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ABSTRACT

Portner, Ryan, A., M.S., May 2005 Geology

Sedimentary and Tectonic Evolution of the Flint Creek Basin, West-Central 
M ontana

Chairperson: Marc Hendrix /K ^  t i '

Sedimentary and volcanic rocks of the Flint Creek basin in west central 
M ontana record the tectonic history of the region from middle Eocene time up 
through the late Miocene. Transtensional stress along the Lewis and Clark 
Lineament to the north and rapid slip with in the Anaconda metamorphic core 
complex to the south, were synchronous with initiation of Flint Creek basin 
subsidence and local volcanic outpourings during the middle to late Eocene. 
Existing faunal assemblages collected from Tertiary strata above basal volcanic 
rocks in the basin indicate a late Oligocene to late Miocene age and correlate with 
the Bozeman Croup of southwest Montana. Paleosol characteristics, clay 
mineralogies and faunal assemblages of these strata suggest a subhumid to 
semiarid paleoclimate.
Sediments of the upper Renova Formation (Cabbage Patch beds) were 

deposited in alluvial, lacustrine and palustrine environments. Paleocurrent 
indicators and pétrographie analyses of Cabbage Patch sandstones imply a 
northwesterly paleoflow of arkosic detritus during the late Oligocene 
(Arikareean North American Land Mammal Age). Exhumation of the Anaconda 
metamorphic core complex to the south of the Flint Creek basin would have been 
a prim ary source for the 2-mica rich feldspathic sand characteristic of Cabbage 
Patch sandstone facies. Volcanic detritus common to these sandstone facies was 
likely derived from denudation of the Elkhorn Mountain and Lowland Creek 
volcanic edifices, which both overlie the Boulder batholith to the southeast.

Excellent exposure of a localized 2-meter thick boulder bed with underlying 
smectitic clay and barite nodules represents the regionally extensive mid- 
Miocene unconformity (Hemingfordian North American Land Mammal Age). 
Massive siltstone, calcrete and gravel facies of the lower Sixmile Creek Formation 
(Flint Creek beds) overlies the unconformity. The Flint Creek beds were 
subsequently tilted and eroded some time during the middle to late Miocene 
w hen last m ovem ent on intrabasinal normal faults occurred. Sand and gravel 
facies typical of the upper Sixmile Creek Formation (Barnes Creek beds) were 
deposited in a paleovalley eroded into underlying strata. A large alluvial fan 
bajada complex shed detritus northward from the uplifting Flint Creek and 
Sapphire ranges into the axial Barnes Creek fluvial system.

11



ACKNOWLEDGMENTS

Funding was provided by USGS EdMap grant #03HQA90061 and a 
M cDonough Scholarship. This project would not have been w hat it is w ithout all 
the people that helped me. Marc Hendrix, Jim Sears and Paul Wilson were a 
great committee and provided me with very helpful suggestions and comments 
that influenced this manuscript. Craig Christensen and Don Rasmussen 
established the paléontologie foundation for my research. My field assistants: 
Andrew  Caruthers, Nate Harrison, Amy Bondurant, Damien Powledge and 
Christina Mosolf. The local Ranch owners: the Graybeals, Sean Wetch and the 
Dingwall ranch. Deb and Rusty Bruce, the nature conservancy, Ron Skinner, the 
Verlanics, Tom Rue, the Conn Ranch, the Throops, John Conn, Johnson Tuning 
Fork Ranch, Bruce Wight, the Mentzer Ranch, Cominco Mining and all the others 
whose land I was on w ith out knowing. Brian Collins and Donn Vannice for help 
w ith GIS and computer applications. Don Hyndman, Gray Thompson, Don 
W inston and Jim Shelden provided key insight into the geology of the region. 
Karen Porter, Paul Thale and Larry Smith from the Montana Bureau of Mines 
and Geology helped with map reviews and comments. Dan Miggins and Larry 
Snee from the United States Geological Survey allowed me use of their 
geochronology lab. Montana Board of Oil cind Gas conservation granted me 
access to their well log reports and examination of chip samples. Luke and 
geojon from Pocatello took the time to help me with zircon separation and 
geochemistry, hopefully that work can be built upon. I dedicate this work to my 
family and friends.

''Spontaneity makes Miracles, and Miracles are Magical"

111



TABLE OF CONTENTS

ABSTRACT....................................................................................................................ii
ACKNOWLEDGEMENTS........................................................................................ iii
TABLE OF CONTENTS............................................................................................. iv
LIST OF PLATES FIGURES AND TABLES........................................................... vi
INTRODUCTION........................................................................................................ 1
GEOLOGIC BACKGROUND....................................................................................8

Laramide Orogeny........................................................................................8
Igneous Geology............................................................................................8
Foreland Extensional Collapse................................................................... 12
Lewis and Clark Shear Zone...................................................................... 15

METHODS.................................................................................................................. 17
Geologic Mapping and Spatial Database............................................................... 17
Measured Stratigraphie Sections........................................................................... 20
X-Ray Dijfraction...................................................................................................20
Petrography............................................................................................................. 21
Paleocurrent Indicator Analysis............................................................................ 22
Geochronology........................................................................................................ 22

STRATIGRAPHY....................................................................................................... 25
Regional Background.............................................................................................25
Flint Creek Basin Stratigraphy..............................................................................26

Sequence 1................................................................................................. 26
Sequence 2 ................................................................................................. 29
Sequence 3 ................................................................................................. 30
Mid-Miocene Unconformity................................................................. 33
Sequence 4a...............................................................................................35
Sequence 4b...............................................................................................35
Sequence 5 ................................................................................................. 39

Measured Sections.................................................................................................. 41
Tephra Correlation..................................................................................................42

SEDIMENTOLOGY................................................................................................... 46
Facies Descriptions................................................................................................. 46
Paleosols and Clay Mineralogy..............................................................................52
Petrography............................................................................................................. 57

Upper Renova Formation -  Cabbage Patch beds...............................59
Six Mile Creek Formation -  Flint Creek and Barnes Creek beds 64
Q uaternary Pediment Gravels...............................................................67

Paleocurrent Indicators.......................................................................................... 67
BASIN STRUCTURE................................................................................................. 70
DEPOSITIONAL ENVIRONMENTS......................................................................72

Eocene - Early Oligocene........................................................................................ 72
Late Oligocene -  Early Miocene............................................................................. 72

IV



Middle Miocene -Late Miocene..............................................................................76
Pleistocene -  Holocene............................................................................................80

PALEOGEOGRAPHY and PROVENANCE......................................................... 81
Pre-Renova Formation........................................................................................... .81
Renova Formation..................................................................................................81
Six Mile Creek Formation.......................................................................................84

PALEOCLIMATE....................................................................................................... 86
Early-Middle Paleogene..........................................................................................86
Middle Paleogene -  Early Miocene....................................................................... 86
Late Early Miocene Unconformity........................................................................ 88
Middle Miocene -  Late Miocene............................................................................ 89

REGIONAL STRATIGRAPHIC CORRELATION...............................................91
L i thos tra tigraphy....................................................................................................91
Sequence Stratigraphy............................................................................................92

BASIN FORMATION AND TECTONIC EVOLUTION.....................................93
CONCLUSIONS......................................................................................................... 97
FUTURE WORK....................................................................................................... 100
REFERENCES........................................................................................................... 101
APPENDIX A: Bedrock map unit descriptions................................................. .120
APPENDIX B: Basin fill m ap unit descriptions.................................................. 123
APPENDIX C: Sample locations...........................................................................128
APPENDIX D: Measured section locations........................................................ 130
APPENDIX E: Borehole well log descrip tions................................................... 131
APPENDIX F: Faunal and floral list for Trcp..................................................... 141
APPENDIX G: Faunal list for Tscf.........................................................................145
APPENDIX H: Faunal list for Tscb........................................................................146
APPENDIX I: X-ray diffraction patterns............................................................. 147
APPENDIX J: Clast count data ...............................................................................159
APPENDIX K: Point count da ta .............................................................................160



LIST OF PLATES
Plate Page

1. Geologic map of the eastern Flint Creek Basin........................ (in pocket)
2. Cross sections referred to on Plate 1 ......................................... (in pocket)
3. M easured stratigraphie sections (in pocket)

LIST OF FIGURES:
Figure Page

1. Location m ap .....................................................................................................4
2. Generalized geologic m ap .............................................................................. 5
3. Stratigraphie correlation chart of map area bedrock units....................... 6
4. Tectonic m ap of western Montana and distribution of Tertiary

intermontane basins........................................................................................7
5. Structural map of north east Flint Creek Basin...........................................9
6. Regional igneous lithology map and distribution of Tertiary

sedimentary rocks..........................................................................................11
7. Regional distribution of metamorphic core complexes............................14
8. Reference map to previous geologic mapping around the Flint Creek

Basin................................................................................................................. 18
9. Stratigraphie correlation chart of map area Cenozoic units................... 27
10. Photo of Eocene basalt in western Flint Creek Basin...............................28
11. Photo of basal Tertiary laterite unit with local boulders..........................28
12. Photos of Cabbage Patch beds, including basal welded tu f f ................. 31
13. Biostratigraphic and magnetostratigraphic correlation charts of the

Cabbage Patch beds.......................................................................................32
14. Photos from type exposure of mid-Miocene unconformity................... 34
15. Photos from Flint Creek beds including polished slab of carbonate

nodule.............................................................................................................. 36
16. Biostratigraphic and magnetostratigraphic correlation of Hepburns

Mesa Formation of upper Yellowstone basin and the Flint Creek beds 
of the Flint Creek Basin.................................................................................37

17. Photos of typical Barnes Creek bed facies..................................................38
18. Photo of Quaternary matrix supported gravels and loess...................... 40
19. Photo of east dipping normal fault in Flint Creek beds with atypical

extra-basinal gravel facies............................................................................44
20. Photo of massive siltstone of the Flint Creek beds with overlying

gravels of the upper Six Mile Creek Formation........................................44
21. Photos of air fall ash beds and tephras of the Cabbage Patch beds....... 45
22. Photo of matrix supported gravel facies (Gm)..........................................48
23. Photo of bedded sandstone facies (Sb)....................................................... 49
24. Photo of lenticular pebbly sandstone facies (SI)........................................49
25. Photos of marlstone facies (Cm).................................................................. 51
26. Chart showing clay mineralogies of Bozeman Group strata .................. 53

VI



27. Polished slab photo and microphoto of breccia along K /T  contact...... 54
28. Photos from paleosols found in the Cabbage Patch beds........................56
29. Photos of pedogenic features from the Flint Creek beds.........................58
30. Microphotos of Cabbage Patch sandstones................................................ 60
31. Ternary diagrams calculated from Cabbage Patch sandstones..............61
32. Microphotos of carbonate units from the Cabbage Patch beds...............63
33. Bar graph showing clast count compositions of post Arikareean- aged

conglomerate units........................................................................................65
34. Photo mosaic of Barnes Creek paleovalley.................................................69
35. Schematic diagram  of lateral distribution of lacustrine carbonate and

pedogenic facies............................................................................................. 75
36. Photos of silicified wood and mudstone from the Cabbage Patch

beds...................................................................................................................75
37. Map showing extent of Glacial Lake Missoula in the Flint Creek

basin..................................................................................................................80
38. Schematic maps of interpreted paleogeography during deposition of

the Bozeman Group strata ............................................................................82
39. Graph showing oxygen isotope history for the Cenozoic........................ 90
40. Schematic cross section of the Flint Creek basin........................................94
41. Schematic block diagram of a transtensional system ............................... 94

LIST OF TABLES
Table Page

1. Previous research in other basins of western Montana, only includes
MSc thesis and PhD dissertations..................................................................3

2. Facies distribution of Cenozoic m ap units..................................................46

Vll



INTRODUCTION

The Flint Creek basin (FCB) is a northeast trending Cenozoic basin that 

extends along the Flint Creek Valley for 24 km between Drum m ond and 

Maxville, MX (Figure 1). It is located along the northwest flank of the Flint Creek 

Range, bounded to north by the Garnet Range, west by the Sapphire Range and 

is along structural strike w ith the Philipsburg basin to the south. Bedrock of the 

FCB consists of metasedim entary strata of the Meso-Proterozoic Belt Supergroup 

in its western portion and Paleozoic-Mesozoic carbonate and siliciclastic strata in 

its eastern portion (Figure 2). The map area outlined by this study focuses on the 

east side of the basin where the bedrock is dominated by tightly folded 

Cretaceous rocks (Figures 3, Appendix A). The proximity of the FCB to the Lewis 

and Clark lineam ent (LCL), a major tectonic feature of the Northern Rockies, sets 

it apart from other Tertiary depocenters of southwest Montana (Figure 4).

Ongoing studies in Tertiary basins of western Montana and adjacent 

Idaho by Sears and Ryan, (2003); O'Neil et al., (2004); Hopkins (2004); Link et al. 

(2004); Hannem an (2004); Bourke, M R., et al. (2004); Nielson and Thomas,

(2004); Hodges et al. (2004); Janecke (2004) aim to clarify paléontologie, lithologie, 

stratigraphie and structural relationships amongst the basins (Table 1). 

Uncertainties still rem ain with the currently used coarse and fine grained 

lithostratigraphic subdivision (Fields, et al., 1985; Hannem an and Wideman, 

1991), proposed rift shoulder model extent (Janecke, 1994) and paleoclimatic 

(Thompson et al., 1982) verses tectonic (Fritz and Sears, 1993) verses eustatic



(Hannem an et al., 2003) control on basin accommodation for Tertiary sediments 

in w estern M ontana and adjacent Idaho. This study aims to elucidate these 

problems by evaluating the sedimentologic and tectonic evolution of the FCB 

and deciphering its association with other adjacent intermontane basins.

Paléontologie and geologic studies by Douglass (1903), Konizeski and 

Donohoe (1958), Gwinn (1960) and Rasmussen (1969) were among the first in the 

Flint Creek basin and provide the base work utilized in this study. Geologic field 

m apping, stratigraphie architectural studies, provenance analysis, x-ray 

diffraction, tephra geochronology and careful consideration of the role of the 

LCL are necessary for accurate assessment of the basins sedimentary and 

structural history. Cenozoic deposits south of the Clark Fork River and east of 

Flint Creek depicted in Plate 1 (Appendix B), were m apped and reexamined 

using previously documented biostratigraphy of D.L. Rasmussen (1969,1973, 

1974,1977,1989, 2003); Pierce and Rasmussen (1989,1992); and Craig 

Christensen (pers. comm., 2003).



Table 1: Previous research in other Tertiary basins of western MT
Basin Authors of unpublished MSc and PhD work
Nortti Boulder
Beàyerhead f :ftoffmw(197l),Pêdcëwfc^
Jefferson ^ver , ’ Kuenzi ( 1 ^ ) ,  Axelr^ (1 ^ ) ,

f6&6wich Moiirbc (1976)#
Flint Creek Rasmussen (1969)
Deer Lodge Rasmussen (1977), McLeod (1987)
Grasshopper Matoush (2002)
Smith River Runkel (1986)

■Melros ;̂,

Missoula Harris (1997)
Sage Creek Tabrum (unpublished data)
Salmon Harrison (1985)
Kishenehn Constenius (1981)
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Figure 2: General Geologic Map 
of the Flint Creek Basin
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Figure 3: Correlation chart of bedrock m ap units in the eastern FCB 
Stages and relative ages taken from 2003 International Stratigraphie Chart 
correlations taken from, O'Brien, 2003; Brooks, 2002

FCB Map units Disturbed Belt
Era System /Period Epoch Stage Sed 1 I^n Sed Ma

Cretaceous

Upper

Lower

Maastrichian

Campanian

Santonian

Coniacian
Turonian

Cenomanian

Albian

 A ptian __
Neocomian

o

CO

Kgs

Kcc

Kj
Kc

Kbld

Kbit

Kblf

Kk

Ktm

Kv

Ktc

Kmr

Kbiv

Jurrasic 

Triassic 

Permian

Pennsylvanian

Js

65.5

70.6

83.5 
85.8

89.3

93.5

99.6

112

125
145.5

199.6

PPpq

Pa

—  —  — 251.0

—  —  ■ 299.0

M ississippian Mm
318.1

359.2
Eastern FCB Map Units:
Ki = Intrusive Shonkinite Sills (75.9 + /-1 .2 ; Brooks , 2002)
Kgs = Golden Spike Formation 
Kcc = Carten creek Formation 
Kj = Jens Formation 
Kc = Coberly Formation
Kbld = Dunkleberg Member, Blackleaf Formation 
Kbit = Taft Hill Member, Blackleaf Formation 
Kblf = Flood Member, Blackleaf Formation 
Kk = Kootenai Formation
Js = Morrison Formation , Ellis Group (undifferentiated)
PPpq = Permian Phosphoria Formation, Pennsylvanian Quadrant Quartzite (undifferentiated)
Pa = Am sden Formation
Mm = Madison Group (undifferentiated)

Correlative Cretaceous Units along the MT Fold and Thrust Front near Sun River
Ktm = Two Medicene Formation
Kv = Virgelle Sandstone
Ktc = Telegraph Creek Formation
Kmr = Marias River Shale
Kblv = Vaughn member, Blackleaf Formation



Figure 4: Tertiary Intermontane Basins of MT and ID
I. Kischenehn, 2. Flathead. 3. Mission, 4. Swan. 5. Missoula. 6. Bitteroot. 
7. Blackfoot. 8. Douglas Creek, 9. Avon/Nevada Creek. 10. Flint Creek.
II . Phillipsburg, 12. Deer Lodge. 13. Canyon Ferry, 14. Smith River,
15. Upper Yellowstone. 16. Three Forks. 17. Toston/Clarkston,
18. North Boulder River, 19. Jefferson. 20. Beaverhead. 21. lower Ruby. 
22. Upper Madison. 23. Upper Ruby. 24. Blacktail, 25. Centennial,
26. Sage Creek/ Red Rock River, 27. Muddy Creek, 28. Nicholia,
29. Medicine Lodge, 30. Horse Praire. 31. Grasshopper. 32. Divide.
33. Big Hole. 34. Salmon, 35. Lemhi. 36. Pahsimeroim m
IB - Idaho Batholith, BB - Boulder Batholith, SRP - Snake River Plain 
BCC - Bitteroot Core Complex, ACCC - Anaconda Core Complex
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REGIONAL TECTONIC BACKGROUND

Laramide Orogeny

Bedrock of the Flint Creek basin was folded and faulted during the Late 

Cretaceous and early Paleocene Laramide Orogeny (Sears, 2001). An eastern 

transport direction of low angle thrusts, namely the Georgetown and Princeton 

thrusts of the western Flint Creek Range are opposed by westward verging 

overturned folds and eastward dipping high angle reverse faults on the east side 

of the Range (Gwinn, 1960; McGill, 1965; Figure 5). Gwinn (1961) and McGill 

(1965) interpreted this conflicting structural transport direction in the northern 

Flint Creek range as a consequence of intrusion of the Boulder batholith to the 

east. An extreme example of this is documented by the westward-verging nearly 

recum bent isoclinal Coberly syncline in the m iddle of the field area (Plate 1). A 

similar occurrence of opposing structural vergence has been documented in 

Cretaceous rocks along the foothills of the M ontana overthrust belt near Sun 

River Montana and is interpreted to be a continuation of the Canadian triangle 

zone (Sears et al., 2002). Compressional structures of the northern FCB are 

younger than a swarm  of folded and faulted 76 Ma sills (Sears et al., 2000; 

Brooks, 2002).

Igneous Geology

In the m ap area, a thick sequence of 76 Ma shonkinite sills that intrude 

Cretaceous strata are concordant and have hornfels contact zones. The sills are

8
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Figure 5: Structure map of North East FCB. (taken from Gwinn, 1965) 
B= Bearmouth, D=Drummond, GC=Gold Creek, G=Garrison.



interpreted by Kunz (2003) to be an extension of the central Montana alkalic 

province and are inferred to be chemically similar to the alkaline-mafic 

Kokuruda complex on the northern flank of the Boulder batholith.

The Late Cretaceous Boulder batholith is a large, felsic batholithic 

assemblage located approximately 50 miles southeast of the FCB (Figure 6). It 

crystallized between 78-69 Ma and predominantly consists of biotite- and 

hornblende- bearing quartz monzonite (Johannesmyer, 1999). Any muscovite 

present is minimal and probably not primary (D. Hyndm an, pers. comm., 2004). 

A large portion of the northw est and northeast extent of the batholith is covered 

by the 80-77my Elkhorn M ountain volcanics (Johannesmyer, 1999). Mylonitized 

granite that may be associated with either the Boulder batholith or the nearby 

Flint Creek Range plutons was penetrated at the bottom of the Amoco Jacobsen 

well in the Deer Lodge basin at a depth of 11,500 feet and was first inferred by 

D.Hyndman to have been created by processes similar to that formed by the 

Bitterroot core complex (McLeod, 1985).

Several comagmatic granodiorite plutons in the Flint Creek Range 

intruded to an epizonal level between -74 and -60 Ma (Allen, 1962; Hyndm an et 

al., 1982; Marvin et al., 1989; Figure 6). Most K-Feldspar has grid-twinning and 

accessory minerals in the plutons are dom inated by biotite and hornblende. A 

notable exception is the muscovite-bearing 2-mica granodiorite of the youngest 

M ount Powell batholith (Allen, 1962). Due to the presence of num erous roof 

pendants Allen (1962) inferred that the upper reaches of the 132 square km

10



Figure 6: Igneous Lithologies
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M ount Powell batholith m ust be exposed. The Flint Creek plutons crystallized 

during the late Paleocene before the early- to middle- Eocene Lowland Creek 

volcanics were extruded onto the southeast flank of the Flint Creek Range.

The Lowland Creek volcanics attain a thickness of 1900m and are 

composed of quartz latitic lavas, welded tuffs and synsedimentary pyroclastic 

breccias on the west and east sides of the Boulder batholith. Smedes (1962) 

recognized six volcano-tectonic phases that are separated by unconformities and 

faulting episodes. These rocks were extruded between 50-48 Ma during the same 

time as volcanic rocks of the 49-44 Ma Garnet Range volcanic sequence in the 

western FCB (Smedes, 1965; Carter, 1982). Coarse conglomeratic material of the 

Anaconda beds are stratified with the Lowland Creek volcanics and are overlain 

by Oligocene-Miocene aged deposits in the northern flank of the Flint Creek 

Range (O'Neil et al., 2004). The Anaconda beds are usually composed of red clay 

and dom inated by quartzite gravel (Kalakay, 2003; O'Neil pers. comm., 2004).

