so many variables involved in 

running the locomotive that it took the constant vigilance of two very competent men to 

avert risk to life, limb and property. Firing a coal locomotive was brutal work, but 

demanded a level of concentration that was anything but brutish. Coal could not be 

indiscriminately dumped on the fire grate; it had to be spread evenly, with a keen 

appreciation for that particular engine’s (and engineer’s) idiosyncracies. In fact, so 

demanding was this task that eventually the Railworkers’ Union implemented a rule 

about Archimedes screw-based automatic stokers for any grate over seventy square feet, 

mentioned above. Later, “firing oil,” even in the age of mechanical stokers, was no idle 

job. Obviously oil burning locomotives required men who had aptitude for boilers of 

whatever size, and practical experience with plumbing and pipefitting was certainly no 

handicap.

The Milwaukee was not the only railroad that took to oil. It provided significant 

efficiencies in fueling costs, and its supplies, straight from one of the legacy companies of 

Standard Oil, were seldom, if  ever, threatened by labor disputes. The now legendary labor 

strife, such as Matewon, that surrounded North American coal mining and distribution in
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the early twentieth century weighed heavily in many major railway’s decision to opt at 

least partially for oil. Oil firing was one more attempt to wring every last efficiency out of 

a retrospectively dying technology and solve two problems, fuel costs and labor, with one 

change — this time by altering the fuel. Again, the railroads made a decision based on 

human factors other than purely scientific ones.

Whichever fuel chosen by the Milwaukee, both had a common flaw: smoke in 

tunnels. The other transcontinental lines by and large decided to continue using oil and 

coal based steam as long as it was practical and profitable to do so. Only the Northern 

Pacific electrified lines, and then only in the direst of circumstances. This usually 

occurred where the combination of coal and oil fired steam locomotives (billowing clouds 

of blinding and toxic smoke) with lengthy mountain tunnels posed a nuisance to paying 

passengers, and, more important, a threat to the lives of employees. A series of deadly 

tunnel accidents in 19“'’ century urban areas led to public outcry and subsequent 

legislation mandating the replacement of steam engines with electric or cable trolleys.^’ 

Most tunnels in the Rockies and Cascades for all of the transcontinental lines were very 

long and poorly ventilated. The Great Northern’s Cascade Tunnel was especially lengthy

’^Cablecars represented serious competition, in the form of the “motor” concept, 
to early electrical power in high-traffic urban areas. The system consists of two stationary 
steam engines pulling an endless steel cable loop, generally about an inch in diameter.
The cable cars used a sophisticated arrangement of pulleys, clamps and braking devices 
resulting in an elegant, and very expensive, form of light transportation that could handle 
severe grades (San Francisco comes most readily to mind). Electrical traction had most 
of the benefits of cable traction and cut fixed cost and maintenance expenses. Cable 
installation and maintenance was a major flaw in the cablecar system — competently 
splicing damaged cable was a colossal job and major labor expense requiring round-the- 
clock service by crews of two skilled and two semiskilled men each. See George W. 
Hilton, The Cablecar in America (Berkeley: Howell-North Books, 1971), 77-79.
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and dangerous, and the railroad once attempted to solve the problem by a bizarre 

modification of the smokestack on at least one of its engines. (See Plate IV, page 67).

Later, interestingly, the Great Northern attempted to solve this problem with an 

alternating current system, with the 11,000 Volt, 25 Hertz current being transformed to 

direct current via a motor generator set on board the locomotive. This provided a good 

example of the myriad of viable design possibilities that electrification offered. The result 

was a locomotive significantly longer and heavier than the Milwaukee’s largest class of 

electric locomotive, the Little Joe, and in fact the Great Northern’s was one of the largest 

electric locomotives ever built.

In terms of steam engines fouling tunnels, or starting forest fires, there was little 

that could be done. The tunnels had to be shortened, cleaner fuel obtained , or massive 

ventilation systems installed, all anathema to management. Such solutions were ad hoc 

and ultimately unsatisfactory. The problem was a fundamental one; a different prime 

mover had to be used in tunnels, or tunnels would have to be altogether eschewed in 

future plans. Since the Milwaukee’s route had 44 tunnels, the longest of which was some 

8,800 feet, this posed a potentially significant problem.

Compounding and Articulation - The Mallet

Compounding was somewhat similar to superheating, in that it utilized increased 

scientific knowledge of steam’s physical and thermal properties in the late nineteenth and

^®Abdill, George B Abdill, This Was Railroading (Seattle; Superior Publishing 
Company, 1958), 136. Prodigious smoke from steam engines in lengthy tunnels could 
suffocate a crew and passengers, blind the engineer to potential dangers, and at the least 
was a loud, hot, and accident-prone experience for everyone involved.
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s

Plate IV: A Great Northern Railway 1902 stop-gap solution to smoke in its 2.63 mile 
Cascade Tunnel. The design did not sweep the world. George B. Abdill, This Was 
Railroading {Ses!(X\Q: Superior Publishing, 1958), 136.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



early twentieth centuries. While useful in some situations, compound locomotives were 

peculiarly ill-suited to operating in the Northern Rockies. Perhaps the most famous 

compound design was the “Mallet” class locomotive.

Steam engine designers realized that most of the steam going into a cylinder was 

used all too briefly and that allowing the steam to either go into a condensing line (in the 

case of stationary engines) or into the atmosphere (in the case of locomotives) was a 

waste of much of its potential expansion energy. The solution was to allow the steam, 

once it had done work on the first piston, to go into a second and even larger cylinder, and 

then into the atmosphere. The idea was to utilize the full expansion of a given portion of 

steam, and the practical result was increased economies of fuel consumption.

Mallets were also articulated, another key innovation. Because of the huge size of 

their boilers, they could not negotiate tight turns with a conventional design. Named for 

Swiss designer Anatole Mallet, this class of locomotive’s notoriety stem from his 

innovation of allowing the boiler to swivel on a huge pin a few degrees to the left or right 

on the locomotive’s truck. Rail and tunnels that had been open only to smaller 

locomotives were now accessible to a much larger powerplants.’’ Like the other major 

players in the industry, the Milwaukee made extensive use of the Mallet type.

In spite of the promised efficiencies, however, the Mallets were a liability to the 

Milwaukee. The Mallet enjoyed its heyday in the first two decades of the twentieth 

century, and while relatively efficient compared to earlier designs, the type had a number

’’Brian Solomon, American Steam Locomotive (Osceola, Wisconsin; MBI 
Publishing, 1998), 60.
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of disadvantages. With double the cylinders to attend to, the locomotives were even more 

of a maintenance problem than conventional (known as “simple”) steam designs. They 

were also designed with tractive power and fuel efficiency rather than speed in mind. 

Mallets could move the increasingly heavy trains, but schedules tightened as the century 

progressed. Even then, most scholars maintain that the Mallets’ lack of speed was not a 

serious handicap until truck freight began to pose serious competition to rail freight, 

beginning in the twenties.

In addition. Mallets were also ill-suited to cold weather, which was a fatal 

handicap in the Milwaukee’s operating territory, especially if the locomotives came 

unequipped with superheating equipment. So low was the temperature of the steam as it 

evacuated from the second cylinder into the atmosphere that it immediately condensed 

and actually fell as unwanted rain on the locomotive. This obviously made life miserable 

for the crews, who contemptuously referred to them as “Slobbertacks.” Speeds were also 

low; crews considered 30 miles per hour a breakneck speed for a Mallet in Milwaukee 

territory. Not surprisingly, the Mallets were the first locomotives replaced by the post-war 

diesel-electrics in 1949.*“

All Refinements to No Avail - Water, Maintenance, Lubrication, and “Organic” 
Design

Even with the improvements that came from burning oil rather than coal, as well 

as the other above-mentioned incremental improvements, the most evolved steam 

locomotive was a very dirty, fussy machine when compared to the electrical variety. The

®“Holley, The Milwaukee Electrics, 180-184.
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steamers in the Milwaukee’s fleet could only run approximately one hundred miles before 

they required attention, and steam locomotives in general had to go in once a week for 

cleaning. The electrics were not only cleaner, they could also run for mUch longer 

periods without maintenance. Steam is nowadays often touted as a “clean” source of 

energy, but this would have been a bitter joke to the shopmen, firemen, and engineers 

responsible for the cleanliness of a locomotive at any point in its storied 130 year history. 

On the other hand, a steamer’s thousands of parts which required the fastidious attention 

of scores of attendants represented job security to a number of skilled and semi-skilled 

tradesmen. Engineers and yardmen, while not to a man, generally greeted electrics, and 

later diesels, with suspicion and disdain. They called them “streetcars,” and the term w^s 

one of opprobrium rather than endearment. “Streetcars” exemplified a trend of 

management’s attempts to make any and all infrastructure less labor intensive. A diesel 

required one fifth of the manpower to operate. Thus, for a railroad’s board of directors, 

perennially bent on reducing overhead, abandoning steam offered an attractive option.®' A 

steam engine required water to boil, a simple- sounding process; but if the PH of the 

water was too acidic, it could corrode the boiler’s scores of fire tubes and other inner 

workings. Conversely, if the water was too basic, mineral deposits (lime) quickly 

formed, and hampered efficient running. Theoretically, in a small country such as 

England, water of both types could be rotated in and out of the boiler, each essentially 

counteracting the other. Another solution was the use of chemical additives to the water

Lorenz P. Schrenk and Robert L. Frey, Northern Pacific Diesel Era (San 
Marino, California: Golden West Publishing, 2000), 27-8.
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in order to make it PH neutral. European railroads used such techniques, but western 

American railroads, perhaps because of their larger operational scales and less 

sophisticated infrastructures, eschewed the practice of chemical additives for basic water. 

The yard crews could do little, except replace boiler tubes and other fixtures as they 

corroded, or more often, clean scale as it formed, a periodic but never-ending job.

In the western United States, the problem, more often than not, was water usually 

alkaline. Since it traversed South Dakota and Eastern Montana, the Milwaukee had more 

than its fair share of alkaline water to contend with, as did many other lines in the United 

States. Water quality varied greatly at the far flung points of any transcontinental line, and 

railroads used additives regularly only in steam’s final days. The resulting scaling 

required periodic, labor intensive brushing and scraping o f the boiler wall. An 

alternative, using different types of water, was more than a nuisance to yard mechanics. 

Nonmixed water, that is, water of one type, boiled much more quickly, while using mixed 

water caused delays®  ̂ Moreover, water that failed to vaporize properly could find its way 

into the cylinder, with the potential for an explosion.*^

W.A Tuplin, The Steam Locomotive (New York: Charles Scribner’s Sons; 
1971), 84-5.

“ Steam engine cylinders are understandably designed to tolerate pressures for 
steam, not compressed water (which is in practical terms non-compressible). While 
steam locomotive cylinders are high pressured affairs, gases are a much more 
compressible material than liquids (a fact used to mechanical advantage with hydraulic 
machinery). Pure liquid in any engine cylinder is an invitation to disaster. Simon & 
Schuster, The Way Things Work: An Illustrated Encyclopedia o f Technology (New York: 
Simon & Schuster, 1967), 512. However, in at least one instance, (The Republic P-47 
Thunderbolt, powered by one of the most massive radial engines ever designed) water 
injection was used to enhance performance. Water cooled the piston and cylinder, as well 
as providing oxygen and pressure to the combustion process. This prevented combustion
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The impressive number of moving parts that constituted a steam locomotive also 

required extensive lubrication. Up to 60 ports or reservoirs feeding lubrication points 

required daily oiling on a large steamer, and tending to this matter took an hour on the 

part of either the engineer or maintenance crew, depending upon how a particular railroad 

allotted its manpower. As a consequence, the hallmark of the overall drive to modernize 

steam locomotives was employing automatic lubrication whenever possible.®'* Suffice it to 

say that sundry maintenance costs cut heavily into the bottom line of any railroad. ®̂ First 

and most obviously, more maintenance meant more maintenance personnel, and cutting 

payroll costs was one of the few cost areas that retained a degree of flexibility for the 

Milwaukee’s Board of Directors. Additionally, less maintenance implied greater 

reliability and less uncertainty. Like any other large corporation, the Milwaukee detested 

uncertainties of any kind and sought to eliminate them whenever possible. While 

charming, steam and the maintenance philosophy built up over the previous century were 

essentially obsolete by the First World War.

The electrics, and after them the diesels, were of an entirely different nature. 

Squat, utilitarian, unlovable, they had no hope of ever making their way into the popular

of the unbumed fuel. Premature firing of unbumed hydrocarbon fuel is known as knock, 
and was an extremely vexing problem for aviation engineers in the “Golden Age” of 
aviation. A mere nuisance in cars, knock could destroy more delicately-constructed 
airplane engines, and was potentially fatal to pilots.

®'*Robert L. Frey and Lorenz P. Schrenk, Northern Pacific Supersteam Era: 1925- 
1945 (San Marino, California: Golden West Books; 2000), 78.

®̂ W. A. Tuplin, The Steam Locomotive (New York: Charles Scribner’s Sons; 
1971), 94. Tuplin pegs the figure at an educated (but still imprecise) figure of 30% of 
company expenditures for any given 19* century British railroad.
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lexicon of children’s books. They were, however, much easier to maintain than steamers, 

in part because the approach to maintenance and repair was modular rather than 

piecemeal. A steamer was an almost organic construction, but both trolley-electric, and 

the diesel-electric engines that replaced them (tellingly known as “units”) were designed 

to compartmentalize problems. If a diesel threw a rod, or otherwise failed, the damage 

was relatively containable and easily repaired. Instead of having to dig around for a 

defective part, an entire piston and cylinder head, motor brush assembly, or similarly 

large modular component was replaced.

A notable example of modularization was Henry Ford’s inspired adaptation of an 

earlier (ignored) British innovation of boring cylinder holes in an engine block, which 

was collectively sealed by the lump package of a cylinder head, rather than machining 

each cylinder assembly separately.®^ Cast and finished-bored engine blocks with cylinder 

heads are an arrangement still almost universally used to this day — in car, train 

locomotive, aviation, and marine diesel engines. Incidentally, modular design has also 

enjoyed success in light industries such as bicycle manufacture. Both crank and wheel 

axles used to have separate ball bearings that had to be hand seated by the mechanic; now 

the axles and bearings are sold as a single unit cassette -  for the do-it-your-selfer, a more 

expensive but far less aggravating approach.®^

®® Allan Ne vins and Frank Ernest Hill, Ford: The Times, the Man, the Company 
(New Yrok; Charles Scribner’s Sons, 1954), 462.

®’Henry Petroski, The Pencil: A History o f Design and Circumstances (New York: 
Alfred A. Knopf, 1983), 12, is an absorbing look at the modualarization of a more 
humble commodity. While not as glamorous as locomotive manufacture, pencils were an 
even more extreme, and in the end, similarly profitable example of this dynamic. (Few
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The interest in efficiency carried over into maintenance practices as well. In the 

late days of steam, inspired by statistical management practices that at the time dominated 

American industrial thinking, maintenance crews conducted the routine replacement of 

parts, as well as major overhauls, according to a fixed schedule.®* Rather than tend to a 

problem after it had occurred, preemptive servicing became a regular practice in the 

maintenance of steam, electric, and diesel-electric engines, land, air, and marine. This 

practice was known as the “belt system” and mirrored the Tayloristic philosophy and 

modular aspect of the assembly line process in many ways.®’

people ship many goods on rail by the hundred-ton, but who does not use a pencil?). 
Disparate products such as a million dollar locomotive and a nickel pencil are subject to 
the same (ve/y general) trends in finished goods production. Petroski writes: “One oft 
repeated definition of an engineer is someone who does for one dollar what anyone can 
do for two, in the case of the mass produced pencil, the economic advantage is even more 
pronounced.” Baldwin and ADCO’s manufacturing processes, while sophisticated, were 
relatively simple and empirical compared to the amount of theoretical thought that went 
into an electrical system; GE’s manufacture of its electric locomotives for the Milwaukee 
took a more complicated, rationalized design approach with the goal of a (mechanically) 
simpler, more reliable product.

®®Railroads tended to be more resistant to Tayloristic philosophy than the lighter 
industries, arguing that rail activity was not “piece work,” (such as the manufacture of the 
Model T). Frederick Winslow Taylor, widely lauded as the “Father of Scientific 
Management,” saw his philosophy of breaking down manufacturing tasks into the most 
minute detail, and improving the floor layout and movements of each worker into the 
most efficient pattern, adapted by huge swaths o f American and European industry during 
the Gilded Age. See Alan Nevins, Ford, 468-69. Similar attempts to purge inefficiency 
were made in the service sector, where the railroads obviously figured prominently. The 
Milwaukee’s electrics, with their emphasis on lowered maintenance anxieties and a 
corresponding rise in reliability, fit neatly into this world view. In general, however, 
railroad management collectively argued that no single scientific management panacea, 
such as Ford’s lauded Highland Park Plant, existed for railroading. See Martin, 
Enterprise Denied, 212-13.

®’W.A. Tuplin, The Steam Locomotive (New York: Charles Scribner’s Sons, 
1971), 97.
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The thinking was to prevent misfortune against the overall odds rather than to 

tend to specific problems when they arose, and to pull a whole “assembly,’’and replace it, 

rather than to repair a specific part. But the ultimate de-skilling of a whole class of very 

able men that resulted was a tragedy of sorts. In addition to cutting overall maintenance 

costs, electrification and subsequent dieselization of many railroads also threatened yard 

mechanics and old time engineers, devaluing a set of skills acquired by long and acute 

study. Even the work o f driving the locomotive was modularized. In the eyes of 

engineers, diesels especially reduced the role of the of the train’s “captain,” from a 

superbly accomplished mechanic who could think on his feet to one of a glorified gauge- 

monitor.

The Problem of Torque, and How Best to Apply It

Readily available torque of a wide variety of strengths is in essence a locomotive 

designer’s ultimate goal. When most people see a modem diesel locomotive and hear it 

described as “a diesel,” they reasonably assume that the engines are directly linked to the 

drive train, in other words, that the locomotives are gigantic Volkswagen Rabbits. This is 

in fact erroneous; for example, the Northern Pacific’s 1939 FT-Type diesel-electric 

locomotive had a V-16 engine, each piston of which was larger than a one-gallon paint 

can (16.5 inch bore, 10 inch stroke), which in turn powered alternating current generators 

(alternators).^*^ The current was then put through a rectifier, which took the alternating

**“This was an experimental, two-stroke model. More efficient designs followed 
after the Second World War. Still, this particular locomotive performed respectably for a 
design in relative infancy. Lorenz P Schrenk and Robert L. Frey, Northern Pacific
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current and transformed it into the direct variety, the more suitable type for traction 

motors.

Common sense would seem to dictate that the considerable energy the diesel 

engines produce be directly applied to the drive train. Why build something so 

electromechanically complicated?^’ The short answer is that even these huge engines are 

equal to producing the required torque, at least not in the form a diesel engine first 

delivers it. The “output shaft” speed produced by even the slower-running diesel engines 

was too fast to move 4000 ton trains in a purely mechanical fashion. Interestingly, turn of 

the century designers fabricated prototypes of both diesel and carbureted gasoline direct 

drive locomotives, but knowledgeable observers generally labeled the concept a dud, 

even with a “light” train.’  ̂ All of the seemingly over-complicated design features on a 

modem diesel (more correctly referred to as a diesel generator) exist because of 

considerations of torque.

