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Fire seasons in the western United States (US) during the years 2000-2006 have 
put issues surrounding structure protection from wildfires squarely in the public land 
management limelight with large amounts of money and firefighter exposure needed to 
protect residences from wildfire.  No single modeling tool is currently capable of 
predicting wildfire ignition risk to WUI residences. This dissertation demonstrates the 
construction of an existing thirty-year wildfire hazard estimate at each house by 
pioneering a modeling system that combines results from a structure ignition assessment 
model (SIAM) with wildfire probability results from an ecological disturbance model 
(SIMPPLLE). Analysis of western Montana study area data reveal that nearly all of the 
structure ignition probability results modeled with extreme wildfire weather for visited 
homes are 1.0. This contrasts the low probabilities (0-0.05) that wildfire will reach the 
vegetation polygons hosting these houses. The result of the modeling system equation is 
that the average existing thirty-year ignition hazard estimate across the study area is 
roughly half of one percent.  

Two suites of mitigation options are then designed, one concentrating on 
structural modification and fuels removal / replacement within 100 feet of each home 
(generally homeowner responsibility), and one using an optimization tool (MAGIS) to 
schedule thinning and prescribed burning treatments within 1.5 miles of homes (generally 
land management agency responsibility). The effectiveness of the mitigation options on 
both the individual model results and the combined average hazard estimates range from 
zero to 63 percent. While both home ignition zone mitigations and silvicultural 
treatments can markedly reduce wildfire hazard estimates, the former appear to provide a 
more linear reduction in hazard as correlated with budgets.  Future work should focus on 
upgrading SIAM, stabilizing SIMPPLLE predictions or substituting a wildfire behavior 
model, and integrating the modeling system into a user-friendly GIS tool. 
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CHAPTER I  - INTRODUCTION 
 
Fire seasons in the western United States (US) during the years 2000-2006 have put 

issues surrounding structure protection from wildfires squarely in the public land 

management limelight.  Average acres burned in the years since 1960 have escalated 

(Agee 1993). The burn severity1 has also increased for many acres of wildfire across the 

low elevation forests of the western US (Schmidt et al. 2002).  The forestry community 

generally agrees that human resource development and fire protection activities since 

settlement have substantially modified fire regimes in high fire frequency landscapes of 

the western U.S. for roughly a century (Romme et al. 2003, Swetnam et al. 1999, Arno et 

al. 1997, Covington and Moore 1994). Many authors and even special issues of reputable 

journals such as Conservation Biology 2004 18(4) describe transitions in forest fire 

regimes and note how ironically fire management policies preventing low intensity fire in 

dry ponderosa pine landscapes increased the long-term threat of dangerous crown fire and 

associated home loss (Brose and Wade 2002, Taylor and Skinner 1998, Quigley et al. 

1996, Agee 1994, 1993, Arno 1980).   

 

Extreme fire behavior, following natural and human-caused ignitions and partially 

attributable to a century of fire-exclusion, has already collided with many human 

communities nestled in and around flammable forests in the wildland urban interface 

                                                 
1 Although severity is not clearly defined in the wildfire literature, for purposes of this project it means the 
amount of tree mortality from fire, where high (stand replacing) severity equates to nearly complete 
mortality.  Light severity is very little tree mortality and moderate is between the two extremes. Tree 
mortality (severity) is used as a proxy for fire intensity and will be connected to fire intensity for modeling 
purposes using numerous assumptions based on recent literature and fire models. 
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(WUI) 2, resulting in substantial home losses to wildland fires. Despite these losses, 

increasing numbers of homes are being built to accommodate rapid population growth in 

low elevation ponderosa pine (Pinus ponderosa) areas that historically burned on a 5 - 25 

year cycle (Agee 1993). The recent Quadrennial Fire and Fuels report (NFAEB, 2005) 

included some new perspectives on the pace of residential growth in WUI areas of the 

country where growth rates between 1990 and 2000 were estimated at three times that of 

non-WUI areas.  

 

The intermix3 areas, often outside of fire district protection boundaries, appear to be 

experiencing the fastest residential development. Trends show that people are moving to 

the western US and to unincorporated4 places in the west.  Cordell and Overdevest 

(2001) estimated that the US population would more than double to 571 million 

Americans by year 2100. Hedonic pricing model research suggests that homes in close 

proximity to forested areas are highly desirable (Kim and Johnson 2002), indicating that 

much development will occur in existing and new WUI areas. The fire hazard is expected 

to remain stable or grow in these areas, translating into more homes at risk in the west. 

Homeowner decisions to mitigate fire risk with preventative actions will therefore 

become increasingly important in the future. 

 

                                                 
2 WUI is defined broadly for this project as the zone where structures or other human developments meet to 
intermingle with undeveloped wildland or vegetative fuels. The width of the zone is determined on a site-
specific basis, but Healthy Forest Restoration Act guidelines suggest an area within 1.5 miles of dense 
vegetation. 
3 Wildland urban intermix differs technically from wildland urban interface because it has more land 
covered by vegetation within the area surrounding structures buffered to a distance of 1.5 miles. 
4 Unincorporated towns lack formal governance structure beyond federal, state and county governments 
and often have limited fire protection resources. 
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Statistics provided by the National Interagency Fire Center (NIFC 2006), and reproduced 

in Table 1, indicate annual wildfire suppression costs of roughly $1 billion and numerous 

structures destroyed by wildfire during the period 2000-2006.  During 2003 alone, 

wildland fires burned 4,090 primary residences in the US, mainly in fires near San Diego, 

California.  In addition, there has been loss of resident and firefighter lives associated 

with several of the wildfires that destroy WUI homes. Although these numbers represent 

a small portion of all the structure fires5 in the US each year, all signs point to a rapidly 

growing number of WUI residences being threatened frequently by wildfire in the future.  

Recent research on climate change also suggests the potential for positive reinforcement 

loops where higher temperatures and longer summers will elevate North America’s 

annual forest fire acreage. With more fire converting stored carbon into carbon dioxide in 

the atmosphere, this climate change may lead to even more severe fire weather in the 

future (Westerling et al. 2006). If this happens, then both the number of  WUI residences 

threatened each year by wildfire and the wildfire suppression expenditures devoted to 

defending these structures will likely continue to rise.  

 

Recognition of the escalation in available fuels combined with the recent rapid (US 

Census 2001) and expected future residential development of western unincorporated 

areas (NFAEB 2005, McCool and Haynes 1996), raises a suite of questions for land 

managers and planners.   For example, with regard to social equity, questions are being 

raised by society as to who should pay to enhance the safety of the growing number of 

homes built in areas at risk from wildfire. Should all taxpayers pay for prevention and 

suppression of fires that threaten WUI homes?  One must also consider that federal land 
                                                 
5 There were approximately 511,000 structural fires during 2001 in the US (US Fire Administration 2002)  
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management is now based on multiple and competing objectives such as wildlife 

management, recreation management, watershed protection and timber production. With 

these notions in mind, how does structure protection fit into this picture and how will this 

protection rank with other program priorities for land management agencies? 

Table 1. Wildfires, suppression costs, structures and acres burned by year, 2000-2006. 
Year Number of 

Fires 

Primary Residences 

Burned 

Acres 

Burned 

(millions) 

Total Federal 

Agency Suppression 

Costs 

2006 83,522 721 † 9.0 Not Available Yet 

2005 66,552 402 8.7 $0.88 billion 

2004 77,534 315 6.8  $0.89 billion 

2003 85,943 4,090 ‡ 4.9  $1.33 billion 

2002 88,458 835 6.9 $1.66 billion 

2001 84,079 731 (All Structures) 3.6 $0.92 billion 

2000 122,827 861 (All Structures) 8.4 $1.36 billion 

Source: National Interagency Fire Center (2006).  
† Five firefighters killed protecting WUI structures 
‡ 15 People killed in association with Cedar Fire  
 

For the most part, managers now realize they cannot and should not stop all wildfires 

(Finney and Cohen 2003).  Wildfire suppression is a dangerous, expensive activity 

undertaken for myriad reasons other than only the protection of homes. Many scientists 

and agency documents list other considerations, including critical infrastructure, sensitive 

wildlife habitat, soil productivity, aesthetics, and air quality as reasons why residents and 

visitors value forests and why land management agencies attempt to control wildfires 

(Graham et al. 2004, Cohen and Stratton 2003, Kalabokidis et al. 2002, Conrad et al. 
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2001, Tiedemann et al. 2000, Swetnam et al. 1999, Covington et al. 1997, Fulé et al. 

1997, Covington and Moore 1994, Reynolds et al. 1992, Weaver 1943).  Yet not all fires 

can or should be suppressed. There are many benefits derived from wildfire. Ecosystems 

rely on the wildfire process in many areas and burns that occur with sufficient frequency 

to control fuel loads can reduce the potential for future fires that may cause widespread 

structure loss.   

 

A better alternative to suppressing all wildfire may be modifying forested areas to protect 

at-risk values in specific locations. Davis (1990) pointed out that, historically, the Forest 

Service and other agencies worked with legislation that did not acknowledge 

responsibility for protecting homes and property from wildfire. More recently, the 

Federal Wildland Management Policies of 1995 and 2001 recognized the need to base the 

second protection priority in part on the relative values of community, with the latter 

stating,  

"The protection of human life is the single overriding priority. Setting priorities among 
protecting human communities and community infrastructure, other property 
improvements, and natural and cultural resources will be based on the values to be 
protected, human health and safety and the costs of protection. Once people have been 
committed to an incident, these human resources become the highest value to be 
protected."  

(USDI et al. 2001: Chapter 3, page 3)  
 
In addition to articulating protection priorities on the fire line, project-planning priorities 

have shifted as a result of recent legislation.  For example, the Healthy Forest Restoration 

Act of 2003 (HFRA) prioritizes thinning work around communities (US Congress 2003). 

As a result of this legislation WUI areas are slated to receive intense forest manipulation 

in coming decades.  Given that the US Congress appears willing to allocate money to 
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manage fire risks in the WUI, one important question remains: How can the public most 

effectively allocate its resources to protect residential structures in the WUI from 

wildfire. In other words, what is the cost effectiveness of conducting various preventative 

mitigations to protect structures from wildfire?  This thesis develops a modeling system 

capable of comparing the cost effectiveness of alternative wildfire structure protection 

strategies in a low elevation WUI area of western Montana. This is done to test the 

proposition that there is some difference in the cost effectiveness of the various options to 

mitigate the hazard of wildfire. By putting together a modeling system that constructs the 

existing hazard and is capable of looking at the cost and effectiveness of these mitigation 

options, society can begin to make better selections of preventative wildfire mitigations.  

 

This dissertation compares two suites of mitigation options. One suite is comprised of 

activities conducted in the home ignition zones6 (HIZs) across the study area.  

Firewise mitigation efforts are actions taken to modify the building itself as well as fuel 

conversions within the home ignition zone. In general, homeowners are only partially 

successful at reducing fuel on their properties. These actions are restricted by cost, lack of 

ownership of the entire HIZ, action or inaction by adjacent landowners, subdivision 

covenants, and tradeoffs with other values provided by fuels, such as shade, wildlife 

habitat and privacy.  The initiation of these actions is generally considered the 

responsibility of homeowners. The other suite of activities consists of silvicultural 

treatments in the forest and grassland area surrounding the community.  These actions are 

                                                 
6 The home ignition zone is defined by Cohen (2001) as the area that principally determines the home 
ignition potential. The HIZ includes the home, its exterior materials and design, and the area around the 
home typically within 100 to 200 feet (Cohen, J. 2001) and is used in this dissertation as the area extending 
100 feet from side of each structure. 
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constructed to represent options generally considered the responsibility of land 

management agencies funded mainly with tax revenues. 

Justification for this Research  
Communities across the country are now discussing an appropriate reaction to the 

wildland fire hazard problem. Land management agencies are implementing new 

techniques to reduce fuels. Some scientists argue that conditions in the immediate 

vicinity surrounding the home (such as flammable landscaping and debris) explain most 

ignitions (Cohen 1999, Foote 1994, Davis 1990, Howard et al. 1973).  This idea has been 

supported with research like that of Wilson and Furgeson (1986) who developed an early 

regression model to calculate the probabilities that any of 450 exposed residences would 

survive a bushfire following the famous Australian Ash Wednesday fire in 1983.  These 

authors imply that modifications in the immediate proximity of homes could be a better 

investment than fuel treatments away from the HIZ.  Based on this philosophy, many fire 

departments and government agencies now suggest application and enforcement of 

Firewise7 building codes for building design and proximate fuel management as needed 

steps to reduce the probability of home ignition.   

 

This school of thought, championed lately by Jack Cohen (Research Physical Scientist, 

USDA, Forest Service, Fire Sciences Laboratory), claims that these steps are more 

effective at reducing home loss from inevitable fire events in the low elevation dry forests 

of the inland west than fuel treatments in the surrounding wildlands. As evidence that the 

                                                 
7 Firewise Program is a term used to describe efforts to reduce the structure ignitability in the home 
ignition zone. These can be thought of as a combination of one time changes (e.g., replacing a cedar shake 
roof with a non-flammable roof) and annual maintenance (e.g., keeping a non-flammable lawn, removing 
litter fall from gutters, etc.). 
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public often misperceives the nature of the wildland fire threat, Finney and Cohen 

(2003:359) assert, “Because homes [can] survive high intensity fires and are [often] 

destroyed in low intensity fires … it is questionable whether wildland fuel reduction 

activities are necessary and sufficient for mitigating structure loss in wildland urban 

fires.”  This basis of explanation for structure ignitions has organizations like the 

Australian Commonwealth Scientific and Industrial Research Organization and Firewise 

Communities/USA ramping up efforts to educate WUI homeowners about mitigation 

opportunities and encouraging them to improve structure resistance to wildfire through 

mitigations at and close to their homes. 

 

Other authors focus more on the ability of silvicultural treatments to reduce fire 

probabilities. Omi and Kalabokidis (1998) used fuel treatment experiments in WUI areas 

to ascertain the impact on surface fire behavior and its contribution to potential 

suppression control.  Pollet and Omi (2002) reported how fire severity and crown scorch 

are reduced across treatment areas in the western US following combinations of thinning 

and prescribed burning. Likewise, Strom’s (2005) masters thesis used a sampling 

methodology two years after the 2002 Arizona Rodeo Chediski fire and revealed that 

prescribed burning treatments within one decade of a passing fire reduced burn severity 

and the effect is magnified by the addition of thinning to prescribed burning treatments. 

Finney (2004a, 1998) has been actively using software he has designed (the FARSITE 

fire area simulator model, Minimum Travel Time and FlamMap) to investigate the 

impact of treatment amounts and patterns on wildfire expectations.  
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Work published by Fried et al. (1999) conceptually combined estimates of wildfire with 

conditional estimates of ignition, given a wildfire, to estimate the value of risk reduction 

in WUI areas. Findings from that study concluded that the probability of structure 

ignition is mainly a function of the clearing of trees, grass and debris from the area 

immediately around the home.  This work provides an important conceptual underpinning 

for this dissertation, but lacks probability-based estimates needed to include a cost 

effectiveness analysis of mitigations opportunities. Other authors have applied cost 

considerations to individual parts of this wildfire caused structure ignition problem and 

possible mitigation efforts. For example, Berry and Hesseln (2004) found higher costs for 

preventative silvicultural treatments in WUI areas compared to other public lands.  

Sanchez-Guisandez (2004) reported the design of a coarse-scale decision support system 

that prioritizes silvicultural forest fuel treatments based on the cost-effectiveness of fire 

protection for timber resources and WUI areas. Looking more at structure factors, one 

author investigated the cost effectiveness of safety and protection design requirements for 

Australian building codes intended to reduce wildfire-caused structure ignitions (Beck 

1987). These works help provide valuable foundations for this thesis. However, the 

current tools all lack a consolidated methodology combining probability based ignition 

expectations with the cost effectiveness information for the full range of possible 

mitigation work. 

 

Large amounts of money are being requested and spent to protect growing residential 

communities from the threat of wildfire-caused home loss (MT DNRC 2004, NIFC 

2006).  Given this desire to use preventative measures to protect WUI structures, it is 
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important to develop the means to site-specifically determine the most cost effective 

course of action: Are schedules of silvicultural manipulations of existing forest fuels8 

better investments than Firewise mitigations inside the HIZ?  Communities across the 

country are preparing wildfire protection plans to stimulate landowners and agencies to 

engage in preventative actions yet there is little information regarding the relative 

effectiveness of alternative investments.  Modeling can be used as an alternative to field-

testing typical treatments to address cost effectiveness without endangering structures, 

firefighters or citizens. 

 

Most economists would acknowledge that in order to find the optimal mix of silvicultural 

forest fuel treatments surrounding a community and Firewise modifications in home 

ignition zones, one would need information about all the values at risk from wildfires' 

negative impacts and all the values that would be enhanced by wildfires' positive impacts.  

For this research however, the focus is protection of structures with a clear recognition 

that the methodology used for this research ignores other market and non-market values9. 

This simplification is done to make this project manageable, allowing construction of a 

basic modeling system that can be expanded in the future.  

 

This research is intended to advance the field of forest economics by applying cost 

effectiveness analysis to results from three modeling tools. It is not the intent of this 

project to validate any of the modeling tools contributing to the existing hazard estimate 

                                                 
8 Here, the term ‘fuels’ refers to live and dead plant material from the boundary of each home ignition zone 
to a distance limited by firebrand lofting distance, roughly 1.5 miles from structures. 
9 Examples of additional market values are infrastructure and commercial buildings, examples of  non-
market values impacted include community aesthetics, wildlife habitat, water quality, and nutrient cycles. 
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or the effectiveness determinations in this research. Once the economic concept is 

demonstrated, future modeling tools, improved versions of current tools or substitute 

models could enhance predictive abilities for this form of ex ante analysis. This 

dissertation will hopefully contribute a new economic perspective to the growing 

problem of houses threatened by wildfire and move management of these issues toward 

more cost effective preventative mitigation planning.   

Research Goal and Objectives 
There is one goal with four objectives for this research project. The goal of this research 

is to demonstrate a cost effectiveness analysis of mitigation options to reduce home 

ignition expectations in a low elevation, WUI area of the western United States. The 

comparison is between a suite of Firewise options conducted inside the HIZ versus 

thinning and prescribed burning silvicultural treatments applied to surrounding wildlands. 

The research utilizes a study area in the Bitterroot Valley of western Montana with 291 

WUI residences. The goal will be accomplished with the following four objectives: 1) 

Estimation of the existing wildfire structure hazard for a study area by selecting wildfire 

modeling tools, collecting structure and home ignition zone fuels data, and combining the 

probability results 2) Development of mitigation options, mitigation costs estimation, and 

effectiveness evaluation for a suite of HIZ mitigation options 3) Application of a 

scheduling tool to develop and evaluate the effectiveness for the silvicultural treatment 

suite in the forests and grasslands surrounding the study area, and 4) Generation of a cost 

effectiveness analysis that compares the effectiveness levels between the HIZ and 

silvicultural mitigation suites at several budget levels using cost effectiveness ratios and 

charts.  
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Figure 1 is a flowchart that schematically represents the objectives of the dissertation. 

This figure will be referred to at various times in the dissertation to explain how steps and 

decisions relate to the overall project. 

 
Figure 1. Study design flowchart 
 

 

Objective 1 is generation of baseline home ignition probability estimates for the study 

area. The first step is to design a modeling system that links a modeling tool capable of 

predicting home ignition given a fire, with one capable of predicting the probability of 

fire encroaching on each house within a study area in the future. The SIAM (Cohen 1995) 

and SIMPPLLE (Chew et al. 2004) models are chosen for this purpose. The next chapter 
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(II) describes the model selection process in detail.  Once a modeling system is 

established the data required for the models must be collected. For SIAM this means first 

learning about the evolving model parameters, designing a data collection protocol to 

support data entry, and testing the instrument on volunteer houses.   Site visits by the 

author are used to draw elevation and plan views needed for SIAM; using a worksheet to 

document the building and fuels characteristics within each home ignition zone and to 

evaluate firebranding potential. Data is entered into the SIAM model for the four sides of 

each visited home.  A siding flammability classification system was developed that 

allowed extrapolation from 39 visited homes to the full set of 291 study area homes to 

generate ignition probabilities used with SIMPPLLE results to the calculate of existing 

hazard estimates. 

 

The second step to accomplish Study Objective 1 is modeling wildfire probabilities.  

Modeling of fire probabilities for each of 243 polygons hosting 291 houses was 

conducted after collecting site-specific vegetation and historical disturbance information 

(ignition probabilities per acre, fire perimeters, harvest and fuel treatments perimeters, 

insect and disease infestation locations) to initiate the model. This information was all 

used to improve the accuracy of future fire probability predictions modeled with one 

hundred 30-year simulations across the study area. 

 

The two probabilities predicted by the two models are then multiplied to generate the 

existing 30-year ignition hazard at each study area house. Chapter III describes this 
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process in detail. The average existing 30-year ignition hazard of these 291 structures is 

used as the starting point for the next two objectives. 

 

Study Objective 2 is to derive and evaluate a suite of Firewise options for reducing 

modeled home ignition estimates. Countless combinations of building improvement and 

fuel conversions inside the visited HIZs are possible. By consulting with local contractors 

who perform fuel mitigation work and with consideration of the modeling limitations, 

seven general HIZ treatments are developed. Three of these treatments are building 

upgrades-replacing single pane windows with double pane windows, upgrading 

flammable siding to non-ignitable siding, and a combination of these two upgrades.  Two 

are removal and replacement (conversion) of existing fuels near the home-a light fuels 

conversion to watered lawn, and a full fuels conversion with replacement using non-

flammable alternatives.  The other two options are combinations of structure upgrades 

and fuels modification in the HIZ. Chapter III describes the methods used by the author, 

following consultation with local contractors and businesses, to calculate cost estimates 

for each of the seven mitigation options. That chapter also details how the effectiveness 

of each of these seven possible HIZ mitigations is modeled. 

 

Study Objective 3 moves away from the HIZ and focuses on the surrounding wildlands. 

It applies a suite of silvicultural fuel treatments that potentially reduce modeled home 

ignition estimates.  The Multiple Resource Analysis and GIS (MAGIS; Zuuring et al. 

1995) software is used with the same budget constraints needed to accomplish the suite of 

seven Firewise options to generate seven schedules of thinning and prescribed burning in 
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an area extending one and a half miles from the 291 structures.  The seven schedules that 

contain variable areas of five possible treatment regimes10 are then loaded into 

SIMPPLLE to generate one hundred new thirty-year simulations. The results of these 

simulations are used to estimate new wildfire probabilities for each polygon hosting a 

study area house.    

 

Study Objective 4 is the generation of cost effectiveness ratios and charts that facilitate a 

cost effectiveness analysis between the two mitigation suites. Because each of the two 

suites of mitigation options uses the same seven budget levels, effectiveness results from 

Objectives 2 and 3 permit achievement of the this objective, and the project goal: a direct 

comparison of the cost effectiveness for all mitigation options. This pioneering work is 

expected to show that economics should be included as a guide to future mitigation 

selections.  

 

Once the objectives are designed, the first step in this study is selection of a study area for 

demonstration. The area selected near Darby, Montana (Figure 2) is typical of many areas 

in the western US threatened by frequent wildfires. The location includes a mix of 

national forest, private, and state of Montana land.  This study area has several important 

qualities that make it a suitable case study.  The first characteristic is a physical setting 

where wildfire is likely, and where, if a fire occurred, expected home loss is likely (it is a 

WUI area with multiple homes at risk from heavily stocked private and public timber 

lands in the vicinity).  The area west /southwest of Darby, Montana is also within a 

                                                 
10 Schedules of treatment regimes are generated by MAGIS in an attempt to minimize the expected 30-year 
fire probability across the roughly 36,000 acres of treatable area by comparing variable levels of net cost 
and expected effectiveness, given the seven budget levels. 
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reasonable distance of The University of Montana and is also a location with building, 

home ignition zone, and forest vegetation conditions that can be improved, a quality 

necessary to display mitigation effectiveness. 

 

The bulk of the wildfire probability analysis area (Figure 3) of roughly 381,361 acres is 

on the eastern slope of the Bitterroot Mountains to the west of the Bitterroot River, which 

flows north to its confluence with the Clark Fork of the Columbia River. The elevation in 

this area ranges from approximately 3,800 to 10,160 feet above sea level. Average 

percent slopes for vegetative units range from 0 to 236%. 

 
Figure 2. Locator map for study area 
 



 

 17 12/18/2006 

 
Figure 3. Vegetation types in the 381,361 acre wildfire probability analysis area 
 

A WUI study area is defined within this wildfire probability analysis area. The Firewise 

glossary defines the WUI as any area where wildland fuels threaten to ignite combustible 

homes and structures.  Radeloff et al. (2005) used a more technical definition based on a 

published Federal Register notice from the USDA and USDI (2001). They describe the 

interface as an area with more than 1 house per 16 ha, and less than 50 percent 

vegetation, which is within 2.4km (1.5 miles) of an area of at least 500 ha in size 

containing more than 75 percent vegetation. Intermix areas are defined similarly, but 

have more than 50 percent vegetation around homes.  These definitions are used to guide 

the selection of study area WUI homes for this dissertation. 

 

For this project, the WUI in the study area extends from the main stem of Bunkhouse 

Creek south to the main stem of Trapper Creek along the Bitterroot National Forest 
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boundary, then north along the West Fork Road (473) to Highway 93 and north along this 

road to the point of intersection with a line 1.5 miles from the USFS boundary, north 

towards Bunkhouse Creek, skirting the high density area comprising downtown Darby 

(Figure 4). The CWPP WUI area was modified to accommodate this study.  The study 

area WUI extends to the east of the Community Wildfire Protection Plan (CWPP) WUI 

toward the Bitterroot River in order to include numerous homes within 1.5 miles of 

national forests. Also, homes in high-density residential areas just west of Highway 93 in 

Darby are excluded because this is high-density housing area and the structure ignition 

model being used currently cannot calculate risk from adjacent structures.  The intent is 

not to focus on this area because it has unique hazard levels compared to other areas in 

the western US, but rather to provide a case study of a potential analytical aid for 

addressing a generic problem across much of the western US.   
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Figure 4. Aerial view of the 291 study area residences atop the 2004 National 
Agricultural Imagery Program base map. Bitterroot National Forest lands are outlined 
with black. 
 
Once a study area is selected, a time period for the analysis is needed.  For this 

dissertation a 30-year period is selected. If the time period selected for the project is too 

short, the mitigated change to the long-term hazard faced by homeowners will not be 

detectable. If it is too long, then residential development, which is beyond the scope of 

this study, could alter the relationship between the two modeling tool results, wildfire 

expectations and ignition expectations. The changes to tree density and size class 
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resulting from thinning and burning treatments are assumed to persist for several decades. 

There is also a practical constraint on the amount of thinning and burning that can occur 

each decade due to smoke production and other social acceptance considerations. The 30-

year planning horizon modeled for this project therefore reflects a compromise between 

the uncertainties about human population distribution beyond 30 years and the need to 

temporally evaluate the impact of various mitigations on wildfire hazard. With a study 

area and time period selected, objectives can be pursued. 

Organization of this Dissertation  
Chapter II provides background on wildfire modeling and context for this dissertation by 

introducing the modeling approach.  Chapter III contains methods to accomplish 

objectives 1, 2, 3, and 4 of this dissertation. The first section of chapter III explains how 

the modeling tools are used to create an existing hazard estimate. This forms the starting 

point to address the cost effectiveness of tenable mitigations that can be chosen. The next 

sections in chapter III introduce mitigation suites and describe the methods to estimate 

costs and evaluate effectiveness.  The results chapter (IV) shares the same objective-

based format as the methods chapter. The existing condition results are provided first. 

Then cost estimates for each mitigation option, as well as the impacts that each mitigation 

option has on modeled structure ignition expectations, wildfire probabilities, and on the 

combined 30-year hazard estimate are reported.  Finally, the cost effectiveness analysis 

results are reported at the end of the results chapter. Chapter V adds several important 

discussions about key modeling system assumptions and the limitations these create for 

the results. The document ends with chapter VI, which provides conclusions and makes 

some recommendations for future work.  
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CHAPTER II – THE MODELING APPROACH  

 
This chapter provides some fire modeling context and explains why modeling is the most 

viable technique to approach an economic comparison of preventative wildfire hazard 

mitigation options designed for structure protection. A literature review of various fire 

modeling and economic efforts helps identify reasons why the modeling tools that 

comprise the modeling system for this dissertation are selected. The literature suggests 

that the process of wildfire destroying a home through ignition occurs at multiple spatial 

and temporal scales. This reality drives the selection of two independent models to 

estimate a baseline wildfire structure ignition hazard estimate. The selection criteria of an 

economic analysis tool for this project is then covered, and the selection of an economic 

analysis tool is described. The existing hazard estimation, mitigation cost estimation, 

mitigation effectiveness evaluation, and cost effectiveness methods and results are all 

found in chapters III and IV.   

