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Braden, Jason, R., M.S., May 2006 Geology

History of syn-glacial and post-glacial sedimentation at the former terminus of the 
Flathead Ice Lobe near Poison, Montana

Chairman: Marc S. Hendrix /Ia Ĉ t t

During the last glacial maximum the Flathead Ice Lobe extended south from the 
Cordilleran Ice Sheet. The ice lobe flowed down the Flathead Valley and terminated near 
present day Poison, Montana. Sediment deposited at the former ice margin provides a 
detailed record of the glacial advance and retreat associated with the Cordilleran Ice 
Sheet. The overall focus of this study has been to describe the sedimentology and 
geomorphology of the features left behind by at former ice margin and to infer their 
environments of depositional.

Ten sedimentary facies were recognized through examination of exposures of sediment. 
Dmm facies is massive clay to silt matrix supported gravels. Gem, Gh, Gmm and Gmf 
are conglomeratic facies differentiated by their clast-supporting material and matrix grain 
size. St, Sr and Sm are sand facies distinguished based upon grain size and sedimentary 
structures. FI consists of laminated clay and silt, and Fsc consists of massive clay and silt 
with scattered gravel.

Quaternary sediments in the map area are classified into thirteen map units. Qgmft, 
Qgtu, Qgop, Qgd and Qgo represent glacial moraine, undifferentiated till, outwash, delta 
and outwash-related deposits at the former terminal ice margin of the Flathead Lobe.
Qgl, Qlkof and Qpgl represent fine-grained units associated with ancestral Flathead Lake 
and pro-glacial lake, respectfully. Qglm and Qglmc are thick deposits of massive and 
coarse-grained diamict, respectfully, that were deposited in glacial Lake Missoula 
(GLM). Qe is aeolian sand deposited in sand dunes that rest upon outwash-related 
sediments. Qal consists of alluvial sediment deposited by modem intermittent streams. 
Sediments deposited in a terrace by the Flathead River upstream of the Kerr Dam is 
represents the Qalf unit.

Ancestral Flathead Lake formed during the retreat of the Flathead Lobe. Correlation of 
glacial varved sequences, associated with ancestral Flathead Lake, constrains the timing 
of glacial deposition in the region to no later than 14,300±250 cal. years BP. A gravity 
survey performed across the northern Poison moraine segment suggests a series of 
bedrock ridges in the subsurface. These ridges caused the glacial lobe to stagnate over 
this region and caused a portion of the moraine deposition to be sub-aerial.
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Introduction:

Glacial Lake Missoula (GLM) was first recognized by J. T. Pardee (1910) who 

described shorelines on Mount Jumbo and Mount Sentinel east of Missoula, Montana. 

However, it wasn’t until Bretz (1923) conducted his seminal work on the Channeled 

Scabland of eastern Washington, and Pardee (1942) recognized giant ripple marks in the 

GLM basin that scientists realized that the lake was dammed by a lobe of the Cordilleran 

Ice Sheet. GLM was impounded during the most recent Pleistocene glacial interval when 

the Purcell Lobe of the Cordilleran Ice Sheet dammed the Clark Fork River. Most of the 

major valleys in western Montana were flooded by the lake which, at its maximum pool, 

had a surface area of 5,000 km and an estimated volume of ~2084km (Alden, 1953; Alt, 

2002). At least once and perhaps several times, the ice dam failed, causing a rapid 

draining of the lake. Voluminous amounts of water, escaping toward the Pacific Ocean, 

scoured an area in Idaho and eastern Washington known as the “Channeled Scabland” 

(Bretz, 1923, 1969).

A majority of the research and therefore much of the inferred history of glacial 

Lake Missoula has focused on the sedimentary and erosional record down gradient of the 

glacial dam that impounded the lake (Bretz, 1923a, Bretz 1923b, Bretz, 1969, Waitt,

1985, Atwater, 1986, Clague et al., 2003). In contrast, until very recently, minimal 

research has been conducted on the lake sediments in the GLM basin itself (Levish 1997, 

Hendrix et al., 2001, Hofmann et al., 2003, Hofmann and Hendrix, 2004b, Hofmann et 

al., 2006, Smith, 2004, Bondurant, 2005, Timmerman, 2005). As a result, uncertainty 

remains about the timing and terminal history of glacial Lake Missoula and the record of 

subsequent deglaciation.

1



One of the major ice lobes that flowed south from the Cordilleran Ice Sheet 

during the existence of glacial Lake Missoula is the Flathead Lobe (FHL). Various 

studies have concluded that the FHL extended into the Flathead Lake region of western 

Montana during the last glacial maxima (Elrod, 1903, Pardee, 1942, Alden, 1953, Smith, 

1966; Figure 1). The terminal moraine associated with the FHL generally is considered 

to be the large arcuate ridge near Poison, MT (Alden, 1953, Levish, 1997, Hofmann and 

Hendrix, 2004). An important investigation of Pleistocene sedimentation in the GLM 

basin was conducted by Levish (1997) who re-examined sediments previously interpreted 

as glacial till (Alden, 1953; Richmond, 1965) and demonstrated them to be glacio- 

lacustrine deposits. This sedimentological re-characterization fits well with the 

interpretation that the Poison moraine represents the southernmost advance of the 

Flathead Lobe. Hofmann and Hendrix (2004) recognized two crests to the terminal 

moraine to the east of Poison, and two sets of terminal and lateral moraines from the 

alpine glaciers that extended from the Mission Mountains. Further to the north, near 

Elmo, MT, terminal and lateral moraines are recognized in the Proctor, Elmo and Big 

Arm valleys (Smith, 1966, Bondurant, 2005). At the northern end of Flathead Lake, 

Smith (2004) examined a large number of water well logs and combined this information 

with surficial geologic mapping in order to better define the stratigraphy of the Flathead 

Valley and more tightly constrain the history of deglaciation in this region.

Although a consensus among studies in the Flathead Lake region indicate a 

glacial lobe occupied the valley during the last glacial period, only recently has research 

on this system focused along the former ice margin (Alden, 1953, Smith 1966,

Hofmann and Hendrix 2003a, Hofmann and Hendrix 2003b, Bondurant, 2005). The
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physical and temporal relationships between glacial Lake Missoula and the Flathead 

Lobe sediment deposits and landform distribution are essential to understanding the 

Quaternary history of this region. Specific locations of glacial, glacio-lacustrine and 

associated deposits record information about the position of the ice margin through time. 

By documenting the distribution of these sediments and using relative dating techniques 

to place constraints on the ordering of events, it is possible to significantly refine 

understanding of the region’s history of terminal glacial expansion and retreat, as well as 

the region’s preserved record of post-glacial sedimentation.

The principal focus of this study is to describe the sedimentology and 

geomorphology of features associated with the former Cordilleran Ice Sheet margin. 

Specifically, in this thesis, I present results of geologic mapping along the southern 

perimeter of Flathead Lake in the vicinity of Poison, MT (Figure 2). This mapping 

displays the distribution of glacial and post-glacial deposits and aides in documenting the 

history of the former ice margin. Using the distribution of sediment deposits, I was able 

to determine a relative order of glaciation events. I infer depositional environments of 

various map units from my sedimentological observations, inferences I can make using 

available subsurface information, and comparisons with published examples of ancient 

and modem analogs. These observations suggest that the southern segment of the Poison 

moraine was deposited in a primarily sub-aqueous environment (Hofmann and Hendrix 

2004, Hofmann et al., 2006).

In addition to my facies descriptions and map work, I correlated varved sediment 

sequences recognized onshore to those found in offshore cores recovered from Flathead 

Lake (Hofmann et al., 2003). These varved sequences are important because they

4



provide a basis for estimating proximity to the glacial front, as well as providing some 

indication of the depositional setting and the timing of events associated with certain 

portions of the ice marginal system. Finally, I performed a small linear gravity survey 

over a portion of the Poison moraine to better understand the geometry of the underlying 

bedrock topography and the influence this geometry may have had on the history of ice 

movement.
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Geologic Setting and Physiography

The study area is located at the southern end of the Flathead Valley and the 

northern part of the Mission Valley (Figure 2). The Flathead Valley is approximately 90 

km long and between 15 and 25 km wide, whereas the Mission Valley is ~50 km-long 

and 25-30 km wide. The southern end of Flathead Lake, near Poison, MT, usually is 

taken as the border between the two valley systems (Figure 2). Flathead Lake is a large 

open lake that covers ~500km in the southern Flathead Valley. The deepest parts of the 

lake are along its eastern edge where maximum depths of 112m occur. In contrast, the 

Poison Bay typically is 5-10 m deep. Currently draining Flathead Lake is the lower 

Flathead River. The river exits the lake along the southwest margin of Poison Bay and 

flows south/southwest to the confluence with the Clark Fork River near Perma, MT.

The Flathead and Mission basins occupy the southern end of the northwest- 

southeast trending Rocky Mountain Trench (Leech, 1966) (Figure 3). Extending roughly 

1500 km from the Lewis and Clark Zone in Montana through British Columbia (Canada), 

the trench is a series of continuous valleys that extend north to the Laird plain just south 

of the Yukon Territory (Leech, 1966). Mountains surrounding the study area are 

comprised of Mesoproterozoic metasedimentary rocks of the Belt Supergroup. Bedrock 

units were folded and faulted during late Mesozoic and early Cenozoic time (74 -  59 Ma, 

Sears, 2001). Compressional deformation and ensuing extension during the Cenozoic 

caused the preliminary north/south trending valleys (Constenius, 1996). The Flathead 

and Mission Valleys sit in one of these extensional half-graben, bounded on the east by a 

normal fault system (Mission fault; Osteena, 1995).
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Using regional gravity data LaPoint (1971) interpreted a north/south trending gravity low

as representing downdropping of the Mission and Flathead Valleys along the Mission

Fault. Bedrock profiles under the Poison moraine were interpreted by the same author,

based upon gravity data, to consist of a series of small horst and graben structures.

LaPoint (1971) inferred maximum valley fill thicknesses along this profile to be slightly

more than 910m.



Bedrock in the area consists of Pre-Cambrian metasedimentary rocks with minor 

Proterozoic intrusive igneous sills, whereas the valley fill consists of Tertiary and 

Quaternary sediments (Figure 4). Bedrock exposures around Poison, MT comprise strata 

of the Belt Supergroup, primarily the Ravalli Group (Figure 5). The Ravalli Group 

consists mainly of thin to medium bedded, gray to reddish argillite and quartzite (Decker, 

1968). In addition to the Ravalli Group, minor exposures of the Empire Formation 

appear to be present. These exposures consist of calcareous gray, green and purple 

argillite, limestone and dolomite (Decker, 1968, Salmon, 2005, pers. comm..). 

Geophysical investigations and interpretation of borehole log data has indicated the 

presence, upwards of 1500m, of Tertiary sedimentary strata north of the region (LaPoint, 

1971, Stickney, 1980, Smith, 2000a). Tertiary deposits are described as brown and 

orange, medium to coarse grained pebbly sandstone, well-rounded pebble and cobble 

conglomerate of the Kishenehn Formation and Paola gravel (Constenius, 1996). 

Constenius (1996) also described sandstone and conglomerate beds as having 

channelized and erosional bases and locally infilling fractures within rock of the Belt 

Supergroup. Quaternary sediments in the valleys are derived primarily from glaciers 

(Smith, 2004). The majority of such deposits consist of moraine, glacio-lacustrine and 

outwash plain deposits related to the last glacial advance of the Cordilleran Ice Sheet.

9
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Late Wisconsin Glaciation

Supply of glacial ice to the Flathead Lobe came from the Cordilleran Ice Sheet, 

valley glaciers near Whitefish, MT, valley glaciers in the forks of the upper Flathead 

River, and from the Swan Range (Smith, 2004). By modeling ice sheet behavior, Locke 

(1995) concluded that supply of ice to the FHL was derived chiefly from the Middle and 

South Forks of the Flathead River and from the Swan Range and that contributions from 

the Cordilleran Ice Sheet were less significant. Glaciers from the river valleys converged 

northeast of the Flathead Valley and flowed south, eventually combining with the glacier 

extending northwestward from the Swan Range (Alden, 1953; Locke, 1995). The 

Flathead Lobe, near the Big Arm Embayment, split into two arms; one moved westward 

and the other southward. In the Big Arm Embayment the glacier split into three smaller 

lobes, terminating and depositing moraines in Proctor, Elmo and Big Arm valleys (Smith, 

1966, Bondurant, 2005). At the southern end of the Flathead Valley, near Poison, the 

south moving arm of the Flathead Lobe terminated and deposited the large arcuate Poison 

moraine.

Formation of glacial Lake Missoula coincided with inundation of the Flathead 

Valley by the Flathead glacial lobe (Figure 1). During the highstand (1280m) of the lake, 

GLM covered an estimated 5,000km inundating Missoula, Mission, Bitterroot and other 

valleys in western Montana. During the existence of GLM, wavecut shorelines 

developed on the slopes surrounding the lake basin, including those slopes forming the 

southern and western margins of the Poison moraine. These observations suggest that 

either the Flathead Lobe terminated into glacial Lake Missoula for at least a portion of its 

history and/or that the Poison moraine formed prior to terminal draining of GLM
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(Richmond, 1965, 1986; Levish, 1997, Smith, 2004). Draining of GLM is a topic of 

controversy. Some studies have concluded that numerous fillings and drainings of GLM 

took place (Chambers, 1971; Waitt, 1985; Atwater, 1986) while others have suggested 

that few draining events occurred during the lake’s existence (Levish, 1997; Smith 2004).

The timing of the existence of glacial Lake Missoula, the terminal advance(s) of 

the Flathead Lobe and subsequent deglaciation in the region is not well determined. In 

the vicinity of northwestern Montana, the last glacial period (25-14ka 14C y BP) is 

referred to as the Pinedale glaciation (Figure 6). This time period is tantamount to the 

Fraser glaciation of British Columbia, Canada and Washington. During Pinedale 

glaciation, the Purcell Trench Lobe and the Flathead Lobe have been interpreted to be at 

their maximum extent simultaneously (Smith, 2004). The time interval during which 

glacial Lake Missoula was impounded has been determined from glacial varves to range 

from 3240 to 3510 years (Levish, 1997). Different interpretations for the timing of 

glacial Lake Missoula impoundment have been reported in the literature. Using optically 

stimulated luminescence analysis on glacial lacustrine sediment, Levish (1997) suggested 

that the lake existed from -19,200 to 16,000 cal years before present. In contrast to 

Levish, dates determined outside of the GLM basin by Atwater (1986) range from 18,000 

to 15,500 cal years BP, and those presented by Waitt (1985) range from 17,500 to 15,000 

cal years BP.
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Timing of the existence of glacial Lake Missoula and glacial lobes in the Flathead 

Valley, though imprecise, are constrained by dateable tephra layers. Deglaciation timing 

is constrained by the deposition of the Glacier Peak tephra (11,200 14C year BP). Glacier 

Peak tephra and Mount St. Helens Jy ash (11,400 14C year BP), both located at Marias 

Pass, provide timing controls on deglaciation for northwestern Montana (Carrara, 1989). 

The Glacier Peak tephra additionally has been identified in sediment cores recovered 

from Flathead Lake in 2000 and 2003 (Hofmann et al., 2003) and in aeolian deposits 

north of Flathead Lake (Konizeski et al., 1968; Smith, 2004b). Analysis of seismic 

reflection data from Flathead Lake suggests that retreat within the lake basin took place 

approximately 13,000 14C year BP. Dates obtained ~30km north of the USA-Canada 

border indicate that deglaciation occurred by 12,000 14C year BP, and may have been as 

early as 13,500 14C year BP (Carrara, 1989).