Perhaps a specific example, outside of railroading, of steam’s initial advantages 

over internal combustion, before the advent of a viable electric motor, would be useful. 

One of the more tantalizing “what ifs” of technological history is the eventual and total 

adaptation of the four-stroke carbureted gasoline engine for automotive use, over 

electrical and steam power plants. The outcome o f this issue was hardly clear cut, as late

Diesel Era, 1945-1970 (San Marino, California: Golden West Publishing, 2000), 56.

’̂Very light European passenger systems have in fact used direct drive diesels to 
some extent. Simon & Schuster, The Way Things Work, 526.

’^David Page Morgan, Diesels West!: Evolution o f  Power on the Burlington 
(Milwaukee: Kalmbach Publishing, 1963), 26.
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as 1920. Electrical cars ran a poor third in this contest. Admittedly, a few bus-sized 

vehicles ran off of trolley wires (See Plate V, page 78).

However, the electric cars offered at the turn of the century used anemic batteries 

and resembled little more than a glorified version of a modem golf cart in 

performance.^^ Electric cars of the early twentieth century were, without exaggeration, 

popular with well-to-do, little old ladies who drove to church on Sundays. '̂* They set no 

speed or towing records; their chief advantages were quietness and ease of operation. The 

much-touted hybrid gasoline/electrical car that Honda now offers (price about $22,000) 

uses a gasoline engine powered alternator, which puts the alternating current through a 

rectifier for use in a direct current motor arrangement, in tandem with a conventional 

gasoline engine transmission rather than a straight battery arrangement. The batteries are 

used for storage, rather than a direct power source, and Honda had moderate success with 

this design in 2002. However, in the setting of 1900 to 1915, the electric car’s 

deficiencies were patent.

Steam cars, however, represented realistic competition to the eventual dominance 

of gasoline engines. Once again, the issue came back to torque. A gasoline or diesel 

engine mns most efficiently from 1,500 to 5,000 revolutions per minute, a broad range of 

speeds to be sure, but not particularly well suited to automotive use. The only time the 

drive train in a car even approaches its gasoline engine’s bottom-end efficient speed of

Allan Nevins and Frank Ernest Hill, Ford: The Man, the Times, the Company. 
(New York: Charles Scribner’s Sons, 1954), 203-04.

^'^Michael Brian Schiffer, Taking Charge: The Electric Automobile in America 
(Washington, D. C. : Smithsonian Institution Press, 1994), 159.
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Plate V: A Westinghouse Trolley Bus, Circa 1915. Westinghouse Electric and 
Manufacturing Company, A Brief Outline o f the Development and Progress o f the 
Electric Railway Industry (East Pittsburgh, Pennsylvania: Eddy Press Corporation, 1923), 
38-9. '
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1,000 rpm is at least 80 miles per hour. Translating the high speed and low torque of a 

gasoline engine’s output shaft into something useful for moving a car requires reduction 

gearing. Anyone who has ever inadvertently “lugged” a standard transmission car and 

killed its gasoline engine can appreciate this engineering problem. When attempting to 

engage second or third gear firom a standstill, the engine dies because the required torque 

of moving the drive train from dead stop is too great for the engine’s running 

requirements. The solution is a transmission system that can take the high output speeds 

of a four-stroke engine and reduce them, through the operator’s use of transmission 

gears, to lower speed and correspondingly higher useful torque from 0-1500 rpm.

High-end steam cars, such as a Stanley or a Doble, did not operate under such 

requirements. The two cylinder engine’s efficient operational range encompassed a much 

broader spectrum when it came to moving the car’s substantial curb weight from 0-125 

mph. Because of the elasticity o f steam and the high pressures that the Stanley’s engine 

operated under (1000-1300 pounds per square inch), it could provide adequate torque 

under a wide variety of circumstances (from 0-125 miles per hour) no conventional 

transmission required.®  ̂ In the last century, transmission problems have been a central 

problem in the maintenance life of any gasoline or diesel car. Moreover, transmission 

systems have always been notoriously complex. Even Henry Ford’s planetary

^^Day, John. Engines: The Search fo r  Power (New York: St. Martin’s Press, 
1980), 72-3. A Stanley Steamer made 126 mph in 1906 - at the time a world land speed 
record. A later fatal attempt at breaking this record ended in the Stanley crashing at a 
conservatively estimated 190 miles an hour. The cylinders had a bore of four and a half 
inches and a stroke of six and a half inches, and worked best at a pressure of 1300 pounds 
per square inch.
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transmission, famed for its relative simplicity, was a complex piece of machinery. 

Therefore, the sensible choice would seem to dictate something that avoided the problems 

of converting speed into work. With its valve reversing linkage, the Stanley’s 

transmission was so flexible it could theoretically go as fast in reverse (up to 125 mph) as 

it could going forwards, just as a train locomotive could. While not a particularly 

advantageous in everyday automotive life, it demonstrated the Stanley engine’s, and 

steam’s, peculiar simplicity and versatility.

Many scholars, in fact, have persuasively argued that the most viable competitors 

to the noisy and complicated gasoline powered automobiles -  the Stanley and Doble 

steam cars -  failed because of marketing rather than performance factors. The Stanley 

Brothers and their product were the epitome of nineteenth century craftsman and 

salesmanship. They produced a machine for the select few who could match the Stanleys’ 

customer screening process. Above all, customers had to have the financial wherewithal 

to purchase the steamer in one fell swoop. To buy a Stanley, one had to pay $1500 cash, 

no mean feat in 1910 or1920, and with no recourse to GMAC or Ford Motor Company 

financing plans.”  The all time low price of the Ford Model T (with 15,458,781 units sold

^^Allan Nevins and Frank Ernest Hill, Ford: The Times, the Man, the Company 
(New York: Charles Scribner’s Sons, 1954), 387. Interestingly, Ford Motor Company 
experimented with an electric battery powered motor attached to a Model T chassis. The 
project quickly languished. Schiffer, Taking Charge, 166.

^^Finance plans (installment payments) were the result of the average price of a 
car, a virtual necessity by the mid ‘teens, coinciding with that time’s average yearly 
income. Ford’s competitors, in response to the popularity of the Model T, offered 
installment plans beginning in 1916. The Ford Motor Company quickly followed suit. 
Eric Foner and John Garraty, The Reader's Companion to American History (New York: 
Houghton Mifflin Company, 1991), 66.
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from 1908 to 1927) was $260 in 1923, down from the debut price in 1908 of $850. Much 

of the discount came in the fact that the T’s purchaser was expected to perform his own 

minor repairs, or find someone competent locally, rather than hold the Ford Motor 

Company in faraway Detroit responsible.^® The Ford Motor Company thoughtfully 

provided a Question-and-Answer book for basic mechanical problems. It was unthinkable 

that the Stanleys would do such a thing. They had an unwritten, unlimited lifetime 

warranty on their product; if anything broke, the Stanley Company would fix it for free.

The point of all of this is that the power plant question for both cars and train 

locomotives remained wide open in 1910, and the choices confronting an individual 

consumer in the case of cars or the board of directors for a multimillion dollar railroad 

were not nearly so obvious as they appear in hindsight. No solution stood head and 

shoulders above tlie rest.

The weight o f an automobile was paltry when compared to that of a 500,000 

pound locomotive, much less that of the 3,000-ton freight train appended to it. But the 

same laws of physics pertained. This resulted no direct drive gasoline or diesel railroad 

engines built in quantity. Even in the twenty-first century, there are few direct drive 

gasoline or diesel railroad engines, and this explains why electrical power came into the 

picture back in 1914. The 20 gears required by modem semi trucks, with a typical load 

of some 70,000 pounds, gives some sense of the problems entailed in transmitting usable 

torque to a drive train. The amount of gearing that a 4000 ton train would require from 0-

®®Richard Tedlow, Giants o f  Enterprise: Seven Business Innovators and the 
Empires They Built (New York: Harper Collins, 2001), 157.
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80 mph would make any automobile’s transmission system look relatively simple. This 

explains the seemingly bewildering choice of going to the trouble to take the output 

power of a diesel engine and convert it into two types of electrical energy before applying 

it to the driver wheels. The recently released, much-hyped Honda gasoline electric hybrid 

has the same design principles as a modem diesel locomotive used by Montana Rail Link.

Thus, torque, in tandem with technological inertia borne out of steam’s 

longstanding familiarity, made steam a formidable and seemingly perennial competitor to 

competing strains of motive power. The two cylinder bores on a Stanley were four-and-a- 

half inches wide, operating at anywhere from a thousand pounds to thirteen hundred 

pounds per square inch, and the engine obviously provided adequate power for tlie car in 

a variety o f speeds. The cylinder bores on the Union Pacific’s famed Big Boy were not 

quite four feet wide, and because steam boilers had constantly improved, operated at two 

hundred pounds per square inch, when all was mnning properly. This provided adequate 

torque to move a load of four to five thousand tons from a standstill to sixty miles per 

hour in a matter of minutes and without reduction gearing. Yet, although the machines 

represented eighty years o f design refinement, their use still posed problems, particularly 

in rugged terrain.

In the days that the Milwaukee used steam over the Belts and the main spine of 

the Rockies, it was a costly (for stockholders) and nerve-fraying (for engineers and 

insurers) experience to take a train o f any weight over the Continental Divide into Butte. 

The last of the transcontinental lines, the Milwaukee naturally inherited the most inferior 

and dangerous grade over the Main Spine of the Northern Rockies. The Milwaukee
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acquired Mallets and Mikado class locomotives, the most efficient performers in the 

steam category, but any examination of what was involved in getting one up and down a 

severe grade would easily explain why electric (and later diesel-electric) locomotives 

looked so attractive, not only in terms of maintenance and braking, but also in terms of 

general performance under frequently miserable conditions.

Ascending the 1.66% grade east of Butte to the summit of the Continental 
Divide at Donald, seventeen miles away, moving a two thousand ton train, 
required three Mikado type locomotives, three engineers, three firemen, 
brakemen and a conductor. It also required tons of coal, thousands of 
gallons of water, and nearly two hours time -  if  all went well. Once 
through Pipestone Pass tunnel at the top, the train stopped while the 
retainer on the cars were set up to assist in the braking while descending 
the twenty-one miles of 2% grade to Piedmont. At tliis point, the two 
helper locomotives, with no more useful work to do, could either be cut 
off to return to Butte or continue on down with the train. The train, with 
the air brakes partially set to prevent losing control on the grade, 
proceeded slowly on down the mountain, with another lengthy stop or two 
to let the brakes and wheels cool. With the operation repeated at Haugan, 
Harlowtown, Cle Elum, Cedar Falls and Avery, the number of 
locomotives and crews needed to just keep tire freight moving was fast 
getting out of hand. Add to this situation delays, bad weather, minor 
accidents, break downs, locomotives low on fuel and water, passenger 
train schedules that had to be kept, and the entire road could be kept in a 
snarl from one end to the other.^ (See Plate VI, page 84).

The superior performance characteristics of the electric locomotives were 

intended to “unsnarl” this situation. How superior was the electric locomotive to its steam 

counterparts? Famed in Milwaukee buff circles are the various public contests between 

the electrics and the best designs that steam had to offer. Most impressive to the laymen 

were the various “pushing” contests between a Bipolar and a Mallet, or two Mikados.

Charles R. and Dorothy M. Wood, Milwaukee Road West (Seattle: Superior 
Publishing Company, 1972), 65-66.
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Plate VI: Three steam locomotives (probably Mallets) clawing up the two percent grade at 
Pipestone Pass, westbound into Butte, one of the most arduous climbs and hazardous 
descents for steamers on the Milwaukee’s line. Conditions on this pass were perhaps the 
most frequently cited example of steam’s deficiencies. Holley, The Milwaukee Electrics, 
34.
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Intended to be dramatic, these contests, staged in the early 1920's, lived up to 

expectations. A Mallet steam locomotive at full throttle, belching steam and ash, could 

not budge the squat, quietly humming Bipolar, which gradually got the steam locomotive 

going backwards. As with all successful advertising, the Milwaukee used white lies; the 

Bipolar was also running at the electrical equivalent of full throttle (indeed, in excess of 

GE’s guidelines for drawing amps, which could have burned up the motors. See Plate 

Vn, page 86).'™

There were other spectacles as well. On December 9*, 1915, Milwaukee officials

staged a promotional race between the GE freight motors and two “L” class locomotives

plus a Mallet helper, eastbound over the divide from Butte. A reporter for one of Butte’s

newspapers gave a rather gushing account of the electric locomotives superiority over

steam (note the anthropomorphizing -o r more properly, “equestrimorphizing”-  of the

steam-powered engines):

The test consisted of starting from Butte a train of 3,000 tons, consisting of 
48 loaded cars pulled by two electric locomotives, and the train was hauled 
over the grade quietly and apparently with the utmost ease at a speed of 16 
mph, and proceeded on its eastern way without stopping. Following 
behind this train came another of 2,000 tons made up of 37 cars hauled by 
two “L” engines and pushed by a mallet locomotive. The steam horses 
toiled up the grade and the engines actually groaned under the strain 
placed upon them. The men at the throttles and the firemen shoveling coal 
were not trying to throw the race, but it was quite apparent that they had a 
pride in making the best possible show for their iron steeds, and steam was 
kept at the highest possible pressure, yet with the smaller tonnage the three 
locomotives made hard work on the grade and only managed to get

'™William D. Middleton, When the Steam Railroads Electrified (Seattle: 
Kalmbach Publishing, ), 223. the perception was one of effortlessness. See also Noel 
Holley, The Milwaukee Electrics: An Inside Look at Locomotives and Railroading. 
(Edmonds, Washington: Hudman Publishing, 1999), 86.

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Plate VU: A 1914 ‘ Pushing Match” between a Bipolar and a pair of Mallets. Holley, The 
Milwaukee Electrics, 223.
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through Janney at a speed o f nine miles an hour.
There was something almost pathetic in the game fight which 

steam put up against its new rival in the transportation field, but it was so 
visibly and completely outclassed that even a child could have picked the 
winner at a glance. Not one of the half hundred spectators could help 
feeling that he had witnessed the overwhelming triumph of a new power 
over an old and tried fiiend that had faithfully served mankind for many 
decades past.'”’

The selection of Mallets and Mikados (Class ‘L”) for these stunts was apt, 

because they represented the two most popular types of steam locomotives in the first 

forty years of the twentieth century. Baldwin’s 2-8-2 type Mikado, which vaiied in 

weight, combined a number of attractive technical features in a flexible package, and 

became the locomotive industry’s equivalent of the Ford Model T, with an estimated

14,000 units manufactured by Baldwin and Alco between 1890 and 1949.'”̂  There are 

still Mikados in use today in various quarters of the Third W o rld .S m alle r than the 

Mallet, the Mikado was a sensible combination of simple design, high power for its size.

Author unknown, Butte Miner, December 9, 1915, 1.

Annotation for various wheel arrangements in a steam locomotive is fairly 
straightforward. Called the Whyte System, the first number denotes the total number of 
wheels on the unpowered front guide section (the“bogey”), the middle number (or 
numbers) denotes the number o f driving wheels, and the last number denotes the number 
of unpowered trailing wheels. Solomon, American Steam Locomotive, 17. The Whyte 
system is peculiar to American and British steam locomotives, and the numbering system 
for all other locomotives (known as the “International” system) differs somewhat. Here 
drivers are designated with a letter (A for one driver, B, for two, and so on) rather than a 
number, and notations are for only one side of the locomotive. Thus a Mikado would be 
designated as a 1-D-l locomotive. Electric locomotives are designated under the 
“International” system, indicating the prevalence of electric trains outside of North 
America. Holley, The Milwaukee Electrics, 279.

'“̂ Brian Solomon, American Steam Locomotive (Osceola, Wisconsin; MBI 
Publishing, 1998), 53.
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and flexibility.

Whatever the advantages of these two designs, steam (compound or simple) had 

one insurmountable problem operating in the Northern Rockies: cold weather some five 

months out of every year. Account after account in rail buff literature makes it clear that 

the huge boilers of any steam engine hemorrhaged heat into the surrounding air.“̂  The 

Milwaukee’s predecessor line in Central Montana, The Montana Railroad, which hauled 

freight and passengers over Judith Gap in the dead of winter, acknowledged the reality of 

operating in cold weather with “hand me down” locomotives leased from the Northern 

Pacific by not even bothering with the pretense of a regular schedule four months of the 

yeax.’*’̂  A Milwaukee scheduling table from 1947 mandated a 20 to 30 percent reduction 

in gross toimage at 20 below zero -  not an everyday occurrence, but at least three weeks 

in January and February stood an excellent chance of having such bitterly cold conditions 

somewhere in the Milwaukee’s sphere of operations.'®*

Although railroads had no equivalent of the American automobile industry’s Big 

Three, a few railroads, and locomotive manufacturers, had unquestioned primacy. Union

‘°^When stopped in these conditions, water condensing on the boilers found its 
way down to the wheels, and would actually freeze the locomotive to the track. 
Workmen (or ideally, another locomotive) would then have to dislodge the stuck train 
forcefully. Author Unknown, “St. Paul’s Electrification System,” Literary Digest (April 
12, 1916), 1120-21.

'®^Don Baker, The Montana Railroad, Also Known as The Montana Railroad: 
Alias, The Jawbone, also Known as The Chicago, Milwaukee, St. Paul and Puget Sound, 
and The Chicago, Milwaukee, St. Paul and Pacific, and Finally as The Milwaukee Road 
(Boulder, Colorado: Fred Pruett; Date unknown), 39.

'®*Holley, The Milwaukee Electrics, 296.
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Pacific, the world’s first transcontinental railroad, was among the biggest of a handful of 

lines which could claim such status. The company’s approach to steep grades and heavy, 

urgent freight contrasted greatly with that of the Milwaukee Road. One of the best- 

financed of the American railroads, Union Pacific adopted diesel electrics beginning in 

the early 1940s, but it still relied heavily on steam power. America’s entry into the 

Second World War prolonged this reliance. The final evolution of the steam engine, and 

by consensus the ultimate evolution in steam design, was the Union Pacific’s Big Boy, 

made by both AUCO and Baldwin. The moniker was no misnomer or idle pabulum 

ground out by the Union Pacific’s Public Relations Department. The locomotive, 

although slightly outclassed in certain respects by the few remaining gargantuans that 

followed, became an avatar for steam power’s ultimate evolution. Each weighed in at

772,000 pounds, had driver wheels over six feet in diameter, and measured 132 feet long. 

These engines were true performers, not just another example of mid-century industrial 

gigantism. Tellingly, they debuted in 1941, and a big component of their acceptance and 

heavy use by Union Pacific owed to the exigencies imposed the by the Second World 

War. The 4-8-8-4 locomotives were primarily designed with a combination of speed and 

power in mind. Because of the superheated “simple” design (rather than the “compound” 

design found in Mallets) they could pull heavy freights at up to 70 mph on level grade. 