Foreland Extensional Collapse

Foreland fold and thrust belt collapse of the northern Cordillera is marked 

by relaxation and denudation of compressional structures during a phase of 

regional Tertiary extension (Constenius, 1982; O'Neill and Pavlis, 1988; Janecke, 

1994; Constenius, 1996; Sears, 2001). Both high angle normal and low angle listric 

normal faults formed during several episodes of extension in western Montana 

and east central Idaho, beginning no earlier than 53-48 Ma and continuing to the
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present day (Pardee, 1950; Janecke, 1995; Fritz and Sears, 1993; Ruppel, 1993; 

Sears et a l, 1995; Thomas et al., 1995; Hurlow, 1995a, b; Sears and Fritz, 1998; 

Vandenburg et al. 1998; Foster et al. 2001). Gravitational collapse of an over

thickened orogenic wedge was accompanied by the development of a linear rift 

zone during Eocene time (Janecke, 1994). This rift zone was oriented along the 

axis of the Cordillera west of the FCB (Figure 4). Paleovalleys associated with the 

rift zone and others in southwest Montana were reorganized during Neogene 

time (16-6ma) by a period of renewed uplift and faulting (Fritz and Sears, 1993; 

Sears and Ryan, 2003).

Paleogene extension in the northwest Cordillera was accommodated by 

rapid uplift and exhumation of regional metamorphic core complexes and 

associated detachm ent faults (Constenius, 1996; Figure 7), My Ionite along the 

eastern edge of the Flint Creek Range is associated with the M ount Powell 

batholith and has been interpreted by O'Neil, et al. (2002) to be part of the 

regionally extensive Anaconda metamorphic core complex (ACC). Winegar 

(1968) also documented mylonite along the eastern edge of the Lost Creek stock 

south of the M ount Powell batholith. Sheared granodiorite of the mylonitized 

H earst Lake stock in the Anaconda Range yielded 53 Ma U-Pb zircon dates and 

represents the oldest age of the core complex (Kalakay 2003). Syntectonic 

muscovite fish w ith 47 m a ^OAr/^^Ar dates in footwall rocks and syntectonic 

upperplate detritus of the Anaconda beds were deposited during the youngest 

age of the ACC (O'Neil, et al. 2004). The stretching lineations of 106° in the
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H earst Lake stock and 114° in the M ount Powell batholith are very close to the 

Bitterroot, Boehls Butte and Priest River core complexes (O'Neil, 2002, Kalakay, 

2003, Sha, 2003, Lonn et al., 2003, Foster, 2003). Foster (2003) suggested that 

extension w ithin these core complexes is linked to dextral transtension across the 

LCL. The enigmatic northern extent of the ACC has been proposed to die out 

into the Lewis and Clark line in the vicinity of the FCB (O'Neil, 2004).

Lewis and Clark Shear Zone

Structural trends across the Clark Fork River Valley in the FCB change 

from N-S south of the river to NW-SE north of the river and have been 

interpreted to be a consequence of left-lateral motion along the Lewis and Clark 

line during Late Cretaceous compressional deformation (Figure 5; Gwinn, 1960, 

Lorenz, 1983; Reid, 1984; Baken, 1984, H yndm an et al., 1988; Lonn and 

McFaddan, 1999; Sears and Clements, 2000; Geraghty and Portner 2003). The 

lineament accommodated rotational stress about a pole centered at Helena, MT 

with thrust displacements increasing to the north (Sears, 2001). Geraghty and 

Portner (2003) and Sears and Hendrix (2004) suggested that the lineament is a 

transpressional flower structure w ith the deeper levels exposed to the west near 

Saint Regis, MT and higher levels exposed to the east near the FCB. A structural 

depression m arked by opposing plunges (Clark Fork Sag of Gwinn 1960) is 

associated w ith the change in regional strike and was interpreted by Weidman 

(1965) to be kinematically linked to the lineament (Figure 5).
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Several workers have suggested that right lateral motion along the Lewis 

and Clark line accompanied extension during Tertiary time (Harrison et al., 1974; 

Reynolds and Kleinkopf, 1977; Wallace et al., 1990; White, 1993; Yin et al., 1993; 

Doughty, 2002). Doughty and Sheriff (1992), Doughty (2002) and Foster (2003) 

showed evidence to suggest that the Lewis and Clark shear zone was a dextral 

transtensional system that accompanied Eocene crustal extension. Transition 

from Cretaceous transpressional to Tertiary transtensional stress along the Lewis 

and Clark line occurred during Eocene time between 59 and 53 Ma (Sears, 2001; 

Foster, 2003). This marks the initiation of uplift and exhumation of regional 

metamorphic core complexes, voluminous volcanism, and delineation of Tertiary 

depocenters including the FCB (Chadwick, 1985; Fields, et al., 1985; Fritz and 

Harrison, 1985; O'Neill and Pavliss, 1988; Foster and Fanning, 1997; Doughty and 

Price, 2000; Doughty, 2002; Vanderhaeghe et al., 2003; O'Neill, et al., 2004).
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METHODS 

Geologic M apping and Spatial Database

Previous m apping in and adjacent to the Flint Creek basin by J.C. Maxwell 

1965; K.K. Smallwood 1956; V.E. Gwinn 1961; D.L. Rasmussen 1969; B.A. Carter 

1982; R. Lewis 1998; Lonn et al. 2003 was used as the base work for the study's 

final m ap interpretation and compilation (Figure 8). Geologic features of the 

study area were m apped at 1:24,000 using the Drummond 1:24k, Limestone 

Ridge 1:24k, Dunkelberg Creek 1:24k and the Hall 1:24k USGS quadrangles as 

base topographic maps. The geologic map by Lewis et al. (1998) was used as a 

base layer w ith aerial photos and a 30 meter digital elevation model (DEM) 

resampled to 10 m eter resolution. A brunton azim uth compass, a barometer and 

a GARMIN Etrex vista GPS were used for station location and mapping contacts. 

Three balanced structural cross-sections were constructed to true scale and give a 

sense of bedrock structure across the w idth of the map (Plate 2).

Upon completion of field m apping after the summer of 2003 field work, 

geologic contacts and other features were digitized manually. Original field 

m aps were transposed onto corresponding 1:24k scale digital quadrangle maps 

using ArcGis v.8.3 software. Contact accuracy was enhanced with ~6 meter 

accurate GPS point data (point features) collected in the field (Appendix C). 

Contacts (line features) and m ap units (polygon features) were assigned specific 

attributes regarding formation name and contact type (inferred contact, fault 

Figure 8
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etc.). Data was implemented into a personal geodatabase and topologic rules 

were established between line and polygon features to ensure data accuracy.

Geologic features m apped by this study were combined with digital 

representations of Gwinn's (1961) bedrock geology south of the Clark Fork River 

and Rasmussen's (1969) geology north of the Clark Fork River (Plate 1: see inset 

map). Contacts were traced onto mylar with a black pen which was then scanned 

with a large form at scanner to a 350 dpi resolution tiff file (courtesy Don 

Vannice, Forest Service). Tic marks were marked on section corners and used to 

georeference the mylar images. The images were classified to a black and white 

scale (bi-level) to allow ArcScan to recognize them and subsequently 

automatically trace them (method after Fortner et al., 2003). The resulting line 

feature class was used to construct polygons in ArcCatalog and both were 

assigned attributes regarding line type (i.e. fault, contact) and map unit 

designation. Combined into a single personal geodatabase, all three geologic 

maps (Gwinn, 1961, Rasmussen, 1969 and Fortner, this study) are digitally 

represented by their own unique topologic datasets. New interpretations of 

minor structures on Gwinn's (1961) map were incorporated into the dataset for 

this study and subtracted from the dataset created from Gwinn (1960). The final 

map was projected into stateplane coordinates and overlaid with topographic 

maps (Plate 1).
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Measured Stratigraphie Sections

Stratigraphie sections were measured with a 1.8 meter jacob staff, brunton 

compass, rock ham m er and pick. Color was estimated, HCl acid was used to 

determine CaCOs content and grain size was deduced with a lOx hand lens and 

grain scale card. All m easured sections were exposed in small ephemeral 

gulches, though one artificial exposure was used along Douglas Creek 

(Appendix D). Sections were drafted up and traced in Adobe Illustrator v.lO 

software (Plate 3). Detailed section descriptions and previous paléontologie work 

(Rasmussen, 1977; Craig Christensen, pers. comm.) aided in the mapping of 

geologic units.

X -R ay Diffraction

Representative samples of fine- grained lithologies were collected from 

fresh surfaces after overlying slope material was cleared away and weathered 

surfaces removed. Clay samples were dried at room tem perature before 

treatment. All samples were crushed in a glazed porcelain mortar to a fine 

powder and prepared in a backloader for randomly oriented whole rock 

mineralogy. The crushed claystone and m udstone samples were disaggregated 

with an ultrasonic probe after treatm ent with sodiummetahexaphosphate to 

deflocculate the clay. The <2p size fraction was separated out after centrifugation 

at lOOOrpm's for 2 minutes. The <2p samples were saturated with strontium (Sr)
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order to eliminate variations in glycol thickness due to treatm ent by 

sodium m etahexaphosphate and washed to remove any excess electrolyte.

Clay samples were oriented to the A /B  plane using the filter-membrane 

peel technique (Moore and Reynolds, 1997). Samples were then placed in an 

ethylene glycol chamber for 24 hours. A CuKa Norelco autom ated/digital X-ray 

diffraction unit was used to analyze the samples and diffraction patterns were 

plotted using MacDiff software. X-ray diffraction patterns were modeled for clay 

compositions with Newm od software.

Petrography

Cemented sandstone samples were cut to standard 2x1 inch billets and 

sent to the University of Oregon for preparation. Mounted thin sections were 

analyzed w ith a binocular microscope and point counted using an automated 

tabulator. Five hundred grains, not including cement, were counted on each slide 

using a constant step interval. The traditional method of counting lithic grains 

was used in most samples, rather than the Gazzi-Dickinson method of counting 

individual minerals w ithin lithic grains. Due to grain size distribution of sample 

27.1, a very coarse sandstone, the Gazzi-Dickinson method was used (after 

Ingersoll et al., 1984). This method produces an increase in feldspar and quartz 

relative to lithic counts.
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Clast counts of gravel bearing stratigraphie units were performed in the 

field using a m easuring tape to delineate a square meter. Fifty or more random 

>3mm sized clasts from each locality were counted from a square meter grid.

Paleocurrent Indicator A nalysis

Inferred orientations of trough and planar foresets in cross bedded 

sandstone were m easured in the field along the entire outcrop exposure. Cross 

bed orientations were restored when bedding dip exceeded 10 degrees for trough 

cross beds and 30 degrees for planar cross bedded sands (procedure from Miall, 

2000, chapter 5.6.3). Clast imbrication orientations in conglomerates and gravel 

beds were m easured in the field using the long axis of clasts. Multiple clasts were 

measured at all stratigraphie levels and across the breadth of the outcrop. Final 

restored lineations of clasts imbrication and cross bed orientations were plotted 

on rose diagrams using rockworks v.lO software. Localities containing less than 

10 measurements were not plotted onto rose diagrams but were averaged and 

plotted as unidirectional arrows on the final m ap (Plate 1).

Geochronology

Basal portions of three volcanic ash beds were sampled and prepared by 

the author for analysis at the USGS geochronology laboratory in

Denver, CO (Dan P. Miggins pers. comm., 2004) Samples were crushed and 

milled with a m ortar and pestle for approximately 5 minutes into a fine powder.
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Samples were then washed w ith cold water and very fine silt was poured off 

until the w ater was clear. The remaining coarsest fraction was digested in a % 15 

solution of hydrofluoric acid (diluted with deionized water) and placed in an 

ultrasonic bath for 5 to 10 minutes. This procedure disaggregated and dissolved 

fine glass and glass that was adhered to feldspar and quartz grains. Acid was 

poured off and the samples were washed with cold tap water 15-20 times. Large 

magnetic grains were isolated from dried samples using a Franz L-1 magnetic 

separator by passing the sample through a paper funnel over the outside of the 

Franz. Fine samples were then passed through the Franz using 1.75 amps (full 

power) w ith the arm  at 7 degrees. This was done at lower arm angles (4-7 

degrees) until the majority of volcanic glass was separated out. The resulting 

mineral separates were predom inantly feldspar, quartz and zircon. This fraction 

was passed through a LST (Lithium Heteropolytungstate) heavy liquid with a 

density of 2.58 g/ml^. The final separate of 99.9% sanidine was soaked in acetone 

for 10 minutes, soaked in ethyl alcohol for 10 minutes, washed with deionized 

water, and dried.

Muscovite and K-feldspar from a semi-consolidated two-mica sandstone 

sample (1195.1) was separated out using a variation on the method described 

above. The sand was sieved w ith nested 28 and 80 mesh screens and the >180p to 

<644p size fraction was retained. After hand magnetics were separated out using 

the paper funnel m ethod describe above, a majority of hornblende and biotite 

was separated out using the Franz set at 0.Samps w ith the arm at 15 degrees. The
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nonm agnetic separate was run through the Franz again with the instrument set 

at 1.5 amps. This procedure isolated feldspar and quartz from muscovite. The 

final muscovite separate was cleaned in an ultrasonic bath for 15 minutes, sieved 

through a 44 mesh, and the >360p to <644p fraction was franzed at 0.7 amps 

before being hand-picked under a binocular microscope. The feldspar and quartz 

separate was passed through a 2.58g/cm^ LST heavy liquid that floated the K- 

feldspar. The K-feldspar separate was franzed at 9 amps and 5 degrees, then 

franzed at 1.5 amps and 4 degrees, and sieved though a 60 mesh screen. The 

resulting >250p to <644p K-feldspar fraction was hand-picked. The final 

muscovite and k-feldspar separate was washed in an ultrasonic bath for 10 

minutes, washed 15 times with cold tap water, soaked in acetone for 10 minutes, 

soaked in ethyl alcohol for 10 minutes and washed with deionized water.

All final mineral separates will be radiated at the USGS geochronology 

laboratory in Lakewood, Colorado following completion of this manuscript. The 

samples will then be analyzed w ith a mass spectrometer for ^OAr/^^Ar gas and 

final age determinations will be inferred (Dan Miggins pers. comm., 2005).
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STRATIGRAPHY

Regional Background

Interm ontane Tertiary deposits of western Montana were first studied for 

their rich vertebrate fossil collection (Hayden 1869,1872,1873; Douglass, 1899, 

1901,1903; Mertie et al., 1951; Donohoe, 1956; McDonald, 1956; Freeman et al., 

1958; Konizeski, 1958). Weed and Iddings (1894) and Peale (1896) first 

designated Tertiary deposits in the Three Forks area as the "Bozeman lake beds". 

Robinson (1963) defined the Bozeman Group as "...the Tertiary fluvial, eolian 

and lacustrine rocks which accumulated in the basins of western Montana after 

the Laramide o r o g e n y . F u r t h e r  subdivision of the Bozeman Group by Kuenzi 

and Fields (1971) was based upon a litho- and bio- stratigraphie framework. This 

stratigraphie subdivision included a generally finer- grained unit with minor 

conglomerate, the Eocene to early Miocene Renova Formation, unconformably 

overlain by a generally coarse grained unit, the middle- to late- Miocene Sixmile 

Creek Formation. Their contact is locally angular and has been associated with a 

depositional hiatus during Hem ingfordian time (NALMA - North American 

Lcind Mammal Age; Robinson, 1960; Dorr and Wheeler, 1964; Rasmussen, 1973; 

Axelrod, 1984; Lofgren, 1985; Runkel, 1986). This mid-Miocene (~17-16 Ma) 

unconformity is regionally extensive throughout the intermontane basins of 

western Montana and southeast Idaho (Fields et al., 1985).

Hannem an and W ideman (1991) abandoned the established 

lithostratigraphy m entioned above and proposed five unconformity bounded
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Figure 10: Columnar Jointing in Eocene basalt of western FCB . 
(Unit Tv on plate 1; lat = 46.549433, long = -113.284733)

riff' r  ■ ' ' ‘. v

Figure 11: Basal Diamict bed with vivid ochre red clay matrix 
(Unit Tml on plate 1; lat = 46.580133, long = -113.0469)
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17,375 foot exploratory borehole (Henderson-Lorensen #2) drilled in the 

northw estern portion of the basin (Figure 2; Appendix E).

A stratigraphie equivalent of the syntectonic Anaconda beds (see pg. 10- 

11) in the western FCB may have been encountered in borehole Wilson #2 at 780 

feet where "unconsolidated quartzite gravels, sand and bright brick red clay" 

was penetrated (Figure 2; Appendix E). In the eastern FCB a thin ocher red clay 

rich horizon locally occurs along the K /T  boundary and is exposed in one 

locality along Dunkleberg Creek (Tml -  Figure 9). There, it contains large boulder 

clasts in a red clay rich matrix support (Figure 11). Gwinn (1960) suggested that 

the reddish m aroon pebbly clay along Dunkleberg Creek m ight be 

stratigraphically equivalent to red conglomerates (anaconda beds) in the SW and 

SE Flint Creek Range. The very poor exposure of the basal FCB red clay horizon 

makes a stratigraphie correlation w ith the Anaconda beds difficult to determine.

Sequence #2:

Late Eocene to early Oligocene (Chadronian NALMA) vertebrate, 

invertebrate and plant fossils were collected from lower Renova Formation strata 

in the Douglas Creek basin 10 miles north of the FCB (Konizeski, 1965; Person, 

1972). This fauna and flora correlates with unnam ed fissile shales and a low 

grade coal bed exposed in the western FCB (Rasmussen, 1977,1989). Bentonitic 

shales exposed in the western FCB and penetrated in boreholes Wilson #1 and
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Wilson #2 may be correlative to the lower Rénova Formation, but correlative 

strata were not observed in the eastern FCB (Figure 9).

Sequence #3:

A 29.5 Ma (zircon fission track age) rhyolitic ash-flow tuff exposed at the 

m outh of Coberly Gulch can be used as a stratigraphie marker bed for the FCB 

(Figure 12a; Gwinn 1960; Rasmussen 1969; Rasmussen 1977). It contains 

phenocrysts of euhedral smoky quartz and sanidine. Konizeski and Donohoe 

(1958) identified Arikareean vertebrate fossils in bedded tuffaceous sediments 

above the ash flow-tuff in the northern Flint Creek basin and named those units 

the Cabbage Patch beds after a local tavern (Trcp -  Figure 9; Figure 12b). These 

units are correlative to the middle Oligocene- to early Miocene- upper Renova 

Formation of southwest M ontana (Rasmussen, 1989).

Composite stratigraphie sections m easured by Rasmussen (1977) depict a 

>700 meter thickness for the Cabbage Patch beds. Rasmussen (1977) defined a 

biostratigraphic subdivision for the Cabbage Patch beds into an upper, middle 

and lower unit (Appendix F). M agnetostratigraphic sections of the Cabbage 

Patch beds using the basal ash-flow tuff as a datum , permits biostratigraphic 

correlation w ith sediments in Oregon, Nebraska and South Dakota and 

constrains their age to be between 29.5 cind ~23 mya (Figure 13; Rasmussen and 

Prothero, 2003). The upper age limit of the Cabbage Patch beds is not well
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Figure 12: (above) Exposure of Cabbage Patch beds basal ash flow tuff 
at mouth of Coberly Gulch (left of photo; lat = 46.617133, long = *113.102217) 
(below) Typical fine grained bedded tuffaceous rocks of the Cabbage Patch 
beds. Dingwall fault on right side of photo (lat = 46.615017, long = -113.1225)
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defined, but the absence of Hem ingfordian vertebrate fossils suggests that the 

unit is solely Arikareean in age (Figure 9; Rasmussen and Prothero 2003).

Mid-Miocene Unconformity:

Rasmussen (1973) biostratigraphically identified the "mid-Miocene" 

unconformity in the FCB and observed an angular relationship across it, but 

failed to observe a good exposure of it. The basal erosion surface of a well- 

exposed 2-meter thick boulder bed west of Coberly Gulch separates Arikareean 

aged strata from Barstovian aged strata (Tscfg -  Figure 9; Figure 14). This 

relationship delineates the presence of a major unconformity that was developed 

during Hem ingfordian time (Craig Christensen, pers. comm., 2004). The basal 

erosion surface of the boulder bed correlates with the regionally extensive "mid- 

Miocene" unconformity (Fortner et al. 2004). This observation conflicts with the 

placement of the "mid-Miocene" unconformity on Gwinn's (1961) geologic map. 

The boulder bed is a locally occurring facies that can be traced for approximately 

2 miles along a -4370ft bench. It has been observed on the north side of Clark 

Fork River and may or may not be present in other adjacent basins (Rasmussen, 

pers. comm., 2005). It is overlain by massive siltstone lithologically similar to 

facies seen in the underlying Cabbage Patch beds, making it a relatively resistant 

unit that is easy to recognize in the field.
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Sequence #4a:

Douglass (1903) collected Barstovian vertebrate fossils from tuffaceous 

siltstones south of the homestead of New-Chicago and named those units the 

Flint Creek beds (Tscf -  Figure 9; Figure 15). These beds can be correlated with 

the lower Sixmile Creek Formation. Vertebrate fossils collected from the Flint 

Creek beds indicate an early Barstovian age, between 14.8 and 16 mya (Figure 16; 

Appendix G). In many places the Flint Creek beds are lithologically 

indistinguishable from the underlying Cabbage Patch beds (Rasmussen 1969). 

The base of the unit is typically covered.

Sequence #4b:

Overlying the Flint Creek beds are poorly consolidated interbedded sand, 

gravel and reddish orange mudstone facies of the Barnes Creek beds (Tscb - 

Figure 9) named by Gwinn (1960) for exposures east of the town of Hall at the 

m outh of Barnes Creek (Figure 17). The basal erosion surface of the Barnes Creek 

beds was recognized as an angular unconformity by Gwinn (1960) and 

Rasmussen (1969) and is well exposed west of Coberly Gulch. Vertebrate fossil 

collections from the unit suggest a late Barstovian age (Appendix H; Craig 

Christensen pers. comm., 2004). Konizeski (1958) and Rasmussen (1969) 

identified Clarendonian fossils from the "Bert" Creek beds (north of the Clark 

Fork River) that are later referred to as the Barnes Creek beds in Fields et al. 

(1985). The Bert and Barnes Creek beds are lithogically the same, can be
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Figure 15: (top) Flint Creek beds in Coberly Gulch. Note pervasive 
carbonate nodules that coalsce into tabular beds. Beds dip 9 degrees west.
(lat = 46.594333, long = -113.1149). (bottom) Polished slab of carbonate nodule.
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basin (# 15 in figure 4). Vertebrates found in the FCB from the Barstovian Flint Creek beds underlined, 
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Figure 17: Bames Creek beds - gravel and sand facies (A above; lat = 46.5918, 
long = -113.121367) in Coberly Gulch. Red mudstone facies overlying 
gravel faceis (B below; lat = 46.58378, long = -113.14663) in Bames Creek .
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m udstone facies

gravel facies
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correlated w ith the mid- to upper- Miocene Sixmile Creek Formation, and are 

likely stratigraphie equivalents (Fields et al. 1985 and Rasmussen, pers. comm., 

2004).

The Barnes Creek beds are stratigraphically equivalent to boulder-sized 

conglomerates and interbedded sands (Tscgs on Plate 1) exposed southeast of the 

tow n of Hall along Douglas creek. High terrace gravels exposed north of Barnes 

Creek are likely later stage deposits of the Barnes Creek beds (Rasmussen 1969). 