Investigations of stratigraphy and radiocarbon dates throughout British Columbia, 

Canada indicate the Cordilleran Ice Sheet developed 30,000-25,000 14C year BP and 

persisted until 11,000 -  10,500 14C year BP (Clague and James, 2002). Using relative 

age dating of geomorphic and stratigraphic features, Bondurant (2005) inferred that the 

Flathead Valley was deglaciated by 12,300 14C year BP (14,150 cal years BP), relatively 

close to the date obtained by Hofmann et al. (2005) from radiocarbon dates from 

sediment cores and seismic survey analysis. In Flathead Lake sediment cores, rhythmite 

layers that are interpreted as varves underlie the Glacier Peak tephra (Hofmann et al., 

2005). A date of 14,150 ±150 cal. years BP was obtained from 14C dating of carbon 

material from core FL-03-19K (Hofmann et al., 2006). Although this date is from a pine 

needle collected from a deformed zone of core sediment, Hofmann (2005) was able to
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correlate varves sequences above and below the deformed zone to varves in other lake 

cores. Through this work, Hofmann (2005) concluded that -100 varves are involved in 

the distorted section. This 100 years of uncertainty in the position of the pine needle 

recovered from core FL-03-19K results in 100 years being added into the uncertainty of 

the absolute dates of the varved sequence. Correlation of varves recognized onshore in 

the study area to those in the cores aides in constraining the timing of the deposition of 

glacial landforms. On the basis of stratigraphic relationships, relative ages and varve 

correlations, I conclude in this study that the glacial sediment and topographic features 

formed during the last glacial advance occurred after -25,000 cal. years BP but prior to 

14,300 ±250 cal year BP.

General Geography and Glacial Setting

Topographic elevations in the study area range from -8  80m at the water surface 

elevation of Flathead Lake (Poison Bay) to -1078m at the peak of the Valley View Hills 

located southwest of Poison (Figure 2). Within the study area, bedrock forms a series of 

distinct topographic ridges that are located southwest and west of Poison. The main 

Quaternary feature of the study region is the large arcuate Poison moraine (Figure 2).

The moraine is bisected by the Flathead River, as it flows through the incised valley cut 

into the moraine by post-glacial flows (Figure 2). Located a couple of kilometers west of 

Poison is Kerr Dam, completed in 1938. This dam controls the present day surface 

elevation of Flathead Lake. East of the modern Flathead River in the former glacial 

outwash plain is Pablo Reservoir, a lake used for irrigation and as a wildlife refuge.
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Methodology

I used standard geologic mapping techniques and sedimentological descriptions to 

define Quaternary map units. Those techniques involved drawing contacts on a paper 

topographic base USGS 1:24,000 Poison Quad and measuring oriented morphologic and 

geologic features, such as glacial striae, using a Brunton compass. Sedimentological 

descriptions included color, grain size, sorting, sedimentary structures and any other 

diagnostic sedimentologic features. The most significant geographic locations within the 

study area I assigned a field station number. Such stations were primarily at exposures of 

sediment and places that provided overviews of the surrounding landscape that aided in 

my geologic interpretations. I used a Trimble Pathfinder Pro XRS GPS device and 

ArcGIS 9 to determine the latitude and longitude of those field locations (Appendix 1).

In addition to the topographic base map I used a digital elevation map (DEM) of 

the field area, and aerial orthophotographs, to determine the location of geomorphic 

landforms. I obtained the base-layer DEM and aerial images of the Poison area from the 

Montana Natural Resource Information System (NRIS) website (http://nris.state.mt.us/). 

Using ArcGIS 9 ,1 created a hillshade of the DEM to better delineate topographic 

features.

To better understand the subsurface stratigraphy, I obtained 89 well logs 

(Appendix 2) from the Montana’s Ground-Water Information Center (GWIC, 

http://mbmggwic.mtech.edu/). Each well used in this study contained general lithologic 

descriptions of the material encountered during the drilling process. Several of these 

wells also penetrated bedrock, thereby providing information useful for constraining the
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depth to bedrock in cross-sections constructed across the study area (Plate 3), an isopach 

map (Plate 4) and bedrock elevation map (Plate 5).

Exposures of bedrock were found in numerous locations in the study area, some 

with glacial striae. At 8 field stations I took a total of 189 measurements of these 

lineations using a Brunton compass, with an average of 23 measurements per location. I 

used Golden Software’s Grapher 5 to plot the bedrock scour orientations on rose 

diagrams for each of the various geographic locations. I measured a total of six 

stratigraphic sections in the study area. Four small (<4 meter) stratigraphic sections are 

located on the Poison Moraine (Fig. 13-16), one relatively short (~2m) section is located 

near the Mission Valley Chevrolet-Pontiac car dealership (Figure 19) and a longer (-30 

meter) section is located just north of the Flathead River, - lk m  east of Kerr Dam (Plate 

2). These measured sections are used to assist in determining the facies and map units of 

the study area. In the stratigraphic sections I measured a total of 143 clast imbrications, 

with an average of 20 readings per section. I used the imbrication measurements to help 

determine sediment transport direction.

I digitized my geologic map using ESRI’s ArcGIS 9 software by manually 

drafting the contacts. The map was georeferenced to state plane coordinates and the 

NAD 1927, ultimately projected in Albers Equal Area projection.
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Lithofacies

To define the sedimentary facies present in the study area I described sediment 

composition, grain size and shape, color, and sedimentary structures. Based on these 

observations I applied facies codes, following the general descriptions of Eyles et al. 

(1983) and Miall (1996) (Figure 7).

Facies code Facies Sedim entary  s tru c tu re s

Gm m M atrix -supported , m assive gravel W eak g rad ing

Gm g M atrix -supported  gravel Inverse to  n o rm al g rad ing

Gci C last-supported  gravel Inverse g rad in g

Gem C last-supported , m assive gravel -

Gh C last-supported , crudely H orizontal bedding ,
bedded gravel im brication

Gt

Gp

Gravel, s tratified  

Gravel, stra tified

I rough  crossbeds 

P lanar crossbeds

St Sand, fine to v. coarse, 
m ay be pebbly

Solitary or g rouped  
tro u g h  crossbeds

Sp Sand, fine to v. coarse, 
m ay be pebbly

Solitary o r g rouped  p lanar 
crossbeds

Sr Sand, very fine to coarse Ripple c ro sslam ination

Sh Sand, v. fine to coarse, 
m ay be pebbly

H orizontal lam in atio n , p a r t 
ing o r stream in g  lineation

SI Sand, v. fine to coarse, 
m ay be pebbly

Low-angle (< 15°) crossbeds

Ss Sand, fine to v. coarse, 
may be pebbly

Broad, shallow  scours

Sin Sand, fine to coarse Massive, or fa in t lam ination

FI Sand, silt, m ud Fine lam ination , v. sm all 
ripples

Fsm Silt, m ud Massive

Pm M ud, silt Massive, desiccation cracks

Fr M ud, silt Massive, roo ts, b io tu rb a tio n

C Coal, carbonaceous m ud Plants, m ud films

P Paleosol carbonate  
(calcite, siderite)

Pedogenic features

' t'., very; D, d im ensional.

Figure 7. Facies Codes (Miall, 1996)
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Dmm -  Massive, Matrix-Supported Diamict

Dmm facies is dominated by massively-bedded light grey to light tan clay and silt (Figure 

8). Clasts are predominantly sub-angular to sub-rounded pebbles, cobbles, and boulders. 

Small zones of clast supported conglomerate, interpreted as resulting from iceberg 

dumps, are present locally.

Gem -  Massive Clast-Supported Gravel

Clasts consist of sub-rounded to well-rounded pebbles and cobbles, with uncommon 

boulders (Figure 8). Sedimentary structures are limited to weak imbrication and crude 

stratification. Matrix is fine to coarse (0 to 3 phi) brown sand.

Gh -  Open Framework Clast-Supported Gravel

Clasts consist of pebbles and small cobbles that are sub-rounded to well-rounded. Facies 

displays crude bedding and imbrication within an open framework.

Gmm -  Massive Matrix-Supported Gravel

Facies contains sub-rounded to rounded medium to very coarse (-1 to 2 phi) brown sand. 

Coarser clasts are pebble- to boulder-sized and are predominantly sub-rounded to well- 

rounded. No imbrication or stratification was observed (Figure 9). This facies occurs 

primarily in the southern portion of the Poison Moraine.

G m f -  Massive Matrix-Supported Gravel (fine)

Matrix is dominated by light grey to tan clay and silt with minor amounts of very fine 

sand. Clasts are pebble to boulder sized and are sub-rounded to rounded. No imbrication 

or stratification is displayed within this facies (Figure 9). This facies occurs in the 

western portion of the Poison Moraine, north of the Flathead River.
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Figure 8. A: Image of the Dmm facies, note the weathering pattern, lack of bedding and 
scattered angular dropstones. B: Image of the Gem facies, note the weak imbrication and 
crude foresets.
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Figure 9. A: Image of the Gmm facies, note the rounded gravel and sandy matrix. B:
Image of the Gmf facies, note the lack of structure and abundance of gravel.
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Si -  Sand, medium to very coarse, may be pebbly

Facies comprises sub-rounded to rounded medium to very coarse (-1 to 2 phi) brown 

sand, minor amounts of small sub-rounded pebbles, thinly bedded with cross-bedding. 

This facies typically is interbedded with Gmm (Figure 10).

Sr -  Sand, very fine to medium, ripples

This facies is dominated by well sorted, rounded very fine (3 to 4 phi) tan sand with 

locally fine to medium (2 to 3 phi) tan sand. Sub-critically to critically-climbing 

asymmetric ripples and tabular cross-bedding are common (Figure 10). Facies occurs 

stratigraphically below the Poison moraine in the southwestern portion of the field area 

and is interbedded with Dmm.

Sm -  Sand, Massive

This facies comprises well-sorted, rounded fine to medium (1 to 2 phi) sand that is 

massively bedded with no observed sedimentary structures. Sand is loosely packed and 

contains no dropstones or gravel. Facies occurs south of and stratigraphically below the 

Poison moraine.

F I-S ilt, Mud, Laminated

Facies comprises light grey to white clay and tan to brown silt in alternating light and 

dark bands (rhythmites; Figure 11). Few pebble dropstones are present and no 

deformation of surrounding sediment appears to be associated with dropstones. Average 

thickness of rhythmites is 3 to 4 cm.

Fsc -  Silt, Mud, Massive

Facies consists of light grey to tan clay and silt, with few pebbles and cobbles (Figure 

11). No bedding or sedimentary structures were observed within this facies.
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Figure 10. A: Image of the St facies, note the pebbly sand with cross bedding. B: Image
of the Sr facies, note the critically climbing ripples. Scale in centimeters.
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Figure 11. A: Image of the FI facies, note the alternating light and dark layers. B: Image
of the Fsc facies, note the lack of structure and few dropstones.
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Map Units

Poison Moraine (Qgmft) and Undifferentiated Till (Qgtu)

The moraines deposited at the southern end of Flathead Lake during the Pinedale 

glaciation are well preserved. Geomorphically, the moraines are represented by long 

hummocky arcuate and linear ridges consisting of Gem, Gmm, and Gmf (Map Plate 1) 

and are bisected by the Flathead River. The southern portion of the moraine extends 

east/west just south of Poison, Montana and has two main crests, one with a maximum 

elevation of ~1034m and the other at ~1043m (Map Plate 1). The northern portion of the 

moraine is located west of Poison and north of the Flathead River. This section of the 

moraine consists of three crests trending generally north/south. Two of the three crests 

have similar elevations (~1037m and ~1043m) to those crests of the southern portion of 

the Poison moraine (Map Plate 1).

The southern portion of the Poison moraine differs sedimentologically from the 

section north of the Flathead River. Facies Gem and Gmm dominate exposures of the 

moraine in the south, although minor interbedding of Gmf facies does occur (Figure 13,

15). Two sections measured in road cuts near the town of Poison (station JB-008-05 -  

Appendix 1) at the top of the moraine display interbedding of the two main facies (Figure 

13, 14). Crude imbrication and faint foresets imply a transportation direction to the south 

(Figure 13, 14). In contrast, the northern section of the moraine consists of the Gmf 

facies. This portion of the moraine typically shows no structure or flow direction 

indicators. One exception is a road-cut measured section along Irvine Flats Road (JB-048 

and 51-05 -  Appendix 1) that displays faint overall stratification and minimal dip to the 

east (Figure 15). A more detailed examination of the top meter reveals laminated and
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very thinly bedded (1cm) brown clay and silt and very thin (2-4cm) beds of very fine to 

fine tan sand. Interbedded in the clay and silt beds are three reddish brown silt layers 

with small pebbles resting atop the layer. A set of wavy clay and sand layers is truncated 

by a bed of reddish brown silt.

East of the northern section of the Poison moraine, Gmf facies are exposed in 

broad undulating valleys between the main moraine and bedrock ridges (Map Plate 1). 

These sediments likely are glacially deposited but are not topographically associated with 

the moraine; therefore, I defined the unit as undifferentiated till.

Glacial Outwash Plain (Qgop)

Located south of the Poison moraine and mainly east of the Valley View Hills is 

an expansive glacial outwash plain (Map Plate 1) that occurs as a series of gently 

undulating hills. Active gravel pits are located in the outwash plain, including one within 

the study area. Unfortunately, I was denied permission to examine these gravel pits.

Four wells (Well #3,4,5,6 -  Appendix 2) have been drilled into this area and the material 

described consists of interbedded sand and gravel. These sand and gravel beds are 

hypothesized to consist of St, Gem and Gmm facies. Maximum depth of the outwash 

sediments drilled in the wells is 55m.

Two other significant regions interpreted as representing glacial outwash are 

located north of the Flathead River. The first is a sinuous channel extending southward 

from a valley between the two main crests of the moraine. A well drilled (Well #29 -  

Appendix 2) into this section penetrates interbedded sand and gravel to a depth 67m. At 

the southern end of the channel (station JB-050-05) the modern topographic surface has
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Figure 12. Road-Cut m easured section of th e  Poison moraine, along Fligbway 93. 
Foreset beds recognized in exposure represent prograding delta front deposits.
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Figure 13. Road-cut m easured section of the  Poison m oraine,'-6m  south of section 1 
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suggest progradational slope of a delta.
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many rounded pebbles and cobbles mixed in a sandy soil. Again, the facies hypothesized 

to exist in this region are those of St, Gem and Gmm. The other major region of outwash 

is along the northern border of the moraine. Two well logs (well# 38 and 45 -  Appendix 

2) report sand and gravel, similar to the material observed in other wells. However, in 

these locations the sediment thickness is thin; both wells report slightly more than 5m of 

sand and gravel. This significant decrease in the volume of outwash likely reflects the 

fact that the sand and gravel was deposited outside of the main outwash channel.

Diamict (Qglm) and Coarse Diamict (Qglmc)

Clay and silt containing coarser grained clasts is interpreted as diamict and can be 

traced out from just south of Poison to Crow Creek (Levish, 1997). Using facies 

interpretations from Eyles et al. (1983), Levish (1997), interpreted the diamict to be 

sublacustrine, deposited into glacial Lake Missoula. Sedimentological descriptions and 

facies interpretations determined from this study are consistent with descriptions of 

nearby Quaternary sediments from other studies (Levish, 1997, Timmerman, 2005, 

Edwards, 2006, in progress). I mapped the steep cliffs along the Flathead River and the 

undulating plains in the southwest quarter of the study area as diamict (Map Plate 1).