AUCO’s Big Boy was represented, for the most part, as a realistic compromise among 

speed, might, and the advantages o f a tried and true technological system with a 120-year
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track record.’”̂  World War II was hardly the setting for potentially unreliable technologies 

(unless the technology in question offered spectacular military payoffs, such as the two- 

billion dollar Manhattan project, the proximity fuse, or radar). The more mundane but 

hardly less important realm of moving stupendous quantities of goods left little room for 

experimentation.

Closer to the Milwaukee’s sphere of operations, the Northern Pacific also utilized 

huge “simple” steam locomotives in the 1940s, its Northern and Yellowstone type 

steamers. The biggest simple steamer in the Milwaukee’s fleet was the Northern type, a 

4-8-4 that they began ordering from Baldwin in 1929.'”* While an undeniably huge 

machine, it was nowhere near the size of a Northern Pacific Yellowstone or the later 

Union Pacific Big Boy and was outclassed by its electric stable mates. The Milwaukee’s 

acquisition of Northerns is an excellent example o f its lack o f slavishness to one 

particular type of motive force, even as late in the day as 1929.

More on Torque: Rotary versus reciprocating engines.

The everyday operational problems o f various steamers also highlighted problems 

more general to steamers as a class. After some early stumbling, motor designers 

eventually found that the electric motor lent itself admirably to rotary configurations 

rather than reciprocating ones. Electrically-motored locomotives were a tangible example

'°^Brian Solomon, American Steam Locomotive (Osceola, Wisconsin: MBI 
Publishing, 1998), 79-80.

'”®Charles R. and Dorothy M. Wood, Milwaukee Road West (Seattle: Superior 
Publishing Company, 1972), 105.
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of the superiority of rotary engines over the older, steam-powered reciprocating type. The 

trick was finding a very powerful steam rotary engine for locomotive use, which 

designers never developed. The continuing use of low load applications, such as marine 

and aviation engines, validated the turbine’s use in certain applications, but turbines were 

not well-suited to locomotives. The loading on a ship’s screw, even for a ship the size of 

the Titanic, was minuscule compared to that of starting even a modestly weighted freight 

train from a standstill.'®

Reciprocating engines are in one sense handicapped from the outset when 

compared to rotaries. The piston and its connecting rod in a reciprocating engine are 

subject to enormous forces in just one operational cycle. In a single-acting car engine, or 

a double-acting steam engine, the expanding gases acting on a piston ram it to and fro in 

the cylinder. The piston is accelerated, stopped, and accelerated with equal force in the 

opposite direction, hundreds or, when redlined, even thousands of times per minute. 

Especially at higher speeds, these forces can wreak havoc on engine p a r t s . T h i s  results 

in abundant torque, but there are a number of undesirable side effects. The forward and 

reverse acceleration that a piston undergoes can fatigue all but the toughest of steel alloys. 

Failure of one o f the piston’s components could mean ruined piston rings, or more 

catastrophically, a thrown connecting rod, one of the worst possible eventualities for the 

running life o f an engine. Other problems could plague reciprocating engines as well. For

'®For a good description o f the advantages of rotary motion in certain (especially 
marine) applications, see Robert Landes, The Wealth and Poverty o f  Nations: Why Some 
Are So Rich and Some So Poor (New York: W. W. Norton & Company; 1998),198-99.

" “Simon & Schuster, The Way Things Work, 472.
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example, the otherwise well designed Northern class locomotives utilized by the 

Northern Pacific had cylinders that were not integral to the frame; the powerful and 

violent motion of the pistons could (and did) work the bolts that connected the cylinder 

mounting to the rest of the engine loose. These bolts required constant attention, and in 

recognition of this fact subsequent Northern Pacific designs integrated the cylinder 

saddle, casted into the frame itself."*

Manufacturers still take great pains in terms of design, engineering, and choice of 

component materials to avoid such catastrophic failures as a thrown rod whenever 

possible. In engineering’s early days, this meant making pistons and rods excessively 

robust; as metallurgical and machining improvements came along, the components size 

decreased while toughness improved. The resulting engines worked and were marvels of 

the day, but at colossal costs. Steam locomotives, even at the height of their refinement, 

performed dismally in terms o f thermodynamic efficiency. Pegged at an optimal 7%, a 

Mallet, or any other steam locomotive, appeared efficient only if one compared it to a 

Newcommen Engine of 1700, which burned free (waste) coal from the mines it

Robert L. Frey, and Lorenz P. Schrenk, Northern Pacific Supersteam Era: 
-1945 (San Marino, California: Golden West Publishing, 2000), 86. The grade from 
Mandan to Glendive was not excessively steep, but undulated scores of times in the 
rugged hills as a train moved in either direction, and this particular section of track was a 
constant thorn in the side o f the NP’s Operations division. Huge locomotives and 
improved combustion science were the route that the Northern Pacific chose, relying on a 
fleet of immensely powerful modem steam locomotives classed as Yellowstones and 
Northerns to move the 3000 ton trains. While unarguably charismatic, Yellowstones and 
Northerns were finally less cost effective than diesels for the same duty, and the NP 
ultimately phased them out.
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drained."^ The Milwaukee and other American railroads did not have the luxury of free 

coal or later oil.

With all of the stopping and starting, reciprocating engines are generally less 

efficient in fuel consumption, power-to-weight ratio, and virtually any other performance 

characteristic one cares to examine, all other things being equal. The Wankel rotary 

engine has a rounded triangle as its “piston,” but this piston goes round and round in one 

direction only. The following figures are for two internal combustion engines, and vividly 

demonstrate the superiority of rotary engines in lighter applications, such as passenger 

cars:

Table III: Efficiency and Economical Advantages of Rotary versus Reciprocating- 

type Engines

Wankel Rotary Chevrolet 283 cubic inch V-8

1971 Manufacturing cost, $ per 

Horsepower: 1

1971 Manufacturing cost, $ per 

Horsepower: 2

Moving parts: 154 Moving parts: 388

Weight: 237 pounds Weight: 607 pounds

Horsepower: 185 Horsepower: 195

Volume, cubic feet: 5.1 Volume, cubic feet: 23.2

In addition to being hard on the engine frame, reciprocating engines also 

mercilessly pounded track. Once dimples in the rails appeared, all locomotives tended to

*'^W. A. Tuplin, ITie Steam Locomotive (New York: Charles Scribner’s Sons, 
1971), 82.
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jfind a resonance in running, and the depressions became even deeper. The effect was

similar to diving a car down a severely washboarded highway. The electric locomotives

obviously could not undo damage caused by conventional steam engines, but at least they

did not further aggravate the problem. Even conventional steamers, such as Mikados,

heavily counter weighted their driver wheels in an attempt to avoid excessive pounding

and increase smoothness at high speeds. Electricity offered uniform torque, which

eliminated many problems considered unavoidable in steam engines. Bill Wilkerson, an

engineer for the Milwaukee Road from the 1950s until its demise, concisely explained the

mechanical advantages o f a purely rotary motor, as well as the complications involved

with reciprocating power:

For every revolution of the steam engine’s driving wheels their pistons 
come to the end of their stroke four times with zero power. With the piston 
at the end of the cylinder there is no power until it starts back. For this 
reason American locomotives were set up with one cylinder on each side 
that were locked together by its connecting rod to the main driving wheels 
and the wheels were quartered on the axle. That means the right side was 
set 90 degrees ahead of the left side. By doing this, when the right side 
would come to the end of its stroke, the left side would carry the other side 
over until it could develop power again. For every revolution of the 
wheels, you had half power at 90, 180, 270, and 360 degrees ... The 
Bipolar developed continuous magnetic power for the full 360 degrees of 
rotation, and had smaller and more driving wheels."^

In addition, the reciprocating motion of a piston had to be converted into rotary 

motion for either automobile or locomotive engines. In cars, this was accomplished by a 

crankshaft. Most American locomotives’ crankpins are on the outside rim of the driver 

wheels. In a double acting steam engine, the power of each cylinder, and by extension the

"^Bill Wilkerson, The Milwaukee Road Electric Passenger Locomotives 
(Harlowtown, Montana: Times Clarion Press, 1998), 19.
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torque o f the driver, was also momentarily zero one time for each engine cycle (every 90 

degrees o f a driver’s rotation), a complicated problem obviated in steam engines by 

making sure that the drivers avoided resonance by deliberately running each side of 

linked drivers out of sync with the other.

Conventional designs of internal combustion engines operate under a similar 

handicap. Each cylinder o f a reciprocating four-stroke engine produces torque for one 

fourth o f its cycle, a two-stroke one-half, an electric motor, the whole cycle. No matter 

how ingenious the various modifications that designers contrived, an electrical rotary 

motor, such as the Milwaukee used, was a simpler machine.

Any problem a master mechanic faced when he had to service a steam machine 

the size of a Mallet was complicated by the number of interacting parts. This diminished 

any hope of prompt repair if  anything should be found seriously a m i s s . T h e  steamer 

was an undeniable triumph of interchangeability, but the men who maintained the 

machines often groused that anyone who ever designed a steamer never had to fix one. 

No matter how fastidiously constructed in 1800's, parts still had to be fine tuned a bit to 

actually work."®

"'^Bill Wilkerson, Milwaukee Diesel Locomotives (Harlov/town, Montana: Times 
Clarion Press, 1993), 2.

"^Alboro Martin, Enterprise Denied, 67.

"®True interchangeability was achieved much later than is widely believed. 
Another inaccurate elementary school tale o f American industry was Eli Whitney’s 
invention of “interchangeable parts.” While Whitney’s approach yielded unprecedented 
speed and relative precision, the parts were not truly interchangeable, and the story of 
stranger, blindfolded, effortlessly assembling a musket from randomly picked part was 
either rigged at the time, or a bit o f apocrypha courtesy of Whitney or one of his 
subsequent admirers. Specialists in high dudgeon about Whitney’s rather free use of the
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But by the later half o f the nineteenth century, parts needed much less “coaxing” 

with a hammer, file, or wrench to “make it fit.” Baldwin, Lima, ALCO, and the other 

locomotive companies could avail themselves of the finest precision machine tools in the 

world. Despite an unprecedented amount of precision, two seemingly identical parts 

could be inserted into an engine assembly, and have entirely different performance, and 

machining steam parts required less precision than internal combustion engines would 

come to require. The equation o f steam locomotives with humans, or at least sentient 

life, was no accident. Each locomotive had its own personality, its own unique strengths 

and weaknesses (an ever elusive leak in the pipes, a subtle difference in the shape of a 

firebox, or perhaps a poor adjustment in counter weighting the drivers during assembly) 

that no yard mechanic, however gifted, could ever remedy entirely.

The Milwaukee’s use of a source of power best suited to rotary motion was a 

happy accident of the railroad’s opting for electricity over steam in the early years of the 

twentieth century. Rotary power was yet another incremental, but significant, engineering 

modification in the interests o f increased mechanical efficiency. Reciprocating engines 

enjoyed entrenchment fi’om the earliest days of steam technology; the first use for steam 

engines was pumping water. The first water pump designed featured an Archimedes 

screw (a rotary design) but had evolved into a reciprocating system of seals and valves 

within a piston. Later, steam-powered pumps featured plungers, indicating a

term in question represents more than semantic niggling; both he and Edison are now 
viewed as having at least as much skill at self-promotion as in the technical aspects of 
their products (which in no way denigrates their accomplishments). See Siegfiied 
Giedion, Mechanization Takes Command: A Contribution to Anonymous History (New 
York: W. W. Norton & Company, Inc., 1948), 47-8.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



reciprocating design, not a rotary one. The only place the first steam engines had a 

practical application was in pumping mines, where fuel cost nothing and water (used as 

both a coolant and a sealant) obviously was in superabundance. Eventually, however, 

rotary engines evinced their superiority in a number of applications, oil drilling and 

aviation among them. A cable tool rig, the forerunner of the modem rotary oil rig, 

basically pulverized the earth by reciprocating action, rather than boring a hole as a 

modem bit does. While mgged and dependable, cable tool rigs were agonizingly slow, 

sometimes dangerous, and retrieved less geological information than rotary rigs."^ In the 

seemingly unrelated realm of aviation, the performance of jets versus reciprocal power 

plants was patently apparent, even to those who had no expertise in the field."*

In short, rotaries did not have any of the problems attendant to reciprocating 

engines. Authorities on engines in all ages recognized this fact; it was familiarity with 

the reciprocating variety, from the earliest days o f Newcommen and Watt, that kept

Petroleum Handbook, Compiled by the Members of the Staff of Companies 
of the Royal Dutch/Shell Group (London: Shell Intemational Petroleum Company 
Limited, 1959), 74-77, Rotary drilling rigs employ a massive weight of “drilling mud” (a 
Portland Cement or Bentonite compound meticulously engineered for consistent 
viscosity) hydraulicly sealed on top o f the bit to avert the risk of a blowout. Blowouts are 
spectacular, inadvertent encounters with underground natural gas formations, and while a 
“gusher” is conventionally equated with success, they are usually wasteful and extremely 
dangerous. Because of increased speed, safety, and geological accuracy, rotary rigs 
altogether replaced cable tool rigs. Comparing technologies of the western American rail 
and fuel companies is not an idle sidebar; the Milwaukee’s prosperity, like all of the other 
western railroads, was directly affected by the ever-changing health of the region’s 
mineral industries.

"^Expressing finstration held by all pre-World War II aeronautic engineers, noted 
aviation powerplant expert Ernest Simpson once referred to the reciprocating engine as 
“an invention of the devil.”James O. Young, “Riding England’s Coattails: The U.S. Army 
Air Forces and the Turbojet Revolution,” from Roger D. Launius (Ed.), Innovation and 
the Development o f  Flight (College Station: Texas A&M University Press, 1999), 264.
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reciprocating engines so entrenched. This is why they were so widely used in the earliest 

days of automotive engines. In automobiles, only two types of rotary engines that have 

ever seen commercial use: the gas turbine and the Wankel type. Rotary engines have 

long enjoyed a predominance in aeronautics; helicopters have run on turbines since the 

mid 1960s; jet engines dominate large scale applications, and turboprops have made 

respectable inroads into the arena o f smaller planes that have long been the province of 

piston-powered engines. Both aeronautic and marine engines are comparatively free of 

the loading problems that land veliicles encounter.

Clearly, by 1945, steam had reached its practical limits. The question the 

Milwaukee faced at the end of the Second World War was whether a diesel or straight 

electrical system would entirely replace a 130 year old infrastructure and tradition. 

Although steam locomotives remained in service until the early 1950s, steam had hung on 

only because of the industrial expediency of using steam’s existing infrastructure during 

both World Wars. In spite of all of the stop-gap improvements, such as superheating, 

compounding, bearings, oil burning boilers, and the rest, the age of the direct current 

motor and its promised efficiencies, powered by either a diesel generator or an overhead 

trolley wire, was at hand.'*^ The following chapter examines in detail how electrical 

motors work, as well as why they are significantly more efficient than steam for what the

The Army Air Force demonstrated the universal importance of ball bearings by 
attempting to hit Nazi Germany’s Schweinfurt Ball Bearing Plant, in daylight and at great 
cost, during the Second World War. This was one of the first truly “strategic” maneuvers 
of the nascent American Air Force. The thinking behind the raid reflected that virtually 
all o f modem industry and transportation depended on ball bearings, and the Army Air 
Corps brass hoped that this campaign would paralyze Albert Speer’s well-honed war 
machine.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Milwaukee required.
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Chapter III. Motors

Electric motors are ubiquitous in the life of the average American. To prove this 

point, Donald A. Norman, who writes on technology, counted all the motors he could find 

in both his home and in that of his “simpler” parents, and came up with eighty-four and 

forty-three, respectively.'^” In certain aspects of performance, electric motors presented a 

quantum leap beyond what a steam engine could do. They were quiet, cheaper to 

produce, offered uniform kinetic energy, and could be manufactured in a far greater 

variety o f sizes than any type of engine. The question of how best to power them 

remained to be settled. Reciprocating or turbine steam engines offered one possibility, 

but nineteenth century boilers, although proven overall, had a justifiable reputation for 

exploding. On the other hand, turbine blades turned by falling water rather than high 

pressure steam seemed the ideal compliment to electric motors. Damming and diverting 

water for both work and crop watering reached back into the remotest stretches of 

antiquity. Moreover, the Milwaukee’s territory also had particularly promising 

hydroelectric potential, rated at minimum of 2,749,000 horsepower in 1912.'^'

At 12,799 feet. Granite Peak in south-central Montana towers as one of the 

highest points in the Yellowstone River’s watershed. The lowest point of the 

Yellowstone River, where it empties into the Missouri River, almost exactly at the

'^"Donald A. Norman, Turn Signals are the Facial Expressions o f Automobiles 
(Reading, Massachusetts: Addison-Wesley Publishing Company, 1992), 144. The title is 
a bit precious, but otherwise Norman’s work is a very readable collection of technological 
essays.

'^'John D. Ryan, “Montana Power Company Bulletin Number 6 - The Montana 
Power Company: Is It a Monopoly?” (Butte, Montana: Montana Power), 1. Montana 
Power’s 1912 hydroelectric capacity was 433,000 horsepower.
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Montana/North Dakota border, is just under two thousand feet. Theoretically, one could 

dump a glass of water from the pinnacle of Granite Peak and trace its eventual surface 

route to the Missouri, a drop of some ten thousand feet in just over 330 miles, as a crow 

flies. The snows that lash the Rocky Mountain front five months a year provide several 

million gallons of water annually. This theoretical glass of water generates a substantial 

amoimt of energy (for its size) during its fall to the Missouri, a fact that has been used to 

man’s advantage for millennia. Mother Nature does the lifting; all one has to do is block 

and channel the water’s descent. In spite of this hydroelectric potential, and its proximity 

to the Milwaukee’s Rocky Mountain operations, no hydroelectric dam was ever 

constructed by Montana Power on the Yellowstone.

The Missouri, however, with a theoretical “head” almost as precipitous, and with 

even more water to work with, has been dammed from one end to the other. Some of the 

first dams constructed on the Upper Missouri, at Great Falls (as well as Thompson Falls 

on the Clark Fork), saw much of their energy converted and electrically “channeled” to 

the driver wheels on one of the Milwaukee’s unconventional locomotives.

By 1914, the transmission of hydroelectrical power had become a reality, and the 

Milwaukee Road was able to transmit 100,000 volts of alternating current at the very 

outset of electric operations. Converting electricity into useful mechanical power was still 

a relatively new concept in 1914, however, and the Milv/aukee was utilizing some very 

recent, hard-won advances in transmission. Only 35 years earlier, in 1879, the best that 

could be achieved by some of the world’s best scientists was a feeble transmission system 

(capable of running a single small pump) that spanned only tens, not hundreds, of miles.
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The city o f Munich staged an event that the participants hoped would rival, if not surpass, 

the Crystal Palace events in London. Industrial expositions were all the rage in nineteenth 

century Europe and North Ame r i c a . Mo s t  o f these events had one particular centerpiece 

exhibit, architectural facet, or machine that was supposed to epitomize and exemplify the 

event’s spirit o f technological progress, and celebrate the ingenuity and craftsmanship of 

the event’s participants. The titanic Corliss Steam Engine highlighting the Philadelphia 

Centennial Exposition in 1876, or a similarly colossal dynamo at the Chicago Exposition 

of 1893 that so disquieted Henry Adams in “The Virgin and the Dynamo” were more than 

huge powerplants-they were avatars for the progressive notions of both expositions and 

the larger world.

