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McCarthy, Timothy J., M.S. February 1908 Chemistry

The Chemistry of 5,6-(9,10-anthraceno)-l,2,4,6- 
cycloheptatetraene.

Director: Edward E. Waali

The chemistry of 5,6 ~ (9,10-anthraceno)-1,2,4,6-cyclohep­
tatetraene (2̂ ) in solution was the focus of this research. 
Application of the 9 , 10-anthraceno bridge system as constraint 
at this position on the eyeloheptatetraene ring was proposed to 
alter the chemical reactivity of the system in such a way as to 
favor carbene chemistry. Produced from the photolysis of the 
tosyIhydrazone sodium salt 140 and the dehydrohalogenation of 
the chlorotriene 130, two products attributed to ^  were iso­
lated. The dimer 141 was the product of dimerization followed 
by rearrangement. T h e  formation of triptycene H E  was thought 
to be the result of rearrangement of ̂  followed by solvent 
assisted carbon loss. A mechanism involving TT-TT interactions 
between a rearranged carbene system and the p-orbitals in the
9.10-anthraceno bridge system was hypothesized to be involved 
in facilitating carbon loss.

Varying the position of the constraint (in this case the
9.10-anthraceno bridge) on the seven membered ring does not 
produce dramatic differences in the chemistry in the system 
59 - The chemistry is best ascribed to the reactivity of
the substituted allene 2.

59

2

11
Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

A B S T R A C T ................................................................... ii

TABLE OF C O N T E N T S .........................................................  iii

LIST OF F I G U R E S .............................................................  iv

LIST OF T A B L E S .............................................................  iv

ACKNOWLEDGEMENTS ...........................................................  v

I. INTRODUCTION .............................................................. 1
A. C A R B E N E S ........................................................... 1

1. Generation of Carbenes ......................................  4
2. Reactions of Carbenes ......................................  6

a. Addition Reactions .................................... 6
b. Insertion and Hydrogen Abstractions ................. 9
c. R e a r r a n g e m e n t s ........................................  13

3. Spin State P o p u l a t i o n ......................................  14
B. A L L E N E S .............................................................  16

1. Generation of Aliénés ..........................  . . . . .  17
2. Reactions of A l i é n é s ........................................  18

C. CYCLIC. FULLY CONJUGATED. CARBENE/ALLENE SYSTEMS ...........  20
1. Cyclopropenylidene / Cyclopropadiene .....................  20
2. Cyclopentadienylidene / Cyclopentatriene ................  22
3. Cycloheptatrienylidene / Cycloheptatetraene ............ 24

a. Benzoannelated Systems ...............................  32
b. 9,10-Anthraceno Bridged Systems .....................  34

i. The ^ - s y s t e m ......................................  35

II. RESULTS AND D I S C U S S I O N ................................................ 40
A. SYNTHESIS OF PRECURSORS TO THE 7-SYSTEM. 1 / 2 ................  40
B. GENERATION OF THE 7-INTERMEDIATE. 1/2 .   45 1 , ^  ̂

III. EXPERI MENTAL...........................................................  53

IV. R E F E R E N C E S .............................................................. 64

111

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



LIST OF FIGURES

page

Figure 1 : Calculated AHf Values vs. Reaction Coordinate for the

System 59—^ ....................................................... 27

Figure 2: Reaction Products from the ^-system. .......... . . . . .  36

Figure 3: Rearrangement Scheme: Interconversion of CL, /SandT

Systems............................................... .. 37

Figure 4: Other Carbenes Exhibiting Carbon Loss..................... 39

Figure 5: Attempts to Generate the Tropone 124.....  41

Figure 6: Synthesis of -system precursors...............................44

Figure 7: Products Isolated from the Production of the

7-Intermediate..................................................... 48

LIST OF TABLES

Table 1; Generation of Carbenes.  ............................  4

Table 2: Generation of Aliénés............................................. 17

Table 3: Reaction Conditions and Product Yields, 7-system......  45

IV

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGEMENTS

I would like to thank Dr. Ed Waali for his patience, valuable 

advise, guidance and friendship over the past two years during my stay 

in the chemistry department. His assistance in obtaining some critica­

lly needed spectra from MSU was greatly appreciated. Both Dr. Ralph 

Fessenden and Dr.Todd Cochran were invaluable to this research with 

their advice during Dr. Waal i s  sabbatical leave, and review of this 

manuscript. Livia Harris was also very helpful in the pinch!

I thank my wife and pal, Nancy, for her support and love during 

this research. This is at least half hers!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



I. INTRODUCTION

The research described here involves the production and charac­

terization of a constrained cycloheptatrienylidene/cycloheptatetraene 

system in solution.

The introduction presents a brief review of some of the properties 

of carbenes and aliénés, including completely conjugated three-, five- 

and seven-membered carbocyclic carbenes and their valence isomeric 

allene counterparts.

A. CARBENES

Carbenes differ from other intermediates in that they are diva­

lent, neutral, highly energetic, short lived entities. Methylene (R = 

H) is the simplest of the carbenes and may exist as a singlet (So), 

excited singlet (Si), or triplet (T„) species.&

So S, To

The simplest molecular orbital (MO) bonding model for So would 

assume the carbon as having sp^-hybridization with both electrons 

occupying the sp®_orbital, leaving the perpendicular p-orbital vacant. 

The H-C-H angle for So would be expected to be less than 120® due to 

the non-bonding electron pair repulsion present. The S, state would 

have the two electrons paired but in both the available orbitals. The 

bond angle in Si would thus be expected to be greater than 120°, due to

1
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less electron pair repulsion and because the two orbitals both have a 

single electron. Carbenes with two orbitals, each occupied by a single 

electron with identical spin, have a total spin quantum number (s) 

equal to one and a spin multiplicity (2s + 1) of three indicative of a 

triplet state. The two p-orbitals of the Ti state with sp-hybridiza- 

tion, are degenerate and orthogonal, making the bond angle 180=. 

Spectroscopic studies have in fact shown that methylene, aryImethylenes 

and alkyImethylenes are ground state triplets with bond angles of 130- 

180= and that their corresponding singlet states have angles between 

100- 110=.=

Predicting and determining the ground state characteristics of a 

system is very important in studies involving carbenes. The relative 

energies of the singlet and triplet states can be altered by the 

effects imposed on the system from various substituents linked to the 

carbene carbon.^*** By reducing the bond angle at the carbene carbon 

the C7-orbital obtains more s-character and the singlet state may be 

stabilized. The character of the perturbation determines the relative 

energy differences between the singlet and triplet states, and there­

fore, which is the ground state. Alkyl groups have been found to have 

a negligible effect on the relative energy states and thus are very 

similar to the perturbation effects of hydrogen.= The result is that 

dialkylcarbenes are also ground state triplets. Other substituents, 

however, such as those that are able to donate electrons to the carbene 

center, have been found to lower the energy of the singlet state 

relative to the triplet state. Therefore, carbene centers with halogen 

or oxygen substituents have singlet states that are stabilized relative

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



to their triplet states.* Unsaturation next to a carbene center has 

also leads to ground state singlet characteristics.^

As more complex substituents are added to the carbene system, it 

becomes difficult to predict with confidence the nature of the ground 

state. Experimental procedures must therefore be employed to determine 

these energy relationships. OiphenyImethylene (DPM), for example, has 

been found to be a ground state triplet.® The bond angle at the 

carbene carbon might be expected to be 180“ with the two phenyl groups 

lying in the same plane. However, this is not the case, as the bond 

angle has been found to be about 150“ with the phenyl groups twisted in 

relation to each other.

With an unfilled p-orbital, the singlet species is usually 

electrophilic in nature, seeking electron rich centers. This property 

can be measured directly by Hammett studies. A more qualitative 

understanding of an intermediate's electrophi1icity may be obtained by 

observing its reactivity to electron-rich versus electron-poor alkenes.

Groups like oxygen, which have the ability to donate electrons to 

the carbene carbon, reduce its electrophi1ic character. Dimethoxycar- 

bene, for example, has been found to be nucleophilic in its reaction 

with electron deficient double bonds.^ Nucleophilic character would be 

expected from such a species as the empty p-orbital would be removed 

from actively participating in electrophi1ic attack.
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1. Generation of Carbenes

Some of the most general methods for making carbene intermediates 

are summarized in Table 1.