The main constituent of the cliffs along the lower Flathead River is the Dmm 

facies. Locally there is interbedding of facies Sr, St, Gem and Gmf. The Dmm facies is 

easily erodable; however, with interbedded more resistant Gem and Gmf facies, the 

erosional profile of the deposit is highly variable. Located along the length of the river, 

above Sloan Bridge, the diamict forms cliffs with pillars and numerous gullies (Figure

16). Southwest of Rocky Butte and west of the Valley View Hills the geomorphic
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Figure 16. Highly variable erosion within the Diamict forming pillars and gullies.

expression of this unit is mostly that of a gently undulating plain. This plain has been 

dissected by numerous modem stream gullies that cut into the easily erodable Dmm 

facies.

Located near the Valley View Hills and Rocky Butte are two topographic benches

bordered by south- and west-facing slopes (Map Plate 1). Sediment along these slopes

consists of coarse diamict with sedimentologic characteristics slightly different from

Qglm. A new housing subdivision, south of Forman Rd, was in the process of being

built during the summer of 2005. A 1.5m deep and 350m long utility trench, starting near

station JB-004-05 (Appendix 1), descends ~6m over a horizontal distance of ~50m into a
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small gully, exposing coarse diamict. The Dmm facies is the dominant material in the 

coarse diamict exposed within the trench. However, sediment in the trench near the 

bottom of the gully is clayey silt with an increase in gravel content and very fine sand 

lenses and fines upward to Dmm facies sediment. In addition to the exposed material 

well log #17 reports claybound sand, gravel and cobbles and well log #33 reports silt, 

sand, gravel and cobbles overlying tan clay with gravel (Appendix 2). Both wells 

intersect bedrock at shallow depths which, in conjunction with the bedrock exposure in 

this area, suggests a bedrock ridge system. I infer that these bedrock ridges served as a 

‘ponding’ area for icebergs, allowing the coarser material to be deposited in this 

backwater region and contributing to the modem day topographic benches. This 

interpretation fits well with that of Levish (1997) who first recognized that the Valley 

View Hills (VVH) partially blocked lacustrine deposition to the west. Levish (1997) 

reported that the Quaternary sediment column is 75-100 meters thicker east of the VVH 

than to the west.

Outflow/Sub-Lacustrine Fan (Qgo)

Lonne (1995, 2001) described sediments on the ice-proximal side of a moraine, 

deposited as a submarine fan as the glacier retreats, as having bedding planes and foresets 

dipping towards the glacier. Submarine fan material consists of coarse-grained facies 

deposited by traction transport (Lonne, 1995, 2001). In this region the sediment is 

typically is also characterized by glaciotectonic features and reworking of the sediment 

(Lonne, 2001).
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At the terminal position of the Flathead Lobe, sediment was being transported 

southward into the glacial outwash plain. Subglacial fluvial processes also were 

depositing material north of the Poison moraine beneath and proximal to the glacier. As 

the lobe retreated to the north, deposition of sediment occurred in the newly forming 

ancestral Flathead Lake. These sediments sit as a low angle apron on the north slope of 

the Poison moraine (Map Plate 1). The largest concentration of the outflow-related (sub- 

lacustrine fan) sediments is located at the eastern end of the study area near US highway 

93. Sediment exposed in a temporary outcrop along Highway 93 displayed coarse sand 

lenses, crudely imbricated gravel, and open framework gravel of Gmc, Gh and St facies 

(Figure 17).

Across the Flathead River from the Poison airport outcrops of interbedded sand 

and gravel are exposed in the cliff face. These sediments consist of the facies St, Sr and 

Gh. The morphology between the river and the highway suggests the continuation of 

similar facies between these two outcrops; however, no outcrops occur in this region.
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Figure 17. Gmc and St facies displayed in highway construction road cut.

Ancestral Flathead Lake Sediments (Qlkof) and Glacial lake Sediments, Undivided (Qgl)

During the retreat of the Flathead Lobe a large pro-glacial lake was dammed

against the ice-margin and behind the terminal moraines. This proglacial lake was an

ancestral version of Flathead Lake. Typical proglacial lake bottom sediments consist of

finer grained material produced by glacial erosion and deposited through suspension

settle out to form flat planes (Flint, 1957, 1971). Seasonal variations in sediment

production and texture results in coarser grains settling out first during higher discharge

(spring), and fines during low discharge periods (winter). The resulting annual

accumulation of sediment is a fining-upward bed that is repeated each year, forming a
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series of glacial rhythmites (Antevs, 1925, Legget and Bartley, 1953). Nearshore 

sediments are dominated by silt and clay; however, because of proximity to deposition 

from onshore, gravel and sand are interbedded into the lake sediment (Flint, 1957, 1971). 

A modem example of glaciolacustrine sediments featuring rhythmitic sequences and 

littoral deposits have been recognized near Copper River, Alaska (Bennett et ah, 2002).

Around the perimeter of modern Flathead Lake and downstream along Flathead 

River, fine-grained laminated sediments dominate. The sediments deposited consist of 

the FI and Fsc facies. Topographically, these sediments are expressed as a plain with 

little or no undulation. I used well logs in addition to morphology to help define the 

extent of the Qlkof unit (Well # - 21, 22, 25, 26, 42, 58, 59, 61 -  Appendix 2). Driller’s 

logs describe this material as tan clay, tan and brown clay, and in places, tan clay with 

few pebbles. Near the Poison airport, along the Flathead River (station JB-042-05, 

Appendix 1), the top few meters of the cliff face are accessible. Similar to the well logs, 

the sediment is comprised of cm-scale laminated tan and brown clay typical of the FI 

facies. Thickness of the rhythmite layers ranges from <lcm to 9cm with an average 

thickness of ~3cm in this outcrop.

A wave-cut terrace is evident around the perimeter of the town of Poison. The 

approximate elevation of the terrace is at 902m, ~21 meters above the present day lake 

surface elevation. The transition from Qlkof and the Qgl map unit is located in the 

vicinity of the 902m terrace. Few exposures of this material are present within the study 

area and none show the contact between map units; therefore, morphology is a key 

indicator of this unit. On the southern side of the town there is a low angle slope 

connecting the flat plain of the ancestral Flathead lake sediment and the sub-lacustrine

37



fan. North of the Poison Airport, near Tower Road, the present day surface is a low angle 

slope above the terrace level that leads up to the Poison moraine. Driller’s well log 

lithologic descriptions (Well # - 37, 44, 46, 47, 84, 86, 87) report more gravel in the 

region mapped as Qgl, with descriptions ranging from tan clay, silt and gravel to gravel 

imbedded in clay. These sediments differ from diamict in that they are deposited on top 

of the Poison moraine and most likely received their gravel from littoral deposits. Some 

of the sediments were most likely derived from deeper lake environments as well.

Eolian Deposits (Qe)

Eolian sands are typified by frosted, well-sorted, well-rounded cross-bedded sand 

and ventifacts formed from abrasion (Whitney and Dietrich, 1973). Such sediments were 

temporarily exposed in parts of small hills south of Poison (station JB-011-05) during the 

summer of 2005. Exposure of the material shows massively-bedded well sorted brown 

sand, with local areas of thinly bedded sand that is locally cross-bedded (Figure 18.) 

Analysis of this sand under 1 Ox magnification shows the grains to be well rounded, well 

sorted and frosted. Overall the outcrop coarsens upward from fine to coarse sand. The 

sediment represents a combination of the three sand facies in the study area: St, Sr and 

Sm. Due top their similar morphology I mapped the small hills located south of the 

Poison moraine, along US highway 93, as eolian sands (Map Plate 1).
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Figure 18. Road-cut m easured section, near Mission Valley Chevrolet-Pontiac car 
dealership, in terpreted  as aeoiian sands.
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Delta Sediments (Qgd)

Contemporaneous with the advancement of the ice front, outwash sediment 

deposited in subaqueous environment can form a fan or delta. Deltas associated with the 

advancing glacial position typically display coarsening upward subglacial facies, inclined 

boulder rich foresets and turbidite features (Lonne, 1995, Bennet et al., 2002). Erosion 

and reworking of the sediment can occur in the fan zone. Interbedding of fine and coarse 

grained facies does occur because of the complex glacial dynamics, discharge variability 

and flow changes (Lonne, 1995, 2001; Bennet et al., 2002).

A drainage gully located north of the Flathead River, ~0.8km east of Kerr Dam, 

has exposed several short sections of Quaternary sediment (Map Plate 1). I measured a 

~30m stratigraphic section in the gully (Plate 2). I used one of Trimble’s mapping grade 

GPS systems, the Pathfinder PRO XRS, to determine the elevation of the top of the 

section. The top of the measured section is at ~983m elevation while the base is at 952m 

(station JB-021-05 -  Appendix 1). This section sits stratigraphically below and is 

interbedded with sediments of the Poison moraine. The section also is interbedded with 

diamict sediment at its base. The section shows an upward coarsening sequence followed 

by an upward fining package consisting of facies Gem, Sr, Sm and St and minor amounts 

of Fsc. Large clast supported conglomerate facies occur at the base of each package and 

locally display imbrication and well defined stratification. One of the gravel layers in the 

middle of the section displays a channelized form and an overall lack of structure. 

Imbrication measurements indicate a variable transportation direction with overall 

transport to the southwest. I interpret the stratification as being foresets that are 

shallowly dipping beds (<10°) to the south and southwest. The sands vary throughout the
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section and range from fine- to coarse-grained with some layers displaying ripples and 

cross-bedding.

The cliff faces along the Flathead River, upstream of the Kerr Dam, expose 

sediment primarily dominated by the Dmm facies. Starting just upstream from the dam, 

local exposures of material consist of the St, Sr, and Gmc facies (Figure 19). These 

sediments are sedimentologically similar to those described in the measured section in the 

drainage gulley. Stratigraphically these gravels and sands occur below the diamict and 

therefore below the other deltaic package. The deposits consist of interbedding clast 

supported conglomerate and sand. No imbrication measurements were obtained because 

of the inaccessibility of the cliff face. Using photographs of the cliff side, I infer the 

overall transportation direction to be towards the southwest based on imbrication and 

gently dipping beds. The contact between the diamict and the delta deposits is sharp and 

varies from flat to wavy.

Figure 19. Stratified and imbricated gravels interbedded with sands.
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Tertiary Sediments, undifferentiated (Tu)

Smith (2004) recognized Tertiary sediments near the northern end of Flathead 

Lake, and Alden (1953) described Tertiary material in the Mission Valley region.

Tertiary age determination of the material in the Kishenehn Basin, north of the Flathead 

Valley, was based on fossil mammals, mollusks, leaves and pollen from exposure of the 

Kishenehn formation in Canada (Russel, 1964; Hopkins and Sweet, 1976). More 

recently Constenius (1996) reported Eocene mammal fossils in the Coal Creek member 

of the Kishenehn Formation north of this study area. Unfortunately, no fossilized bone or 

carbonized wood were discovered within the outcrops along the Flathead River.

However thorough investigations of these outcrops were highly limited because of their 

accessibility and position along the Flathead River.

Near the pump station, along a bend in the Flathead River upstream of Kerr Dam, 

there are deposits of orange to light brown colored coarse grained sediments that I 

interpret to be Tertiary in age (Figure 20, 21). These deposits rest upon exposures of 

Mesoproterozoic bedrock and occur at a stratigraphically lower position in the section 

than the diamict. Figure 2 IB displays crudely stratified matrix supported pebble to 

cobble conglomerate, locally clast supported. Clasts are sub-angular to sub-rounded, the 

matrix consists of clay to silty fine sand (Figure 20). Tertiary sediments in the Flathead 

and Mission valleys are described as including brown and orange pebble and cobble 

conglomerate and orange clayey gravel. Sandstone and conglomerate lithologies appear 

to be channelized (Alden, 1953, Smith, 2004). The sedimentological descriptions of 

other exposures recognized in northern Flathead Valley (Alden, 1953; Constenius, 1996) 

are consistent with the sediment found in this study.
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Figure 20. Clay to sand matrix supported sub-angular to rounded pebble to cobble 

conglomerate of weakly consolidated Tertiary sediments located along the Flathead River 

next to the Aqueduct Pump Station. The dark bed represents a channel cut and fill 

contact (arrow).
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Bedrojcl

Figure 21. A: Image shows angular contact with diamict above Jason Edwards’ head. B: 
Image displays coarse grained and rough stratification of Tertiary sediments, note 
contact with Mesoproterozoic bedrock.

44



Flathead River Sediments (Qfr)

The lower Flathead River is the outflow for Flathead Lake. Discharge of the 

lower Flathead River is controlled by the Kerr Dam. Approximately 1 mile upstream 

from the Kerr dam are a series of 9 terraces (Map Plate 1). The lowest terrace trends 

NW/SE and the terrace top is between 2 and 3 meters above modem day water level. 

From rivers edge to the toe of the slope to the next terrace, at the widest point, is 

approximately 60m. This terrace consists of stratified gravels and sands with crudely 

imbricated gravels (Figure 22). Outcrops of the terrace material show an interbedding of 

St and Gem facies. I interpret this lowermost terrace to consist of mostly coarse-grained

sediment deposited by the Flathead River.

Figure 22. Stratified sands and crudely imbricated gravels of the depositional terrace.

Pro-glacial Lacustrine Sediments (Qglpj

Bordering the Pablo Reservoir to the north, within the glacial outwash plain is a

small topographic low. The majority of this land is used for agriculture and contains no
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outcrops. Well log #7 (Appendix 2) drilled into this region describes brown clay from 

the surface to a depth of ~15m. Inspection of lithologic descriptions from other well logs 

(#11, 15 and 16) nearby to well #7 indicates the presence of a brown clay layer. 

Correcting for elevation differences of the well tops suggests that the brown clay layer 

extends laterally to the northwest beneath the outwash plain. The top of the clay layer is 

located at an elevation of 975m, whereas the base of the clay layer occurs at an elevation 

of 960m.

Pablo Reservoir/Marsh (Qprj

South of Poison, east of the Valley View Hills, is the 1850 acre (US Fish & 

Wildlife Service, 2006) Pablo reservoir, part of the Pablo National Wildlife Refuge (Map 

Plate 1). Around the perimeter of the lake marshes and woodlands are common. The 

sediments consist of organic-rich silts deposited during past flood stages of the lake. 

Today the reservoir is dam controlled and serves as source water for irrigation of the 

surrounding agricultural industry and for flood control.

Late Holocene Stream Deposits (Qal)

Many intermittent streams occur in the study area. Deposits within the stream 

beds generally consist of transported and re-worked material from moraines, outwash 

plains and lake sediment. The Flathead River is the only major river in the study area, 

and today the flow is controlled by the Kerr Dam.
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Interpretations and Discussion

The former terminus of the Flathead Ice Lobe is expressed topographically as the 

Poison moraine. Extending from the Mission Mountains, the large hummocky landform 

arcs toward Kerr Dam then northward where it is cross cut by the present day Flathead 

River. Sedimentological differences between the northern and southern sections of 

moraine suggest slightly contrasting depositional environments. The southern portion of 

the Poison moraine is interpreted to be deposited in a sub-aqueous environment based 

upon abundant climbing current ripples observed in moraine exposures in the Redi-Mix 

gravel pit along US Highway 93 (Hofmann and Hendrix, 2004).