The waterfall at the Munich Exposition was hardly as prepossessing a sight as the 

prime mover for Adams’s Dynamo, but the small, artificial cascade symbolized a 

formidable accomplishment and portended something equally important: the kinetic 

energy of water falling high in the German Alps had been transferred electrically over a 

distance of some thirty odd miles and converted to equivalent work on the other end — an 

electric motored pump powering the artificial waterfall in the exposition’s atrium, and by 

the standards of the time, the transfer o f energy was extraordinarily efficient. (See Plate 

Vm, page 103).""

"^Henry Petroski, The Evolution o f  Useful Things (New York: Alfred A. Knopf, 
1993), 181-2.

"^Henry Adams, The Education o f  Henry Adams (New Y ork: Random House, 
1931), 279-290.

""Thomas P. Hughes, Networks o f  Power (Baltimore: Johns Hopkins University 
Press, 1983) 131-2.
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Plate VDI: The Waterfall at the Munich Exposition, 1879. Power came from a water 
driven turbine in the Alps, an unprecedented 50 kilometers away. Hughes, Networks o f 
Power, 132.
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Electricity could not only be used for lighting the incandescent lamps that Edison 

“invented.” As the Munich exposition proved, it could also theoretically be utilized to 

power motors — very large motors, in fact. Indeed, in the arena of traction motors, direct 

current still has a distinct advantage over alternating current, because DC motors can run 

at variable speeds and powers simply by altering the circuit’s resistance or reconfiguring 

the circuit layout. An alternating current motor can also vary speed and power, but not 

without an unwieldy arrangement of transformers. Since speed is directly related to the 

input voltage - direct current varies its voltage level through resistance- with alternating 

current voltage is constant until transformed through induction. A more technical 

description of the comparative strengths and weaknesses of AC and DC motors follows 

below.

The current powering the pump motor at the Munich Exposition was still a 

baffling phenomenon in 1879. While current was undoubtedly being used at this early 

stage, no one knew its exact composition. Conceptually, electricity is a very slippery 

subject, especially alternating current. Like electrical current, many of the other potent 

scientific theories postulated within the last five centuries are fundamentally 

counterintuitive. The Earth seems flat, but is spherical. We live on the bottom of an 

ocean of air that presses against our bodies (a fact utilized in all steam engines) but we do 

not notice it in our everyday lives. Air is synonymous with lightness and thinness. 

Relativity is one of the most admired, if least understood, scientific concepts formulated, 

but both special and general relativity run against common sense. Experiments have 

proven both types o f relativity theories correct, for the most part. Although scholars of

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



scientific history and cultural historians often fondly (and vaguely) hold up Newtonian 

mechanics as an example of commonsensical absolutism, there was nothing 

commonsensical about these laws, or the calculus, at the time when Newton and Liebnitz 

formulated them. Anyone struggling through a freshman calculus or physics class would 

hardly describe these courses as exercises in common sense. They “make sense” in large 

part because three centuries of venerable intellects tell us they do.

Electrical current remains, to this day, difficult to understand, particularly the 

alternating variety. Fundamentally, “current” means the transfer of electrons through any 

type of conductor; electrical engineers and electricians use metallic conductors such as 

silver, or more commonly copper. Quite simply, there is no simple solution or analogy 

for electric current. The word “current” obviously demonstrates some similarity to motion 

in water, but the analogy strains; nothing in our everyday experience corresponds to it. 

This analogy breaks down even more when it comes to alternating current; when a man 

with as much acumen as Thomas Edison failed to grasp its basic tenets, there remains 

little hope in this endeavor for the vast majority of American society.

A unique wonder accompanied electricity, before it became a literal 

commonplace. The Milwaukee and GE were heading into mostly uncharted 

technological waters with the electrification in 1914, and one needs to understand some 

of the basic concepts surrounding electrical current to appreciate the size and intricate 

nature of this undertaking.
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utilizing Electromotive Force

Initially, static electricity was the only kind known to sc ience .H ow ever, with 

Volta’s invention o f the electric pile (the battery) in 1800, current electricity, potentially 

far more useful, became the preferred tool of experimentalists.'^® Electrical current is 

often explained in terms analogous to water flowing through pipes. While useful, this 

comparison breeds certain confusions of its own. Humanity has manipulated the forces of 

electricity and magnetism more ingeniously than any other, but its intricacies still remain 

very difficult to explain in concrete terms. Lightning and lodestone (otherwise known as 

the magnet) were the mysterious beginnings of electricity’s observable effects, but 

mankind has really only utilized it for the past 300 years, one of the most recent 

utilizations of one of the forces of nature. Electromagnetism is an ultimately explainable 

but still mysterious force that baffles legions of would-be physics students to this day. If 

one equates water with electricity too slavishly, one will be waylaid by confusion, 

especially in the case of alternating current. For the purposes of this thesis, however, the 

water analogy will suffice.

Electrical current has three distinct properties. There is voltage, or the difference 

in the potential of electromagnetic force. In this water analogy, voltage would be the 

pressure behind the water in the pipe. Voltage was particularly difficult to conceptualize.

'^®Benjamin Franklin’s famed experiments all dealt with static electricity, such as 
lightning and Leyden Jars (a primitive capacitor, which is a storage device for a static 
charge). Franklin gave science the terms positive and negative to describe the equal but 
opposite charges. }otmss,_Empires o f  Light, 23-25. Since static electricity is not used in 
motors or generators, it is only mentioned in passing here.

'^®National Electrical Manufacturers’ Association, A Chronological History o f  
Electrical Development, 15.
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and as a result conceptual terms surrounding voltage are muddled. There is also 

amperage, or current strength. This would be the total “amount” of the analogous water. 

Finally, there is resistance. This would be the figurative “width” of the pipe through 

which the water flows. This elegant proportional relationship between the three 

constantly changing factors in an electrical circuit is known as Ohm’s law, where current 

equals Voltage divided by resistance, stated in formulaic fashion as I=V/R. Current is 

measured in amps, voltage in volts, and resistance in ohms. In electric traction, motors, 

either wired in series, in parallel, or in combinations thereof, provide (useful) resistance. 

Anything else, such incidental motor heat and resistance grids, take the current’s energy 

and dissipate it into useless thermal energy.

Alternating current presents additional complications. This type of current 

fluctuates between two extremes in voltage. Put another way, the current reverses 

direction at regular intervals. The frequency of the current is the number of times it 

reverses direction per second, so the standard 60 hertz cycle used in North America 

reverses direction 60 times a second. Alternating current is grapliically depicted as a sine 

wave.

Other important concepts with implications for alternating current are induction 

and transformation. Induction in its simplest form occurs when a piece of metal is passed 

between two bar magnets. Since the metal passes through fields of electromagnetic force, 

a current is briefly induced. This is the basic principle behind both motors and 

generators. Induction is also an important principle for alternating current voltage 

transformation. If two separate alternating current coils are placed on a common closed
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loop o f metal, the voltage can be raised or lowered, with a corresponding lowering or 

raising of amperage, depending on the difference of the number of windings on each coil. 

Induction and voltage transformation was essentially discovered by Michael Faraday, 

whose wOrk is discussed in some detail below. Since very high voltages are best for 

transmitting alternating current, but unsuitable for use in the home, residential electricity 

undergoes a number of transformations before it reaches residential users.

Any discussion o f electricity in early twentieth century America would not be 

complete without mentioning the “Battle of the Currents.” This struggle bears on the 

technology that the Milwaukee used for over 70 years. When it replaced its steam fleet 

with an electrical infrastructure in the Rocky Mountain and Cascade Divisions, the 

Milwaukee utilized, to great advantage, both alternating and direct current, using each in 

the application for which it was most efficiently suited. No one would have thought such 

a successful hybridization o f the two currents would have been possible a scant twenty- 

five years earlier. In the late 1880s and early 1890s, the individual corporate sponsors for 

these two types of currents were bitter rivals. The corporate proponent of direct current, 

Thomas Edison’s General Electric, and the corporate proponent of alternating current, 

George Westinghouse’s eponymous Westinghouse Electric and Manufacturing Company, 

opposed one another in an almost unrestrained manner,

‘̂ ^The Battle of the Currents, as well as Thomas Edison himself, remain two of 
the most popular subjects o f technological history. This seemingly dry topic contains 
some very human and sensational elements, among them jealously, stubbornness, greed, 
and even a capital murder trial. Limited space and relevance prevent extensive 
examination of this topic in this thesis. The episode provides an excellent example of 
human factors outweighing technical ones in a putatively scientific debate. This war was 
no zero-sum game, and AC’s ultimate “defeat” of DC was neither immediate nor 
dramatic. Rather, it was incremental, and direct current’s elimination in most residential
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It probably would have surprised either man that the last transcontinental railroad 

in the nation would use both types o f currents. For Edison especially, using both types of 

currents in any application was anathema. Especially in the arena of motors, DC had a 

long time advantage, and tliis was especially true of traction motors, as we will see. 

Importantly for the Milwaukee, the inventor of the practical DC traction motor, a design 

used by the Milwaukee and even by today’s diesel electrics, was Frank Sprague, a one 

time employee at Menlo Park.

The Gilded Age was a fecund time for inventors, and in many instances more 

than one “right” technological answer to an industrial problem existed. One of the many 

questions awaiting resolution in the late 1880s was the best type of electrical current to 

use in home lighting, in heavy and light industrial applications, and in light and heavy 

transportation. A colossal prize awaited the system that showed a clear superiority to the 

other. North America was ripe for electrification, contained the wealthiest market in the 

world for such a service, and its people were the most amenable to large-scale

and commercial applications occurred over the span of some forty years in most cases. 
Alternating current held undeniable advantages in transmission over distance, but 
especially in urban areas (universally the first electrified) distance was initially 
insignificant. See Robert Conot, A Streak o f  Luck: The Life and Legend o f  Thomas Alva 
Edison (New York: Seaview Books, 1979); Thomas P. Hughes, Networks o f  Power 
(Baltimore: Johns Hopkins University Press, 1983); Richard Moran, The Executioner’s 
Current: Thomas Edison, George Westinghouse, and the Invention o f  the Electric Chair 
(New York: Alfred A. Knopf, 2002); Margaret Cheney, Tesla: Man out o f  Time (New 
York: Barnes and Noble, 1993); Laurence R. Veysey, The Emergence o f the American 
University (Chicago: University o f Chicago Press);Thomas P. Hughes, American 
Genesis: A Century o f  Invention and Technological Enthusiasm, 1870-1970 (New York: 
Penguin, 1989); Michael White, Acid Tongues and Tranquil Dreams (New York: 
William Morrow; 2001); Jill Jonnes, Empires o f  Light: Edison, Tesla, Westinghouse and 
the Race to Electrify the World (New York: Random House, 2003); Robert Pool, Beyond 
Engineering: How Society Shapes Technology (New York: Oxford University Press, 
1997).
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technological change.

Edison also had a personal stake in seeing that the Milwaukee thrived. Even as late 

as 1914, with his beloved direct current falling ever more into disuse, Edison still did not 

shy from touting its glories. For all of his successes, Edison remained personally 

humiliated by his 1892 ousting from GE, which was largely based on his own obstinacy 

in wishing to retain DC for any and all electrical applications.'^* AC, in spite of its 

obvious successes in most applications, loomed in Edison’s mind as a deadly and 

impractical menace. He cabled the Milwaukee’s president Earling with the usual 

congratulatory testimonials, expected from one of his station: “One of the great 

achievements permitted by the wedding of science and business. I admire the nerve of the 

railroad’s financial backers.”' ’̂ Edison also might have mentioned the Milwaukee’s 

“wedding” o f alternating and direct current technology, but he studiously neglected to do 

so.

Doubtless, a great deal of acrimony existed between these two pioneering 

electrical

companies, and a substantial amount of scholarship is still being produced on the subject. 

The Milwaukee’s choice to electrify its mountain operations, however, was a concrete 

and large scale example that debunked the notion of a system “war.” The railroad made 

use o f both varieties o f current, since electrical traction was basically the last technology

*^*Jormes, Empires o f  Light, 240-42. The GE/Houston Merger, in which investors 
gave Edison his walking papers, was a debilitating blow to Edison’s ego.

'^^Carpenter Kendall, “The Handwriting on the Wall,” Milwaukee Railway System 
Employee’s Magazine ÇFébmsay, 1916): 1.
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best suited to direct current. Indeed, if  such a conflict existed, it was between the differing 

varieties o f motive power, not only for train locomotives, but also automobile-size 

vehicles. Witness the episode in the 1905-1920 period when steam was a viable 

competitor to Ford and GM.

Steel mills, factories, and railroads can all use electricity of both types.

Alternating current does enjoy an overall preponderance in modem society’s more basic 

functions. Moreover, the design o f an alternating current motor, lacking relatively 

intricate mechanical arrangement o f a direct current motor, is now simpler to manufacture 

and tlierefore cheaper to produce.

In terms of sheer numbers of motors and transmission components, alternating 

current has seen more use the past century than has direct. But the Milwaukee stood as a 

concrete example of the argument that the direct current system held sway in certain 

sectors o f the economy. While not quite as large as the other transcontinental lines, it 

certainly was not considered small fry. The scale of its 1925 bankruptcy was 

unprecedented.'^® Put another way, the railroad was a major consumer of the nation’s 

electrical supply, especially in its early stages. The way it utilized both types of currents 

was not some theoretical laboratory curiosity. It was big business. Since the motors 

themselves were the heart and soul of the Milwaukee’s system, and saved the company 

between one and two million dollars annually, some key developments of the electric 

motor’s evolution should be examined.

'^°The Milwaukee’s slide into receivership in 1925 was the largest in the 
American transportation sector’s history, up to that time. ICC Document No. 17021- 
Investigation o f  Chicago, Milwaukee & St. Paul Railway Company (Washington; 
Government Printing Office; 1925), 615.
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The evolution of motor design is a story that spans almost 170 years. For much of 

this period, however, most motors were too weak and unreliable, and remained the 

playthings of laboratory scientists until the 1880's. By the time of the Milwaukee’s 

purchase of the Little Joe (the most powerful and modem straight electric design that the 

railroad would ever use) in 1948, motors could be made in almost any size and power, 

and today’s designs are even more impressive in terms of versatility. However, all of the 

massive motors the Milwaukee used in both the General Electric and Westinghouse 

locomotives had ancestors that, while ingenious, hardly inspired awe when it came to 

power or amenability to practical applications. In the early nineteenth century British 

scientist Michael Faraday (1791-1865) designed and constructed what was widely 

heralded as the “first” motor. Faraday’s work with both motors and the phenomenon of 

electromagnetic induction would have important implications not only for the Milwaukee 

Road, but also virtually anyone who lived in an industrialized nation.

Michael Faraday was in a sense the Thomas Edison of his time. Unlike Edison, 

however, Faraday’s most famous accomplishments dealt with electric motors, one area 

that Edison never truly mastered. Bora in one o f London’s worst slums in 1791 and 

brought up in wretched Dickensian circumstances, Faraday was rightly considered the 

leading figure in the experimental study of electricity in the first half of the nineteenth 

century. He achieved this stature in spite of a relative lack of formal training when 

compared to later scientific luminaries, and rise to fame was also helped by his natural 

affability. Additionally, Faraday had the gift of intuition in the study of electromagnetism. 

In the period Faraday worked, the early nineteenth century, a lack of theoretical
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knowledge was of little moment to a man with Faraday’s innate ability.'^' While 

mathematics was astoundingly advanced and a useful tool in astronomy, surveying, and 

other applied sciences, when it came to formulating mathematical equations to explain 

electrical phenomenon, empirical observation and educated guesses jfrom someone of 

Faraday’s acumen were more than equal to the primitive state of electrical theory (to a 

certain extent, this axiom also applied to Edison some fifty years later). This tension 

between applied theory and empiricism is one of the fundamental hubs in technological 

history.

The origin of this first practical “motor” is a matter of dispute, mainly stemming 

from semantic and technical hair-splitting. Most cite Faraday as the figurative father of 

the motor, but this contrivance, built by Faraday in 1821, was a rather delicate laboratory 

curiosity. In previous experiments with direct current, Faraday had taken a small 

magnetized needle and put it adjacent to a wire carrying current. One of the needle’s 

poles rotated, and Faraday realized that a single magnetic pole (which is an impossibility) 

could be made to rotate around a current carrying wire indefinitely, as long as current 

flowed in the wire. Intrigued, Faraday then resolved to construct a device that would 

solve the problem of isolating a single pole on any magnet. This consisted of a small 

bath of mercury, an excellent electrical conductor, into which he placed upright a small 

bar magnet, insulated from the mercury, with one pole above the top of the bath. Faraday

Keith J, Laidler’s work To Light Such a Candle: Chapters in the History o f  
Science and Technology (Oxford: Oxford University Press, 1998) is a masterful 
examination of Faraday’s accomplishments, asserting that he was easily the equal of 
Einstein, Bohr, and other Nobel Prize winning physicists. Laidler argues persuasively 
that Faraday would have won at least six Nobels, had the prize existed during his lifetime. 
See pages 156-58.
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completed the arrangement by attaching a free-moving wire to a frame above the basin, 

and dipping one end of this wire into the mercury. When current was put through 

the wire and the mercury, the wire moved. If the poles of the magnet reversed, the wire 

rotated in the opposite direction. Although Faraday was merely trying to demonstrate 

experimentally that circular lines of force existed in current flowing through a wire, it was 

also the world’s first instance of electrical energy being transformed into mechanical 

energy. Faraday had invented the motor, albeit an impractical one. (See Plate IX, page 

115). However unlikely it may seem, the huge and powerful motors used by the 

Milwaukee to such great effect can trace their origins to this delicate device.

The Milwaukee would also utilize another of Faraday’s discoveries: hiduction. 

The alternating current generated and transmitted by Montana Power and put to such 

impressive and efficient use by the Milwaukee Road had to be transformed a number of 

times before it could be used by the locomotives. Although Faraday did no real work 

with alternating current, his initial observations on induction in 1831 made the efficient 

transformation of alternating current both understandable and readily workable by the 

beginning of the twentieth c e n tu r y . (S ee  Plate X, page 116).

’̂ ^Laidler, To Light Such a Candle, 131. Like Faraday’s first motor, his 
experimental apparatus for the first induction experiments was also a deceptively simple 
arrangement belying a complex concept. It consisted of nothing more complicated than 
an iron ring wrapped by two separate coils of insulated wire. Since Faraday only had 
direct current batteries at his disposal, current was only induced from the “primary” to the 
“secondary” winding when Faraday started or stopped the current. In other words, 
current is only induced from one coil to another when there is a change in the level of the 
current. Subsequent research would reveal that since alternating current changes (when it 
reverses its direction in the coil windings) induction would also occur, and consistently. 
This is why AC is so amenable to transformation, and is also why induction never occurs 
in a direct current while it is running in its circuit. Voltage and current levels are easily 
manipulated by varying the number windings in each coil. Meleaf, Electricity 1-7, 3-74.
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Plate DC: Faraday’s 1821 Protomotor. Laidler, To Light Such a Candle, 133-34.
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Plate X: Faraday’s 1831 sketch of the apparatus he used to discover induction, and a 
schematic dia^am  of the forces at work when induction takes place. In this case, the 
number of windings on both coils is the same. To manipulate voltage and current, the 
number of windings on the secondary coil must vary from the number of windings on the 
primary-coil. Induction schematic diagram from Harry Meleaf, Electricity 7-7, 3-74-75.
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The AC current that originated from the dam turbines at Black Eagle and 

Thompson Falls was generated at 2400 volts, transformed to 100,000, and transformed 

yet again to 2300 volts for AC synchronous motor/DC generator sets in each of the 13 

substations in the Rocky Mountain Division. Thus, the Milwaukee, like many other early 

twentieth century corporations, were eagerly making use of a hard-won series of advances 

in electrical engineering that could trace their beginnings to Michael Faraday’s laboratory 

in the 1820s.