TABLE 1: GENERATION OF CARBENES

Rv + -  h\r A  R
R ' C - n - n     + N 2

N a +  .
Rs. t  . r  . h v T R  Na+

^  ^  S O g A r  -  ^ c :  +  Ng +  S O g A r  ref ii

^  ^  V  • -r i>ig
ref 12R '  ' N

R

R o U —  X

R ^ y  ^  R R

y  B : ~  R
C :  +  B H  +  X  ref 1

f  A  R v .
R a C — H g     ^ C :  + H g R

R

R n^ h \t R ' .c=c=o ---------- ĉ: + C O
R  '

R — ---------   ^ % : c :  + c H 2 = c H 2
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ref 14
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Upon photolysis or thermolysis of the sodium salt of the tosyl- 

hydrazone derivative» the tosyl group is initially cleaved to leave the 

highly reactive diazo group. Further decomposition results in the 

formation of a carbene intermediate and a nitrogen m o l e c u l e . B e c a u s e  

of the great stability of the nitrogen molecule, its formation is the

N a +
\
/ C = N  N— Ts

A  o r h V

-T s

R

R
C =  N N Mr

R - N r

R

\
/ N

- N c

A  o r h V

R

R

I S C R

cn
\

R
cn

driving force behind the decomposition of the diazo compound. Because 

spin is conserved in the decomposition, the carbene is formed in a 

singlet state which may decay to a lower energy triplet state.

Although photosensitized decomposition may produce a triplet carbene 

directly,!^ this was not attempted in this research.

The photolytic decomposition of the sodium salt of the ketone 

tosyIhydrazone derivative (140) was used as one method to attain the 

cyclic carbene\allene intermediate 1/2 studied in this research.
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2. Reactions of Carbenes

In carbene studies, determination of the lowest energy state, the 

energy separation between the singlet and triplet spin state and the 

spin state responsible for the chemistry observed is of great interest. 

Although a number of spectral techniques exist to observe the charac­

teristics of carbene intermediates in inert matrices,^*®<■ most 

studies rely on the differences in the reactivity of the singlet versus 

the triplet intermediate species with other molecules in solution. The 

most characteristic reactions of carbenes are; additions to multiple 

bonds, insertions, hydrogen abstractions, and rearrangements.

a. Addition Reactions

The [2+1] cycloaddition reaction of carbenes to alkenes produces 

c y c l o p r o p a n e s . This type of reaction has been synthetically applied 

to produce strained cyclopropane rings. Since the carbene is highly 

energetic, it has the ability to build highly strained molecules when 

intramolecular additions are performed, as is the case in the construc­

tion of the strained tetracyclic framework 5.®*
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H

Nf
hv
-N,

5

Carbenes centers adjacent to double bonds may also add to produce 

cyclopropanes.
HM

H

Addition may also occur with alkynes and benzene.®® A useful method 

for producing spiro-compounds involves the addition of a carbene to 

exocyclic double bonds. Spiropentane (^) has been produced from the 

addition of two equivalents of methylene (7) to allene (6).®®

H

9

The mechanism by which addition occurs and the products that 

result, also provide a way of distinguishing between the singlet and 

triplet spin states of the carbene i n t e r m e d i a t e . A c c o r d i n g  

to the Skell Hypothesis, singlet and triplet carbene species are 

postulated to differ both in their selectivity and in their stereospe- 

cificity of addition to double bonds. From this, the most reactive
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spin state can be determined by studying the stereochemistry of the 

cyclopropane products. In general, the rule holds that addition of a 

singlet carbene to a double bond can occur in a one step mechanism in 

which the stereochemistry of the alkene is preserved. This concerted 

mechanism is allowed because the spin state is conserved as reactants 

go to products.

J
Triplet species on the other hand behave like diradicals, one 

electron must undergo spin inversion in order to produce a ground state 

cyclopropane singlet product. This line of thinking is an extension of 

the Pauli Exclusion Principle which states that an orbital may not 

contain two electrons with parallel spin. They must be spin paired.

For this reason a step-wise mechanism is necessary. Because rotation 

about the single bonds present in the diradical is assumed to be faster 

than intersystem crossing (ISC), the stereochemistry of the alkene can 

be expected to be scrambled in the cyclopropane product. The use of

stereospecificity as a test for the spin state of a carbene must be 

limited to those methods which do not produce the carbene in a highly 

excited singlet state (S,). Cyclopropane addition products formed from 

the addition of a photolytically generated, highly excited singlet

8
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H R*
X 'ĝtgtion ■ y R f' \

H P 

fSC Y

V - X
V

 r ± a H/X

H

ISC

>' .R 
^ C ----

R-^r

H

\ :
'•)
Y

•X

X
methylene carry excess vibrational energy. Although addition may 

initially be stereospecific, the cyclopropane product may undergo cis- 

trans isomerism after its formation, giving the appearance as if the 

triplet carbene was involved.^®*®®

b. Insertion and Hydrogen Abstractions

An insertion reaction is a common singlet carbene reaction in 

which a carbene attacks a single bond in a concerted mechanism.

Because of its ability to insert into 1*, 2*, 3®, aliphatic, allylic or 

vinyl C-H bonds indiscriminately, methylene was classed for a time, as 

"...the most indiscriminate reagent known in organic chemistry."®* 

Insertion into the C-H bonds of pentane, H-methy1-pentane and 3-methyi- 

pentane by methylene produced by the photolysis of diazomethane gave
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insertion products in the ratios expected statistically, showing its 

very random b e h a v i o r . M e t h y l e n e  produced in this manner is obviously 

not very synthetically useful. Methylene generated by other methods, 

and other types of carbenes are less reactive and show a corresponding 

increase in their selectivity, preferring to insert in the order 

tertiary > secondary > primary.

In an insertion reaction, a single bond is broken and the carbene 

carbon is inserted between the two atoms of the attacked single bond 

via a three-centered transition state. Because of the concerted nature 

of this reaction, any stereochemistry present in the molecule being 

attacked will remain.

10

H

11

H ' C

m a jo r

12

In an interesting study by Gutsche and co-workers,®*^ this mecha­

nism was given additional validity. They studied the intramolecular 

insertion yields that occurred on production of 10. They found that 

the greatest yield of insertion occurred where the molecule could 

orient itself so as to give the proper orientation for the three- 

centered transition state 11. The preferred pathway of attack being 

midway between the C-H atoms and perpendicular to the C-H bond thus 

produced 12 as the major product.

10
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Kollmer=* has completed calculations using modified CNDO molecular 

orbital programs to shed light on the mechanism of insertion and 

addition reactions of nucleophilic carbenes. Nucleophilic attack of 

cyclopropenylidene and methylene on a Hg molecule is symmetry forbid­

den. These calculations indicate that the rate determining step for 

the reaction is an electrophilie phase whereby the hydrogen molecule 

approaches the carbene from above forming a three center bond with the 

empty p-orbital of the carbene. Then, in the nucleophilic stage, the 

hydrogen bond is broken and the HCH plane rotates to a tetrahedral 

configuration while the lone pair of the carbene populates the (J* 

orbital of the hydrogen molecule. This indicates that the p-orbital is 

important in insertion reactions when dealing with a® nucleophilic 

carbenes where the p-orbital is allowed to react. The p-orbital of a 

carbene has a similar role in additions to double bonds.X
\ - /

X

H

11
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In the presence of heteroatoms, insertion occurs preferentially 

between the heteroatom and the hydrogen bond to the exclusion of other 

possible insertion sites. Insertion reactions with alcohols thus 

produce ether linkages rather than alcohols.

The reaction of a triplet carbene with a single C-H bond occurs by 

a non-concerted mechanism, as shown on the previous page. In this 

situation, the triplet carbene first pulls off a hydrogen from a 

solvent molecule to form two radicals which may then combine to form 

various recombination products. Alternatively, the radical may 

abstract another hydrogen. Any stereochemistry that was present at the 

abstraction site will be lost due to the formation of the two achiral 

radicals.