I propose that the glaciofluvial delta (outwash fan/sandur delta) model described 

by Lonne (1995) is a modern day analog (Figure 23) for the Poison moraine material. Ice- 

proximal glaciofluvial deltas (outwash fan/sandur delta) are typified by well-developed 

fluvial distributary plain, aerial component, stream-deposited topset, foreset built of 

outwash material, and glacio-tectonic deformation only within the head-zone (Lonne, 

1995). Extending south from the Poison moraine is a broad, south-sloping, undulating 

plain. Lithologic descriptions for water wells drilled in this region indicate an abundance 

of sand and gravel units (Well 3, 4, 5, 6 -  Appendix 2). Hofmann and Hendrix (2004) 

illustrated this outwash plain as consisting of clast-supported, silty and sandy gravel and 

sub-lacustrine fan delta deposits. Sand units overlying glaciolacustrine deposits, 

recognized during hydrogeological and soil investigations of the proposed expansion area 

for the Lake County landfill, contain features typical of outwash plains (Damschen & 

Associates, 1999). In addition Damschen & Associates (1999) recognized a portion of 

these outwash deposits were overlain by moraine sediments that displayed progradational
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G l a c io f l u v ia l  d e l t a

{OUTWASH FAN/  SANDUR DELTA)
•  S t r e a m -d e p o s it e d  t o p s e t  (1)
•  Fo r e s e t  b e d s  b u il t  o f  p e -

SEDIMENTED OUTWASH MATERIAL (2)
•  BROAD ZONE OF SUSPENSION FALLOUT 

FROM MEITWATER BUOYANT PLUME (3)
•  G l a c io t e c t o n ic  d e f o r m a t io n

AFFECTING THE FLUVIAL SYSTEM'S 
INLANO HEAD-ZONE ONLY (4)

P r e - d e l t a ic  s u b s t r a t u m

Lonne, 1995

Figure 23. Glaciofluvial depositional system model proposed for the Poison Moraine.

bedding, flame structures, and density flow deposits indicating glacial overriding of

outwash sediments in a lacustrine environment. Along US Highway 93, across from the

Redi-Mix plant, a portion of the moraine was exposed by earth moving equipment (JB-

008-05 -  Appendix 1). This exposure is located near the top of the moraine.

Examination of the outcrop revealed a primarily clast-supported conglomerate with a

matrix of coarse sand. Foreset and topset beds overlay a gravelly erosion layer that

truncates a cut and fill channel structure (Figure 13, 14, 25). Topset beds and the channel

structures indicate sediment deposition in a fluvial depositional environment overriding

deltaic sediment prograding in the pro-glacial lake.

48



Hofmann and Hendrix (2004) recognized a stratigraphic section that fined upward 

from gravel beds into sand with well-developed, highly aggradational sub-aqueous 

current ripples in the Redi-Mix plant. Overlying the gravel and sand deposits is a 

sequence interpreted to include paleosol horizons and leoss deposits (Hofmann and 

Hendrix, 2004). Lithologic descriptions of sediment intersected in drilling wells through 

the Poison moraine describe Gem, Gmm and St facies to depths of ~140m. I interpret 

these sub-surface sediments to be morainal and interbedded outwash deposits as they are 

typical of the surface exposures of the southern segment of the moraine. The sediment 

exposed within and near the Redi-mix plant, in conjunction with the inferred sub-surface 

facies indicate deltaic and fluvial-style deposition at a largely sub-aqueous ice margin. I 

infer that these relations indicate that the Flathead Lobe did indeed calve directly into a 

lacustrine environment. This interpretation fits well with the glaciofluvial model put 

forth by Lonne (1995, 2001). Formation of paleosols indicates aerial exposure and is 

compatible with this depositional model for the Poison moraine and broad sandur delta 

plain extending southward. On the south facing slope of the moraine, wave-cut terraces 

strongly suggest that the moraine terminated against glacial Lake Missoula.

Glacio-tectonic deformation is expected only on the ice-proximal slope of the 

moraine within the head zone of the glacier. The head zone for the Flathead Lobe 

occupied the location where the city of Poison presently is situated. Expansion of the city 

of Poison has developed the majority of the land in this local; therefore, very few 

outcrops of the facies that underlie Poison are available. New exposure located along US
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Figure 24. A: Exposed sediment along road-cut near Redi-Mix plant. B: Interpretation of 
foresets indicating deltaic environment, and stream deposited topsets at station JB-008- 
05. Looking toward the Northeast.

Highway 93, near the Highway 35 intersection in Poison revealed interbedded sand and 

clast supported gravel of the sub-lacustrine/outwash related map unit (Map Plate 1).

Sand layers are wavy with moderate sorting and numerous small-scale tectonic offsets. A 

portion of these offset structures potentially were created during the use of heavy 

construction equipment in this area. However, I conclude that most of the tectonic 

features are remnants of past glacial dynamics because of their ‘protected’ location

50



relative to the primary construction zone. The base of gravel layers typically display 

erosional contacts, and sand units are cross-bedded, suggesting deposition by sub-glacial 

meltwater flows in a sub-lacustrine fan delta (Hofmann and Hendrix, 2004). Although 

previous work has demonstrated that these sediments were deposited in an aqueous 

environment, this is the first recognition of significant glacio-tectonic deformation in the 

area.

The position of the southern segment of the Poison moraine is determined by 

relatively shallow bedrock features. Along the Flathead River, near the aqueduct pump 

station, there are exposures of bedrock at the base of the cliff face. These outcrops of 

Belt bedrock are 40-50m below the moraine deposits and are locally capped with 2-3m of 

sediments that I infer to be Tertiary. However, well logs located in Poison, in addition to 

others located further east along the moraine, describe intersecting bedrock at 

approximately 6 -  30m. I infer that these bedrock features aided in terminating the 

glacier at this locality, although the bedrock topography and structure under the southern 

moraine is not well constrained due to the lack of detailed geophysical information. I 

suggest that the basin architecture is complicated by the combined effects of erosional 

topography of the top-bedrock surface, heterogeneity of the ice-lake system, and time- 

integration of the whole system.

Deposition of the portion of the Poison moraine north of the Flathead River 

differs from the southern part in terms of its sedimentology and structure. The northern 

segment of the moraine consists primarily of the Gmf facies. Morainal sediments 

exposed along Irvine Flats Rd. (station JB-053-05) and near a newly constructed water 

storage tank (near station JB-035-05) display chaotic and massive bedded sediment.
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Sediment associated with the inner moraine crest examined along Irvine Flats Rd. (station 

JB-051-05) consist of laminated and very thin to thin bedded clay to sand (Figure 15) in 

the upper meter of section. A few of the layers consist of reddish brown silt and have 

small pebbles resting on top of the bed I interpret as an erosional surface. One series of 

wavy beds of laminated clay and thin bedded fine sand are truncated by an erosional 

surface. I interpret these fine scale bedding and erosional surfaces to be indicative of 

calm water sediments occasionally exposed sub-aerially. Exposures of bedrock are 

abundant in this region. The bedrock profile underlying the moraine consists of a series 

of shallow ridges (see Poison Moraine Gravity Survey) that are expressed 

topographically along strike to the north. Shallow bedrock caused the glacier to founder 

and stagnate over the ridges. The outcrop of moraine sediment, near the previously 

mentioned water tank, rests directly upon bedrock. Influence of the bedrock inhibited the 

development of sub-aqueous sediment and structures, effectively causing this portion of 

the moraine to be deposited in a more subaerial (terrestrial) environment. The hummocky 

morphology of this portion of the moraine, which is typical of subaerially deposited 

glacial sediment, fits well with the interpretation of the bedrock influences. Small lakes 

can form in the depressions caused by ice wasting, and could account for sediment 

deposited in a low energy environment described above.

Stratigraphically below the Poison moraine is diamict (Map Plate 1). Exposures 

of the diamict along the Flathead River proximal to Kerr dam are massive and laterally 

continuous. No bedding truncations, erosional surfaces, or change in sedimentology have 

been recognized that would indicate a change in depositional environment. I suggest, 

through these observations, that the diamict underlying the moraine was deposited in
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glacial Lake Missoula and, therefore, represents the bottom of the lake. This is the same 

interpretation Levish (1997) applied to the diamict deposited throughout the Mission 

Valley. The topographic expression of the diamict that I interpret to represent the lake 

bottom, is a relatively flat bench. Emplaced on top of the diamict is the Poison moraine 

with no observed deformation of underlying material. The inferred contact between these 

two geologic units is covered by vegetation and erosional material; I cannot rule out the 

possibility that sediment deformation possibly is present but unexposed. Only one 

location (JB-021-05) in the study area were the sediments exposed that showed the 

transition from diamict to moraine deposition. There were no recognized deformation 

features in a ~30 meter measured section of the exposed material in a drainage gully, 

approximately 1km upstream of Kerr Dam (Plate 2). Again, this limited view of 

sediment does not preclude the possibility of deformation, just that it is unexposed.

The interbedding of diamict and deltaic/outwash sediment, grading into morainal 

sediment indicates a sub-aqueous depositional environment. Stratigraphic successions 

from diamict to sub-aqueous traction-transport sediments of the northern and southern 

moraine segments support the interpretation that the Flathead Lobe terminated into 

glacial Lake Missoula for at least a part of its history (Richmond, 1965, 1986; Levish, 

1997; Smith, 2004). Glacial Lake Missoula sediments are not observed to onlap the 

Poison moraine or outwash sediment, suggesting the lake receded (drained) from the 

Poison region prior to retreat of the Flathead Lobe. Channels cut into glaciolacustrine 

sediment and infilled by distal outwash sediment are recognized proximal to the southern 

segment of the moraine (Damschen & Associates, 1999). Between the Poison moraine 

and the Pablo Reservoir the Qpgl map unit represents lake sediments that are overlain by
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outwash sediments. Well logs indicate the brown clay layer is limited laterally indicating 

a small pro-glacial lake. These observations are consistent with the interpretation that 

glacial Lake Missoula retreated prior to the development of an extensive outwash plain 

south of the Flathead Lobe terminus. A large sinuous fluvial channel (just north of 

Weythman Gulch) cross cutting the northern segment of the moraine and extending 

southward along the moraine front also suggests the absence of glacial Lake Missoula.

Bondurant (2005) drew environmental interpretations and a similar overall glacial 

terminal history based upon her interpretation of the sedimentary facies and stratigraphy 

in the Elmo Valley. Bondurant (2005) interpreted that the Elmo moraine was deposited 

in a sub-aqueous environment. The portion of the Flathead Ice Lobe that flowed into the 

Big Arm Embayment terminated into glacial Lake Missoula. Two sets of fluvial 

channels are recognized extending to the west from the Elmo moraine. Bondurant (2005) 

interpreted the first channel set as flow from supraglacial waters when the ice lobe was at 

the terminal position. The second system of well defined channels and point bars cross

cuts the first and is representative of the outflow from a spill point of ancestral Flathead 

Lake (Bondurant, 2005). The development, and preservation, of the fluvial channels 

indicates the absence of a pro-glacial lake, therefore, Bondurant (2005) concludes the 

glacial lobe terminated into glacial Lake Missoula for only the initial portion of its 

history.

Although the southern limit of the Flathead Lobe appears to be demarcated by the 

Poison moraine, it remains unclear whether the lobe advanced once or twice during its 

terminal phase. Studies of glaciation in regions in Idaho, Northern Montana, North 

Dakota and the present day Yellowstone National Park suggest at least two major
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advances of ice during the Pinedale (Bogert et al., 1999; Fullerton et al., 2004). Two 

distinct sets of alpine terminal moraines are recognized in the valleys of the Mission 

Mountains, and two crest lines of the Poison moraine were identified in the East Bay 

Quadrangle (Hofmann and Hendrix, 2004). Both the northern and southern segments of 

the moraine in this study display two prominent crest lines. Three crest lines were at first 

recognized on the northern segment; however, geophysical analysis of this area indicates 

the easternmost crest mimics the underlying shallow bedrock ridge (see Poison Moraine 

Gravity Survey).

Both of the regionally-expressed crest lines of the Poison moraine are prominent 

topographic ridges; one does not appear more eroded than the other. The interior of the 

two moraine lines is significantly larger than the most terminal position, implying a 

longer duration of ice occupancy. Sediments associated with the two crestlines of the 

southern moraine segment, examined near the Lake County landfill and the Redi-Mix 

plant, both display similar sub-aqueous related sedimentology and structure. Exposures 

of chaotic, massively bedded material associated with the two crestlines of the 

hummocky northern moraine segment display no great differences in sedimentology 

either. A portion of the sediments located in a road cut at the crest of the inner moraine 

do display fine scale bedding and erosional truncation surfaces. These features are 

interpreted to be deposited in small hummock filled lakes that were sub-aerially exposed 

for short periods of time. Also associated with the inner moraine crest are the sub- 

aqueously deposited sediments described in the 30m measured section in the drainage 

gully. However, these sediments sit stratigraphically lower than the small lacustrine and 

sub-aerially derived material. Sub-aerially deposited moraine sediment resting atop sub
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aqueously derived deltaic sediment from the advancing glacial front which in turn rests 

on diamict fits the interpretation that the ice lobe terminated in glacial Lake Missoula for 

the initial portion of its history.

It is apparent there were two main stages to the glaciation in order to develop the 

two-ridgeline moraine complex recognized at the southern end of Flathead Lake. The 

southern portion of the Poison moraine is a sub-aqueous deposit in a glaciofluvial delta 

system. North of the Flathead River the moraine displays both sub-aqueous and sub

aerial deposition. The high bedrock ridges influenced the glacier in this locale, causing 

stagnation of the ice lobe. During the lowering of glacial Lake Missoula, water levels 

caused sub-aerial exposures along these ridges. The existence of sub-aqueous sediment 

juxtaposed next to sub-aqueous/aerial moraine segment does not necessarily indicate two 

separate main advances. However, the lack of absolute dates within the field area does 

not permit a definite conclusion. Determination of whether the two moraine crests 

indicate two terminal positions of separate advances or one terminal moraine with a 

recessional moraine is inconclusive.

The final retreat of the Flathead Lobe initiated the formation of pro-glacial Lake 

Flathead (ancestral Flathead Lake) initially dammed by the Poison moraine. Recession 

rates for the Flathead Lobe are variable and have been estimated to range from between 

26-150m year'1 at the lower end to potentially more than 500m year'1 (Smith, 2004). 

Portions of the glacial lobe over relatively deep water would retreat at significantly 

greater rates because of the effect increased water depths have on enhancing calving rates 

(Brown et al., 1982). As the ice lobe retreated further away from the Poison region, 

sediment deposition in the lake was primarily of fine grained material. The rhythmic
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sediments described along the Flathead River and found near the Poison Airport are 

interpreted as varves. These varves represent cyclic deposition of the sediment during 

annual release of sediment from the glacier.

Based on regional facies relations, ancestral Flathead Lake drained initially 

through three outlets: 1) the Elmo spillway, approximate elevation of 1000m (Bondurant, 

2005); 2) the fluvial channel (Weythman Gulch) along the western slope of the northern 

moraine segment which is also at an elevation of about 1000m and crosscuts the moraine; 

and 3) the modern drainage outlet at ~880m. Draining via the Elmo spill point and 

Weythman Gulch continued until both outlets were abandoned by lowering lake levels, 

leaving the modem drainage as the sole outlet for Flathead Lake.

The Flathead River presently is the only drainage for Flathead Lake. Kerr dam 

controls the water surface elevation, stabilizing the maximum lake surface elevation 

approximately 3m above pre-dam elevation. The river has cut down through the Poison 

moraine, the initial main dam for ancestral Flathead Lake. Analysis of sediment cores 

and seismic data from Flathead Lake indicated the presence of turbidite beds interpreted 

as large scale meltwater surges from the retreating Flathead Lobe (Hofmann et al., 2006). 