More robust, practical motors followed Faraday’s. Interestingly, many of these 

earliest motors attempted to mimic the reciprocating motion of the dominant prime mover 

of the time, the steam engine. Again, we see the phenomenon of entrenchment and 

inertia (the QWERTY principal) of an older technology acting as a design template for a 

newer one, even if the results were awkward and inefficient. A motor designed in the 

1850s by inventor Charles Grafton Page provided an example. Page’s design consisted of 

a pair of solenoids which were intermittently fed with direct current. When current ran 

through the solenoid, it attracted a cast-iron “cylinder” which was attached to a 

conventional flywheel s y s t e m . ( S e e  Plate XI, page 118).

The tiny size of Faraday’s first motor was ultimately a tribute to electricity’s 

versatility and amenability to engineering modifications. Electric motors started small and 

grew very large; steam engines started very large. The first Newcomment engines had

Sigvard Strandh, A History o f the Machine (Gothenberg, Sweden: Nordbok, 
1979), 156.
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Plate XI: Atavism — The Grafton-Page Electric “Piston” Motor, circa 1850. Sigvard 
Strandh, A History o f  the Machine (Gothenberg, Sweden: Nordbok, 1979), 156.
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bores well over six feet.' '̂* and now can be made unbelievably s m a l l . ( S e e  Plate XII, 

page 120). From the standpoint o f designers and engine wrights, it is much easier to start 

small and scale up than it is to start large and miniaturize. The 70-year transition from 

vacuum tubes to transistors, ending with the silicon chip is but one example of dearly 

bought miniaturization. However humble, the huge motors used by the Milwaukee can 

trace their ultimate ancestry to Michael Faraday’s contrivance o f 1821. (See Plate XHI, 

page 121).

Faraday’s ingenious arrangements of Mercury and wire would eventually have no 

practical limit on their size. While the power of the Corliss steam engine exhibited at 

Philadelphia in 1876 was immense, only some thiily years later an electric motor could 

conceivably be constructed to match it, horsepower for horsepower. What happened in 

the century between Faraday’s small curiosity and motors capable of hurling a 1,500 ton 

passenger train at speeds of up to 90 miles per hour?

One key was the invention of the commutator, a pivotal component o f any direct 

current motor. Although its origins remain somewhat obscure, the commutator is 

exemplary of nineteenth-century mechanical i n g e n u i t y . T h e  commutator’s function is

' “̂̂ Leonard C. Brun, The Tradition o f  Technology: Landmarks o f Western 
Technology in the Library o f  Congress (Washington; Government Printing Office, 1995), 
228.

'^^William C. Fitz (Ed.), Steam and Stirling: Engines You Can Build (Traverse 
City, Michigan: Wildwood Publications, 1980), 49.

"^The commutator seems to have been developed independently in both France 
and England, about a decade after the debut o f Faraday’s 1821 motor. National Electrical 
Manufacturer’s Association, A Chronological History o f  Electrical Development from  
600 B. C. (New York: National Electrical Manufacturers Association, 1946), 22-3.
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Plate XII: Range of Sizes in Steam Engines; Nineteenth and Twentieth Centuries -From 
“Heavy Industry” to “Hobby.”
Above: The Corliss Beam Engines of the 1876 Centennial Exposition at Philadelphia. 
Leonard C. Brun, The Tradition o f Technology: Landmarks o f Western Technology in the 
Library o f Congress (Washington: Government Printing Office, 1995), 228.
Below; A “Thimble Boiler” Hobby Engine. William C. Fitz (Ed.), Steam and Stirling: 
Engines You Can Build (Traverse City, Michigan: Wildwood Publications, 1980), 49.
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Plate Xni: Range of Sizes in Motors, Nineteenth and Twentieth Centuries - From 
“Hobby” to “Heavy Industry”
Above: Faraday’s 1821 Protomotor. Laidler, To Light such a Candle, 134.
Below: A GE 253 A 3,000 Volt Commutating Pole Motor used in the EF-1 and EP-1 
Locomotives. Wood and Wood, Milwaukee Road West, 133.
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to take the alternating current that any generator produces, and mechanically turn the 

alternating current into the direct variety. The commutator was developed to alleviate a 

vexing obstacle to a practical rotary motor. Three out of the four primary ingredients for 

a simple DC motor are two bar magnets placed with the attractive ends facing one 

another, yet placed far enough apart that they do not contact one another. A “T” shaped 

bar, with a wire coil wrapped about the top of the “T.” Each end of the coiling wire is 

then run down the side o f the “T.” When current is supplied to the wire at the base of the 

‘T ” from a battery through contacts (known as brushes), the “T” (more correctly known 

as an armature) is magnetized. If the armature is oriented correctly with the magnets, 

both the“north” end of the stationary magnet and the “north” end of the movable armature 

face one another, and repulse, causing the armature to move. Without a commutator, 

however, the motor promptly stalls because the attractive ends of the armature and the 

magnets now face one another, essentially locked in place magnetically.'^^

In its simplest form, a commutator consists of two hemispherical rings of a 

conductive metal, usually copper, each insulated from the other. These rings are in 

contact with the brushes and the split in the rings ensures that the armature reverses its 

magnetic polarity every half turn. This ensures that either end of the armature is 

repulsing, rather than attracting, against the magnet it faces. (See Plate XIV, page 123). In

‘̂ ^The same can be said of direct current generators (dynamoes), which also rely 
on commutators. In the simplest case, a metal loop is rotated between the poles of a 
horseshoe magnet, the current induced, however, is alternating, because of the constant 
rotation o f the loop through the magnetic field. In this case, the commutator ensures that, 
every time the current in the loop reverses polarity, the brushes are switched from one 
half o f the commutator to the other, converting the alternating current to direct. Harry 
Mileaf (Ed.), Electricity One-Seven (Rochelle Park, New Jersey; Hayden Book Company, 
Inc., 1977), 6-74.
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Plate XIV: A Simple Commutator. This arrangement reverses polarity in an armature, in 
this case the “T ’s” top, every half turn, ensuring that the repulsing ends of the stationary 
field magnets and the magnetized poles o f the armature are always closest and the 
attracting ends most distant. From Laidler, To Light such a Candle, 134.
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practice most motors have several stationary field magnets, not just two, and an 

arrangement of intermittently split copper rings and mica insulation was used in the early 

twentieth c e n t u r y . A s  motor design evolved, commutators became much more 

intricate, a contrivance any watchmaker in 1850 would have admired for its impeccable 

mechanical timing. The commutator, in whatever form, is one of the most refined 

examples o f ingenuity in electromagnetism.

However, commutators were meddlesome to put work in practice. Brushes arced 

constantly, and getting the timing to work properly required first class mechanically 

ingenuity. Direct current motors were undeniably simple in concept, but developing one 

reliable enough for heavy industry was another matter taking over 50 years. Fortunately 

for the Milwaukee, however, DC motors were an entirely workable proposition by 1910.

The AC motor proved more elusive to inventors, and not surprisingly, Nikla Tesla 

was largely responsible for developing an AC motor from an exotic classroom theory to a 

practical machine. AC and DC motors are fundamentally different, and an AC motor was 

not a practical solution to a company like the Milwaukee Road. However, since AC 

motors would become virtually ubiquitous in an industrial society, it would be instructive 

to further examine this device and to explain why it was not suitable for electrical traction 

applications in its earliest form.

Since an AC motor has a “whirling magnetic field” (See Plate XV, page 125) that 

acts upon the rotor, one o f two conditions have to exist for its practical use: with the 

American standard frequency of an alternating current of 60 cycles per second, the rotor

‘̂ ^International Textbook Company, Types o f  Railway Motors (London: 
Stationer’s Hall, 1909), 9.
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Plate XV: A simple two phase AC induction motor, and its rotating magnetic field.
When one current is at zero power, the other current is at maximum power. In the case of 
the AC motor, the movable armature (known as the rotor) is a simple bar magnet, with 
permanently fixed poles. The stator (in this case, four evenly-spaced stationary points 
surrounding the rotor) has a magnetic field that is in constant flux, causing the rotor to 
move. In the interests o f clarity, a two phase motor is used as an example. Most modem 
AC induction motors are three phase rather than two phase, and therefore have three pairs 
of stators rather than two. Diagram from Mileaf, Electricity 1-7, 7-94-95.
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had to be under a very light amount of physical load even to begin moving. For heavy 

applications such as a freight locomotive, the frequency had to be less than half of the 

standard 60 hertz frequency -  either 25 or 12 cycles per second.Interest ingly,  the 

Westinghbuse Company proposed a 14,000 volt, 15-cycle alternating current system for 

the Milwaukee’s use, but the motors would still have to be direct current, and the current 

transformation/conversion machinery required on board the locomotive was far too 

complicated (at that time) to be workable when compared to the GE s y s t e m . S i n c e  

changing the frequency of an alternating current even today remains complicated and 

expensive practice, it has only seen large scale use in electrical traction fairly recently. 

The AC synchronous motors the Milwaukee used to convert AC to DC at their 

substations had to be “primed,” for want of a better word, by a secondary DC motor 

called an “exciter” before the rotating magnetic field could seize the rotor. (See Plate 

XVI, page 127). If the load was excessive, such as a 4000 ton train refusing to budge, the 

stator field cannot “grab” the rotor and move it. This is known as “slip.” Suiting an AC 

motor to its load can be done, but then the problem becomes constancy of speed. While

*̂ ^On the other end of the spectrum, frequencies as high as 133 and 1/3 cycles per 
second have been proposed. Generally speaking, low frequencies are poorly suited to 
lighting applications, and high frequencies are unsuited for electrical traction, as well as 
anything else requiring power and torque. An alternating current with a frequency of 8 
and 1/3 hertz, while excellent for motoring a locomotive, would cause a very noticeable 
(and basically intolerable) flickering in a light bulb. The standard 60 hertz frequency 
used today in North America represents a compromise between the two philosophies. 
“The Day They Turned the Falls On: The Invention of the Universal Electrical Power 
System,” (Online at http://ublib.buffalo.edu/libraries/proiects/cases/magara.htm. 
downloaded 5/30/021. 17-18.

‘'“’Author Unknown, “Electrification of Chicago, Milwaukee & St. Paul,” 
Electrical World 62:22 (November 29, 1913)„ 103.
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' / C  /  /  i \ ^
Plate XVI: The Milwaukee’s motor-generator séls that converted AC to DC in the 
substations had an additional refinement, and differed slightly from induction motors. 
These machines were known as “synchronous” AC motors. In this case, the rotor was an 
unmagnetized bar of iron wound with a wire carrying direct current that magnetized the 
bar. The electrodynamics were somewhat complicated, but the basic difference between 
Üiis type and an induction motor was that the rotor in an induction motor lagged slightly 
behind the rotating field. In a synchronous motor, the rotor spun at exactly the speed of 
the current’s frequency. The practical implications of this for the Milwaukee was that 
this type of motor aided greatly in both the regulation of the frequency coming into the 
substation from the 100,000 volt AC transmission lines, as well as providing precise 
speeds for DC power generation. The photograph above shows a typical motor-generator 
set used in the Milwaukee substations. The AC synchronous motor is the large, heavily 
ventilated unit in the middle. It is flanked on either side by two 1,500 volt DC generators 
wired in series to provide 3,000 volts to the trolley wire. Such arrangements are now 
obsolete and current is now converted from AC to DC (“rectified”) electrochemically 
rather than mechanically. However, the motor-generator set was an excellent example of 
AC/DC technology combined in a very efficient fashion -  Thomas Edison’s worst 
nightmare. Illustration from Holley, The Milwaukee Electrics, 164.
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an admirable quality in most applications, such as fans, drills, generators, and friction 

cutting tools, to name only a few, attaching a truly constant speed motor to a locomotive 

was not only undesirable; it was tantamount to suicide.''" Theoretically, in 1914, an AC 

motor could be constructed that was large enough to move 4000 tons from a standstill on 

a perfectly flat grade. One might even be constructed to move that weight over some of 

North America’s most fbimidable mountains. However, the daily usefulness of such a 

motor remained questionable. AC motors worked best at one constant speed; an early 

AC-motored locomotive was no match for a steam engine or direct current locomotive. 

Choosing this type of motor meant unwieldy designs and cost time and money in lost 

performance.'^^

Early AC motors were also contrary when it came to voltage manipulation, which 

was somewhat ironic, considering this was its shining quality in transmission. While it is 

true that alternating current motors dominate today’s industrial and household domains, 

and are much simpler and idiot-proof in terms of operation and maintenance, this was not 

always the case. It took a genius on the order of Nikla Tesla to conceive of such a motor, 

and the fabrication of a practical one took at least a decade of his toil.

''"Tellingly, the first practical application of Tesla’s famed induction motor was a 
small electric fan he invented in 1889. Literally billions of similar design would follow. 
The fan motor’s output was 1/6 horsepower, and marketed by Westinghouse. Siegfried 
Giedion, Mechanization Takes Command: A Contribution to Anonymous History (New 
York: W. W. Norton & Company, Inc. , 1948), 558. However, most residential-sized 
motors run off of a single split- phase motor. Interview with Jon Roholt, July 30, 2004.

''’̂ Single phase alternating current motors had been used for intenirban trollies the 
first two decades o f the twentieth century, but they were heavy, inefficient, complicated, 
and twice as expensive to maintain when compared to contemporary direct current 
motors. George W. Hilton and John F. Due, The Electric Interurban Railways in 
America(StanfoTd: Stanford University Press, 1964), 59.
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In comparison DC motors, simple conceptually and well understood by the turn of 

the century, offered a variety of speed and torque settings, and were an extremely sensible 

choice for the Milwaukee.Additionally,  the new motors were not only powerful and 

workable, and ran with a startling (to the point that this quality was almost universally 

commented upon) smoothness. This smoothness in starting and stopping, when 

compared the herky-jerky motion of a train pulled by a steam locomotive, was a distinct 

operational advantage for the Milwaukee. Sheered couplings and detailings, wliile not 

altogether eliminated, occurred much less often after the electrification.

Edison had dabbled with a direct current locomotive that could haul about three- 

quarters of a ton at a top speed of 40 mph, but for better or worse it was one of many 

neglected stepchildren in his myriad of projects, and Menlo Park would eventually obtain 

all of its DC motors from his former underling, Sprague.''*^ Most scholars of technology

'"^Generally, output torque in a DC motor is directly dependent on the amount of 
current going into the armature. Torque and speeds of modem DC motors are so easily 
controlled in this fashion that they are at a premium in delicate applications where finely 
controlled variable speeds are required, such as textile manufacture. DC motors can 
operate at as little as five to seven percent of the “base speed” (i.e., when the full current 
available is applied to the armature and it rotates at its maximum speed). This flexibility 
comes at a price, however. DC motors are more complicated mechanically, bigger, and 
more expensive than a comparably powered AC motor.

The constant base speed and torque of an AC motor is detemiined by the fixed 
number of windings on the poles that produce the rotating magnetic field. AC motors can 
(and do) “slip” when torque load on the motor increases. In terms of disadvantages for 
AC motors, speed control equipment is very complicated and expensive, and they tend to 
overheat at low speed when operating under a heavy torque load (two almost fatal flaws 
for this type o f motor when it comes to electrical traction).
See www.instanlweb.com/o/oddparts/acsi/motortut.htm.

'^A t this point in his life and even much later, Edison was particularly enamored 
of the idea of electromagnetic separation of base and precious elements in metallic ores, 
especially gold and silver. He remained long convinced that the successful outcome of
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cite Frank J. Sprague as the true father of the practical, mass produced, direct current 

traction motor that the Milwaukee would come to use (and that modem diesel electrics 

use as well).

Tellingly, some of the earliest electric motors were of the reciprocating type. The 

concept was so ingrained that the components of these motors resembled, piece for piece, 

those o f a steam engine.*'*  ̂Old habits die hard the world over. There was also a 

corresponding atavistic phenomenon in locomotive design. While the motor in the 

illustration below is a rotary one, the motion of the motor is converted back to the 

reciprocating type via a jack shaft, which in turn drove conventionally coupled drivers.*'*® 

Frank Sprague and most other inventors took a different tack. The long term trend 

was toward rotary designs. Electric motors in this era, in the case of GE’s unusual 

Bipolar design, could even be altogether gearless, the purest form of rotary motion. The 

Bipolar’s motors took this philosophy to its furthest extension. Most, however, employed 

reduction gearing on the inside of the wheel, very similar to Sprague’s first hanging-nose 

design.*'*’ A form of Sprague motor is in fact used to this day on diesel electric 

locomotives, more than an century after the advent of Sprague’s practical design.

this project would make his fortune accrued fi-om the incandescent lamp look paltry in 
comparison. Neil Baldwin, Edison: Inventing the Century (New York; Hyperion Press, 
1995), 119-20.

*'*̂ A. Sivard Strandh, A History o f  the Machine (Gothenberg, Sweden: Nordbok, 
1979), 156.

*'*®William D. Middleton, When the Steam Railroads Electrified (Seattle: 
Kalmbach Publishing, 1974), 423.

*'*’ Middleton, When the Steam Railroads Electrified, 422-423.
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Technically, a Sprague motor is classified as an axle hung, nose-suspended motor, with a 

single reduction gear. The Milwaukee’s original General Electric freight and Little Joe 

locomotives both had this type o f motor, and most modem diesels have it as well. In a 

Sprague layout, a high speed motor drove a pinion gear, which in turn drove a reduction 

gear arranged on the driving axle. Although the motor’s housing was clamped to the axle 

to ensure proper gear tooth alignment, most o f the motor’s weight was suspended from 

the wheel-truck. This system had two advantages. Using “nose suspension,” rather than 

having the motor directly over the axle, meant a locomotive’s weight distribution tended 

to be better with Sprague motors, and this type demonstrated clear superiority with their 

lower center of gravity over rival electric and steam systems. Additionally, unlike the 

Bipolar “gearless” system, gear tooth ratios could be adjusted in motors if they required 

modification to either freight or higher speed (and therefore lower power) passenger 

service.