Models as Assessment and Evaluation Tools 
Numerous vegetation and structure variables combine in a multitude of arrangements 

allowing wildfire to ignite and destroy residences. There is prohibitive liability in field-

testing the effectiveness of various mitigations with wildfire in real settings. Mitigation 

effectiveness cannot be tested by either intentionally burning treated areas, or even by 

allowing natural ignitions to burn treated areas.  There are also far too many variables to 

create useful controlled experiments. As a result, modeling tools emerge as the most 

pragmatic way to address the question of which mitigation strategies appear to be most 

cost-effective. This dissertation employs various models that represent what scientists in 
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the field of fire management have applied to understand the wildfire behavior 

relationships between buildings and fuel conditions. 

 

 “Models of natural systems are inevitably designed as simplified representations of 

reality,”(Annan 2001:297). And models have been an integral part of ecosystem analysis 

since the earliest days of systems ecology (Odum 1983). Some models address 

management questions about future ecosystem response to interrelated disturbances. 

These are generally termed process or mechanistic models (Korzukhin et al. 1996). Due 

to the desire to accurately portray a small piece of reality, models are often limited in 

their scope.  Although few exist that are comprehensive enough to answer 

multidisciplinary questions (Machlis and McKendry 1996), people’s natural tendency is 

to stretch models to their limits. Because models become unwieldy when they attempt to 

address too many issues they must sometimes be linked in a modeling system to address 

important management questions.   

 

Even armed with an understanding of how an ecological system generally behaves, one 

still encounters trouble explaining how disturbance processes such as wildfire will affect 

both forests and human communities.  The degree of difficulty associated with this 

explanation depends on the question the researcher is attempting to address. Is the 

researcher curious what will be the likely temporal and spatial distribution of future fires, 

or how many homes a community should expect to lose to these wildland fires? Maybe 

she wants to know if there are combinations of vegetation and home characteristics that 

seem most at risk? Finally, she may wonder given the modeled responses to these 
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questions, where is the wisest place to invest money and effort to reduce negative impacts 

on the human community from a disturbance process that by most accounts has lost its 

‘natural’ role in the ecosystem? 

 

These questions are important to this study. The goal for this dissertation is to compare 

the cost effectiveness between two suites of options for improving modeled home 

survival when wildfire threatens the WUI. Efforts to evaluate models for this research are 

grounded in a conceptualization of the system being simulated with the modeling tools. 

By first asking what is the ideal data, what are the ideal modeling tools and what is the 

ideal connection between modeling tools, the design of an ideal modeling system begins 

to emerge.  Only after considering the spatial and temporal scales at which wildland fires 

that destroy homes can the fitness of the modeling system be evaluated.   

Scale – An Important Fire Modeling Consideration 
Scale includes both spatial and temporal components and is a topic that needs 

consideration in this research project. Spatial resolution refers to both the extent and scale 

of a research effort, with the latter meaning the size of the mapping units. Both the extent 

and scale of fire-related studies can vary from the degree of mortality within a single tree 

to the impact of smoke emissions on the gaseous composition around the global 

atmosphere. The main limitation of creating a modeling system is that the wildfire caused 

structure ignition phenomena being modeled occurs at multiple spatial scales.  By 

summarizing a few of the models used previously in several other fire-related modeling 

projects scale selection is put into context.  
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Spatial Scale 
Preisler et al. (2004) presented empirical models to estimate the probabilities of wildland 

fire on each square kilometer (voxel) of federal lands for a given day.  Their non-

parametric logistic model is used to create a probability for each voxel, each day. Like 

similar efforts to produce coarse scale data (e.g., Schmidt et al. 2002), Preisler’s 

application is more useful for improving suppression readiness than for prioritizing 

changes to forest structure or changes in and around home ignition zones.   Recent work 

by Haight et al. (2004) explored the regional fire risk in the WUI areas of northern lower 

Michigan. They ascertained the risk of stand replacing fire using GIS information 

describing fire regimes and fuel flammability. However, they were interested in a 

regional area and thus restricted their consideration of this risk to homes and people by 

using housing density information from the recent 2000 US Census. At the fine-scale and 

small extent end of the spectrum, work by Jones et al. (2004) used a flux-time profile in 

combination with fire behavior models to evaluate stem heating related mortality to 

inform prescribed burning expectations.  

 

Mark Finney, the designer of FARSITE,11 notes that modeling expectations for fire can 

be very misleading (Finney Pers. Comm. 2004b). In a document describing the model 

development and evaluation he states, “Wind data is typically input at hourly or half-

hourly intervals. Fuels and topography are resolved spatially to about 30m.  These scales 

are coarse compared to the real frequency of wind variation over a scale of seconds, and 

fuels over distances of meters or fractions of meters,” (Finney 2004: 31-32). While it is 

tempting to address this phenomenon at the acre scale, this is not how fires burn. They 
                                                 
11 FARSITE is a very popular fire behavior modeling tool. It is used mainly to look at fire growth 
expectations given an ignition site and numerous facets of fuel information. 
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burn at the tree level. A tree either burns or it doesn’t (Finney Pers. Comm. 2004b). The 

same could be said for a home. This explains why data describing each building and the 

fuel in its surrounding home ignition zone needs to be collected and modeled. 

 

Although fires vary in intensity at a small scale, the spatial probability of fires of variable 

severity is influenced by factors at the landscape scale (Turner and Romme 1994). 

Because ignition sources occur at this landscape scale modeling fire probabilities should 

reflect this spatial reality. This explains why a tool must be selected to model the 

probability that each stand collectively comprising the landscape will experience a 

wildland fire in the future.  

 

It is acknowledged that the large wildfires that destroy many WUI structures occur at 

landscape scales and that firebrands can reach a house from more than a mile away 

(Albini 1983) yet several factors impacting the radiant heat flux, and subsequent ignition 

vary at the home ignition zones scale (Cohen and Butler 1998). These authors suggest 

that wildland fires burning homes is the coincidence of events affected by factors 

occurring at multiple scales.   Therefore, modeling should combine elements at the 

landscape scale with elements at the individual HIZ scale. The most logical modeling 

system to assess existing hazard therefore appears to be one that can both describe 

expectations for future fire occurrence at the landscape scale, and one that can predict the 

probability of home ignition at the scale of a residential lot, given a passing fire.  This 

reality suggests a linkage of tools such as the Structure Ignition Assessment Model 

(SIAM) that could be used for structure ignition modeling, and the Simulating Patterns 
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and Processes at the Landscape Scale (SIMPPLLE) model, which uses logic to simulate 

processes operating at the landscape scale, could be used to make wildfire structure 

ignition predictions.  

Temporal Scale 
The cost-effectiveness analysis of wildfire-caused structure ignition hazard mitigation 

options invokes a need to assess the temporal longevity of impacts from any implemented 

mitigation activities.  Most of the fire risk studies described above are based on existing 

conditions, creating a snapshot in time of wildfire hazard. However, because fire is not 

expected every year, the ideal modeling system should evaluate cost effectiveness using a 

temporal component that reflects the durability of efforts to modify home loss 

expectations. Modeling with this temporal component will enhance mitigation evaluation. 

Modeling Wildfire Caused Home Ignition  
Countless ways exist for homes to ignite and burn. Here the focus is wildland fire-caused 

structure ignitions. When considering structure ignitions in the wildlands, most readers 

likely envision large walls of flames engulfing homes. While this is the story often told 

by the media during ‘firestorms,’ many types and intensities of wildfire are capable of 

igniting widland urban interface structures. Although numerous homes are burnt during 

high intensity events each year the full spectrum of wildfire intensities comprise the 

threat of structure ignition. In fact, investigations done following WUI fires reveal that 

many of the ignitions appear to have been caused by short flame length fires and burning 

embers delivered to ignitable materials by wind as firebrands (Cohen and Stratton 2003, 

Foote 1994, Howard et al. 1973).  
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Given that structure ignitions are caused by piloted ignitions12 (which results from 

combinations of delivered radiation, convective heating and direct flame contact), and 

glowing embers (igniting exterior structure components and/or entering through broken 

windows) in varying combinations, a modeling tool is needed that represents all of these 

potential sources. Furthermore, a model is needed that reports an overall probability by 

using the most vulnerable ignition threat at each house. Similar to the idea of the weakest 

link in a chain, the weakest resistance to ignition will allow wildfire to prevail with 

structure ignition. This is especially true in the US, where evacuation of residents 

typically precedes the passage of fire fronts, and seldom are fire fronts weathered in 

place. As a result, homeowners are rarely on hand to provide an immediate fire 

suppression response following a wildfire event.  

Home Ignition Modeling Options 
Numerous attempts are underway to rate wildfire home ignition risk in communities 

across the US.  The National Wildland Urban Interface Fire Program (Firewise.org) 

teamed up with several communities across the US to develop rating systems that 

generally consist of the same set of input variables, namely variables describing the 

home, the physical setting, and suppression force access. Most rating schemes are based 

on variants of National Fire Protection Association Form 1144.  The Montana 

Department of Natural Resources Conservation risk evaluation form, Ecosmart, Firewise, 

and the Fire Comparative Risk Assessment Framework Tool, are similar examples of 

hazard rating systems. Although field collected variables are combined to derive a risk 

rating, the results of these ratings (sometimes based on proprietary algorithms) are 

                                                 
12 Piloted ignition: flaming is initiated in a flammable vapor/air mixture by a ‘pilot’ such as an electrical 
spark or an independent flame (Drysdale 1998). 
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usually either suggested improvements or categorical assessments. In order to evaluate 

the effectiveness of wildfire mitigations a model is needed that can quantify the 

improvements in fire safety that result from potential mitigation efforts. This means that a 

probability-based output is desirable, especially when attempting to quantify the cost 

effectiveness of mitigation efforts in the home ignition zone. 

 

In order to create a diagnostic model of existing risk, a probability-based model 

considering radiant and convective heating as well as fire branding is necessary. There 

are not many of these probabilistic home ignition models to choose from at this point. 

Most homes burned during wildland fires are lost during extreme13 weather events 

(Cohen, Pers. Comm. 2004).  Putting firefighters in harm’s way during extreme fire 

weather events is very risky for managers.  Given these realities, a home-ignition 

modeling tool such as the Structure Ignition Assessment Model (SIAM) that models the 

worst-case weather scenario, with no suppression resources available at individual homes 

seems appropriate.   

The Structure Ignition Assessment Model (SIAM), Foundations and Parameters 

The Structure Ignition Assessment Model (SIAM) was the first US wildfire home 

ignition modeling tool produced (Cohen 1995). This modeling software is currently being 

reprogrammed to be user-friendlier, and has not been officially released yet.  The SIAM 

was designed to develop expectations of home survival during severe weather events. It is 

selected to address the home ignition probability part of the modeling system. 

                                                 
13 Extreme weather events differ based on climate and topography. The term extreme is typically associated 
with temperatures, winds and relative humidity that only occurs a small percent of the time. For example 
the 95th and 99th percentile conditions are often cited as extreme fire weather.   
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There are three main ignition vectors in SIAM: piloted ignition through convective 

heating or radiation, window breaks that allow firebrands to ignite the structure internally 

and external firebrand ignitions of receptive nooks and crannies. While this model 

produces an ignition probability, it is important to realize how this probability is 

obtained. The probability of burning is not based on empirical probability density 

functions. It is instead based on thresholds that reflect combinations of heat transfer and 

burning times. There is one set of these flux time product thresholds for (radiant and 

convective) heating and one for window breaks that would allow ignition from firebrands 

(representing structure vulnerability to burning embers) (Cohen 1995). The probability of 

a structure burning is a reflection of the easiest way a structure could ignite (Cohen Pers. 

Comm. 2005).   

 

The SIAM calculates the radiant heat generated from each ignition source based on flame 

characteristics derived from Rothermel, Albini, Byram and rule of thumb relationships 

(Cohen Pers. Comm. 2006). Fire behavior parameters are similar to that used by 

BEHAVE (Andrews 1986, Andrew and Chase 1989). The influence of user-selected 

ignition sources (each with a defined height, depth and width) is modeled for each side of 

each house in SIAM. The physics equations that represent thermal heating are based on 

five default thermal properties for each fuel type (Rothermel’s (1983) intensity, fuel 

moisture, spread rate, burning time, a flame height factor), distance from structure, 

several climatic constants (e.g., 90º F degree structure temperature and a 20 mph wind 

from a selected azimuth), and the building height. These are used to calculate the flux 
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time product (a combination of radiant heat flux and convective heat flux calculated into 

thermal energy) that confronts each third of each structure’s four ignitable walls. The 

probability of piloted ignition is taken from the highest heat transfer possible for each 

side of each structure.  For the window break ignition threshold the total surface area of 

windows is calculated for each third of each wall to calculate the house’s probability of 

ignition by way of window break and firebrand ignition. These probabilities are then 

combined with a fire branding ignition probability to assign a final probability.  All of 

these model aspects make SIAM a suitable choice for this project. 

Modeling Wildfire Probabilities Through Time at the Landscape Scale 
Prediction of wildfire probabilities for the next three decades is also needed to 

accomplish the first objective of this dissertation, calculation of the existing ignition 

hazard to WUI structures. Wildfire ignitions in many parts of the western US are 

dominated by dry lighting events with human-caused ignitions contributing varying 

proportions (Agee 1993). Topography and weather combine to generate abundant air to 

ground lightning strikes each year.  Long and short-term weather patterns and vegetation, 

some of which has been modified through forest management, interact to determine 

wildfire intensity and severity. Numerous articles, synthesized by Graham et al. (2004), 

now describe how logging, grazing and successful wildfire suppression efforts during the 

20th century changed the structure and composition of western North American forests. 

Increases in stand density are believed to predispose standing trees to more intense fire 

behavior, resulting in more severe wildfires than were typical before European settlement 

(Arno and Fiedler 2005).  
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Authors have also noted that a general increase in temperatures in recent years has 

lengthened the number of days each year that can support active insect life cycles 

(Westerling et al. 2006, Running 2006). Numerous bark beetles in particular have 

increased their population growth rate (Logan et al. 2003) through a combination of 

decreased cold-related mortality (Bentz and Mullins 1999) and shorter generation times 

in North America (Ungerer et al. 1999). Recent detection surveys have simultaneously 

focused attention on a trend of increasing infestations with resultant increases in the 

numbers of dead and dying trees.  

 

Collectively, these factors contribute to expectations of strong interactions between insect 

and disease infestations and wildfire during upcoming decades. In order to model wildfire 

in the future, a tool is needed that uses local disturbance history to represent the best 

expectations for interactions of future vegetation disturbance processes (including 

wildfire, insects and disease, and forest management practices). Also, recall the 

discussion regarding the importance of temporal scale and the decision to model a 30-

year wildfire probability. 

 

Wildfire Probability Modeling Options 
Numerous models, besides SIMPPLLE, can be used to model landscape fire probabilities 

including: VDDT (Beukema and Kurz 1998), FlamMap (USDA, 2006), and LANDSUM 

(Keane et al. 1996).  A model is needed that can achieve the first and third objectives of 

this study: estimation of existing wildfire ignition hazard and evaluation of silvicultural 

forest treatment effectiveness.   It is clear that the ability to model the spatial and 

temporal variability of wildfires across an area is extremely important for this project. 
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Barrett (2001) describes the four prominent models of vegetative change for landscape 

planning (FETM (CH2M Hill 1998), LANDSUM, SIMPPLLE, and VDDT).  She notes 

that only SIMPPLLE and LANDSUM are spatial models. Furthermore, only SIMPPLLE 

uses spatial context, a quality considered quintessential for this analysis. Keane et al. 

(2004:4) reviewed 40 fire modeling tools and stated “it is now recognized that to function 

as a comprehensive exploratory tool, vegetation models should simulate transient 

changes in vegetation in response to climate, disturbance, and environmental change in a 

spatial domain.” For example, the incorporation of spatially explicit insect and disease 

infestations and the interaction of this ecological disturbance with future wildfire appear 

to be important.  Table 2 is a comparison of important attributes for available modeling 

tools that shows that the SIMPPLLE model has many of the desired model 

characteristics. 

The Simulating Patterns and Processes at Landscape Scales (SIMPPLLE) Model 
In order to meet the requirements of wildfire probability prediction for the first objective 

of this research, baseline decadal landscape fire severity probabilities for each polygon 

hosting a WUI residential structure must be obtained. The Simulating Patterns and 

Processes at Landscape Scales (SIMPPLLE) modeling tool is employed to derive 

expected wildfire disturbance probabilities across all (both the private and public) lands 

in the study area, given existing conditions. 

 

The SIMPPLLE data is based on a three-way classification (dominant species, size class, 

and density) of remotely sensed data, converting the landscape into irregular shaped 

vector-based vegetative polygons. The SIMPPLLE modeling tool projects future 
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vegetative states for polygons based on pathways that reflect expert opinion and site-

specific recent disturbance history regarding the likelihood of succession and future 

disturbance (Chew et al. 2004). Note that SIMPPLLE is an ecological process prediction-

modeling tool, not a fire behavior-modeling tool. 

Table 2. Comparison of available fire modeling tools 
Modeling 
Tool 

Spatially 
Explicit 

Spatial 
Context 

Temporal 
Component 

Interaction with Insect and 
Disease Disturbance 
Processes 

FETM No No Yes No 
FLAMMAP Yes Yes No No 
LANDFIRE Yes No No Yes 
LANDSUM Yes No Yes No 
VDDT No No Yes Yes 
SIMPPLLE Yes Yes Yes Yes 
 

The SIMPPLLE modeling tool meets many of the criteria for the ideal conceptual 

modeling system and is well suited to this project for several reasons. First, SIMPPLLE 

can stochastically simulate landscapes into the future as many times as desired. 

Description of the data to this point has focused on the spatial scale. One of the 

advantages of SIMPPLLE compared to fire behavior models is its ability to simulate 

disturbances into the future. The SIMPPLLE model can be run for any length time 

period. The SIMPPLLE modeling tool uses decadal time steps, limiting the selection to 

10-year increments. Typically, simulations are run for 30 to 50 years with decadal time 

steps.  

 

The model uses disturbance probabilities to simulate stochastic disturbances spreading 

across the modeled landscape by interactions with adjacent vegetative communities 

(neighboring polygons). In the case of wildfire, the model uses records of past fire events 
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in a given area which are then converted into probabilities per acre per decade to form the 

basis of future fire expectations.  Normal wildfire spread is possible to either uphill or 

downwind stands. A 30-meter digital elevation model is used to build the elevation 

relationships and a southwest prevailing wind is selected to build the fire contagion 

relationships between polygons center points in the model’s area file. It is important to 

note that when fire is spreading in SIMPPLLE the logic dictates whether the disturbance 

spreads as a light, mixed or stand replacing fire to adjacent vegetative communities. The 

fire will have one and only one impact on each neighbor, that is to say the neighbor either 

burns completely (in LSF, MSF or SRF) or not at all. All acres inside vegetation 

community polygons have the same probabilities. 

 

Finally, the SIMPPLLE model also has a demonstrated working relationship with a 

compatible software program, the Multi-Resource Analysis and GIS (MAGIS), which 

can be used to schedule fuel treatments across a selected time period, with the potential to 

affect fire probabilities in SIMPPLLE.  Existing MAGIS software is extremely useful to 

accomplish Study Objective 3, scheduling thinning and prescribed burning regimes 

across the treatable area based on variable budget levels, facilitating Objective 4 a cost 

effectiveness analysis with set costs. 

 

In summary, household scale data is needed to model existing ignition probability and 

potential reductions in this probability through various mitigations. This antecedent 

household level data is also needed to estimate the costs of HIZ mitigation activities. A 

sufficient sample of study area houses is collected to represent the spectrum of building 
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types and home ignition fuels configurations that exist across the study area. Collecting 

this data constitutes a great deal of work and includes many important modeling 

decisions.  

 

Existing vegetation and historical fire, insect and disease, and forest management 

disturbance information is also needed to accurately estimate fire probability estimates 

into the future. Once a time period for the analysis (30 years) and the historical reference 

period (1995-2004) are selected, data covering a landscape sized adequately to portray 

the impacts of wildfire and insect and disease disturbance processes on polygons hosting 

study area WUI houses must be amassed. 

 

By combining results from two separate modeling tools for each study area house an 

average existing wildfire-caused structure ignition hazard estimate can be generated for 

the 291 study area houses. From this baseline estimate independent analyses for each of 

the two mitigation suites as well as a combined effectiveness analysis is possible.  

Selecting an Economic Analysis Tool 
Now that the discussion of wildfire modeling tools used to estimate the existing hazard 

and mitigation effectiveness is complete, the focus turns to the selection of a tool for 

economic analysis.  Decisions regarding how best to spend money to achieve a societal 

goal are often analyzed ex ante with cost-benefit analysis (CBA).  A CBA combines the 

discounted costs with the discounted benefits of an alternative to derive a present net 

value.  If appraised home value with a standard adjustment for contents and belongings 

(from insurance company records) was used, all reductions in average hazard could be 
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quantified as monetary benefits, and the results could be displayed with a CBA.  

However, a cost effectiveness analysis (CEA) will be used instead for this research.  

 

Economists have proposed CEA as an alternative to CBA, when benefits cannot easily be 

quantified with dollars (Boardman et al. 1996, Levin and McEwan 2001, Rideout and 

Hesseln 2001).  As a result, the CEA tool is often used in medical, healthcare, education, 

and national defense studies. There are several reasons why CEA will be used instead of 

CBA for this research.  First, current preventative fire protection planning is blind to 

house value14. For example, goal one (part d) of the 10-year comprehensive strategy 

implementation plan lists, “number of homes and significant structures lost as a result of 

wildland fire,” as a performance measure (US Congress 2002:10). Note that neither this 

nor any other community wildfire protection planning (CWPP) documents refer to house 

values as a guide to preventative mitigations. County planners and fire hazard assessors 

treat each home in an area covered by a CWPP equally. To target wildfire hazard 

mitigation resources at homes based on assessed values would require an assumption that 

market values accurately capture all the value of a home and its contents and it would 

suggest a policy that is difficult to defend based on social equity grounds because it 

would amount to a policy that prioritizes protection based on differences in personal 

assets.  

 

Generally, the cost effectiveness analysis tool can be used in two ways. You can select a 

target effectiveness level and let expected costs float, or you can select a budget 

                                                 
14 While fire prevention resource allocation may not depend on house value, fire suppression efforts may in 
reality be allocated based on house values. 
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constraint and let expected effectiveness float. Due to the complexities of combining 

several wildfire modeling tools to obtain an effectiveness measure for this project, and 

the sub-optimal15 prioritization processes used to select treatment regimes and HIZ 

mitigation activities, the prospect of setting a specific effectiveness level for reduced 

average 30-year structure ignition hazard and letting expected budgets (cost) float seems 

untenable.  This is why the same seven budget levels are used to compare the 

effectiveness of two suites of mitigation options. Effectiveness could be expanded in the 

future to include additional measures, such as expected acres of high severity fire.   

Summary 
This concludes the chapter describing modeling tool selection. The selection of the 

modeling tools strongly impacts the results of the economic analysis for this study.  The 

SIAM model represents the best option to model the likelihood that wildfire will ignite a 

structure.  Although other ecological disturbance and fire behavior models exist, the 

SIMPPLLE model has many features that make it a good selection to model wildfire 

probability for this dissertation. Substituting these other models to estimate the 

probability of wildfire encountering each study area home could alter the results of the 

mitigation CEA. There are also many modeling decisions represented in the methods 

chapter that impact the economic analyses. However, in order to maintain the focus of 

this document, the impact that these modeling decisions and assumptions have on the 

results is not presented until the discussion chapter (V), which follows both the methods 

(III) and results (IV) chapters. 

                                                 
15 Mitigations are considered sub-optimal for various reasons. The HIZ mitigations are generalized to the 
application of seven options to all houses in the study area. The MAGIS treatment schedules are sub-
optimal because the reduction factors used in the scheduling process are not based on SIMPPLLE outputs 
following treatments. 
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CHAPTER III – METHODS  
 
The methods covered in this chapter explain the tasks required to achieve the four study 

objectives seen if Figure 1. This first section explains Study Objective 1, by describing 

how the analysis methods are applied with the wildfire modeling tools and data to 

generate existing hazard results.  The next section describes how two suites of mitigation 

options are developed, assigned costs, and evaluated for effectiveness to achieve Study 

Objectives 2 and 3.  These first three objectives are steps needed to achieve Objective 4, 

generation of cost effectiveness analysis products. Collectively, these methods permit 

demonstration of a wildland urban interface (WUI) wildfire structure-ignition mitigation 

cost effectiveness analysis.  

Objective 1: Existing Hazard Estimation 

The Structure Ignition Assessment Model 

SIAM Data 
Separating the home ignition zone (HIZ) and the remainder of the WUI area is essential 

to this cost effectiveness comparison between two suites of mitigation options.  A home 

ignition zone is defined for this project, prior to data collection, as all fuels within a 

perpendicular distance of 100 feet from each side of each WUI study area structure and 

the rectangle that creates.16 This is the area included in the structure ignition analysis 

(Figure 5). 

                                                 
16 The average size of the HIZ for the 39 visited homes is 1. 38 acres. The range is from 1.05 acres to 1.84 
acres, depending on house size. 
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Figure 5. The home ignition zone. 

Data Collection 
Data collection occurred during the fall of 2005. With a data collection protocol prepared 

and a study site selected, the process of contacting potential participants commenced. 

Thirty-nine participants are included in the representative sample of visited homes (as a 

result of mailings, phone calls, and neighborhood networking in the study area 

community). Although the sample of homes visited is not random, it is representative of 

several gradients of fuel types, building types and the proximity of the structure to closed 

canopy forests. Attempts were made to contact all 291 homeowners with phone calls and 

letters.  Ocular and stride estimation was used to draw four elevation views (Figure 6) 

and four plan views (Figure 7) on graph paper, and record information with a worksheet. 

Worksheets (Appendix A) are used to record measurements and annotate the drawings to 

ensure data entry needs are met. Visits last roughly two hours and include a verbal report 

to the homeowner regarding opportunities to improve structure safety from wildfire 
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Figure 6. Example elevation drawings  
 

 
Figure 7. Example plan view drawing 
 

Fire branding17 potential for SIAM is rated subjectively from 1-3 in the area extending a 

quarter of a mile from each side, with one representing grasslands, two representing 

shrubs and open canopy forest, and three representing closed canopy conifer forest. This 

rating is assigned based on the vegetation between the structure and the visible distance 

for highly effective burning ember transport. This firebranding rating is the only input 

into SIAM that is not evaluated inside the HIZ.  The firebranding potential interacts with 

                                                 
17 Firebrands are lofted embers with sufficient heat energy to ignite structures either by coming into contact 
with the house, entering through windows or coming into contact with flammable materials near the house. 
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both window surface area and the subjective nook and cranny rating to contribute to the 

overall SAIM ignition probability. Numerous factors contribute to the nook and cranny18 

scores (1-5). This subjective score is assigned based on decks, porches, ignitable roofing 

ends, railings, vent screening, and ignitable windowsills (Cohen, Pers. Comm. 2004).   

Data Entry 
The SIAM tool requires inputs for many building and fuel variables. It has a user 

interface whereby building and site-specific fuel information is entered in four elevation 

views and one plan view. When entering new fuel sources the user selects from ten 

options (Figure 8) including seven vegetation types, wood piles, debris piles and adjacent 

structure). The fuel polygon is digitized as it was drawn in the field and assigned a height.  

Analysis 
The first factor calculated in the modeling system is the structure’s ignition expectation if 

a wildfire occurs in the vegetative polygon hosting the structure. The analysis of ignition 

expectation for each home is conducted independently for the four sides of each visited 

structure. Siding flammability, roof flammability and all window information is set prior 

to each analysis.  Then all fuel sources in each side of each HIZ are selected using the 

computer mouse and the shift key. Overall ignition likelihood is estimated with the click 

of computer mouse and recorded in a master spreadsheet, where the highest ignition 

probability is selected and used. 

                                                 
18 Nook and cranny is the terminology used by SIAM to represent the degree of receptiveness a home has 
to lofted firebrands. 
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Figure 8. HIZ fuels options in SIAM. 
  

Classification of unvisited homes 
Limited willingness of study area residents to participate meant that not all houses in the 

study area were visited. Extrapolation from the SIAM results of 39 visited houses to the 

remaining 252 houses is done using the averages of three classes based on information 

from the MT State Library’s Cadastral Mapping Project database. Both the visited homes 

and the 252 unvisited houses are broken into groups based on the flammability of their 

exterior walls (siding). The visited homes are put in either a flammable or non-ignitable 

class whereas the siding for the unvisited homes is classified as flammable, non-ignitiable 

or unknown based on siding characteristics obtained from the cadastral database. A class 

average19 is determined for the visited flammable and non-flammable houses. The 

                                                 
19 A random approach was also tested. In this case random numbers within the range for each class were 
applied to all unvisited homes. This made very little difference in the overall results and was dropped from 
the analysis. 
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average for the unknown class is derived from the full set of 39 structures. The average 

existing SIAM expectation for each of the three classes is applied to all unvisited houses 

in the respective classes.  

Simulating Patterns and Processes at Landscape Scales 

SIMPPLLE Data 
The second factor needed to derive existing hazard estimates is wildfire probability. 

Several pieces of fine-scale, spatially explicit vegetative data are needed in order to 

initiate the fire probability modeling.  Vegetative communities are modeled using recent 

(2005) GIS data from the USFS Northern Region GIS Library. The data is generated by 

applying a classification scheme to Landsat remotely-sensed (satellite) digital imagery. 