These turbidite beds are time-constrained because they are located stratigraphically 

between rhythmite sediment packages (14,150 ±150 cal years BP) and the Glacier Peak 

tephra (13,180 ± 120 cal years BP) (Hofmann et al., 2006). Timmerman (2005) 

interpreted that these event beds reflected large-discharge glacial meltwater surges, from 

the retreating Flathead Lobe, that downcut through the moraine and bedrock ridges 

downstream of the moraine.
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I hypothesize that the meltwater surges into ancestral Flathead Lake caused the 

breakthrough of the dam that ponded ancestral Lake Flathead. Along the Flathead River, 

the position occupied originally by the moraine, eight large terrace sets occur in 

Quaternary sediment. These terraces document significant lowering of ancestral Lake 

Flathead via this channel. Large (53-123cm), angular boulders are deposited primarily 

along the upper portion of the terrace flights and onto the tread of the terraces. The 

elevation of the terrace treads are approximately: 886m, 897m, 907m, 910m, 912m,

920m, 938m, and 945m. A well developed shoreline terrace at 902m is visible around 

much of the perimeter of Flathead Lake. Terraces found upstream of Kerr Dam 

potentially correspond to several terraces that are located downstream of the dam, 

signaling the catastrophic draining episodes of ancestral Flathead Lake (Edwards, 2006, 

in progress).

Glacial Movement

Glacial striations aided in determining the location and overall sense of movement 

of the Flathead lobe. Bedrock exposures near the Poison moraine and scattered through 

the study area display striations scoured by glacial movement (Figure 26). Measurements 

of the striations in the northern portion of the study area display a more east/west 

movement compared to those in the central area, which are to the southwest (Figure 26). 

Station JB-049-05 primarily displays a NW/SE transport direction resulting from 

interaction of the glacier with the bedrock highs in that area. At stations JB-016-05 and 

JB-039-05, perpendicular sets of striations were recognized. Those striae trending 

NW/SE display a more weathered appearance and are cross cut by the more prominent
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SW/NE striking scour marks. These features of the glacial striae suggest two different 

advances of the Flathead Lobe. However, variation in glacial striation trends can be 

considerable. Cross cutting relationships may result from overall changes in flow 

direction, and basal flow variability of a glacier over irregular surfaces (Benn and Evans, 

1998). I infer overall glacial movement and timing based on a combination of overall 

striation azimuths and weathering appearance, in addition to roche moutonnee 

orientations. A significant portion of the bedrock outcrops that are striated are 

streamlined along the same trend as the striae. Trends of striation trends at JB-001-05 are 

due south and are interpreted to be from a previous glaciation period, perhaps Bull Lake.
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Varve Correlation

In 2000 and 2003, a total of 19 piston cores of sediment were retrieved from the 

Flathead Lake sub-bottom (Hofmann et al., 2003). Thicknesses of the sediment cores 

ranged from 5m to 11m. Sedimentological analyses of the cores were applied to 

determine grain size distribution and to constrain deposition rates and potential 

depositional environments (Hofmann, 2005). Core analysis revealed the presence of the 

Glacier Peak tephra and rhythmite sequences interpreted as varves (Hofmann et al.,

2003). The recognition of the tephra layer, rhythmic sediments and development of a 

seismic stratigraphic framework allowed correlation between the various cores (Hofmann 

et al., 2006). Varve thickness curves were created for each of the cores, and correlation 

between the cores based upon thickness patterns was observed (Hofmann, 2005).

Varve deposition in a lake basin is related to the amount and rates of sediment 

deposition, localized environmental conditions, and the location of the glacial front 

(Ashley, 1975). As such, the position of the Flathead Lobe and relative timing of 

deglaciation in the region can be constrained by understanding regional varve patterns. 

During the mapping phase, packages of rhythmites were recognized onshore along the 

Flathead River near the Poison Airport (station JB-042-05 -  Appendix 1). I mapped this 

area as consisting of ancestral Flathead Lake sediments; it is dominated by the FI facies 

(Map Plate 1). A weathered, several meter-long section of FI facies was exposed and 

accessible at the top of a cliff face along the lower Flathead River. Upon further 

inspection of these sediments, I interpret them to be glacially-influenced varves. Varved 

sequences additionally were recognized along US Highway 93 near the airport; however, 

only about a meter of section was poorly expressed. The presence of glacial varves
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indicate an aqueous depositional environment and potentially a high-stand of ancestral 

Flathead Lake. If this is the case, the varve thickness pattern potentially could correlate 

to the varved sequence recognized in the cores; therefore, adding an absolute age 

constraint to this portion of the study area.

The varves were exposed by cutting into the outcrop to remove the erosional 

cover (Figure 27). This was accomplished by using a variety of tools to carve into the 

outcrop and then smooth the face so it was relatively perpendicular to the varves. Digital 

pictures were taken of the entire section, with a cm-scale tape measure present in each 

image so the thickness of the individual varves could be documented (Figure 27). 

Viewing the digital images in Adobe Photoshop 5.5,1 determined the thickness of each 

varve to the closest millimeter. The varve number and thickness values were entered into 

a Microsoft Excel spreadsheet, and a thickness plot was created. Varve thickness 

patterns were determined for the Flathead Lake cores by Hofmann et al. (2003) and I 

applied a visual based correlation between the onshore varves and those recognized in 

core FL-03-26K.
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Figure 26. A: Image of the trenched section measured for varve correlation. B: Sample 
image of varves taken to determine the thickness pattern of the varved sequence.

63



114.30° 114.15° 114.00°

4 8 .00°

.90°

5km

[orse I

47.80 '

Big Ai

Po ison  BayF la thead
River

F igure 27. B athym etric m ap  of F la thead  Lake, and  th e  location 
of co re  FL-03-26k and  the  o n sh o re  varve  location, JB-G42-05.

Varve Correlation Results & Interpretation

A total of 60 varves were interpreted from the digital images taken of the exposed

sediment. Unfortunately, the 60 varves are not in a continuous section. Trenching of the

outcrop uncovered an area of deformed sediment (Figure 28). Approximately 154cm

section of deformed sediment separates the top 19 varves and the bottom 41 varves. In

this disturbed zone I observed the remnants of the dark brown clay layers; therefore, I

infer that there were varves, but that they were disrupted most likely due to dewatering.
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Thickness of the upper 19 varves totaled 93.9cm with an average varve thickness of 

4.94cm. The lower 40 varves had an average thickness of 2.69cm with a total thickness 

of 110.2cm. Using the average thickness of the entire varved sequence (3.4cm) I 

estimated that 45 varves were absent from the disturbed zone. Due to the highly variable 

(non-linear) nature of the thickness of varves, this number is used only as a guide to help 

determine the approximate relationship between the upper and lower sections during the 

correlation. Figure 30 shows the approximate positioning of the two sections and the 

interpreted thickness patterns for the 60 varves.

Hofmann et al. (2003) interpreted a total of 254 varves in core FL-03-26K. Varve 

thickness varied from 0.39cm to 9.57cm, with an overall thinning of the varves towards 

the top of the section (Hofmann et al., 2003). Visual correlation between varves found in 

the core and those onshore resulted in a strong potential match low in the stratigraphic 

section. The visual correlation matched the upper section of the onshore varves to varve 

numbers 158 to 176 in the cored section; visually it was slightly more difficult to 

correlate the lower onshore varve sequence with the core data.
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To test whether the visual match was reasonable, a statistical correlation would 

aid in determining the quality of the match. Varves not only are a function of proximity 

to the glacial front and sediment supply from meltwater but also localized environmental 

conditions within the lake (Ashley, 1975). These variable conditions from one locality in 

the lake to another can cause a great deal of disparity in the characteristics of one varved

sequence when compared to another (Ashley, 1975). This fact precludes the use of a

• • 2typical Pearson correlation applied to many scientific systems to achieve an R and R

value. The other caveat to correlation of the varved sequences is the limited number of 

samples. Varves recognized in the sediment cores from Flathead Lake contained 

continuous sections, so long term trends in thickness could be visually matched from core 

to core (Hofmann et al., 2003). In the case of the onshore varves, two small segments 

(19 and 41 varves) were determined with an unknown number of varves destroyed by 

deformation.

With the problems being stated, a qualitative measurement can be achieved 

simply by visual matching of the thickness pattern. For the 19 upper section varves, 13 

of 18 (72.2%) increases or decreases in varve thickness were matched to FL-03-26K 

varve 158-176. The visually correlated position of the 41 lower section varves to FL-03- 

26K varve 222-254 results in 8 of the onshore varves lying below the base of the cored 

interval. Therefore, a match of 19 of the 32 (59.7%) increases or decreases matched.

The percentage increases from 59.7% to 68.7% if a few of the varves are re-interpreted as 

‘false’ varves caused by sedimentation processes causing thin clay laminations to occur 

in the silt layers (Ashley, 1975). It cannot be statistically demonstrated that the 

correlation of the upper and lower varved sequence exposed onshore is correctly
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correlated with the record from core 26K. Qualitative results show -70% match of the 

thickness pattern between the two varved sequences to their respective positions. 

Correlation of the curves to their respective positions results in a total of 46 varves 

separating the two portions of the onshore stratigraphic record, nearly identical to the 

original rough estimate of 45 missing varves within the deformed zone (Figure 31).
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Some portions of the correlated varve count curves match convincingly whereas 

other portions are questionable. Factors that would contribute to degradation of the 

correlation quality arise from: 1) local sources of sediment input, 2) missing varves due 

to sediment bypass, 3) mis-interpretation of varves within a sequence, and 4) outright 

miscorrelation of the two varve sequences. One varve may contain multiple graded beds 

and settle out of clay layers from turbidites causing a misinterpretation of these false 

varves as actual seasonal deposits (Ashley, 1975; Shaw, 1977). Uneven input of 

sediment from local sources would affect thickness of sediment derived from the glacial 

front. It is possible that the varves I studied onshore correspond to older varves than 

those recovered in the Flathead Lake sediment cores, although I am unable to 

demonstrate this. Therefore, with the available data the onshore varve sequence I infer an 

annual-scale correlation between varves recognized in core FL-03-26K, beginning at 

varve number 158 (c.f., Hofmann, 2005). This correlation suggests that varved sediments 

located on the present day land surface near the Poison Airport were deposited between 

14,308 and 14,410 ±250 cal. years BP.

Timing o f the Flathead Lobe Glaciation/Deglaciation

The beginning of glaciation of the Flathead and Mission Valleys is not well 

constrained. Cordilleran Ice Sheet development is estimated to have started in Canada 

-25,000 14C years ago. Use of relative age dating techniques has been the mainstay of 

estimating the age of deposits in the region, due to the paucity of radiometrically dateable 

material. Deglaciation in the region has been better constrained by the Glacier Peak 

tephra, because the ash is interbedded with different facies, each of which is part of the
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regional deglacial depositional framework. Certain regions were ice free during 

deglaciation, as for example, aeolian dune sediments from the Whitefish River valley 

area that include the Glacier Peak tephra as an interbed (Smith, 2004). Better age 

constraints have been determined by Hofmann et al. (2006) through analysis of sediment 

cores and seismic data. These age constraints bracket the timing of major discharge 

events associated with deglaciation as occurring between 14,150 ±150 cal years BP and 

13,180 ±120 cal years BP. Correlation of glacially-influenced varves found onshore at 

JB-042-05 and those recognized in core FL-03-26K constrain the timing of glacially- 

varved sedimentation in the study area to have begun by at least 14,410 ±250 cal. years 

BP.

Starting -28,000 cal years BP (-25,000 14C years BP) the Cordilleran Ice Sheet 

formed in Canada. The ice sheet extended southward into the northern portions of 

Washington, Idaho and Montana. Flowing southward to a location near Sandpoint, ID 

the Purcell Trench Lobe impounded glacial Lake Missoula by between 19,200 -16,500 

cal years BP (Levish, 1997). Diamict sediment and varves associated with glacial Lake 

Missoula are deposited around this time in the Mission Valley. The Cordilleran Ice Sheet 

reached maximum extent by -17,000 cal years BP (-15,000 14C years BP) (Waitt, 1985, 

Carrara et al., 1996). Overlapping this time frame is the growth of the Flathead Lobe 

southward along the Rocky Mountain Trench and into the Flathead Valley, terminating 

near Poison, MT. The Poison moraine is deposited by an ice-proximal glaciofluvial 

environment in which Flathead Ice Lobe terminated into glacial Lake Missoula. Two 

moraine crest lines were formed by either two separate major advances of the ice lobe or 

by one main advance with a pause during retreat that resulted in deposition of a
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recessional moraine. By the time the final retreat of the Flathead Lobe began, glacial 

Lake Missoula had receded, and may have completely drained, from the Poison area. As 

glacial retreat continued, the large pro-glacial Lake Flathead formed as meltwater was 

impounded by the Poison moraine. By approximately -14,300 cal years BP, the glacier 

had retreated far enough to the north for the varves to be deposited in the study area and 

at the location of core FL-03-26K.

Turbidite beds identified in the sediment cores from Flathead Lake were 

deposited between the varved sequence and the Glacier Peak tephra (11,200 14C years 

BP; 13,180 ±120 cal years BP; Hofmann et al., 2006). These events beds are interpreted 

to record large meltwater surges released from the retreating glacial lobe. I infer that 

these meltwater surges were responsible for downcutting of the Poison moraine spillway. 

Downcutting through the moraine and bedrock resulted in the formation of substantial 

terrace flights upstream of the Kerr Dam. Formation of the 902m terrace occurred during 

the Holocene as did the aeolian sand dune formation south of the Poison moraine.

Conclusions

This study combines geologic mapping, sedimentological analysis of Quaternary 

deposits, varve correlation and a small linear gravity survey (see Poison Moraine Gravity 

Survey) to reconstruct the history of syn-glacial and post-glacial sedimentation associated 

with glaciation and retreat of the terminus of the Flathead Lobe of the Cordilleran Ice 

Sheet. Based on my analysis, I have the following main conclusions:

1.) The Poison moraine was formed between -28,000 and 14,300 ±250 cal years 

BP due to Pinedale glaciation of the southern Flathead Valley and northern
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Mission Valley. The moraine represents the southern limit of the Flathead 

Lobe, and preserves a record of the interaction between the Flathead Lobe and 

glacial Lake Missoula.

2.) The southern Poison moraine was deposited in an ice-proximal glaciofluvial 

(outwash fan/sandur delta) setting, indicating that the Flathead Lobe 

terminated into glacial Lake Missoula for a portion of its history. Using cross

cutting relationships and inferred depositional environments, I determined that 

glacial Lake Missoula had receded from the Poison region prior to the retreat 

of the Flathead Lobe.

3.) The moraine consists of two prominent crest lines indicating two separate 

stabilized points for the former terminus of the Flathead Lobe. It is still 

unclear whether these crests indicate two advances or one advance with a 

recessional moraine. The northern segment of the Poison moraine is underlain 

by shallow bedrock ridges (see Poison Moraine Gravity Survey) that caused 

the glacier to founder in this position and partially deposit material in a 

terrestrial environment.

4.) I interpret that varves found onshore visually correlate to a stratigraphically 

low section of varved sediments recovered in Flathead Lake core FL-03-26K.

I correlate the uppermost varve exposed in my onshore sequence to correlate 

to a position 158 years before the top of the varved sequence in the lake cores, 

corresponding to a depositional age o f -14,308 ± 250 years cal years BP.
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Future Work

Future work in the region should focus on expanding knowledge of the subsurface 

structure by means of geophysical surveys (gravity, seismic, GPR). These data will aide 

in constraining the bedrock structure which has been shown to have played an important 

role in the glacial position. To help to try to constrain the timing of the glacial system, 

correlation of onshore varves to other Flathead Lake sediment cores should be expanded. 