Fields et al. (1985) correlated these gravels with the Deer Lodge beds which 

yielded Hemphillian vertebrate fossils. This correlation suggests that the 

unnam ed high terrace gravels of the FCB may be upper Miocene in age.

Sequence #5:

Stratigraphically above the Sixmile Creek Formation are unconsolidated 

deposits of reworked Bozeman Group strata, loess, and angular gravel that have 

a basal erosion surface (Qlo -  Figure 9; Figure 18). This unit forms a pediment 

surface that has since been dissected during Holocene time. Late Pleistocene 

vertebrate fossils were identified from this unit in a small draw  north of the 

m outh of Barnes Creek (Rasmussen, 1974). Stratigraphie equivalents to the 

pedim ent cap deposits were identified west of the homestead of Jens in a gravel 

bench exposed 30 feet above the m odern day Clark Fork River flood plain 

(Rasmussen, 1969). Rasmussen (1969) nam ed these gravels the Hoover Creek
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Figure 18: Quaternary diamict overlying siltstone of the Flint Creek beds 
(lat = 46.58292, long = -113.10608).
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gravels (Qgrh -  Figure 9) and suggested that they were deposited by a proto 

Clark Fork River.

Measured Sections

Stratigraphie sections were measured in five separate localities and 

represent the major Tertiary units that are well exposed in the eastern FCB (see 

Plate 1 for location; Appendix D). The Dingwall ranch (DNGWLl-2) and 

Dunkleberg Creek (DNKBl-8) localities contain strata from the Cabbage Patch 

beds (Plate 3). The Douglas Creek (DGCl-4) and Barnes Creek (BNCl-2) localities 

contain strata from the Flint Creek and Barnes Creek beds (Plate 3). A well- 

exposed 75 m eter long nearly continuous section of Cabbage Patch, Flint Creek 

and Barnes Creek strata was measured in a western draw  of Coberly Gulch 

(CBYl-2) and is used as a reference stratigraphie section for the "mid-Miocene" 

unconformity (Plate 3).

Assuming no major structural disruption, the base of CBY2 can be 

projected along strike to a point stratigraphically above the top of DNGWLl. 

Rasmussen (1977) previously m easured strata in DNGW Ll-2 and identified a 

Pleurolicus gopher (family Geomyidae). Pleurolicus is an Arikareean index fossil 

and constrains the stratigraphie position of DNGW Ll-2 to the middle Cabbage 

Patch beds (Figure 13). This biostratigraphic correlation can be extrapolated to 

the CBY2 section placing it in the middle- to upper- Cabbage Patch beds. An 

Arikareean Mylagaulus (sp.) vertebrate fossil found in DNKB7 permits the
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assignm ent of DNKB sections to the Cabbage Patch beds. Stratigraphie 

correlations suggest that DNKB 1, 2,4, 6 are in lower- to middle- Cabbage Patch 

beds and DNKB5, 7,8 are in middle- to upper- Cabbage Patch strata.

BNC sections consist of westerly dipping (7-16 degrees) strata that 

correlate with Barstovian fossil localities identified by Douglass (1903) and Pierce 

and Rasmussen (1989). A gravel unit measured in BNC2 is lithologically similar 

to the Barnes Creek beds, but grades up into siltstone facies typical of the Flint 

Creek beds. Displacement of this distinctive gravel bed was used to calculate 60 

meters of throw in a down to the east high angle normal fault (Figure 19).

General correlation of BNC strata w ith DGC strata is dependent upon a 

Barstovian Artiodactyla (fm.) identified in DGC2. Upper Sixmile Creek Formation 

gravel beds (Tscgs) in the DGC sections show a clear angular unconformity with 

underlying Flint Creek strata (Figure 20). These gravels can be correlated with 

similar facies overlying the Flint Creek and Barnes Creek beds in the BNC area 

(QTgrm on Plate 1).

Tephra Correlation

Volcanic air fall ash beds were sampled from three different localities of 

Cabbage Patch strata in the Coberly Gulch and Dunkleberg Creek drainage 

areas. A two-meter thick very fine-grained air fall ash bed that has been 

reworked is well exposed in the base of CBY2 (Figure 21). This ash bed can be 

used as a stratigraphie m arker bed for the FCB. It probably correlates with a two-
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m eter thick air fall ash bed in DNKB8 and a fine-grained ash bed in DNKB7 

(Figure 21). Here it is nam ed the "Flint Creek air fall ash". An age date from this 

ash bed (work in progress) will provide constraints on the upper age limit of the 

Cabbage Patch beds and compliment the existing magnetostratigraphic 

correlation. Furthermore, it will provide key chronologic information that will 

assist in correlation with currently identified regional tuff marker beds in other 

basins of southwest M ontana (Hanneman and Wideman, 2004).
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Figure 19: East dipping normal fault in upper Flint Creek beds of the BNC2 
measured section. Beds dip 9-15 degrees west. Jacob staff is 1.8 meters.

Figure 20: Massive siltstone of the Flint Creek beds dipping 24 degrees 
west in DGC measured sections. Overlain by boulder sized gravel of 
QTgrm m ap unit (Plate 1).
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Figure 21: Tephra beds of the FCB 
a: CBYl rippled airfall ash (~1.7m thick) 
b: well preserved ripples of CBYl ash 
c: DNKB8 tephra. Well preserved soft sediment 
deformation features.
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SEDIMENTOLOGY

Facies Descriptions

Tertiary and Quaternary rocks of the FCB share similar characteristics and 

prove difficult to recognize and map in the field. M easurement of detailed 

stratigraphie sections has provided the basis for recognition of several facies used 

to identify individual m ap units. The facies described below have been observed 

in the m ap area and can be assigned to the major units (Table 2).

TableZ: Facies D istribution of Cenozoic map units
Note: other gravel units (ie. QTgr) contain proportions of Tscgs and QTj?rm

Sb SI G f C m Fb Fm Cc Cm

Qal 12% 50% 38%
Qlo 12% 50% 38%
QTgrm 100% 12%
Tscgs 88%
Tscb 25% 50% 25%
Tscf 6% 12% 50% 32%
Tscfg 12% 88%
Trcp (u) 12% 6% 58% 12% 12%
Trcp (1) 50% 25% 25%
Tml 12% 88%

Gf - Gravel, fram ew ork supported

Clasts are pebble to boulder sized (max diameter - 60 to 70cm) and commonly 

imbricated (Figure 14b). Clasts are dominantly well-rounded to sub angular, 

spherical clasts and m oderately- to well- sorted. Matrix is composed of angular 

very coarse sand. Facies distinguished by a loose to tight framework support and 

interbedded sandy lenses.
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Gm - Gravel, m atrix supported

Clasts are granule to boulder sized (max diameter -  50cm), poorly sorted and 

nonstratified. Clast shape is rounded to very angular with low sphericity. Matrix 

typically is composed of brown sandy mud. Facies distinguished by an open 

framework (Figure 22)

Sb - Sandstone, bedded

Very fine- to very coarse-, subround- to very angular-, poor- to moderately- 

sorted sand. Trough and planar cross beds are common (Figure 23). Bedforms 

are more easily discerned in cemented outcrops that tend to form competent 

exposures. Beds are generally massive to thick and commonly wedge to ribbon 

shaped.

SI - Sandstone, lenticular

Very fine- to very coarse-, very angular, very poorly- sorted sand that lacks 

cement. Bedforms are rare but include planar cross-stratification. Bedding is 

typically lenticular and laterally discontinuous. Facies distinguished by 

abundance of granule- to pebble- sized angular chips of locally derived bedrock 

(Figure 24).

Fb -  Fine grained bedded  sedim ents

Facies dom inated by thin- to medium - bedded tuffaceous mudstone, siltstone 

and clay stone w ith m inor fissile shale. Root traces, ferruginous mottling, 

granular texture and rare slickensides typify pedogenically modified beds. 

Colors dominantly include shades of brown, green, tan, pink, gray and dark
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Figure 22: Gm faciès - Matrix supported angular boulders. Exposure of 
west dipping Flint Creek beds 750 ft east of the Dunkleberg Fault.
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Figure 23; Sb facies - bedded sandstone. Basal Cabbage Patch sandstone 
from Dunkleberg Creek locality.

i

: ■
Figure 24: SI facies - lenticular pebbley sandstone. BNC section of 
Flint creek beds
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m aroon on fresh surfaces. Unweathered volcanic glass and reworked air fall ash 

(tephra) beds are a distinguishing component of this facies (Figure 12b).

Fm - Fine grained massive sediments

Facies is dom inated by massive siltstone and mudstone. Devitrified volcanic 

glass is commonly a major component. Pedogenic modification is locally well 

expressed in clay rich units w ith mottling, caliche, root traces and a complex 

network of cracking and veining. Siltstone color is typically light tan (buff), and 

m udstone colors range from dark brown to brick red. Facies distinguished by 

total lack of bedding (Figure 20).

Cc -  Carbonate calcrete

Calcrete is here defined as a terrestrial accumulation of CaCOs that occurs in 

nodular and highly indurated, massively- bedded forms (after W right and 

Tucker, 1991; Figure 15a). The facies locally contains granule to pebble sized 

detritus that show displacive growth by calcite cement (Figure 15b). This facies 

generally lacks invertebrate fossils, contains burrows and commonly preserves 

vertebrate fossils.

Cm - Carbonate marlstone

Fossiliferous carbonate units are well bedded and typically are clay- rich 

(micritic). Invertebrate fossils include gastropods, pelecypods, ostracods, 

diatoms, fresh water sponges and algae (Figure 25a). Facies is commonly very

50



Figure 25: (above) Cm fades - fossiliferous marlstone, includes gastropods, 
pelecypod and ostracods. Sample from Dunkleberg Creek locality.
(below) Marlstone bed (upper part of unit 2 of DNGWLlb) that exhibits 
vertically elongate downward branching root tubules.
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thinly to m edium  bedded. Units locally display evidence of pedogenesis and 

exhibit rhizotubules, complex cracking, and abundant mottling (Figure 25b). 

Facies distinguished by carbonate content, internal bedding and invertebrate 

fossils.

Paleosols and Clay Mineralogy

Clay samples were taken in measured sections of the Bozeman Group 

along key bounding unconformities and within pedogenically altered strata. 

Diffraction patterns of oriented <2 micron grain size samples were modeled with 

the NEWMOD program  to estimate relative percentages of clay minerals 

(Reynolds and Hower, 1970; Appendix 1). Figure 26 shows the relative 

distribution of clay types, expandability of interlayered swelling clay and iron 

(Fe) content of smectite. Interlayered smectite/illite clay is the dominant clay in 

all samples.

A high proportion of halloysite (Kaolinite group mineral; 7.2 angstrom-d 

spacing) occurs in basal red Gm and Fm facies (Tml on Platel, Figure 11; Figure 

26). Cretaceous bedrock immediately underlying the horizon exhibits reddening 

that decreases dow nw ard from the K-T boundary. Along the contact, a clay stone 

breccia with radiating calcite cement and abundant hematite forms a competent 

unit only 10 cm thick (Figure 27). The clay stone is lithologically similar to
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Figure 26:
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53



Figure 27: (above) Brecdated Dunkleberg Member (Kbld) bedrock along the K-T boundary 
in the Dunkleberg Creek locality. Red Hematite staining in top of photo and matrix 
composed of calcite. Unit is <20cm thick and is overlain by red kaolinitic clay (Tml) depicted 
in figure 11. (below) Photomicrograph of KT Breccia, matrix is calcite.
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underlying strata and suggests pedogenic brecciation of underlying strata during 

Paleogene time.

Clay samples from two paleosols (facies Fb) of middle Cabbage Patch 

beds are dom inated by interlayered smectite/illite clay with RO reschvite 

ordering and expandabilites of greater than 80% (Figure 26). Root traces are the 

most common pedogenic feature in Cabbage Patch beds and tend to be bright 

yellow, orange and brown (Figure 28a). Burrow casts and molds are locally 

found and also suggest exposure of the parent materials to soil formation 

processes (Figure 28b). The burrows are typically much larger than the root 

traces and do not bifurcate downward. Slickensides are diagnostic of pedogenic 

processes (Figure 28c). Paleosols are typically orange brown, olive or yellow and 

commonly have reddish orange mottles. Paleosol profile horizonation is poorly 

developed, but is observed in measured section DNKBTb between units 9 and 15. 

Cc facies of that section are approximately 1-4 meters below a horizon of root 

traces and ferruginous mottling, here inferred to be the upper portion of a profile 

(Plate 3).

The upperm ost m eter of Cabbage Patch strata below the mid-Miocene 

unconformity Gf facies in the CBY section, is 99.9% smectite and illite clay 

(Figure 26). Ferruginous mottling is common in this unit and pedogenic slickens 

are present locally. A very dark brown irregularly laminated horizon (unit 3 

CBYII) w ith horizontally bifurcating strings may represent a root m at (Figure 

14c). Barite nodules (<3cm diameter) are scattered throughout an 11cm clay
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Figure 28: Cabbage Patch beds paleosol features.
a. Ferriginous root traces collected from DNGWL 2b measured section.
b. Vertically elongate burrow mold, possibly from rodents (Rasmussen, pers. comm., 2004)
c. Pedogenic slicken sampled from DNGWLlb. Occurs as a result of expandable clay 
shrinking and swelling in well-drained soils.
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horizon (unit 4 CBYII -  III115.1) that is mottled and has a platy to blocky texture 

(Figure 14c; Figure 26; Appendix I). The nodules are crystalline masses with 

internal voids filled with clay parent material.

Destruction of bedding in facies Fm is typical of the Flint Creek beds and 

is suggestive of pedogenesis. Facies Fm is commonly interstratified with Cc. 

Irregularly shaped carbonate nodules tend to coalesce into massively indurated 

beds and form prom inent outcrops (Figure 15). Clay types of calcrete host rocks 

are dom inated by smectite w ith very minor amounts of kaolinite (Figure 26). 

Locally well preserved rhizoconcretions are also evident and typically preserved 

by calcite (Figure 29a). Large burrow  molds are commonly preserved in CaCOs 

and are vertically elongate (Figure 29b, c). Uppermost Fm facies of the Flint 

Creek beds are mottled, relatively clay-rich and contain abundant root traces 

(unit 10 CBYllb).

Kaolinite is a noticeable constituent in Fm facies of the Barnes Creek beds 

(Figure 26). Paleosols of the Barnes Creek beds occur as ocher red mudstones 

(Fm) that are interbedded with gravelly facies (Gf) (Figure 17b). These 

m udstones are commonly m ottled, contain root traces and have rare carbonate 

nodules. Exposure quality is too poor to deduce horizonation.

Petrography

Well-cemented sandstone samples from Bozeman Group strata are more 

common in Sb facies of lower Cabbage Patch strata. Therefore, pétrographie

57



oi
00

Figure 29: Pedogenic features of Fm and Cc facies 
of the Flint Creek beds.
a. Vertically elongate rhizoconcretion composed of carbonate
b. Vertically aligned burrow molds composed of carbonate f,
c. Calcrete unit showing basal burrow molds
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analysis of Tertiary strata in the field area is biased towards lower stratigraphie 

intervals. Silica cement (chalcedony and opal) prove to be a much better medium 

for sand grain point counting than calcite cement, because calcite replacement of 

num erous grains, particularly feldspars, rendered their identification impossible. 

Calcite cement is common in upper Cabbage Patch strata, basal Sixmile Creek 

Formation G f bed matrix and to a lesser degree in the Barnes Creek beds. 

Because of the effects of calcite replacement, these samples were analyzed 

qualitatively. Silica cement was only common in lower and middle Cabbage 

Patch strata and shows several generations of growth (Figure 30a, b).

Gravel beds tend to occur with non-consolidated sand facies and are 

rarely cemented by calcite. Most gravel facies occur at higher stratigraphie levels 

with in the Sixmile Creek Formation. (Appendix J).

Upper Renova Formation -  Cabbage Patch beds

Sandstone units from Sb facies are typically arkosic and texturally 

immature (Figure 31). They contain approximately 18% to 32% feldspar 

(Appendix K). Plagioclase is very often zoned and altered by sericite. A few 

grains exhibit myrmekitic texture (Figure 30b). Plutonic lithic grains make up 

10% to 23% of samples and are more common in coarser samples (Figure 30a; 

Figure 31). Volcanic and sedimentary lithic grains were of about equal bulk 

percentages and sheared metamorphic fragments the least abundant (Figure 

30a,c). In order of decreasing abundance biotite, muscovite and hornblende are
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Figure 30: Sandstone samples from the Cabbage Patch beds L
A. III27.1a - Two generations of silica cement (1 and 2). Volcanic ^  
lithic grain with biotite in middle of slide (V), Plutonic lithic
with muscovite lower right and sericite covering plagioclase (G). 
Zoned plagiocalse grain upper right (P). Note the angular 
poorly sorted texture. V
B. III27.1b-Myrmakitic texture of plagioclase grain in upper
right comer (P). Volcanic lithic grain lower left (V).
C. 1151.1a - Sedimentary metamorphic lithic grain. ''■T. k'

0.1mm
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Figure 31: Ternary Diagrams of 7 sandstone samples from the Cabbage Patch 
beds. Sample grain size is portrayed by diameter of circle on ternary diagram.
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the m ost common accessory minerals. These minerals locally occur in high 

quantities. Biotite is m ost often altered to a chlorite group mineral compared to 

the very clean and euhedral muscovite. Sphene and zircon are common dense 

minerals.

Conglomerate was a very minor component of Cabbage Patch exposures 

identified in this study. Monomict Gm facies were observed in DNGBG7 

m easured section proximal to the Dunkleberg fault. Clast lithologies are 

dom inated by Cretaceous Dunkleberg member porcellanite that is exposed in the 

footwall of the Dunkleberg fault.

Carbonates from facies Cm are primarily micritic and contain molluscs, 

gastropods and ostracods (Figure 25a). Shell material is commonly composed of 

original aragonite. These units may be classified as bioclastic packestones after 

Folk (1962) and Dunham  (1962). Sample III83.1 contains gastropods, algae, and 

root tubules (Figure 25a, b). This unit has 20%-50% sparry calcite that shows 

displacive growth (Figure 32a). A carbonate nodule from Cc facies exhibits a 

peloidal grainstone composition (sample -1119.1; Figure 32b). Micritic peloids are 

typically in a matrix of neospar to m edium  spar. This sample contains no 

macrofossils but does contain Charophyta, sponge spicules and possibly 

unidentified algae (Figure 32c).

62



a

Figure 32:
Carbonates sampled from the Cabbage Patch beds
A. III83.1 - Fossiliferous marlstone showing starlike displacive 
growth of secondary sparry calcite. Also see figure 25b.
B. II19.1 - Peloidal grainstone. Peloids are composed of 
micrite and set in a neospar matrix.
C. II19.1 - Charophyta fragment. Left pollup splitting into two 
pollups. Note scattered detrital clasts.
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Sixmile Creek Formation

A tabular bed of imbricated polymictic Gf facies occurs along the mid- 

Miocene unconformity (Figure 14b). Boulders up to 0.8 meters across (longest 

axis) sit directly on the bed's sharp erosional basal contact. The base of the unit 

has poor fram ework support and contains the largest clast sizes. The largest 

boulders are tan quartzite and they tend to have numerous percussion marks 

(Figure 14c; Figure 33). Calcite cement is common throughout and sand matrix is 

very coarse, angular and poorly sorted.

Gravel facies of the Flint Creek beds are more common at higher 

stratigraphie levels. Monomictic Gm and SI facies in the Flint Creek beds are 

dominated by very angular porcellanite clasts lithogically similar to porcellanite 

found in the Cretaceous Dunkleberg member. Clast sizes range from granule to 

pebble w ith the exception of a small boulder bed along Dunkleberg creek (Figure 

22). An atypical exposure of Gf facies in the Flint Creek beds is present at the 

base of the BNCla section. It is lithologically identical to gravel facies in the 

Barnes Creek beds (see below for description).

Cc facies of the Flint Creek beds are prolific and are a distinguishing 

feature of the unit (FigurelS; Figure 29). Calcrete matrix lithologies are 

dominated by coarse spar and neospar. They contain abundant siltstone 

intraclasts, volcanic glass, fresh water sponge spicules and bioclasts. Small 

spherical grains of neospar w ith coarse spar void fillings are common 

throughout. They resemble root traces in thin section as described by Klappa
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Figure 33: Conglomerate d ast counts 
sam ples collected above mid Miocene unconformity
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(1980). Sample III63.8 contains num erous granule sized clasts of bedrock and 

intraclasts that are set in a neospar matrix (Figure 15b). Quartz sand, mica, chert 

and euhedral feldspar are common components of sample 11163.8. These "clastic" 

calcretes are a diagnostic lithology of the Flint Creek beds.

Interstratified Sb and Gf facies of the polymict Barnes Creek beds are best 

recognized by a greenish hue common in many outcrops. Sandstone is generally 

more m ature than underlying Cabbage Patch and Flint Creek beds. Mica is less 

common and the lithic component is considerably more subordinate. Most beds 

are poorly consolidated but some calcite cement is locally evident. Gravel is 

predominantly pebble- to cobble- sized, well sorted and well rounded. Average 

grain size increases toward the southern part of the basin. Quartzite is the 

dom inant clast type (Figure 33). Rare plutonic clasts are commonly quartz 

monzonite and granodiorite in composition. Very few volcanic clasts were 

found.

Polymict Gf facies from the upper Sixmile Creek Formation (Tscgs in 

Figure 9) are lithologically similar to that found in the basal Sixmile Creek 

boulder bed (Tscfg in Figure 9). Clast types contain noticeably more tan, pink 

and maroon quartzite clasts than gravel in the stratigraphie equivalent Barnes 

Creek beds. The largest clasts in the basin are found in these beds; 60-70 cm sized 

clasts are not uncommon. Sand matrix is very coarse and angular. Monomictic 

Gm facies are more common tow ard the fringe of the basin and exhibited in 

measured sections of Douglas Creek. Approximately all clast types from the Gm
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facies (QTgrm on Plate 1) at the base of Douglas M ountain are tan quartzite and 

are lithologically similar to quartzite from the Pennsylvanian Q uadrant 

Formation exposed on Douglas Mountain.

Quaternary Pediment

Very angular monomict Gm facies and loess unconformably overlie the 

upper Miocene Barnes Creek beds. Clast types are dominated by very angular 

clasts of the Cretaceous Dunkleberg member (Figure 33). Silt is the primary 

lithology of this unit and composes the gravel matrix.