19
0 -̂1 "

20

12
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Abstraction products are very important in observing triplet 

carbene chemistry. In a study of the solution chemistry of diphenyl- 

methylene (DPM) (14), it was found that triplet DPM (15) abstracts 

hydrogen from the solvent to give the two radical species 16 and 17, 

which then recombined to give the products 19 and 20.

c. Rearrangements

Shifts of a hydrogen to produce an alkene (ie. 22) as well as 

shifts of alkyl and aryl groups are very common in carbene reactions.

H H H H
21

‘H
23

H

25

5
H -C — C— C = C

A A 22

H

26

For example, the rearrangement of cyclopropylcarbene (23) has been 

found to expand to cyclobutene (24), while the rearrangement of m -  

tolylmethylene (25) has been found to give o-tolylmethylene (26).

The reversibility of rearrangements between carbenes and nitrenes 

was demonstrated from the intei— conversion of 2-pyridylmethylene (27)

13
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and phenylnitrene (29).== This observation plays a vital function in 

the chemistry of large cyclic systems as will be described later.

H

28

*N
>

2927

3. Spin State Population

The method used to produce a carbene may affect the proportion of 

singlet to triplet species in a reaction. For example, both singlet 

and triplet spin states can be formed in the production of the methyl­

ene carbene by photolysis or photosensitized p h o t o l y s i s . T h e  ratio 

of the singlet to triplet spin states is dependent upon the precursor 

that is used, the photolysis wavelength and the reaction cell condi­

tions employed.

Addition of an inert material in large excess may result in the 

intersystem crossing (ISC) of singlet state intermediates present to 

the corresponding triplet s t a t e . D o i n g  this in the presence of an 

olefin increases the percentage of non-stereospecific product produced. 

This technique takes advantage of the fact that kinetically, inter- 

system crossing from a singlet to a triplet species is mononuclear and 

independent of concentration, while stereospecific addition is first 

order with respect to concentration. For example, methylene has been 

found to undergo stereospecific addition to olefins, indicating that 

singlet methylene was produced from the photolysis of diazomethane. 

Photolysis of diazomethane in the presence of a high pressure of an

14
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inert gas, however, has produced non-stereospecific addition products, 

indicating intersystem crossing to its triplet ground state.

Hexafluorobenzene, with its inert C-F bonds, in solution also brings 

about singlet decay.

Triplet species quenching agents, such as Oa, may be employed in 

order to see addition reaction products solely attributable to the 

singlet species.

Solvent polarity has also been found to effect the ratio of 

stereospecific to non-stereospecific products. The polarity of the 

solvent affects the singlet-triplet energy gap resulting in the rate of 

spin inversion to be altered. The more polar singlet state is strongly 

stabilized in polar solvents, where as the less polar triplet experi­

ences only a slight stabilization.^^

15
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B. ALLENES

>H H

In the simple allene structure shown above, the central carbon is 

sp-hybridized, while the other carbons are sp®-hybridized. Overlap of 

one of the p-orbitals of the central carbon with a p-orbital of each of 

the outside carbons requires the substituents on each of the outside 

carbons to be orthogonal. Allene systems have an axial symmetry. When 

X or Y are different substituents, two enantiomeric forms are possi­

ble . The stability of a cyclic allene system is dependent upon the

30 31 32/V /V
size of the ring in which the allene moiety is contained as well as the 

amount of other saturation and functionality that is present in the 

system. At room temperature, 1,2-cyclononadiene (30) is isolable, 

however, neither smaller ring sizes such as 1 ,2-cyclohexadiene (32) nor 

the more highly saturated 1,2,4,6,8-cyclononapentaene (31) is stable 

under these same conditions.

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1. Generation of Aliénés

There are many methods for producing aliénés, the most syntheti­

cally useful being the dehalogenation reactions of dihaloalkenes, 

dihalocyclopropanes and h a l o a l k e n e s . ^ ^  Table 2 shows some examples.

TABLE 2: GENERATION OF ALLENES

ClI Cl
I

HgC— C = C H 2  > H 2 C = C = C H 2  +  H^C— C = C H 2
Cl

ref 44

.Br

•Br
MeLi

C
II
C
II
C

/ ^ C H 2 ) n
C
II
C
II
C

N c H 2 ) n /

ref 45

Cl

i f

Base ref 46

Low temperature, base promoted elimination from halo-alkenes 

produces an allene intermediate and the salt of the base and halide. 

This method was used in this research to attain a substituted cyclic 

allene intermediate of ^  from the various chlorocycloheptatriene 

isomers 33a-d.

17
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B-

2. Reactions of Aliénés

Aliénés have been shown to undergo 2+2 cycloadditions with alkenes 

to give c y c l o b u t a n e s . For example, 1,2-cyclohexadiene (32) undergoes 

2+2 additions with styrene to produce ^  and with itself to produce the 

dimer 36 and tetramer 3 5 . Aliénés also undergo electrophi1ic 

addition reactions such as hydrohalogenation to produce dihalopropanes 

and halopropenes like 38 and 39.

Pasto and co-workers^^ studied the singlet and triplet cyclopro- 

py1idene/allene system and their interconversion as might be related to 

their photochemistry. The energy barrier for the disrotatory ring 

opening (DRO) of the singlet (40) and triplet (41) cyclopropylidene 

species to their singlet (42) and triplet (43) allene counterparts was 

calculated to be 18 and 19 kcal/mole, respectively.

18
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Br Br

R.

H

Li Me,

35

H

A

Ph

H X

Ph

37

36

RCHg—  C —  CHR 
¥  238 X

RCH;:------C = C :

39

R

H

The realization that carbene and aliénés may have an intimate 

relationship is very important in larger, fully conjugated systems such 

as the C?Ha system studied in this research.
nA n

H2C=TrC:=rCH2
42

1
,C.

41

H 2 C ^ 1 * ^ C H 2

43

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



c. CYCLIC. FULLY CONJUGATED. CARBENE/ALLENE SYSTEMS

When studying carbenes in fully conjugated cyclic systems, con­

sideration of their valence isomeric allene forms can be very impor­

tant. Molecular orbital calculations can be used to help in investiga­

tions where a number of possible intermediates are viable in a reaction 

scheme. MNDO molecular orbital calculations are semi-empirical 

methods for estimation of the energy of a molecular system. MNDO is 

considered semi-empirical because it relies on some experimentally 

determined parameters which are used in the calculations. The power of 

this technique is not that the energies calculated represent the exact 

energies of the system, but rather, the calculated energies give good 

relative energies which can be used for comparison of chemical species 

within a certain system. The comparisons can then provide information 

on the type of interactions that may be possible. Many investigators 

have found that the semi-empirical MNDO method is extremely useful when 

studying large carbene systems. E.E.Waali and co-workers®'^ have used 

this method to study the energy relationships in a number of car- 

bene\allene systems that are important in this report.

1. Cyclopropenylidene /  Cyclopropadiene

4644 45

MNDO calculations®* show that the singlet ground state of cyclo-
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propenylidene ( ^ )  is 28 kcal/mol more stable than the corresponding

triplet. The allene structure 45 was found to be too strained to be a/-\/
reasonable possibility and therefore extremely unlikely to be observed.

Upon the vacuum flash pyrolysis of 47, the matrix isolation IR of 

cyclopropenylidene (44) was o b t a i n e d . A n  ESR spectrum could not be 

observed. The presence of 44 was proven by irradiating the matrix 

isolated material and observing the known ESR signals of the isomer 

propynylidene (48) formed from the rearrangement of 44. If all of the 

moisture was not removed from the system the insertion products 49 and 

50 were also observed. These data indicate that 44 has a singlet 

ground state that can best be described as a carbene, where the two 

singlet electrons occupy the Cr-orbital and the p-orbital remains empty.

47

A
44

hv

HC
48
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Diphenyl cyclopropenylidene (46) has also been made and its 

properties observed. It was found that it undergoes addition to 

electron deficient double bonds such as dimethyl maleate while failing 

to add to electron rich alkenes,®® indicating that 46 also acts as a 

nucleophilic 0 ® carbene species.