Sprague’s various innovations were the death knell of cablecars, and cable 

traction and kinetic-type power transmission (such as the 200 odd-wheelpit scheme 

proposed at Niagra Falls) in general.*'*  ̂Any job that a cablecar did, in spite of its superb

148 Holley, The Milwaukee Electrics, 282-83.

the “Battle o f the Currents,” Westinghouse had not only won out over a rival 
electrical infrastmcture. The company also vanquished sundry competing mechanical 
systems for transmitting energy. Most scholars peg the definitive triumph of alternating 
over direct current to Westinghouse’s famed award of the Niagra Falls Project in 1895, 
which would ultimately power nearby Buffalo. The obvious efficiencies attained in 
transmitting “juice” over long distances with alternating, rather than direct, current made 
it an easy decision for the early American utility companies. In all likelihood, either 
electrical system would have been more efficient than proposed kinetic energy, 
mechanically based systems. In spite of electricity’s early promise, a series of 238 
hydromechanical turbine wheel-pits, 12 inlet tunnels, countless pulleys, and cable loops

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ingenuity, a direct current trolley car could do b e t t e r . T h e  key weaknesses of cablecars 

were very heavy installation expenses, more complicated machinery, and poorer overall 

performance compared to trolley cars, especially over distance. Even in the formative 

years o f electrical traction, cablecar operation was not competitive, except in the most 

short distance, high traffic situations.*^' The vast distances of the Dakotas and eastern 

Montana made cable traction an altogether all ill-suited solution to the Milwaukee’s 

operational problems by 1915.

Regeneration and Shunting

Another extremely important facet of motors which would have practical, money- 

saving implications for the Milwaukee was the phenomenon of regeneration and 

shunting. Unlike other applications of motive force which use heat (coal, oil, gasoline), 

electrical designs can switch easily, and much more efficiently, between mechanical and 

electrical energy. The fuel that a coal fired train uses undergoes one way entropy. Fuel, in

stretching for two-and-a-half miles, was still a seriously considered option as late as 1886. 
Two pneumatic and hydraulic systems were proposed as well. Although complicated, a 
system running on compressed air could run existing steam plant in Buffalo with very 
little conversion. The excessive capitalization required by both hydromechanical and 
pneumatic systems encouraged the Niagra committee to pursue electrical options, and 
arguably made the most sensible choice at the time. “The Day They Turned the Falls On: 
The Invention o f the Universal Power System” (Available online at 
httn://ublib.buffalo.edu/libraries/proiects/cases/niagara.htm. downloaded 5/30/02), 4-7.

' “̂George W. Hilton, The Cablecar in America: A New Treatise upon Cable or 
Rope Traction as Applied to the Working o f  Street and Other Railways (Berkeley: 
Howell-North Books, 1971), 147-151.

'^’George W. Hilton, The Cablecar in America: A New Treatise upon Cable or 
Rope Traction as Applied to the Working o f  Street and Other Railways (Berkeley, 
California; Howell-North Books, 1971), 153.
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the form o f coal is used to produce heat for the boiler of the locomotive, is irrevocably 

destroyed. Once the smoke billows from the stack, it cannot be efficiently converted back 

into useful energy.

Electricity is far more malleable and multifaceted as an energy source; both its 

intensity and type can be altered with exquisite control, and the energy can be recycled to 

a useful extent. Electrical energy can be converted into mechanical energy and once again 

be turned back into electrical variety. Such efficient arrangements are currently 

impossible with other types of energy. The Second Law of Thermodynamics states that 

such transfers are never perfect, since some energy is lost in the form o f heat, but 

electricity is far more versatile in this sense tliat any other motive force currently used. 

Once a pound of coal or a pint of oil gives up its thermal energy, it produces water and a 

variety o f gasses; in practice it cannot be turned back into a fuel.’”  As early as 1863, it 

was possible to modify a direct current generator into a motor, and vice v e r s a . S o  

similar, in fact, are these two types of direct current machinery, that an 1894 electricity 

textbook treats them as the same thing in virtually all c a s e s . T h e  Milwaukee Road was

'^^Richard Rhodes, The Making o f the Atomic Bomb (New York: Simon & 
Schuster, 1991), 30.

Antonio Pacinotti announced the discovery of this phenomenon in that year. 
National Electrical Manufacturers Association, A Chronological History o f Electrical 
Development from 600 B. C. (National Electrical Manufacturers Association, 1946), 35.

’̂ '^Francis B. Crocker and Schuyler S. Wheeler, The Practical Management o f  
Dynamos and Motors (New York: D. Van Nostrand Company, 1894),11-12. “Heretofore 
writers on the dynamo or motor have usually treated these machines entirely distinctly, 
and books or papers relating to the dynamo usually contain nothing about the motor or 
merely consider it briefly in a few special chapters, and books on the motor refer to the 
dynamo only incidentally. The authors have found that there is no necessity for this 
separation; in fact, nine out of ten statements which apply to the dynamo are equally
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fully aware of this fact, and made it the basis o f its regenerative braking system. The 

operator merely had to throw a switch and the train’s motors became generators. No such 

parallel exists in either external or internal combustion power plants.

Regeneration is an important concept that bears some explaining, and it is also 

closely related conceptually to the practice of “shunting.” The Milwaukee was in a 

unique position among American railroads because electrical traction’s operational 

versatility made it possible for the company to use the kinetic energy of a descending 

train not only for braking itself, but even for powering ascending trains.

hi motors, torque results from the interaction between the magnetic field force 

lines and the armature. Operating motors or generators, by their very nature, produce 

counterelectromotive force (CEMF), caused by the armature or rotor cutting through the 

surrounding field magnets line of electromagnetic fo rce .C onverse ly , motor action 

occurs in generators for the same reason. This is known as “countertorque.” The lower 

the speed, the less the CEMF. Correspondingly, when speed increases, CEMF increases 

as well.'^^ When current is applied to start the armature turning, it will flow in the 

direction determined by the applied DC power source. After rotation starts, the motor’s 

conductor cuts electromagnetic lines of force.*^’ Increasing field strength lowers the

applicable to the motor.”

‘̂ ^Mileaf, Electricity 1-7, 7-43, 7-45.

'^^Mileaf, Electricity One-Seven, 7-48.

‘̂ ’Mileaf, Electricity One-Seven, 7-49. While CEMF limits the motor’s base 
speed, its role is quite important. For instance, if the motor armature is jammed, the low 
resistance of the armature’s copper windings cannot handle any voltage applied, a huge 
short circuit ensues, and the motor immediately overheats and can eventually be 
destroyed unless the jam  is cleared. With application of current the armature moves and
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motor’s speed while increasing its torque. When the current is lowered, or “shunted,” the 

field’s strength is lowered, resulting in a higher speed.

The practical implications for the Milwaukee of this phenomenon were many. At 

a certain point, if the field strengths surrounding the armature were consistent, a state of 

equilibrium is reached, the motor can rotate no faster, and is effectively half generator and 

half motor. Thus motors have a built in speed limiting device.'^® The only way to increase 

motor speed (which incidentally lessened power) was to weaken the overall electrical 

field surrounding the armature, which is known as shunting. The Westinghouse 

passenger locomotives, again possibly owing to the relative inexperience of the company 

in this field, were inadvertently designed to be particularly amenable to shunting. The 

first shunt lowered field strength to 86 percent of the normal field strength; the second 

shunt lowered it to 72 percent of normal field s t r eng t h . The  field could be weakened 

even further as well. Retired Milwaukee fireman Bill Merrill succinctly explained 

Westinghouse’s unwitting contribution to speeds higher than considered advisable:

There was one thing you could do on a Westinghouse and make it beat 
anything on wheels, you see, the Westinghouse had two shunts per speed 
where a GE only had one. A shunt would weaken your traction motor field 
and give you more speed but less pull. You could run a Westinghouse 
wide open in the second shunt and then put it into regeneration to weaken 
the field even more. It was almost like another shunt. Now the motor was 
set to regenerate and slow down as you closed the throttle (author’s note- 
cut the amount of current). Instead though, you would leave the throttle

cuts lines of force (flux) and cuts down the short circuit current that line voltage caused in 
a low resistance (jammed) armature. CEMF also acts as a current limiter, allowing 
enough current through to be useful without overheating the motor. Power supply 
operates in an armatuie as a true electrical load rather than a short circuit. Natural or base 
speed occurs when the sum o f the voltage drop across the armature as a result of its built 
in resistance plus CEMF just equals applied line voltage.

’̂ ®Lou Bloomfield, www.phvsicscentral.com/Ioe/lou-02-Q2.html. 1-2

'^^Westinghouse, Rules and Regulations Governing the Operation of the 
Westinghouse and Electric Passenger Locomotives Class EP-3 (East Pittsburgh: 
Westinghouse Electric & Manufacturing Co. , 1926)
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wide open and keep motoring. Then you would get going faster instead of 
slower. You could get your train up to 90 miles per hour on level track like 
that. It was strictly against the rules though. It was hard on the traction 
motors and might create a flashover.'®°

The “flashover” that Merrill referred to occurred when the commutator’s brushes 

touched each other because of bumping, such as at a grade crossing, or in certain 

instances going 90 miles per hour in a 283-ton vehicle, itself towing roughly 1,500 tons. 

Performance was hindered and carbon deposits on the brushes had to be immediately 

tended to. Merrill’s anecdote also exemplifies the close relationship between shunting and 

regeneration.

Regeneration basically took shunting one step further. Regeneration takes place 

when the generator action in the motor is so high (and the field’s strength so weak) that 

the motor effectively becomes a generator, consequently turning them into self-regulating 

brakes. Braking begins when the voltage produced by the descending train exceeds that of 

the trolley. For example, a descending Little Joe class locomotive typically put out 3400 

volts to the trolley wire’s 3200 volts when braking regeneratively.'^^ If there was radio 

contact between the engineer and the substation operator the trolley’s voltage could be 

dropped even further, and hence enhanced braking power even further.

A modem diesel in fact goes into regeneration as well. Rather than going back 

onto the grid to power other trains (as the Milwaukee’s system allowed), the diesel driver 

motors’s current generated by downhill momentum is fed through into cast iron grids and 

dissipated as thermal rather than electrical energy, in effect similar to the heating 

elements in a kitchen range translating electrical energy into heat. In both cases the 

current’s relatively high voltage (220 for a range, roughly twice that for a downhill train

'“ Holley, The Milwaukee Electrics, 112-13. 

'^’Holley, The Milwaukee Electrics, 287.
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acting as a generator) is reduced to virtually nil by the high resistance of the iron. To 

convert this heat back into work, rather than possibly powering a nearby ascending 

locomotive as the Milwaukee was able to do, would require some sort of Stirling (caloric) 

engine attached to the resistor grid. While possible, the results would not be practical.

The practical results for the Milwaukee’s use of regenerative braking were many. 

If  an descending grade was longer and steeper than an ascending grade (for example, an 

eastbound train summitting Pipestone Pass out of Butte), a train actually produced more 

energy than it had expended in crossing a summit. This energy could then be used to 

power a train ascending elsewhere. The advantages over airbraking were obvious. 

Airbraking typically slowed a train to about 40 miles per hour, while regeneration could 

slow a train to 17 miles per hour or even less. The savings in hydraulic line, rail and 

wheel flange wear, brakeshoe pads, and the like has never been documented, but 

knowledgeable observers universally concur that savings had to be substantial.

Putting It All Together: The Milwaukee’s Electrical Fleet

The Milwaukee employed four types of electrical locomotives over the years -  

three from General Electric, and one from Westinghouse. All designs varied widely, 

owing to the relatively primitive state of heavy industrial traction in the first half of the 

twentieth century. General Electric introduced the “E-1" series in 1915, as part of a

‘“ Ironically, primitive designs resulted in almost ridiculously overbuilt motors 
which in turn resulted in stupendous power and endurance figures (a windfall for the ad 
department). A GE freight motor could go at 132% of its normal power rating for an hour 
(at overload rating, where the motor does heat up substantially, but not to the point of 
danger), and last 70 years in the process. By way of contrast, diesel-electric engines 
cannot be overloaded for any practical length of time because the DC motors have been 
designed with much finer tolerances, owing to advances in electrical engineering in the 
past century. Also, a portable diesel engine can only put out so much power - a self 
propelled prime mover (such as a steam or diesel engine) cannot exceed its power rating. 
An electric locomotive, drawing power off o f a very large hydroelectric grid, can. The
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package deal with the Milwaukee, wherein GE and subcontractor American Locomotive 

Company (ALCO) would supply 30 locomotives and a 3,000 volt trolley system, 

complete with substations, over territory in Montana, Idaho, and Washington. These 

locomotives became the early mainstay of the electrical fleet, and many were in service 

for an astonishing 58 y e a r s . ( S e e  Plate XVII, page 139).

The second type of locomotive resulted in something quite different. The Bipolar 

was General Electric’s answer to Westinghouse for passenger motors. The rather unusual 

name referred to the two poles that provided the electric field for the armature. Unlike 

other design in which the motor drove a small pinion gear, the armature on this 

locomotive was the wheel’s axle itself. The Bipolars were state of the art in 1915: a 

gearless motor with only two poles (see below for a more technical description), an 

admirable example o f simplicity, public relations glamor, and durability. Barring some 

untoward event, they were almost completely silent in operation. Although other 

electrical designs were relatively quiet when compared to steam or diesel locomotives, 

the Bipolar’s lack o f sound (other than a low hum) consistently impressed observers.

The Bipolars were also much more aesthetically pleasing than the other designs, and most 

closely resembled the comfortable proportions of a steam engine. (See Plate XVm, page 

140).

The Bipolar’s other defining characteristic was its ruggedness. They were in 

service fi-om 1918 to 1962 and had an unparalleled ability to accelerate quickly and 

negotiate tighter turns than any of the Milwaukee’s other electrical locomotives.

power put out by the dams at Black Eagle and Thompson Falls, and potentially available 
for the Milwaukee’s locomotives, remains several orders of magnitude higher than the 
power o f any diesel engine, portable or not, in this or any age. Even though motors in 
diesels cannot handle overload relative to the older GE designs, this obviously was not a 
decisive factor in the overall competition between motors and engines, and the 
subsequent dominance of the diesel-electric. Holley, The Milwaukee Electrics, 294.

Holley, The Milwaukee Electrics, 33.
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Plate XVH: A GE EF-1 operating near Deerlodge in 1972, almost 60 years after it was 
introduced. Holley, 77ie Milwau/^e Electrics, 56.
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Plate XYni; Two Bipolars, date unknown. Note the unique rounded design, superficially 
similar to a steam locomotive’s profile. Holley, The Milwaukee Electrics, 96.
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According to Cascade Division engineer King Clover, who was rounding a blind curve in 

western Washington on one occasion: “A tree had come down at Hyak and knocked the 

track twelve inches out of line in the shape of a ‘U.’ I knew we couldn't stop before we 

got there and I thought we were going over in the ditch. Instead we went over that track 

just fine and the Bipolar stayed on the rails. By the time we got stopped, the out of line 

track was under the baggage car.” '^

For its time, the Bipolar epitomized modem design. While these locomotives 

were fairly popular with the public, management, and the Milwaukee’s roundhouse 

maintenance crews, they were much less well-liked by the men who had to operate them 

in the field, especially engineers working in the Rocky Mountain Division. Simply put, 

aforementioned flexibility of this locomotive gave an extremely rough ride at speeds 

higher than sixty miles an hour, particularly on poorly maintained track, which was a 

universal problem for railroads during and after the Second World War.'^^ Retired 

fireman Bill Merrill compared the ride to that of a “lumber wagon.” ®̂* This problem led 

to more than disgruntled crewmen. All of the high speed Jostling made Bipolars 

notoriously susceptible to flashover as well.

The perennial competition between GE and Westinghouse had important 

implications for the Milwaukee Road in 1917. The railroad was looking to expand its 

passenger operations with 15 additional locomotives and desired to purchase the 

appropriate equipment from General Electric, with whom the Milwaukee had, up to that 

point, enjoyed an exclusive relationship. America’s entry into the First World War,

'^Holley, The Milwaukee Electrics, 92. 

'^^Holley, The Milwaukee Electrics, 117. 

'^^Holley, The Milwaukee Electrics, 100.
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however, complicated matters. All major purchases of physical plant had to go through 

the United States Railroad Administration, and in the case of the Milwaukee’s proposed 

purchase, the Administration insisted that 10 Westinghouse motors had to be part of the 

package, theoretically in the interests of more efficient production.

However, Westinghouse had nowhere near the track record that General Electric 

had when it came to direct current traction. Not surprisingly, both Westinghouse and GE 

took the Milwaukee’s proposed performance specifications and took two completely 

divergent approaches to design. GE’s answer to these specifications was the Bipolar; 

Westinghouse responded with the EP-3. (See Plate XIX, page 143).

The EP-3 was the most massive locomotive that the Milwaukee owned in its 

seven decades and for many Milwaukee personnel, it represented the biggest headache of 

any locomotive in the electrical fleet. The locomotive had some fundamental design 

flaws that centered on the wheels and suspension, chief among them the unnecessarily 

large diameter of the drivers, which measured five feet, compared to roughly three feet 

for the GE locomotives. Because of relative inexperience in the field, Westinghouse 

designers took their cue from steam locomotive design, which achieved additional torque 

and speed by enlarging the drivers. As previously mentioned, torque was desirable; 

however, Westinghouse took the concept in the wrong direction in the case of the EP-3. 

Since electrics usually had the motor’s energy going through a reduction gear, smaller 

wheels could be used. Smaller drivers had the distinct advantage of putting far less stress 

on the entire locomotive frame. The high torque of the five foot drivers, combined with a

'^^Holley, The Milwaukee Electrics, 102.
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Plate XIX: A Westinghouse EP-3, 1931. Note the relatively large driving wheels. Holley, 
The Milwaukee Electrics. 106.
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poorly designed, inflexible (for any transcontinentars tight-radius mountain turns) 

carriage, resulted in the constant re-welding of cracked EP-3 frames.

The EP3's other problem was a novel system of shock absorbers incorporated into 

the wheels. Called a quill, the system consisted of a hollow steel tube surrounding the 

axle. (See Plate XX, page 145). These two components were connected by a series of 

springs, which were supposed to absorb the jolt of two very powerful motors starting a 

train from a standstill. The Westinghouse locomotives did provide a very smooth and 

fast ride, which endeared them to engineers, but the system of quills and springs was too 

delicate and overrefined to provide consistently reliable service. Management, and more 

particularly maintenance men, detested these ten locomotives.

At the pinnacle in terms of design and performance were the EF and EP-4, or 

Little Joe class locomotives, purchased by the Milwaukee in the late 1940s. There are 

three possibilities for the origin of the unusual name. Technically this class of locomotive 

was slightly less physically imposing than the even larger AC trolley trains purchased by 

the Great Northern for tunnel use. There was also the distinct possibility that some irony 

was involved in the choice of the name, much like the nom de guerre of Robin Hood’s 

huge and powerful right-hand-man. Little John. For a Joe was no small thing; each 

weighed in at a hefly 289 tons. Finally, these locomotives had originally been intended 

for sale to the Soviet Union, then squarely under the thumb o f a “Little Joe” of its own. 