Paleocurrent Indicators

Paleocurrent indicators in the Cabbage Patch beds were measured from 

units in lower stratigraphie levels. Over 49 combined measurements from two 

outcrop localities in the Dunkleberg Creek drainage show a mean paleoflow 

direction of 303 and 319 degrees (sample 1151.1 and 11127.1 in Plate 1). This west 

to northwest directed paleoflow agrees with observations by Rasmussen (1977) 

of an eastward coarsening of Cabbage Patch conglomerate and sandstone beds 

into the adjacent Deer Lodge and Divide basins. Sparse paleocurrent indicators 

in strata west of Dunkleberg ridge also support a northwesterly flow. The ash 

bed identified at the base of the CBY2 has particularly well preserved ripple beds 

that also have a westerly orientation (Figure 21a, b).
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Paleoflow inferred from clast imbrication of the basal Sixmile Creek 

Formation boulder bed (Tscfg -  Figure 9) has a 91 degree orientation (sample 

III117.1 in Plate 1). This easterly paleocurrent is in marked contrast to underlying 

and overlying strata. Paleocurrent indicators in the overlying Flint Creek beds 

are very sporadic and were taken from small discontinuous pebble units. They 

range from northerly in the southern part of the basin to westerly in the north 

part of the basin (Plate 1).

W ell-preserved trough cross beds (Sb facies) and clast imbrication (Gf 

facies) in the Barnes Creek beds indicate a western paleoflow near the top of 

section CBY2 (Figure 34a). This orientation is parallel with an inferred channel 

margin cut into underlying strata of the Flint Creek beds (Figure 34b). 

Stratigraphically equivalent Gf facies (Tscgs) in the southern part of the basin 

contain imbricated clasts showing north to northeast transport direction (see 

arrow at m outh of Douglas Creek on Plate 1). Clast sizes of these units decrease 

to the north toward Barnes Creek bed facies.
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Figure34: Barnes Creek paleovalley
a. T rough bedded  sand and  im bricated gravels of Tscb in CBY2
b. Basal erosion surface of horizontally bedded  Tscb in  CBY2. Tscf dips 9 degrees w est
c. Inferred paleovalley orientation looking w est from  D unkleberg ridge, (electric w ires ~100ft tall)
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BASIN STRUCTURE

The largest exposed basin bounding normal fault is the east dipping 

Dunkleberg Fault, which was m apped along the eastern flank of Dunkleberg 

ridge and can be traced south into the Dunkleberg Creek drainage (Plate 1). 

Bedrock in the footwall of the fault is highly fractured and bedding can not be 

discerned. Possible fault plane travertine deposits have been reworked and 

redeposited in downstream  Quaternary sediments. Gm facies of the Flint Creek 

beds have dips up  to 50 degrees west into the fault. They are exposed in the 

hanging wall close to the inferred location of the fault. Balanced cross section C- 

Q' requires at least 300 (?) meters of throw on the Dunkleberg fault and 

associated imbricate splays (Plate 2).

On the west flank of Dunkleberg ridge, highly fractured and veined strata 

of the Dunkleberg member occur just west of Coberly Gulch and suggest the 

presence of a fault there. This is supported by the observed map pattern as well 

as gravity and seismic data collected by Stalker (2004). However, cross section C- 

C' does not require a norm al fault in the subsurface Cretaceous strata of Coberly 

Gulch (Plate 2).

High angle east dipping reverse faults in bedrock along the southern flank 

of the map area can be traced northw ard into the basin where they align with 

high angle east dipping norm al faults (Plate 2 -  cross section B). Large 

stratigraphie displacements of Tertiary strata are not observed. Correlation of the 

ripple bedded ash m arker bed between CBYIa and CBYIb sections suggest
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approximately 30-50 meters of Cabbage Patch bed offset across the Coberly 

Gulch fault. Good exposure of the Barnes Creek fault in BNC2 demonstrates 

approximately 30 meters of displacement within strata of the Flint Creek beds 

(Figure 19).

Strata of the eastern Flint Creek basin dip to the west across the entire 

map area and tow ard easterly dipping normal faults. Dip of strata in the CBY 

section decreases up  section from 11-16 degrees in Cabbage Patch strata, to 6-9 

degrees in Flint Creek strata (Plate 1). Both of these units are overlain by the 

horizontal Barnes creek beds, which do not appear to be offset by the small 

normal faults mentioned above. Last m ovement on the small inter basin faults is 

constrained to be older than the late Miocene Barnes Creek beds and younger 

then the middle Miocene Flint Creek beds (>12 mya - Early Barstovian).
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DEPOSITIONAL ENVIRONMENTS 

Eocene -  Early Oligocene

Carbonaceous pre-Cabbage Patch strata were referred to as Tertiary 

lacustrine beds in the driller's report of borehole Henderson-Lorensen well #2 

(Appendix E). These beds are probable equivalents to carbonaceous sediments 

interbedded with the Eocene Garnet Range volcanic sequence (Carter, 1982). The 

presence of plant fossils, pelecypods, coal and lignite in these strata support a 

marshy lacustrine environment. This environment of deposition may have 

developed synchronous with hiatuses of Eocene volcanic activity in the western 

FCB. These strata are neither present at the surface nor in the subsurface in the 

eastern FCB, likely as a result of erosion or nondeposition.

Late Oligocene -  Early Miocene

Fluviatile, lacustrine and paludal environments of deposition were the 

main depositional settings for the tuffaceous sediments of the Cabbage Patch 

beds (Rasmussen, 1969,1977,1989). Aeolian derived volcanic ash fall beds are 

less common. Facies characteristic of these environments of deposition 

interfinger and change rapidly both laterally and vertically in measured sections.

A west- to northwest- flowing fluviatile system deposited arkosic Sb 

facies and correlative overbank deposits. Rasmussen (1977) showed that 

fluviatile overbank deposits make up 67% of the Cabbage Patch beds and that 

lacustrine facies are only apparent in upper strata. This abundance of overbank
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deposits attests to the aggradational nature of stream systems. Pedogenic 

modification occurred on exposed floodplains between aggradational events. A 

lack of good horizonation in paleosols suggests that they were poorly developed 

and represent a rapidly aggrading depositional setting (Kraus and Brown, 1986). 

A lack of gleyey color (gray and blue hue) and accumulation of ferric (Fe3+) iron 

(red/orange root traces and mottles) suggest that soils were oxidized and well 

drained (Retallack, 2001a). The dominance of m ud and silt, floodplain paleosols 

and a general lack of coarse conglomeratic detritus suggest that meandering 

stream systems were in operation. Trough cross beds and lesser amounts of 

planar cross beds evident in sandstone beds are indicative of lower flow regime 

fluvial processes.

Interstratified Cm facies, Fb facies, fissile shale (western FCB) and rare 

diatomite (unit 3 of measured section DNKBl) are representative of low energy 

lacustrine depositional environments. Mollusks collected from Cm facies are 

typical of fresh water lacustrine environments (Pierce and Rasmussen, 1992). 

Root tubules in a fossiliferous marlstone bed (unit 2 of measured section 

DNGWLIb), suggests water depth was shallow enough for plant colonization. 

Plant colonization could also have been from periodic exposure of carbonate 

mud flats, particularly along lake margins. This sub-aerial exposure would 

initiate pedogenic modification and be coincident with lowered lake levels. The 

presence of gypsum  crystals observed in float of DNKBl and bedded gypsum
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identified north of the field area by Rasmussen (1977), suggest lower lake levels 

and an evaporative basin of deposition.

Alonso-Zarza (2003) demonstrated that the gradual lateral lithologie 

change of lacustrine carbonate facies to pedogenic calcretes is dependent upon 

their proximity to the edge of a lake where oscillations in lake level are prevalent 

(Figure 35). Palustrine carbonates are defined as ephemeral carbonate lake 

m argin facies (Freytet and Plaziat, 1982). The term is broadly equivalent to 

"paludal" or swam py and marshy (Platt, 1989). Rooted carbonate units and 

laterally equivalent calcareous nodule bearing paleosols such as those in the 

Dingwall section of the FCB share similarities with the palustrine depositional 

environm ent described by Alonso-Zarza (2003). Petrographically these palustrine 

carbonates show displacive growth by sparry calcite that appears to overprint 

the prim ary micritic m ud (Figure 32a, ie. 1II17.2). This microtexture was not 

observed in the non-pedogenically altered Cm facies and is unique to the 

palustrine environm ent of deposition.

Ripley (1987) showed that at the boundary between fresh and alkaline 

water in Renova Formation depositional environments (lake margins?), 

dissolved silica could precipitate out of solution. This process formed the 

Tertiary porcellanites recognized in the Avon valley (known locally as the "Avon 

Valley Chert") northeast of the FCB (Ripley, 1987). Silicified wood and massive 

chert beds in the FCB laterally correlate across the w idth of an outcrop with
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Figure 35: Schematic diagram  of the lateral distribution of carbonate 
facies relative to a lake m argin  (taken from  Alonso-Zarza, 2003).

Figure36: Silicified w ood (left) and  silicified m udstone (right) 
of the Cabbage Patch beds in DNKB sections.
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fossiliferous mudstones. These localized beds probably formed along lake 

m argins in a palustrine environm ent similar to that described by Ripley (1987) 

(Figure 36).

M iddle Miocene to Late Miocene

Following a depositional hiatus and erosion during the later part of the 

Early Miocene, deposition in the FCB resumed with a pulse of very coarse 

boulder sized detritus (Gf facies) that flowed to the east. The boulder bed must 

have been deposited in an environm ent with enough energy to transport and 

round the durable quartzite boulders. The framework support, rounded clast 

texture, lack of m ud, tabular geometry, percussion marks and well-developed 

imbrication of the unit suggest that high velocity fluid flow prevailed. Upper 

flow regime processes w ith a significant am ount of reworking like that found in 

a sheet flood flow w ould provide the necessary energy to transport the large 

boulder detritus and form a laterally extensive bed. A m ud-dominated debris 

flow deposit would have to be extensively reworked to produce such a mature 

lithology.

The thick succession of Fm facies that overlies the basal boulder bed (see 

CBY section) is lithologically similar to the floodplain deposits found in the basal 

Cabbage Patch beds. If these Fm facies represent overbank floodplain deposits 

their lateral channel complex equivalents are generally not exposed or not 

preserved. Alternatively, there may have been a lack of fluvial environments
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operating during deposition of the lower Flint Creek beds. The massive siltstones 

could have been deposited on a lake margin. Although evidence for a lacustrine 

environm ent does not exist in lower Sixmile strata of the FCB, McLeod (1987) 

and Sears and Ryan (2003) interpret a lacustrine environment of deposition in the 

adjacent Deerlodge basin.

A fluvial channel G f facies was observed in the stratigraphically higher 

upper Flint Creek beds (unit 1 BNCl and unit 5 BNC2). Adjacent to these gravels 

are FI facies that are interstratified with Fb facies. This facies association is 

indicative of overbank levee and floodplain deposits laid down during flood 

stage of the fluvial system (DGC and BNC sections). Paleoflow indicators suggest 

flow tow ard the center of the basin and agree with intrabasmal composition of FI 

facies.

Post depositional calcretes (Cc facies) commonly pervade many of the 

facies described above. Calcretes form in paleosols (pedogenic calcrete), within 

the vadose zone below the level of soil formation or at the capillary fringe zone 

below the water table (groundwater calcrete; W right and Tucker, 1991). They are 

very common in alluvial and colluvial sequences where porous gravels serve as 

clast nucléation sites for calcium carbonate to precipitate on (Jimenez-Espinosa 

and Jimenez-MÜlan, 2003; Nash and Smith, 2003). Nodular calcretes that occur in 

sediments of the CBY and BNC sections resemble pedogenically- derived 

cornstones of the Middle Siwalik Group in India described by Tandon and 

Narayan (1981). Calcretes of the FCB and Siwalik group, both typically occur in
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fine-grained floodplain facies as bands of indurated fine-grained carbonate that 

exhibit floating detrital grains, displacive calcite growth and microspar. 

Coalesced carbonate nodules that form laterally continuous competent beds, 

such as those locally found in the Flint Creek beds, were observed by Gomez- 

Gras and Alonso-Zarza (2003) in discrete paleosol horizons of Spain. The lack of 

horizonation and sporadic distribution of the carbonate nodules in the Flint 

Creek beds suggest that paleosols are relatively immature. The apparently 

imm ature nature of paleosols makes the distinction between non-pedogenic and 

pedogenic calcretes difficult. Because calcretes of the Flint Creek beds occur in a 

floodplain environment, host rocks would have been frequently inundated 

during flood stage by rising groundwater tables. Fluctuation of a shallow water 

table in the floodplain would precipitate carbonate in the capillary fringe zone. 

Elongate calcrete nodules resemble molds of large vertical burrows (Figure 29b, 

c) that may have been created by Mylagaulid gophers (D. Rasmussen, pers. 

comm.., 2005). It is likely that both pedogenic and non-pedogenic carbonate 

replacement processes were acting on parent materials of the Flint Creek beds.

Polymict Gf and Sb facies of the Barnes Creek beds were deposited in a 

northwesterly flowing fluvial system that eroded underlying strata during an 

initial episode of degradation. Fluvial incision is demonstrated by a high angle 

basal erosion surface that cuts into Cretaceous strata east of Coberly Gulch and 

Flint Creek strata west of Coberly Gulch. This erosion was preceded by 

pedogenic modification of upperm ost Flint Creek strata that is locally preserved
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below the erosion surface (unit 10 of CBYII). Once aggradational conditions were 

established, detritus was reworked and deposited in a westerly oriented 

paleovalley (Figure 34). Fm facies were deposited in an overbank environment 

during flood stage and subsequently pedogenically altered. The total percentage 

of m ud and fine-grained detritus decreases to the south toward the apex of the 

basin. The predominance of coarse facies over fine facies and abundance of 

internal erosion surfaces suggest that braided fluvial systems were the dominant 

environm ent of deposition.

Polymict G f facies in the southern part and flanks of the basin were 

deposited in a north flowing alluvial system. The coarse grain size, framework 

support, tabular geometry and general lack of m ud typical of these facies suggest 

that they were deposited in braided fluvial and sheet flood environments. These 

observations imply that coarse Gf facies were deposited in a north dipping 

proximal to medial alluvial fan bajada complex that fed detritus to a west 

flowing axial Barnes Creek fluvial system. Northerly dip of the bajada surface 

can still be seen today in a dissected terrace evident in the southeast part of the 

basin. Matrix supported gravels that flank the basin and overlie the Barnes Creek 

beds represent debris flow deposits that blanketed the central basin facies. 

Similar facies relationships of the Sixmile Creek gravelly strata in southwest 

Montana were observed by Thomas et al. (1995), Sears et al. (1995) and Nielsen 

and Thomas (2004).
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Pleistocene to Holocene

Q uaternary time marked a period of loess deposition, reworking of 

intrabasinal detritus and accumulation of fluvial gravel. Pleistocene sediments 

were deposited on the flank of Glacial Lake Missoula (Figure 37). A debris flow 

carried granitic boulders from the m outh of Boulder Creek in the far southern 

part of Flint Creek Valley (near Maxville) up to at least the town of Hall -20km 

north (Beatty, 1961). Rasmussen (1969) interpreted the Hoover Creek gravels as 

fluvial gravels of the ancestral Clark Fork River. The pronounced terraces seen 

today were formed during down-cutting by the ancestral and modern day Clark 

Fork River. Quaternary gravels are well exposed in some drainages and are 

primarily reworked Tertiary gravels.

GARNET

RANGE

10 miles
Glacial Lake Missoula A  Ash localities

• Fossil Localities

Figure 37: E astern  ex tent of glacial lake m issoula in the vicinity 
of the FCB. Fossil control show n w ith  d a rk  dots.
(taken from  R asm ussen, 1974)
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PALEOGEOGRAPHY AND PROVENANCE 

Pre~Renova Formation

Sediments of the FCB were deposited on a paleoerosion surface created 

during Eocene time. Rasmussen (1977) showed that the ash flow tuff at the base 

of the Cabbage Patch beds was deposited in a paleovalley that ran southwest 

from a volcanic edifice in the Garnet Range. Nowhere does the ash flow tuff 

coexist w ith the basal red clay horizon observed elsewhere in the basin. Local 

Gm facies of the red clay horizon in the FCB are lithologically similar to red 

syntectonic conglomerates of the ACC hangingwall to the south (O'Neil pers. 

comm., 2004). Those facies may have been derived from unroofing of the ACC 

footwall.

Renova Formation

Cross-bedded fluviatile sandstone facies of the Arikareean (>27ma) 

Renova Formation in southwest Montana generally exhibit an east-directed 

paleoflow direction (Figure 38a; Thomas, 1995; Lofgren, 1985; Axelrod, 1984). 

Janecke (1994) suggested that fine detritus flowed east across the footwall 

shoulder of a Paleogene rift and into the Renova basin (Janecke, 1994). A two- 

mica granitic source for most Renova sandstone lithofacies is inferred from their 

arkosic composition and large flakes of both muscovite and biotite (see Thomas,

1995). Detrital zircon analysis of Arikareean aged (>27.7 Ma) 2-mica sandstones 

in the Grasshopper and Beaverhead basin (see Figure 4) contain 70 to 83 Ma
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Figure 38: Paleogeographic Schematic diagrams
ACC-Anaconda Core Complex; BB-Boulder Batholith; BBCC-Boehls Butte Core Complex; BCC-Bitteroot 
Core Complex; QCC-Chief Joseph Core Complex; CV - Challis Volcanics; DL - Deer Lodge lake;
EMV - Elkhorn Mountain Volcanics; FCB-Flint Creek Basin; PC - Flint Creek range; GRV-Gamet Range 
Volcanics; LCL-Lowland Creek Volcanics; PRC - Priest River Core Complex.

£L. Arikareean (~29.5ma - 20ma). 
Exhumation and unroofing of 
regional core complexes and 
volcanic edifice denudation, 
supplying 2-mica detritus 
souteastward into Renova 
basins of southwest Montana 
and northwestward into the 
Flint Creek and Deer Lodge 
basins

M isso u la

b. Hemingfordian-Early Barstovian (~'17-13ma).
Major uplift and normal faulting produce the mid-Miocene 
unconformity (17-15) ma. Onset of basin and range 
faulting in western Montana. Development of internal 
drainage, saline Deer Lodge lake basin (DL) and 
precipitation of Flint Creek (Tscf) calcretes shortly follows.

C. Late Barstovian (~13-6 ma).
Fllowing a renewed period of faulting after deposition 
of the Flint Creek beds (Tscf) the Deer Lodge lake 
basin is filled and an external drainage develops.
Large bajadas extended north from the Philipsburg area 
feeding coarse detritus to a NW flowing axial Barnes 
Creek fluvial system. Alluvial fans were fed coarse detritus 
from the upifting Flint Creek Range and modern day 
topography starts to develop.

C / D L
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grains (Link, et al. 2004). The two mica bearing Chief Joseph plu ton in the 

footwall of the newly recognized Chief Joseph core complex and 2-mica footwall 

rocks of the ACC were probable sources for the granitic detritus of the 

Arikareean Renova Formation (Janecke et al., 2004; O'Niell et al., 2005).

Northwesterly paleocurrents for fluvial systems of the Arikareean aged 

upper Renova Formation in the FCB, Divide and Deer Lodge basins are nearly 

180 degrees from correlative strata in southwest Montana mentioned above 

(Rasmussen, 1977 and Harmeman, 1989). West flowing fluvial systems are 

inconsistent w ith an easterly tilted rift shoulder model proposed by Janecke 

(1994) (Figure: 38a). Rasmussen (1977, p. 88) suggested that the Boulder batholith 

was a principal source for the arkosic composition of Cabbage Patch sandstones. 

Muscovite evident in Cabbage Patch sandstones likely was not derived from the 

muscovite-free Boulder batholith, however. In contrast, 2-mica granite of the 

M ount Powell batholith in the Flint Creek Range and possibly the Hearst Lake 

stock of the Anaconda Range, both to the south of the FCB, may have been other 

primary sources for granitic detritus in the FCB. Rapid unroofing of these 2-mica 

granites during exhumation of the Anaconda core complex would supply a 

granitic point source for northwesterly flowing streams into the FCB and 

southeasterly flowing streams to basins of southwest Montana (Figure: 38a). 

Foliated grains may have been derived from the my Ionite zone of the ACC. The 

Elkhorn and Lowland Creek volcanics, both southeast of the FCB, probably 

covered much more of the Boulder batholith during Arikareean time and
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supplied the FCB w ith the abundant volcanic detritus observed in the 2-mica 

bearing sandstones. Unroofing of a thick wedge of folded and thrusted 

Proterozoic-Mesozoic rocks in ACC upper plate rocks of the Flint Creek Range 

supplied the FCB w ith sedimentary lithics. This provenance is reflected by sand 

compositions plotting between the magmatic arc and recycled orogen fields of 

Dickinson and Suscek (1979) (Figure 31).

Sixmile Creek Formation

A  significant change in sediment dispersal systems followed the mid- 

Miocene depositional hiatus and is represented by an increase in clast size, a 

decrease in granitic detritus, more quartzose sandstone compositions, and a 

change in depositional dip direction. Debris flows shed from a newly uplifted 

source to the west brought large m etasedimentary clasts into the basin and 

deposited them  on the mid-Miocene erosion surface. Depositional dip during 

this time was to the east tow ard the ancestral Deer Lodge lake basin (Figure 38b). 

Intrabasinal detritus filled the FCB and tuffaceous Cabbage Patch strata were 

reworked during deposition of the Flint Creek beds. A renewed period of uplift 

and faulting during Barstovian time deformed the Flint Creek beds and created 

an erosional surface upon which a westerly through flowing "Barnes Creek " 

fluvial system was established. Belt supergroup metasedimentary rocks are 

w idespread to south and west of the FCB and would have shed detritus north
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and east via large alluvial fan complexes into the axial Barnes Creek fluvial 

system (Figure 38c).

Block faulting and uplift during mid-Miocene time introduced a 

considerable quantity of Belt Supergroup, Pennsylvanian Quadrant quartzite and 

Cretaceous aged detritus into the basin. Mature tan quartzite is a significant 

component of Sixmile Creek gravels and very large boulders were likely derived 

from nearby faulted folds of the Pennsylvanian Q uadrant quartzite. The lack of 

Paleozoic limestone and dolomite detritus may be due to conditions that favored 

dissolution rather than physical transport. Dissolution of calcium carbonate may 

have precipitated into floodplain calcretes of the Flint Creek beds and locally 

cemented gravels and sands of the Sixmile Creek Formation. Lithic rich 

sandstone clasts were derived from Cretaceous sedimentary rocks, which make 

up the majority of the northern flank of the Flint creek range and hanging wall 

rocks of the ACC. Porcellanite from the Dunkleberg member of the Blackleaf 

Formation was a major contributor for intrabasinal detritus that is common in 

the Flint Creek beds and Quaternary pedim ent gravels.
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PALEOCLIMATE

Early-M iddle Paleogene

Soil clay mineralogy correlates w ith precipitation amounts and may be 

used to infer relative wet and dry environments for kaolinitic and smectitic clays 

respectively (Keller, 1965; Barshad, 1966). Red kaolinitic clays of the basal Gm 

facies (Tml on Plate 1) in the FCB have been observed in basins of southwest 

M ontana where they represent early Paleogene lateritic weathering and 

development of oxisols during a wet tropical environment (Thompson et al., 

1982). Iron rich clay stone breccias referred to as detrital laterites are interbedded 

with kaolinitic ultisols and oxisols of late Eocene strata in Oregon (Bestland,

1996). The hematite rich clay stone breccia and overlying kaolinitic oxisol along 

the K-T boundary in the FCB shares lithologie and minéralogie characteristics 

with the Oregon laterites. Both are indicative of the warm  w et climate in which 

they were deposited. Correlative early Paleocene paleosols in eastern Montana 

are representative of waterlogged forest soils that formed in a hum id climate 

with >1200 mm of annual rainfall (Fastovsky and McSweeney, 1987; Retallack, 

1994).