S. Cyclopentadienylidene / Cyclopentatriene

51 52

17.9

53

Cyclopentadienylidene ( ^ )  has been found to exhibit both singlet 

and triplet properties.®® MNDO®® shows two planar structures cor­

responding to (7® and 7T® carbenes, the 0 ® being more stable by about 6 

kcal/mole. The allene 52 was again found to be a very unstable 

intermediate. The most interesting results from MNDO however, were 

from force constant calculations which indicated that the 0 ® configura­

tion is a transition state while the IT® configuration lies neither at 

an energy minimum nor a transition state maximum. The lowest energy 

singlet carbene was instead found to be the non-planar species ^  with 

the carbene carbon almost 18° out of the plane of the other four 

carbons. In fact, ESR measurements imply that the bonds to the 

divalent carbene carbon in indenylidene (55), fluorenylidene (54) as 

well as cyclopentadienylidene (51) are bent.®* These same ESR measure- 

ments also show that all three are ground state triplets.
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54 55

Production of 51 in solution at room temperature gives an intei—  

mediate which shows electrophi1ic singlet characteristics, having been 

found to add stereospecifically to cis or trans olefins,®* and insert 

readily with little discrimination into saturated C-H bonds.®* Both of 

these observations are indicative of singlet chemistry. Either a 7T® 

structure, with the two carbene carbons delocalized in the 6 electron 

aromatic system, or an anti-aromatic a® structure could lend electro- 

philic characteristics. Electrophilie characteristics have been shown 

from studies of the room temperature, stereospecific Cl+53 cycload­

dition of 51 to g_- and m-substituted styrenes. A Hammett value of 

-0.76 + 0.10 was obtained.®^ In another study, photolysis of sub­

stituted diazocyclopentadienes ^  in the presence of alkynes produced 

spiroC2.43heptatrienes M  in which yields were increased by using 

electron rich alkynes, thus demonstrating the electrophi1ic nature of 

cyclopentadienylidene derivatives in solution.®®

R

R
R

N.2
R

56/"V 57

R

*•

R

58

R
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At room temperature, in solution both fluorenylidene (54) and in-

denyiidene (55) have shown triplet behavior by producing 45% non- 

stereospecific addition products with 4-methyl-cis-g-pentene. The non- 

stereospecific percentage was increased to 75% in the presence of 90 

moi% of h e x a f l u o r o b e n z e n e . N o n - s t e r e o s p e c i f i c  addition of the parent 

51 however, could not be increased upon dilution with this inert 

solvent, indicating that the singlet carbene species 51 is very 

reactive and that the rate of decay to the triplet state is particular­

ly slow.^s The small (1-2%) non-stereospecific addition that was 

always present was attributed to stereospecific addition by a highly 

excited singlet followed by cis- trans isomerism.

3. Cycloheptatrienylidene / Cycloheptatetraene

59

The question of aromaticity is also important when the carbene 

carbon is incorporated into a fully conjugated seven membered ring such 

as cycloheptatrienylidene ( ^ ) . If the two non-bonding electrons in 

the singlet state carbene ^ s  occupy the (7 orbital, then the empty p- 

orbital on the carbene carbon would be incorporated into a six elec­

tron, (4n+2) HOckel aromatic system similar to the tropylium ion. The 

triplet state, on the other hand, would be similar in ^-electron 

density to the tropyl radical. The presence of an ESR signal of ^ t  

indicates that the triplet is or is within a few calories per mole of
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the ground s t a t e . A b s t r a c t i o n  products have also been observed in 

solution from the triplet species 59t to produce the bitropyl molecule

R-H

59s 59t

62

If this system is aromatic, there is not much additional stabili­

zation that is lent to the system from being in the a® singlet state. 

The nucleophilic characteristics of the C-yH^ system may however be 

indicative of a singlet state. Hammett investigations give it a 

value of +1.05 +0.05.^*- The stereochemistry of its addition to double 

bonds has in fact been found to be completely stereospecific, implying 

the existence of either 59s or 60.*®

Most of the chemistry of the system described above has been

in terms of the completely conjugated planar carbene 59. Recent MNDO 

calculations reveal that this system is even more complicated.=* It is 

now apparent that early work in this system led to the incorrect con­

clusion that cycloheptatetraene ( ^ )  was too strained to be a viable 

intermediate.*® Figure 1 (page 27) shows calculated A H ^  values along 

the reaction coordinate for the interconversion of 60 and 59. MNDO 

shows that the planar singlet 59s is not an energy minimum, but rather 

a transition state for the conversion of the nonplanar chiral allene
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60s with its enantiomer.

The heat of formation of the allene 60s was determined to be 23 

kcal/mole lower than the carbene 5 ^ .  Calculations looking at the 

triplet states in this system indicate that the triplet allene 60t is 

not an energy minimum and transforms into the planar triplet carbene 

59s with no activation energy.

Any authentic carbene chemistry observed from the system is

therefore likely only from its triplet state. It is more likely still 

that the chemistry observed in this system reflects the reactivity of 

the more stable cyclheptatetraene 60s. More recent ab-initio calcula­

tions*^ conflict with these MNDO calculations but the following 

evidence is consistent with the MNDO work.

MINDO/3 calculations*® and experiments** looking at the rearrange­

ment reaction profile for phenyl carbene (63) found no evidence for 59 

and instead found that the allene isomer 60 was formed directly.

63

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



FIGURE 1: C A L C U L A T E D VALUES vs. REACTION COORDINATE (59 w 6 0 )
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Harris and Jones*^ have found definitive evidence for the chiral­

ity of the allene 67 by observing an optically active Diels-Alder 

adduct 70 which could only have been obtained from the addition of an 

achiral diene to the reaction mixture of intermediates containing a 

chiral, optically active allene isomer 67.
Br

6766 65

Ph
P

69

Ph
70

The matrix isolated IR and UV spectrum of 60s has been observed.*® 

Investigators have also reported that upon the production of the phenyl 

carbene intermediate, a beige product was produced at liquid nitrogen 

temperatures which then decomposed upon warming to the black heptaful- 

valene dimer 73.*®'*^'^* This beige material has since been attributed 

to the 2+2 addition dimer of the allene 72.^* This is additional 

evidence that 63 rearranges directly to the allene 60 rather than the 

carbene 59.
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N.
hv*

- N
6071 72

73

Aliénés are known to show nucleophilic characteristics. The 

Hammett study^i of the cycloheptatrienylidene/tetraene system may thus 

be a measurement of the nucleophi1icity of 60 rather than 59.

A number of other intermediates have since been shown to be 

included in the energy surface, including;74, 75 and 76.

All three intermediates have been shown to rearrange directly to 60 

with no evidence suggesting the presence of 59.

74

(-CO)

75 76
The production of o-, m- or g_-tolyIcarbene (77-79) and phenyl4TSjfl

methyl carbene (SO) in the gas phase results in the formation of 

benzocyclobutene (81) and styrene (82). These results were originally 

interpreted as implying the reversibility of the interconversions of 

phenyl carbenes and eyeloheptatrieny1idenes in the gas p h a s e . I t  is 

best now to consider the interconversion and reversibility to be the 

relationship of the substituted aliénés and substituted phenyl car­

benes, as pictured.
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In solution the production of phenyicarbene (63) fails to produce 

the heptafulvalene dimer 75 expected after rearrangement. By retarding 

the dimerization reaction, however, rearrangement can be promoted in 

solution. Upon the production of 8^  in solution, equal amounts of the 

substituted styrene 87 and the dimer 86 were produced.

o
Q

Q

Q

82

81
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,CHCH

base

8483

C H

CH86

CH

CH

CH

87

The chemistry of this system is very interesting, compli­

cated, and, at times, confusing. What can be done to this system to 

alter its chemistry from the parent system? The research in this lab 

was aimed at physically constraining the C?-ring of ^  to planarity by 

holding the C3-C4, C4-C5 or C5-C6 bonds <as numbered on the allene) in 

the same plane by applying a rigid structure to the ring. The primary 

goal of this constraint was to alter the energy relationships of the 

parent system (as theoretically represented in Figure 1) and thus 

encourage chemical behavior different from that of the parent system.