Whatever the origin of the name, with the beginning of the Cold War, a sale o f such an 

advanced product to an increasingly hostile nation was unthinkable. Consequently, GE

'^®Holley, The Milwaukee Electrics, 117.
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Plate XX: Quill drive, used on the Westinghouse EP-3 Motors. Not surprisingly, 
Westinghouse designed something completely at variance with what General Electric had 
developed at the same time. While it had undoubtedly pioneered long-distance AC 
transmission, the Westinghouse Company was a lesser force in the field of electrical 
traction. While quill-drive motors gave the EP-3's a smooth and fast ride, the motor’s 
design was overrefined and ill-suited to the rough terrain of the Northern Rockies. 
Additionally, always hard-pressed Milwaukee Road maintenance men favored the simpler 
GE motors over the quills. The gearing arrangement is similar to that of Baldwin’s 
unsuccessful 1944 turbine design. Illustration fi*om Bill Wilkerson, The Milwaukee Road 
Electric Passenger Locomotives, (Harlowtown, Montana: Times Clarion Press, 1998), 51.
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changed the gauge on the locomotives and the Milwaukee purchased them at a very 

reasonable price.

Like the first General Electric locomotives purchased in the 1910s, the Joes were 

remarkably durable and efficient; they actually helped to stave off the Milwaukee Road’s 

final bankruptcy. This “staving” again came in the form of greater reliability and 

corresponding lowered maintenance costs than could be achieved with either late steam 

or early diesel technology. The Little Joe was an almost perfect combination of power, a 

simple but reliable design, and a surprising ability to work with more modem 

diesel/electric units. (See Plate XXI, page 148). Much more was known about motor 

design and performance by the time the Little Joes were manufactured, and although an 

engineer could not run a Joe’s motors in excess of “recommended” ratings as he could 

with the older designs, the superior performance of the newer design was patently 

obvious.

Crews loved these 12 locomotives, and they were in constant service for 24 years, 

right up until the end of the electrification in 1974. Essentially, they were purchased 

because of the dire need to haul more tonnage in the electrified divisions after the Second 

World War. A Joe’s thirst for current was prodigious, and Laurence Wylie was obliged to 

reconfigure components in the trolley system in order to get voltages up from 3,000 volts 

in the pre-1950 period to 3,400 volts subsequently. The Joes were hailed for their day-in, 

day-out reliability, but it was their power that made them almost legendary in engineering 

circles. The following anecdote speaks to both reliability and power:

*^^Holley, The Milwaukee Electrics, 118.
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The Little Joes could really put out some power...One time I was riding 
over the Butte Hill on a train with two Little Joes and some diesels. The 
diesels broke down [my emphasis] while we were on the grade so the 
engineer stopped the train. We didn’t want to double the hill, so I gave the 
engineer approval to see if the Joes could make it by themselves. It was a 
good day with dry rail and no wind to blow the sand off the track. Also we 
were right beside the Janney substation when we started, so I knew we 
could get full voltage. Running at 475 amps per traction motor, the Joes 
pulled the train over the hill with no problem at all. After the trip, I did 
some calculations and they showed that the Joes had to produce 6,700 to 
7,000 horsepower each at 30% adhesion to pull that train.

This combination of these four machines, then, was the Milwaukee’s electrical 

fleet in toto, A look into what was involved in running one of these machines would be 

instructive, as well as illustrative of the fact that both types of current were utilized with 

considerable ingenuity by the railroad. After the 100,000 volt AC hydroelectric current 

was converted via a motor-generator set in one of the substations to direct current and 

then sent onto the 3000 volt trolley line, it was ready for use by the Bipolar, which had 

twelve motors. These motors could be arranged in four different ways, depending on the 

combination o f speed or power an engineer desired. The full 3000 volts was not used to 

start the train from a standstill -  the force the motors would put out if the engineer 

allowed full voltage had the potential to sheer fasteners or couplings at any point on the 

train. “Peeling out’’ would be the closest analogy in the automotive world, and trains, 

having both steel wheels, rails as a road, and loads several orders of magnitude higher, do 

not peel out -  they either derail or decouple, occasionally with catastrophic results. The

'^®Holley, The Milwaukee Electrics, 137-39. The above quote was by Barry Kirk, 
head of the electrical division from 1963 to 1971. A contemporary diesel, by way of 
comparison, was typically rated at 1500 horsepower per unit.
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Plate XXI: A GE EF-4, better known as a Little Joe, Deerlodge, 1973. Holley, The 
Milwaukee Electrics, 149.
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problem was not a lack of power. The problem was that power itself had to be applied 

slowly and smoothly. Through a series of cast iron resistor banks, the voltage was cut to a 

desirable level. Regardless of the voltage being used or the way the engineer arranged the 

motors, maximum current (amps) could be drawn, although current strength dropped as 

the train picked up speed. The engineer would then move the throttle to the next setting, 

which eliminated a set amount of resistance from the grids and restored current strength.

The number one resistor setting cut voltage to 1200 volts, which meant that 100 

volts went to each motor in the series. The number 10 setting had all resistors “cut out” 

which meant that the maximum possible voltage of 250 volts went to each motor in the 

series for a total of 3000 volts. What current remained returned through the rail to the 

substation motor-generator sets.'^‘ Even if a healthy amount o f voltage remained after 

going through the motors, there was little danger o f “third rail” type electrocution, 

because the distance through which the current had to travel back to the substation 

-usually several miles- cut the strength of the voltage (since it was direct rather than 

alternating, as well as the fact that steel rail does not conduct electrical current nearly as 

well as copper trolley wire).’’^

Changing settings depended on how much current went through the circuit. The 

engineer was supposed to keep a particular setting cut in until current strength dropped to 

225 amps, and then he “shifted” the throttle to the next setting, so he could draw the

'^'Bill Wilkerson, The M ilwaukee’s Electric Passenger Locomotives 
(Harlowtown, Montana; Times Clarion Press, 1998), 23-4.

’’^Interview with Jon Roholt, Electrical Engineer for Idaho Power, August 20,
2003.
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maximum of 250 amps that the manufacturer. General Electric, recommended for 

acceleration. The Bipolar had ten settings for a series arrangement. By the time the 

throttle had been moved to position “ 10" all the grid resistors were removed (“cut out”), 

and the 3000 trolley line volts gave 250 volts to each of the 12 motors.

The engineer also had the option of arranging the motor circuits in “series- 

parallel,” since this arrangement did not precipitate such large voltage drops across a 

circuit. At the maximum throttle setting of “ 10” (for a total of 3000 volts) the motors 

could be situated in two parallel series of six (500 volts per motor set), three of four (750 

volts) or four of three (1000 volts). In parallel arrangements current strength varied, again 

according to Ohm’s law.

To complicate things further, engineers avoided excessive use of resistor grids 

whenever possible. Resistors in the form of motors presented useful work, but other 

resistors, in the form of cast iron grids, meant incidental, useless heat (very similar, 

conceptually, to the useless and costly friction in a steam engine layout) which had to be 

cooled by blowers to prevent the grids from overheating dangerously while the train ran. 

The motors themselves were always potentially in danger of overheating, a fact which 

worked to the railroad’s advantage when operating in a climate that was cold six months 

o f the year.'^^ Indeed, in colder weather, the electrics proved themselves more efficient,

’’^Holley, The Milwaukee Electrics, 63, shows a GE advertisement with one of its 
products silhouetted against a massive crag, a cascade of “white coal” nearby, modestly 
titled “World’s Mightiest Locomotives.” Among other purported benefits of GE’s 
locomotives was the claim: “Operate best in cold weather when steam locomotives have 
their greatest trouble.” Compared to the Milwaukee’s steam fleet, this was true. Although 
DC batteries still die in frigid conditions, trolley wire systems do well in very cold 
weather -  possibly one o f the reasons for The Soviet Union’s ultimate (and mystifying, to
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cost effective, and reliable from the outset. In the words of one of the railroad’s board 

members;

Our electrification has been tested by the worst winter weather in the 
memory of modem railroaders. There were times when every steam 
locomotive in the Rocky Mountain Division was frozen, but the electric 
locomotives went right along. Electrification has in every way exceeded 
our expectations. This is so, not only as respects tonnage handled and 
mileage made, but also the regularity of operation.'^'*

If anything, the electrics worked too well in colder conditions, to the detriment of 

operations in warmer weather. In summer, for example, constant vigilance had to be 

exercised by the engineer to ensure against overheating. Skillful use of the series and 

parallel arrangement according to circumstances often obviated the need for excessive use 

o f the resistor grids.

Although the electrics were easier to operate than steam engines, getting the right 

combination for a particular set o f circumstances could be difficult for an engineer. Even 

with earlier, more simply designed locomotives in the Milwaukee’s electric fleet, such as 

the Bipolar, had a bewildering variety of settings and grid resistance amounts available. 

The Little Joe class locomotives, purchased by the Milwaukee in late 1948, had 37 

resistance settings for each motor arrangement, plus the capability to “tie-in” electrically 

with any diesel electric units that might be in tandem with the electrics, a common

American eyes) preference for electric rather than diesel traction in polar conditions when 
covering long distances.

' ‘̂‘Charles R. and Dorothy M. Wood, Milwaukee Road West, 73.
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situation in the railroad’s final y e a r s . T h e  Joe’s control throttle, however, changed the 

motor arrangement at the appropriate time automatically -  a tidy parallel to the 

introduction and eventual dominance of automatic transmissions in the American auto 

industry. The operation of the throttle from standstill to full speed on a Joe roughly 

paralleled shifting gears in a car; there were just more gears to handle (and it took at least 

two miles to stop a fully loaded train).

In spite of such a seemingly complicated series of processes to leam over the 

years, the electrics were in an entirely different league fi-om steam as a whole, as can 

clearly be seen by a good number of eyewitness accounts of experts as well as 

contemporary literature. The engineers would eventually grow very fond of the system 

and trains that the Milwaukee had in place, and the system was doubtless cheaper and 

more reliable than steam. However, were there any drawbacks to the new system, and if 

so, what were they?

Some Problems Exclusive to the Electrics

*’^Bill Wilkerson, The Milwaukee Road EF-4 Locomotives (Harlowtown,
Montana; Times Clarion Press; 1991), 13-14. This tie-in device was an excellent example 
o f the ingenious mind o f Laurence Wylie, The Milwaukee’s Chief Electrical Engineer 
from the late 1940s to the late 1960s, and was responsible for keeping the Milwaukee’s 
increasingly aged electrical fleet going in the face o f ever stiffer competition fi-om diesels. 
Wylie constantly struggled with the company’s upper echelon, which favored the 
“Mechanical” (steam, and later diesel) Division over the electrics, and Wylie resorted to 
some austere (but brilliant) ad hoc solutions. Holley, The Milwaukee Electrics^ 210-213. 
Wylie also struggled within the Electrical Division itself. His superior, Rainier 
Beeuwkes, who was responsible for the field implementation of GE engineer A. H. 
Armstong’s original designs of the Milwaukee’s infrastructure, ruled the Electrical 
Division with an iron (almost Edisonian) hand for 34 years (1914-1948). Believing 
everything perfect “as is,” Beeuwkes refused to modify virtually anything in the Electrical 
Division during his tenure, according to Wylie. Holley, The Milwaukee Electrics, 160.
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While a marked improvement over steam in terms of lower operating costs and 

overall reliability, the system the Milwaukee had in place was hardly perfect (and it grew 

less “perfect” with each passing decade, owing to the Milwaukee’s studious neglect of its 

electrical'division). Electrical traction was not without its drawbacks, especially in states 

with climates hostile to all rail locomotives, whether steam, electrical, or diesel. Although 

the Milwaukee’s electrics were less complex mechanically than its steam engines, a 

number o f anxieties existed for a given electric locomotive’s engineers, as well as rail 

maintenance crews and substation operators.

One potential weakness of electrification in the face of diesels is in the arena of 

distance. Longer distances cost much more in terms of infrastructure for straight electrics 

than for diesels. Indeed, the partial electrification Trans-Siberian Railway becomes more 

explicable only when one realizes that there was absolutely no equivalent o f an interstate 

highway system in the Soviet Union, or (to this day) in the Russian Federation. One 

would assume the other factor in this partial electrification is the superior performance of 

straight electric motors in one o f the world’s coldest inhabited regions.

Lightning poses a constant danger in any outdoor electrical system, in particular, a 

“system” consisting of 432 miles o f electrically-dependent infrastructure in the Rocky 

Mountain Division. While the Northern Plains is not Tornado Alley, danger from 

electrical storms on remained a constant concern for both utility companies and large

’̂ ^For a critique of the old Soviet rail system’s transition from steam to electrics 
and diesels, see Ernest W. Williams, Jr. , Freight Transportation in the Soviet Union: 
Including Comparisons with the United States (Princeton: Princeton University Press, 
1962), 134-35.
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consumers of electricity, such as the Milwaukee. Even today, lightning is a seemingly 

random, but ubiquitous, source of concern for electrical utilities running high voltage 

lines. The dangers were more than theoretical for the Milwaukee. A thunderbolt hit the 

trolley line near the Two Dot substation in the 1930s, caused some transformers within 

the substation to explode, and blew out the roof of the structure. The building burned for 

several hours, with considerable damage.’’  ̂ In spite of this mishap, accidents of this 

nature were rare, because lightning arresters had been standard fare for all electrical lines 

from beginning of the twentieth century.*’®

The trolley was also vulnerable to other vagaries of nature, particularly excessive 

snow. A typical trolley set up consisted of a top, “messenger” wire, usually made of 7/16 

inch steel cable, connected by a series of intermediate clips to the copper wire through 

which the current ran.*’’ While damage from the weather or the occasional rock slide 

could wipe out sections of trolley line, the damage could be compartmentalized. If 

damage occurred between Gold Creek and Ravena, for example, operations slackened 

only between those two substations, not the entire line. Nevertheless, given conditions in

’’’Noel T. Holley, The Milwaukee Electrics, 241.

’’^International Textbook Company, Types o f  Collectors fo r  Heavy Traction 
(London: International Textbook Company, Stationer’s Hall, 1909), 51. When lightning 
hit unprotected electrical plant, it ruined both motors and substation equipment (and in 
the cold logic o f a railroad’s insurers, also killed valuable trained operators). Lighting 
arresters were designed to shunt very high voltage loads, such as lightning, directly to 
ground as quickly as possible.

’ ’^International Textbook Company, Transmission Systems fo r  Heavy Traction 
(London: International Textbook Company, Stationer’s Hall, 1909), 41.
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the northern Rockies, trolley repair crews were seldom idle.’̂ '’

Electrolysis was another constant aggravation. This phenomenon dissolves 

chemical compounds electrically. The most widely known example of this (and a 

mainstay of many a local science fair) is dissolving water into its constituent parts, 

hydrogen and oxygen, by means of a dry cell battery and two metal electrodes inserted 

into the water (the converse of this process is used to power fuel cells). Electrolysis is not 

exclusive to water. It also occurs in iron, copper, and lead compounds, among many 

others. Since rails are made of steel, and steel is nothing more than a special type o f iron 

with the right amount o f carbon in it, electrolysis consequently had practical implications 

for those running direct current lines, such as the Milwaukee. Instead of returning the 

current to the substation as planned, some o f the current would go to ground in the 

inevitable gaps between the rails, eating steel off of the “positive” end of the rail 

section.*®* While the Milwaukee made fairly successful efforts to ameliorate this 

problem, the rails required constant inspection for pitting and gaps on the positive ends of 

the return rails, which if not maintained, could cause a derailment.*®  ̂It was all of these 

above mentioned aggravations that gave diesel-electric proponents witliin the 

Milwaukee’s mechanical division some of the ammunition they required when decrying 

the electrics. The irony, however, is that the diesels being lauded as a solution borrowed 

extensively from the straight electric traction technology the Milwaukee first employed in

*®®Noel T. Holley, The Milwaukee Electrics, 156.

*®*Intemational Textbook Company, Transmission Systems fo r  Heavy Traction 
(London: International Textbook Company, Stationer’s Hall, 1909), 59.

*®^Interview with Milt Clark, April 10, 2002.
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Montana in 1914.

Diesels, the “Technological Children” of the Milwaukee Electrics

The heir to the struggle between steam engines and electric motor drive is the 

diesel-electric unit, a hybrid design that combines a number of desirable features from 

both systems of motive power: Diesels inherited from steam the ability to carry fuel along 

for the ride, rather than depending on an outside source, such as a trolley wire. A diesel’s 

direct current motors provide both power and speed, as are required. The maintenance 

requirements for a modem diesel unit are a relatively simple affair compared to tending to 

a steamer, although the projected savings promised in diesel’s early years were 

excessively rosy, at least in practical t e r m s . A  diesel locomotive at regular operating 

speed will consume 180 gallons of fuel per hour, no small amount, to be sui e. The act of 

fueling is accomplished in a very similar fashion to that of a typical motorist putting ten 

dollars worth of gasoline into his car at the comer gas station. Tme, the backbreaking toil 

of the fireman had been eliminated altogether. The burden lies solely now with the

*®̂ The thermal efficiency of a diesel electric unit is roughly 30%, compared to 7% 
for a steamer. Tuplin, The Steam Locomotive, 82-84. However, early diesels amortized 
much faster than the older electrical plant. Engineer Swede Hansen: “There ain’t a diesel 
made that can compare with a Joe (GE Models #E-F4 and EP-4). A damn diesel is just 
like an automobile, there are too many things that can go wrong with them. They just 
can’t take it. The diesels were nice when they were new, but they went to pot after a few 
years.” Noel T. Holley, The Milwaukee Electrics: An Inside Look at Locomotives and 
Engineering (Edmonds, Washington: Hudman Publishing, 1999), 144. In spite of 
generally admirable qualities, electric locomotive E-21 (a Little Joe) went runaway on 
Hansen in 1951. He put himself in the hospital for a month stopping the train with 
emergency friction brakes. With a typical sense of occasion and largess toward its 
employees, the Milwaukee presented Mr. Hansen with a “gold pass” (free rides on the 
line’s passenger trains) for his trouble. Holley, The Milwaukee Electrics, 238.
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mechanics. In the case of the Milwaukee Road, however, straight electric operation still 

made economic sense after World War H, a mark of its tenacious superiority even after 

forty-plus years of hard operation in the Rocky Mountain Division. Diesel fuel cost the 

Milwaukee 9 cents per gallon in the mid 1950s; compared to 6.8 cents for the same 

amount o f power provided by electricity.'*'* The twenty four million dollar investment of 

1914 was still not only markedly superior to steam as of 1955, but also still more 

economic than the system that was supposedly state-of-the-art, the diesel-electric.

Amazingly enough to anyone who has ever been stuck behind a city bus, diesel 

engines, when properly maintained, bum cleaner than gasoline variety. The qualifier is 

“properly maintained.” Even in gasoline engines, fuel injection has now all but 

completely replaced the traditional carbureted fuel-air system. Again, there is more than 

one correct approach to a mechanical problem, especially when all of the systems 

involved are in their relative infancies (or like late steam, which at this time was in its 

dotage). Fuel injectors are far easier to deal with than fiddling with a carburetor’s many 

parts, and with the aid of modem electronics, can reach astounding levels of 

performance.'*^ Gasoline and diesel fuel injection lost out to the carburetor in the early

'®'*Noel T. Holley, The Milwaukee Electrics: An Inside Look at Locomotives and 
Railroading (Edmonds, Washington: Hudman Publishing, 1999), 213.