The remotely sensed imagery describing the area is classified into irregular polygons with 

an average size of 6.6 acres and a range of 0.9 to 99.2 acres.  This “mid-scale” vegetation 

data, known as R1-VMP, is touted as being between 50 and 93 percent correct at the 

landscape scale20 (Brewer et al. 2004).  The area analyzed with landscape disturbance 

software includes roughly 266,400-forested acres (69.8%), 41,400 mixed shrub land acres 

(10.9%), and 30,600 grassland acres (8.0%). Data indicate that twenty-one forested 

dominant species types, three shrubs types and five grassland types exist in the area. The 

remaining analysis area polygons consist of water, non-forested areas, and herbs. There 

are ten tree size classes and four density classes used to differentiate the forested stands. 

Across the analysis area there are 240 unique combinations of habitat group, cover type, 

density, and size class, and 45 unique combinations of size class and density alone.   

Crosswalks established by the Rocky Mountain Research Station, Ecology and 
                                                 
20 However, this error rate itself can only be applied at the level the data is intended to be used, at least a 
5th code hydrologic unit code (HUC). 
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Management of the Rocky Mountains Research Unit are used to transform attributes in 

the vegetation layer into attributes needed for SIMPPLLE.    

 

In the roughly 1,360-acre area including just the polygons (n = 243) that host study area 

WUI structures (n = 291) the composition of the vegetative communities is different. 

There are roughly 520 forested acres (38.2%), 329 shrub land acres (24.2%) and 500 

grassland acres (36.8%) plus just more than 10 acres of non-forested area. 

Historical Process and Treatment Data 
The need to capture the temporal component of wildfire ignition hazard in this modeling 

system is reflected by the inclusion of several pieces of recent disturbance history, which 

are appended as stand attributes to initiate the SIMPPLLE analysis. Unless noted, data 

entered includes events that affected the stands between 1995 and 2004, the most recent 

decade. A standard GIS operation is used to intersect the R1-VMP polygons with the 

Timber Stand Management Reporting System polygons where activities or disturbances 

were recorded, using the 'center in' option of the 'select by theme' procedure in ESRI 

ArcView 3.2 software. Table 3 reports the last decade’s acres for analysis area polygons 

of each activity or disturbance type in the SIMPPLLE analysis area modeled in this 

dissertation.   

 

The first piece of information is the spatial history of fire across the modeled landscape. 

This polygon information is obtained from the Northern Region’s GIS library as 

attributed fire perimeters. Fires within the time period 1995-2004 are selected from the 

longer record of fires in the area. These fire perimeters (Figure 9) encompassing roughly 
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28,560 acres are then used to select R1-VMP polygons for assignment of a mixed 

severity fire in the last decade. A mixed severity fire is applied to each of the stands that 

intersected the fire perimeters, mainly because the severity of the fires is not documented 

and anecdotal evidence suggested this is a reasonable assumption. This fire severity 

information is recorded in the initial process field for each vegetative polygon in the area 

file with this history.  These recent fires affect future processes through SIMPPLLE fire 

spread logic. Stands with recent fires will react differently to wildfire than those with 

similar stand composition and structure that have not had fire during the past decade. 

This fire logic is based on information found in publications by Fischer and Bradley 

(1987) and Smith and Fischer (1997). 

Table 3. Silvicultural activities that are entered for the analysis area polygons. 
Disturbance Acres 
Mixed-Severity Fire  28,560 
Ecosystem management broadcast burn 1,647 
Ecosystem management underburn 1,294 
Commercial thinning  972 
Clearcut with reserves  2,824 
Group selection cut  367 
Shelterwood final with reserves 346 
Seedtree seedcut  73 
Sanitation Salvage 2,394 
Improvement Cut  19 
Insect Infestations  5,875 
  

For SIMPPLLE, a probability of fire ignition per decade per acre (0.00071) is determined 

by dividing the number of ignitions inside the analysis area during the last decade (271) 

by the total analysis area (381,400 acres).  Figure 10 illustrates the spatial arrangement of 

ignitions during the previous decade. Red ignitions (1995-2004) are used to create the 

general probability of ignition per acre per decade and the blue ignitions are additional 

starts in the area during the period 1970-1994. 
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Figure 9 – Recent (1995-2004) fire perimeters, red areas are large fires, dates represent 
the year of burn, (USDA, Forest Service, Northern Region 2006). 
 

 
Figure 10. SIMPPLLE study area ignitions, blue  = 1970-1994, red = 1995-2004 (USDA, 
Forest Service, Bitterroot National Forest 2006a). 
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Insect infestations are also included in the model initialization. Aerial detection surveys 

(ADS) are conducted annually for all National Forest System lands using fixed wing 

aircraft. Each fire simulation in SIMPPLLE adopts the 2004 lodgepole mountain pine 

beetle (1,053 ac.), Douglas-fir beetle (4,747 ac.) and spruce beetle (75 ac.) infestations as 

the existing locations of infestation. A local western root-rot disease spread logic file is 

also included for all simulations.   

 

Silvicultural treatments21 representing a mix of improvement cuttings, regeneration 

harvest activities, and fuel treatments are also entered as treatments in the last decade for 

each affected vegetative polygon using the same intersection process described above. 

 

Calculating fire probabilities 
 
One base case is selected to generate results that are combined with SIAM results to 

accomplish the first objective, estimating the existing 30-year hazard to 291 study area 

WUI residences.  After careful consideration of the sensitivity (SA) results, all of the 

default settings in SIMPPLLE are selected for base case fire simulation, with the 

exception of extreme22 fire spread. This is the most influential continuous SIMPPLLE 

fire logic parameter tested. The extreme fire spread probability, the probability of each 

fire greater than 0.25 acres spreading with extreme fire spread logic, is set at five percent 

to represent conditions in the study area and to match the assumptions of extreme fire 

                                                 
21 These recent forest management treatments are described in greater detail in appendix B. 
22 Extreme fire spread in SIMPPLLE means that fires can spread in a downwind direction from the polygon 
hosting an ignition uphill as well as downhill, to neighboring polygons. An average elevation is calculated 
using a 30-meter digital elevation model during SIMPPLLE data preparation to allow application of this 
logic. 
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weather in SIAM. This parameter setting implies that roughly five of every 100 fires in 

the SIMPPLLE analysis area will face extreme weather conditions.  In addition, all 

SIMPPLLE modeling for the project is conducted with active suppression. This 

represents the reality that nearly all wildfires are suppressed by land management 

agencies before they grow to a large size. 

 

Given the time period selection, a probability across the three decades is needed from 

SIMPPLLE simulations.  Simulation results for each vegetative polygon hosting one or 

more residential WUI structure(s) are collated in the three different process.txt files 

generated by 100 simulations. Based on a set of 100 simulations, the number of times fire 

of three vegetative severity classes23 occurs is summed to generate a total fire probability 

for each decade.  As Equation 1 demonstrates, the probability of a fire in decade 1 for 

each polygon equals the number of light severity fires during 100 decade 1 simulations 

(LSFd1) plus the number of mixed severity fires during 100 decade 1 simulations 

(MSFd1) plus the number of stand replacement severity fires during 100 decade 1 

simulations (SRFd1). Note that simulations are all independent of one another so that 

while wildfires that burn each decade affect the future succession pathway of a given 

polygon in a single simulation, they do not affect the other simulations. Equation 1 shows 

the summation used to derive a decade fire probability for each polygon. 

 

 

 

                                                 
23 Each polygon can only have one ecological disturbance process (including any of the three fire severity 
classes listed) or succession occur in a single decade. 
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Equation 1:  

Probability (D1) = (LSFd1) + (MSFd1) + (SRFd1) 

For example, p(D1) = 0.01 (LSFd1) +0.02 (MSFd1) + 0.00 (SRFd1) = 0.03 

 

Because the research question addresses the probability of fire reaching a polygon 

hosting a structure, the probability across three decades is needed, versus the average 

probability across the time period. In other words the three-decade probability cannot 

exceed one, and it also should not fall below the highest probability for any given decade. 

This explains why these numbers are combined with Equation 2, and then used for 

multiplication purposes in the modeling system. Equation 2 takes the probability for the 

first decade and adds it to 1.0 minus the probability of the first period multiplied by the 

probability for the second decade. This creates a conditional probability for two decades. 

In order to extend this to another decade, the two-decade probability is added to 1.0 

minus the two-decade probability multiplied with the wildfire probability of the third 

decade. In this way probability of events occurring can be extended through time with the 

wildfire probabilities never exceeding 1.0. 

 

Equation 2:  

P(D1-3) = p(D1)+ ((1- p(D1)*p(D2))+ (1- (p(D1)+ ((1- p(D1)*p(D2)))*p(D3)) 

For example, p(D1-3) = 0.01 + ((1-.01)*0.02)+ (1- 0.022)*(0.00) = 0.0298 

 

The final wildfire probability represents the chance that each polygon will experience a 

wildfire during the simulated period, 2005-2034.  This calculated SIMPPLLE result is the 
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fire probability factor used to derive the exiting hazard for each individual structure using 

the modeling system equation. 

 

 

Combining the Modeling Tools to Estimate Hazard 
 
The introduction and modeling approach chapters describe the conceptualization of the 

modeling system needed to estimate existing ignition hazard to residential structures in 

the wildland urban interface for the next thirty years. To summarize, obtaining the 

product of two independent probabilities (one that wildfire will confront a residence, and 

one to estimate the probability that wildfire will ignite a structure if it passes and sends 

firebrands) allows a modeler to understand the existing hazard given assumptions 

embedded in each modeling tool.  

 

Digital aerial photography is used to locate all study area homes. The R1-VMP polygons 

that host residential structures are determined by locating structures manually in ESRI, 

ArcView 3.2 using 2-meter digital orthoquad imagery. Based on location assignments, 

each structure is assigned to a R1-VMP polygon, which allows a connection between 

SIMPPLLE and SIAM.  Although they operate at different geographic scales, the ignition 

probability results from SIAM for each house and the 30-year wildfire probability for its 

host polygon from SIMPPLLE are multiplied to generate the existing hazard estimate. 

The average is then taken from all 291 study area homes. This average is also multiplied 

with the number of homes to create a 30-year expected loss figure.  
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Wildfire Modeling Tool Sensitivity Analysis  
There are two sensitivity analyses used to detect the parameter sensitivity of the two 

models used to estimate the existing hazard.  Several key SIAM parameters are tested for 

this dissertation using real field data to provide a better understanding of the model’s 

sensitivity.  Five of the 39 structures are randomly selected. Local (changing one variable 

at a time) sensitivity analyses (SA) are conducted by varying ambient temperature and 

wind speeds. Ranges are selected to represent realistic summer weather possibilities in 

the study area during the fire season. Both 80F and 100F temperatures are tested and 

wind speeds ranging from 0 to 40 miles per hour are tested at five mile per hour (mph) 

intervals. Combinations of these temperature and wind speed changes from default 

settings24 are then used to detect synergistic impacts on the model. The ignition 

expectations are recorded for all changes, as is the impact on the nook and cranny and 

fire branding probability, a component of the calculations that represents the interaction 

of HIZ fuels and the two subjective ratings (firebranding potential (1-3) within ¼ mile of 

each side, and nook and cranny ratings (1-5) for each side). 

 

The limited SIMPPLLE SA employs local parameter changes in the SA.  With 

recognition that SIMPPLLE is typically used at the landscape scale and that it is being 

used here at the polygon scale, the sum acreage of fire across three decades is tracked in 

multiple nested areas for the SA. Suppression is the one discrete parameter tested.  All 

other parameter changes are tested with suppression turned off.  For continuous variables 

a reasonable range for each parameter to be tested is first determined. The probability of 

extreme fire spread in the simulations is tested from 0 to 100 percent. Both the range for 

                                                 
24 SIAM default settings: 90F and 20 mph. 
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each input parameter and the range of average output of total fire are provided in 

Appendix C.   The assumptions and parameters implicit in these models have a large 

impact on the results of simulation modeling and these are addressed in the discussion 

chapter (V).  

Mitigation Suites 
The purpose of this research is a comparison of cost effectiveness for two suites 

preventative wildfire hazard structure ignition mitigation opportunities. There is evidence 

suggesting that structure characteristics and fuels within the home ignition zone are 

important factors contributing to any structure’s ignition potential (Graham 2003, Cohen 

1999, Foote and Gilles 1996, Howard et al. 1973). Other evidence suggests that thinning 

and prescribed burning treatments can reduce fire intensity and promote more successful 

suppression efforts (e.g., Strom 2005, Graham et al. 2004) The next section of this 

chapter reveals how Suite A, potential building improvements and HIZ fuel conversion 

mitigation options at 39 visited structures are modeled to explore the effectiveness of the 

home ignition zone (HIZ) mitigation options.  This represents the upper mitigation path 

in Figure 1.  The subsequent section describes how Suite B options, schedules of 

silvicultural thinning and prescribed burning treatment regimes, are modeled based on 

budgets comparable to those needed to support each HIZ mitigation option. Suite B 

represents the lower mitigation path in Figure 1.  

Objective 2: Suite A- Home Ignition Zone Mitigation Options  
The HIZ mitigations are broken into three categories: building upgrades, HIZ fuel 

conversion mitigations, and combinations of building and fuel conversion mitigations.   
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Building Improvements 
Several of the HIZ mitigations involve solely structure modifications to existing 

residences. The first option is the improvement of windows. The replacement of all single 

pane windows with double pane windows is modeled. This option is designed to reduce 

the overall ignition probability for each side by reducing the chance of windows breaking 

from firestorm winds that allow firebrand ignitions inside the home. The window 

attribute describing every single pane window is reset to double pane and all ignition 

calculations are rerun, with results recorded in the master spreadsheet.   

 

The next mitigation option is to replace all flammable siding with a non-flammable 

alternative, (e.g. Hardiplank®).  Siding replacement is intended to reduce the probability 

of piloted ignitions, which represent a mix of convective and radiation heating from 

nearby burning HIZ fuel sources. All sides of houses are reanalyzed following the 

adjustment of the siding type attribute in the component data window of SIAM. The new 

ignition probabilities are then recorded in the master spreadsheet.   

 

A third purely structure mitigation approach is the concurrent replacement of siding and 

upgrade of single pane windows to double pane windows.  This is simply achieved by 

changing all single pane windows to double pane windows and simultaneously changing 

siding from flammable to non-flammable siding and then reanalyzing the ignition 

probabilities in SIAM. 

 

Note that regarding building improvement, replacing the roof may be the most important 

mitigation effort for residential structures in WUI areas threatened by wildfire. Consider 
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that the SIAM model automatically sets a side’s expected ignition probability to 1.0 when 

the flammable roof type is selected. While roof replacement analyses would be extremely 

important in an analysis in many WUI geographic areas, no flammable roofs are modeled 

for this study, specifically because none were found during visits and none were found in 

the study area according to the Montana Cadastral Mapping Project Database. 

 

HIZ Fuel Conversion Mitigations 
A procedure is needed to simplify fuel mitigation approaches for modeling the 39 visited 

structures. Given that unlimited combinations of fuel manipulation are possible a reduced 

set of two (light and full fuels removal/replacement) HIZ fuel conversion options is 

created to make the analysis tractable.  The idea is that homeowners in the area interested 

in reducing their wildfire ignition hazard would likely undertake various levels of fuel 

conversion. For the light fuels conversion specific fuel sources within the HIZ are 

selected for replacement in each side of each structure’s HIZ. The light conversion option 

includes removal of proximate grasses, surface litter, and very few if any additional 

shrub, tree, or firewood fuel sources and replacement with a watered lawn. Screen 

captures of the SIAM plan views for each side’s mitigation analysis are used to capture 

the modifications made to each side’s set of fuel sources for the light fuels option.  The 

full fuels conversion option selects all fuels for removal and replacement with non-fuel 

source alternatives (e.g., dry grass is mowed and watered with installed sprinklers, 

hardwood trees are planted to replace conifers with low branches).  In both cases, fuel 

sources picked for conversion are unselected from the original analysis and new SIAM 
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ignition probabilities are estimated for all four sides of each structure and recorded in the 

master spreadsheet. 

Combinations of building and fuel mitigations 
Two HIZ mitigation options are combinations of structure modifications and fuel 

conversions. One option combines siding replacement with the light fuels conversion. 

Another option is the combination of siding replacement, window upgrades to double 

pane, and the full fuels conversion.  The changes to the analysis are made as described 

above, and the ignition probabilities are recorded in the master spreadsheet. These 

combinations are intended to represent the multifaceted approach often encouraged by 

wildfire hazard reduction education and grant campaigns. 

 

HIZ Cost Estimation Procedures 
The suite of HIZ mitigation options are ascribed budget levels based on two different 

methods. Costs for the building upgrades are calculated by obtaining local cost estimates 

for the installation of upgraded windows (double pane) as well as installation of a locally 

available non-ignitable siding alternative for the estimated number of average houses in 

the study area with this option available.  

 

Cost estimation for two levels of fuels conversion in the HIZ suite are accomplished by 

quantifying the surface area of various fuel types25 in the HIZ that would need to be 

removed and replaced and multiplying this by area-based cost estimates.  Each SIAM 

                                                 
25 The data collection/entry protocol balanced time requirements with fuel source mapping detail. As a 
result, groups of trees and shrubs drawn as single polygons, and annotated with the tallest vegetation in the 
polygon. The height differences represented by the five height classes (>20’, 21-40’, 41-60’, 61-80, and 
80’+) and the single tree versus groups of trees classes are assumed to require different amounts of work 
and costs for removal, disposal and in some cases replacement with non-flammable hardwood alternatives. 
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plan view is overlaid with a four-by-four foot grid (Figure 11).  A point estimate of the 

cost to convert a sixteen-square-foot cell for each fuel type is estimated by the author in 

consultation with fire hazard reduction professionals local to the study area. The author’s 

cost estimates per 16 square foot cell in all twenty-two fuel categories are then multiplied 

by the number of cells to develop a cost estimate for light and full fuels conversion for 

each of the 39 visited homes.   In all cases, cost estimation for the HIZ mitigation options 

for all 291 home ignition zones are done through extrapolation; proportions of visited 

homes in the area are used in combination with information from a state database to 

determine the number of study area homes with mitigation potential.   

 

Figure 11. Cell grids overlain plan views for an example of a house modeled first (a) with 
all fuels in SIAM, and (b) with a light fuels conversion that removes the tall grass, shrubs 
and surface litter from the HIZ analysis. 
 

Effectiveness Methods 
Modeling mitigation effectiveness in SIAM to estimate the reduced ignition probabilities 

is done with the processes described above. The new overall ignition probabilities at each 

side of each house following all HIZ mitigations are recorded in the master SIAM 

spreadsheet. The same technique of using the maximum side probability for each house is 

also used to evaluate the effectiveness of all the HIZ mitigations. 



 

 57 12/18/2006 

 

Objective 3: Suite B – Silvicultural Forest Treatment Regimes 
 
This section describes how the third objective of the dissertation is accomplished. The 

objective is to design silvicultural treatment regime schedules that minimize the 30-year 

conditional fire probability for vegetative polygons hosting residential structures. This 

suite of mitigations is an alternative to the suite of mitigation efforts within the area 

immediately surrounding each residential structure and represents the lower mitigation 

analysis path on Figure 1. Thinning and prescribed burning are applied to as many 

forested and grassland polygons as possible in the area surrounding the polygons hosting 

houses given a range of budget levels. The budgets are capped at levels that correspond to 

the HIZ options. This permits a comparison of the effectiveness, simplifying the cost 

effectiveness analysis. The treatable area is described prior to an explanation of the 

scheduling process. This is followed by a description of the interaction between MAGIS 

and SIMPPLLE. 

Defining the Area of Acceptable Forest Fuel Treatments 
Silvicultural forest treatments (thinning and prescribed burning) are evaluated within the 

wildland urban interface. Unless specified in a community wildfire protection plan, the 

maximum distance away from structures called the WUI is one and one half miles26 in 

the Healthy Forest Restoration Act (HFRA). Residential structures in the study area are 

first selected and assigned point locations in a GIS, then these point locations are 

buffered by one and one half miles. This is done to constrain the area where forest fuel 

treatments are allowed.  Figure 12 shows the 35,134-acre treatable area within the larger 
                                                 
26 According the HFRA, this 1.5 mile distance is used instead of 0.5 miles when extenuating circumstances 
exist. Adjacent steep slopes that represent a hazard to the community are included in this justification list. 
This is the scenario in the study area. 
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SIMPPLLE analysis area. This delineation of a treatment area is done to match the 

suggestions of the HFRA and also to reflect the socio-political realities of conducting fuel 

treatments with the intent of residential structure protection. In order to make the cost 

effectiveness in this dissertation an ‘either or’ comparison, the 243 polygons that host the 

291 homes are not candidates for treatment regimes.  

 

 
Figure 12. The portion of the analysis area, in shades of green where thinning and 
prescribed burning treatments are allowed. Light green represent high priority areas, dark 
green represents low priority treatable areas and red is the set of 243 polygons that host 
the houses and cannot be treated. 
 

MAGIS treatment scheduling software 
The Multi-resource Analysis GIS (MAGIS) software version 1.2.3 is the treatment 

scheduler used for this dissertation. The software was developed by the Rocky Mountain 

Research Station’s, Economics of Forest Management Unit in cooperation with the 

University of Montana, College of Forestry ands Conservation in Missoula, Montana 
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(Zuuring et al 1995). More information describing this tool is available at the website: 

(http://www.fs.fed.us/rm/econ/magis/). 

 

The MAGIS software is used in this project to optimize silvicultural treatment regime 

schedules by multiplying the existing 30-year fire probability by the hazard reduction 

factors that characterize each treatment regime, with consideration of area and 

discounted27 net revenue at each possible polygon. The treatment schedule selected by 

the MAGIS software for each chosen budget level includes options to homogenously 

treat any of the 5,310 stands within the 35,134 acres inside the one and one half mile 

buffer area28 of residential structures. Stands in this area, other than those hosting houses 

and their HIZs, can be treated with only one management regime at the start of the first, 

second, or third decade. Treatments schedules are not extended beyond this decade 

because the probability of fire occurrence is not modeled beyond that point, negating any 

detectable difference.   

 

Silvicultural management regimes in MAGIS 
 
Management regimes in MAGIS are suites of silvicultural treatments and accompanying 

administrative activities that can be applied given antecedent vegetative conditions.  Each 

regime has a cost structure and two regimes also have a revenue stream associated with 

product harvest. Management regimes modeled for this research include five thinning 

and/or prescribed burning options, described in increasing order of tree removal. The first 

                                                 
27 A standard US Forest Service four percent discount rate is applied to all costs and revenues occurring in 
the future (treatments scheduled for decades 2, 3, 4, and 5, where decades 4 and 5 include only  follow-up 
burn costs for any restoration treatment regime scheduled to start in decades 2 and 3). 
28 This does not include the 243 polygons hosting houses that comprise 1,361 acres. 

http://www.fs.fed.us/rm/econ/magis/
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regime is an ecosystem management underburn only. The second regime is a thinning 

from below of only trees below 7” diameter at breast height (dbh). The third regime is 

this small tree thinning in combination with an ecosystem management underburn.  The 

fourth is a ‘moderate density thinning’, with a 100 square foot per acre residual basal area 

target. The fifth regime is a ‘comprehensive restoration thinning,’ based on work by 

Fiedler et al. (1999) with a 50 square foot per acre residual basal area target. Both of 

these last two treatments also remove all trees under 7”dbh, then harvest a mix of tree 

species and sizes to reach the residual target. The restoration treatment also includes two 

follow-up maintenance burns, one in the same time period as the tree removal and one 

two time periods after the period of the initial treatment.  

 

The last two treatments have revenue associated with predicted product removal 

estimates. The MAGIS model uses site and stand information with the Transaction 

Evidence Appraisal model to predict discounted revenues that are combined with 

discounted costs to derive net revenue per acre for optimization processing.  All these 

treatments will be described in more detail in a pending General Technical Report 

describing the modeling effort supporting the Trapper Bunkhouse Ecosystem Restoration 

stewardship contract project.  

 

MAGIS Objective Function 
The MAGIS software’s optimization works to select the greatest marginal benefit 

(reduction in conditional three-decade fire probability for all treatable stands) for 

treatable polygon in each decade compared to the discounted marginal cost/net revenue. 
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A solver in the MAGIS software uses a linear programming minimization objective 

function to schedule scenario solutions. The minimization function is: minimize the 

average three-decade fire probability for all stands adjacent to polygons with residential 

structures or within a one and one half mile radius of structures given the same seven 

budget levels that estimate the costs of each HIZ option. 

 

In order for the optimization to work, post treatment fire probability expectations are 

needed for each treatments regime. The expected longevity of reduced wildfire 

probability benefits from the treatment regimes vary and is modeled with a lookup table 

of reduction factors multiplied with the base case 30-year conditional fire probabilities 

for scheduling purposes.  These reduction factors are best guess generalizations for 

application of the management regimes to the variety of candidate stands.  There is no 

existing documentation describing how the treatments actually impact SIMPPLLE fire 

probabilities.  All management regimes are modeled with some reduction factors29.  

These reduction factors represent the expected modifications to wildfire probabilities 

following treatment application. For example, a reduction factor of 0.80 indicates that 

following application of a treatment regime; a reduction in the wildfire probability from 

0.0010 to 0.0008 is expected.  Based on work with crowning and torching indices 

(Fiedler et al.  2004, 1999), the comprehensive restoration treatment is expected to have 

                                                 
29 There was an additional attempt made to calculate reduction factors using information from the 
SIMPPLLE base case. Stands were first grouped by type. Then summary statistics describing the 
conditional three-decade fire probability were obtained for each stand type. Existing treatment pathways 
were then used to determine the post treatment stand types for each existing stand type in the treatment 
area. The median conditional three-decade fire probability from the group that a given stand transitioned 
into following treatment was then applied to the stands if treatment was scheduled, with durations 
described above.  This provided MAGIS with the effectiveness information it needed to execute 
optimization of the objective function. However this produced spurious results and was dropped from the 
analysis. 
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the strongest reduction factor (0.60) in the first period with slightly waning reduction in 

the following period (0.70) and resurging reduction in the period following the second 

maintenance prescribed burn (0.64). Because none of the remaining management regimes 

retreat the area with a follow-up prescribed burn, none of them have reduction factors 

extending all 30 years. Table 4 shows the reduction factors applied for all treatment 

regimes. 

 

Table 4. Fire probability reduction factors for MAGIS treatment regimes. 
Treatment Regime Decade 1 Decade 2 Decade 3 

Restoration plus two Underburn30s  0.60 0.70 0.64 

Cleanup Thinning and Underburn 0.62 0.72 1.00 

Ecosystem Management Underburn 0.64 0.70 1.00 

Moderate Density Thinning 0.75 0.80 1.00 

Thinning with a 7” DBH limit 0.77 0.85 1.00 

 

Scheduling Constraints 
Numerous constraints in addition to budget are used to model realistic treatment 

scenarios in MAGIS. Both public and private lands in the treatable area are eligible for 

treatment. Private land is not used as a constraint because many of the treatments 

occurring in the vicinity of the study area occur on both public and private lands and 

grants are increasingly being used to create multi-jurisdictional fuel hazard reduction 

partnerships.  However, there are several constraints placed on these public and private 

lands. First, no harvesting can occur within the Selway-Bitterroot Wilderness Area to the 

                                                 
30 The restoration treatment regime has two follow up burns. One occurs immediately following treatment 
at the start of the scheduled time period, the second burn occurs 20 years later. 
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west of the study area WUI. This is a small issue eliminating only 50 polygons and 

roughly 400 acres from the treatable area. The second constraint is the type of logging 

that can be applied in areas outside designated wilderness. For example, only helicopter 

logging (at a much greater cost than either tractor skidding or cable yarding) can be used 

in areas beyond 1,500 feet from existing roads.  Cable logging is also the only logging 

method available for areas within 1,500 feet of an existing road with a slope greater than 

35 percent (Figure 13).  The average percent slope for each polygon (Figure 14) is also 

used to determine the cost structure for the prescribed burning treatments. In these 

calculations the steeper slopes (>35%) allow cheaper aerial ignition than prescribed fire 

on more subdued terrain which requires lighting by ground crews. 

 
Figure 13. The logging methods that can be applied to each vegetative community in the 
treatment areas. Helicopter = blue, cable = green and tractor = purple, gray = wilderness 
(off limits). 
 
In addition to these logging method constraints, several area-based constraints are 

imposed on the scheduler to create realistic solutions at each budget level.  Planning 
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documents for the proposed Trapper Bunkhouse Ecosystem Restoration Stewardship 

Contact Project (USDA Forest Service, Bitterroot National Forest 2006b) are used as a 

guide to limit the acreage of several management regimes. The percentages of the 

proposed study area activity acreages in this project are applied by multiplication with the 

treatable area in the dissertation to create area limits that reflect limitations to thinning 

and prescribed burning based on visual and overall activity magnitude acceptability. 

Table 5 provides these percentage guidelines and conversion to solution area limits for 

the various management regimes. 

 
Figure 14. A map of average slope percentage conveys information used to determine 
both logging method and whether aerial ignitions can be used (only if average percent 
slope for a vegetative community is less than 45 degrees). Gray areas have average slopes 
less than 45 percent and blue area have slopes greater than 45 percent. 
 