Referring to Figure 1 (see page 27), the allene should be stabil­

ized relative to the carbene when constraint is at the C4-C5 positions 

(^-systems) The carbene should be stabilized relative to the allene 

form when constraint is applied to either the C3-C4 (d-systems) or the 

C5-C6 (^“Systems) positions. C4-C5 substitution of the ring is by no 

means overwhelmingly constraining, since in both the allene and carbene 

isomers, the C4 and C5 bonds out of the ring lie on the same side of 

the plane of the ring. The constraint in the ^-system therefore, is
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much less constrictive than in the Cl-and ^-systems where constraint 

forces bonds which originally lie on opposite sides of the ring in the 

allene isomer into the same plane. The constraint in the a ~  and y -  

systems would be expected to perturb the energy relationships of the 

C-zH* parent system to a much greater extent. Triplet chemistry could 

therefore be expected to be more likely in these systems than in the p- 

systems. Constraint, however, is not the only factor that influences 

these energy relationships as the number of constraining groups, the 

amount and type of resonance and solvent interactions all have a role 

in influencing these relationships.

a. Benzoannelated Systems

Benzoannelated systems which offer constraint of the cyclohep­

tatetraene system, such as those shown below, have been investigated. 

These suffer, however, in that they provide significant resonance 

perturbation to the s y s t e m . F o r  example ,annélation of phenyl- 

carbene and cycloheptatetraene shifts the equilibrium between the two 

toward the annelated pheny Icarbene."^® The rearrangement of 89 to 99 is 

therefore driven by the aromatization that results in the p r o c e s s .

Production of 89 in benzene gave napthocycloheptatriene (101), 

whose formation can best be explained from a rearrangement followed by 

addition into benzene followed by an additional r e a r r a n g e m e n t . T h e  

existence of the bicycloheptatriene intermediate 98 has been shown 

since the eyelopentadiene Diels-Alder adduct 102 has been trapped.^*
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This is different from the parent system where no bicyclohep-

tatriene intermediate has been trapped or observed spectroscopically.

MNDO calculations indicated that in every case the benzoannelated 

allene species to be lower in energy than the corresponding carbene. 

Only in the dibenzo and naptho derivatives 94/95 and 96/97 were the/•V.' .'V'
energy differences small enough to allow for isomerization to the 

carbene species. The observed solution chemistry of these systems was 

best explained in terms of their singlet s p e c i e s , a l t h o u g h  both are 

ground state triplets as determined by ESR spectroscopy.

b. 9,10-Anthraceno Bridged Systems

104a
106^ 1 7

107j3 2 7

The 9 ,10-anthraceno bridge applies constraint to the system

without applying resonance perturbations. This constraint was thought 

to be the only way to see any chemistry that could be attributed to an
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authentic cycloheptatrieny1idene species. Although physical constraint 

such as this was not overwhelming, it was enough to alter the chemistry 

of the parent system.

i. The J-system; C4-C5 constraint, 106/107

This intermediate system was produced and its reactivity charac­

terized by T i v a k o r n p a n n a r a i . ^ e

Figure 2 shows the various reaction products that were found upon 

the production of this carbene/alIene intermediate. The chemistry of 

this intermediate was explained in terms of the allene intermediate 

107. The formation of the hydrocarbon 115 was interesting because it 

indicated the presence of the triplet carbene 106. The only logical 

explanation for its formation was for 106 to abstract two hydrogens 

successively from the solvent.

Figure 3 shows a rearrangement scheme representing the intercon­

version of the substituted arylcarbenes and cycloheptatetraenes of the 

a, B and 7-systems. The isolation of the aldehydes 113 and 114 was 

indicative of rearrangement of the allene 107 to the arylcarbenes 116 

and 117, followed by intersystem crossing to their more stable triplet 

states and reaction with oxygen (present in trace amounts). These 

rearrangements are analogous to the high temperature gas phase chem­

istry of the parent system, and the solution chemistry of other

substituted systems.?"

The finding of triptycene (112) in significant yields was surpris­

ing because its formation via carbon loss under mild conditions in 

solution was virtually unheard of before.
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FIGURE 2: REACTION PRODUCTS FROM THE ^-SYSTEM
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FIGURE 3: REARRANGEMENT SCHEME: INTERCONVERSION a, ̂ AND 7 -SYSTEMS
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Figure 4 shows other systems exhibiting carbon loss. Carbon loss 

has been observed from quadricyclanylidene 110 and norbornadienylidene 

119, but under the much more vigorous conditions of vacuum pyrolysis at 

200-300“ of the corresponding tosylhydrazones.^^ Carbon loss has also 

been observed from 129 and 121 during the vacuum thermolyses of their 

corresponding tosyIhydrazone salts.

The finding of the hydrocarbon 115 and triptycene 112 was interes- 

ting in that it was not expected from the constraint and reaction 

conditions that were applied. The observation of triplet derived 

products was perplexing since it was thought that eyeloheptatrien- 

ylidene chemistry would be much less likely with this constraint than 

without it. With these interesting, but ambiguous results, the unique 

synthesis of the 7 -system was carried out and its chemistry under 

similar reaction conditions was observed.
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figure 4: OTHER CARBENES EXHIBITING CARBON LOSS

118

2 0 0 - 3 0 0 C
+ " C "

119

2 0 0 'C

120

1 9 0 C
+ " C "

1 s o c
c "

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



II. RESULTS AND DISCUSSION

The following chapter discusses the synthesis of the 7 -inter­

mediate, the resultant isolated products and the relationship with the 

results of the ^-system.

A. SYNTHESIS OF PRECURSORS TO THE 7-SYSTEM. 1/2

Only one method was found in the literature to synthesize the 

tropone 124, a necessary precursor to the carbene/alIene system 1/2.XVX XL,
This method involved the trapping of the intermediate tropyne 152 with 

anthracene 131. This was reported to produced 124 in only 12% overall
yield.

152

O

124

Figure 5 shows a number of different reaction paths that were 

attempted in the making of the tropone 124. The dialdehyde 122 was 

made in 40% yield using known procedures.** Reactions one through 

three show various condensation reactions designed to eventually give 

124. Reaction one involved the production of a ylide anion from 123 

and two equivalents of n-butyl lithium.®^ The ylide was designed to 

undergo a double condensation reaction with 122 to give the tropone 

124.*® Reactions two and three were designed to take advantage of the 

acidic hydrogens alpha to the carbonyl in compounds 125 and 127.
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FIGURE 5 : ATTEMPTS TO GENERATE THE TROPONE 124
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These reactions also designed to undergo condensation reactions with 

122 failed.*® Reaction four involved the Diels-Alder addition of the 

diene 128,** with 3,3-dimethoxycyclopropane (129)** to produce the 7,7- 

dimethoxy-3-norcarene 130.** Treatment of 130 with dichlorodicyano- 

quinone (DDQ), followed by acid catalyzed hydrolysis, however, failed 

to give the desired product,the tropone 124.

Figure 6 shows the method that was used to obtain the tropone 124 

in 9% overall yield. The dichloro-adduct 132 obtained from the 

reaction of anthracene (131) with 1,4-dichloro-2-butene, was treated 

with two equivalents of potassium jk-butoxide to give the diene 128 in 

84% overall yield.®* The next reaction relied on the unique properties 

of the oxyallyl-Fe(II) complex 135. Produced from the reaction of 

tetrabromoacetone (133) and diiron nonacarbonyl (134),®? the oxyallyl 

complex 135 was able to act as a two electron dienophile. Producing 

135 in the presence of the diene 128 resulted in the formation of the/-sy' /-^
dibromoketone-adduct 136 in 25-50% yield. Double dehydrohalogenation 

was affected by treating 136 with lithium chloride or lithium fluoride 

in a buffered solution of lithium carbonate and dimethylformamide (DliF) 

in only 10-14% yield.®* The following spectral data is identical with 

what has been reported for the tropone 124.** The ^®C-NMR data has not 

been reported previously.

^H-NMR: 5.35 ppm (s, H=, 2H)

6.83 - 7.23 ppm (m, H* + H*

6.96 - 7.07 ppm (m, H e , 4H)

7.33 - 7.45 ppm (m, H , , 4H)
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124

*SÇ-NMR; 58.24 ppm C-j <d)

123.79 ppm C-7 <d)

125.68 ppm Ce (d )

136.57 ppm Ca (d)

140.47 ppm Ce (d), 143.18 ppm C* (s),

152.34 ppm C., (s), 186.30 ppm Ci (s)

m.D.; 158 - 160°C (dec.)