M iddle Paleogene  -  Early Miocene

Accumulation of carbonate or alkaline earth minerals in paleosol profiles 

has been shown to be diagnostic of semiarid to arid climatic regimes (Wright and 

Tucker, 1991; Retallack, 2001a). Vertebrate faunal assemblages, calcic paleosols
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and clay mineralogies of basins in southwest Montana are indicative of a 

semiarid to arid paleoclimate (Thompson, et al. 1982; Fields, et a l; 1985, Ripley, 

1987; Harmeman, 1989). A gradual shift from a hum id and warm  temperate Late 

Eocene climate to a dry semiarid Oligocene climate occurred during deposition 

of the Renova Formation and correlative sediments in South Dakota and Oregon 

(Retallack, 1983; Prothero, 1994; Retallack et al., 2004). A late Eocene (Chadronian 

NALMA) flora from the Douglas Creek basin just to the north of the FCB is 

characteristic of a cool tem perate semi-humid paleoclimate and represents the 

climatic regime before deposition of the Cabbage Patch beds (Person, 1972). 

Rasmussen (1977) suggested that the Cabbage Patch beds were deposited in a 

subhum id environm ent based on Sequoia species (Appendix F). Good specimens 

of plant fossils in the FCB were not recovered in this study.

Smectitic clays and calcic paleosols common in the Cabbage Patch beds 

are more characteristic of a dry rather than hum id environment of deposition. 

Preservation of caliche nodules less than 1 m eter from the top of a soil is 

indicative of an aridisol and ~ <750 m m  annual precipitation (Retallack, 1993). 

DNKB7 exhibits caliche nodules approximately 1 - 4  meters down from the 

inferred top of a paleosol. Paleosols in the DNKB section may be classified as 

calcic vertisols or calcisols, which are both indicative of a semi arid environment. 

The abundance of ferric Iron (warm colors) and absence of gley (dark colors) is 

characteristic of well-drained oxidized soils that would be expected in dryer 

conditions.
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Later Early Miocene Unconformity

A  red kaolinitic horizon below the mid-Miocene unconformity is observed 

in basins of southwest Montana and correlates with warmer temperatures during 

a brief period in the later part of the Early Miocene (Thompson, et al., 1982). 

Laterite soils are also preserved in mid Miocene sedimentary interbeds of the 

16.1-15 Ma Columbia River basalts (Smith and Gaylord, 2003). Thompson et al. 

(1982) suggested that this reflects a warm  w et period that would have created a 

through flowing drainage that removed basin fill (erosion), and created the mid- 

Miocene unconformity. Fossil plant cuticle evidence and paleosols also are 

indicative of an unusual w arm  and wet period for western North America 

between 16 and 15 Ma (late Hemingfordian -  early Barstovian) (Retallack, 2001b; 

Retallack, 2002).

Although lateritic paleosols have been observed below the "mid-Miocene" 

unconformity in west Montana, elsewhere, an apparent absence of kaolinite 

group mineral and lack of a red lateritic horizon is observed at this stratigraphie 

level (McLeod, 1987; Harmeman, 1989). Neither, a kaolinite group mineral or a 

red lateritic horizon is observed below the "mid-Miocene unconformity of the 

FCB. The non-uniform occurrence of lateritic soil development at a regional scale 

may be the product of paleotopographic variation (Bestland et al. 1996), poor 

exposure or non preservation.
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The occurrence of barite (barium sulphate) nodules in paleosols below the 

mid-Miocene unconformity in the FCB has not been documented in Tertiary 

basins of w estern M ontana and Idaho. Barite has been shown to occur below 

prom inent discontinuities from pauses in sedimentation in marly sequences of 

France (Breheret and Brumsack, 2000). Barite has a very low solubility and occurs 

as microscopic euhedral lathes in hydrom orphic soils associated with saline 

groundw ater (Lynn et al., 1971; Stoops and Zavaleta, 1978; Darmody et al., 1989; 

McCarthy and Flint, 2003). Barite in the FCB may have formed authigenically 

from saline groundw ater that extended up depositional dip from a saline lake 

environm ent in the adjacent Deer Lodge basin (Figure 38b).

Middle Miocene -  Late Miocene

Calcretes prevalent throughout the Flint Creek beds and smectitic clay 

mineralogy of floodplain paleosols are suggestive of a semi-arid environment of 

deposition during Barstovian time (Wright and Tucker, 1991; Thompson et al. 

1982). Geomyoid rodent vertebrate fossils in the Flint Creek beds are strongly 

indicative of a semiarid environm ent that was dryer than Arikareean time 

(Barnosky and Labar, 1989). Waldemaria and Hendersonia gastropods collected 

from the Flint Creek beds are indicative of cooler tem peratures and more 

seasonality compared to invertebrate faunas from the Eocene-Oligocene of 

western North America (Fierce and Rasmussen, 1989). This cooling trend agrees 

with an increase in levels (Figure 39).
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Using clay mineralogy evidence cited above, the appearance of notable 

kaolinite clays in floodplain paleosols of the Barnes Creek beds would suggest a 

w etter climate than postulated for underlying Flint Creek beds paleosols. More 

likely, the kaolinite was eroded from the basal Tertiary laterite horizon (Tml on 

Plate 1). Rare caliche nodules do occur in Barnes Creek paleosols and would be 

more indicative of dryer conditions. Dryer soil conditions are supported by an 

absence gley and abundance of smectite clay. Vertebrate fossils, specifically 

Geomyids rodents, are similar to those found in the Flint Creek beds and comply 

with a semi-arid envirorunent of deposition.
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REGIONAL STRATIGRAPHIC CORRELATION 

L ithos tra tigraphy

Many workers have used the Bozeman Group lithostratigraphic division 

of a coarser Sixmile Creek Formation erosionally overlying a finer grained 

Renova Formation (Dorr and Wheeler, 1948; Robinson, 1960; Kuenzi and Fields, 

1971; Monroe, 1981; Fields et aL, 1985; McLeod, 1987). This lithostratigraphic 

relationship has not been reported in adjacent basins in west-central Montana 

(Dunlap, 1982; Axelrod, 1984; Lofgren, 1985; Runkel, 1986; Hanneman and 

Wideman, 1991; Matoush, 2002). Hannem an and W ideman (1991) proposed that 

the mid-Miocene unconformity is smaller or absent in non-exposed central facies 

of the Jefferson, Beaverhead, Melrose and Divide basins. This may be a function 

of facies changes tow ard a finer lower Sixmile Creek Formation in the centers of 

the basins or a result of non-preservation along basin margins.

In the northern FCB Arikareean aged (Cabbage Patch beds) siltstone facies 

are overlain by lithologically similar Barstovian aged siltstone facies (Flint Creek 

beds) (Rasmussen, 1969). In the absence of the "'mid-Miocene" unconformity 

boulder bed identified in this study, Fb, Fm and Cm facies of the upper Renova 

Formation underlie Fm, Cc, and Fb facies of the lower Sixmile Creek Formation. 

Runkel (1986) also did not observe an obvious lithologie break across the "mid- 

Miocene" unconformity in the Smith River basin to the east (basin 14 in Figure 4). 

This facies association of fine-grained Renova Formation strata overlain by fine

grained Sixmile Creek strata does not lend itself well to the Bozeman Group
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lithostratigraphic division described above. Despite this discrepancy, etn 

upsection increase in the percentage of conglomerate within the Sixmile creek 

Formation, described by Kuenzi and Fields (1971), is evident in the FCB and is 

dem onstrated by measured sections CBY2, BNCl and BNC2.

Sequence Stratigraphy

Applying the sequence stratigraphie model proposed by Hanneman 

(1989) is difficult in the eastern FCB, because of the absence of exposed lower 

Renova Formation strata (sequence 2) and subdivision of the Sixmile Creek 

Formation (sequence 4) into 2 unconformity bounded units (Flint Creek and 

Barnes Creek beds respectively). Nevertheless, Rasmussen's (1969,1977, and 

2003) biostratigraphy defines the depositional sequences of the FCB and provides 

a fram ework for their correlation with Hannem an et al.'s (2003) sequences. 

H annem an and W ideman (1991) proposed that a global fall of relative sea level 

during m iddle Oligocene time (~30Ma,) was responsible for formation of an 

extensive unconformity in the middle Renova Formation (sequence 2/3) that can 

be correlated throughout the Northern Rockies. Strata of the FCB do not consist 

of predictable repetitions of facies, lack laterally extensive genetic marker 

surfaces (i.e. flooding surfaces) and can not be directly tied to a correlative 

marine sequence. This nongenetic distribution of laterally discontinuous facies 

restricts their stratigraphie correlation with adjacent basins to large scale 

unconformities and regionally extensive tephra beds.
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BASIN FORMATION AND TECTONIC EVOLUTION

Gravity and seismic data supports a possible 600m of displacement on a 

set of w est and south dipping norm al faults buried in the center of the basin that 

initiated sometime during the Paleogene (Stalker and Sheriff, 2004; Stalker, 2004). 

Stalker (2004) suggested that these faults were the primary basin forming faults 

that were subsequently eroded and covered by Neogene strata. Movement of the 

dow n to the west basin bounding fault identified by Stalker (2004) may have 

preserved accommodation space for early Paleogene strata on the west side of 

the basin and subsequent erosion would explain the lack of correlative strata on 

the east side of the basin (Figure 40). Both the FCB and adjacent Missoula basin 

have trapdoor basin geometries with a down to the west normal fault on the east 

side and right-lateral fault component on the northern side. The northern faults 

in both basins are in structural line with the Lewis and Clark line (LCL; Evans, 

1997; Stalker, 2004).

Initiation of extension in the FCB began in Eocene time with the extrusion 

of the Garnet Range volcanic sequence and exhumation of the ACC to the south 

(O'Neil et al., 2004). This time was also m arked by dextral transtension on the 

LCL and exhumation of core complexes in the Northern Cordillera (O'Neill and 

Pavlis, 1988; Doughty and Sheriff, 1992; Foster and Fanning, 1997; Doughty,

2002; Doughty and Price, 2000; House et al., 2002; Foster, 2003; Sha, 2003; 

Vanderhaeghe et al., 2003). Transtension along the Lewis and Clark strike slip 

system is linked to extension of the Anaconda, Bitterroot, Priest River and Boehls
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Butte core complexes that abut the lineament (Foster, 2003). The FCB can thus be 

classified as a dextral transtensional pull-apart basin (Figure 41). Cretaceous 

thrust faults in bedrock of the FCB (see drill hole Henderson-Lorensen 2 in 

Appendix E) were likely reactivated as normal faults that controlled basin 

subsidence.

A tectonically inactive period during the late Oligocene and early Miocene 

is reflected by the lack of coarse detritus, absence of synsedimentary faulting and 

a ~ lm e te r / l  thousand year deposition rate for the Cabbage Patch sedimentary 

sequence (using data from Rasmussen, 2003). Accommodation space for the 

Cabbage Patch beds was created by uninterrupted slow subsidence. A period of 

uplift and faulting during the mid-Miocene removed a significant portion of the 

Cabbage Path beds and reduced their original area of deposition to the present 

day extent of the FCB (Rasmussen, 1969).

Uplift and faulting during mid-Miocene time (~17-15 Ma) is widespread 

across the western Cordillera and m arked by a shift from calc-alkalic to bimodal 

volcanism, extension in the Rio-Grande Rift, rapid slip on central basin and 

range faults, extrusion of the Columbia River flood basalts, initiation of the 

Yellowstone hotspot, and formation of an unconformity in western Montana 

(Fields et al. 1985; Pierce and Morgan, 1992; Miller, et al., 1999; Hooper et al., 

2002; Miggins et al., 2002; Perkins and Nash, 2002). An angular relationship 

along the mid-Miocene unconformity in the FCB and other basins of western 

Montana suggest that the hiatus is a consequence of a tectonic pulse (Fritz and
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Sears, 1993) and is coincident w ith a mid-Miocene thermal optim um  (Thompson 

et al., 1982). A reworked boulder debris flow along the mid-Miocene 

unconformity m arks the first flux of coarse elastics into the basin and represents 

such a tectonic pulse. This time marked the formation of the Deer Lodge lake 

basin. Uplift and erosion of bedrock strata in the surrounding Flint Creek, 

Sapphire and Garnet Ranges produced the coarse elastics that filled the FCB 

during later Miocene time (upper Sixmile Creek Formation). The present day 

geometry of the basin was beginning to take shape during this time.

Strata in the eastern FCB dip at lesser angles moving upsection. Bounding 

angular unconformities represent two periods of uplift and faulting during the 

mid-Miocene (Cabbage Patch/Flint Creek) and late-Miocene (Flint Creek/Barnes 

Creek). These observations are characteristic of growth strata over a long time 

span and elucidate renewed movem ent on a west dipping fault (identified by 

Stalker, 2004). Younger strata would be folded over the fault tip and older strata 

would be offset at depth in the central part of the basin (Figure 40). This 

interpretation agrees with eastern dipping (into the fault) Arikareean strata on 

the west side of the basin.
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CONCLUSIONS

Right-lateral transtensional stress along the Lewis and Clark line and 

relaxation of Cretaceous thrust faults were the main subsidence mechanisms for 

initial opening of the Flint Creek basin during middle Eocene time. This was 

concomitant w ith extrusion of the Garnet Range volcanic sequence and 

deposition of lacustrine sediments. Soils developed during this time were 

kaolinitic laterites and suggest a w arm /w et paleoclimate.

Following the eruption of an ash flow tuff at 29.2 Ma, the upper Renova 

Formation (Cabbage Patch beds) was deposited in alluvial, lacustrine and 

palustrine depositional environments during a tectonically quiescent period. 

Facies associations suggest that perennial and ephemeral shallow alkaline- to 

fresh- water lakes existed between floodplains of m eandering fresh water stream 

systems. Late Oligocene age arkosic sandstones with northwesterly 

paleocurrents have a 2-mica granitic source that likely was the Mount Powell 

batholith in the footwall of the Anaconda Metamorphic core complex to the 

south. Rapid exhumation of the core complex shed detritus in opposing 

directions to the northwest (FCB) and southeast (southwest MT). This westerly 

paleoflow direction in the FCB does not fit the rift shoulder model proposed by 

Janecke (1991) for the Renova Formation of southwest Montana.

The mid-Miocene angular unconformity (18-15ma) resulted from regional 

tectonic uplift and erosion. It is coincident w ith a warm  wet thermal spike and 

may be related to initiation of the Yellowstone hotspot and extrusion of the
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Columbia River basalts. Previously undocum ented barite nodules were 

recovered from pedogenic clay horizons below the mid-Miocene unconformity. 

These nodules could have formed in a paleosol that formed up depositional dip 

from a saline Deer Lodge lake basin.

An imbricated boulder bed just above the unconformity at the base of the 

lower Sixmile Creek Formation (Flint Creek beds) indicates an easterly paleoflow 

toward the Deer Lodge lake basin. Calcrete facies that pervade alluvial siltstones 

and pebble sandstones of the Flint Creek beds may have been a result of 

oscillations in the paleowater table. The last evidence of faulting in the basin was 

prior to deposition of the upper Sixmile Creek Formation (Barnes Creek beds). 

These faults appear to be reactivated Cretaceous aged compressional structures. 

A paleovalley incised into Cretaceous bedrock and the Flint Creek beds 

accommodated a northwest flowing axial fluvial system. Large north dipping 

alluvial fans transported detritus from the uplifting Flint Creek and Sapphire 

ranges into the Barnes Creek fluvial system. Occurrence of calcrete, vertebrate 

fossil assemblages and clay mineralogy support a transition to a dryer and cooler 

Miocene climate.

The currently used lithostratigraphic subdivision of a dominantly fine

grained Renova Formation overlain by a dominantly coarse- grained Six Mile 

Creek Formation (with coarsening upw ard trend) may be applied to FCB 

Tertiary deposits, but should not be used in units immediately adjacent to the 

mid-Miocene unconformity. Genetic sequence stratigraphy is not advised in
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these deposits due to rapid lateral facies changes, local tectonic effects and lack of 

key regional m arker beds. Tephra geochronology is beginning to allow 

correlation of finer subdivisions than the biostratigraphic subdivisions already 

set forth.
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FUTURE WORK

I recommend the following possibilities for future work that would build on the 
results presented in my thesis:

-Distribution and paleocurrent of 2-mica arkosic bedded sandstone facies of 
Arikareean age in basins north and west of the m odern day continental divide; 
specifically in the Douglas and Blackfoot basins north of the FCB.

-Tephra geochronology and correlation of Bozeman Group strata between 
intermontane basins of M ontana and Idaho (Hanneman and Wideman, 2004).

-Distribution of Barstovian aged calcretes (Flint Creek beds) in the northern Deer 
Lodge basin. Isotope analysis of calcretes would provide paleoclimate inferences.

-Bio- and litho- stratigraphie correlation of an upper Miocene unconformity 
within the Sixmile Creek Formation of Montana.

-Detailed gravity investigation of the major Flint Creek basin forming structure. 
Decipher the geometry of a west dipping reactivated thrust fault?

-Determine the duration of the mid-Miocene unconformity depositional hiatus in 
southwest M ontana and whether it decreases north away from the initial 
outbreak position of the Yellowstone hotspot toward the FCB.

- Create a geologic m ap of the western side of the Flint Creek basin. Update the 
Belt Stratigraphie subdivisions on Maxwell's (1965) map and differentiate 
Cenozoic units using biostratigraphy.

-Genesis of the westward verging structures on the northern flank of the Flint 
Creek Range. Are they part of a Triangle zone?

-Determine the genesis and validity of the m iddle Renova Formation 
unconformity of Hannem an and W ideman, 2003.

-Perform a detailed paleopedologic study of Bozeman Group paleosols.

-Distribution, provenance and environm ent of deposition for basal Tertiary 
conglomerates and kaolinitic claystones flanking the Flint Creek Range 
(Anaconda beds of O'niell, 2004).

-Paleogeographic relationship between the Bitteroot, Missoula and Flathead 
basins w ith basins to the east and along the Lewis and Clark line.
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Cretaceous

Ki

APPENDIX-A
Eastern FCB bedrock map un it descriptions

Intrusive, alkalic (-65 Ma, Sears and others (2000))
Alkalic igneous sill (shonkinite) that is highly weathered to a 
m edium  grus. Com monly found along the Blackleaf-Coberly 
Form ation contact and folded along parallel sedimentary 
bedding planes.

—Intrusive—

Kgs Golden Spike Formation (Campanian-Maastrichian)
Cobble to pebble conglomerate, m atrix-supported, well- 
rounded  and interbedded w ith sandstone. Clast composition 
dom inated by chert. Sharp erosive basal contact. Locally 
well-exposed on north  slope of Dunkleberg ridge.
Regionally 5,000-8,000 feet thick (Gwinn, 1965); 10 feet 
exposed in field area.

—Unconform ity—

Kcc Carter Creek Formation (Coniacian-Santonian)
Prim arily sandstone, green siltstone, and m udstone. 
Sandstone beds have trough cross-sets, lateral accretionary 
surfaces and a continental-volcanic sedim entary source 
(W addell, 1992). Volcanic clasts occur in local interstratified 
conglomerates. Regionally 4,500-6,000 ft thick (Gwinn, 1965).

Kj Jens Formation (Turonian-Coniacian)
Drab colored shales w ith m inor siltstone and fine-grained 
sandstone w ith w ell-developed sandstone. Varicolored 
re d /p u rp le  m udstone and siltstone in m iddle portion of 
unit. 1,000-1,500 feet thick (Gwinn, 1965).

Kc Coberly Formation (Cenomanian-Turonian)
V ariegated green-brow n m udstone and siltstone, local shaly 
lignite, fine-grained sandstone, and fossiliferous limestone. 
Limestone beds dark  gray-brow n w ith  abundant large
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gastropods, pelcypods, and oyster coquinas. Approximately 
600 feet thick (Gwinn, 1965).

—Unconformity —

Blackleaf Formation

Kbld Dunkleberg Member (Cenomanian)
Salt and pepper colored, medium- to coarse-grained 
sandstone, light-green to dark greenish-brown, 
porcellanite and variegated red to purple mudstone 
in the upperm ost portion of unit below the 
unconformity at the base of Coberly Formation. Six- 
foot-thick chert pebble conglomerate occurs toward 
base and m iddle of formation. 1500-1700 feet thick 
(Gwinn, 1965).

Kbit Taft Hill Member (Albian)
Thick- to m edium -bedded, brownish-tan, fine- to 
medium-grained sandstone with abundant trough 
and plcmar cross stratification. Contains minor black 
shale interbeds. Basal contact with underlying black 
shale of Flood Member gradational. Approximately 
900-1000 feet thick (Gwinn, 1965)

Kblf Flood Member (Albian)
Black fissile shale with local interbeds of very fine- to 
fine-grained sandstone. Two-foot-thick fine-grained 
sandstone commonly occurs at base of member. 
Approximately 700 ft thick (Gwinn, 1965).

Kk Cretaceous Kootenai Formation (Neocomian-Albian)
Upper and middle parts of the Formation consist of 
medium-gray limestone with abundant gastropods 
Limestone is interstratified with red-purple mudstone and 
local lenticular medium - to coarse-grained sandstone beds. 
900-110 feet thick (Gwinn, 1965)

—Unconformity—

Jurassic
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Js Sedimentary rocks undivided, includes Morrison
Formation and Ellis Group
Morrison Formation -  Poorly exposed brown-green mudstone 
and siltstone w ith interstratified salt-and-pepper sandstone 
locally.
Ellis Group
Swift F formation- Chert pebble conglomerate and tan, 
medium- to coarse-grained sandstone.
Reirdon Formation- Tan-gray siltstone, shale, and local 
argillaceous limestone. Contains scattered invertebrate 
remains.
Sawtooth Formation- Dark-brown shale.
Approximately 900 feet thick (Gwirm, 1961)

—Unconformity—

Permian and Pennsylvanian

PPpq Phosphoria and Quadrant Formations, undivided
Phosphoria- Black-chert beds w ith interbedded dolomite and 
phosphorite. Poorly exposed aside from artificial mine and 
pit exposures. Thickness 0-50 feet (Gwinn, 1961).
Quadrant Quartzite- Well-sorted and very mature quartzite 
w ith meter-scale bedding. Very competent ridge-former that 
weathers reddish tan. Thickness 200-250 feet thick (Gwinn, 
1961).

Pennsylvanian

Pa Amsden Formation
Very poorly exposed red siltstone, m udstone and dolomite. 
Forms red soil below Q uadrant quartzite. Thickness 300-325 
feet thick (Gwinn, 1961).