Milling capacity for the area is not assumed to be a constraint on the harvest because the 

local timber production area has more capacity than it currently uses (Keegan et al. 

2004), and the amount that could be harvested in the 35,134-acre treatable area could not 

overload this capacity. 
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Table 5. Percentage of treatable area guidelines from the 34,300-acre Trapper Bunkhouse 
Project area 
Constraint Trapper Bunkhouse Acreage Area, applied as constraint to the 

36,493 acre treatment area in the 
dissertation 

Moderate density thinning 1,001 (2.9%) 1,065 acres / decade 
Restoration treatment 1,533 (4.5%) 1,640 acres / decade 
Total Activity 5,479 (16%) 5,840 acres/ decade 

 

The Interaction of MAGIS and SIMPPLLE 
The treatment regimes scheduled by MAGIS affect the wildfire probabilities in polygons 

hosting houses in SIMPPLLE in three ways.  First, the scheduled treatment regimes 

change the stand conditions (dominant species, density and size class) in neighboring 

polygons. These changes lead each stand down a different succession/disturbance 

trajectory than it was on prior to treatment. Table 6 illustrates these transitions by three 

main stand conditions (dominant species, density, and size class) for the comprehensive 

restoration treatment regime, considered by MAGIS during scheduling. 

 
Secondly, applied treatment regimes reduce the fire probability by changing how fire 

spreads across the landscape. The ‘type of fire31’ that occurs given an ignition or 

encroaching fire from a neighbor changes32 during the decade immediately after a 

treatment. In other words, if a fire does occur, the severity is reduced for the next decade. 

 

 

 

 

                                                 
31 This refers to the vegetative severity of the fire (light severity fire, mixed severity fire, and stand 
replacement fire). 
32 The author expanded this default logic in all SIMPPLLE simulations to include all of the treatments 
scheduled by MAGIS in this dissertation. For example, for pre-commercial thinning, fire afterwards will be 
reduced from MSF to LSF in all density classes. 
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Tables 6. An example of changes in stand attributes following application of the 
restoration thinning with two underburns treatment regime. 
Dominant Species Size 

Class 
Density New Dominant Species New Size 

Class 
New 
Density 

DOUGLAS FIR_ALPINE FIR     DOUGLAS FIR     
DOUGLAS FIR_ENGELMANN 
SPRUCE     DOUGLAS FIR     
DOUGLAS FIR_GRAND FIR     DOUGLAS FIR     
DOUGLAS FIR_LODGEPOLE 
PINE     DOUGLAS FIR     
LARCH_ENGELMANN SPRUCE     LARCH     
LARCH_GRAND FIR     LARCH     
LARCH_LODGEPOLE PINE     LARCH     
PONDEROSA PINE_DOUGLAS 
FIR     PONDEROSA PINE     
LARCH_DOUGLAS 
FIR_PONDEROSA PINE     

LARCH_PONDEROSA 
PINE     

LARCH_DOUGLAS 
FIR_LODGEPOLE PINE     

LARCH_PONDEROSA 
PINE     

DOUGLAS FIR_LODGEPOLE 
PINE_ALPINE FIR     

DOUGLAS 
FIR_LODGEPOLE PINE     

DOUGLAS FIR_PONDEROSA 
PINE_LODGEPOLE PINE     

PONDEROSA 
PINE_DOUGLAS FIR     

DOUGLAS FIR_PONDEROSA 
PINE_GRAND FIR     

PONDEROSA 
PINE_DOUGLAS FIR     

LARCH_DOUGLAS 
FIR_LODGEPOLE PINE     LARCH_DOUGLAS FIR     
LARCH_DOUGLAS FIR_GRAND 
FIR     LARCH_DOUGLAS FIR     
LARCH_DOUGLAS FIR_ALPINE 
FIR     LARCH_DOUGLAS FIR     
LARCH_LODGEPOLE 
PINE_GRAND FIR     

LARCH_LODGEPOLE 
PINE     

LARCH_ENGELMANN 
SPRUCE_ALPINE FIR     

LARCH_ENGELMANN 
SPRUCE     

ALPINE FIR_ENGELMANN 
SPRUCE_MOUNTAIN 
HEMLOCK     

ENGELMANN 
SPRUCE_ALPINE FIR     

  VLMU     
VERY_LA
RGE   

  VLTS     
VERY_LA
RGE   

  LMU     LARGE   
  LTS     LARGE   
  MMU     MEDIUM   
  MTS     MEDIUM   
    2     2 
    3     2 
    4     2 
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LEGEND: 

Size-Class/Structure Attributes: 
SS – seedling and sapling, less than 5 inches dbh 
Pole – single vertical story, 5 to 8.9 inches 
PTS – two vertically distinct stories with the largest being pole size 
PMU – three or more vertical distinct stories with the largest being pole size 
MEDIUM – single vertical story, 9 to 14.9 inches 
MTS – two vertical stories with the largest being medium size 
MMU – three or more vertical stories with the largest being medium 
LARGE – single vertical story, 15 to 20.9 inches 
LTS – two vertical stories with the largest being large 
LMU – three or more vertical stories with the largest being large 
VERY-LARGE – single vertical story 21 inches or greater dbh 
VLTS – two vertical stories with the largest being very-large 
VLMU – three or more vertical stories with the largest being very-large 
 
Density Class: Canopy Cover 
1:  0-14% 
2:  15-39% 
3:  40-69% 
4:  70-100% 
 
 
Finally, the suppression potential of a fire in a given polygon is enhanced for one decade 

following treatment application.  Both of the last two impacts of treatment regimes on the 

SIMPPLLE simulations work through logic screens that reference treatment names. Once 

the three-time period treatment schedule is designed it is bridged back to a more 

simplified version that can be loaded by the SIMPPLLE software. The crosswalk used 

(Table 7) converts the MAGIS treatment regimes into a schedule of treatments that are 

automatically inserted into SIMPPLLE simulations. Although all four treatments are only 

differentiated with three treatment names in SIMPPLLE, the simultaneous changes in 

stand condition in SIMMPPLE help reflect the magnitude of impact from each treatment 

regime that is used by MAGIS to create the schedule.  

 



 

 68 12/18/2006 

Table 7. A crosswalk used to digest MAGIS treatment regimes into management 
activities in SIMPPLLE. 
MAGIS to SIMPPLLE Crosswalk   
Treatment Regime SIMPPLLE Treatment 
Prescribed fire Ecosystem management underburn 
Thin from below to 7" limit Pre-commercial thinning 
Thin from below to 7" limit and underburn Thin and ecosystem management underburn 
Moderate density thinning Pre-commercial thinning 
Restoration thinning plus two underburns Ecosystem management underburn 
 

Silvicultural wildland treatment cost estimation 
The section above describes how the costs for each of the seven HIZ mitigation options is 

calculated into a total cost for the 291 homes. These seven budget levels needed to 

accomplish each of the HIZ mitigation options are then applied as constraints to the 

MAGIS version 1.2.3 scheduling optimization software program to schedule treatment 

regimes for the next three decades in the silvicultural options suite.  

Effectiveness Methods  
Once treatment schedules are designed for each budget level the treatments are loaded in 

SIMPPLLE and 100 new simulations are run. This results in three new decade fire 

probabilities for each stand. The new SIMPPLLE decade fire probabilities are then used 

to calculate a mitigated three-decade wildfire probability for each of the 243 polygons 

hosting the 291 residences in the study area.  This information for each of the polygons is 

then multiplied by the existing condition SIAM ignition estimates for each house to 

create a set of 291 mitigated hazard probabilities. The average of these probabilities is 

used to compare the cost-effectiveness of silvicultural mitigations with the HIZ 

mitigations.  
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Objective 4: Cost Effectiveness Analysis for this Dissertation  
Considering the fact that preventative mitigation planning is blind to house value and that 

the threat of wildfire to WUI structures includes a threat to human life, CEA is a good 

alternative to CBA for this dissertation. It removes the valuation debate that can be used 

to refute a standard CBA. The following section describes how the CEA will be 

presented. 

Cost Effectiveness Reporting 
The CEA reporting options include cost/effectiveness ratios, effectiveness/cost ratios, 

total effectiveness, and cost effectiveness beyond a minimum threshold. Ratios and cost-

effectiveness (CE) frontiers are common reporting techniques for the CE tool (Levin and 

McEwan 2001). Researchers reporting CE ratios have the benefit of removing scale from 

the comparison; once the highest cost to effectiveness ratio is selected the most cost 

effective scale for an option(s) can be identified.  On the other hand, a CE chart shows 

effectiveness levels across the spectrum of mitigation costs. Both CE ratios and charts 

representing the various CE points are reported in this dissertation for the CEA 

comparison between the HIZ and the silvicultural suites. However, curves are not 

generated to connect these points because this is not a marginal analysis. In other words, 

the sub-optimal solutions represented by each point on the charts are not part of a linear 

set of possible options. In order to show these curves the analyst would need the ability to 

scale options up or down by marginally adjusting the budgets. This would require an 

expanded optimization analysis, which is beyond the scope of this demonstration. 
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The cost effectiveness of each of the budgets is first reported by revealing the 

independent impacts to the SIAM and SIMPPLLE results. Next, the impacts on the 

modeling system estimated 30-year hazard results for each mitigation option are 

analyzed.  Figure 1 shows how each of the two mitigation suites are analyzed at the seven 

investment levels by holding the other factor constant at the level used to calculate the 

existing hazard (ceteris paribus). This assignment of HIZ mitigation budgets to MAGIS 

for treatment regime scheduling facilitates an effectiveness comparison with the 

simplified goal of WUI structure protection from wildfire.  While other protection goals 

may also be considered desirable information useful in the selection of mitigation options 

(e.g., timber values, infrastructure, recreational developments, and specialized wildlife 

habitat may all warrant protection), they are not considered in this pioneering effort. 

Methodological Summary  
Now that the modeling tools and the data used have been introduced, a methodological 

summary should help the reader evaluate how well the modeling system reflects the 

wildfire caused structure ignition phenomenon and economic analysis of the two suites of 

mitigation options. This dissertation first explains how an average 30-year existing 

ignition hazard is estimated for the 291 study area homes by combining results from a 

deterministic structure ignition assessment model (SIAM) with a stochastic ecological 

disturbance process prediction model (SIMPPLLE), which calculates wildfire 

probabilities across the landscape. It then explains how a cost effectiveness analysis is 

conducted comparing options to reduce the average probability of structure ignition when 

wildfire threatens WUI homes. It follows advice from Finney (2005:98), who suggested 

using a quantitative definition of fire risk to evaluate the net value change from 
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uncontrolled wildfires. He listed two main factors: fire behavior probabilities and fire 

effects applying to a specific geographic area and time period with the following 

equation:   

 

Expected [net value change] = ΣN
i=1ΣN

j=1 p(Fi)[Bij-Lij],  

 

where p(Fi) is defined as the probability of the ith fire behavior and Bij and Lij are the 

benefits and losses afforded the jth value received from the ith fire behavior.  

 

The effectiveness of two suites of mitigation options, given the objective function of 

minimizing the 30-year average structure ignition hazard across the study area is then 

evaluated.  The modeling tools are rerun independently to evaluate treatment 

effectiveness, where treatment effectiveness is defined as the predicted reduction in the 

average 30-year wildfire-caused structure ignition hazard across the 291 structures in the 

study area.  Changes to anticipated home ignition hazard expectations are evaluated 

under the two following suites of options. 

 

In the first suite, Firewise treatment options within the home ignition zone are building 

upgrades and the removal of fuels and subsequent replacement with non-flammable 

alternatives. For example, one treatment combines upgrading to nonflammable siding 

with the removal of grasses and replacement with a watered lawn. The costs of these 

treatments, as estimated by the author through consultation with local contractors who 
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operate in the study area, serve as the baseline budgets for cost effectiveness 

comparisons.  

 

In the second suite, silvicultural forest treatments include a mix of various prescriptions 

actually being proposed by the local management unit in the area. These silvicultural 

treatments are scheduled during three decades with the Multiple Resource Analysis GIS 

(MAGIS) software based on the ratios of expected hazard reduction and discounted net 

cost/revenue per acre.  For example, a restoration treatment thins the existing stand to a 

50 ft2/acre residual basal area and follows this thinning with two broadcast burns. There 

is also a thinning-from-below to moderate density (100 ft2/acre residual basal area), an 

ecosystem thinning with a seven-inch diameter limit, and an ecosystem management 

prescribed burning only. 

 

By taking budgets ascribed to each of seven Firewise mitigation options inside the HIZs 

across the study area (modeled using SIAM) and applying them through MAGIS 

silvicultural scheduling software to the SIMPPLLE model (similar to past work by Jones 

and Chew (1999)), a direct cost effectiveness comparison is possible. The effectiveness 

of reducing average structure ignition potential for the next 30 years is charted against 

cost for all options to generate a cost effectiveness chart consisting of points that indicate 

achievable effectiveness at seven budget levels. Cost effectiveness ratios and this chart 

are the basis for a cost-effectiveness comparison using a simplified definition of 

effectiveness33. This research differs slightly from Finney’s conceptual approach (2005) 

                                                 
33 Note each house is assumed to have equal value due to uncertainty about contents and social equity 
considerations. 
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because economic effects are restricted to structure losses from probable wildfires. In 

addition, it differs from his approach because the current hazard and potentially attainable 

improved conditions are assessments of the hazard of any type of wildfire encountering 

homes valued equally.  With future work the analysis can eventually be populated with 

additional economic values that describe a more complete set of land management 

objectives and protection priorities. The next two chapters present the results and discuss 

modeling system limitations. 

 



 

 74 12/18/2006 

CHAPTER IV - RESULTS 
This chapter provides the results obtained using the models and methods detailed in the 

previous chapters. The chapter is organized using the four study objectives in Figure 1.  

Key findings are highlighted briefly throughout the chapter to facilitate interpretation. 

The assumptions embedded in the results and their significance to the objectives and 

research goal are discussed in the next chapter. 

Objective 1:  
Individual modeling tool results are presented first. Next, the combined modeling system 

results are shown. A short summary of the sensitivity analyses (SA) useful to understand 

the influence of various parameters (and used to guide the selection of base case 

simulation parameters) is also provided at the conclusion of this section. Results are 

reported for wind and temperatures changes in SIAM and suppression and extreme fire 

spread parameter testing in SIMPPLLE.  

 

SIAM Ignition Expectation Results 
Very few areas with houses will likely face a wildfire between 2004 and 2034, but if 

there is a fire, under extreme conditions (which seems more and more common) the 

house will likely burn. The SIAM modeling for the 39 homes visited during the field 

season reveals that very few residential structures are expected to survive an extreme 

weather wildfire in their current condition. Table 8 shows that according to SIAM 

modeling of existing conditions only three of the 39 structures modeled has any chance of 

survival. These results in Table 8 are broken down using a siding flammability 

classification, and are based on the assumption that the maximum ignition probability of 

any of four sides is assigned to each home. Note that all homes with flammable siding 



 

 75 12/18/2006 

have a 1.0 probability of ignition and only three of the six houses with fire-resistant 

siding have an estimated ignition probability less than 1.0.  It is noteworthy that although 

flammable siding does not automatically lead to a 1.0 probability of ignition, all of the 

homes with an aggregate ignition probability less than 1.0 have non-flammable siding.  

The average for these homes is 0.966, illustrating that non-flammable siding alone will 

not suffice to keep all model results below a 1.0 ignition probability in SIAM. The fuels 

present in the HIZ as well as the firebranding and nook and cranny scores all influence 

the ignition probability estimates. 

 

Extrapolated SIAM results 

When visited homes are classified based on cadastral information describing roof and 

siding ignitability, the database is found to be 100 percent correct for roofs and 97%34 

correct for siding.  The very close correlation between the proportion of the 39 visited 

homes found to have flammable siding (85%) during visits and proportion of the 252 

remaining homes in the siding ignitability classes indicates that although the sample is 

not random it is representative of the population of WUI structures in the study area.  

When the average for each siding class (Flammable = 1.0, Non-flammable = 0.966, and 

unknown = 0.994) is applied, the average ignition expectation for the 291 homes is 0.994. 

Now that the results from SIAM have been reported, the fire probabilities from 

SIMPPLLE complete the ignition hazard estimation picture. 

 

                                                 
34 The percentage correct is determined by dividing the number of correct assignments of visited homes by 
the number of total assignments of visited home to either the flammable or non-ignitable class. There were 
37 of 38 classifications made correctly, there was one visited house classified as unknown. 
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Table 8. Existing ignition probabilities for 39 modeled houses, divided into flammable 
and non-ignitable siding.  
Siding Type StructureExisting Ignition Probability
Flammable DW02 1.0
Flammable DW03 1.0
Flammable DW04 1.0
Flammable DW05 1.0
Flammable DW06 1.0
Flammable DW07 1.0
Flammable DW08 1.0
Flammable DW09 1.0
Flammable DW10 1.0
Flammable DW11 1.0
Flammable DW12 1.0
Flammable DW14 1.0
Flammable DW15 1.0
Flammable DW17 1.0
Flammable DW18 1.0
Flammable DW20 1.0
Flammable DW21 1.0
Flammable DW22 1.0
Flammable DW25 1.0
Flammable DW26 1.0
Flammable DW27 1.0
Flammable DW28 1.0
Flammable DW29 1.0
Flammable DW30 1.0
Flammable DW31 1.0
Flammable DW32 1.0
Flammable DW33 1.0
Flammable DW34 1.0
Flammable DW35 1.0
Flammable DW37 1.0
Flammable DW38 1.0
Flammable DW40 1.0
   
minimum  1.0
maximum  1.0
median  1.0
mean  1.0
Siding Type StructureExisting Ignition Probability
Non ignitable DW23 0.814
Non ignitable DW16 0.95
Non ignitable DW01 0.996
Non ignitable DW13 1.0
Non ignitable DW24 1.0
Non ignitable DW36 1.0
Non ignitable DW39 1.0
   
minimum  0.814
maximum  1.000
median  1.000
mean  0.966
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SIMPPLLE Wildfire Probability Results 
The probability that polygons hosting study area houses will experience wildfire during 

the period 2005-2034 is extremely low according to SIMPPLLE simulation modeling. 

Table 9 shows summary statistics for total wildfire probabilities for each of the 243 

vegetative communities hosting 291 WUI residential structures in the study area.  Total 

30-year fire probability ranges from 0.0 to 0.0496 for these stands. The average three-

decade conditional fire probability for these stands is 0.00486. 

 

Table 9. Wildfire probability summary statistics for the polygons hosting the 291 study 
area homes. 
Statistic 30-Year Wildfire Probability
Minimum 0.00 
Maximum 0.0496 
Median 0.00 
Mean 0.00486 
p =  0.0 201 residences 
 

There are clearly many areas that have very little existing 30-year fire hazard in the 

SIMPPLLE analysis area. There are 254 houses in zero probability polygons for the first 

decade, 256 for the second decade, and 255 for the third decade.  Based on the fire events 

in each of the 100 simulations, a zero probability occurs for 201 of the 291 houses for the 

full 30-year period.  Some of these areas are water and rock. We know that the 

probability of an ignition happening in any given polygon can be very low. Most of the 

fire that occurs will come from the few large fires that escape suppression and spread 

across the landscape.  While a zero probability of wildfire in the next 30 years may not be 

realistic for polygons with vegetation, some polygons have combinations of vegetative 

attributes, and geographic and elevation positions relative to their neighbors that resist 
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fire spreading from upwind and which allow effective suppression. The fire probability is 

essentially zero in many of these polygons.  

 

Table 10 reports the distribution of fires by severity class and decade from the existing 

hazard SIMPPLLE results using the number of fires35. The numbers in the table represent 

the average number of the total fires in the 1,361 acre area of polygons hosting the 291 

WUI homes. It is clear that the number of fires is rather evenly distributed across the 

three decades and comprised mainly (70.2%) of mixed severity fire (MSF) with smaller 

amounts of light severity fire (LSF) and stand replacement fire (SRF). 

 

The average number of acres that burn for the 100 simulations in the host polygon (1,361 

acres) is 2.7 acres during the first decade, 3.0 acres during the second and 2.5 acres 

during the third decade for a total average of 8.2 acres for the 30-year period. For any of 

the 100 simulations a minimum of 0 acres and a maximum 74 acres (5.4% of this area) 

burn during the 30-year period in the polygons hosting structures. 

 
Table 10. Fire distribution by severity class and decade for the residential host polygons 
2004-2034. 
Timing Decade 1 Decade 2 Decade 3 
 34.9% 30.1% 35.0% 
Severity Light Mixed Stand Replacing 
 14.0% 70.2% 15.9% 
 
The wildfire probabilities for host polygons are also on the low end of the results for all 

the polygons in the SIMPPLLE analysis area. Across the entire 381,361-acre SIMPPLLE 

analysis area, the range of three-decade wildfire probability (0.0 to 0.287) is greater than 
                                                 
35 The amount of fire probability is calculated by using the number of times fires of each severity class 
occurs in each of three decades of the simulation. This differs from the average acres burned across the 100 
simulations which is area based.  



 

 79 12/18/2006 

that of only those polygons hosting study area homes. This may be explained by the 

larger number of polygons in the entire analysis area, the increased combinations of 

vegetative, topographic and geographic configurations of polygons, the polygons with 

steep slopes not hosting houses, or the lack of silvicultural treatments in wilderness area 

polygons during the last ten years.  The average number of fire events and acres that burn 

in the total SIMPPLLE analysis area during the 100 simulations are also displayed below 

in Table 11.  The balance across the decades in both the number of events and the acreage 

burned is likely as much an artifact of the averaging across 100 simulations as an 

important finding in itself. Figure 15 uses shades of orange to shows the range of 

conditional fire probability across the SIMPPLLE study area. The darker the orange 

color, the higher the probability of fire is during the next 30 years according to 100 

SIMPPLLE simulations. Blue polygons represent zero probability. Study area homes are 

intentionally not shown to protect participant confidentiality.  

Table 11. The average number of fire events and acres that burn in the total SIMPPLLE 
analysis area (381,361 acres) during the 100 simulations 
Decade Events Acres of Fire (%) 
1 243 1,628 (0.004%) 
2 240 1,574 (0.004%) 
3 202 1,547 (0.004%) 
Total 685 4,749 (0.012%) 
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Figure 15. The fire probability across the SIMPPLLE analysis area, 2004-2034. 

Combined Modeling System Results 
Both the average and the maximum combined 30-year structure ignition hazard estimates 

for the 291 WUI structures are low.  The key finding in this part of the chapter is that the 

combined modeling system suggests that the 291 study area WUI structures have an 

average probability of 0.00484 that fire will encounter and ignite them between 2005 and 

2034. These results represent the existing hazard estimate box below the Objective 1 

column in Figure 1.  Table 12 provides modeling system summary statistics to convey the 

existing wildfire structure ignition expectations for the 291 structures in the study area.  
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Due to the need to protect the participant confidentiality maps of the results are 

intentionally not provided.   

Table 12. Existing ignition expectations for the 291 study area residences, 2004-2034 
Statistic Existing Hazard Estimate
Minimum 0.00 
Maximum 0.0486 
Median 0.00 
Mean 0.00484 
Expected Home Loss (2005-2034) 1.408 
p =  0.0 201 residences 
 

Multiplying the number of study area homes with the average 30-year ignition hazard 

estimate (found in Table 12) generates an expected loss to wildfire result of 1.41 homes 

between 2005 and 2034. This indicates that the existing hazard estimation system 

predicts that very few study area homes will be destroyed by wildfire. 

 

Because the SIAM results are so close to a probability of 1.0 the combined existing 

hazard is nearly a mirror image of the SIMPPLLE results. The number of structures with 

a zero probability of ignition (the minimum) comprises roughly 69 percent of the 

residences. Both the number of houses with a zero probability and the difference between 

the average and median results indicate that the distribution is extremely right skewed 

(Figure 16). The maximum probability for any home in this area for the period 2004-

2034 is 0.0476. These results all indicate that the probability of any house being 

destroyed by a stochastic event like wildfire is rare.  
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Ignition Probabilities (2004-2034), n = 291
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Figure 16. The number of houses in each existing hazard probability class. 
 

These existing hazard results provide the starting point for part II of the dissertation, the 

modeling of mitigation options and their relative cost effectiveness. However, before 

describing the mitigation modeling methods it is important to describe several key results 

from parameter sensitivity for each modeling tool. The remainder of the sensitivity 

analysis documentation can be found in Appendix C.   

SIAM sensitivity analysis results 
Changing temperature alone has no impact at all on overall structure ignition 

probabilities. Wind speed selection influences both the nook and cranny impacts and 

overall ignition probabilities, with probability changing thresholds varying between sides 

of each structure, but all occurring below the 20 mph SIAM default wind speed. Figure 

17 shows probability changing thresholds for the five randomly selected homes, with 

wind speeds affecting overall SIAM ignition estimates (SO) in green triangles and those 

affecting the nook and cranny ignition probabilities (NC) below with blue diamonds. All 

of these wind speed thresholds are below the 20MPH default setting for SIAM. 
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Figure 17. Nook and Cranny (NC) and SIAM (SO) wind speed probability thresholds. 
 

Results from the SA show that the default settings are indeed on the extreme end of the 

analysis spectrum.  When combinations are tested against the default conditions, lower 

temperature (80F) combined with lower wind speeds reduce the ignition expectations, 

whereas higher temperature (100F) combined with higher wind speeds do not increase 

ignition expectations beyond those at default levels. In summary, the default SIAM 

weather conditions appear to provide the upper limit of home ignition probabilities. 

SIMPPLLE Sensitivity Analysis Results 
The most important SIMPPLLE parameter for the modeling system is the selection of 

suppression.  Table 13 shows summary statistics of the modeling system results when 

suppression is turned off. The distribution of existing hazard estimates are clearly much 

higher than results obtained when modeling with suppression. The maximum and average 

probabilities are roughly seven and sixteen times, respectively, as high as those estimated 

when modeling with active suppression. The expected house loss figure increases from 

1.41 to 22.4. The median probability is also much higher at 0.03, and the number of 
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houses with zero probability is much lower than the non-suppression modeling results for 

the 30-year period.  This demonstrates how important suppression is in SIMPPLLE for 

modeling system estimates of existing hazard. 

 
Table 13. Existing ignition expectations for the 291 study area residences, 2004-2034, 
modeled without suppression. 
Statistic Existing Hazard Estimate
Minimum 0.00 
Maximum 0.37 
Median 0.03 
Mean 0.077 
Expected Home Loss (2005-2034) 22.4 
p =  0.0 63 residences 
 

The second most potent parameter in SIMPPLLE’s fire logic is the probability that any 

given fire36 spreads with extreme wind conditions (conceptualized by model designers as 

spreading with increased downhill contagion ability).  The full range of this parameter is 

tested, with 1-percentile changes between 0.01 and 0.1 and ten percentile changes 

between 0.1 and 1.0. The three-decade range of mean total fire area for this parameter is 

119,051 – 339,922 ac. (Figure 18) and 102 – 1361 ac. (Figure 19) for the total area and 

residential host polygon areas, respectively. These ranges correspond to ranges of 31 - 

89% and 7 – 100% for these two areas. It is clear that the two modeling tools used to 

estimate existing fire hazard are very sensitive to several key parameters. 

                                                 
36 Note that all fires, which grow to 1,000 acres, are also assumed in SIMPPLLE simulations to spread 
across the landscape with extreme wind conditions. 



 

 85 12/18/2006 

 
Figure 18. Extreme fire spread parameter sensitivity in total modeling area. 
 

 
Figure 19. Extreme fire spread parameter sensitivity in polygons hosting residences. 
Collectively these two sensitivity analyses point to the need to consider and discuss the 
implications of modeling assumptions and this is done in the next chapter. 
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Objective 2: HIZ Mitigations  
 
The following two groups of HIZ mitigations results comprise the cost estimate and 

effectiveness estimation boxes in the upper path (Mitigation Suite A) of the Figure 1 

flowchart. Cost estimation results for each HIZ mitigation option are detailed first. Next, 

structure ignition reduction results are shown for just the houses modeled.  Then the 

impacts on the average probability for the 39 visited houses, and on the average hazard 

across the 291 structures are provided (when these mitigations are extrapolated to the 

remaining 252 study area WUI structures and multiplied with the probability that fire will 

reach the polygon hosting each house in the next 30 years). Together they form one of the 

two sets of results needed as the basis of comparison for study objective 4, cost 

effectiveness analysis, which is found later in this chapter.  

Cost Estimation Results  
The cost estimates for mitigation efforts modeled for the 291 structures in this research 

ranged from $184,080 to $5,604,048.  Table 14 shows the number of houses in the study 

area estimated to have each option as well as total and average costs for the various HIZ 

options at these houses. 

Building Improvements 
The first mitigation option is upgrading windows at a cost estimate of $184,080.  This 

averages $3,609 for each of the 51 houses estimated to have this option. The estimated 

costs to replace siding with a nonflammable alternative are much higher for these 246 

houses. When the average of $8,670 per house is aggregated, a mitigation cost of 

$2,135,048 is estimated. Option C, which is upgrade of windows at seven houses and 
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siding replacement at 33 houses has an estimated cost of $2,319,128, averaging $9,427 

per house). 