Investigation of the sediment exposures near the onshore varves used in the study should 

be examined to determine if the deformation zone is a small localized feature or more 

expansive. Varved packages recognized in the Elmo Valley may provide timing 

constraints for the glaciation within the Big Arm Embayment. Ground penetrating radar 

profiles of the Poison moraine could result in internal structure of the sediment, aiding in 

the determination of depositional environments and heterogeneity along the moraine 

front.
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Poison Moraine Gravity Survey 
Role of Bedrock in the Emplacement of the Moraine 

Introduction

At the southern end of Flathead Lake the Flathead River flows out of the lake to 

the southwest, where it bisects the Poison moraine. One portion of the moraine lies to the 

west of the town of Poison and north of the Flathead River (Figure 32, Map Plate 1). The 

morphology of the moraine is a wide topographic high, trending north/south and 

containing multiple crests. Metasedimentary rocks of the Belt Supergroup crop out at 

the northern and southern ends of this portion of the moraine (Map Plate 1). The close 

physical association of the bedrock and the crests of the moraine indicate that the bedrock 

could be influencing the morphology of the moraine along its length.

A moraine is an accumulation of drift deposited primarily by direct glacial actions 

independent of the subsurface topography; furthermore an end, or terminal, moraine is a 

ridge-like accretion of drift at an active glacial margin in a steady-state condition (Flint, 

1971). A series of moraines can be deposited either by multiple re-advances of the 

glacial front or by relatively short-lived stabilized positions during the glacial retreat 

(Flint, 1957, 1971). The ability to distinguish between various moraine crests in a 

complex system is important because it aides in determining the number of re-advances, 

or pauses in the retreat, associated with the glacial history.

The Mission Fault system is a north/south trending system of west dipping normal 

faults (Ostenaa et al., 1995; Hofmann and Hendrix, 2003; Hofmann et al., in press). This 

east/west extension in the region has caused a majority of the topographic features to 

trend in the same direction as the faults. Smaller bedrock ridges and basins located
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within the study area strike parallel to this more regional trend. The Valley View Hills, 

located southwest of Poison, constitute one such ridge system; another sits slightly west 

of the Poison Airport. Detailed documentation and interpretation of the bedrock geology 

of the Flathead Lake region is outside the scope of this study. However, the north/south 

trending topographic ridges of bedrock in the study area may have played a significant 

role in moraine emplacement. Therefore it is important to consider the relationship 

between the distribution of morainal sediment and the occurrence and geometry of this 

bedrock topography.

Gravity Survey

To determine the bedrock topography beneath the western portion of the Poison 

moraine I conducted a gravity survey across the depositional strike of the moraine 

(Figure 32). The survey consists of 30 stations aligned east/west along Irvine Flats Road. 

Average distance between stations is 0.25 km for the easternmost 24 stations and 0.75 km 

for the western 5 stations. The westernmost station was located 1.6km from the previous 

in order for the survey to terminate upon bedrock. Total distance covered by the survey 

is 10.92km. The highest density coverage of stations occurred on the Poison moraine 

itself. At each station I used a Scintrex CG3 gravimeter. The CG3 has a reading 

resolution of 0.005 milligals (mgals). At each station the gravimeter was leveled, with 

aide from the electronic tilt sensor, until the X- and Y-axis readings were less than
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Station Elevation Latitude Longitude (W)
2022a 907.72 47.68942 -114.19380
2022b 922.53 47.69188 -114.19115
2022c 922.26 47.68940 -114.19663
2022d 931.32 47.68940 -114.19880
2023a 937.16 47.68941 -114.20096
2023b 943.00 47.68942 -114.20298
2023c 947.34 47.68943 -114.20508
2023d 958.62 47.68944 -114.20726
2023e 973.61 47.68947 -114.20966
2100a 973.45 47.68945 -114.21223
2100b 974.19 47.68945 -114.21435
2100c 977.48 47.68946 -114.21614
2100d 983.15 47.68946 -114.21819
2100e 991.70 47.68948 -114.22052
2100f 994.65 47.68947 -114.22272
2101a 997.28 47.68947 -114.22477
2101b 992.73 47.68946 -114.22695
2101c 982.02 47.68946 -114.22910
2101d 982.50 47.68945 -114.23116
2101f 990.16 47.68945 -114.23321
2101g 991.39 47.68945 -114.23546
2101h 993.65 47.68944 -114.23743
2102a 979.98 47.68943 -114.23964
2102b 970.82 47.68945 -114.24227
2102c 971.39 47.68937 -114.24827
2102d 977.97 47.68938 -114.25511
2102e 976.23 47.68934 -114.26176
2102f 973.59 47.68931 -114.26847
2102g 966.83 47.68929 -114.27438
2103a 972.54 47.68909 -114.28938

Table lists stations from East to West. Stations are denoted by Triangles 
and reference well drilled to bedrock is marked by the star. The survey 
endpoints are located upon exposures of Belt rock.

Figure 31. Hillshade of Poison, MT area . Linear gravity survey 
located w es t  of the  town of Poison crossing the  Poison Moraine.
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magnitude 10. I took two measurements at each station to assure high quality data and if 

there were any discrepancies between the two measurements, I used the average of the 

two readings as representing the data for that station (Appendix 3).

Two base stations were used for the survey. These base stations served as control 

points for the gravity data to construct drift curves, so the hourly change in tidal affects 

could be countered. I reacquired one of the base stations at least every three hours. As 

the primary base station, I used the geophysics laboratory, located in the basement of the 

Clapp Building on the campus of the University of Montana. Absolute gravity value of 

the laboratory is 980,432.210 mgals. I occupied the primary station twice, once before 

the survey and once upon the return to campus. The second station of the linear survey 

served as the field base station. I reacquired the field base station a total of three times 

while conducting the survey.

In conjunction with the gravimeter I used one of Trimble’s mapping grade global 

positioning systems (GPS), the Pathfinder PRO XRS. The GPS received readings every 

10 seconds for a period of ~7 minutes at each of the gravity stations, with an average of 

43 data points per station (Appendix 3). Real time corrections, received from the coast 

guard station in Poison, MT, were applied to the satellite signals. Elevation (height 

above geoid) was measured in meters while latitude and longitude were measured in 

UTM and decimal degrees. Station elevations were computed to sub-meter resolution 

with la  standard deviations ranging from 0.087 to 0.698 with an average standard 

deviation of 0.214. Latitude and longitude positions were found with high precision with 

typical standard deviations on the order of 1.46 x 10'6 and 1.52 x 10'6 degrees 

respectively.
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Standard crustal density of 2.67g/cm was used for the reduction of the gravity 

data. Theoretical gravity values were calculated using the 1967 Geodetic Reference 

System Formula (Appendix 3). Terrain corrections (TC) were applied to all 30 stations 

because of their proximity to the Mission Mountains, Valley View Hills and other 

topographic features. HAMMERXYZ, a computer software program by Gradient 

Geophysics, is based upon terrain correction charts originally designed by Hammer 

(1939). Hammer charts consist of segmented concentric rings (labeled A-J) that extend 

outward from the gravity station. Gravity is calculated per ring through a laborious 

process and added to the Bouguer correction. The computer program calculates the 

terrain correction for each station out to ring J. Corrections were carried out to 21km 

from the survey line and results in TC values of less than 1 mgal (Appendix 3).

I used GravCadW, a gravity modeling computer software program by Gradient 

Geophysics, to model the topography and depth to bedrock. The single control on the 

model is a water well (Well 29, Appendix 2), located approximately 30m north of the 

survey line, which intercepts bedrock at ~142m (465ft.).

Interpretation

The complete Bouguer anomaly (CBA) ranges in value from -132.7 to -136.7 

mgals (Appendix 3). In the study area the regional gravity is interpreted as being planar. 

The regional values were determined by plotting the CBA of the survey endpoints and 

adding a linear trendline. The residual gravity, due to the density variations, was 

determined by subtracting the regional gravity from the CBA. Resulting residual gravity 

values range from 0 to -3.43 mgals. Negative Bouguer anomalies suggest the presence of
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lower density sediments of Quaternary age, and possibly Tertiary age, overlying higher 

density Belt bedrock.

The gravity anomalies determined in this study are reasonable and comparable to 

gravity work near Poison conducted by LaPoint (1971) and McCafferty et al. (1998). 

LaPoint (1971) performed a larger scale gravity survey (~2100km ) of the southwestern 

Flathead Lake region including Poison, MT. Data spacing within the survey was 

variable, but typical spacing was on the order of XA to 1-mile. The complete Bouguer 

anomaly determined in the region of LaPoint’s (1971) survey ranged from approximately 

-128 to -132 mgals. The minor discrepancy between CBA values from this survey’s and 

LaPoint (1971) I interpret as resulting from differences in station spacing. Closer data 

spacing results in higher resolution of the smaller scale gravity fluctuations and can 

account for the small incongruity. The complete Bouguer anomaly for the state of 

Montana is maintained by the United States Geological Survey. Data complied to form 

the map were obtained from the National Geophysical Data Center (from unclassified 

Department of Defense data), the USGS, and from a number of university thesis and 

dissertation studies (McCafferty et al., 1998). Approximately 35,000 data points within 

and adjacent to the state were used to compile the map. Of those 35,000 points, 5 fall 

along this study’s survey line and have complete Bouguer values ranging from -134 to - 

136 mgals (McCafferty et al., 1998), within the range of gravity data I collected in this 

study.

The residual gravity values are directly attributable to the topography of the 

bedrock underlying the lower density material. Gravity data for the study area shows a 

highly variable bedrock surface with multiple ridges and valleys (Figure 33). As seen in
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Figure 3, underlying the Poison moraine is a highly variable bedrock topography. 

Interpretation of the survey data of LaPoint (1971) and McCafferty et al. (1998) indicate 

the presence of a large bedrock valley on the western boundary of the moraine, but data 

from LaPoint (1971) and McCafferty et al. (1998) is too large of scale to display the 

smaller scale topography beneath the moraine that I infer based on my work.

Most important in the interpretation of the combined gravity data sets is the 

position of the moraine crests relative to the location of bedrock ridges. There are three 

prominent crests to this portion of the Poison moraine, and two of those crests are directly 

over bedrock ridges (Figure 33). The western and eastern moraine crests overlie bedrock 

highs while the central crest is situated above a prominent bedrock valley.
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Density Values o f Modeled Subsurface Material

Determination of sediment and bedrock densities is vital in order to delineate the 

depth of the interface between fill and bedrock. The most variable and important density 

value(s) to obtain are those of the basin fill (predominantly glacial till). Morainal 

material can have a wide range of densities dependant upon percentage of grain sizes and 

compaction. Glacial till density measurements obtained in Minnesota, South Dakota and

'X ^Iowa range from 1.83 to 2.24g/cm for dry sediment and from 2.09 to 2.39g/cm for wet 

sediment (Balco and Stone, 2003). Using the procedure described by Balco and Stone 

(2003) for sampling till I obtained several samples of the Poison moraine. Samples were 

collected from near the top of a cut along Irvine Flats Rd. and resulted in density values

'X • • •ranging between 2.15 and 2.24g/cm . Because of the stratigraphic location of the 

samples and the fact that they were mostly dry, the densities are interpreted as 

representing the lower bound. Using a simple shale compaction equation (Schmoker, 

1984) burial to a depth of 142m results in a 7% increase in density. In addition to the 

compaction, the introduction of water into the pore space and inclusion of Belt rock clasts

'Xincrease the density; therefore, I used a density value 2.35g/cm for the Quaternary basin 

fill.

Belt rock in the study area consists primarily of quartzite and argillite. The 

density of Precambrian rock used in previous work in western Montana range from 2.6 to 

2.9g/cm3 (LaPoint, 1971, Constenius, 1988, Kleinkopf, 1997, Harrison, 2000, Nyquest, 

2001, Stalker, 2004). Density values of Belt rock in the study area, determined from

'X ^collected hand samples, range from 2.69 to 2.72g/cm . I chose a value of 2.7g/cm for 

the bedrock density throughout the survey. Unconsolidated and consolidated Tertiary
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sands and conglomerates have been described throughout western Montana, including in 

the Flathead Lake region (Alden, 1953; Constenius, 1996; Smith, 2004). There appears 

to be no indication of Tertiary material underlying the moraine. Therefore, I have not 

included a layer of Tertiary sediment in the gravity models. In constructing the models, I

# 'i
used a density contrast between Belt rock and Quaternary basin fill of 0.35g/cm . 

Bedrock Profile

Using a density contrast between bedrock and basin fill of 0.35g/cm , a model of 

the basin shape (or bedrock topography) was constructed in GravCadW (Figure 34). The 

model suggests that the depth to bedrock below the eastern moraine crest along the 

survey line is ~17m (Figure 33). A water well (Well 38, Appendix 2) drilled a kilometer 

north along this trend struck bedrock at 5m. To the north of the well and south of the 

survey point, bedrock is exposed. Combination of Belt rock exposures, well log data and 

the gravity model indicate a north/south trending bedrock ridge. Depth to the bedrock 

ridge though variable, from north to south, appears to lie shallowly beneath the moraine. 

Visually this portion of the moraine directly follows the trend of the bedrock. I interpret 

the eastern crest as merely mimicking the shallow bedrock ridge; it does not appear to 

represent a morainal ridge deposited at the ice margin.
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The middle crest of the moraine is underlain by a significant bedrock valley 

(Figures 32, 33). As shown in the gravity model the deepest portion of the valley reaches 

depths of approximately 130m. Station 17 of the gravity survey is located ~30m south of 

a water well drilled into bedrock at a depth of 142m (Figure 32, 33). The modeled depth 

to the bedrock at this survey point is 124m (Figure 33). In the Poison region the exposed 

bedrock topography is highly variable; therefore, I interpret the difference in the depth to 

bedrock between the well and station 17 to be within reason. Because the middle 

moraine crest is situated above a significant bedrock valley; I interpret this as 

representing the position of the glacial front.

Depth to bedrock under the western crest of the moraine along the survey line is 

approximately 26m (Figure 33). No exposures of bedrock are found immediately to the 

north of the survey line; however, from the station location to the north is a relatively 

prominent topographic ridge. To the south of the survey line at this position is Kerr dam. 

The dam is built abutting to steep bedrock cliffs found along this stretch of the Flathead 

River. Bedrock at Kerr dam likely continues northward in the shallow subsurface to Irvin 

Flats Rd and extends further north under the topographic ridge. The inferred shallow 

depth of this bedrock ridge suggests that it influenced of the position of the moraine crest. 

Importantly, to the west of this position no glacial till (moraine) material has been 

observed (Edwards, 2006, personal comm.); therefore, I interpret the western crest to 

reflect the true terminal position of the glacial front during its maximum advance. I infer 

that the glacial lobe was strongly influenced by the bedrock topography and that this 

topography suppressed glacial movement such that it could not advance beyond this 

ridge.
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Conclusion

The Poison moraine west of the town and north of the Flathead River is a wide, 

topographic high with three prominent crests. Locations of the bedrock exposures in 

relation to the moraine crests suggest a potential relationship. I performed a small scale 

gravity survey orthogonal to the crests to determine the bedrock topography and depth 

below the moraine. Gravity data indicates two of the moraine crests are underlain by 

shallow bedrock ridges, while the central crest is located over a significant valley.

Of the three crests, the western and central ridges are interpreted to be directly 

deposited by glacial activity at the ice margin, while the eastern crest simply is a 

reflection of the shallow subsurface bedrock ridge. The western crest represents the 

farthest terminal moraine of the Flathead lobe in this region during the last glacial 

maximum. Likely the terminal moraine position, though a function of glacial dynamics, 

was strongly influenced by the bedrock ridge at this locality. East of the terminal moraine 

crest is the second significant crest. Gravity data indicate a significant bedrock low 

underlying the moraine crest at this position. A correlation of the crest to a bedrock low 

indicates this ridge of the moraine is independent of the subsurface features and was 

formed by direct glacial deposition. Whether this represents a terminal or recessional 

moraine is not apparent from the gravity survey. The moraine crest farthest to the east 

directly follows the trend of the shallow bedrock ridge it is deposited upon. Because this 

topography is dependent on the bedrock ridge, by definition (Flint, 1971), it is not 

considered to be a moraine ridgeline and is not representative of the glacial front.