—U nconformity—

Mississippian

Mm Madison Group, undivided
Thick- to medium - bedded limestone with dolomite in 
upperm ost beds. Contains scattered grey chert nodules.
Only upperm ost part of unit exposed in map area. Thickness 
approximately 1200 feet thick (Gwirm, 1961).
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APPENDIX-B
Eastern FCB Cenozoic map un it descriptions 

See Figure 9 fo r  North American Land M am m al Ages

Quaternary

ad Anthropogenic Deposits (modern)
Placer mine tailings, retention pond m ud, and coarse, 
angular, exotic boulders deposited by hum an activity. 
Thickness 0-50 feet thick.

Qal Alluvium (Holocene)
Unconsolidated to semi-consolidated stream and floodplain 
deposits exposed primarily along m odern stream channels. 
Mostly coarse gravel and sand  with local overbank brown 
m ud deposits. Gravel is rounded and poorly sorted. Locally 
contains 1-ft-thick bed of volcanic ash. Less than 30 feet 
thick.

Qaf Alluvial fan (Holocene)
Unconsolidated gravel and m ud deposits at mouth of 
ephemeral drainages and along the edge of the Flint Creek 
and Clark Fork River floodplains. Well-developed fan
shaped geomorphology. Unit composed of locally derived, 
poorly sorted, angular clasts. Less than 15 feet thick.

Qc Colluvium (Holocene)
Unconsolidated, very angular gravel, silt, and m ud 
deposited at base of slopes. Gravel is moderately to well- 
sorted and primarily granule- to cobble-sized. Less than 10 
feet thick.

Qls Landslide deposits (Holocene)
Semi-consolidated sediment composed of locally derived 
source material. Identified by lobate and hummocky 
geomorphology. Tends to occur on steep slopes composed of 
Trcp and Tscf m ap units overlain by boulder-sized gravel. 
Less than 850 feet in diameter.

—Unconformity—
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Qgrh Gravel deposit of Hoover Creek (Pleistocene)
Poorly consolidated, well-rounded, poorly sorted pebble- to 
boulder- conglomerate w ith framework support. 
Discontinuous sand lenses are very fine- to medium-grained, 
micaceous and angular. A bundant volcanic clasts. Local 
deposit along northern margin of m odern Clark Fork River. 
Age from Rasmussen, (1969). Less than 20 feet thick.

Qlo Loess (Pleistocene)
Loess, m ud, and local deposits of unconsolidated angular 
gravel. Color m edium -brown to buff-tan. Occurs locally on 
terrace surfaces. Gravel becomes finer-grained farther away 
from the Flint Creek Range. This unit probably was 
deposited contemporaneous with Glacial Lake Missoula 
sediments. Age from Rasmussen (1974). Less than 40 feet 
thick.

Quaternary and Tertiary

QTgrm Gravel and mud (Pleistocene-Miocene?)
Unconsolidated boulders, cobbles and pebbles in brown 
m ud matrix support. Gravel ranges from very angular to 
rounded. Largest boulders characterized by compression 
marks and high sphericity. Probably deposited by debris 
flow processes along edge of basin. Less than 120 feet thick.

QTgr Gravel undivided (Pleistocene-Miocene?)
Unconsolidated boulder- to pebble-sized gravel with poor to 
well-rounded clasts in a sandy-m ud matrix. Also includes 
undivided m ud and silt deposits. Less than 240 feet thick.

Tertiary

Sixmile Creek Formation

Tscgs Gravel and sand of Sixmile Creek Formation
(Miocene, Hemphillian-Clarendonian?)
Semi-consolidated, fram ework-supported boulders and 
cobbles w ith coarse angular sand matrix. Lacks bedding. 
Boulders well-rounded and imbricated to the N-NE at the 
m outh of Douglas Creek. Boulders up to 1 meter in diameter 
and predom inantly composed of tan quartzite. Unit
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commonly occurs on high terraces and along valley slopes. 
Locally contains brownish-red clay with caliche nodules. As 
m ush as 400 feet thick in the southern Flint Creek Valley.

Tscb Barnes Creek beds, informal of Sixmile Creek Formation
(late Miocene, CIarendonian?-late Barstovian)

Conglomerate facies (not m apped) typically have pebble to 
small cobble sized clasts w ith well-developed framework 
support. Pebbles are locally imbricated, well sorted, 
moderately well rounded and spherical. Intercalated 
sandstone lenses contain abundant tabular foresets and are 
commonly a greenish-pinkish hue. Sand matrix is angular, 
fine- to very coarse-grained and locally cemented widi 
CaCOs. M udstone facies (not m apped) are commonly 
composed of variegated reddish-orange silty clay and poorly 
lithified. Contains scattered vertebrate bone fragments.
Less then 240 feet thick.

—Unconformity—

Tscf Flint Creek beds, informal of Sixmile Creek Formation
(middle-late Miocene, early Barstovian)
Calcrete facies consist of abundant irregular to tubular
shaped carbonate nodules within massive siltstone and 
mudstone. Local well-indurated tabular sheets of calcrete 
composed of floating angular granules. Unit tends to form 
prom inent outcrops. M udstone is yellow-tan (buff) colored 
throughout with large curve shaped fractures (pedogenic 
slickensides) and no stratification. Minor volcanic detritus 
commonly altered to smectite clay. Conglomerate and 
sandstone facies typically have lenticular geometries and 
internal scour surfaces. Clasts are granule to pebble-sized, 
very angular and lack imbrication. Sandstone units are fine- 
to coarse- grained and characterized by local mottling and 
preservation of root traces.Thin- to medium-bedded siltstone 
facies are more common in higher stratigraphie 
levels.Approximately 200 feet thick.

Tscf g Gravel bed, informal at base of Flint Creek beds
(early- middle Miocene, early Barstovian)
Boulder- to pebble-sized conglomerate. Clasts are sub 
rounded to very rounded, moderately sorted.
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framework supported, imbricated and locally CaCOs 
cemented. Sand matrix is medium- to very coarse
grained, poorly sorted and locally forms lensoidal 
beds. Unit as whole has a sharp erosive base and a 
crude fining upw ard profile. Unit occurs immediately 
above the regionally extensive late-early Miocene 
(Hemingfordian) unconformity, a regional extensive 
unconformity. Approximately 0-5 feet thick

—Unconformity—

Renova Formation

Trcp Cabbage Patch beds, informal of Renova Formation
(middle Oligocene through late-early Miocene, Arikareean 
-  Upper Renova Formation equivalent)

Sandstone facies are very coarse-grained, pebbly, wedge 
shaped interstratified w ith massive mudstone. Sandstone is 
poorly rounded to angular, arkosic, well-cemented and 
bedded on a decimeter scale. Sandstone contains internal 
fining-upward sequences and abundant tabular-trough cross 
beds. Mudstone is massive and buff-colored with scattered 
spherical CaCOs nodules. Bedded facies consist of laterally 
discontinuous beds of interstratified, locally tuffaceous 
sandstone, siltstone, mudstone, diatomite, chert and 
limestone with dispersed volcamic glass. Local tephra units 
are fine grained. Paleosols are common and characterized by 
abundant Fe-stained root traces, slickensides, mottling and 
CaCOs nodules. Limestone intervals are well-indurated with 
abundant shell debris including gastropods, ostracods and 
pelecypods. Sandstone beds are locally carbonate-cemented. 
Approximately 2,300 feet thick (Rasmussen, 2003).

Trt Rhyclitic Tuff, welded (late Oligocene)
Rhyolitic welded tuff w ith euhedral sanidine and smokey 
quartz grains. Very competent unit locally interstratified 
w ith basal Cabbage Patch units. 29.2 Ma zircon fission track 
age date by Rasmussen (1977). Approximately 100 feet thick 
at m outh of Coberly Gulch.

—U nconform ity-
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Tv Volcanic rocks (Eocene)
(Eocene, 0-600 ft thick in Garnet Range; Carter, 1982)
May include basalt, dacite, andésite, and rhyolite. Primarily 
m apped as basalt by Rasmussen (1969). Part of Garnet Range 
volcanic sequence in Bearmouth area (Carter, 1982). Very 
extensive in the western and northern parts of the Flint 
Creek basin. -44-49 + 2 Ma K-Ar dates by Williams (1976) 
and Carter (1982). 0-600 feet thick in Garnet Range

Tml M udstone, lateritic (Paleocene-Eocene?)
Bright orange-red m udstone with local gravel lenses. Mud is 
primarily composed of kaolinite and interlayered 
sm ectite/illite clay. Poor exposures found locally along 
Cretaceous-Tertiary unconformity. Local occurrence of 
breccia w ith in upperm ost 20 cm of Kbld along 
unconformity. Reddish staining is prom inent in underlying 
Cretaceous units to a depth of about 25 feet and suggests a 
pedogenic laterite origin for this unit. 0-250 feet thick.

—U nconform ity-
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APPENDIX C - M ap Stations
LATTITUDE LONGITUDE STRIKE DIP SAMPLE

46.599417 -113.056117 132 31
46.587533 -113.051917 19.01
46.58535 -113.05735 19.02
46.5863 -113.05866 21.01

46.584867 -113.063867 23.01
46.578267 -113.064823 25.01
46.576833 -113.034417 202 74
46.575583 -113.03645 358 22
46.575733 -113.040817 29.01
46.57405 -113.041917 352 19
46.5741 -113.042367 354 18

46.574833 -113.043367 345 21
46.57515 -113.043383 29.02

46.573233 -113.045283 344 22
46.580133 -113.0469 33.01
46.609933 -113.106 39.01
46.617133 -113.102217 150 34
46.608483 -113.0998 8 20
46.606617 -113.098017 37 24
46.605533 -113.09515 28 16
46.602567 -113.090583 345 24
46.59835 -113.0956 334 24

46.597283 -113.099083 323 30
46.595133 -113.111483 0 0
46.597733 -113.062817 315 27 51.01
46.597717 -113.063867 177 26
46.59705 -113.063967 324 10 53.01

46.596417 -113.0635 275 3
46.59905 -113.069633 185 24

46.603183 -113.065417 207 10
46.604 -113.064117 192 19

46.600567 -113.060083 309 12
46.588767 -113.13985 63.01
46.587667 -113.132283 189 16

46.6048 -113.140467 69.01
46.570017 -113.259217 71.01
46.537683 -113.310367 71.02

46.5273 -113.27565 71.03
46.5359 -113.199233 178 75
46.5138 -113.1798 200 81
46.5157 -113.180367 12 80
46.5045 -113.171033 357 56

46.495967 -113.1529 6 54
46.495783 -113.157017 355 25
46.49065 -113.15295 354 66

46.485067 -113.151633 5 85
46.660433 -113.15775 105 65
46.549433 -113.284733 80.01
46.552417 -113.281467 83.01
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46.576867 -113.1761 85.01
46.594333 -113.1149 172 6
46.59465 -113.113983 175 9 89.01 ;89.02

46.595 -113.1128 183 16
46.595233 -113.112183 262 19 93.01
46.596917 -113.11245 145 11
46.602117 -113.118617 155 14 95.01
46.607617 -113.119317 164 10
46.607117 -113.1068 173 18
46.608983 -113.10625 190 11

46.593 -113.113317 0 0
46.586667 -113.101467 120 28
46.583517 -113.0928 12 14
46.588217 -113.088317 75 15
46.582133 -113.093933 170 10

46.5817 -113.094967 320 10
46.568683 -113.072167 105.1
46.567733 -113.079783 173 31
46.572583 -113.080783 190 56
46.574317 -113.089983 179 48
46.600967 -113.1288 109.1
46.603083 -113.130217 111.01;111.0
46.588733 -113.094583 318 24
46.589383 -113.087083 115.01
46.589017 -113.087403 364 29
46.58873 -113.07737 119.01

46.592 -113.07644 225 30
46.59341 -113.0772 121.01
46.59656 -113.08557 220 19
46.60042 -113.08509 20 31
46.60433 -113.08212 157 49
46.60827 -113.07703 183 33
46.59867 -113.11037 127.01,.02
46.62598 -113.12383 165 35
46.5676 -113.12539 15 65

46.56771 -113.12818 10 57
46.55318 -113.12762 355 65
46.5514 -113.12146 355 65
46.5456 -113.12452 175 60
46.5424 -113.12354 355 11
46.5424 -113.12356 160 70

46.54511 -113.12928 315 55
46.53357 -113.17425 310 70
46.55579 -113.16811 0 0 145.01
46.53814 -113.16698 355 45
46.5358 -113.17048 340 50

46.59718 -113.09951 334 37
46.59432 -113.09943 0 40
46.58482 -113.1173 0 0 144.1
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APPENDIX D - M easured  Sections
SECTION LATITUDE LONGITUDE ELY STRIKE DIP SURFACE

BNCIA 46.59021667 -113.1316 4388 185 7 bedding
BNCIB 46.58895 -113.1339167 4349 170 9 bedding
BNCIC 46.58716667 -113.1367333 4325
BNC2A 46.58728333 -113.1345333 4345 157 52 fault
BNC2B 46.58676667 -113.1360167 4323 195 15
BNC2C 46.58765 -113.1323 4337
BNCB 46.58378333 -113.1466333 3988
CBYB 46.61986667 -113.1041333 4092

CKFKB 46.5995 -113.0526667 4085
DGCIA 46.53203333 -113.1932333 4592 15 14 bedding
DGCIB 46.53205 -113.1926333 4644
DGC2A 46.52783333 -113.1918 4636
DGC2B 46.5276 -113.19395 4635 0 0 bedding
DGC3A 46.52666667 -113.1944 4630
DGC3B 46.52633333 -113.1939667 4682
DGC4A 46.52111667 -113.1938333 4706
DGC4B 46.52208333 -113.1941 4712
DGC5 46.51968333 -113.1913333 4708 250 24 bedding

DGLSCB 46.52728333 -1 13.1937333 4635
DNGB7C 46.5765 -113.06925 4434
DNGB8 46.57331667 -113.0658 4402 253 21 bedding

DNGWLl 46.61698333 -113.1215167 4114 188 7
D N K Bl 46.58696667 -113.0249 4168 0 0 bedding
DNKB2 46.5882 -113.0367 4186 245 33 bedding
DNKB3 46.5855 -113.0440167 4199 320 __ 22 bedding
DNKB4 46.58696667 -113.0483 4262
DNKB5 46.58543333 -113.0596333 4386
DNKB6 46.58035 -113.0549167 4305

DNKB7A 46.57678333 -113.0650167 4344
DNKB7B 46.57656667 -113.0665833 4365 0 0 bedding
DNKBB 46.5875 -113.0387833 4180

DNGW Llb 46.61868 -113.12125 4098 282 12 bedding
DNGWL2a 46.61501667 -113.1225 4150

C B Y la 46.59865 -113.11045 4218 0 0 bedding
CBYlb(top) 46.5969 -113.11371 4330

CBY2 46.59465 -113.113983 4306

130



(d
"%

01
O

■g
O
PQ

w

ÏS
D

I
<

s

Iu
O

%

a
CN
O»
Vh

&
O)

c
O
«5

O ' O î O ' Oo*o*oO'O'O

s*  mol*

Quarlz-

D E P T > »POROSITY
L I T H O U O G V  

I N
P E R C E N TE>°e°LEsT _ _

rWl Ŝ 31
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I O a! f'3

OPERATIONAL DISCUSSION

Normal d r i l l i n g  c o n d i t i o n s  w e r e  e n c o u n t e r e d  from  t h e  s u r f a c e  to  a d e p th  o f  7 8 0 ' :
Ac 7 8 0 ' ,  an u n c o n s o l i d a t e d  Q u a r t z i t e  g r a v e l  was e n c o u n t e r e d  and c o n t i n u e d  t o  t o t a l  
d e p t h  ( 9 7 8 ’ ) .  Wl^ile d r i l l i n g  t h i s  g r a v e l ,  c o n t i n u o u s  l o s t  c i r c u l a t i o n  was e n 
c o u n t e r e d .  T h i s  l o s t  c i r c u l a t i o n  v a r i e d  from  30% Co 80% o f  f l u i d  c i r c u l a t i o n .  At 
no t im e  was c i r c u l a t i o n  l o s t  100%. D e s p i t e  a mud v i s c o s i t y  i n  e x c e s s  o f  100 s e c . / q t . ,  
t h e  h o l e  w as c o n t i n u o u s l y  f a l l i n g  i n  c a u s i n g  p e r i o d i c a l l y  s t u c k  d r i l l  p i p e  and v e r y  
t i g h t  h o l e .  From 7 5 0  ' t o  9 0 0 '  t h e  h o l e  d e v i a t e d  2 3 / 4  d e g r e e s  ( I  3 / 4 °  a t  7 5 0 ' ;  4l^° a t  
9 0 0 ’ ) i n d i c a t i n g  v e r y  s t e e p  d i p  o r  a f a u l t  p l a i n  was e n c o u n t e r e d .  T h i s  d e v i a t i o n  to o k  
p l a c e  in  s p i t e  o f  t h e  f a c t  t h a t  o n l y  4 , 0 0 0  t o  5 , 0 0 0  p o u n d s  o f  w e i g h t  was run on th e  
b i t .  At 9 7 8 ' ,  t h e  d e c i s i o n  t o  p l u g  and a b a n d o n  t h e  h o l e  was made a f t e r  d u ly  
c o n s i d e r i n g  t h e  f o l l o w i n g  f a c t o r s :

1)  The i n a b i l i t y  t o  c o n t r o l  t h e  h o l e  s l o u g h i n g  w i t h  h i g h  v i s c o s i t y  
d r i l l i n g  f l u i d s .

2 )  S t e a d y  l o s s  o f  d r i l l i n g  f l u i d

3) S t u c k  p i p e  and  t i g h t  h o l e  c o n d i t i o n s  due t o  s l o u g h i n g  f o r m a t i o n s

4 )  C rook ed  h o l e  due t o  s t e e p  d i p s ,  d e s p i t e  r u n n i n g  l i t t l e  w e i g h t

5 )  Due t o  t h e  a b o v e  f a c t o r s ,  t h e  l i k l i h o o d  o f  l o s i n g  t h e  d r i l l i n g  
a s s e m b l y  and t h e  h o l e  a p p e a r e d  i m m i n e n t ,  i f  d r i l l i n g  o p e r a t i o n s  
w e r e  to  c o n t i n u e

GEOLOGICAL SUMMARY

The w e l l  w as  sp u d d e d  i n  a b u f f  t o  w h i t e  s o f t  e a r t h y  m u d s to n e  w i t h  a v a r i e t y  o f
r o c k y  i n c l u s i o n s .  The s u r f a c e  e x p o s u r e  i s  p r o b a b l y  a T e r t i a r y  w a s h .  At
a p p r o x i m a t e l y  1 1 0 ' ,  a b e d d e d  g r e e n  to  b r i g h t  g r e e n  waxy b e n t o n i t i c  S h a l e ,  T h i s  
S h a l e  s e c t i o n  was v e r y  s o f t  and f a i r l y  u n i f o r m  w i t h  l o ç a l i z e d  t h i n  s t r i n g e r s  o f  
low g r a d e  p o o r l y  d e v e l o p e d  l i m y  m u d s t o n e s .  At 3 7 0 ' ,  t h e  s h a l e  s e c t i o n  b e g a n  
v a r y i n g  i n  c o l o r  ( g r e e n s ,  g r e y s ,  y e l l o w i s h  g r e e n )  and t h i n  i n c l u s i o n s  o f  b l a c k  
c a r b o n a c e o u s  m a t e r i a l  w e r e  n o t e d .  T_liin_low g r a d e  c o a l  s t r e a k s w e r e  n o t e d  i n  
t h e  i n t e r v a l  4 3 0  ' t o  5 1 0 ' .  F i r s t  S a n d s  t o n e ^ l l a s '  n o t e d  a t  5 3 8 ' ,  and was h a r d  an3^ 
t i t e  w i t h  no l i v e  s h o w s .  The s e c t i o n  was i n t e r b e d d e d  S a n d s t o n e s ,  S i l t s  and S h a l e s  
from  5 1 0 ’ t o  7 2 0 ' .  C o l o r s  w ere  g r e e n ,  g r e y ,  b u f f ,  ta n  and o x i d i z e d  o r a n g e - y e l l o w .
A t r a c e  o f  o r a n g e  r ed  s i l t  w as  n o t e d  a t  6 9 0 ’ . A d e n s e  g r e y  s h a l y  D o l o m i t e  bed was  
f o u n d  fr o m  7 2 0 ’ t o  7 4 0 '  and t h i s  w as  i m m e d i a t e l y  u n d e r l a i n  by b r i g h t  r e d  s h a l e s  
and s i l t .  From 7 4 0 ’ t o  7 7 0 ' ,  t h e  s e c t i o n  was a s e r i e s  o f  b r i g h t l y  c o l o r e d  s i l t s  and 
s h a l e s .  A c o a r s e  c o n g l o m e r i t i c  S a n d s t o n e  was fo u n d  from  7 7 0 '  to  7 8 0 * .  A h a r d ,  
s h a r p ,  u n c o n s o l i d a t e d  S a n d s t o n e  and Q u a r t z i t e  " g r a v e l "  was e n c o u n t e r e d  a t  7 8 0 ' .
T h i s  s e c t i o n  c o n t i n u e d  to  t o t a l  d e p t h  o f  9 7 8 ’ when h o l e  was a b a n d o ne d  due to  h o l e  
c o n d i t i o n s .  R e s i d u a l  a s p h a l t i c  m a t e r i a l  was f o u n d  i n  t h i s  s e c t i o n  i n  th e  
i n t e r v a l  800^ tH~"87lP3 Â^'sTibsîTquênt" d r i l l  s t e m  t e s t  a t t e m p t  o f  t h i s  i n t e r v a l  was  
u n s u c c e s s f u l  due  t o  m e c h a n i c a l  t o o l  p r o b le m s  and p o o r  h o l e  c o n d i t i o n s .

No a t t e m p t  i s  b e i n g  made t o  i d e n t i f y  t h e  b e d s  p e n e t r a t e d  i n  t h i s  h o l e ,  b u t  i t  i s  
b e l i e v e d  t h a t  t h e  m a j o r i t y  o f  s e d i m e n t s  d r i l l e d  a r e  J u r a s s i c  i n  a g e .  The s e c t i o n  
p e n e t r a t e d  i n  t h e  N o.  2 W i l s o n  a p p e a r s  t o  be  t o t a l l y  d i s - s i m i l a r  t o  the  s e c t i o n  
p e n e t r a t e d  i n  t h e  N o .  1 W i l s o n ,  a p p r o x i m a t e l y  3 / 4  o f  o n e  m i l e  to  t h e  S o u t h e a s t .  
C r o o k ed  h o l e  c a u s e d  by s t e e p  d i p s ,  and s l o u g h i n g  g r a v e l  b e d s  ( 7 8 0 ' - 9 7 8 ’ ) f o r c e d
t h e  a b a n d o n m e n t  o f  t h e  N o .  2 W i l s o n  a t  a t o t a l  d e p t h  o f  9 7 8 ' .
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LITHOLOGY

Sam ple  d e s c r i p t i o n s  b e g i n  a t  AO '.  S am p le  
d e s c r i p t i o n s  a r e  c o r r e c t e d  f o r  d r i l l  t im e  
l a g .  S a m p le s  w e r e  e x a m in e d  b o t h  w e t  and  
d r i e d ,  b u t  d e s c r i b e d  w e t .