Table 14. HIZ mitigation option costs 
 Number of house with 

option of 291 
Cost per Option ($Million) 
2006 Dollars 

A. Window Upgrades 51 0.184080  
(average is  $3,609/house) 

B. Siding Replacement 246 2.135048 
(average is  $8,670/house) 

C. Windows and Siding 246 2.319128 
(average is  $9,427/house) 

D. Light Fuels Conversion 269 1.235075 
(average is  $4,591/house) 

E. Light Fuels and Siding 224 3.370123 
(average is  $15,045/house) 

F. Full Fuels Conversion 291 3.284920 
(average is  $11,288/house) 

G. Full Fuels plus Siding 
and/or Windows 

291 5.604048 
(average is  $19,258/house) 

 

HIZ Fuel Conversions 
Table 15 provides the cost estimates to covert each cell, 100 square feet, and one acre of 

the 22 HIZ fuel types with either a light fuels or full fuels conversion.  Next, Table 16 

displays the estimated costs by fuel type removed and replaced for the two conversion 

options at each side and as a total for each of the 39 visited houses by multiplying the 

number of cells in each fuel category with the estimated costs for each structure’s four 

sides. Overall study area cost estimates appear in the bottom of the table for light and full 

conversion options. The light fuels removal is estimated to cost $1,235,075 with an 

average of  $4,591 for each house. The full fuels conversion option is estimated to cost 

$3,284, 920, with an average cost of $11,288 per house. 
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Table 15. The cost per acre to convert a 16 square foot cell of each fuel category. 

 
 

There are also two combinations of building improvements and HIZ fuel conversion 

mitigations, options E and G.  The light fuels conversion and siding replacement option 

(E) cost estimate of $3,370,123 is the sum of the siding replacement estimate 

($2,135,048) and the light fuels conversion cost estimate ($1,235,075).  This mitigation 

option averages $15,045 per house. The full fuels conversion and full building upgrade 

estimate of $5,604,048 is the sum of the window upgrades at seven houses ($184,080), 

the siding replacement at 33 houses ($2,135,048) and the full fuels conversion at 39 

houses ($3,284,920). This mitigation cost computes to an average cost of $19,258 per 

house. 
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Table 16. HIZ Fuel Conversion Cost estimation spreadsheet 

 

HIZ Mitigation Effectiveness Results  
 
Home ignition zone mitigations are both effective at reducing the existing structure 

ignition probabilities and somewhat linearly correlated with investment levels. The full 

HIZ fuel conversion option is much more effective than either the light conversion or any 

of the building improvements. The SIAM mitigation effectiveness results are presented in 

Table 17, which shows the results for all seven HIZ mitigation options. The first column 

shows how many of the visited houses have this mitigation option. The next column 

shows the average SIAM ignition probability only for the houses that are modeled with a 

given mitigation both before and after the mitigation. Then the reduced average for the 39 
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visited houses following application of each HIZ mitigation option is shown in the next 

column. Finally, the impact that this type of mitigation has on the combined modeling 

system average 30-year ignition hazard is shown for the entire set of 291 study area 

homes. Note how the mitigated average existing 30-year ignition hazard decreases from 

0.00484 all the way down to 0.0018 with various HIZ mitigation options. 

Building improvement results 
Few of the houses visited are old enough to have single pane windows. There are a total 

of seven of the 39 visited structures with an opportunity to replace single pane windows, 

and of these two actually had fiberglass windows. This is roughly eighteen percent of 

visited homes. When the percentage observed in fieldwork is applied to the 291 study 

area homes, roughly 51 of the 291 homes have this option. When these windows are 

upgraded in modeling runs no change in home ignitability is observed at any of the seven 

houses.  As a result, there is no change in the average SIAM ignition probability for the 

39 visited homes; it remains at 0.994.  This may be a problem with the software or simply 

a reflection that these structures are modeled as having easier ignition vectors. There is 

no estimated effectiveness (not changing from 0.00484), which is defined as the 

reduction in the average existing ignition probability for the 291 homes. 
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Table 17. Average ignition probabilities and mitigated hazard estimates by mitigation 
options. 
 Number 

of Houses 
with 
option 

Average for houses 
with option 
(following mitigation) 

Average for all 39 
visited structures 
following 
mitigation 

Mitigated average 
for 291 homes 
(effectiveness) 

Existing Average NA 0.994  NA 0.00484 
A. Window Upgrade 7 1.000 (1.000) 0.994 0.00484 (0.0%) 
B. Siding replacement 33 0.962 (0.921) 0.928 0.0045 (-6.3%) 
C. Windows and Siding 33 0.962 (0.921) 0.928 0.0045 (-6.3%) 
D. Light Fuels 36 0.993 (0.890) .0883 0.0044 (-8.3%) 
E. Light Fuels and Siding 30 1.000 (0.773) .0786 0.0038 (-20.8%) 

F. Full Fuels 
Conversion 

39 0.994 (0.360) .0361 0.0018 (-62.5%) 

G. Full Fuels Plus Siding 
and/or windows 

33 1.000 (0.375) 0.361 0.0018 (-62.5%) 

 

Siding replacement provides much more abundant opportunities across the study area, yet 

there is little reduction in ignition probabilities observed following these building 

improvements. There are 33 of 39 visited homes in the study area that have at least some 

flammable siding (85%).  When this proportion is applied to the study area the result is 

that roughly 246 homes could have flammable siding replaced with non-ignitable siding. 

This number compares very closely to the number of structures found to have ignitable 

siding based on the Montana Cadastral Mapping Project database. Results from a 

classification of homes based on siding found that only 17 percent of the 291 study area 

structures have non-ignitable siding. The remaining 83 percent are either flammable or 

unknown.  The average ignition probability for the 33 homes that can have siding 

replaced falls from 0.962 to 0.921.  When existing flammable siding is replaced in the 

modeling for all visited structures the average ignition probability for all 39 visited 

structures decreases from 0.994 to 0.928. Part of the reason is that probabilities fall below 

1.0 for nineteen, roughly half, of the 36 houses. The most substantial reduction is from 
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1.0 down to 0.416.  When these results are extrapolated to the larger set of 291 houses the 

average mitigated hazard is 0.0045, a 7.0 percent reduction in hazard. 

 

The combination of siding replacement and windows is possible at only the same 33 

structures that have siding as an option. Seven of these 33 also have a window upgrade 

option. The average ignition probability for these 33 houses falls from 1.0 to 0.921. There 

is no reduction in ignition probabilities beyond that achievable by replacing siding alone 

for these 33 houses. When these changes are made to the 33 houses with this option the 

average probability for all 39 visited structures remains at 0.928.  The SIAM modeling 

results reveal that no added effectiveness results from adding window upgrades to siding 

replacement and the resulting average mitigated hazard is the same as siding replacement 

alone, 0.0045, or a 7.0 percent reduction from the average existing hazard of 291 homes. 

This may suggest that windows are not being modeled properly with the current version 

of the software. Because it is not clear whether windows are being modeled properly or if 

other ignition vectors are dominant, this option is retained and included in the cost 

effectiveness analysis. 

HIZ light and full fuel conversion mitigations 
The HIZ fuel conversion options have stronger impacts on the SIAM modeling results 

than structure mitigations. There are 36 of 39 visited structures that could have a light 

fuels conversion applied inside the HIZ. The remaining three houses do not have any dry 

grasses or shrubs that could be removed and replaced.  This proportion (36 of 39) 

represents about 92 percent of the visited homes and converts to roughly 269 of the 291 

study area structures having this option.  When the light fuels conversion is applied to the 
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HIZ at 36 structures, the average ignition probability for these structures decreases from 

0.993 to 0.890; this is roughly a ten percent reduction in the average ignition potential 

estimate for these homes. The average for the 39 visited structures falls from 0.994 to 

0.898, also decreasing roughly ten percent. When this type of mitigation is applied to all 

291 homes the reduction is from an average of 0.0048 to 0.0044, or an 8.3% reduction.  

These results indicate that a light HIZ fuels conversion does not remove the bulk of the 

ignition potential at most houses. 

 

The full fuels conversion option is extremely effective at reducing ignition probabilities 

across the study area. Removing or replacing all fuels in a structure’s HIZ, is an option 

for all 39 visited houses and would likely be an option at nearly all of the 291 study area 

structures. The exception would be any of the 252 unvisited structures that are 

surrounded by 100 feet in all directions with non-flammable materials such as gravel, 

asphalt, dirt, or completely green (nonflammable) vegetation. As a stand alone HIZ 

mitigation option full fuels conversion is the most effective. When the full fuels 

conversion is applied to the HIZ at 39 structures, the average ignition probability 

decreases from 0.994 to 0.360; this is more than a sixty-three percent reduction in 

ignition potential estimate. When this type of mitigation is applied to all 291 homes the 

hazard reduction is from 0.00484 to 0.00179, or a 63.0 % reduction. 

Combinations of structure and fuel mitigations 
The HIZ combination treatments vary in their effectiveness. While the combination of 

siding upgrades and light fuels conversions is more effective than either of its 

components alone, the addition of building upgrades to the full fuels conversion 
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generates no added effectiveness. The light fuels conversion and siding replacement is an 

option at 30 of the 39 structures (76.9%). This computes to approximately 224 of the 291 

structures. The average ignition probability for the 30 houses where this mitigation 

combination is applied decreases from 1.0 to 0.773, a 23 percent reduction. The reduction 

across all 39 visited homes is from 0.994 to 0.786, a 21 percent reduction. When this 

mitigation combination is applied, ignition probability estimates are lower than light fuels 

conversion alone for 18 of the 30 modeled structures and lower than the siding option 

alone for 14 of the 30 structures modeled. The mitigated average ignition hazard across 

the 291 structures decreases from 0.00484 to 0.00388; this is a 20.9 percent reduction. 

The reduction in average ignition probability achieved by this combination is greater than 

that achieved by either the siding replacement or light fuels options alone.  

 

The full fuels conversion, with siding replacement (and widow replacement when 

available) is an option at 33 of the 39 structures (85%).  This computes to approximately 

246 of the 291 structures. When this mitigation is applied the average ignition probability 

at these 33 houses decreases from 1.0 to 0.375, a 62.5 percent reduction. The average of 

all 39 visited homes decreases from 0.994 to 0.360, so when this mitigation combination 

is applied, probability estimates are no lower than for full fuels removal/replacement 

alone. However, the combination estimates are lower than the siding option alone for all 

33 modeled structures. The average ignition probability across all 291 structures 

decreases from 0.00484 to 0.00179, and while this is a 63 percent reduction in ignition 

probability estimates, it is no lower than the full fuels replacement alone. One might 

expect that removing all fuels would achieve the lowest possible ignition probability for a 
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structure, but there is also the impact of firebranding on ignition potential estimates to 

consider for each structure. With that said, changing the siding and or windows when 

possible does not lower the ignition estimates farther that what is achievable by 

converting all fuels in the HIZ. These findings suggest that in this study area, getting rid 

of all brush and fuels and converting this to watered lawn and non-flammable substitutes 

is just as effective as performing this conversion and replacing siding with a non-

flammable alternative.  

Objective 3: Silvicultural Wildland Treatments (MAGIS) Results 
Cost estimates for the five treatment regimes and the effectiveness results from 

application of MAGIS treatment schedules to SIMPPLLE simulations are presented next. 

These silvicultural mitigation results represent two boxes in the lower path (Mitigation 

Suite B) of the Figure 1 flowchart. The details of each schedule are shown in a series of 

tables and then the results from each mitigation schedule are reported based on how the 

average fire probabilities from 100 new SIMPPLLE simulations, applying each schedule, 

affect the SIMPPLLE and combined modeling system results. Like the results above for 

Suite A, together they form one of the two sets of results needed as the basis of 

comparison study objective 4, cost effectiveness analysis, which is located below. 

Silvicultural Wildland Treatment Cost Estimates 
The costs per acre to apply each of the treatment regimes vary based on several stand 

characteristics including: steepness, logging method, and expected product revenue.  The 

budgets for the seven HIZ mitigation options are used as the cost constraints for seven 

silvicultural wildland treatment schedules. Table 18 lists the costs and revenues per acre 

associated with each of the five treatment regimes. Note that the revenues are not listed 
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because they are calculated internally by MAGIS with the transactions evidence appraisal 

model. The most expensive treatment per acre is prescribed fire alone, costing up to 

$805/acre. 

Silvicultural Wildland Treatment Regime Schedules 
The schedules generated by MAGIS are loaded into SIMPPLLE to simulate the 

implementation of treatment regimes in the next three decades. Tables 19:A-G 

summarize the schedules generated with MAGIS that correspond to the seven budgets 

supporting HIZ mitigation options A through G. There are several subtle differences in 

the schedules that reflect the optimization at different budgets. Note that the total number 

of acres treated by all regimes does not simply increase linearly with the budgets. 

 
However, the total number of acres treated with the restoration treatment does appear to 

decline with increasing budgets. Nearly all schedules maximize the acreage of restoration 

treatment in the first and second period and only as the budget increases does the acreage 

scheduled for this treatment regime in the third decade decline.  This reflects the fact that 

this restoration treatment regime has the greatest potential to generate net revenue, and 

although there is a cost associated with the two follow-up burns, costs for the second burn 

are discounted often leading to net revenue per acre for this treatment regime. Note that 

in order for the final schedule to reach the budget level comparable to the most costly 

HIZ mitigation option the total acreage constraint per decade is removed. 
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Table 18. Cost and revenues associated with the five treatment regimes scheduled by 
MAGIS. 

 

 

 

 

 

 



 

 98 12/18/2006 

Table 19:A-G MAGIS treatment regime schedule acres. 

Schedule A. $184,080, Treatment acres by decade (e.g., D1 = Decade 1) 
 D1 D 2 D 3 Total 
Ecosystem Underburn*37 5,234 5,648 3,711 14,594
Moderate Density Thinning 570 192 1,065 1,827 
Restoration thinning /burns 1,640 1,640 1,640 4,920 
All treatment regimes 5,840 5,840 5,840 16,474
 
Schedule B. $2,135,048, Treatment acres by decade  
 D1 D 2 D 3 Total 
Ecosystem Underburn* 5,460 5,573 4,588 15,622
Moderate Density Thinning 358 251 648 1,259 
Restoration thinning /burns 1,640 1,640 1,330 4,610 
All treatment regimes 5,840 5,840 5,255 16,935
 
Schedule C. $2,319,128, Treatment acres by decade  
 D1 D 2 D 3 Total 
Ecosystem Underburn* 5,443 5,590 4,242 15,275
Moderate Density Thinning 372 239 637 1,248 
Restoration thinning /burns 1,640 1,640 984 4,264 
All treatment regimes 5,840 5,840 4897 16,577
 
Schedule D. $1,235,075, Treatment acres by decade  
 D1 D 2 D 3 Total 
Ecosystem Underburn* 5,385 5,648 4,538 15,571
Moderate Density Thinning 419 192 1,065 1,676 
Restoration thinning /burns 1,640 1,640 1,640 4,920 
All treatment regimes 5,840 5,840 5,621 17,301
 
Schedule E. $3,370,123, Treatment acres by decade  
 D1 D 2 D 3 Total 
Ecosystem Underburn* 5,548 5,486 3,569 14,602
Moderate Density Thinning 283 328 896 1,506 
Restoration thinning /burns 1,640 1,640 268 3,548 
All treatment regimes 5,840 5,840 4,482 16,162
 
 
 
 
 
 
 
                                                 
37 *This acreage includes burning from the prescribed fire, the thin and underburn and the restoration 
treatment regimes. 
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Schedule F. $3,284,920, Treatment acres by decade  
 D1 D 2 D 3 Total 
Ecosystem Underburn* 5,563 5,470 3,554 14,588
Moderate Density Thinning 268 343 518 1,129 
Restoration thinning /burns 1,640 1,640 267 3,547 
All treatment regimes 5,840 5,840 4,091 15,771
 

Schedule G38. $5,604,048 Treatment acres by decade  
 D1 D 2 D 3 Total 
Ecosystem Underburn* 10,866 1,646 1,925 14,437
Moderate Density Thinning 1,065 156 134 1,355 
Restoration thinning /burns 1,640 892 40 2,572 
All treatment regimes 11,973 1,801 2,072 15,845
 

MAGIS / SIMPPLLE Mitigation Effectiveness Results 
The effectiveness of silvicultural mitigations varies considerably, and is not linearly 

associated with the level of investment according to MAGIS and SIMPPLLE modeling.  

Four schedules reduce wildfire probability estimates, while three increased the hazard. 

The most effective treatment reduces the average 30-year ignition hazard by 22.1 percent.  

Table 20 compares summary statistics of the mitigated wildfire probabilities between the 

base case simulation and the simulations with MAGIS treatment schedules for the 243 

polygons hosting 291 study area WUI residences at the seven budget levels. Note that the 

schedules here are shown in order of HIZ budget levels (versus by increasing budget). 

Also note that the 243 polygon fire probability results are expanded to include a record 

for each of the 291 houses before these statistics are calculated. Table 20 also shows the 

overall effectiveness at reducing the average 30-year ignition hazard estimates for the 291 

homes. The new average hazard is obtained by multiplying the SIAM modeling results 

                                                 
38 The total acreage limit of 5,840 per decade was removed for this schedule to allow the budget to reach a 
level comparable to HIZ mitigation G. 
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for each home39 with the new mitigated 30-year fire probabilities. These altered 

SIMPPLLE probabilities are generated using new averages from 100 new simulations for 

each polygon hosting a study area house, and dividing by 291.  

  

Table 20. Mitigation effectiveness for the 291 structures in 243 polygons, by schedule. 
 SIMPPLLE 

Average 
SIMPPLLE 
Median 

SIMPPLLE 
Maximum 

Host 
Polygons 
P= 0.00 

Modeling 
System 
Average 

Modeling 
System 
Maximum 

Existing 0.00486 0.000 0.0496 201 0.00484 0.0476 
Schedule A 
$184,080 

0.00507 0.000 0.0592 189 0.00505 
(+4.3%) 

0.0592 

Schedule B 
$2,135,048 

0.00480 0.000 0.0493 199 0.00477 
 (-1.4%) 

0.0473 

Schedule C 
$2,319,128 

0.00377 0.000 0.0492 211 0.00376 
(-22.3%) 

0.0492 

Schedule D 
$1,235,075 

0.00507 0.000 0.0397 196 0.00505 
(+4.3%) 

0.0397 

Schedule E 
$3,370,123 

0.00377 0.000 0.0492 209 0.00374 
(-22.7%) 

0.0472 

Schedule F 
$3,284,920 

0.00582 0.000 0.0496 178 0.00579 
(+19.6%) 

0.0496 

Schedule G 
$5,604,048 

0.00466 0.000 0.0494 197 0.00463 
(-4.3%) 

0.0474 

 

The number of fires that occur during the 30-year time period is also useful information 

to detect differences attributable to the various treatment regime schedules. Tables 21:A-

G summarize the proportion of all predicted fires with percentages by decade and 

severity class. Beyond revealing interesting information about the distribution of fire 

hazards to homes in the study area WUI, this information is useful to understand how 

values at risk other than residences might be protected by the suite of silvicultutal 

treatment regimes modeled at each budget level.  For example, a shift towards light 

severity fire from mixed and stand replacement fire may indicate elevated protection for 

important wildlife habitat. 

                                                 
39 Recall that the averages for the three classes from 39 visited structures modeled in SIAM are used in 
these calculations for the 252 unvisited homes. 
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Table 21:A-G. Number of fires in severity classes and decade by proportion  
Schedule A: $184,080 budget constraint 
Timing Decade 1 Decade2 Decade 3 
 29.0% 42.6% 28.4% 
Severity LSF MSF SRF 
 11.0% 83.3% 5.6% 
 
Schedule B: $2,135, 048 budget constraint 
Timing Decade 1 Decade2 Decade 3 
 32.8% 27.6% 39.6% 
Severity LSF MSF SRF 
 8.1% 75.6% 16.2% 
 
Schedule C: $2,319,128 budget constraint 
Timing Decade 1 Decade2 Decade 3 
 35.7% 37.7% 26.5% 
Severity LSF MSF SRF 
 16.9% 70.0% 13.1% 
 
Schedule D:  $1,235,075 budget constraint 
Timing Decade 1 Decade2 Decade 3 
 35.6% 26.2% 38.2% 
Severity LSF MSF SRF 
 18.4% 66.5% 15.2% 
 
Schedule E: $3,370,123 budget constraint 
Timing Decade 1 Decade2 Decade 3 
 37.2% 21.4% 41.4% 
Severity LSF MSF SRF 
 13.4% 81.6% 5.0% 
 
Schedule F: $3,284,920 budget constraint 
Timing Decade 1 Decade2 Decade 3 
 33.0% 35.9% 31.1% 
Severity LSF MSF SRF 
 11.7% 75.3% 13.0% 
 
Schedule G: $5,604,048 budget constraint 
Timing Decade 1 Decade2 Decade 3 
 37.9% 29.6% 32.5% 
Severity LSF MSF SRF 
 13.4% 73.1% 13.6% 
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The results in this section indicate that despite a low average existing 30-year ignition 

hazard across the 291 study area homes both suites of mitigations have the potential to 

effectively reduce this hazard. Increasing fiscal aggressiveness of HIZ mitigation options 

generally provides increasing levels of reduction for this study area whereas the hazard 

does not appear to decrease as linearly following the application of increasingly 

aggressive silvicultural treatment schedules. While this may be an artifact of the nature of 

the two modeling tools (SIAM is deterministic, SIMPPLLE is stochastic) it can be 

interpreted as a statement about the reliability of each mitigation suite at this study site 

when the goal is reducing wildfire hazard to homes. Siding improvements and HIZ fuel 

conversions appear to be more reliably effective than silvicultural thinning and prescribed 

burning treatments in the vegetated areas surrounding this study area WUI. 

Objective 4: Cost Effectiveness Analysis 
The first section of this chapter revealed the existing 30-year hazard of WUI structure 

ignition results in the study area. The subsequent two sections reported the predicted 

costs and effectiveness potential of various mitigation options. These pieces of 

information allow comparisons and a cost-effectiveness analysis (CEA) of mitigation 

strategies.  For this dissertation, the comparison is between two sets of effectiveness 

results at seven levels of cost. The application of the same seven budgets has produced 

two sets of impacts on modeling results. The HIZ mitigations affect the SIAM modeling 

results, whereas the scheduled silvicultural treatment regimes affect the 30-year fire 

probabilities in SIMPPLLE modeling results.  The three CEAs that follow are based on 

the effectiveness modeling results plus cost information reported above for the two suites 

(A&B) of mitigation options that appear as the upper and lower paths in Figure 1. 
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HIZ Cost Effectiveness Results 
Judging by the cost effectiveness ratios, the full fuels conversion option is the best HIZ 

mitigation investment option in this study area. When the $3,284,920 for option F, is 

divided by 63.7 percent effectiveness at reducing structure ignition probabilities the result 

is that it takes $51,569 to achieve each percent of effectiveness.  Table 22 shows the 

seven HIZ options ranked in order of cost effectiveness using the reduction in the average 

SIAM probabilities for the 291 homes as the definition of effectiveness. The cost of each 

mitigation option is divided by the percentage effectiveness to generate cost effectiveness 

ratios. The CE ratios are reported in Table 22 as the cost in dollars to attain each one 

percent effectiveness for a given mitigation option. Table 22 also shows the number (out 

of 291) of study area homes with this option, the reduction in average ignition probability 

across the study area and the approximate cost to implement each option. The full fuels 

conversion option in combination with building upgrades ranks second in this study area 

when using the CE ratios. However, there are no additional effectiveness gains beyond 

those of the fuels conversion, yet the cost increases. This points out one of the problems 

of relying too heavily on CE ratios as the single metric for interpretation.  The light fuels 

conversion option is the next most cost effective investment, followed by the light fuels 

conversion plus siding replacement. For this light fuels and siding option investment, 

when the $3,370,123 million is divided by 19.6 percent effectiveness the ratio is 

$171,945 for each percent of reduction achieved. Both the window upgrade alone and the 

window upgrade added to the siding replacement add no additional effectiveness. These 

are the two least cost effective HIZ mitigation options in this study area. 
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Table 22. The seven home ignition zone mitigations, listed in order of cost effectiveness 
ratios 
 Number 

of Houses 
with 
option of 
291 

Cost per option  
($million) 
2006 Dollars 

HIZ Mitigated 
hazard average 
for 291 homes 
(effectiveness) 

HIZ CE Ratio40 
Cost / 1 percent 
Effectiveness / 
(RANK) 

Existing Average NA  0.994  
F. Full Fuels 
Conversion 

291 3.284920 0.361 (-63.7%) $51,569 (1) 

G. Full Fuels Plus Siding 
and/or windows 

246 5.604048 0.361 (-63.7%) $87,976 (2) 

D. Light Fuels 269 1.235075 0.898 (-9.0%) $137,231 (3) 
E. Light Fuels and Siding 242 3.370123 0.799 (-19.6%) $171,945 (4) 

B. Siding replacement 242 2.135048 0.927 (-6.7%) $318,664 (5) 
C. Windows and Siding 242 2.319128 0.927 (-6.7%) $346,139 (6) 
A. Window Upgrade 51 0.184080 0.993 (0.00%) NA 
 

Figure 20 charts the CE points of various home ignition zone mitigations on two axes. 

The vertical axis represents the cost for each option while the horizontal axis shows 

mitigation effectiveness. Effectiveness is the reduction below the existing average 

ignition probability of 0.994 for the 291 study area homes. The farther to the right a point 

is, given the budget, the more cost effective the investment as modeled with SIAM.  Note 

that options D, and F represent the most cost effective possibilities, whereas options B, C, 

and E are identified as inferior HIZ mitigation options.  

                                                 
40 Although these ratios use $1 million as the denominator, this does not actually represent a possible scale 
of each mitigation option. This is used for comparison purposes only and should not be interpreted as 
indication that the application of each mitigation option is scaleable. 
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Cost Effectiveness of Seven Home Ignition Zone 
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Figure 20. Cost effectiveness points for each home ignition zone mitigation option, 
modeled with the Structure Ignition Assessment Model. 
 

Silvicultural Forest Treatment Cost Effectiveness Results 
The effectiveness of MAGIS thinning and burning treatment regime schedules modeled 

with SIMPPLLE at changing wildfire probability is extremely variable. The range of 

change in the average 30-year wildfire probability for all the polygons hosting houses is 

from positive 20.2 percent to negative 22.1 percent. The budget for each schedule is 

divided by the percentage effectiveness for that schedule to derive cost effectiveness 

ratios. Table 23 shows the set of CE ratios for each of the scheduled treatment regimes 

using the reduction in the average 30-year wildfire probabilities for the 243 polygons41 

hosting the 291 homes. Schedule C, which costs approximately $2,319,128 is the most 

cost effective schedule with costs of $104,938 for each one percent reduction in average 

30-year fire probability for the 291 polygons hosting study area houses. Schedule E, at a 

total cost of $3,370,123 dollars is the next most cost effective schedule with a cost of 

                                                 
41 The polygons hosting more than one house are included in these calculations with multiple records. 
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$152,494 for each one percent reduction. Schedules G and B are the only other cost 

effective schedules. At a total cost of $5,604,048 the CE ratio for Schedule G implies that 

each one percent reduction costs $1,514,608. At a total cost of $2,135, 048 the CE ratio 

for Schedule B implies that each one percent reduction costs $22,273,849.   All treatment 

schedules are reported above in Chapter IV. 

 

Table 23. The seven silvicultural mitigations options ranked by cost effectiveness ratios 
as modeled with MAGIS v1.2.3 and SIMPPLLE v2.3. 
 Cost per option  

($million) 
2006 Dollars 

MAGIS Mitigated  
average 30-year fire 
probability 
(effectiveness) 
 

MAGIS CE Ratio 
Cost/ 1 percent 
Effectiveness  
(rank) 

Existing Average  0.00486  
Schedule C 2.319128 0.00377 (-22.1%)  $104,938 (1) 
Schedule E 3.370123 0.00377 (-22.1%)   $152,494 (2) 
Schedule G 5.604048 0.00466 (-3.7%)  $1,514,608  (3) 
Schedule B 2.135048 0.00480 (-0.01%)   $22,273,849  (4) 

Schedule A  0.184080 0.00507 (+4.8%) NA (5) 
Schedule D 1.235075 0.00507 (+4.8%)     NA (6)  
Schedule F 3.284920 0.00582 (+20.2%)   NA (7) 
 
 

Figure 21 charts the CE points of various silvicultural forest treatment regime schedules 

on two axes. The vertical axis represents the cost for each option while the horizontal axis 

shows mitigation effectiveness. Effectiveness for this chart is defined as the reduction in 

the average 30-year wildfire probabilities for the polygons hosting structures, modeled 

with 100 SIMPPLLE simulations. The farther to the right a point is, given the budget, the 

more cost effective the investment as modeled with MAGIS and SIMPPLLE. By looking 

at the difference in the cost effectiveness between schedules (e.g., B and D, with budgets 

separated by only $184,000), note that small changes in the scheduling or the stochastic 
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nature of the fire probabilities in the SIMPPLLE model make huge differences in the cost 

effectiveness of the seven treatment regime schedules.  