'*^Recently, a technician well-versed in EFI (Electronic Fuel Injection) altered a 
CM Corvette’s engine to produce approximately 1200 horsepower. By way of 
comparison, the author’s Honda Accord is rated at about 145 horsepower, which can 
attain speed o f 100 miles per hour in about 20 seconds. A 2005 six-liter Corvette stock 
engine (no slouch in terms o f acceleration capability) redlines at just over 400 
horsepower. The altered Corvette can literally go from zero to 180 miles per hour in well 
under ten seconds- and it continues to accelerate even at 180 miles per hour. No-one has 
been able to find out when this vehicle stops accelerating under actual road conditions

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



twentieth century because consistently machining efficient injectors on a mass basis was 

not possible at the time. Like other early prototypes of a given technology, engineers 

realized that a better solution was theoretically feasible, but material technology was up to 

the challenge at the time. Neither the absolutely consistent, piece-to-piece machining 

precision required for proper fuel injection, nor the metallurgy then existed. Additionally, 

diesels, because they necessarily operate under much higher compression ratios, had to be 

constructed much more robustly than gasoline engines, and were therefore much heavier 

and suited only for large scale applications, such as stationary, marine, and locomotive 

engines.

It should be noted here that both the nascent postwar diesel systems and the 

straight electric system utilized the still ubiquitous Sprague motor -  proof that the diesels 

that came later owed a good deal of their design characteristics to the Milwaukee electrics 

pioneered by the Milwaukee. The simple, elegant, and mechanically advantageous virtues 

of the Sprague-type motor were recognized early on by GE electrical engineers, and was 

exemplified by its use in both the early and late mainstays of the Milwaukee’s electrical 

fleet (the GE EF-1 and the Little Joe, respectively). More importantly, for the wider 

raihoad world, this type of motor was also used in the vast majority of diesel-electric 

locomotives that would eventually dominate the American rail system after the Second 

World War. The important thing to bear in mind is that the diesels were not as 

“revolutionary” as they were made out to be, and that they owed a good deal of their

because it would be an exercise in suicide. While impressive, it is not particularly safe 
nor fuel efficient (even by NASCAR standards) for a ground vehicle. The Learning 
Channel, Rides, documentary aired February 13, 2004.
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superior performance to the pioneering work of Frank Sprague.

Tellingly, steam fared less well compared to even the earliest, most primitive, 

diesel electrics (direct descendants of the Milwaukee straight-electrics). For example, in 

the twelve year transition period for the Baltimore and Ohio Railroad from steam to 

diesels (1945-1957) fuel costs for the railroad dropped from $23.6 million annually in 

1945 to $21.2 million in 1957. More dramatically, fuel costs comprised 18.5 percent of 

the B & O ’s operating costs at the end of World War U. By 1960 this figure had dropped 

to 8.5 percent, an impressive number in the light of general postwar inflation.'®® The B & 

O enjoyed even gieater cuts in water expenses as well. Unlike the old steamers, the 

locomotives now only required water as a coolant for the diesel engine block, which 

circulated in a sealed system, rather than as a prime mover escaping to the open 

atmosphere. Accordingly, water costs for the B & O dropped from $945,000 a year in 

1945 to $147,000 a year in I960.""

The Baltimore and Ohio was not the only company to avail itself of the new 

technology. A Pennsylvania Railroad study noted the cost of operation for a freight 

steamer was $2.37 per mile, while a comparatively powerful diesel operated at a cost of 

$1.94 per mile. The Penn had a good deal of track mileage and an 18 percentage 

reduction in per mile costs was not a difficult decision for the railroad to make.

There were other, more general advantages to diesels as well. Diesels, like the 

Milwaukee’s electrical fleet before them, were much more standardized than steamers.

'®®http://www.exotic.railfan.net/dieselfaq.htm, 2 

'®^http;//www.exotic.railfan.net/dieselfaq.htm, 2, 3.
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One unforeseen financial consequence of modularization (discussed earlier) is that banks 

were much more willing to loan to an applicant holding a finished product with 

standardized, rather than individually machined (essentially unique), parts.

Diesels, like the Milwaukee electrics before them, had much wider ranges of 

operational maximum efficiency. A diesel was available 90 percent of the time ( 

comparable with the Milwaukee’s electrical fleet in its early, well-tended prime) 

compared to 40 percent for a steamer. Finally, it was becoming an ever more difficult 

proposition for a yard master to find readily available spare parts for an aging national 

steam fleet. More and more, if  one wanted a spare part, one had to contact Baldwin or 

ALCO for a custom job.'

Economically, it is much easier (if a corporation can bring the finances to bear) to 

produce millions of Model T’s, than it is to produce 300 GE Diesels, which in their own 

turn are cheaper to produce twelve Little Joes, which in turn are cheaper to produce than 

one basically unique steam engine. No matter how powerful and efficient each individual 

locomotive maybe, economics can sometimes outweigh actual performance.'®^ Train 

transport is doomed by this concept in a larger sense, unless it can accomplish some sort 

of hybrid system with road transport combining the best from each competing system 

(such as piggybacking) or capitalize on its real strengths towing true bulk goods long 

distances (such as coal) over straight and relatively level roads.

'®®http://exotic.railfan.net/dieselfaq.htm, 2-3.

'®®James F. Dunnigan, How to Make War: A Comprehensive Guide to Modern 
Warfare in the 2F* Century (New York: HarperCollins Publishers, Inc. , 2003), 556.
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We see this phenomenon in the rise of interstate trucking (tellingly, diesels are 

also used in today’s semi truck trailers). Trucks and interstates have replaced railroads for 

all but the heaviest freight, and the rail industry is subsidized to a large degree. Trucks 

will never replace trains for huge loads of raw materials, such as coal, destined for steam 

turbine electrical plants. For everything else, which is the unquestioned majority of the 

American freight market, trucks work quite well.'^” The miles and miles of immobile 

copper cable that the BAP and tlie Milwaukee strung, the thousands of trolley poles, the 

substations every 30 miles, the Milwaukee’s dependence on Montana Power, and the 

reliance on skilled and independent workers, all underscored the huge cost in 

infrastructure, and ultimate inflexibility, of the electrified rail system. Even with reliable, 

efficient diesel-electrics, building railheads to thousands of towns off of the trunk lines 

was, and remains, an inefficient option. Semis hauling loads of 80,000 pounds can go 

almost anywhere roads are paved, and only the most remote locales in the United States 

or Canada do not have a paved road and delivery point. Railroads by their very nature are

In spite of today’s dominance of the diesel truck, for over the road hauling, 
direct current motors are used extensively in another part of the American freight system: 
forklifts. Retail customers seldom buy a commodity by the boxcar or semi-load. 
Something has to break loads down into smaller parts, and get them to their intended 
customers. This can be done by hand to a degree, but at a certain point machinery has to 
take over in the interests of efficiency. Forklifts are yet another type of vehicle where 
various engine technologies compete, even today. The author has used both electrical 
(direct current motor off of a 5000 pound series o f batteries, where the batteries provide 
needed ballast) as well as two and four-stroke internal combustion (propane, and 
gasoline) type forklifts extensively, with varying degrees of success. From personal 
experience, the usefulness of a machine has to do more with its age and upkeep rather 
than the type o f motive power it utilizes. Either type can be very effective and safe, or 
more trouble than it is worth and a menace to any worker in the vicinity. In terms of sheer 
physical weight, coal hauling completely dominates contemporary western American rail 
traffic. Interview with Milt Clark, former employee of the Milwaukee Road and Soo 
Line, currently with Montana Rail Link, April 10, 2002.
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more inflexible than highways. This was particularly true of electrical traction when 

compared to moving it on the American highway system, which became increasingly 

widespread after 1920, and was the best on the planet after the Second World War. 

Perennially benighted Montana, usually near the end of the line when it came to Federal 

Highway appropriations, did not have a contiguous Interstate until the early 1980's .

In spite of the above-mentioned “inflexibilities” of all railroads -  steam, electric, 

or diesel-electric -  for certain tasks, how efficient and powerful are the modem diesel- 

electrics? Darryl Munson, a former brakeman and switcher for the Union Pacific and then 

an engineer for the Kaiser Steel Railway companies, noted that at Kaiser Steel’s (now 

defunct) “Eagle Mountain” ore railway (which connected with the Southern California 

Railroad) ore train, weights of 10,000 tons over a staggering four percent grade were an 

everyday occurrence. In terms of operational problems, full-blown runaways were a very 

rare occurrence, at least during Munson’s time at the Kaiser line. Three occurred during 

Munson’s fifteen years at Kaiser, and there were no major derailments or loss of life. 

More common, according to Munson, were “break-in-two’s,” in which the drawbars 

would sheer because of the high tensile forces involved in pulling a train of such size. 

Break-in-two’s usually occurred when the locomotives were attempting to get a train 

rolling firom a dead stop. Interestingly, Kaiser largely eschewed the process of middle 

helpers, and put all of the GE U-33-C diesels either on the ft-ont or tail ends of the train 

(usually three in front, and one helper in back). Alternatively, Kaiser would place three 

units in the front, and three in the middle. Even with such a set of powerful locomotives, 

the trains typically only moved along at the rate o f eight miles per hour and the track had
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to be heavily sanded’̂ ' (10,000 tons is still 10,000 tons and needs to be handled gingerly). 

Tellingly, Munson also stated that Kaiser had looked at something similar to what the 

Butte, Anaconda and Pacific had installed, but since it was not in immediate proximity to 

a copper mine/smelter facility like the BAP, it was more economical to use diesels.

In spite of such impressive examples of performance, even in the Space Age, and 

with all of the hard-won advances in railroad technology that took much of their 

“technological DNA” from the first Milwaukee electric locomotives, running trains can 

still be a hazardous business. For example, in early February 1989, a Montana Rail Link 

train attempted to cross through the Mullan Tunnel on the Continental Divide twenty 

miles west o f Helena. Forty-eight cars on the train decoupled and turned into a 20 mile 

runaway, owing to a lack of middle helpers and miserable operating conditions -  the 

daytime high was 30 below Fahrenheit. A colossal wreck in the Helena freight yards 

ensued, several hundred people had to evacuate the area, and large portions of Helena had 

to do without basic utilities for the span of a day.’̂  ̂Even with all that the engineers and 

scientists know today, a locomotive having all the modem failsafes under adverse, or 

even ideal, conditions can fail, and great care and skill must be exercised to avoid these 

situations. A typical train’s load requirements are in the neighborhood of 4000 tons (it

‘̂ 'Sanding the rails is an age old railroad practice with the goal of getting more 
traction from the driving wheels. Many old steamers actually had “sand domes.”

'^^Interview with Darryl Munson, former brakeman and master engineer for the 
Union Pacific and Kaiser Steel Eagle Mountain Railways, February 10, 2004.

‘’^Martin J. Kidson,“Crossing the Divide by Rail,” Helena Independent Record, 2 
June 2002, 1,6(C). Modem American freight trains still have to climb or descend a 1.5 to 
2% grade between ten and fifteen miles per hour -  anything outside of this range is either 
difficult to climb or hazardous to descend.
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should be noted that weights as high as 10,000 tons are hardly representative)'^"' and 

speeds range anywhere from one to 60 miles an hour. The forces involved in moving 

something this massive so quickly are great enough that forged steel couplings can fail. In 

spite o f siich hazards and limitations diesels have completely usurped both steam and 

straight electric technology. Diesels combine the versatility of steam with the low 

maintenance and variable power availability of electrics. Indeed, diesel-electric 

technology is no longer limited to rail transport.

With all of the advantages of the diesel-electric locomotives combination of motor 

and engine technology, why did the Milwaukee instead opt for straight electrification, an 

infrastructure requiring a large expenditure of time and money? The short answer was 

that a practical diesel-electric design did not exist in 1915 when the Milwaukee made its 

unusual choice to electrify. Admittedly, the electrification cost over twenty million 

dollars, but this investment paid for itself within fifteen to twenty years, according to the 

figures available. Additionally, it can be argued that the diesel-electrics owe their very 

existence to the pioneering work done by GE and the Milwaukee.

‘̂ "'Interview with Darryl Munson, former brakeman and master engineer for the 
Union Pacific and Kaiser Steel Eagle Mountain Railways, February 10, 2004. These high- 
end weights are for short haul applications, and typically for mine-to-smelter ore hauling 
operations, such as what the BAP had installed between Butte and Anaconda, or later the 
Kaiser operation in southern California.

Volkswagen recently produced a prototype hybrid diesel electric car that gets 
282 miles to the gallon. “Energy Forever,” by Amory B. and L. Hunter Lovins, The 
American Prospect, February 11, 2002, 32.
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Conclusion

Was, then, electrification to blame for the Milwaukee’s ultimate demise? It is the 

author’s hope that by illustrating through a number of specific examples in the above 

pages that the answer is a resounding no. In spite of a number of design modifications 

such as altering fuel or streamlining, late steam technology was not even close to the 

efficiency and power offered by the relatively primitive designs of the GE EF-1 and 

Bipolar locomotives. The superiority o f the Little Joe class locomotive to late steam and 

even early diesel-electric designs is even more apparent. The mechanical advantages of 

rotar>' design o f the motors versus the reciprocating design of steamers was yet another 

factor. So too we must consider the incalculable advantages of regenerative braking. In 

virtually every category of mechanical performance these new designs of motors 

completely eclipsed what had been the benchmark of performance for over a century, the 

high pressure Stephenson-type reciprocating locomotive. Of equal significance: many 

design features still used on modem diesel-electrics, such as the Sprague-type motor 

mentioned above, can trace their ancestry back to the first of the Milwaukee’s GE 

locomotives, the EF and EP I's.

All well and good on the performance front, but what about the bottom line? As 

was mentioned in the first chapter of this thesis, the railroad clearly had other financial 

problems, some self-inflicted, others the result of simply being in the wrong place at the 

wrong time. The ill timing o f its expansion, the arguable deviousness and or 

incompetence of its management over a period of decades, the high bond-to-stock ratio 

resulting from transcontinental expansion, all of these factors were the real culprits, not
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electrification. The author firmly believes that if a rival railroad with sounder finances 

(such as the Great Northern or Northern Pacific) had undergone similar electrification, the 

heavy freight system in the American west would appear a great deal different than it 

does today.

As we have seen, the locomotives represent more than just the rather freakish 

choice o f a upstart granger railroad. The story of electrical traction is also representative 

of a number of complex phenomena apparent in technological history. We see resistance 

to change on the part of both the engineers and the public. We see non-technological 

factors, such as Thomas Edison’s pridefulness and intense personalization of the “Battle 

of the Currents,” heavily outweighing purely technical considerations. We see rival 

systems clash, sometimes over a period of many years, when it is not readily apparent 

which system is superior. Paradoxically, we also see the successful integration of rival 

systems, such as the Milwaukee’s tandem use of the electrics and more modem diesel- 

electrics, as well as their use of both alternating and direct electrical currents. We see de

skilling of a skilled trade, such as an engineer, and attendant modularization of a given 

manufacturing process. We see many other things as well. The story of these locomotives 

and their role in saving the Milwaukee time and money is also in large part the story of 

invention and technology for American technology as a whole prior to the Second World 

War.

Epilogue

The substation at what was once Loweth, Montana, high in the Castle Mountains,
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is one o f the most forlorn images in Eastern Montana and that is saying something. The 

bleak hills that surround the building certainly do not help -  brown, treeless, and scoured 

by winds on all but the mildest of summer days. The substation itself would be a pitiful 

sight in afiy setting. Gutted of its vintage motor-generator sets, transformers, and anything 

else o f value that could be removed and sold in 1977, the building is a virtual hulk. Local 

vandals helped complete the transformation, by applying graffiti liberally and shooting 

out every last window, defacing a structure that was once the pride of both General 

Electric and one of the larger players in the American rail system. Other than a few pieces 

of rigging and some rusted, shot-out five gallon cans, nothing of worth in this substations 

remains, other than the brick structure itself. The building still stands, but not out of 

sentimentality on anyone’s part. Only the failure of the railroad to find a local market for 

scrap brick spared the Loweth building the fate of most of the other substations, which 

the company’s creditors razed. A few other substations in the Rocky Mountain District 

still stand. One at Goldcreek, which is remarkably well preserved, the other, at Ravenna, 

is in identical condition to the Loweth substation. A fairly well-preserved substation 

about halfway between Missoula and Frenchtown also remains.

Most of the locomotives suffered fates similar to those of the substations. They 

were cut into scrap and sold to a junkyard or foundry. There is a GE Locomotive still 

proudly on display in Harlowtown, itself now just another slowly dying hamlet on the 

Great Plains. In addition, a Little Joe stands near the Old Territorial Prison in Deer

One Milwaukee buff warned the author off of tarrying long around the old 
substations because of PCB’s. Interview with Rich Misplon, December 12, 2002.
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Lodge, the sole economic mainstays of which, at the dawn of the twenty-first century, are 

the Montana State Prison and nearby State Mental Hospital.

In a way, the wretched image o f the Loweth Substation symbolizes the failed 

promise of the Milwaukee Road’s fitful 70-year tenure in Montana and the passing of 

heavy industry’s primacy in the American economy. For whatever combination of 

reasons -  the rise of interstate trucking, more efficient rail competitors in the region, 

Montana’s tenuous economic situation through much of the twentieth century -  all that 

remains to serve as monuments to the Milwaukee Road’s operations in the state are two 

locomotives and one caboose decorating town squares, a few ruggedly handsome 

passenger depots (some boarded up in sorry disrepair; others well maintained, such as the 

Boone and Crockett Club under the Higgins Street Bridge in Missoula), numberless 

creosoted trolley poles, scores o f tunnels, and a few gutted brick substations.

Maybe the most important legacy of the Milwaukee Road’s electrification was not 

its ultimately anemic contribution to the economies of the Great Plains, the Rockies, and 

the Northwest, but rather the groundbreaking work in electrical traction that the railroad 

undertook in tandem with General Electric, the implications of which still exist today. 

The wedding of the most advantageous aspects of the “motor” and “engine” philosophies 

for making a vehicle (in this case, very large vehicles) move in an efficient fashion. The 

motor system, initially less promising than the engine system, was in ascendency by the 

second decade of the twentieth century. Motors, paradoxically, made the evolution from 

external combustion engines to the greater power and modularized efficiencies of the V- 

16 internal combustion engines (the prime movers on a modem diesel-electric unit).
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Modem American rail systems owe their existence to a successful wedding of motor and 

engine technology. Without the admittedly primitive and overbuilt direct current motors 

that the railroad utilized in the mid-‘teens, none of what followed, including today’s 

diesel electric units, would have been possible. The process of steady improvement in 

components of the straight electrics resulted in viable technology for diesel electrics by 

the 1950s.

Although railroads have surrendered a great deal of their dominance to over-the- 

road trucks since the Second World War, they still remain an indisputably pivotal 

component of the American transportation system, and modem diesel-electric technology 

owes much to the early electric designs. What made the Milwaukee Road unique was its 

choice of electrical motive power on a unprecedentedly vast scale and its ingenious use of 

both types of currents. The Milwaukee’s achievement o f installing such a unique system, 

however overall financially unstable the company, were resounding mechanical and 

economic triumphs over steam. Though the Milwaukee Road is now gone, another 

casualty of changing economic trends, the story of its electrical locomotive fleet remains 

a fascinating example of human ingenuity.
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