MS: calculated: 282.10452

observed: 282.104775 

IR (KBr pel let); 124 shows distinctive tropone stretching bands.

Vc^c m ^ t c =  M 1563 cm  ̂ v^—o ” 1615 cm

Treatment of the tropone 124 with oxalyl chloride followed by 0_- 

toluenesulfonyl hydrazide resulted in the formation of the tosyl- 

hydrazone derivative 139 in 43% yield. The sodium salt 140 was then.-W
made in 57% yield by treating 139 with sodium hydride.

Treatment of the tropone 124 with oxalyl chloride followed by 

lithium aluminum hydride (LAH) resulted in the formation of the chloro- 

triene 138 and its isomers in 80% yield.
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FIGURE 6: SYNTHESIS OF 7 -SYSTEM PRECURSORS
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B. GENERATION OF THE 7-INTERMEDIATE. 1/2

Photolysis of the sodium salt 140 as well as the dehydrohalo- 

genation of the chlorotriene 1̂  (+ isomers) with potassium ^-butoxide 

both in solution at 25°C were used as methods to access the 7-inter­

mediate energy s u r f a c e . T a b l e  3 shows the reaction conditions as 

well as the yields for the products that were isolated and identified. 

Figure 6 shows the various product structures that were identified from 

the production of the 7-intermediate in solution.

TABLE 3: REACTION CONDITIONS AND PRODUCT YIELDS, T-SYSTEM

PRECURSOR

138

REACTION CONDITIONS

PRODUCT YIELDS * 

1141 1112 1144 1143

Kt-G8u,THF,23 C,N= .088M I 35 I 0

1 i3a 1 Kt-0Bu,THF,23 C,N= .044M 1 10 1 30 1 0 1 0 1

1 138 1 KtrOBu,THF,23 C,Ne . lOOM 1 ♦ 1 4 1 0 1 0 i

1 1 hv,THF,23 C,Ne .024M 1 24 1 12 1 0 1 0 1

1 140 1 hv,THF,23 C,Ne .0124M 1 * 1 6 1 0 1 0 1

* Dimer present but decomposed before isolation.
# The azine 142 expected from the decomposition of 140 was not 
obtained. This is in sharp contrast to the ^-system where as much as 
30% of the azine 110 was isolated.

Conspicuously absent from the isolated products was the hydro­

carbon 144. The inability to isolate 144 was probably the result of 

two factors. First, although a number of products could be seen by TLC 

in many cases not enough of the material could be isolated to give 

useful NMR spectra. This type of isolation method was therefore 

anticipated to give an error in determining the yield. Alternatively,
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the absence of 144 may indicate the absence of the Y-carbene entirely. 

In support of this notion was the fact that carbene abstraction 

products were also absent. These observations show that the 7 -system 

was still best explained in terms of its aliéné species 2. The aliéné 

2 was therefore used in explaining the remaining isolated products.

The dimer 141 was a product of the 2+2 cycloaddition of the aliéné 

followed by rearrangement to the heptafuiva 1ene product 141.

/ ~ \ - l

141

Triptycene 112 was found in every experiment. The formation of 

112 must require rearrangement of the allene 2 as well as 107 to a 

species which could make loss of a carbon atom energetically more 

favorable. The substituted norcaradienylidenes 145 or norbornadieny1i- 

denes 146 were postulated as possibilities for carbon loss from the 7~ 

and jj-systems.”*̂

1457

146P 1467
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Since it was highly unlikely that a free carbon atom was produced, 

it was further postulated that the carbon loss in the ^-system was 

facilitated by assistance from the nucleophilic solvent, THF. The 

zwitterion 147 was assumed by Tivakornpannarai^^ to decompose to give 

detectable amounts of ethylene and carbon monoxide. This mechanism was 

also used to explain products isolated in the present work.

Ô -> 2 H 2 C = C H ^  4- C O

147
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FIGURE 7î PRODUCTS ISOLATED FROM PRODUCTION OF THE'/-INTERMEDIATE,
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A third influence which may have helped bring about carbon loss 

could be the interaction of the TT-system of the aromatic rings in the

9,10-anthraceno bridge with the ^-system of the seven membered ring. 

Intramolecular charge transfer (CT) interactions such as these have 

been observed in similarly substituted systems with the tropylium 

ion.^*

149 150

148

The CT interactions in 148 and 149 were observed as broad long wave- 

length absorptions in their electronic spectrum at 300-450 nm which was 

absent in 150, and the unsubstituted tropylium 151. Nakazawa and co- 

workers** additionally noted that although these interactions are 

strong, the donor and acceptor are not on parallel planes, resulting in 

minimized overlap of the orbital systems. It is therefore not illogi­

cal to expect increased ^-interaction between the benzene rings with

either of the substituted norcaradiene 145 or norbornadiene 146  -
isomers. Either would have increased orbital overlap as a result of 

their geometry which allows their carbene carbon orbitals to more
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efficiently interact with the TT-orbitals of the benzene ring. At this 

point however the importance of these interactions is only hypotheti­

cal .

Interestingly, triptycene (112) was not observed upon production 

of either of the arylcarbenes (116 or 117) from their corresponding 

tosylhydrazone s a l t s . " ^ ® » T h e  lack of carbon loss products or other 

products attributable to either of the 0- or 7 -allenes when starting 

with 116 or 117 was interpreted as the presence of the equilibrium 

toward the constrained aryl carbene. Refer to the rearrangement scheme 

represented in Figure 3.

The aldehydes 113 and 114 observed from the rearrangement from the 

^-allene were not observed from the 7-allene. This finding was 

rationalized as indicating the presence of oxygen in the /3-system 

reactions. Their absence in the 7-system reactions however, might be 

an indication of the absence of oxygen in the reaction flasks rather 

than the inability of the y - a 11ene to rearrange. Since products 

attributable to the aryl carbene were never detected, no positive 

evidence can be claimed for the existence of an equilibrium with the 7 -  

system.

As a result of these studies a number of conclusions were drawn 

about the influence of the constraint on the parent C^H*.

1. Based on the MNDO calculations of the parent system as represented 

in Figure 1, we expected a difference in the chemistry between the 0- 

and'/-systems. The ^-system was expected to yield products attribut­

able to the allene species. The'/-system was expected to display
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products more characteristic of the carbene species. From the above 

results it seems that the position of constraint using the 9 , 10- 

anthraceno bridge system is of little consequence, with both thejj- and 

'T'-systems best described in terms of their allene forms. This con­

clusion does not seem surprising considering the fact that even benzo 

annelated systems were best described in terms of their allene forms. 

These systems have the added resonance influence which is absent in the

9 , 10-anthraceno bridged systems. It is concluded that systems which 

physically constrain the parent system, as in this research, do not 

significantly alter the energy relationships of the parent system.

2. Both of the *y- andj^-a1lenes exhibited carbon loss. Triptycene 

112 was found in every run. Earlier studies concluded this to be 

important in the observation of carbon loss.^* Rearrangement to a 

system allowing the loss of a carbon atom was also deemed to be a 

necessary requirement based on thermodynamic arguments.

3. Having never been seen in a system under such mild conditions a 

further requirement for observing carbon loss might be CT interactions 

of the bridge system benzene JT-orbitals with a norcaradienylidene or 

norbornadieny1idene isomer. Although this is purely speculation, 

further investigation involving completely saturated constrained 

systems will show the importance of these interactions.

4. Yields of triptycene 112 increased concurrently with a yield 

decrease of the heptafulvalene dimer 141 upon increased solvent
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dilution. This result is in accord with a bimolecular mechanism for 

both the formation of the dimer 141 and triptycene 112. The formation 

of 141 is a function of the concentration of the allene 2 to the second 

power ( Callenel® ) while triptycene formation is probably first order 

with respect to the allene. Therefore, greater dilution favors 

triptycene formation at the expense of the dimer.
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III. EXPERIMENTAL

General; The following analytical methods were used throughout 

this research. Nuclear magnetic resonance (NMR) spectra were produced 

on a JEOL FX-90Q spectrometer: Proton, 89.56MHz; Carbon, 22.50MHz, as 

well as a few on a Bruker WM-250 (250MHz) instrument at Montana State 

University. Chemical shifts were reported as ppm units down-field from 

tetramethyIsilane. Infrared (IR) spectra were taken on a Nicolet MX-1 

FT-IR spectrometer. Mass spectra (MS) were obtained from a VG Instru­

ments 7070-HF (Chemistry Department, Montana State University, Bozeman, 

Montana). . Melting Points (m.p.) were obtained on a Meltemp melting 

point apparatus and were not corrected. A11 photolyses were carried 

out with a Hanovia 450 watt medium pressure mercury immersion lamp, 

using a Pyrex reaction vessel. Volatile solvents were removed by using 

a rotary evaporator at water aspirator pressure. Trace solvent 

impurities were removed using a mechanical pump. Percent yields were 

based on isolated material from PTLC or column chromatography techni­

ques .