Cost Effectiveness of Seven Thinning and Prescribed 
Burning Treatment Regime Mitigation Options
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Figure 21. Cost effectiveness points for each silvicultural forest mitigation schedule, 
modeled with MAGIS v1.2.3 and SIMPPLLE v2.3. 
 

Modeling System Hazard Cost Effectiveness Results 
Now that the cost effectiveness has been assessed above for each model independently, 

the combined impact on the modeling system is evaluated to accomplish study Objective 

4, a CEA comparison of the two mitigation suites (the rightmost block in Figure 1: the 

study design flowchart). When the cost effectiveness of the two suites of mitigation 

options are compared using the recombined full modeling system the HIZ full fuels 

conversion appears as the best investment. Indeed most of the HIZ mitigation options 

have lower cost effectiveness ratios than the silvicultural treatment schedules based on 

the same seven budget levels. Table 24 reveals the change to the 30-year existing hazard 
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estimates for both the HIZ42 and MAGIS treatment regimes at the same seven budget 

levels. The cost for each mitigation option is divided by the percent effectiveness to 

derive study area 30-year hazard reduction CE ratios.  The mitigation options are ranked 

using parentheses in the table based on their CE ratios. A side-by-side comparison of the 

two suites of mitigation options is possible by reviewing the effectiveness and CE ratio at 

seven budget levels.  

 

As stated above, the most cost effective mitigation is HIZ full fuels conversion, which 

costs $3,284,920. This mitigation cost $52,142 to achieve each percent of effectiveness. 

By using the CE ratios alone it is followed by the HIZ full fuels conversion with building 

upgrades. At a cost of $5,604,048 this option costs $88,953 to achieve each percent of 

effectiveness. However, realizing that this is no more effective than the HIZ full fuels 

conversion alone, the next best investment option is the $2,319,128 silvicultural forest 

treatment schedule which costs, $103,997 to achieve each one percent effectiveness. 

These are followed by another home ignition zone mitigation option, and then the third 

most expensive silvicultural schedule. Then the next three most cost effective options are 

HIZ mitigation options followed by the most expensive silvicultural forest treatment 

schedule. After this the cost effectiveness reaches zero for the window replacement HIZ 

option and even becomes cost ineffective for three of the silvicultural forest treatment 

schedules. These CE ratios indicate that there is no clear mitigation suite that seems most 

cost effective in this study area based on modeling. However, six of the seven HIZ 

                                                 
42 All HIZ mitigations are assumed to occur at the start of the 30-year analysis period and to persist for the 
full 30-year duration. 
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options decrease the hazard whereas the silvicultural options can either be very cost 

effective, not cost effective at all or very cost ineffective. 

 

Plotting the total effectiveness versus cost is again a useful analysis technique. Figure 22 

charts the cost effectiveness points of all of the mitigation options on two axes. In this 

case, effectiveness is the reduction achievable below the exiting average 30-year wildfire 

caused structure hazard estimate of 0.00484 for 291 study area homes. The vertical axis 

represents the cost for each option while the horizontal axis shows percents of mitigation 

effectiveness. The farther right a point is, given the budget, the more cost effective the 

investment as modeled by SIAM and SIMPPLLE. The HIZ mitigation options are shown 

with blue X’s and the silvicultural forest mitigations are shown with black diamonds.  

 
Note that the HIZ options are farther right than the silvicultural forest treatment options at 

all but two budget levels ($2.319 and $3.370 Million).  This indicates that HIZ 

mitigations would generally be more cost effective in this study area. Also note that the 

two most costly HIZ options are aligned vertically on the plot. This indicates that no 

additional effectiveness is attained with the additional cost for building upgrades than is 

possible through full fuel conversion alone. 

 

As an alternative to spending this additional 2.319 million (beyond the 3.28 million for 

full HIZ fuels conversion) on the building upgrades, it could be invested in silvicultural 

forest treatment schedule C. This can be done because the two suites of mitigation 

options are independent. When money is invested this way the modeling system predicts 

that the effectiveness attainable for the maximum budget ($5.6 million) increases to 70.9 
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percent with a cost effectiveness ratio of $79,086/each percent effectiveness. Although 

this is the second lowest cost effectiveness ratio, it is far lower than that for this level of 

investment in either of the two mitigation suites. This CE point is represented by the star 

on Figure 22. 

 

Table 24. Costs, effectiveness and cost effectiveness ratios for all mitigation options 
 
 Cost per 

option  
($million) 
2006 

HIZ Mitigated 
hazard average 
for 291 homes 
(effectiveness) 

HIZ CE Ratio 
Cost / 1 
percent 
effectiveness 
 

MAGIS 
Mitigated 
hazard average 
for 291 homes 
(effectiveness) 

MAGIS CE 
Ratio  
Cost / 1 
percent 
effectiveness 

Existing Average  0.00484  0.00484  
Window Upgrade 
/ Sch. A 

0.184080 0.00484 
 (-0.0%) 

NA  0.00505 
(+4.3%) 

NA  

 Siding 
replacement /  
Sch. B 

2.135048 0.00450  
(-7.0%) 

$305,007 
 (7) 

0.00477  
(-1.4%) 

$1,525,034 
(10) 

Windows and 
Siding/ Sch. C 

2.319128 0.00450 
 (-7.0%) 

$331,304 
 (8) 

0.00376  
(-22.3%) 

$103,997  
(3) 

 Light Fuels / 
 Sch. D 

 
1.235075 

0.00439  
(-9.3%) 

$132,804  
(4) 

0.00505  
(+4.3%) 

NA 

 Light Fuels and 
Siding / Sch. E 

3.370123 0.00383 
 (-20.9%) 

$161,250  
(6) 

0.00579 
(+19.6%) 

NA 

Full Fuels 
Conversion / Sch. 
F 

3.284920 0.00179 
(63.0%) 

$52,142  
(1) 

0.00374  
(-22.7%) 

$144,710  
(5) 

Full Fuels Plus 
Siding and/or 
windows / Sch. G 

5.604048 0.00179 
(63.0%) 

$88,953 
 (2) 

0.00463  
(-4.3%) 

$1,303,266 
(9) 

 

These modeling system hazard reduction effectiveness results indicate that many of the 

mitigation options conducted in the home ignition zone are more cost effective than 

silvicultural forest treatments based on the same budgets. They also indicate that the 

SIMPPLLE and MAGIS modeling tools used to investigate the impacts of treatment 

schedules on 30-year fire probabilities portray a great deal of variability. While this result 

may not be especially satisfying it may reflect an important reality; there is greater 



 

 111 12/18/2006 

certainty that HIZ mitigations will reduce the hazard to WUI structures. However, the 

silvicultural forest treatments may have as great of potential to mitigate wildfire caused 

structure ignitions in the future, as shown by schedule C in this analysis. 

Cost Effectiveness Points Estimates for 30-Year Hazards 
at all 291 Study Area WUI Homes 
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Figure 22. Cost effectiveness points for all mitigation options, modeled with SIAM, 
MAGIS v1.2.3 and SIMPPLLE v2.3. 
 
 

The same modeling results can be used to demonstrate the change in the expected number 

of homes destroyed by wildfire in the study area during the next thirty years.  In this case, 

the top four options according the CE ratios in from Table 24 are used in Table 25 to 

demonstrate the cost effectiveness on a reduced expected home loss basis. The results in 

this table indicate is that the most cost effective preventative mitigation option costs 

several million dollars to reduce the expected losses to wildfire by a single house. The 

findings in this study of high mitigation costs to protect WUI structures from wildfire 

have strong implications for future research needs. 
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Table 25. Mitigation cost effectiveness at preventing home ignitions 
 Cost per 

option  
($million) 
2006 

Mitigated 
hazard average 
for 291 homes 
(effectiveness) 

Mitigated 
Expected 
Home loss 
 

Change in 
expected loss 

CE Ratio  
Cost / 1 house 
saved 

Existing Average  0.00484 291*0.00484 = 
1.408 

NA  

HIZ Full Fuels 
Conversion 

3.284920 0.00179 
 (-63.0%) 

0.52 0.888 $3,698,524 

 HIZ Full Fuels 
Conversion with 
Building 
Upgrades  

5.604048 0.00179  
(-63.0%) 

0.52 0.888 $6,310,865 

 Schedule C 
 

2.319128 0.00376  
(-22.3%) 

1.094 0.314 $7,385,758 

Schedule E 3.370123 0.00374  
(-22.7%) 

1.088 0.32 $10,531,634 

 

The next chapter discusses many of the assumptions upon which these results are built 

and the limitations this creates for the modeling system.   The final chapter explains what 

these results mean and includes important discussions regarding suggested future 

research. 
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CHAPTER V- DISCUSSION 
 
The results chapter (IV) provides useful cost, effectiveness and cost effectiveness 

analysis findings for an economic comparison of preventative mitigation options for WUI 

homes threatened by wildfire.  While the results are important findings for the selected 

study area west of Darby Montana, they need to be considered within the context of 

important modeling system assumptions and limitations.  For example, use of different 

wildfire modeling tools would likely produce different cost effectiveness results.  The 

same modeling tools used to achieve objective 1 for this dissertation are also used to 

achieve objectives 2 and 3, the design of two suites of mitigation options. The findings 

that result from achievement of objectives 1-3 form the basis for the demonstration cost 

effectiveness analysis results. Therefore, the following discussions are organized by 

modeling tools instead of objectives. 

Notable SIAM/HIZ Assumptions and Limitations 
The key SIAM assumptions and limitation that affect both existing and mitigated ignition 

probabilities are bulleted and described below. 

 
• Extreme Weather 
• Fuel Mapping 

o data collection accuracy  
o home ignition zone size 
o data analysis with rectangles 

• Subjective modeling inputs 
• Extrapolation approach 
• Cost estimation approach 
• Lack of true optimization of HIZ mitigation options 
• Roofs, not a factor in the study area 
• HIZ Mitigation timing 
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The extreme weather is discussed as a major limitation in the introduction to SIAM (see 

Chapter II) and it is explored in the sensitivity analysis (Appendix C). However, it is 

worth noting again that this model is designed to overestimate the risk to homes because 

it relies on extreme weather, so extreme that it prevents suppression.  It may therefore 

only be suitable to conditions that exist for a few days every couple of years.  Not only 

does the model use extreme weather, these conditions may in fact be impossible to 

experience. Generating winds that are perpendicular to all four sides of a structure is 

likely not possible at one point in time; at least until the heat rising from the burning 

structure helps carry these winds.  Not only are the winds expected to be moving at 20 

MPH towards each side of each house, they are assumed to carry heat from fuel sources 

that are all burning concurrently. This is unlikely given that in reality fires advance as 

fronts. However, this simplification is used to allow computations that could occur in 

uncountable combinations.   

 

Although multiple sides of a house would likely be challenged by any encroaching 

wildfire, looking individually at sides provides some useful information regarding the 

magnitude of the assumption that each house's most vulnerable side represents its ignition 

probability. When we look at sides individually, note SIAM predicts that 81 of the 156 

sides have some probability of survival.  Table 26 indicates the number of homes with 0, 

1, 2, 3 or 4 sides with any expectation of survival.  Note that most houses have at least 

two sides with no chance of survival in their existing state. 

Table 26. Number of modeled sides that had a less than 1.0 probability of ignition. 
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By comparing average survival expectation using the maximum side probability to the 

average survival of all sides tested one can see the sensitivity of this assumption. The 

average survival expectation for the existing situation is 0.994; when all the sides of all 

visited houses are averaged this falls to 0.754.  This suggests a very high probability for 

home ignitions given a wildfire with 20mph winds perpendicular to each side, and a 90 

degree Fahrenheit ambient temperature.  It also illustrates how important the assumption 

of the highest vulnerability for each structure is to this analysis. 

 

The SIAM estimates are based on the assumption that all ignition sources in the HIZ are 

aflame simultaneously. While the model developer realizes that suppression resources are 

often operating at some level, the uncertainty associated with predicting suppression 

effort makes the worst-case scenario the only obvious modeling choice. This limitation 

has implications for the combination of SIAM with the aggregated SIMPPLLE wildfire 

severity probabilities. For each severity (light severity fire, mixed severity fire, and stand 
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replacement fire), all the fuel sources inside the HIZ are assumed to be burning.  As a 

result, only the trees with low branches or ladder fuels were drawn and included in the 

SIAM analysis. 

 

Fuel sources, especially ones located close to a structure, contribute strongly to the 

ignition expectation. It is worth noting that structures must take the shape of a four-sided 

house in SIAM . In reality, the fieldworker is forced to reduce complex shapes to a 

simple four-sided house, adjusting not only the structure but the estimated distance to real 

fuels based on this simplified structure.  The time required to draw, label and attribute 

these sources forces the fieldworker to count strides and do simple multiplication to 

estimate distances.  This is the first time this version of SIAM is used to model structure 

ignition probabilities for real homes, and no accuracy assessment for the fuel mapping 

protocol was executed. The result is less than perfect confidence that the fuel distances 

modeled properly reflect flux-time product estimates, which vary substantially within 

small distances. This fact, although it might appear academic may also be accentuated by 

the rectangle problem described in the SA Appendix (C).  

 

As mentioned earlier, the HIZ is set by extending the plan view 100 feet perpendicularly 

from each of the four sides of each structure. This is done because previous research 

indicates that fuel sources should make ineffective contributions to ignition potential 

beyond this distance (Cohen and Stratton 2003, Foote 1994, Howard et al. 1973). 

However, exploratory SIAM modeling for this project reveals that fuels beyond 100 feet 

and even 200 feet can impact modeled ignition expectations substantially. This runs 
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contrary to the definition of the HIZ proposed by Cohen in the literature (Cohen 2001) as 

well as personal communication when the model designer suggested using a distance of 

100 feet (Cohen Pers. Comm. 2005). In the current version of SIAM, at 100 feet the 

threshold for height of trees that impact overall ignition probability appears to be 30 feet, 

for 200 feet of distance the threshold height appears to be 90 feet.  The fuels are only 

drawn to 100 feet for this project and all visited homes are modeled with only this 

information. 

 

While most of the limitations and assumptions lead to overestimation of ignition potential 

at least two factors operate in the opposite direction. Although the current version of 

SIAM allows the user to draw adjacent structures43 as fuel sources, they cannot be 

included in calculations with the current software version. The author recognizes that the 

various structures in this fuel source category do contribute significantly as ignition 

sources but they are not included.  A review of the 39 residences visited reveals an 

average of three adjacent structures within the 100’HIZ for these 39 homes.  Only six of 

the 39 homes have no adjacent structures inside the HIZ. There are adjacent structures 

present in 72 of the 156 sides modeled in SIAM. Future versions of SIAM may include 

these structures, but at this point thermal characteristics describing this wide category of 

fuels have not been programmed in SIAM for calculations.   

 

In addition to adjacent structures, many investigators relay information to preparedness 

advisors regarding the importance of annual maintenance for fire safety.  While gutters 

                                                 
43 Adjacent structures include a variety of buildings and other manmade structures including: garages, 
sheds, neighboring houses, fences, gazebos, propane tanks, planter boxes and arbors. 
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filled with dry pine needles are a common example of a factor that would elevate the real 

threat of home ignition, such factors are not embedded in the SIAM software. Some 

people attending presentations about SIAM comment on the irony that many of the small 

factors that can really make a difference are not included in this model. However, it is the 

designer’s opinion, that although these are important considerations for ignition potential, 

modeling these factors is impossible (Cohen Pers. Comm. 2004).  Even if some ratings 

describing annual maintenance are included in the model they will add to the existing 

subjectivity of ignition calculations. This version has the subjectivity of firebranding 

potential and nook and cranny scores restricted. Only three options exist for firebranding 

and five for nook and crannies, yet numerous factors contribute to these scores. For 

example, decks, porches, ignitable roofing ends, railings, vent screening, and ignitable 

windowsills are all considered in the nook and cranny index. Results regarding the 

interaction of firebranding and nook and cranny ratings are noted in Appendix C. It is 

worth mentioning that collectively the potential impact44 is from 0 to 0.505.  

 

The subjectivity of the firebranding data used to run the model is another important 

identified weakness.  Although firebrands can travel farther than one mile with sufficient 

energy to ignite structures (Albini 1983), the area this creates around a home is frequently 

beyond the fieldworker’s visual realm, making it difficult to assign a firebranding rating.  

Compounding the problem for firebranding scores, each side is assigned its own score (1-

3), yet the chances that firebrands could be delivered from one side to a receptive 

ignitable surface of any adjoining side seems quite high.  

                                                 
44 In this case the impact refers to one of the components of the total calculations. If this number is the 
highest probability of ignition it is used as the overall probability, if it is not the highest then the higher 
probability estimates from flux-time product piloted ignition are used. 
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The next assumption affecting the SIAM results is that a sample of visited houses can be 

used to construct estimates for 291 homes. Thirty-nine of 291 or approximately 1/7th of 

all study area WUI homes were visited. As a result of having neither a random sample 

nor a comprehensive sample, a technique is used in this dissertation to estimate ignition 

probability for the remaining 252 homes in the study area. While the visited home sample 

of 39 is intended to saturate design categories and the gradients of fuels and topography 

that exist across the study area it is not clear that this is the case.  A more systematic 

approach should be developed in the future that permits statistically valid extrapolation 

from a reasonable sample of homes to a community, and this is suggested as future 

research. 

 

Cost estimates were developed in consultation with several contractors. However the 

desire to create several generalized mitigation options in the home ignition zone that 

could be modeled with SIAM led to the design of mitigation options that are not often 

performed by single contractors. Considering that according to several of these 

contractors with many years of experience, up to 50 factors45 affect fuels mitigation cost 

estimates, and that jobs are underestimated nearly half the time, the cost estimates used in 

this dissertation can likely be improved in the future. After visiting with several fire 

hazard reduction professionals it became clear that fuels removal costs are very site 

                                                 
45 The factors mentioned most often are: equipment access, steepness, project size, stem density, human-
made obstacles, and disposal technique.  
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specific. Six fuels contractors46 provided advice regarding the cost estimation of fuels 

removal. The replacement of fuel sources with non-flammable substitutes47 in particular 

appears to be rare in the area. None of the contractors offered cost estimates on the 

replacement of these fuels with non-flammable alternatives. This makes the estimation of 

costs for the fuels conversion mitigation options questionable. This lack of fuel 

conversion requests in the local area is also troubling given that this full HIZ fuels 

conversion appears to be the most cost effective option modeled in this dissertation.  

 

Another mitigation cost not described in this dissertation is the replacement of roofs. This 

is important because the factor with the strongest impact in SIAM is roof ignitability. A 

flammable roof leads to an ignition probability of 1.0 regardless of all other information 

in SIAM. While this may be a concern in some parts of the country, no ignitable roofs are 

found during fieldwork, and the Montana cadastral mapping project database suggests 

none of these roofs exist in the study area. 

 

The SIAM model’s four-sided approach provides an opportunity to refine the 

optimization of HIZ mitigation efforts. Remember that the ignition expectation for each 

residential structure is the maximum probability of ignition from any of its four sides. 

Because modeling the existing hazard and mitigation effectiveness for each structure is 

done this way it is possible to optimize across the modeled structures side by side using 

                                                 
46 The six contractors include: High Mountain Logging , Horizon Tree Service, Inc., Johnson Bros., 
Montana Forest Stewardship Services, Sprinkler Man Services, Inc. and Wildwood Forestry & Thinning, 
LLC. 
47 This mitigation option was designed based on a review of literature that suggests that fuel removal in 
home ignition zones to achieve wildfire protection is often moderated by the other values provided by fuel 
sources, such as shade, noise control, privacy and aesthetics. 
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marginal costs and effectiveness per side and per structure.  This level of optimization 

would allow a superior cost effectiveness comparison between mitigation efforts in the 

home ignition zone and thinning and prescribed burning treatments within a mile and a 

half buffer of study area structures.  The reason is that dollars could be spent side-by- 

side and house-by-house to make the greatest reductions in ignition probability at any 

given cost level. However, this project is intended to demonstrate that cost effectiveness 

can be used versus actually creating a mitigation strategy.  In addition, modeling results 

from only 39 houses are extrapolated to 291 structures in the study area. Both of these 

reasons prevent this additional work, which could surely improve estimates and strategic 

prioritization in the future.  

 

The timing of all of the HIZ mitigation options is another important assumption in this 

research. The mitigations are all assumed to occur in the first year of the analysis. In the 

absence of some new law forcing this behavior, the reality of all homeowners upgrading 

building and converting fuels in their home ignition zones (at a high cost) in the first next 

year is questionable. While this assumption reflects a virtual impossibility it is applied 

due to the deterministic aspect of the SIAM model. It could be assumed that mitigations 

are applied across the three-decade period with one third occurring in each decade. 

However, the uncertainty regarding implementation and the added math required has 

precluded any change to this assumption. These are the most important assumptions to 

keep in mind when looking at SIAM results. 
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Notable SIMPPLLE Assumptions and Limitations 
The key SIMPPLLE assumptions and limitations that affect both existing and mitigated 

ignition probabilities are also bulleted and described below. 

 
• Modeling with Suppression 
• Extreme Fire Spread Probability 
• Use of results at the scale of the individual polygon 
• No explicit modeling of dead fuels 
• Use of historical data to represent the future 
• Prevailing wind selection 
• Stochasticity in the response to silvicultural treatments 

 
Several key assumptions are made within the SIMPPLLE model to allow for tractable 

modeling system design and analysis. These can be separated into assumptions that can 

be manipulated by the user and those that cannot. The assumptions that can be 

manipulated include ones that are set by the author to reflect conditions in the modeling 

area. Examples include the selection of suppression and 0.05 probability of extreme fire 

spread, both described in the results section of the previous chapter. 

 

The most important limitation for the SIMPPLLE modeling results used in this modeling 

system is that individual polygons are used in combination with SIAM results for each 

structure. The SIMPPLLE model is designed to investigate succession and disturbance 

levels across landscapes. By using the number of simulations (out of 100) when fires 

burn in individual polygons that host residential structures, the scale of the analysis is 

stepped down to the lowest limit. Fine-scale analysis is not the intent of the data that is 

used to make size class, density, dominant species, and habitat type determinations for 

SIMPPLLE. The result is that the wildfire probability for any given polygon may have a 
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greater degree of error than is obvious to the reader. This implies that a range may be 

more appropriate way to report the results than a point estimate for the average hazard.  

 

The next limitation of SIMPPLLE is one that may trouble some fuel modelers. There are 

no dead fuels specifically modeled in the fire contagion logic. The SIMPPLLE model 

relies on fire spreading to adjacent stands based on combinations of habitat type, 

dominant species, size class, density, average elevation, selected wind direction and past 

processes. Although fire spread is affected by treatments that change one, two, or three 

vegetative attributes of a stand and its likelihood of each of three severity fires (given an 

ignition or fire spreading into it from a neighbor), attributes do not explicitly change to 

reflect the amount of dead fuels. This may be important when trying to understand the 

impact of fuel treatments on fires of the future. For example, a broadcast burn is often 

done to remove excess dead fuels, but removal of this material is not explicitly captured 

in SIMPPLLE. However, the severity of fire is set to differ based on this information. For 

example, recent insect and disease infestations can also affect the probability of fires. Fire 

can spread easier into these stands following infestation, based on SIMPPLLE fire spread 

logic that encapsulates the idea that there is an increase in standing or downed fuel.   

 

SIMPPLLE uses historical information as the basis for the probabilities and the spread of 

fire in the future. For example, the number of ignitions during the last decade is used to 

generate a probability per acre per decade for fire starts during each decade for the 

duration of the simulations. By relying on data from the recent decade it is implicitly 

assumed that the types and amount of disturbance in the future will be similar to that of 
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the past. With background climate change (Westerling et al. 2006) there is reason to 

believe that weather will be different in the future. However, there is presently no clear 

expectation of the amplitude or direction of future change at this point. 

 

Another important assumption is the prevailing wind selection.  While local winds 

change constantly in speed and direction, a general prevailing wind may be observed in 

some locations, representing the interaction of climate and topography. It is important to 

remember that winds driving fires during the most threatening fire events may not be of 

the same direction as the prevailing winds. For example, the Foehn winds, known also by 

local names (e.g., the Santa Anna winds in California), generally represent a high-speed 

wind event blowing in the opposite direction of the prevailing wind, lasting from several 

hours to several days.  The SIMPPLLE model must have a single prevailing wind 

selected, which is used for the duration of the simulations for each run. Unlike work done 

by Butler et al. (2004) to enhance FARSITE modeling, wind in SIMPPLLE affects the 

fire spread logic similarly in all terrain and at all times during the simulation. A 

southwest wind is selected for the study area based on experience from residents and in 

consultation with the local fire management officer at the Darby Ranger District.  The 

only time that the simulated wind driven fire is adjusted is in the event of a fire greater 

than 1,000 acres or if a fire spreads under extreme conditions based on probability and a 

random number draw.  

 

The effectiveness results (Chapter IV) following the application of seven silvicultural 

treatment schedules indicate that the stochasticity in the simulation modeling appears to 
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overwhelm the impact of the various treatment regimes. There are several reasons why 

increased hazard that accompanies some treatment schedules may reflect reality.  The 

first explanation is that the structure and composition modifications made by the 

treatment regimes result in a shift in the severity of fire. There may be fewer stand 

replacement fires but more mixed and light severity fires as a result of the treatment.  

Another possibility is that prescribed fires themselves also have the potential to escape 

into polygons hosting houses. A third plausible explanation is simply that the real 

stochasticity of future ignitions may overwhelm the changes made to stand conditions.  

 

Although there are plausible explanations, the stochasticity in the modeling is 

problematic for this analysis. Consider that when the same treatment schedule, 

unconstrained by budget or area limits, is simulated twice with SIMPPLLE the change in 

30-year hazard results vary from 0.00484 to both 0.00449 and 0.00480. This variability in 

the predicted response of hazard estimates to the same treatment schedule creates a small 

problem for the comparison of the two suites of mitigation options at each of the seven 

budget levels. The best way to represent this variability in the response in fire 

probabilities to the various silvicultural treatment schedules is to use box plot or average 

from a sample of 100 simulations instead of a single point estimate. However, while it 

can be acknowledged that the range of response is great enough to wildly impact the cost 

effectiveness results described in the previous chapter, dealing with this reality by using a 

30-sample approach is also problematic.  In order to get this information 240 (8 * 30) 

100-simulation SIMPPLLE runs are needed. This requires approximately 1,200 hours of 

processing time and 240 gigabytes of storage memory. Although this effort could 
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stabilize the SIMPPLLE modeling of the existing hazard and the response to MAGIS 

treatment schedules it may not. The variation in the additional modeling results would 

need to be considered along with the change in the mean or median to determine if this 

intensified modeling approach effectuates stabilization. Therefore, with appreciation of 

this ranging response as a weakness in the modeling system this is recommended as a 

good area for future research. These are the most important assumptions to be aware of 

when reading the SIMPPLLE results section. 

Notable Modeling System Assumptions and Limitations 

Like the sections describing limitations for each of the modeling tools, this section has 

bulleted key points of awareness needed to appreciate the modeling results used in this 

demonstration.  

• System for model combination 
o Assignment of houses to polygons 
o Single polygon use for wildfire probabilities 
o HIZ mitigation approaches apply to houses with zero wildfire probability 

 

The process of locating study area houses in SIMPPLLE polygons contributes some 

notable approximation error to the project.  The 2-meter color imagery used for this task 

(obtained from the 2004 National Agriculture Imagery Program) is a composite of quarter 

quad tiles compressed as a Ravalli County mosaic.  This aerial imagery is distorted 

slightly based on the seam connection process. It will eventually be corrected and 2005 

imagery will also eventually be available. However, the best data available at the time is 

used.  In general, the 2004 images are shifted south and east of where they should be 
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registered48 to match the state library cadastral layer, which has superior geographic 

registration. As a result, all structure locations are entered slightly north, northwest of 

image locations. After all clearly visible homes are mapped with the aid of aerial images; 

the ownership attribute of the cadastral layer is used to check the map. An additional 

layer is created, where any of the three classes of residential property are missing a home. 

Each questionable polygon is reviewed and several homes are added with the aid of this 

data layer. 

 

After this step, 330 structures appear in the study area WUI. Because Montana cadastral 

database information for each residence is used to classify homes into hazard categories, 

this number needs to be reduced to match the number of area structures found in the tax 

records. Parcels with multiple structures are isolated and then all but what appears to be 

the main residence is deleted49.    

 

Although it is acknowledged that adjacent vegetative communities also pose a 

firebranding threat to some homes, uncertainty regarding the variable contributions to 

firebranding hazard from these adjacent polygons prevents its inclusion as an explicit link 

between the two modeling tools in this project. 

 

                                                 
48 Registration refers to the process of properly geographically aligning a digital map layer.   
49 There are also some residences that are inside the area being analyzed with SIMPPLLE but which are not 
in the case study WUI area. These homes are not included in the analysis. They are within an area modeled 
with the landscape disturbance software because of the need to extend the SIMPPLLE analysis area 
geographically beyond the area of interest to prevent distortion of disturbance process contagion affected 
modeling results inside project WUI area. 
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After describing all the assumptions that limit the use of SIAM, SIMPPLLE and the 

combination of the two models it is important to remember that the results are not as 

important as demonstration that tools like this can be combined in current versions to 

address very interesting policy questions. When these questions and preliminary findings 

are found to be interesting, the awareness of results will drive model refinement. 