SAMPLES CAUGHT IN 1 0 '  INTERVALS;

4 0 - 5 0  S h a l e ,  y e l l o w i s h  t a n ,  p a l e  l i m e  g r e e n ,  t a n ,  b u f f ,  g e n e r a l l y  s o f t ,
b l o c k y ,  c a l c a r e o u s  i n  p a r t ,  g r i t t y  i n  p a r t , h a s  g e n e r a l i z e d
o x i d i z e d / w e a t h e r e d  a p p e a r a n c e ,  some h a i r l i n e  b l a c k  s h a l e  p a r t i n g s  
immbedded t h r u o u t ;  D r i e d  s a m p le  i s  f i r m ;  t r a c e  b u f f  m a r ly  l i m e s t o n e

5 0 - 6 0  No c h a n g e  fro m  a b o v e

6 0 - 7 0  S h a l e ,  p a l e  g r e y ,  g r e e n i s h  c a s t  i n  p a r t ,  some b u f f  and t a n ,  g e n e r a l l y
f i r m  t o  s o f t ,  s i l t y  and g r i t t y  i n  p a r t ,  c h u n k y ,  n o n c a l c a r e o u s , d e n s e ;  
some b v i f f  t o  p i n k i s h  w h i t e  s o f t  w axy t e x t u r e d  b e n t o n i t e

7 0 - 8 0  M u d s t o n e ,  b u f f  t o  I t  g r e y ,  m o t t l e d  y e l l o w  and d a r k  g o l d ,  b l o c k y ,  s o f t
b u t  f i r m e r  th a n  a b o v e ,  g r i t t y  and c a l c a r e o u s  i n  p a r t , d e n s e ;  t r a c e  
b e n t o n i t e  a s  a b o v e

8 0 - 9 0  M u d sto n e  a s  a b o v e ;  some c l e a r  Gypsum c r y s t a l s ;  s t r i n g e r s  o f  b r i n d l y
brown l i m e s t o n e ,  p e l l e t o i d  and m a r l y ,  s o f t ,  d e n s e

9 0 - 1 0 0  M u d s t o n e ,  b u f f ,  t a n ,  m o t t l e d ,  p i n k i s h  t a n ,  much o x i d i z e d  y e l l o w - g o l d ,
b l o c k y ,  f i r m ,  f a i r l y  s h a r p ,  c a l c a r e o u s ,  f l o a t i n g  v e r y  f i n e  c l e a r  q u a r t z  
g r a i n s  and r e d d i s h  brown g r a i n s  t h r u o u t ,  d e n s e ;  Some p a l e  y e l l o w i s h  
g r e e n  b e n t o n i t i c  s h a l e

1 0 0 - 1 0  M u d s t o n e ,  a s  a b o v e  b e c o m in g  I n c r e a s i n g l y  f i r m  and g r a d i n g  t o  a low
g r a d e  s u b c r y s t a l l i n e  l i m e s t o n e  i n  p a r t ,  s h a l y ,  s i l t y ,  d i r t y ,  d e n s e ;
Many l o o s e  c l e a r  Gypsum c r y s t a l s

1 1 0 - 2 0  As a b o v e ;  I n f l u x  s h a l e ,  dk g r e e n ,  g r e y g r e e n ,  c h u n k y ,  sm ooch  t e x t u r e d ,
waxy and b e n t o n i t i c  i n  p a r t ,  n o n c a l c a r e o u s ,  d e n s e

1 2 0 - 3 0  No c h a n g e  from  a b o v e ;  dk g r e e n  s h a l e  c o m p r i s e s  a p p r o x i m a t e l y  15% o f
s a m p le

1 3 0 - 4 0  S h a l e ,  dk g r e e n ,  b r i g h t  g r e e n ,  c h u n k y ,  lu m p y ,  s o f t ,  sm o o th  t o  subwaxy
t e x t u r e d ,  may be  b e n t o n i t i c  i n  p a r t ,  n o n c a l c a r e o u s ,  some g r i t t y
p a t c h e s ,  d e n s e ;  Much l im y  m u d s to n e  a s  a b o v e

1 4 0 - 5 0  S h a l e ,  g r e e n ,  a s  a b o v e ;  t r a c e s  o f  s o f t  b l u - g r e y  b e n t o n i t i c  s h a l e

1 5 0 - 6 0  S h a l e ,  g r e e n ,  a s  a b o v e ,  w axy when w e t ,  d r i e s  t o  a s u b e a r t h y  t e x t u r e

1 6 0 - 7 0  S h a l e ,  g r e e n ,  a s  a b o v e

1 7 0 - 8 0  S h a l e ,  g r e e n ,  a s  a b o v e

NOTE: 8 5 / 8 ” s u r f a c e  c a s i n g  w as s e t  a t  1 7 1 '  KBM: H o le  s i z e  7 7 / 8 "  from  1 8 0 '

1 8 0 - 9 0  No s a m p le
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1 9 0  -  b e g i n  3 0 '  SAMPLES -  V e r y  f a s t  p e n e c r a t l o n  r a c e .

1 9 0 - 2 2 0  S h a l e ,  g r e e n ,  a s  b e f o r e

2 2 0 - 5 0  S h a l e ,  g r e e n ,  a s  a b o v e ,  o c c a s i o n a l  g r i t t y  p a t c h e s ,  some f i n e  b l a c k
c a r b o n a c e o u s  s h a l e  i n c l u s i o n s

2 5 0 - 8 0  S h a l e ,  g r e e n  a s  a b o v e

2 8 0 - 3 1 0  S h a l e ,  g r e e n ,  a s  a b o v e

3 1 0 - 4 0  S h a l e ,  g r e e n ,  a s  a b o v e ;  m in o r  a m o u n ts  o f  b u f f  and w h i t e  l i m e s t o n e ,
c h a l k y  t o  f i n e l y  p e l l e t o i d ,  d e n s e ,  no show

3 4 0 - 7 0  S h a l e ,  g r e e n ,  a s  a b o v e ;  much c r y s t a l l i n e  Gypsum

3 7 0 - 4 0 0  S h a l e ,  g r e e n  a s  a b o v e ;  s c a t t e r e d  t h i n  s t r i n g e r s  and l a m i n a t i o n s
o f  b l a c k  c a r b o n a c e o u s  s h a l e

4 0 0 - 3 0  S h a l e ,  p a l e  y e l l o w i s h  g r e e n ,  c h u n k y ,  s o f t ,  waxy and b e n t o n i t i c ,
e a r t h y  t e x t u r e d  when d r i e d ,  n o n c a l c a r e o u s .  d e n s e ;  t r a c e  b l a c k  
c a r b o n a c e o u s  s h a l e ;  t r a c e  l o o s e  f i n e  p y r i t e

4 3 0 - 6 0  S h a l e ,  g r e y ,  dk g r e y ,  t o  g r e e n i s h  g r e y ,  c h u n k y ,  s o f t ,  b e n t o n i t i c ,
n o n c a l c a r e o u s ,  waxy t e x t u r e d ,  e a r t h y  when d r i e d ,  g r i t t y  i n  p a r t ,  
n o n c a l c a r e o u s ,  d e n s e ;  t r a c e  b l a c k  c o a l y  s h a l e

4 6 0 - 9 0  S h a l e  a s  a b o v e ;  some dk g r e y  s h a l e  w i t h  f i n e  b l a c k  c a r b o n i z e d
v e g e t a t i o n  f r a g m e n t s  im be dd ed  t h r u o u t ;  t r a c e  b l a c k  c o a l y  s h a l e ;  
some t h i n  c o a l  b e d s

4 9 0 - 5 1 0  S h a l e ,  g r e y  t o  dk g r e y  t o  I t  g r e e n ,  v e r y  s o f t ,  b e n t o n i t i c ,  d e n s e ;
t r a c e  b l a c k  c a r b o n a c e o u s  s h a l e ;  t r a c e  l o o s e  p y r i t e  c l u s t e r s

5 1 0 - 4 0  S h a l e  a s  a b o v e ;  M in o r  a m o u n ts  o f  S a n d s t o n e ,  w h i t e ,  v e r y  f i n e  g r a i n e d  t o
s i l t s t o n e ,  q u a r t z o s e ,  s p e c k l e d  w i t h  v e r y  f i n e  p y r i t e ,  w e l l  s o r t e d ,  
w e l l  c e m e n t e d ,  n o n c a l c a r e o u s ,  s i l i c i o u s  m a t r i x ,  v e r y  d e n s e ,  no sh o w ;  
t r a c e  s a n d y  p y r i t e ;  t r a c e  c o a l

5 4 0 - 7 0  S a n d s t o n e ,  t a n  t o  b u f f  t o  w h i t e ,  v e r y  f i n e  t o  medium g r a i n e d ,
q u a r t z o s e  and q u a r t z i t i c ,  g e n e r a l l y  h a rd  and s h a r p ,  v e r y  p o o r l y  s o r t e d ,  
w e l l  c e m e n t e d ,  n o n c a l c a r e o u s  m a t r i x  m a t e r i a l ,  a p p e a r s  s i l i c i o u s ,  s u b -  
r o u n d e d  t o  a n g u l a r  g r a i n s ,  i s o l a t e d  p y r i t e  and g l a u c o n i t e  s p e c k s ,  
s e v e r a l  c l u s t e r s  a p p e a r  t o  h a v e  f a i r  i n t e r g r a n u l a r  p o r o s i t y ,  no  
s t a i n i n g ,  t r a c e  d u l l  g o l d  f l u o r e s c e n c e  i n  t h e  d e n s e r  s a n d ,  no c u t  
i n  t r i c h l o r o e t h a n e , no o d o r  i n  w e t  s a m p l e ,  no show

5 7 0 - 9 0  S a n d s t o n e  a s  a b o v e ;  I n f l u x  s h a l e ,  medium g r e y ,  f i r m  t o  s o f t ,  v e r y  s i l t y
and g r i t t y ,  n o n c a l c a r e o u s ,  d e n s e ;  much I t  g r e y , p a l e  y e l l o w i s h  g r e e n  
s o f t  b e n t o n i t i c  s h a l e

5 9 0  -  BEGIN 1 0 '  SAMPLES -  P e n e t r a t i o n  r a t e  h a s  s l o w e d  down

5 9 0 - 6 0 Ü  S a n d s t o n e ,  w h i t e ,  c l e a r ,  f i n e  t o  medium g r a i n e d ,  q u a r t z o s e ,  u n -
c o n s o l i d a t e d  i n  p a r t , s u b a n g u l a r  t o  r o u n d e d  c l e a r  and f r o s t e d  
g f a i i i s l “"oïïcasToTral~Htine p y r i t e  s p e c k s ,  p o o r  s o r t i n g ,  w e l l  c e m e n t e d  i n  
p a r t ,  q u e s t i o n a b l e  p o r o s i t y ,  n o n c a l c a r e o u s ,  no  a p p a r e n t  show ; much s h a l e  
a s  a b o v e
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6 0 0 - 1 0  S a n d s t o n e  a s  a b o v e ,  no n a t u r a l  f l u o r e s c e n c e ,  o c c a s i o n a l  s p e c k s  o f
b l a c k  o r g a n i c  b i t u m i n o u s  m a t e r i a l  w h ic h  g i v e s  o f f  p o o r  t o  f a i r  c u t  
when s o a k e d  i n  t r i c h l o r o e t h a n e ,  no o d o r  i n  w e t  s a m p l e ,  no  l i v e  
s t a i n i n g ,  d o e s  n o t  a p p e a r  t o  be o i l  show ; Sam ple  i s  p r e d o m i n a n t l y  g r e e n  
to  g r e y g r e e n  s o f t  b e n t o n i t i c  s h a l e

6 1 0 - 2 0  S i l t s t o n e ,  o x i d i z e d  r u s t y  g o l d ,  f i r m ,  s h a r p ,  n o n c a l c a r e o u s ,  d e n s e ,  no
sh o w ;  Much s a n d s t o n e  and b e n t o n i t i c  s h a l e  a s  a b o v e

6 2 0 - 3 0  S i l t s t o n e ,  r u s t y  g o l d ,  a s  a b o v e ;  S a n d s t o n e ,  cream  t o  m o t t l e d  I t  brow n,
v e r y  f i n e  t o  f i n e  to  medium g r a i n e d ,  q u a r t z o s e ,  o c c a s i o n a l  p y r i t e  
s p e c k s ,  f a i r l y  h a rd  and s h a r p ,  p o o r l y  s o r t e d ,  w e l l  c e m e n t e d ,  n o n 
c a l c a r e o u s ,  f r i a b l e  i n  p a r t ,  som e c o a r s e r  p a l e  brown q u a r t z  g r a i n s ,  
t r a c e  p o o r  t o  f a i r  i n t e r g r a n u l a r  p o r o s i t y ,  no a p p a r e n t  show ;  some g r e e n  
t o  g r e y g r e e n  b e n t o n i t i c  s h a l e s  a s  b e f o r e

6 3 0 - 4 0  S a n d s t o n e  a s  a b o v e  b e c o m in g  g e n e r a l l y  f i n e r  g r a i n e d ,  f i n e l y  p y r i t i c ,
d e n s e ,  no show

6 4 0 - 5 0  S h a l e ,  dk  g r e y ,  y e l l o w i s h  g r e e n ,  g r e e n ,  c h u n k y ,  s o f t ,  b e n t o n i t i c ,  n o n 
c a l c a r e o u s ,  d e n s e ;  m in o r  a m o u n ts  o f  s a n d s t o n e  a s  b e f o r e

6 5 0 - 6 0  S h a l e  and s a n d s t o n e  a s  a b o v e

6 6 0 - 7 0  S h a l e ,  medium g r e y ,  g r e e n ,  b l u - g r e e n ,  y e l l o w i s h  g r e e n ,  c h u n k y ,  s o f t ,
n o n c a l c a r e o u s ,  b e n t o n i t i c ,  d e n s e ;  t r a c e  s a n d s t o n e  a s  b e f o r e

6 7 0 - 8 0  S i l t s t o n e ,  g r e y ,  h a r d ,  s h a r p ,  v e r y  f i n e  g r a i n e d  s a n d s t o n e  i n  p a r t ,
q u a r t z o s e ,  a r g i l l a c e o u s ,  n o n c a l c a r e o u s ,  h a r d ,  s h a r p ,  d e n s e ,  no show ;  
much s h a l e  a s  a b o v e

6 8 0 - 9 0  S h a l e ,  m u s ta r d  y e l l o w ,  v e r y  s i l t y  and s a n d y ,  s i l t s t o n e  i n  p a r t  » f a i r l y
h a r d  and s h a r p ,  d e n s e ,  m o d e r a t e l y  c a l c a r e o u s ,  no  sh o w ;  much p a l e  g r e e n  
t o  g r e e n  s o f t  waxy s h a l e ;  some s a n d s t o n e ,  w h i t e ,  v e r y  f i n e  g r a i n e d ,  
q u a r t z i t i c ,  v e r y  d e n s e ,  h a r d ,  s h a r p ,  and a b r a s i v e ,  no show

6 9 0 - 7 0 0  S h a l e ,  s i l t s t o n e ,  and s a n d s t o n e  a s  a b o v e ;  some s i l t s t o n e ,  b r i g h t
o r a n g e - r e d ,  v e r y  s h a l y ,  h a r d ,  s h a r p ,  may b e  s i l i c i o u s  i n  p a r t . n o n 
c a l c a r e o u s ,  v e r y  d e n s e

7 0 0 - 1 0  S h a l e ,  I t  g r e y ,  p a l e  g r e e n ,  b u f f ,  g e n e r a l l y  v e r y  s o f t  and e a r t h y ,
f i n e l y  s i l t y  and g r i t t y  i n  p a r t ,  b e n t o n i t i c ,  n o n c a l c a r e o u s ,  d e n s e ;  
s i l t s t o n e ,  dk  g o l d e n  y e l l o w ,  g l a u c o n i t i c ,  f i n e l y  s a n d y  i n  p a r t , f a i r l y  
h a rd  and s h a r p ,  n o n c a l c a r e o u s ,  d e n s e ,  no sh o w ;  some d e n s e  m o t t l e d  g r e y  
s i l t s t o n e

7 1 0 - 2 0  S h a l e  a s  a b o v e ,  v e r y  s o f t  and e a r t h y ;  much dk g o l d e n  y e l l o w  s i l t s t o n e  a s
b e f o r e ;  t r a c e  l o o s e  f i n e  p y r i t e

7 2 0 - 3 0  D o l o m i t e ,  g r e y , b u f f ,  l i t h o g r a p h i c ,  h a r d  and s h a r p ,  a r g i l l a c e o u s  and
g r i t t y  i n  p a r t ,  v e r y  d e n s e ,  no sh ow ;  m in o r  a m o u n ts  o f  dk g o l d e n  y e l l o w  
s i l t s t o n e  a s  b e f o r e

7 3 0 - 4 0  D o l o m i t e  a s  a b o v e ;  i n f l u x  s h a l e ,  b r i g h t  r e d d i s h  o r a n g e ,  ch u n k y ,  f i r m
t o  s o f t ,  m u d s to n e  t e x t u r e d ,  g r i t t y  i n  p a r t , n o n c a l c a r e o u s ,  d e n s e

7 4 0 - 5 0  S i l t s t o n e ,  g r e y , v e r y  s i l i c i o u s ,  q u a r t z i t i c ,  v e r y  h a r d ,  sh a r p  and
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a b r a s i v e ,  v e r y  d e n s e ,  no show; much g r e y  no g r e y b r o w n  f r a c t u r e d  c h e r t  
and q u a r t z i t e ;  m in o r  am o u n ts  o f  d o l o m i t e  a s  b e f o r e

7 5 0 - 6 0  S i l t s t o n e ,  p a l e  y e l l o w ,  t a n ,  g r e y g r e e n ,  f i r m ,  o c c a s i o n a l l y  g l a u c o n i t i c ,
f a i r l y  hard  and s h a r p ,  c a l c a r e o u s ,  d e n s e ,  v e r y  s h a l y  i n  p a r t ,  no show ;  
much c o a r s e  f r a g m e n t e d  c h e r t  and q u a r t z

7 6 0 - 7 0  S h a l e ,  y e l l o w ,  p i n k i s h  o r a n g e ,  g r e y ,  c h u n k y ,  lu m p y , s o f t ,  e a r t h y
t e x t u r e d ,  v e r y  s i l t y  and g r i t t y  i n  p a r t ,  m o d e r a t e l y  c a l c a r e o u s ,  d e n s e ;  
much s o f t  b r i c k  r e d  muddy s h a l e  w h ic h  w a s h e s  o u t  o f  s a m p le

7 7 0 - 8 0  S a n d s t o n e ,  I t  g r e y ,  f i n e  t o  medium g r a i n e d ,  c o a r s e  rou n d ed  b l a c k  c h e r t
p e b b l e  i n c l u s i o n s ,  many b l a c k  and g r e y  b r o k e n  c h e r t  p e b b l e s ,  p r o b a b l y  
a c o n g l o m e r a t e ,  w e l l  c e m e n t e d ,  m o d e r a t e l y  c a l c a r e o u s ,  v e r y  d e n s e ,  no  
sh o w ;  some y e l l o w  and b r i c k  r e d  s h a l e s  a s  a b o v e

7 8 0 - 9 0  S a n d s t o n e ,  I t  g r e y ,  p a l e  g r e e n ,  w h i t e ,  v e r y  f i n e  g r a i n e d ,  q u a r t z i t i c ,
a p p e a r s  t o  b e  o r t h o q u a r t z i t e  i n  p a r t , o c c a s i o n a l  i s o l a t e d  g l a u c o n i t e
and p y r i t e  s p e c k s ,  v e r y  h a r d ,  s h a r p ,  and a b r a s i v e ,  v e r y  d e n s e ,  no
m a t r i x  p o r o s i t y  b u t  may be f r a c t u r e d ,  h o l e  i s  b e g i n n i n g  to  t a k e  f l u i d ,  
m o a e r a t e  l o s t  c i r c u l a t i o n ,  no s t a i n i n g ,  no f l u o r e s c e n c e ,  no sh o w ,  s e c t i o n  
i s  n o n c a l c a r e o u s

7 9 0 - 8 0 0  No c h a n g e  from  a b o v e

8 0 0 - 1 0  S a n d s t o n e  a s  a b o v e ;  a p p r o x i m a t e l y  5% s a n d s t o n e ,  I t  g r e y  t o  c l e a r ,  v e r y
f i n e  g r a i n e d ,  q u a r t z o s e ,  s u b a n g u l a r  t o  r o u n d e d  g r a i n s ,  w e l l  s o r t e d ,  w e l l  
c e m e n t e d ,  n o n c a l c a r e o u s ,  q u e s t i o n a b l e  p o o r  i n t e r g r a n u l a r  p o r o s i t y ,  
b l a c k  p i n p o i n t  m i c r o s p e c k s  o f  a s p h a l t i c  r e s i d u e  i n t e r c o l a t e d  t h r u o u t ,  
no l i v e  s t a i n i n g ,  no n a t u r a l  f l u o r e s c e n c e  b u t  b r i g h t  y e l l o w g r e e n  f l u o r e s c e n c e  
and i n s t a n t  b r i g h t  y e l l o w  c u t  when im m ersed  i n  t r i c h l o r o e t h a n e ,  no o d o r  
i n  w et  s a m p l e .  I t  brown h y d r o c a r b o n  r i n g  i n  s p o t  p l a c e  a f t e r  s o l v e n t  
e v a p o r a t e s ;  s t i l l  l o o s i n g  f l u i d

8 1 0 - 2 0  No c h a n g e  from  a b o v e ;  h o l e  i s  v e r y  r a t t y ;  much d i f f i c u l t y  m a k in g
c o n n e c t i o n  a t  8 1 7 '

8 2 0 - 3 0  S a n d s t o n e ,  c r e a m ,  I t  g r e y .  I t  b l u - g r e y ,  v e r y  f i n e  and f i n e  g r a i n e d ,
q u a r t z i t i c ,  o r t h o q u a r t z i t e  i n  p a r t ,  p y r i t i c  i n  p a r t , v e r y  h a r d ,  s h a r p ,  
and a b r a s i v e ,  n o n c a l c a r e o u s ,  v e r y  d e n s e ,  n o  s t a i n i n g ,  no f l u o r e s c e n c e ,  no  
c u t ,  no sh o w ;  H o l e  s t i l l  t a k i n g  f l u i d

8 3 0 - 4 0  No c h a n g e  from  a b o v e ,  s e c t i o n  d r i l l s  l i k e  i t  i s  h i g h l y  f r a c t u r e d