Materials: Commercial materials were used as obtained. Tetra- 

hydrofuran, diglyme and benzene were distilled over benzophenone ketyl 

under nitrogen atmosphere and stored over molecular sieve. Dimethyl- 

formamide (DMF) was distilled after drying with anhydrous magnesium 

sulfate and stored over molecular sieve. Preparative thin layer 

chromatography (PTLC) plates were prepared by using EM Reagent Silica 

Gel 60 PF-256 + 366 and were activated by drying at 100* C for 2-4 

hours. Chromatography components were visualized by observing their 

quenching of fluorescence under ultraviolet light either at 254 or 366
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nm. Column chromatography was performed using Merck Silica Gel (60-200 

mesh) and alumina (60-200 mesh).

11. lg-d im ethvlene-9.lO -dihvdro-9.10-ethanoanthracene 128*^

A mixture of anthracene (35.6 grams, 0.2 moles) and 1,4-dichloro- 

2-butene (100ml, 1.3 moles) was heated at 164* C in a three necked 

flask fitted with a condenser, magnetic stir bar, thermometer and 

nitrogen inlet for three days. The cooled black solution was eluted 

through a short column of silica gel using dichloromethane/hexane (1:2 ) 

as eluent. The solvent was removed and the excess dichlorobutene was 

removed by distillation at reduced pressure. The resulting solid was 

recrystallized from petroleum ether; 53.42 grams (887.) of the dichlor­

ide 132 was recovered. The NMR data that was obtained was consistent 

for a mixture of cis- and trans- 1 1.12-dichloro-9.lO-dihydro-9.10- 

ethanoanthracene: AA'BB' aromatic multiplet from 7.07 to 7.36 ppm, a 

pair of bridgehead doublets (which vary in intensity depending upon the 

relative amount of cis versus trans isomer in the sample) at 4.41 and

4.54 ppm and multiplets at 2.82-3.38 ppm and 1.65-1.86 ppm.

To a stirred solution of the dichloride 132 (8.86 grams, 0.029 

moles), dimethylsulfoxide (80ml) and tetrahydrofuran (20ml> cooled to 

0* C in a three-necked flask fitted with a condenser, was added two 

equivalents of potassium ^-butoxide (6.5 grams, 0.058 moles) in small 

portions. The resultant green solution was stirred for 12 hours at 

room temperature. The solution was then poured into 200ml of ice water 

and extracted with methylene chloride (5 x 50ml). The combined organic 

layers were dried over anhydrous magnesium sulfate and the solvent 

removed. The solid material was purified by column chromatography
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using silica gel and chloroform/ petroleum ether (1:3 ) as eluent. The 

solvent was removed. The solid material was then recrystallized from 

hexane affording 6.32 grams (94.6%) of 11,l2-dimethylene-9,10-dihydro-

9,10-ethanoanthracene (128). Spectral data is identical with that found 

in the literature.®**

H

MS

5.12 ppm 

4.06 ppm 

5.28 ppm

(s, H., 2H) 

<s, He, 2H) 

(s, Hb, 2H)

7.04-7.18 ppm (m, Ha, 4M) 

7.22-7.36 ppm <m, H«, 4M)

55.22 ppm (Ca, offres.- d )

105.22 ppm (C,, t )

123.27 ppm (Cs, d)

126.25 ppm (C*, d)

141.74 ppm <C^, s)

143.85 ppm (Cg, s)

156-158* C

calculated: 230.10962 

observed : 230.10896

6

128

1.1.4.4-tetrabromoacetone 133*®

CAUTION; These brominated products are severe eye and skin irritants!

In a three necked flask fitted with a reflux condenser, nitrogen 

inlet, thermometer and addition funnel, a four fold molar excess of 

bromine <292.8 grams, 94.5mi, 1.83 moles) was added over a period of
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two hours to a mixture of acetone (35ml, 0.46 moles) and 48% hydro- 

bromic acid (50ml) cooled to 0“ C. The resulting mixture was then 

allowed to stir overnight at room temperature. Water <380ml) was then 

added to the solution and stirred vigorously for thirty minutes. The 

organic layer was isolated and washed successively with saturated 

aqueous sodium bicarbonate (2 x 50ml) and sodium bisulfite solutions (4 

X 50ml) then dried over anhydrous calcium chloride pellets.

A vacuum distillation apparatus was set up and the crude product 

was fractionated. The desired product 133 (137 grams, 80%) was 

collected at 129-131“ C, 7mm Hg. Repeat distillations yielded quality 

material. Spectral data was identical with that reported in the 

1i terature.^s
iH 6.36 ppm (s, H«, 2H) 2

IfC 183.2 ppm (Cl, s)
1— » c = o34.0 ppm (Ce, d) /
H C B r 2

mo 37—39 C
133

bp 129— 131“ C / 7mm Hg

4 .5 - (9 .1 0-anthr aceno >-g .4 .6-cvc1oheo ta t r  i ene-1-one 124**

In a three necked flask fitted with a reflux condenser, nitrogen 

inlet, magnetic stir bar and thermometer a mixture of diiron nona- 

carbonyl 134 <7.35 grams, 0.0202 moles) and the diene 128 (9.3 grams, 

0.0404 moles) in 75ml benzene was heated to 60** C. To this mixture a 

solution of the tetrabromoacetone 133 (9.34 grams, 0.025 moles) in 15ml 

benzene was added carefully over a period of thirty minutes. Upon this 

addition a gas ( CO ) is vigorously evolved. The mixture was stirred
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at 60= C for an additional two hours. Upon cooling to room temperature 

the solution was poured into 200ml of a saturated aqueous sodium 

bicarbonate solution and stirred vigorously for fifteen minutes. To 

this was added 200ml ethyl acetate and the mixture was stirred for an 

additional fifteen minutes. The dark green precipitate was removed by 

filtration through a pad of diatomaceous earth. The organic and 

aqueous layers were separated and the aqueous layer washed with ethyl 

acetate (2 x 50ml). The combined organic layers were dried over 

anhydrous magnesium sulfate and the solvent removed to give a dark 

brown material. Chromatography of the brown material using silica gel 

and Chloroform/Hexane as eluent gave 136 of sufficient purity. Proton 

NMR analysis revealed a sharp bridgehead singlet at 4.74 ppm, aromatic 

multiplets from 6.89 ppm to 7.03 ppm and 7.02 ppm to 7.30 ppm, alipha­

tic hydrogen multiplets from 4.63 ppm to 4.77 ppm and 2.88 ppm to 3.53 

ppm.

Dehydrohalogenation of was affected by treating the dibromketone 

136 (2.22 grams, 0.0045 moles) in anhydrous dimethylformamide (20ml) 

with lithium fluoride <0.13 grams, 0.005 moles), lithium carbonate 

(0.37 grams, 0.005 moles) and powdered soft glass (200mg>. The mixture 

was stirred and heated at 120-130=C for two hours in a three necked 

flask fitted with condenser, nitrogen inlet, magnetic stir bar and 

thermometer. The mixture was allowed to cool to room temperature 

diluted with water (100ml) and then extracted with methylene chloride 

<5 X 50ml). The combined organic layers were washed with water (5 x 

500ml) and brine solution (50ml) then dried over anhydrous magnesium 

sulfate. The solvent was then removed and the resulting brown material
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subjected to column chromatography on alumina using ethyl 

acetate/hexane (2:1) as eluent. The tropone 124 was recrystallized 

from benzene/hexane to give an overall yield of 14.7% at best. 

Spectroscopic data are given on page 42 and 43.