 

The Limitations of the CEA in this Dissertation 
Similar to the sections describing limitations for each of the wildfire modeling tools, this 

section has bulleted key points of awareness needed to appreciate the limitations of the 

economic analysis tool used in this demonstration.  

• Effectiveness versus efficiency 
• Variable costs 
• Joint costs 
• Spatial and temporal scale selection 
• Generalized HIZ mitigation options 
• Extrapolation of HIZ mitigation success prevents cost adjustment 
•  

 
One of the most notable weaknesses for a CEA is that results are not comparable to other 

projects. Because a CEA transforms the analysis from an overall analysis of efficiency to 

a relative analysis of efficiency you cannot tell if the project is efficient overall, but you 

can compare how cost effectively different management options meet your objectives. 

When the government is deciding how to allocate scarce money, it will have difficulty 

deciding between cost effective options for two different projects. For example, the 

results of two CEAs will do little to help the analysts decide how to allocate money 

between the most cost effective alternative to meet a forest management agency’s legal 

mandates, and the most cost effective alternative to save more lives for a government 
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emergency response agency.  Because the analysis does not yield an efficiency measure, 

it is difficult to compare results to those of other possible projects.  Although you give up 

the ability to make clear statements about efficiency, CEA allows you to identify superior 

and inferior alternatives in light of your project objective.   

 

The fact that included cost information can vary is another important weakness of CEA.  

Should costs include direct costs, indirect costs, tangible costs, intangible costs, and/or 

joint costs? In CBA, cost information is typically limited to monetary and opportunity 

costs. But the CEA framework is used to address important non-market benefits, so the 

question arises how well does it capture non-market costs? Critics could argue that cost 

manipulation in the CEA could be used to influence the outcome, especially when 

management alternatives have important differences in cost structure. This variability in 

cost structure is indeed the case for this research. The estimated costs for the silvicultural 

forest treatment regime options include administrative costs, planning costs, and 

implementation costs, whereas the home ignition zone mitigation options only include 

estimated contractor costs to complete the mitigation tasks.  

 

Next consider the problem of joint costs. For example, the fuel treatment regime options 

would typically be used to meet several objectives. For sake of argument, imagine that 

the following ecosystem management goals are typically in place for most fuel treatment 

projects: reduce fuels, increase wildlife forage, control invasive weeds, control insect and 

disease, and produce biomass. There are joint costs involved in this project, and they will 

increase the costs above the most basic costs to only reduce fuels. To apply cost estimates 
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from projects like these in the comparison to contractor estimates will skew the cost 

effectiveness away from silvicultural fuel treatment options.  

 

Another weakness of all the cost analysis tools is that spatial and temporal scale can 

affect the results. For example, mitigation CEA for a single home will produce one result. 

If the analysis is scaled up to a community (as is the case for this research), the same 

CEA framework may produce a different result. Because the CEA results depends on the 

spatial scope of the analysis, there should to be a reason to select the scale to prevent 

manipulation.  For example, this research is designed to demonstrate the application of an 

economic analysis tool for communities exploring wildfire hazard mitigation strategies in 

a CWPP. This selection of spatial scale has clear impacts on the cost effectiveness 

analysis results.  

 

Likewise, if temporal scope dramatically affects the results then the analyst needs to be 

careful to provide justification for the temporal scope selected, or to show how changing 

the timeframe of the analysis would affect the results of the CEA. In this research, the 

selection of the 30-year time period for this analysis (justified in Chapter I) has 

implications for the comparison between HIZ and surrounding wildland mitigation 

activities. In the case of the HIZ mitigations, they are expected to occur at the start of the 

30-year time period. In the case of the silvicultural treatments, they are scheduled for the 

start of each of the three simulated decades. Yet both the mitigated conditions are 

expected to persist throughout the 30-year time period. Although this spatial and 
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temporal scale issue is important, it is an issue with the full family of cost/benefit 

economic decision tools.  

 

The ideal cost effectiveness comparison between HIZ and silvicultural treatments would 

account for a multitude of mitigation options and combinations to determine an optimal 

prioritization based on all values.  However, the objective of the research is to 

demonstrate that existing modeling tools can be used to help prioritize mitigation options, 

not to develop a site-specific prioritization strategy for the study area. As a result only 

structure protection is included in the definition of effectiveness. If a site-specific 

prioritization strategy were the stated goal, additional effort to identify values at risk and 

elevated optimization efforts for both the HIZ and silvicultural forest treatment suites 

would be necessary.   

 

The design of this study simplifies the HIZ mitigation possibilities to the home and the 

proximate fuels to a suite of seven possibilities applied to all candidate homes.  Recall 

that the existing hazard for each home is the product of the wildfire probability for its 

host polygon modeled with SIMPPLLE and the likelihood of ignition given a wildfire 

modeled with SIAM. The cost effectiveness analysis of the mitigations on the combined 

modeling system in this dissertation does not adjust costs for the cases where the existing 

wildfire probability is zero. Ideally, the estimated 69 percent of the houses with a zero 

30-year wildfire probability would be removed from each of the HIZ mitigation options 

to reduce the costs of each mitigation option in the recombined CEA.  The problem is 

that extrapolation is used in the dissertation to estimate the structure ignition probability 
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for 252 of the 291 houses, complicating this retrospective calculation. This explains why 

this is only suggested as a potential improvement in any future cost effectiveness 

analysis. 

Comparing Budgets to the Existing Community Wildfire Protection Plan 
It is interesting to compare the budget levels in this research with information in the 

CWPP that applies to the study area. The Bitterroot Valley CWPP has been helpful 

securing roughly $1.92 million for hazard reduction in the Bitterroot Valley between 

2001 and 2005. Of this $930,000 was been spent doing fuel mitigation work on private 

and public lands. At this rate, the amount that will be spent during the 30-year period 

analyzed in this dissertation is roughly $5.6 million. This is almost exactly the amount 

used when an unconstrained silvicultural forest treatment scheduler is given the task of 

minimizing the 30-year fire probability by thinning and prescribed burning all possible 

vegetative units within 1.5 miles of the 291 study area homes ($5.86 million). This could 

be interpreted to mean that this CEA analysis is using realistic budgets levels. However, 

keep in mind that the analysis area modeled in this dissertation represents only a small 

part of the entire area covered by the Bitterroot CWPP. 



 

 133 12/18/2006 

CHAPTER VI – CONCLUSIONS 
 

Key Findings 
This dissertation demonstrates that a cost effectiveness analysis can be performed to help 

guide mitigation efforts in low elevation communities across the western US. By 

introducing an economic analysis that can assist with the selection of mitigation 

strategies, society can either reduce the cost to achieve a given level of home protection 

effectiveness or increase the effectiveness for a given cost. The findings in the study area 

demonstration, where budgets were limited and effectiveness varied, suggest that most of 

the HIZ mitigation options have superior reliability over silvicultural forest treatments 

when compared at seven budget levels ranging from $184,000 to $5,604,048.   

 

The range in predicted cost-effectiveness (CE) ratios from $52,142 /1% effectiveness to 

infinity/1% effectiveness50, which accompanies the fourteen mitigation options, suggest 

that economic analysis must be addressed in mitigation planning. One example provided 

at the end of the last chapter demonstrates that a combination of two independent 

mitigation options, one from each of the two suites, has the potential to reduce hazard 

more than that same budget applied exclusively to one suite or the other.  Given limited 

money to address the problem of WUI structure protection, this is exactly the type of 

information needed to protect the increasing number of western US WUI homes from 

wildfires in the future. While these results are interesting and may be useful for the local 

community wildfire protection plan, it remains unclear whether this pattern of cost 

effectiveness between the two suites of options holds across the western US. Only by 
                                                 
50 Infinity is assigned because several of the modeled mitigations generated either no reduction in existing 
hazard or an actual increase in the hazard. 
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replicating this approach in numerous study areas representing a range of building types, 

home ignition zone fuel configurations, and landscape vegetation conditions will general 

statements comparing the two suites be permissible.  

 

Although the modeling in this dissertation draws conclusions about the potential cost 

effectiveness of various mitigation strategies it thus far has not included a needed 

discussion about the feasibility of these strategies. One important result of this 

dissertation is that the existing risk to homeowners may be quite low, averaging only 

0.00484 for the next 30 years across the 291 study area homes. Even the maximum 

existing hazard of 0.05 may not be sufficient incentive to mitigate wildfire at a cost.  

 

While results and discussion are designed to reveal the comparison of relative 

effectiveness, the results in chapter IV point to the absolute effectiveness attainable.  The 

cost estimation results in chapter IV of this dissertation describe the cost to make 

structures more fire resistant and remove HIZ fuels. Even by removing and replacing all 

the fuels in the home ignition zones across the study area this mitigation option only 

reduces the existing hazard to 0.00179 at an average cost of $11,288 per home.  On 

average, siding upgrade to non-flammable material costs $8,670 per house, and just the 

light fuels conversion option averages $4,591 per house. If you consider that 

homeowner’s insurance will replace the house if it is destroyed by wildfire, the reason for 

inaction by many WUI homeowners becomes clear.  
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If a trend of findings such as those in this document suggest that steps taken by 

homeowners are generally more cost effective than silvicultural treatments to the 

surrounding public lands this has implications for future wildfire protection planning. 

Circulation of information regarding the site-specific predicted cost effectiveness of 

various mitigation options may persuade communities to increase pressure on 1) existing 

homeowners to modify their homes and surroundings, and 2) new residents to construct 

homes and plan the surrounding landscape in a more fire resistant manner.  This 

increased emphasis on homeowner mitigation could allow land management agencies to 

allocate scarce budgets to other protection and land management priorities. 

 

However, there are also many additional values provided by HIZ fuel sources, such as the 

provision of shelter, shade, temperature and moisture control, noise control, privacy, 

firewood supply, aesthetics, and wildlife habitat, that all restrict the amount of fuel 

conversions undertaken in home ignition zones across a given WUI community. On the 

other hand, some fire mitigation is viewed as providing complementary progress in 

restoring forests to some reference condition and thought to contribute to forest health 

goals that extend beyond fire hazard mitigation goals. Nelson et al. (2004) report that 

crime-control, gardening, and pet needs were also given as reasons to have open areas 

surrounding a home. 

 

Considering all of the factors affecting fuel mitigation decisions listed above, it seems 

that economic benefits really need to outweigh costs, or something else needs to motivate 

homeowners to mitigate fuels.  Although an evaluation of efficiency is a logical extension 
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of the findings in this dissertation there are numerous reasons that need to be mentioned 

to avoid this analysis for this study. The first is that the emerging modeling tools used in 

the dissertation have not been fully tested and vetted for the purpose of economic 

analysis. The cost estimates used for the mitigations are also in early stages of evolution. 

More importantly, a threat to life of residents and firefighters also accompanies the threat 

of future WUI structure ignition. The valuation of these lives is contentious. Another 

important limitation is that these mitigation options are simplified to accommodate this 

dissertation goal of CEA demonstration and they lack optimization that would improve 

the cost-benefit ratios. Finally, there are numerous benefits in addition to home protection 

accrued through mitigation (e.g., enhancements in forest resistance to insects and disease, 

provision of big game winter range forage, and improved firefighter suppression 

capability) that are not easily monetized and therefore are not captured in this economic 

analysis. Many of these reasons explain why the cost effectiveness analysis tool is chosen 

in the dissertation to address the question of how to best allocate the money being spent 

to protect WUI structures. 

Transferability of  Study Findings 
This research is targeted to the scientific and management communities as well as low 

elevation WUI communities hoping to reduce expected home loss from wildfire. It 

should provide a new way to compare options for achieving the goal of improved home 

survival in high frequency fire regime WUI areas. The ability to apply this approach to 

different WUI areas across Montana and the western US will be limited at first by model 

and data availability. Once this is resolved, portability will be a matter of time and budget 
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constraints to execute this type of analysis. Both data availability and portability point to 

the question of transferability of the findings.  

 

Community Plans as a Vehicle for CEA 
The ten-year cohesive strategy drafted by the Western Governor’s Association provides 

guidance on administration of the National Fire Plan after the dramatic WUI fires of 

2000. As a result of all of this political attention to the mitigation issue, including the 

Healthy Forest Restoration Act of 2003, many communities and groups of communities 

are drafting community wildfire protection plans (CWPP).  The third minimum 

requirement for any CWPP provides a direct incentive to get information about 

mitigation to homeowners. It is called treatment of structure ignitability and each CWPP 

must recommend measures that homeowners and communities can take to reduce the 

ignitability of structures throughout the area addressed by the plan (US Congress 2003).  

The assessments conducted pursuant to this language in the CWPPs could easily be 

modified to collect input information needed to run SIAM. With the creation of a 

sampling protocol tied to an ignition probability classification system, assessment of the 

existing hazard across a community and the potential cost effectiveness of various 

mitigation options could be ascertained with little additional effort. If the wildfire 

probability modeling could be based on wall-to-wall data, such as the LANDFIRE data 

available for the US, a nationally consistent approach could be generated.   
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Warnings for Misapplication of Study Area Findings 
Results for the study area used for this demonstration will differ from other WUI areas 

based on several characteristics. The size of the area will affect the scale of all possible 

treatment options. The housing density and cooperation of neighbors will be a major 

factor. Land ownership patterns will dictate what type of treatments that can be applied. 

The existing vegetation will impact the baseline and potential gains of all treatments. The 

topography and weather of an area will also affect the ability to make changes in fire 

severity. Any building codes that may constrain or mandate HIZ and/or home conditions 

will also affect transferability.  These all point to a need to reiterate that this study is 

merely an example of how economics can help address a multidisciplinary research 

question. 

 

This assessment is intended to diagnose the existing risk of home ignition loss during 

extreme fire weather. This study looks at an area roughly defined by a community as their 

wildland urban interface. People living in areas with different risk of wildfire would not 

want to use findings from this study to make decisions.  This combination of models is 

designed to address the case when there are many homes at risk of loss to wildland fires 

burning with extreme conditions. If one were trying to model a situation without homes, 

one would not use the SIAM model, and would likely be framing the question with a 

different effectiveness metric, or even a different economic tool, perhaps economic 

efficiency versus cost effectiveness. 

 

Although many land management projects appear to focus on fuel reduction, these 

projects are often designed to realign fire regimes with some reference condition to 
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concurrently improve forest health and enhance community safety. This study was 

designed to address the case where wildfire-caused structure hazard reduction is the 

overriding objective. Incomplete consideration of other important land management 

objectives could lead a person to misinterpret the results in this dissertation. There are 

now many integrated land management projects that strive to improve multiple resource 

conditions simultaneously through combinations of vegetation management, road 

improvements or decommissioning, and recreation infrastructure improvements. 

Hazardous fuel management is often only one of several objectives of these integrated 

efforts. 

  

Suggested Future Research 
The preliminary modeling system used in this dissertation is built on many assumptions 

and there is much room for improvement in the future.  Throughout the dissertation, 

shortcomings and limiting assumptions are highlighted to provide adequate caution in the 

application of the results. All three of the modeling tools used in the research are still 

being developed. The following is a list of the most important potential modeling system 

improvements: 

 
SIAM 

 
• Include adjacent structures as fuel sources 
• Improve the user interface to allow easier modeling 
• Allow polygon modeling versus rectangular fuel source modeling 
• Allow for modeling at various weather conditions 
• Write the code needed to model plate versus tempered window types 
• Check software to allow adjustments in wind speed and temperature adjustments 

 
 
SIMPPLLE 
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• Create the option to automate multiple scenarios to reduce set up time for each set 
of simulations that would allow the analysts to easily take an average from a 
sample 30 sets of 100 simulations to reduce the variability in the existing fire 
probabilities and the fire probabilities following the application of MAGIS 
silvicultural treatment schedules. 

• Generate a comprehensive fire probability sensitivity analysis for all parameters 
under various regions with different vegetation types. 

• Create a report with a record for each polygon that describes the average wildfire 
hazard in all adjacent polygons. This would allow the analyst to connect 
probabilities from adjacent polygons to the host polygons to the SIAM estimates 
for a more complete consideration of firebranding potential. 

 
MAGIS 

• Improve the optimization fire reduction factors based on SIMPPLLE output. 

 

This dissertation has pioneered a technique to combine fire probability estimation with 

structure ignition estimation to conduct a cost effectiveness analysis of mitigation 

options. The research question can be revised in any number of ways to address the needs 

of the planning community. For example, the question of what is the existing risk could 

be answered in many ways. In this case, a 30-year planning horizon has been applied, and 

this implies that a temporal modeling system is needed. If a community were more 

interested in the chances that a certain known wildfire scenario would destroy houses, 

then other fire behavior tools in the FARSITE family could easily be substituted to 

address the fire probability estimation.  

 

On the other hand, if communities are more interested in the structure ignition estimation 

a methodology to randomly sample homes could be employed that permits the 

development of a classification system that simplifies the data collection needs for 

remaining homes in that area, allowing for a low cost comprehensive evaluation of 

community risk. 
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There are numerous reasons cited within this document describing why a CEA was 

conducted instead of a cost-benefit analysis. As described above, the jump to a more 

elaborate economic analysis could be taken. Optimization of the HIZ mitigation options 

could be done with the existing cost and effectiveness data. The HIZ mitigation strategies 

would also benefit by excluding homes modeled with zero wildfire probability from 

consideration. If these changes are made, a future CBA could address the general issue of 

spending on the protection of WUI homes from wildfire. The issue of who should be 

spending the money and how it should be divided between preventative and suppression 

could be explored further in this manner as well. Consider that it took one person two and 

a half years to design, execute, and report results for this study. This should hopefully 

give the reader the impression that with very little financial resources some of society’s 

important forest multidisciplinary management questions can be addressed through the 

application of innovative study designs that use economics analyses. 
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LIST OF ACRONYMS AND ABBREVIATIONS 
 
Ac. - Acres 
ADS - Aerial Detection Survey 
BC - Benefit/cost  
BEHAVE - Fire Behavior Prediction System 
BNF - Bitterroot National Forest 
CBA - Cost benefit analysis 
CE - Cost effectiveness 
CEA - Cost effectiveness analysis 
CWPP- Community wildfire protection plan 
D1 - Decade 1 year 1-10 (2005-2014) 
D2 - Decade 2, years 11-(2015-2024) 
D3 - Decade 3 years 21-30 (2025-2034) 
DBH - Diameter at breast height 
DFB - Douglas fir beetle 
ESRI - Environmental Systems Research Institute 
GIS - Geographic information system  
F - Fahrenheit 
FARSITE - Fire Area Simulator for Fire Managers 
FETM - Fire Emissions Tradeoff Model 
FLAMMAP - Fire Behavior Mapping and Analysis Program 
FMZ - Fire management zone 
HFRA - Healthy Forest Restoration Act of 2003 
HIZ – Home ignition zone 
LANDFIRE - Landscape Fire and Resource Management Planning Tools 
LANDSUM - Spatial successional modeling tool 
LSF - Light severity fire 
MAGIS – Multi Attribute Geographic Information System 
MPH - Miles per hour 
MSF - Mixed severity fire 
MT - Montana 
NA - Not applicable 
NAIP – National Agricultural Imagery Project  
NIFC - National Interagency Fire Center 
NC- Nook and cranny (part of the SIAM model) 
P(  ) - probability 
Pers. Comm. - Personal communication 
PICO MPB - Lodgepole pine mountain pine beetle 
R1-VMP- USFS, Northern Region's vegetation map  
SA – Sensitivity analysis(es) 
SIAM – Structure Ignition Assessment Model 
SIMPPLLE – Simulating Patterns and Processes at multiple Scales Modeling tool  
SO- SIAM One 
SRF - Stand replacement fire 
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USDA - United States Department of Agriculture 
USFS – Unites States Forest Service 
US – United States of America 
VDDT - Vegetation Dynamics Development Tool 
WUI – Wildland urban interface 
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APPENDIX A. SIAM DATA COLLECTION WORKSHEET 
 

Structure Ignition Assessment Model (SIAM) 
Home Evaluation Worksheet 

 
1. Descriptive Information 

Property Owner Name(s) ____________________________________________ 

Property Number_______ Phone Number (      ) _____ -   _______  

Street Address: ____________________________________________________ 

Town _______________, Zip Code _________ - _____ 

GPS coordinates _____ ____._____N   _____ _____.____W 

Date: Month_______ Day_________ Year__________ Time ___:___ 

Evaluator__________________________ Aspect of Front Wall ________ Deg. 

Have you made wildfire mitigation efforts in the past? HIZ  Y  N, Intermix Y    N 

Notes: ____________________________________________________________ 

Are you willing to allow photographs to be used in presentations?   Y     N 

 

2. Fire Branding Index (Worst Case within ¼ mile) 

Side 0___ Side 1___ Side2___ Side3___ 

1 = low (grasses), 2 = moderate (tall cured grasses, open forest), 3 = high (closed forest) 

(□ P.V = fire branding numbers for all directions drawn on plan view 

Notes __________________________________________________________________ 

 

3. Roof Information 

Roof Type:  Ignitable (wood shakes, sawn shingles)  

Non-ignitable (metal, composite, terra cotta, etc.) 

Lowest Height________ ft.    Highest Height____________ ft. 

Exposed flammable surfaces Y  N 

Debris Present   Y  N 

Notes:__________________________________________________________________

_______________________________________________________________________ 
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SIDE 0, House Back 
0.4. Siding Information 

Siding Type: Ignitable (wood, vinyl, other_______, Painted  Y  N 

Non-ignitable (metal, composite, masonry, brick, hardyplank, stucco, other) 

Height variance over ‘wall 0 origin’ __0____ ft. Wall length______ ft. 

Wall origin (right end) Height over Grade____ ft. Wall End Height over Grade____ft. 

Flam. surfaces - Origin height over grade: ____ ft. Wall End Height over Grade____ft. 

Gable height above wall____ ft. Width____ ft. Dist. from center ____ft R / L of Peak 

Clino Reading_____ Distance_____ Notes: ____________________________________ 

________________________________________________________________________ 

 

0.5. Window Information  

(> 2’x2’, starting low and to the right of side □ E.V = drawn on elevation view) 

Window Type (Glass Temper (P = plate, T= tempered), Glazing I = single pane, II = 

double pane, a = sashes b = no true sashes, (# of lenses). Example: PIa8, TIIb 

0.1.  Type:______ Height___ in.  Width___ in. Hi___’ Left___’ Exp. Sill Y   N  □ E.V. 

0.2.  Type:______ Height___ in.  Width___ in. Hi___’ Left___’ Exp. Sill Y   N  □ E.V. 

0.3.  Type:______ Height___ in.  Width___ in. Hi___’ Left___’ Exp. Sill Y   N  □ E.V. 

0.4.  Type:______ Height___ in.  Width___ in. Hi___’ Left___’ Exp. Sill Y   N  □ E.V. 

0.5.  Type:______ Height___ in.  Width___ in. Hi___’ Left___’ Exp. Sill Y   N  □ E.V. 

0.6.  Type:______ Height___ in.  Width___ in. Hi___’ Left___’ Exp. Sill Y   N  □ E.V. 

0.7.  Type:______ Height___ in.  Width___ in. Hi___’ Left___’ Exp. Sill Y   N  □ E.V. 

0.8.  Type:______ Height___ in.  Width___ in. Hi___’ Left___’ Exp. Sill Y   N  □ E.V. 

0.9.  Type:______ Height___ in.  Width___ in. Hi___’ Left___’ Exp. Sill Y   N  □ E.V. 

0.10.  Type:_____ Height___ in.  Width___ in. Hi___’ Left___’ Exp. Sill Y   N  □ E.V. 

0.11.  Type:_____ Height___ in.  Width___ in. Hi___’ Left___’ Exp. Sill Y   N  □ E.V. 

0.12.  Type:_____ Height___ in.  Width___ in. Hi___’ Left___’ Exp. Sill Y   N  □ E.V. 

0.13.  Type:_____ Height___ in.  Width___ in. Hi___’ Left___’ Exp. Sill Y   N  □ E.V. 

0.14.  Type:_____ Height___ in.  Width___ in. Hi___’ Left___’ Exp. Sill Y   N  □ E.V. 

0.15.  Type:_____ Height___ in.  Width___ in. Hi___’ Left___’ Exp. Sill Y   N  □ E.V. 

Notes:__________________________________________________________________ 
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o Extra Window Data Sheet Required ( □ data sheet is labeled, and attached) 

  

0.6. Home Ignition Zone Characteristics: 

Slope Offset Distances Up:____________ Down:______________ 

Slope beyond offset  Up:________ deg. Down:_________ deg.  

 

Fuel Type (<100 ft., starting left and close to structure, moving clockwise) 

o 450 lines are drawn for the plan view based on the elevation view dimensions 

 

A. Surface litter, B. Short grass (< 6”), C. Med. Grass (6-24”), D. Tall grass (>24”),         

E. Shrubs, F. Underbrush, G. Trees, H. Woodpiles, I. Debris Piles, J. Adjacent Structure 

N = Natural (forest), O = Ornamental (e.g., GN = natural tree, GO = ornamental tree) 

 

0.1. Fuel Type____   Ignition hazard Y   N, Fuel width_____ ft., height____ft. □ P.V 

Fuel Depth _____ ft. Dist. to structure_____ ft. Notes____________________________ 

0.2. Fuel Type____   Ignition hazard Y   N, Fuel width_____ ft., height____ft. □ P.V 

Fuel Depth _____ ft. Dist. to structure_____ ft. Notes____________________________ 

0.3. Fuel Type____   Ignition hazard Y   N, Fuel width_____ ft., height____ft. □ P.V 

Fuel Depth _____ ft. Dist. to structure_____ ft. Notes____________________________ 

0.4. Fuel Type____   Ignition hazard Y   N, Fuel width_____ ft., height____ft. □ P.V 

Fuel Depth _____ ft. Dist. to structure_____ ft. Notes____________________________ 

0.5. Fuel Type____   Ignition hazard Y   N, Fuel width_____ ft., height____ft. □ P.V 

Fuel Depth _____ ft. Dist. to structure_____ ft. Notes____________________________ 

0.6. Fuel Type____   Ignition hazard Y   N, Fuel width_____ ft., height____ft. □ P.V 

Fuel Depth _____ ft. Dist. to structure_____ ft. Notes____________________________ 

0.7. Fuel Type____   Ignition hazard Y   N, Fuel width_____ ft., height____ft. □ P.V 

Fuel Depth _____ ft. Dist. to structure_____ ft. Notes____________________________ 

0.8. Fuel Type____   Ignition hazard Y   N, Fuel width_____ ft., height____ft. □ P.V 

Fuel Depth _____ ft. Dist. to structure_____ ft. Notes____________________________ 

0.9. Fuel Type____   Ignition hazard Y   N, Fuel width_____ ft., height____ft. □ P.V 
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Fuel Depth _____ ft. Dist. to structure_____ ft. Notes____________________________ 

0.10. Fuel Type____   Ignition hazard Y   N, Fuel width_____ ft., height____ft. □ P.V 

Fuel Depth _____ ft. Dist. to structure_____ ft. Notes____________________________ 

0.11. Fuel Type____   Ignition hazard Y   N, Fuel width_____ ft., height____ft. □ P.V 

Fuel Depth _____ ft. Dist. to structure_____ ft. Notes____________________________ 

0.12. Fuel Type____   Ignition hazard Y   N, Fuel width_____ ft., height____ft. □ P.V 

Fuel Depth _____ ft. Dist. to structure_____ ft. Notes____________________________ 

0.13. Fuel Type____   Ignition hazard Y   N, Fuel width_____ ft., height____ft. □ P.V 

Fuel Depth _____ ft. Dist. to structure_____ ft. Notes____________________________  

0.14. Fuel Type____   Ignition hazard Y   N, Fuel width_____ ft., height____ft. □ P.V 

Fuel Depth _____ ft. Dist. to structure_____ ft. Notes____________________________ 

0.15. Fuel Type____   Ignition hazard Y   N, Fuel width_____ ft., height____ft. □ P.V 

Fuel Depth _____ ft. Dist. to structure_____ ft. Notes____________________________ 

0.16. Fuel Type____   Ignition hazard Y   N, Fuel width_____ ft., height____ft. □ P.V 

Fuel Depth _____ ft. Dist. to structure_____ ft. Notes____________________________ 

0.17. Fuel Type____   Ignition hazard Y   N, Fuel width_____ ft., height____ft. □ P.V 

Fuel Depth _____ ft. Dist. to structure_____ ft. Notes____________________________ 

0.18. Fuel Type____   Ignition hazard Y   N, Fuel width_____ ft., height____ft. □ P.V 

Fuel Depth _____ ft. Dist. to structure_____ ft. Notes____________________________ 

0.19. Fuel Type____   Ignition hazard Y   N, Fuel width_____ ft., height____ft. □ P.V 

Fuel Depth _____ ft. Dist. to structure_____ ft. Notes____________________________ 

0.20. Fuel Type____   Ignition hazard Y   N, Fuel width_____ ft., height____ft. □ P.V 

Fuel Depth _____ ft. Dist. to structure_____ ft. Notes____________________________ 

o Extra Fuel Type Data Sheet Required (data sheet is labeled _______) 

Fuel Sources: (□ P.V = drawn on plan view, □ photo numbers listed in notes) 

 

Repeated for sides 1, 2, and 3
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7. Nook and Cranny Information 

Deck  Y (#___)     N,      railing height____ ft. Length____ ft. Material____  □ P.V.  