Plates

Plate 1: Geologic map of a portion of the Poison Quadrangle. The study area consisted 

of a large segment of the quadrangle. Remaining area of the Poison quad have been 

mapped by Edward Salmon and Jason Edwards.

Plate 2\ 30m measured section in a drainage gully located at station JB-021-05. The 

section is a composite of a series of trenches dug into the drainage gully. Sediments from 

the top of one trench to the bottom of the subsequent higher trench were the same. This 

indicates lateral continuity between trenches and therefore they can be stacked.

Plate 3: A north/south cross section over the southern Poison moraine beginning at the 

shore of Flathead Lake to the southern edge of the Pablo Reservoir. Construction of the 

cross section used data from surface mapping and well-log lithology descriptions.

Plate 4: Depth to bedrock map. The map displays contours of sediment thickness 

overlying Belt Supergroup bedrock. In other words, the map shows the depth to the 

bedrock interface throughout the study area.

Plate 5: Bedrock elevation map. The map displays contours of the altitude above sea 

level of the Belt Supergroup bedrock surface.

89



References Cited:

Alden, W. C., 1953. Physiography and glacial geology of Western Montana and Adjacent 
Areas. U.S. Geological Survey Professional Paper 231, 200pp.

Alt, D., 2001. Glacial Lake Missoula and its Humongous Floods. Mountain Press, 
Missoula.

Antevs, Ernst, 1925. Retreat of the last ice sheet in eastern Canada, Canada Geological 
Survey Memoirs 146, 142p.

Ashley, G. M., 1975. Rhythmic sedimentation in Glacial Lake Hitchcock, Massachusetts- 
Connecticut. In: Jopling, A. V., MacDonald, B. C. (eds.), Glaciofluvial and 
Glaciolacustrine Sedimentation: Soc. Econ. Paleontol. Mineral, Special 
Publication, v. 23, pp. 304-320.

Atwater, B. F., 1986. Pleistocene glacial-lake deposits of the Sanpoil River Valley, 
Northeastern Washington. U.S. Geological Survey Bulletin 1661, pp39.

Balco, G. and Stone, J.O., 2003. Measuring the density of rock, sand, till, etc. UW 
Cosmogenic Nuclide Laboratory, methods and procedures. 
http://dents. Washington, edu/cosmolab/chem .html

Benn, D. I., and Evans, D. J.A., 1998. Glacier and Glaciation, Arnold, London. 734p.

Bennett, M. R., Huddart, D., Geoffrey, S. P. Thomas, 2002. Facies architecture within a 
regional glaciolacustrine basin: Copper River, Alaska, Quaternary Science 
Reviews, v. 21, pp. 2237-2279.

Borgert, J. A., Lundeen, K. A., Thackray, G. D., 1999. Glacial Geology of the
Southeastern Sawtooth Mountains, in Hughes, S.S., and Thackray, G. D., eds., 
Guidebook to the Geology of Eastern Idaho: Pocatello, Idaho Museum of Natural 
History, pp. 205-217.

Bondurant, A. K., 2005. Geologic mapping and sedimentological analysis of Quaternary 
deposits along the western shore of Flathead Lake, northwest Montana; 
documenting the record of deglaciation, MS Thesis, University of Montana, 
Missoula, Montana.

Bretz, J. H., 1923. The Channeled Scablands of the Columbia Plateau, Journal of 
Geology, v. 31, n. 8, pp. 617-649

Bretz, J. H., 1969. “The Lake Missoula Floods and the Channeled Scabland,” Joum. 
Geology, v.77, pp. 505-543.

90

http://dents


Brown, C. S., Meier, M. F., Post, A., 1982. Calving speed of Alaska tidewater glaciers, 
with application to Columbia Glacier. U.S. Geological Survey Professional Paper 
1258-C, 13pp.

Carrara, P. E., Short, S. K., Wilcox, R. E., 1986. Deglaciation of the Mountainous
Region of northwestern Montana, USA, as indicated by late Pleistocene ashes. 
Arctic and Alpine Research, v.18, n.3, pp. 317-325.

Carrara, P. E., 1989. Late Quaternary glacial and vegetative history of the Glacier 
National Park Region, Montana. U.S. Geological Survey Bulletin, 1902.

Carrara, P. E., Kiever, E. P., Strandling, D. E., 1996. The southern limit of Cordilleran ice 
in the Colville and Pend Oreille valleys of northeastern Washington during the 
Late Wisconsin glaciation. Canadian Journal of Earth Sciences, v.33, pp. 769-778.

Chambers, R. L., 1971. Sedimentation in Glacial Lake Missoula, MS Thesis, University 
of Montana, Missoula, Montana.

Clague, J. J., James, T. S., 2002. History and isostatic effects of the last ice sheet in 
southern British Columbia, Quaternary Science Reviews, v. 21, pp. 71-87.

Clague, J. J., Barendregt, R., Enkin, R. J., Foit, F. F., 2003. Paleomagnetic and tephra
evidence for tens of Missoula floods in southern Washington, Geology (Boulder), 
v. 31, pp 247-250.

Constenius, K. N., 1988. Structural configuration of the Kishenehn Basin delineated by 
geophysical methods, northwestern Montana and southern British Columbia, The 
Mountain Geologist, v. 25, pp. 13-28.

Constenius, K. N., 1996. Late Paleogene extensional collapse of the Cordilleran foreland 
fold and thrust belt, Geological Society of America Bulletin, v. 108, pp. 20-39.

Damchen and Associates, Inc., 1999. Hydrogeological and Soils Investigation for the 
Lake County Landfill Expansion Area, Prepared by: Damschen & Associates, 
Helena, Montana, January 1999.

Decker, G. L., 1968. Preliminary report on the geology, geochemistry, and sedimentology 
of Flathead Lake, northwestern Montana, unpublished MS Thesis, University of 
Montana, Missoula, Montana.

Elrod, M. J., 1903. The physiography of the Flathead Lake region, Lectures at Flathead 
Lake, Bulletin University of Montana, Missoula, Montana, pp. 197-203.

91



Eyles, N., Eyles, C. H., Miall, A. D., 1983. Lithofacies types and vertical profile models; 
an alternative approach to the description and environmental interpretation of 
glacial diamict and diamictite sequences, Sedimentology, v. 30, pp. 393-410.

Flint, R. F., 1957. Glacial and Pleistocene Geology, John Wiley and Sons, 553p.

Flint, R. F., 1971. Glacial and Quaternary Geology, John Wiley and Sons, 892p.

Fullerton, D. S., Colton, R. B., Bush, C. A., Straub, A. W., 2004. Map showing spatial 
and temporal relations of mountain and continental glaciations on the northern 
plains, primarily in northern Montana and northwestern North Dakota, U.S. 
Geological Survey Scientific Investigations Map Pamphlet, Map 2843.

Hammer, S., 1939. Terrain corrections for gravimeter stations, Geophysics, v. 4, 
pp. 184-194

Harrison, N., 2004. Gravity, Radar and Seismic Investigations to help determine
geologic, hydrologic and biologic relations in the Nyack valley, Northwestern 
Montana, MS Thesis, University of Montana, Missoula, Montana.

Hendrix, M. S., Sperazza, M., Gerber, T., Moore, J. N., 2001. Sedimentary record of Late 
Pleistocene-Holocene transition, Flathead Lake, Montana, American Geophysical 
Union Abstracts with Programs, v. 82, p. 47.

Hofmann, M. H., Hendrix, M. S., Moore, J. N., Sperazza, M., Shapley, M., Wittkop, C., 
Stone, J., 2003. Sedimentary indicators of significant late Pleistocene-early 
Holocene lake level fluctuation: preliminary results from Flathead Lake,
Montana, EOS Trans. AGU, 84/87.

Hofmann, M. H., Hendrix, M. S., 2004. Geologic map of the East Bay 7.5’ Quadrangle, 
northwest Montana, Montana Bureau of Mines and Geology Open File Report 
496, 10 pages, scale 1:24,000.

Hofmann, M. H., 2005. Using Sediments to infer geologic history of Northwestern 
Montana during and after the last glacial maximum, the record from Flathead 
Lake, PhD Dissertation, University of Montana, Missoula, Montana.

Hofmann, M. H., Hendrix, M. S., Moore, J. N., Sperazza, M., 2006. Late Pleistocene and 
Holocene depositional history of sediments in Flathead Lake, Montana: Evidence 
from high-resolution seismic reflection interpretation, Sedimentary Geology, v. 
184, pp. 111-131.

Hopkins, W. S., Jr, Sweet, A. R., 1976. A micro flora from a short section of the
Paleogene Kishenehn Formation, Southeastern British Columbia, Geological 
Survey of Canada Paper no.76-IB, pp. 307-309.

92



Kleinkopf, M. D., 1997. Geophysical interpretations of the Libby thrust belt,
Northwestern Montana, U.S. Geological Survey Professional Paper 1546, 32p.

Konizeski, R. L., Brietkrietz, A., McMurtrey, R. G., 1968. Geology and groundwater 
resources of the Kalispell Valley, Northwestern Montana, Montana Bureau of 
Mines and Geology Bulletin, v. 68, 42pp.

LaPoint, D. J., 1971. Geology and geophysics of the Southwestern Flathead Lake 
region, Montana, MS Thesis, University of Montana, Missoula, Montana.

Leech, G. B., 1966. The Rocky Mountain Trench, Geological Survey of Canada Paper, 
pp. 307-329.

Legget, R. F., and Bartley, M. W., 1953. An engineering study of glacial deposits at 
Steep Rock Lake, Ontario, Canada, Econ. Geology, v. 48, pp. 513-540.

Levish, D. R., 1997. Late Pleistocene sedimentation in Glacial Lake Missoula and revised 
glacial history of the Flathead Lobe of the Cordilleran Ice Sheet, Mission Valley, 
Montana. PhD Thesis, University of Colorado, Boulder, Colorado.

Locke, W., 1995. Modeling of icecap glaciation of the northern Rocky Mountains of 
Montana, Geomorphology, v. 14, pp. 123-130.

Lonne, I., 1995. Sedimentary facies and depositional architecture of ice-contact 
glaciomarine systems, Sedimentary Geology, v. 98, pp. 13-43.

Lonne, I., Nemec, W., Blikra, L. H., and Lauritsen, T., 2001. Sedimentary architecture 
and dynamic stratigraphy of a marine ice-contact system, Journal of Sedimentary 
Research, v. 71, pp. 922-943.

McCafferty, A., Bankey, V., and Brenner, K. C., 1998. Montana aeromagnetic and 
gravity maps and data, U.S. Geological Survey Open File Report 98-333,
http://pubs.usgs.gov/of/1998/ofr-98-0333/index.html

Miall, A. D., 1996. Principles of Sedimentary Basin Analysis, 3rd ed., Springer, 616p.

Nyquest, D., 2001. A bedrock model of the Hellgate Canyon and Bandmann Flats area, 
Montana through constrained inversion of gravity data, MS Thesis, University of 
Montana, Missoula, Montana

Osteena, D. A., Levish, D. R., Klinger, R. E., 1995. Mission Fault Study, U.S. Bureau of 
Reclemation, Seismotectonic Report 94-8.

93

http://pubs.usgs.gov/of/1998/ofr-98-0333/index.html


Pardee, J. T., 1910. The glacial Lake Missoula, Montana. Journal of Geology, v.18, pp. 
376-386.

Pardee, J. T., 1942. Unusual currents in glacial Lake Missoula, Montana. Geological 
Society of America Bulletin, v. 53, pp. 1569-1599.

Richmond, G. M., 1965. Glaciation of the Rocky Mountains, in Wright, H. E., Jr, and 
Frey, D. G., eds., The Quaternary of the United States: Princeton, NJ, Princeton 
University Press, p. 217-230.

Richmond, G. M., 1986. Tentative correlation of deposits of the Cordilleran Ice Sheet in 
the northern Rocky Mountains, Quaternary Science Reviews, v. 5, pp. 129-144.

Russel, L. S., 1964. Kishenehn Formation, Bulletin of Canadian Petroleum Geology, 
v.12, pp. 536-543.

Sears, J. W., 2001. Emplacement and denudation history of the Lewis-Eldorado-Hoadley 
thrust slab in the northern Montana Cordillera, USA; implications for steady-state 
orogenic processes, American Journal of Science, v. 301, pp. 359-373.

Shaw, J., 1977. Sedimentation in an Alpine Lake during deglaciation, Okanagan Valley, 
British Columbia, Canada, Geografiska Annaler: Series A, Physical Geography, 
v. 59, pp. 221-240.

Silkwood, J., 1998, Glacial Lake Missoula and the Channeled Scabland; A digital
portrait of landforms of the last Ice Age, Washinton, Oregon, northern Idaho, 
western Montana: U.S. Forest Service

Smith, D. G., 1966. Glacial and fluvial landforms adjacent to the Big Arm embayment, 
Flathead Lake, Western Montana, MS Thesis, University of Montana, Missoula, 
Montana.

Smith, L. N., 2000a. Altitude of and depth to the bedrock surface in the Flathead Lake
Area, Flathead and Lake counties, Montana: Montana, Montana Bureau of Mines 
and Geology Groundwater Assessment Atlas 2, Map 7, scale 1:150,000.

Smith, L. N., 2000b. Surficial geologic map of the upper Flathead valley (Kalispell
valley) area, Flathead County, northwestern Montana, Montana Bureau of Mines 
and Geology Groundwater Assessment Atlas 2, Map 6, scale 1:70,000.

Smith, L. N., 2004. Late Pleistocene stratigraphy and implications for deglaciation and 
subglacial processes of the Flathead Lobe of the Cordilleran Ice Sheet, Flathead 
Valley, Montana, USA, Sedimentary Geology, v.165, pp. 295-332.

94



Stalker, J., 2004. Seismic and gravity investigation of sediment depth, bedrock
topography and faulting in the Tertiary Drummond-Hall Basin, Western Montana, 
MS Thesis, University of Montana, Missoula, Montana.

Stickney, M. C., 1980. Siesmicity and gravity studies of aulting in the Kalispell valley, 
northwestern Montana, MS Thesis, University of Montana, Missoula, Montana.

Timmerman, G. K., 2005. Constraining temporal relationships between glacial Lake
Missoula, retreat of the Flathead Ice Lobe and development of the lower Flathead 
River Valley, MS Thesis, University of Montana, Missoula, Montana.

Waitt, R. B., 1985. Case for periodic, colossal jokulhlaups from Pleistocene glacial Lake 
Missoula, Geological Society of America Bulletin, v.96, pp. 1271-1286.

Whitney, M. I., Dietrich, R. V., 1973. Ventifact Sculpture by Windblown dust,
Geological Society of America Bulletin, v. 84, pp. 2561-2581.

95



Appendix 1: Field Station Locations.