4.5~<9.10-anthraceno)-l~chloro~l.3.5-cvcloheotatriene 138

The general procedure that was followed was that of Tivakornpan- 

narai'^3 In an oven dried three necked flask fitted with magnetic stir 

bar, nitrogen inlet, condenser, thermometer and addition funnel, a 

stirring solution of the tropone 124 (1.00 grams, 0.00354 moles) and 

methylene chloride (50ml) was cooled to 0® C. A mixture of oxalyl 

chloride (0.635 grams, 0.005 moles) and methylene chloride (20ml) was 

then added to the cooled solution over a twenty minute period. After 

stirring for an additional twenty minutes at O® C, the mixture was 

allowed to warm to room temperature. Stirring was continued for an 

additional thirty minutes. The solvent was then removed and the 

residue taken up in tetrahydrofuran (10ml). This solution was cooled 

to 0° C and lithium aluminum hydride (0.500 grams, 0.0132 moles) was 

added in one portion and vigorously stirred. The mixture was allowed 

to warm to room temperature and stirred for an additional twenty 

minutes. The excess lithium aluminum hydride was destroyed with water 

(50ml) after which the mixture was extracted with methylene chloride (5 

X 25ml). The combined organic layers were and dried over anhydrous 

magnesium sulfate, the solvent was then removed. The yellow material 

was recrystallized from petroleum ether to give 0.862 grams (80.5%) of 

the chloride 138 (major) plus its alkene isomers. Spectral data was
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consistent with this molecule.

H

mp

MS

4.92 ppm (s, H«, 2H)

2.69 ppm (d; J= 6.56 Hz, , 2H)

5.45 ppm (t; J= 6.56 Hz, H „ , IH)

6.06 ppm (d; J= 6.78 Hz, H . , IH)

6.30 ppm <d; J= 6.78 Hz, Ho, IH)

6.99 - 7.09 ppm (m , H f , 4H)

7.23 - 7.35 ppm (m, H g , 4H) 

161-166.5* C 

calculated: 302.08635 

observed: 302.08259

'd H - H c

Treatment of the Chlorocvcloheotatriene 138 with KOt-Bu

The general procedure followed that of Tivakornpannarai.^* In a 

three necked flask fitted with a thermometer, condenser, nitrogen inlet 

and a 90° side arm adapter with small 5ml flask attached, was added dry 

tetrahydrofuran (30ml) and the chlorocycloheptatriene 138 <0.800 grams, 

0.00264 moles). The side arm flask containing the potassium t-butoxide 

(0.533 grams, 0.00475 moles) was then rotated upward so that all of the 

solid fell into the chloride solution. The resultant brown solution 

was stirred at room temperature for an additional ninety minutes.

After cooling, water (20ml) was added and then extracted with methylene 

chloride (3 x 25ml). The organic layers were washed once with water, 

dried over anhydrous magnesium sulfate, and solvent removed. Column 

chromatography on alumina and preparative thin layer chromatography
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using methylene chloride/ petroleum ether (1/4) as eluent were used to 

separate and purify the dimer 141 and triptycene 112. Yields of the 

remaining experiments are presented in Table 3. The instability of the 

dimer 141 inhibited the acquisition of additional spectroscopic data. 

The proton NMR is consistent with a symmetrical dimer. Its Rf value and 

color was also consistent with the diene 111 found from thejj-system. 

The spectroscopic data for triptycene 112 was identical with that in
the literature.

dimer 141

triptycene 112

!_H 4.82 ppm ( s, H=, 4H)

5.51 ppm (d; J=11.4 Hz, Ht,, 4H)

6.08 ppm (d; J=11.4 Hz, H . , 4H)

6.90—7.09 ppm (m , H e , BH)

7.11-7.37 ppm (m , H « , BH)

IH 5.41 ppm (s, H«, 2H)

6.91-7.05 ppm (m, Ht., 6H)

7.11-7.37 ppm (m, H_, 6H)

54.08 ppm ( C l ,  d)

123.54 ppm (Cs, d>

125.05 ppm (C^, d)

145.25 ppm (Ce, s) 

mo 251-253 C

MS calculated; 254.10962

observed; 254.11218

112
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Tosvlhvdrazone derivative of the Tropone 139

In a three necked flask fitted with magnetic stir bar nitrogen 

inlet, condenser, thermometer and addition funnel, a stirring solution 

of the tropone 124 (1.085 grams, 0.00384 moles) in methylene chloride 

(20ml) was cooled to 0 C. To this was added a solution of oxalyl 

chloride (1.08 grams, 0.0085 moles) in methylene chloride (10ml) over a

twenty minute period. After stirring for an additional twenty minutes

at O*' C, the mixture was allowed to warm to room temperature, and 

stirring was continued for an additional thirty minutes. The solvent 

was then removed and the residue taken up in absolute ethanol (25ml).

To this solution was added p-toluenesulfonyl hydrazide (0.715 grams,

0.00177 moles) in small portions with vigorous stirring. The mixture 

was stirred for twelve hours and then concentrated to 15ml and poured 

with rapid stirring, into a one to one mixture of methylene chloride 

and saturated aqueous sodium bicarbonate solutions (150ml). The 

organic layer was separated and the aqueous layer washed once with 

methylene chloride (25ml). The combined organic layers were dried over

anhydrous magnesium sulfate and the solvent removed. Recrystallization

of the crude product from absolute ethanol/chloroform gave 0.748 grams 

(43.27.) of the tosylhydrazone derivative 139. This compound had not 

been reported previously.

2.34 ppm (s, H«, 3H)

5.35 ppm (s. Ht,, 2H)

6.65 ppm (s. H e , IH)

6.18-6.78 ppm (d, H a , 2H)

6.94-7.03 ppm (d, H«, 2H)
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7.06-7.45 ppm (m, 8H)

7.20 ppm (d, Hg, J= 8.24 Hz, 2H) 

7.72 ppm (d. Hi,, J= 8.25 Hz, 2H) 

mg 213-215.5 C

MS calculated: 450.14036

observed: 450.14101

Sodium salt of the tosylhydrazone derivative 140

The general procedure followed was that of Tivakornpannarai"^® In 

a three-necked flask fitted with magnetic stir bar, reflux condenser 

and nitrogen inlet, a solution of the tropone tosylhydrazone 139 (1.06

grams, 0.00235 moles) and dry THF (30ml) was flushed with nitrogen for

thirty minutes. To this was added sodium hydride (0.113 grams of a 50% 

dispersion in mineral oil; 0.0565 grams, 0.00235 moles), and stirring

was continued at room temperature for 45 additional minutes. The

resulting precipitate was vacuum filtered and washed with dry THF (4 x 

5ml). The purple-red salt (0.633 grams, 57%) was pumped dry by

mechanical pumping for ten hours and stored in a refrigerated desic­

cator, evacuated with Ne and wrapped in foil until used.

Photolysis of the sodium salt 140

The photolysis apparatus was as follows: A 5 gallon tank with a

magnetic stirrer was used as a water bath. A water line was placed in 

the tank to allow a slow steady stream of water to circulate. The 

overflow was directed to a sink. Both photolysis reaction vessel and
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lamp jacket were emersed in this cooling tank which was kept at 20 C 

during the reaction by adjusting the flow of water into the tank. The 

lamp cooling jacket containing the medium pressure mercury lamp was 

flushed with nitrogen prior to the beginning of an experiment and a 

constant flow of water around the jacket was maintained. The reaction 

vessel itself consisted of a three necked 100ml Pyrex 14/20 flask 

fitted with a mechanical stirrer, nitrogen atmosphere and a thermo­

meter .

The sodium salt 140 (0.51g, 0.00108 moles) and 87 ml of dry THF 

were placed into the reaction vessel immersed in water kept at 20 C. 

With vigorous stirring the mixture was irradiated for three hours at 

which time the reaction mixture was poured into 50ml of water and then 

extracted with chloroform (4 x 25). The combined organic layers were 

dried over anhydrous magnesium sulfate and the solvent removed. The 

residue was then chromatographed through grade 3 alumina eluting with 

petroleum ether and ethyl acetate, increasing the eluant ethyl acetate 

percentage by 10% every 150ml. The dimer 141 and triptycene M 2  were 

recovered. Yields are recorded in Table 3.
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