Attached Fence, lattice   Y N, height____ ft. Length____ ft. Material____  □ P.V. 

Vents, Screened     Y (Number____) N (Number____),      Sizes___________ 

Locations_____________________________________________________________ 

Ignitable window sills     Y N, Number____ Painted  Y N 

Firewood Pile Location: ____________ Gaps in Roofing,  Y  N  Flashing Y   N 

Potential for materials rolling into structure Y   N    Other:________________________ 

Notes:__________________________________________________________________

_______________________________________________________________________ 

1 = none (no nooks or crannies), 2 = some, 3 = moderate 4 = abundant, 5 = high 

 

□ Plan Views (0-3) Completed  

□ Elevation Views (0-3) Completed 

□ Photograph dates and numbers listed in each sections notes 
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APPENDIX B - EXPANDED METHODS DESCRIPTION 

Defining the home ignition zone 
The designer of SIAM, Jack Cohen recommended using a HIZ extending 100 feet out 

from structure walls both in literature (Finney and Cohen 2003) and with personal 

communication (Cohen Pers. Comm. 2005). Several of Cohen’s reports describing the 

SIAM and results from wildfire investigations and experiments note that crown fires are 

unable to ignite flammable surfaces without flame contact and even at distances of only 

20-30 meters little if any scorch occurs (Cohen 2000).  In addition, several other authors 

support a decision to use a small area to define a home ignition zone based on post-fire 

assessments.  For example, Howard et al. (1973) reported 95 percent survival for homes 

in the path of wildfire with fire resistant roofs and vegetation clearing 10-18 meters 

around residences.  Foote (1994) had similar findings with a different fire path where an 

86 percent survival rate is reported for structures with fire resistant roofing and a ten-

meter clearing. 

 

Converting visited homes to SIAM data 
When walls are more complicated than a simple rectangle, they are forced to a four-sided 

structure and the distances from each fuel source to the new sides are adjusted and drawn. 

The drawings are then used as exactly as possible for data entry.  The structure is initially 

constructed with the computer mouse using a rectangle tool. Fine adjustments are made 

to the location of the four corners using dialog boxes (Figure B-1). Nodes are inserted 

into walls where heights or base levels change. Roofs are automatically generated based 

on wall height information entered in dialog boxes. Windows are entered as rectangles 

and then modified with the structure component data dialog box. Ignitability/non 
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flammability for siding and roof material are also selected using the structure component 

data dialog box.   

 

 
Figure B-1. Elevation views are constructed with mouse and dialog boxes in SIAM. 
 

Once the structure is constructed in the elevation view, the user switches to the plan view 

to enter fuels and terrain data.  Topographic information is entered for each side of the 

structure using a slope and distance from the structure to the slope offset. All fuels within 

100 feet of each side of each structure, and the rectangle that this area creates (i.e., the 

HIZ) are then entered using computer mouse digitizing in SIAM. 

 

Rating Nook and Crannies for SIAM 
Decks are a major component in the nook and cranny index. A score of one represents 

very little nook and cranny susceptibility to firebrands. An example is a side of a house 

with metal siding, metal windowsills and vents screened with fine metal mesh. A score of 
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five indicates abundant firebrand ignition opportunity. An example is a side of a house 

with a wooden deck, firewood piled against checked log siding and unpainted wooden 

windowsills. This information is recorded for each side of each structure. 

 

Modeling Fire Probabilities in SIMPPLLE 
Fire management zones are the way that SIMPPLLE uses past fire information to develop 

expectations for future fire ignitions. The simulations can be based on a single fire 

management zone or multiple fire management zones. The process to develop these 

zones requires a listing of all the fires that have occurred in the analysis area during a 

measurable period of time in the past. The number of fires is then standardized to one 

decade using multiplication or division. 

 

Using Recent Forest Management To Initialize The Modeling 
Codes describing these activities are used to crosswalk to initial treatments in SIMPPLLE 

to define existing stand conditions on which simulations will be based. Note that not all 

acres in each stand selected received the silvicultural treatments, so the acres for each 

treatment may be exaggerated in the simulations. Table B-1 is a crosswalk for all the 

activities obtained from the local USFS ranger district to relate Bitterroot National Forest 

treatments acknowledged by SIMPPLLE as initial treatments.  
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Table B-1. Crosswalk between local ranger district activity codes and the SIMPPLLE 
model initial treatment and initial process categories. 

 
 

Mitigation Cost estimates 
The cost estimates for mitigation efforts modeled for the 291 structures in this research 

ranged from $184,080 to $5,600,467.   

 

Window Upgrades 

The first mitigation option is upgrading windows. The size and number of all single pane 

windows encountered in the field are measured. These measurements are used to 

calculate the average number and area of single pane windows that could be upgraded to 

double pane at each of the visited houses with this opportunity for mitigation. The 

proportion of visited homes with this option is applied to the 291 study area homes to 

develop a cost estimate for the full set of homes.  There are seven houses that could have 

single pane windows upgraded to double pane windows. Fifteen is the average number of 
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windows to upgrade at each house with this option. The average area of each of the 105 

windows that could be replaced at these seven houses is 833.7 square inches. Because 

this is very close to a two by three foot window (864 square inches) the estimate to 

replace this size window, obtained from a local source, is used. The costs to remove an 

existing window and replace it with a wood framed two by three-foot window is 

estimated at $236. When this is multiplied by the number of windows (15) at the average 

house with this opportunity and then by the number of houses in the study area that likely 

have this potential (52) the result is a cost estimate of $184,080. 

 

Siding Upgrade 

For siding, each house has four walls, two have the same average length measurements 

(averages are 61.5 and 45.3 feet), but all four have different average height measurements 

(averages are 16.9, 19.2, 17.4 and 20.6 feet). The height and length measurements are 

multiplied for each side of each house to generate a total wall area for each house with 

flammable siding. These area estimates are divided by 100 square feet to create a number 

of Squares, where a square is equal to one ten foot by ten foot section of wall material. 

Locally obtained labor costs representing average removal and installation ($80/Square) 

costs per square are added to material costs ($135/Square) per Square and multiplied by 

average squares per house visited to derive the average siding replacement cost per WUI 

residence.  The number of Squares per house is averaged for all homes that have the 

siding replacement opportunity. By first multiplying the average number of squares 

(40.33) times the cost estimate of $215/Square an average siding replacement cost of 

$8,670 per house is derived. An average cost per house to replace the siding is then 
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extrapolated to the proportion of homes in the study area that have this mitigation option.  

The estimated number of the houses (246) that have a siding replacement mitigation 

opportunity across the study area is next multiplied by this cost figure. The result is an 

estimated cost of $2,135,048.  

 

In order to estimate the cost of HIZ option C, which is upgrade of windows at seven 

houses and siding replacement at 33 houses the window upgrade cost estimate is added to 

the cost estimate for siding. An estimated cost of $2,319,128 is calculated by adding the 

$184,080 window upgrade cost to the $2,135,048 siding replacement cost. 

 

Full fuel conversion costs estimation procedures  

All the houses modeled in the SIAM plan view have a four foot-by-four foot grid 

overlaying all the mapped fuels. The number of these cells removed for each mitigation 

option (light and full fuel removal) in any of 22 fuel categories is counted for each side 

and recorded. Several of the basic nine fuel categories available in SIAM are split into 

additional categories. Three height classes of shrubs and five height classes for trees are 

used. Trees are further broken into two classes (single tree or groups of trees) in each 

height class.  

 

The author consulted several contractors in an attempt to derive area-based cost estimates 

for each fuel type. Unfortunately, contractors rarely perform the full fuel conversion 

activities modeled in this dissertation nor do they perform cost estimation with the 

approach used in this dissertation. As a result, contractors are asked to evaluate the 
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author’s best guess at these costs.  Sprinkler installation costs are used as part of the total 

to convert short dry grasses to watered, non-flammable grass. Medium and long grass 

requires some additional costs to transform this fuel into a lawn type vegetation area. The 

number of sixteen square foot fuel cells removed for both the light and full fuels 

conversion mitigation options is counted for each side of each home and these counts are 

recorded. The light fuels removal is estimated to cost $1,235,075 with an average of  

$4,591 for each house. The full fuels conversion option is estimated to cost $3,284, 920, 

with an average cost of $11,288 per house. 

 

The aggregated cost estimates for the 291 study area houses in the study area, and used to 

calculate the budgets that accompany each potential HIZ fuel conversion mitigation 

option. The number of sixteen square foot fuel cells removed for both the light and full 

fuels conversion mitigation options is counted for each side of each home and these 

counts are recorded. 

  

Modeling Effectiveness 
In the case of the HIZ mitigations, the impacts on the SIAM model results are multiplied 

by the 30-year fire probability estimates for each house’s host polygon, obtained from the 

existing hazard SIMPPLLE simulations. In the case of the silvicultural forest treatment 

regime schedules, the impacts that the MAGIS generated schedules have on the 

SIMPPLLE fire probabilities are multiplied by the existing ignition SIAM for each 

house. 
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APPENDIX C - SENSITIVITY ANALYSES FOR MODEL PARAMETERS 
 
Each modeling tool used here is currently in development; however, land managers are 

using this (2.3) and subsequent versions of SIMPPLLE.  Ideally, each model would have 

a documented (SA), describing the impact of various changes to model parameters; this is 

not the case.  In order to better understand each model’s parameter sensitivity, SAs are 

devised.  They are not intended to be comprehensive, but rather to provide context 

needed to understand the modeling system. The sensitivity of the modeling system must 

be considered when results from two independent models are combined to form existing 

hazard estimates in the case study area. 

 

SIAM sensitivity analysis methods 
Although complete testing of any model is the designer’s responsibility, several key 

SIAM parameters are tested using real field data to provide a better understanding of the 

model’s sensitivity.  Five of the 39 structures are randomly selected. Local sensitivity 

analyses are then conducted by varying ambient temperature and wind speeds. Ranges 

are selected to represent realistic summer weather possibilities in the study area during 

the fire season. Both 80F and 100F temperatures are tested and wind speeds ranging from 

0 to 40 miles per hour are tested at five mile per hour (mph) intervals. Combinations of 

these temperature and wind speed changes from default settings51 are then used to detect 

synergistic impacts on the model. The ignition expectations are recorded for all changes, 

as is the impact of the nook and cranny and fire branding probability, a component of the 

calculations that represents the interaction of the two subjective ratings (firebranding 

                                                 
51 SIAM default settings: 90F and 20 mph 
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potential (1-3) within ¼ mile of each side, and nook and cranny ratings (1-5) for each 

side). 

 

One additional concept is tested with this SA. When fuels are entered using polygons in 

SIAM they appear to accurately represent fuel position relative to each structure. 

Although the fuels appear as polygons in SIAM’s plan view, the physics equations used 

to calculate the flux time products are actually modeled using the largest rectangle 

possible from the polygon. In other words the most distant x and y coordinates are used 

to generate a rectangle. Figure C-1 shows the rectangle that would actually be used for a 

polygon fuel source. This feature of SIAM might lead one to believe that both the 

proximity of fuel sources to walls would be underestimated and fuel source size would be 

overestimated.  The expected impact is flux time product overestimation, leading to 

inflated ignition expectations. To test how strongly this affects the estimates, all fuel 

sources in the five test structures are converted into many smaller rectangles. Then all 

rectangles are selected in a separate modeling effort and results are compared. 
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Figure C-1. SIAM model rectangle interpretation of mouse digitized irregular polygons. 
 

SIMPPLLE sensitivity analysis methods 
Conducting a complete SA is the responsibility of any model designer. A limited SA is 

conducted for this study to provide context regarding the sensitivity of simulation-based 

fire probabilities to various parameters that help the author decide what settings to use for 

this project. 

 

With recognition that SIMPPLLE is typically used at the landscape scale and that it is 

being used here at the polygon scale, the sum acreage of fire across three decades is 

tracked in multiple areas for the SA.  The entire area modeled with landscape disturbance 

software is broken into four nested special areas for analysis purposes (Figure C-2).  The 

special areas are: (1 – Blue, 243 stands) those acres in only the polygons that host homes 

in the study area, (12 – Green, 1,137 stands) those acres in polygons that have portions 

within 1/4 mile = 402.336m (a high probability firebranding distance) of homes in the 
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study area and, (123 – Orange, 4,173 stands) those acres in polygons within one and a 

half miles of the study area WUI structures, and (1234- Red, 52,570 stands) all remaining 

acres in the study area. 

 

Each special area serves a purpose in the analysis. For example, the special area that 

includes the area extending one and one half miles from all 291 structures is used to 

restrict the thinning and prescribed burning treatments to the default area specified in the 

Healthy Forest Restoration Act.  Figure C-2 below shows the study area broken into four 

special areas with the 291 residences shown as light blue points. 

  
Figure C-2. The SIMPPLLE study area broken into nested special areas.  
Blue = 1, Green = 12, Orange = 123, and Red = 1234. 
 

The SIMPPLLE SA is conducted using all polygons in the modeling area (58,123 

polygons totaling 381,362 acres) as well as only the polygons that host a residence in the 

study area (243 polygons totaling 1,361 acres).  The three fire severity class outputs for 

each simulation (light, mixed and stand replacement) are summed, to create a combined 
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or ‘total fire’ acreage of all severity fire predictions. This has been done for other 

SIMPPLLE modeling efforts and appears logical, given that these severity delineations 

span a gradient of vegetative mortality and because any fire can cause a home ignition. 

To summarize the mean number of acres that burn for 30, three-decade simulations, in 

two nested collections of polygons (total and those hosting a residential structure) are 

used as the output for each parameter change. Results are reported with the ranges of 30 

simulation averages that result from parameter changes. They are also shown with charts 

that show these averages connected with best-fit lines.  

 

The limited SA employs mainly local (changing one variable at a time) parameter 

changes in the SA.  Suppression is the one discrete parameter tested.  All other parameter 

changes are tested with suppression turned off.  For continuous variables a reasonable 

range for each parameter to be tested is first determined. Both the range for each input 

parameter and the range of average output of total fire are provided below in tables C-1 

and C-2 for the entire SIMPPLLE analysis area and the special area 1, respectively.   

Table C-1. Sensitivity of simulated fires within the entire SIMPPLLE study area to 
changes in important model parameter levels. 
Parameter Range of parameter 

levels analyzed 
Average area burned 
from 2004-2034 

Percent Range of total 
area (381,320ac.) 
burned, 2004-2034 

Basecase  123,908 32% 
Extreme Fire Spread 
Probability 

0.1-100 119,051-339,922 31-89% 

Weather Ending 0.5-1.5* x’s default 114,930-129,869 30-34% 
Insect Logic 0.5-1.5* x’s default 112,122-115,495 29-30% 
FMZ 1 0.5-1.5 x’s default 96,131-141,539 25-37% 
FMZ 2 0.5-1.5 x’s default 112,981-116,562 30-31% 
30 Year Fire Record 
FMZ Single 
Probability /acre 

 118,874 31% 

* Some infestation probability settings are restricted below 150% by hitting the 1.0 maximum.  
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Table C-2. Sensitivity of simulated fires within polygons hosting residences to changes in 
important model parameter levels.  
Parameter Range of parameter 

levels analyzed 
Average area burned 
from 2004-2034 

Percent Range of total 
area (1,361 ac.) 
burned, 2004-2034 

Base case  75  6%  
Extreme Fire Spread 
Probability 

0.1-100 102-1,361 7-100% 

Weather Ending 
Events 

0.5 – 1.5 x’s default 75-122 5-9% 

Insect Logic 0.5-1.5* x’sdefault 81-111 6-8% 
FMZ 1 0.5-1.5 x’s default 58-87(93 FMZ 1 

Basecase) 
4-6% (7%) 

FMZ 2 0.5-1.5 x’s default 72-235 (177 FMZ 
2Basecase) 

5-17% (13%) 

30 Year Fire Record 
FMZ Single 
Probability /acre 

 114 8% 

* Some infestation probability settings are restricted below 150% by hitting the 1.0 maximum. 

 

The first parameter tested is the probability of extreme fire spread.  The next set of 

parameters tested is the probability that fires of various sizes greater than 0.25 acres are 

extinguished by weather ending events. All fires smaller than 0.25 acres are kept at 

default settings.  

 

One of the attractive features of SIMPPLLE is the model’s interaction between stochastic 

insect and disease activity and stochastic fire events. There are two main species of 

insects active in the SIMPPLLE study area. Therefore, the sensitivity of the simulations 

to various insect infestation rates common in the modeling area, namely lodgepole pine 

mountain pine beetle (PICO MPB) and Douglas-fir beetle (DFB) levels is tested. The 

PICO MPB logic uses two (light and severe) probabilities for three plant community 

hazard groups (low, moderate, high hazard).  These groups are based on past process 

information in each vegetative community as well as information about the number of 
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adjacent communities with past or current PICO MPB process. The DFB logic is based 

on the species composition of vegetative communities and has two hazard probability 

groups (light or mixed severity fire in the past and other processes in the past) used to 

assign various probabilities to the range of size classes for each species mix. All the 

default insect and disease information is based on work by Fischer and Bradley (1987). 

All the probabilities are varied in 10 percentile increments52 simultaneously for these two 

common insects. 

 

Most simulations used for the SA are run based on a single fire management zone (FMZ). 

There are also two sets of fire management zones created for the SA. The first is an area 

of R1-VMP stands that intersects a ¼ mile buffer applied to all roads open to motorized 

use during the fire season on the public lands in the modeling area (Figure C-3). This is 

done to examine the variability in fire probability outputs if areas where campers and 

recreational visits could increase the potential for future fire starts.  Roads are selected 

based on codes that describe the dates of various motorized restrictions. The second FMZ 

is an area of R1-VMP stands that intersects the area ¼ mile around all WUI structures in 

the study area; this area is the same as special areas 1 and 12 (Figure C-2).  In both cases 

a step is taken to separate fires during the last decade into those that occurred inside the 

distinct FMZ area and those in the remainder of the modeling area, and each FMZs is 

recalculated to reflect historical observations of the different probabilities of fire per acre 

per decade in the two areas. 

 

                                                 
52 Probability numbers are entered with a series of dialog windows and all are rounded up from 0.5 to 
accommodate data entry. Several probabilities entered in these windows reach a maximum at 1.0 before the 
upper limit (one and one half times the default parameter levels) of the parameter testing is reached. 
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Figure C-3. Fire Management Zone (FMZ) 1, the area within ¼ mile of roads open during 
fire season. 
 

While using historical ignition data for the modeling area seems useful, it raises the 

question of how long of a historical period to use as a reference. Factors like changes in 

fuels, climate, suppression effort and detection capabilities all make the selection of the 

best reference period challenging. Records of ignitions in the modeling area exist from 

1970 to the present. The SA described thus far are based on records abbreviated to just 

the most recent decade. One simulation scenario in the SA uses a single FMZ with the 

full 35-year record standardized to one decade. 

 

SIAM sensitivity analysis results 
Changing temperature alone has no impact at all on overall ignition probabilities. Wind 

speed selection influences both the nook and cranny impacts and overall ignition 

probabilities, with probability changing thresholds varying between sides of each 

structure, but all occurring below the 20 mph SIAM default wind speed. Figure 30 shows 
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probability changing thresholds, with windspeeds affecting overall SIAM ignition 

estimates in green triangles and those affecting the nook and cranny ignition probabilities 

below with blue diamonds. All of these wind speed thresholds are below the 20MPH 

default setting for SIAM. 

 

 
Figure C-4. Nook and Cranny (NC) and SIAM (SO) wind speed probability thresholds. 
 

Results from the SA show that the default settings are indeed on the extreme end of the 

analysis spectrum.  When combinations are tested against the default conditions, lower 

temperature (80F) combined with lower wind speeds reduce the ignition expectations, 

whereas higher temperature (100F) combined with higher wind speeds do not increase 

ignition expectations beyond those at default levels. In summary, the default SIAM 

weather conditions appear to provide the upper limit of ignition probabilities possible 

with SIAM.  

 



 

 175 12/18/2006 

Contrary to expectations, not all sides of the structures have lower ignition expectations 

following the polygon to small rectangle conversion. Only three of the twenty (four sides 

of five houses) sides converted show any impact. While two sides show decreased 

ignition probabilities, one side shows an increased probability following conversion. 

Although this feature of the software is a recognized weakness, the impact on the 

findings does not seem to warrant conversions for all sides in the modeling effort.  

 

Nook and cranny results provide some additional insight into the SIAM ignition 

probability calculations. The current version of the software reports a nook and cranny 

probability, which is part of the overall ignition probability. This is itself a combination 

of the firebranding rating, the nook and cranny rating, and fuel source proximity.   

Ignition probabilities for 44 of the 156 sides modeled are dominated53 by nook and 

cranny probabilities.  The minimum impact is 0.0 for a firebranding score of one and a 

nook and cranny score of one.  The maximum impact is 0.505 for a side with a 

firebranding rating of three and a nook and cranny of five. Yet, not a single visited home 

has a maximum ignition probability for all sides dominated by a nook and cranny 

probability.   Modeling various homes, indicates that including specific fuel sources close 

to structures enhances the nook and cranny ignition probability levels as well as the 

variability within nook and cranny ignition probability levels; all fifteen combinations of 

the two factors bear this out.  Table C-3 is a nook and cranny probability matrix for 

modeled residences with various nook and cranny and firebranding ratings. The numbers 

reported in Table C-3 are only part of the overall SIAM ignition probability calculations. 

                                                 
53 Nook and Cranny is said to dominate the overall probability when they are equal. The overall probability 
is always elevated to the level of the nook and cranny, but often is higher based on flux-time product 
calculations. 
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Table C-3. The nook and cranny / firebranding score results matrix 

 
 

SIMPPLLE sensitivity analysis results 
Results from the SA are summarized in two tables above. Table C-1  conveys 

information about results across the entire SIMPPLLE analysis area whereas Table C-2 

shows the sensitivity to parameter changes in polygons hosting study area WUI 

structures. The most important parameter for the modeling system is the selection of 

suppression54.  The second most potent parameter in SIMPPLLE’s fire logic is the 

probability that a given fire55 spreads with extreme wind conditions (conceptualized by 

model designers as spreading with increased contagion ability).  The full range of this 

parameter is tested, with 1 percentile changes between 0.01 and 0.1 and ten percentile 

                                                 
54 There is a table below in the modeling system sensitivity section that discloses the summary statisitics for 
the modeling system when suppression is turned off.  
55 Note that all fires that grow to 1,000 acres are also assumed in SIMPPLLE simulations to spread across 
the landscape with extreme wind conditions. 
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changes between 0.1 and 1.0. The three-decade range of mean total fire area for this 

parameter is 119,051 – 339,922 ac. (Figure C-5) and 102 – 1361 ac. (Figure C-6) for the 

total area and residential host polygon area, respectively. These ranges correspond to 

ranges of 31 - 89% and 7 – 100% for these two areas.  

 
Figure C-5. Extreme fire spread parameter sensitivity in total modeling area. 
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Figure C-6. Extreme fire spread parameter sensitivity in polygons hosting residences. 
 

The probability that fires greater than 0.25 acres in size are extinguished by weather-

ending events (fall rains or snow) is another parameter that is tested in the SA. The full 

range of this parameter is tested from 0 to 1.5 times the default settings at 10 percentile 

increments. The range of mean total fire area for this parameter is 114,930 – 129,869 ac. 

and 75 - 122 ac. for the total area (Figure C-7) and residential host polygon area (Figure 

C-8), respectively. These ranges correspond to 30 - 34% and 5 – 9% for these two areas. 

Changing the probabilities used to model this variable creates a relatively small effect on 

in the acreage of fire during the three decades modeled. 
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Figure C-7. Changes in area burned based on changes to default settings (0.5 – 1.5) for 
probabilities of weather extinguishing fires of various sizes greater than 0.25 acres, for 
the total modeling area. 
 

 
Figure C-8. Changes in area burned based on changes to default settings (0.5 – 1.5) for 
probabilities of weather extinguishing fires of various sizes greater than 0.25 acres, for 
the polygons hosting houses. 
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The range of average total fire area for the Douglas-fir and mountain pine beetle 

infestation parameters is 112,122 – 115,495 ac. (Figure C-9) and 81 - 111 ac. (Figure C-

10) for the total area and residential host polygon area, respectively. These ranges 

correspond to 29 - 30% and 6 – 8% for these two areas. Changing this parameter not only 

generates very small changes in the acreage of fire during the next three decades, it also 

shows no obvious pattern of fire acreages in the smaller area of polygons hosting 

residential structures.  The lowest and highest total fire acreages modeled in the critical 

area hosting homes occur within one ten percentile change (0.6 to 0.7) in these 

parameters, suggesting that the interactive stochasticity of infestations and fire 

overwhelms the changes in these parameters settings.   

 
Figure C-9. Changes in area burned based on changes to default settings (0.5 – 1.5) for 
mountain pine beetle and Douglas-fir beetle logic, for the total analysis area. 
 



 

 181 12/18/2006 

 
Figure C-10. Changes in area burned based on changes to default settings (0.5 – 1.5) for 
mountain pine beetle and Douglas-fir beetle logic, for the polygons hosting houses. 
 

Sensitivity of ten percentile changes to probability per acres for both fire management 

zones are also tested within the range of 50 percent to 150 percent of the historic ignitions 

per acre for the most recent decade.  The first FMZ separates the area into polygons 

within a quarter mile of all roads crossing public lands in the modeling area that are open 

to motorized travel during the fire season and those not in this area. This roaded area 

comprises 79,915 acres or roughly 21% of the area modeled. The range of total fire acres 

for the next three decades is from 96,131 – 141,539 ac. (Figure C-11) for the entire 

SIMPPLLE analysis area and 58 – 87 ac. (Figure C-12) in the vegetative communities 

hosting residential structures, respectively. These ranges are quite different than the two 

average outputs for the no suppression base case for this fire management zone, of 

113,738 ac and 93 ac., suggesting that the acreage burning for 30 years is highly sensitive 

to the number of ignitions in the FMZ.   
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Figure C-11. Changes in area burned based on changes to default FMZ settings (0.5 – 
1.5) for the buffered open road area only, for the total analysis area. 
 

 
Figure C-12. Changes in area burned based on changes to default FMZ settings (0.5 – 
1.5) for the buffered open road area only, for polygons hosting houses. 
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A second FMZ separates the SIMPPLLE analysis area into one part within a quarter mile 

of all WUI residential structures defined as the study area structures for this project and 

one part outside these buffers. This area comprises a much smaller area, only 8,073 acres 

in size or roughly 2% of the modeled area. The range of total fire acres for the next three 

decades ranges from 112,981 – 116,562 acres in the total analysis area (Figure C-13) and 

72 – 235 acres in the vegetative communities hosting residential structures (Figure C-14). 

These ranges are not very different than the output for the base case for this fire 

management zone, based on historical ignitions, of 114,697 ac and 177 acres. The large 

increase in the amount of fire in the vegetative communities hosting residential structures 

from 177 to 235 is no surprise given that the upper limit of parameter the change here 

multiplies the historical ignitions in this area by 1.5.   

 

Modeling mean acreage for total fire area for the longer 1970-2004 period, holding all 

other parameters at default levels, generates slightly different results of 118,874 ac and 

114 acres. These changes result in slightly less fire in the total area, but more fire in the 

smaller WUI structure polygon area.  While all the parameters changes are tested without 

suppression, the area-based results they generate are used to determine which case to 

carry forward to the final analysis. 
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Figure C-13. Changes in area burned for the total analysis area based on changes to 
default FMZ settings (0.5 – 1.5) for special area 1, the area when 291 structures are 
buffered by ¼ mile. 

 
Figure C-14. Changes in area burned for special area 1 based on changes to default FMZ 
settings (0.5 – 1.5) for special area 1, the area when 291 structures are buffered by ¼ 
mile. 
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One of the most important decisions in the modeling system is the use of suppression in 

the SIMPPLLE modeling. Table 13 shows summary statistics of the modeling system 

results when suppression is turned off. The distribution of existing hazard estimates are 

clearly much higher than results obtained when modeling with suppression. The 

maximum and average probabilities are roughly seven and sixteen times, respectively, as 

high as those estimated with active suppression. The median probability is also much 

higher at 0.03, and the number of houses with zero probability is much lower than the 

non-suppression modeling results for the 30-year period.  This demonstrates how 

important suppression is in SIMPPLLE for modeling system estimates of existing hazard. 

 

Base case modeling decisions were made by conducting SAs on the two primary 

modeling tools (SIMPPLLE and SIAM) and reviewing the results.  For example, 

suppression is selected for the SIMPPLLE modeling. The decision to include this was 

made late in the dissertation effort. Although there are reasons to expect that the fires that 

make their way to homes may not be suppressed as forces are overwhelmed, the 

possibility of having no suppression in the SIMPPLLE modeling area during the next 30 

years is so small that it does not make sense to build the modeling system this way.  

Several lessons are also gleaned for how individual models could be applied differently 

in the modeling system. Many of these potential model modifications are suggested 

priorities for future research and described in the final chapter. 
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