-Station-05 Longitude (W) Latitude (N)
1 114.1875 47.6437
2 114.1902 47.6436
3 114.2077 47.6399
4 114.2049 47.6402
5 114.2466 47.6953
6 114.2448 47.6939
7 114.2357 47.6896
8 114.1057 47.6689
9 114.1637 47.6689
10 114.1665 47.6680
11 114.1131 47.6596
12 114.1950 47.6607
13 114.1848 47.6647
14 No Station 14, error in numbering

15 114.1892 47.6986
16 114.1899 47.6985
17 114.1913 47.6980
18 114.2164 47.6768
19 114.2156 47.6751
20 114.2155 47.6719
21 114.2223 47.6767
22 114.2107 47.6777

23 114.2087 47.6722

24 114.2066 47.6750
25 114.2051 47.6754

26 114.2021 47.6745
27 114.2040 47.6781
28 114.2099 47.6825
29 114.1971 47.6732

30 114.1972 47.6753

31 114.1955 47.6770
32 114.1977 47.6786
33 114.1983 47.6808
34 114.2182 47.7093
35 114.2182 47.7078
36 114.2194 47.7066
37 114.2099 47.6825
38 114.2072 47.6853
39 114.1985 47.6850
40 114.2000 47.6836
41 114.1925 47.6853
42 114.1921 47.6857
43 114.2172 47.7139
44 114.2080 47.7092
45 114.2080 47.7041

46 114.2190 47.7053

JB-Station-05 Longitude (W) Latitude (N)
47 114.2077 47.6399
48 114.2254 47.6896
49 114.2361 47.6820
50 114.2328 47.6836
51 114.2263 47.6891
52 114.2065 47.7025
53 114.2358 47.6888
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Appendix 2: Well Logs Examined

Map Well# GWIC Number
1 130525
2 76958
3 142468
4 162037
5 77000
6 76990
7 188088
8 200486
9 197421
10 76996
11 76998
12 175582
13 148570
14 209302
15 166706
16 77014
17 205792
18 76954
19 76925
20 76923
21 200481
22 76924
23 76918
24 76919
25 143242
26 152773
27 76934
28 200478
29 148572
30 134191
31 134197
32 148569
33 199035
34 77056
35 77016
36 198807
37 200541
38 204599
39 139325
40 172467
41 76994
42 77854

43 137592
44 188069
45 200535
46 131990

Latitude (N) Longitude (E)
47.6771 -114.1303
47.6781 -114.1394
47.6683 -114.135
47.6693 -114.1419
47.6597 -114.145
47.6608 -114.1516
47.6511 -114.1633
47.6638 -114.1717
47.6656 -114.1744
47.6634 -114.1807
47.6591 -114.1863
47.6549 -114.1903
47.6549 -114.1959
47.6549 -114.2062
47.645 -114.1993

47.6441 -114.1991
47.6441 -114.2063
47.6865 -114.138
47.6906 -114.1367
47.6897 -114.1491
47.6875 -114.1579
47.6935 -114.1408
47.6943 -114.1261
47.6906 -114.1261
47.6839 -114.1794
47.6937 -114.1782
47.7002 -114.187
47.6918 -114.2134

47.69 -114.2272
47.6672 -114.2106
47.6661 -114.2133

47.66 -114.2152
47.6376 -114.2021
47.6538 -114.2361
47.6329 -114.2007
47.6984 -114.201
47.7055 -114.1961
47.6984 -114.2065
47.682 -114.1877
47.6801 -114.1905
47.6712 -114.1932
47.7072 -114.1844
47.712 -114.1975
47.713 -114.201

47.7111 -114.2093
47.7158 -114.2023

Elevation
3370
3400

3241.9
3240
3210
3195
3200
3240
3275
3220
3290
3250
3270
3370
3260
3265
3250
3050
2995
2935
2935
2900
2980
3040
2950
2915
3010
3195
3215
3258
3251
3260
3270
3170
3078
3095
2975
3120
2970
2960
3230
2928
2950
2960
3070
2965
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Map Well# GWIC Number Elevation Latitude (N) Longitude (E)
47 169368 3010 47.7176 -114.2135
48 77948 3120 47.7167 -114.228
49 200489 3280 47.6586 -114.1959
50 156614 3275 47.6586 -114.1903
51 139181 2975 47.682 -114.1662
52 154143 3020 47.6773 -114.178
53 200947 3040 47.6764 -114.1794
54 76951 3060 47.6755 -114.178
55 141486 3110 47.6738 -114.1786
56 25381 3110 47.674 -114.1807
57 24191 3125 47.6745 -114.1835
58 127624 2920 47.6867 -114.1835

59 162036 2955 47.6839 -114.1849

60 76937 3030 47.6783 -114.1822

61 76931 2930 47.7012 -114.181
62 152774 2955 47.6984 -114.1851

63 77061 3020 47.6336 -114.2202

64 77060 3040 47.6422 -114.2249

65 77059 3090 47.6463 -114.2247

66 152783 3190 47.6173 -114.1543

67 141484 3290 47.6975 -114.219

68 77052 3160 47.6585 -114.2494

69 152775 3175 47.6383 -114.1232

70 76962 3280 47.6808 -114.1248

71 148571 3205 47.6254 -114.1903

72 77884 2925 47.7059 -114.125

73 76916 2900 47.699 -114.1275

74 76933 2932 47.7022 -114.1851

75 77049 2970 47.6754 -114.2425

76 77086 2943 47.6267 -114.2422

77 219556 2965 47.6365 -114.2437

78 221193 3205 47.6618 -114.2494

79 76940 2980 47.6811 -114.178

80 212798 2900 47.6839 -114.1905

81 200479 2900 47.6876 -114.1849

82 219554 3320 47.6656 -114.196

83 162045 3220 47.6675 -114.1876

84 77949 3085 47.781 -114.2252

85 77935 3092 47.7293 -114.2252

86 122709 3085 47.7311 -114.2202
87 77937 3055 47.7255 -114.2208

88 77945 3220 47.7175 -114.2426

89 77856 2930 47.7111 -114.188

Lithology descriptions can be viewed by typing in the GWIC number at the Montana 
Ground Water Information Cite: http://mbmggwic.mtech.edu/
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Appendix 3: Gravity Survey Station Data

Station # GPS Stat. HAG Lat Long G (mgals) Theoretical

SC3 Lab 
Field Base 2022a 907.715 47.6894 -114.1938

980432.210
980547.855 980863.037

1 2022b 922.531 47.6919 -114.1911 980545.495 980863.259
2 2022a 907.715 47.6894 -114.1938 980547.855 980863.037
3 2022c 922.256 47.6894 -114.1966 980545.220 980863.035
4 2022d 931.324 47.6894 -114.1988 980543.605 980863.035
5 2023a 937.161 47.6894 -114.2010 980542.190 980863.036
6 2023b 943.004 47.6894 -114.2030 980541.145 980863.037
7 2023c 947.337 47.6894 -114.2051 980540.685 980863.038
8 2023d 958.618 47.6894 -114.2073 980538.660 980863.039
9 2023e 973.606 47.6895 -114.2097 980535.920 980863.041
10 2100a 973.454 47.6895 -114.2122 980536.145 980863.040
11 2100b 974.191 47.6895 -114.2144 980535.690 980863.040
12 2100c 977.479 47.6895 -114.2161 980535.055 980863.040
13 2100d 983.147 47.6895 -114.2182 980533.720 980863.041
14 2100e 991.696 47.6895 -114.2205 980531.850 980863.042
15 2100f 994.647 47.6895 -114.2227 980531.230 980863.041
16 2101a 997.280 47.6895 -114.2248 980530.575 980863.041
17 2101b 992.726 47.6895 -114.2269 980531.625 980863.040
18 2101c 982.023 47.6895 -114.2291 980534.215 980863.040
19 2101 d 982.502 47.6895 -114.2312 980534.310 980863.040
20 2101 f 990.161 47.6894 -114.2332 980532.750 980863.039
21 2101 g 991.394 47.6894 -114.2355 980532.770 980863.039
22 2101 h 993.648 47.6894 -114.2374 980532.695 980863.039
23 2102a 979.978 47.6894 -114.2396 980535.430 980863.038
24 2102b 970.825 47.6895 -114.2423 980537.080 980863.040
25 2102c 971.392 47.6894 -114.2483 980536.355 980863.032
26 2102d 977.970 47.6894 -114.2551 980534.565 980863.033
27 2102e 976.230 47.6893 -114.2618 980534.245 980863.030
28 2102f 973.591 47.6893 -114.2685 980535.650 980863.027
29 2102g 966.830 47.6893 -114.2744 980538.070 980863.025
30 2103a 972.536 47.6891 -114.2894 980539.040 980863.007

Theoretical gravity value was calculated by the following equation (0  is Latitude): 

9.7803267714*[ 1+(0.00193185138639(Sin20))] / V(l-(0.00669437999013(Sin2©)))
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Station # FAC FAA BC BA TC CBA Residual

SC3 Lab
Field Base 280.121 -35.061 101.619 -136.680 0.550 -136.130

1 284.693 -33.071 103.277 -136.348 0.731 -135.617 0.003
2 280.121 -35.061 101.619 -136.680 0.550 -136.130 -0.612
3 284.608 -33.207 103.247 -136.453 0.496 -135.958 -0.548
4 287.407 -32.024 104.262 -136.285 0.451 -135.835 -0.508
5 289.208 -31.638 104.915 -136.553 0.390 -136.164 -0.921
6 291.011 -30.881 105.569 -136.450 0.363 -136.087 -0.922
7 292.348 -30.004 106.054 -136.059 0.348 -135.711 -0.626
8 295.829 -28.549 107.317 -135.866 0.380 -135.487 -0.486
9 300.455 -26.667 108.995 -135.662 0.413 -135.249 -0.340
10 300.408 -26.487 108.978 -135.465 0.303 -135.162 -0.352
11 300.635 -26.715 109.061 -135.775 0.298 -135.477 -0.749
12 301.650 -26.335 109.429 -135.764 0.310 -135.454 -0.794
13 303.399 -25.922 110.063 -135.985 0.274 -135.711 -1.130
14 306.037 -25.155 111.020 -136.175 0.337 -135.838 -1.347
15 306.948 -24.863 111.351 -136.214 0.367 -135.847 -1.440
16 307.761 -24.705 111.646 -136.351 0.362 -135.988 -1.660
17 306.355 -25.060 111.136 -136.196 0.419 -135.777 -1.533
18 303.052 -25.773 109.937 -135.710 0.310 -135.400 -1.238
19 303.200 -25.530 109.991 -135.521 0.272 -135.249 -1.166
20 305.564 -24.725 110.849 -135.574 0.296 -135.278 -1.274
21 305.944 -24.325 110.987 -135.312 0.354 -134.957 -1.040
22 306.640 -23.704 111.239 -134.943 0.526 -134.416 -0.574
23 302.421 -25.186 109.709 -134.895 0.348 -134.546 -0.789
24 299.596 -26.363 108.684 -135.047 0.405 -134.642 -0.986
25 299.772 -26.906 108.747 -135.653 0.784 -134.869 -1.444
26 301.802 -26.666 109.484 -136.150 0.612 -135.538 -2.376
27 301.265 -27.520 109.289 -136.809 0.474 -136.335 -3.427
28 300.450 -26.927 108.993 -135.920 0.345 -135.576 -2.926
29 298.364 -26.591 108.237 -134.828 0.352 -134.475 -2.053
30 300.125 -23.842 108.875 -132.717 0.875 -131.843 0.003

Free Air Correction (FAC) = 0.3086h Where h is height in meters above sea level 
Free Air Anomaly (FAA) = Observed G - Theoretical + FAC 
Bouguer Correction (BC) = 0.1195h Where h is thickness of rock slab 
Bouguer Anomaly (BA) = FAA - BC
Terrain Correction (TC) determined by HAMMERXYZ computer software program
based on Hammer Charts
Complete Bouguer Anomaly (CBA) = BA + TC
Residual determined by subtracting regional gravity from CBA, regional is assumed to be 
planar = 0.3455x - 135.62
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Vertically exaggerated cross-section perpendicular to  the  southern Poison moraine. Construction of the  profile used data from surface mapping, lithology descriptions from 
driller's well-logs,and the  assem bled isopach and bedrock elevation maps (Plate 4 & 5). All contacts are estimated from mapping and interpretation of and dep th  indications 
from well-logs.

The m odern  Flathead Lake is located to the  north  of the  cross-section, a small segm en t is just visible on the extrem e left of the  profile (~887m). Located at the  present day 
surface, toward the  southern  portion of the  profile, is Pablo Reservoir. The three most prom inent units, o ther than  the  Belt Supergroup bedrock, are Qgmft, Qgop and Qglm.
Qgmft is the  Poison moraine. Qgop is glacial outw ash and form a significant plain south of the  moraine. Qglm is the  diamict associated with glacial Lake Missoula and is 
interpreted to  underlie all the  o ther  sediment. Glacial front conditions are dynamic and may result in the  inter-fingering of the  map units.

The two thin layers of sand and silt have been included separatedly from the  other map units. This is because interpretation of well-logs tha t drill th rough these  dep ths  
describe these  sedim ents and differ from the  overlying gravel, sand, silt and the  underlying clay and gravel. Elevation of these two layers matches closely to the  dep th  of a 
sand/silt layer interpreted in a cross-section in the  East Bay Quad (Hofmann and Hendrix, 2004). These sedim ents may represent glacial Lake Missoula sed im ent 
tha t were sourced from th e  advancing glacial front.
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Com posite Measured Section from North of the Flathead River, West of Poison, MT
Station JB-021 -05 Long:-114.2223E Lat:47.6767N 

Vertical Scale 1cm=50cm by Jason Braden, 2006
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The location of the  m easu red  section  is show n by the red dot. 
Elevation ran g e  of the m easu red  sec tion  is b etw een  945m  and  975m .
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Depth to Bedrock Map
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•  Water Well Location Surface Exposure of Bedrock Field Study Area

Map displays the depth to the Belt Supergroup bedrock surface beneath unconsolidated sediments. These sediments consist of gravel, sand, silt and clay. Contour lines represent the estimated 
sediment thickness overlaying the bedrock surface. Data used in construction of the map was a combination of a surface map of bedrock exposures, driller's well-logs, and gravity data. Depths to 
bedrock were interpreted from well-log lithology descriptions and basin topography determined by gravity data. The location of the contour lines were determined visually and sketched in manually.

Extensional tectonics in the region, representated by the proximal Mission Fault, has resutled in horst/graben structures in the Flathead and Mission Valleys (LaPoint, 1971; Ostenaa, 1995). Variable 
sediment thicknesses shown on the map are primarily N/S trending and suggest ridges and valleys. Glaciation in the region additionally has deposited thick packages of sediment. The southern 
Poison moraine is the large ridgeline extending East to West and contributes to the significant depth to bedrock in this area. The northern Poison moraine, located north of Flathead River, is shown by 
the thick sediment package extending north from Kerr Dam.
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Water Well Location Surface Exposure of Bedrock | | Field Study Area

Map displays the altitude above sea level of the Belt Supergroup bedrock surface beneath unconsolidated sediments. These sediments consist of gravel, sand, silt and clay. Contour lines represent 
the estimated bedrock surface elevations Data used in construction of the map was a combination of a surface map of bedrock exposures, driller's well-logs, and gravity data. Depths to bedrock, 
interpreted from well-log descriptions and gravity data, were subtracted from surface elevations and resulted in bedrock elevation above sea level. The location of the contour lines were determined 
visually and manually sketching in the lines.

Extensional tectonics in the region, representated by the proximal Mission Fault, has resutled in horst/graben structures in the Flathead and Mission Valleys (LaPoint, 1971; Ostenaa, 1995). Bedrock 
ridges and valleys shown on the map are primarily N/S trending and suggest formation by faults. Glaciation in the region additionally has sculpted the bedrock as the primary flow direction of the ice 
sheets has been from the north to the south. The bedrock low near the mouth of the modern Lower Flathead River indicates a paleovalley potentially incised by previous river flow.
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G eolog ic  M ap  of a  portion of the  Po ison  Q u ad ran g le
by Jason  R. Braden and Marc S. Hendrix, 2006
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