8 4 0 - 6 0  No c h a n g e  f r o m  a b o v e ,  s e c t i o n  a p p e a r s  to  be  m o s t l y  q u a r t z i t e

8 6 0 - 8 0  S a n d s t o n e ,  I t  b l u - g r e y  to  w h i t e ,  v e r y  f i n e  g r a i n e d ,  v e r y  q u a r t z i t i c ,
v e r y  h a r d ,  s h a r p ,  and a b r a s i v e ,  s c a t t e r e d  b l a c k  c h e r t  s p e c k s  and f i n e
p y r i t e  im bedded  t h r u o u t ,  n o n c a l c a r e o u s ,  v e r y  d e n s e ,  no s h o w s ,  a p p e a r s  to  
be o r t h o q u a r t z i t e  i n  p a r t

8 8 0 - 9 0  Q u a r t z i t e ,  w h i t e ,  c r e a m ,  p a l e  b l u i s h  w h i t e ,  s a n d y  i n  p a r t ,  v e r y  h a r d ,
s h a r p ,  and a b r a s i v e ,  p r o b a b l y  f r a c t u r e d ,  d e n s e ,  no show; H o le  i s  v e r y
r a t t y  and t i g h t ,  s t i l l  l o o s i n g  f l u i d  w h i l e  d r i l l i n g

8 9 0 - 9 0 0  Q u a r t z i t e  a s  a b o v e ,  sa n d y  i n  p a r t ,  a s  a b o v e ;  some y e l l o w i s h  o x i d a t i o n  s t a i n
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9 0 0 - 1 0  No sa m p le

9 1 0 - 2 0  S a n d s t o n e ,  w h i t e ,  f i n e  g r a i n e d ,  q u a r t z i t i c ,  f r a g m e n t a l ,  v e r y  h a rd ,
s h a r p  and a b r a s i v e ,  v e r y  d e n s e ,  some s p o t t y  y e l l o w i s h  o x i d a t i o n  s t a i n ;
t r a c e  dk g r e y  c h e r t  f r a g m e n t s

9 2 0 - 3 0  S a n d s t o n e ,  q u a r t z i t i c  and q u a r t z i t e  a s  b e f o r e

9 3 0 - 4 0  As a b o v e ,  much y e l l o w i s h  o x i d a t i o n  s t a i n ;  t r a c e  s o f t  r e d d i s h  o r a n g e
e a r t h y  s h a l e ;  t r a c e  f r a g m e n t s  o f  d o l o m i t e ,  cream , m i c r o c r y s t a l l i n e , 
e a r t h y  t e x t u r e d  i n  p a r t . d e n s e ,  no show

9 4 0 - 5 0  As a b o v e ,  many c a v i n g s  a f t e r  a t t e m p t i n g  DST N o. 1;  Many c o a r s e  dark
g r e y  c h e r t  f r a g m e n t s ;  some d o l o m i t e ,  c r e a m ,  m i c r o c r y s t a l l i n e ,  e a r t h y  
and v e r y  f i n e l y  sa n d y  i n  p a r t , v e r y  d e n s e ,  no show

9 5 0 - 6 0  S a n d s t o n e ,  q u a r t z i t i c ,  and q u a r t z i t e  a s  b e f o r e ;  much dk g r e y  to  b la c k
s h a r p  c h e r t ;  some d o l o m i t e ,  cream  to  I t  g r e y ,  m i c r o c r y s t a l l i n e  and 
m i c r o s u c r o s i c ,  e a r t h y  i n  p a r t ,  f i r m ,  v e r y  d e n s e ,  no show

9 6 0 - 7 0  As a b o v e ;  t r a c e  s a n d s t o n e ,  y e l l o w i s h  brow n ,  f i n e  g r a i n e d ,  q u a r t z o s e ,
v e r y  g l a u c o n i t i c ,  w e l ]  rounded  q u a r t z  g r a i n s ,  poor  s o r t i n g ,  w e l l  
c e m e n t e d ,  s l i g h t l y  c a l c a r e o u s ,  d e n s e ,  no show; q u a n t i t y  o f  d o l o m i t e
may be i n c r e a s i n g ,  s a m p le s  a r e  poor  due t o  h o l e  c o n d i t i o n s  and p a r t i a l
l o s t  c i r c u l a t i o n ;  h o l e  i s  s l o u g h i n g  b a d l y

9 7 0 - 7 8  Q u a r t z i t e ,  q u a r t z i t i c  s a n d s t o n e ,  c h e r t  and m inor am ounts o f  d o l o m i t e
a s  a b o v e ;  l o o s i n g  c i r c u l a t i o n  and h o l e  b e g i n n i n g  to  c a v e  i n ;  v e r y  d i f f i c u l t  
t o  k e e p  d r i l l  s t r i n g  u n s t u c k ;  d e c i s i o n  made t o  abandon h o l e .

9 7 8 '  -  T o t a l  d e p th  by d r i l l e r
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LOCATE WELL CORRECTLY

o

(SUBMIT IN TRIPLICATE)
B O A R D  O F  OIL AND GA S C O N S E R V A T I O  Of THE STATE OF MONTANA SILLING5 Oft SHELBY
COMPLETION REPORT

4̂
B E C E IV E D RM 36.2i.jn7 

RM 36.22,1011 
WON t. ^ARM .36.22.101.1

Trans-Toxas E nergy, Inc. -Lease.
H enderson-Lorensen

Company

12201 Meri t  Dr. ijllOQ. D a lla s ,  TX 75251 f id t l  (or Ai-eai V iild cat

IIC-I
The well is inrnrert 1038 —Jt. from (SI line and ££££ FL from (W) line of See. __

.Well No.. #2

33

33 1]N I3W County G ranite

Commenced drilling November 12 1 9  8 0  C u T T i p i g t r d  0 / - ^ 9 ^ G r  2:8

. ; Elevation. 4660'
(hx-x NXiXX G.L.I

.. 19-E
The information given herewith is a complete and correct Record tif the well. The summary on this page is for 

the condition of the well at Uic above date. \  I .. y}/' r  ^  / /
Completed as . Dry HolC________iolj tvrU. Raa w<jl. dry hold S igned^

T IM ,./y d C e  P r e s i d e n t  -  O p é r a t i o n s

oeq - 21 ooi Date N o v e m b e r  4 .  1982

NONE

IMPORTANT ZONES OF POROSITY
( denote oil by O. gas by G. water by W: state formation if known j 
___________________________  From__________ t o _____________

Fronv.
From_
From_

  10.
 t o .
 to .

CASING RECORD

C « , n ,S c . From TO [>mVnl P^lllCrt Irorri

20" 94# J-55 ST&C 3761' 0 ‘ 3761' 350 5X M/A
1,3 3/8" 7 2 # N-80 I, r/.c 4215' O' 4 2 1 5 ' ^ 3500 sx il/A
9  5/8" ’ 47/; 5-95 ÜUTT 12500' O' 125ÜÜ’"' 1250 sx i 7815'

: I

TUBING RECORD
....... ' TtVmouni I'ftrinritlnnt

NOME 1 ...... ...
COMPLETION RECORD

O'Rotary tools were used from 
Cable tools were used from  NQÜE
Total depth 1 7 .3 7 5 ' ft.- Plugged back to M/A

17 ,3 7 5 '

- T . D . l O i ) e n  h o l e  f r o n t 12:50T 1 7 , 5 7 5 '

PERFORATIONS J ACrniZEO. SHOT. SAAD ERACED CKMFWTED

‘it'-r-aj [ humtxT jnd I iittcrvaJ Amonni oi
y rpfn Tq 1 SiK FUia Typf I rmm Tr, C*»c<3 PrC34UJ c

NOME : 7 7 5 0 ' 7 3 5 0 ' 3 0  sx  r m t  p l u g
! :l 4 2 5 0 ' 4 3 5 0 ' BO s x  c m t p l u g
i ll 0 ' 2 5 ' 20 s x  c m t p l u g

! it ■■■“■ 1 .
lU rW A  ihtr*» «cwv**)

M/AWell is producing from_

I.P_______________barrels of oil (>cr.

r f  f>f gim  t r r  . __houT » .

INITIAL PRODUCTION

_________(pool] formation.

J ro u rs . I pumping or How>oi(i

_I>arrcl9 of water r<r
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TRANS-riîXAS ENERGY, SUNM,\nK ET /\L.

KENDERÎ^ON-LORENSEN UNIT No. 2 
G r a n i te  County,  Montana

stratigraphy  A:m formation tops

E l e v a t i o n  469 2 '  K. B.

TERTIARY
B a s a l t  f lo w s  ( s u r f a c e )  
L a c u s t r i n e  b eds

Depth

400

S u b sea

+4292

S tr u c tu r a l  re .Ia t io n sh lp

Uncunformltv

PREC.AMBRIAN (B e lC la n )  
Carnet Range Em. 
McNamara Fm. 
D iab sse -C ab br o  s i l l  
Garnet Range Fm.

MISSISSIPPIAN
Madison (L o d g ep o le )

500
1550
2620
2800

3705

+4192
+3142
+2072
+1892

+987

Unconformity  
Normal sequence  
I n t r u s i v e  c o n t a c t  
O v e r th r u s t  c o n ta c t

O v er th ru st  c o n t a c t

PENNSYLVANIAN 
^Mr.sden Fm. 4070 +622 O vert)!rust  c o n ta c t

MISSISSIPPIAN
Madison (M is s io n  Canyon) 4100 +592 Normal sequence

Fro.n 4100'  to  12500' the  b o r e h o le  p e n e tr a te d  numerous im br ic a ted  
nappes which r e p e a t e d  the  Madison s e c t i o n  numerous t im e s .  C ontinuous  
m o n ito r in g  by means o f  t h in  s e c t i o n s  I n d ic a t e d  t l iat  the  e n t i r e  s e c t i o n  
i s  Madison w ith  th e  f o l l o w i n g  e x c a p t i o n s :  The i n t e r \ ' a l s  6620'  - 6 6 4 0 '  , 
b 7 4 0 ' - 6 7 6 0 ‘ , 7 3 4 0 ' - 7 3 7 0 ' ,  8 0 0 0 ' - 8 0 2 0 '  and 8 0 7 0 ' - 8 1 1 0 '  c o n t a in  a den se  s l i g h t l y  
c a l c a r e o u s  b l a c k  s h a l e  which has  been  a s s i g n e d  to  th e  S.appington Formal inn 
on th e  b a s i s  o f  the  polynomorph Va l l a t l s p o r i t c s  s p . The .a forem entioned ..pore  
h as  a Late D e v o n ia n -E a r ly  M i s s i s s i p p i a n  r o n g e . See  P I .  2 f i g .  3 5.

PENNS4'LVAKIAN 
\rasden Fm. 
Quadrant Q t t i t e .

FERiMTAN
P hosp h oria  Fm.

12500  
12 7 SO

12860

-7808
-8 0 9 8

-8 2 5 8

O vert l iru st  cmiL.ucc 

Overturned '.equence

1 he palyncmiorph P n n cta f  i s p n r i t c s  sp .  wn.s recovered  from the ;aterv .i  
1205O '-L 29bO '. PI. 2 F ig .  48 .

CAMBRIAN
Med Lion Fm. 13060 -8368 elver t h r u s t  c u n ta c t
diismark Fm. 13120 -8 4 2 8 Normal srqiiutu'e
Rec Lion Fn. 13430 -87  38 O vcrthrust  <-.)i t a c t
liasmark Fm. 13650 -8 9 5 8 Ni'irmnl se; |uence
S i l v e r  H i l l  Fm. 14250 -"558 Norm.il .-.equencc
F la th e a d  Q t z i t e . 14670 -9 9 7 8 Normal sequence

PRED'iMERIAN ( BELT I AN) 14730 -10038 Normal sequence
Garnet Range Fm. 14 730 -10 0 3 8 Normal sequence
McNamara Fm. 14970 -10278 Normal .setjuence
D ia b a s e - t ’.abbro s i l l 15100 -10408 i n tr u s  1 VC! c u n ta c t
i .arn ct  Range Fm. 15150 -10458 Over t h r u s t  i-ciiUacL
McNamara Em. 15230 -10538 N o m a l  sequeiu e
Garnet Range 16150 - !1 4 5 8 Ovcrthriisr  L.>nra.'t
Garnet Range fm. 16870 -1 2 1 7 8 O v crth ru st  irh in  

G.ir'iut [hTOge 'r...
i o t a i  d ep th L737Q -12687 No uipmcriM- , . j l a  

LivJnw 1 68 7U '

139



Henderson-Lorensen c

Trans-Texas Energy, In c . ,  -  Snnmark. e t  a l . 
Henderson -  Lorensen No. 2 
1038' FSL, 1153' FWI.
Sec 33, T IL N, R 13 W

DESCRIPTION OF CUTTINGS

0 -  65 Conductor pipe.

65 -  400 Basalt to  400 f e e t .  This un it  crops out a t  the
surface o f  lo c a t io n .  H i is  basa lt  o f  medium to  
tiark gray to moderate brown co lo r .  Texture i s  
aphaniti.c with sub-parallel , oriented needles of  
dark greenish  gray to black hornblende. Some 
diirk gray chert and c r y s t a l l i n e  quartz occurs  
as fracture  f i l l i n g .  This u n it  has been mapped 
in  d e t a i l  by Dr. John C. Maxwell and i s  reported 
in  an unpublished map o f  the Southwest Drummond 
area.

4Ü0 -  470 -  70 No cu tt in gs  returned. D r i l l in g  in  t h i s  in te r v a l
was through Tertiarv lacu str in e  beds.

470 -  480 -  10 Ij-ght gray s l i g h t l y  benton it ic  c la v ,  th in  interbeds
o f  l i g n i t e  and carlxmized wood, with scattered  
c lu s t e r s  oL 6uliedral pvr ite  c r y s ta l s .  The pyr ite  
i s  a s s o c ia te  with the t liin l i g n i t e  layers .

480 -  490 -  10 Fine griiined to  coarse grained calcareous cemented
sandstone vri.th chips o f  g lau con it ic  sandstone.  
The g la u c o n i t ic  chips are proliably derived from 
boulders o f  Flathead Quartzite  wliich crop out 
along the margin o f  the Tertiary l\asin.

490 -  500 -  lO As above with increased numlxjr o f  g la u c o n it ic
sandstone ch ips .

PRECAMBIUAN 
MISSOULA GROUP 

Garnet Range Formation

500 -  510 -  10 Top o f  Garnet Range Formation, Missoula Group.
Prédomina t e ly  moderate reddish brcxm to  pale nerl 
pink f in e  to coarse grained o r t h o q m r t z i t ic  sandstone.  
Some chips are s l i g h t l v  arkosic .  Minor quzmtitv 
o f  moderate reddish brown to dark reddish brown 
micaceous s i l t y  a r g i l l i t e .

51C -  520 -  10 Orthoquartzit ic  s.andstone as  alxjve with 5% moderate
reddish brown micaceous s i l t y  a r g i l l i t e .

520 -  530 -  to As above.

530 -  540 -  10 Moderate reddish  brown to  dark reddish brown f in e
to  coarse grained arkosic and micaceous orthoquartz-  

' i t i c  sandstone. Several free  granule s i z e  quartz 
p a r t i c l e s  are well  rounded and fro sted .

540 -  580 -  40 No sample recovery.

5.80 -  590 -  ID 907» Orthoriuartzitic sandstone aS alxjve; 10% moderate
reddish brown to daik  reddish brown micaceous 
s i l t y  a r g i l l i t e .

590 -  600 -  10 7CT;i Ofthoiquartzitic sandstone as above; 30ii a r g i l l i t e
as above. Several chips o f  the orthoquartzite  
contained small c l a s t s  of  reddish brown a r g i l l i t e .  
This suggests  a f lu v d a t i l e  channel sandstone.
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APPENDIX F: 
Faunal and Flora lists for the Arikareean Cabbage Patch beds: lower (1), m iddle 

(m), and upper (u) biostrati graphic divisions
(modified from Rasmussen 1977,1989; Pierce and Rasmussen, 1992; Pierce, 1992, 
1993; Pierce and Constenius, 2001; Henrici, 1994; Craig Christensen, written 
comm., 2005)

PLANT GENERA 

T axonom y
D iatom ophyceae (diatom s)
Centrales

?M elosira
Peiinales

(several unidentified  form s) 
A lgae (charophytes)
Characeae

(several unidentified  forms) 
G ym nosperm ae  
Pinaceae

Pinus (pine)
Taxodiaceae

Sequoia (sequoia) 
A ngiosperm ae  
Typhaceae

Typha (cattail)
Fragaceae

Q uercus (oak)

INVERTEBRATE GENERA 

T axonom y
D em osp on gea (fresh water sponges) 
M onaxonida

Spongillidae gen. sp. indet. 
G astropoda (aquatic and terrestrial) 
O reohelicidae

O reohelix
H elm inthoglyptidae

M onadenia?
V alvatidae

Valvata
V iviparidae

V iviparus
L ym naeidae

Lym naea
Planorbidae

Planorbula
Biom phalaria

P upillidae

C abbage Patch Beds 
L M U

X

X

X

X

X X X

X X X

X X X

X X X

C abbage Patch Beds 
L M U

X

X X

X

X

X

X

X
X

X

X

X
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G astrocopta X X X
Vertigo X X X
P upoides X X
C olum ella X

Succineidae
Catinella? X X

V alloniidae
V allonia X X X

Zonitidae
N esovitrea X

Lim acidae
Deroceras X X X

Punctidae
Punctum X

A m m onite llidae
P olygyroidea X X X

P elecypoda (pelecypods)
Sphaeriidae

Sphaerium X
Crustacea (ostracodes)
C yprididae

Cypris X X
C yprinotus X X X
Candona X X X

C yclosyprididae
C yclocypris X
Cypria X

Ilyocyprididae
Ilyocypris X X X

VERTEBRATE GENERA
C abbage Patch Bed

T axonom y L M u
Pisces (O steichthyes)
A m  iiform es

Am ia (bow fin) X X X
C ypriniform es

Gila (m innow ) X X X
A m yzon  (sucker) X X X

Perciform es
Lepom is (sunfish) X X X

Sciaenidae gen. sp.
indet.(drum ) X X X

Am phibia
Anura

?A scaphus (tailed frog) X X X
?Scaphiopus (pelobatid toad) X X X
T ephrodytes (pelodytid  toad) X X X
?Rana (large frog) X X X

U rodela
Taricha (Palaeotaricha) (newt) X
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(w ood land  salam ander) X
Reptilia
Chelonia

Testudo (tortoise) X X X
Gen. sp. indet. (pond turtle) X

A ves
G alliform es

Palaeonossax (cracid) X
Charadriform es 
Gen. sp. indet.

(large dow itcher) X
Gen. sp. indet. (sandpiper) X

M am m alia 
M arsupialia

H erpetotherium  
(opossum s, four sp.) X X X

Peradectes
(opossum s, tw o sp.) X X

Insectivora
Ocajila (hedgehog) X X
Stenoechinus (hedgehog) X
A m phechinus (hedgehog) X X
Parvericius (hedgehog) X
Gen. sp. indet. (hedgehog) X
M ystipterus (m ole) X X
Proscalops (m oles, tw o sp.) X X
Gen. sp. indet.

(m oles, tw o  gen.) X
D om nina (shrew s, tw o sp.) X X
Pseudotrim ylus  

(giant shrew s, tw o sp.) X
Lagom orpha

Palaeolagus (rabbit) X
A rchaeolagus (rabbit) X
M egalagus (rabbit) X
D esm atolagus (pika) X
G ripholagom ys (pika) X

Rodentia
D ow n sim u s (aplodontid) X
?AUomys (aplodontid) X
N iglarodon
(aplodontids, three sp.) X X X
M eniscom ys (aplodontid) X X
Gen. sp. indet.
(ap lodontid , new  gen. A) X
Gen. sp. indet.
(ap lodontid , new  gen. B) X
Gen. sp. indet.
(ap lodontid , n ew  gen. C) X
Gen. sp. indet. (squirrel) X X X
Gen. sp. indet. (flying squirrel) X
P seudotheriodom ys (eom yid) X X X
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(eom yids, four sp.) X X X
Pleurolicus
(gophers, three sp.) X
T enudom ys (sm all gopher) X X
G regorym ys (gophers, tlrree sp.) X
Entoptychus (gopher) X
M ookom ys (pocket m ouse) X
A gnotocastor (beaver) X
M onosaulax (beavers, tw o sp.) X X
?Capatanka (beaver) X
?Euhapsis (beaver) X
E utypom ys (beavers, tw o sp.) X X
Gen. sp. indet. (new  beaver) X X
L eidym ys (m ice, tw o sp.) X X X
Paciculus (m ouse) X X
Plesiosm inthus
(jum ping m ice, tw o sp.) X X X
Parasm inthus
(jum ping m ice, tw o sp.) X X X

Carnivora
?C ynodesm us (coyote-sized  canid) X
Gen. sp. indet.
(sm all fox-sized canid) X X X
Gen. sp. indet.
(bobcat-sized felid) X
Gen. sp. indet.
(m ink-sized m ustelid) X
Gen. sp. indet.
(w easel-sized  m ustelid) X

Perissodactyla
M iohippus (three-toed horse) X X
Parahippus?
(three-toed horse) X
Diceratherium
(large rhinoceros) X X
Gen. sp. indet.
(H yracodon-sized  rhino) X

A rtiodactyla
Gen. sp. indet. (peccary) X
D aeodon
(m edium -sized  entelodontid) X
K ukusepasu tanka
(anthracothere) X
M egoreodon
(oreodontids, tw o sp.?) X X
D esm atochoerus
(oreodontids, three sp.?) X
Gen. sp. indet.
(sm all oreodontid) X
Pronodens (sm all rum inants.
tw o sp.) X X X
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APPENDIX G:
Faunal list for the Barstovian Flint Creek Beds

(modified from Rasmussen, 1969, Craig Christensen, written comm., 2005)
*found during this study

Class Order

Amphibia
Anura

Reptilia
Chelonia

Squamata

Mammalia
Insectivora

Lagomorpha

Family

Salienta

Testudo

Boidae

Talipidae

Leporidae

Rodentia
*Sciuridae
Mylagaulidae
?Geomyidae

Carnivora
?Felidae
Canidae

Perissodactyla
*Equidae

Artiodactyla
*^Rhinoceratoidae

Antilocapridae
Camelidae
M erycoidodontidae
Oreodontid

Genus- Species

Hypolagus sp. 
Oreolagus sp.

Citellus ? 
Mylagaulus

Tomarctus cf. rurestris

Merychippus sp. 
?Pnrahippus sp. 
Archaeohippus ultimus
7

Dromomeryx horenlis 
Merycodus sp.

7

Ticholeptus zygomaticus
7
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APPENDIX H:
Faunal list for the Barstovian-Clarendonian Barnes Creek beds

Class Order Family Genus- Species

Amphibia
N um erous unidentified frogs and salamanders 

Reptilia
N um erous unidentified lizard and snake vertebrae

Aves
Several unidentified birds 

Mammalia
Carnivora

Several unidentified teeth 
Insectivora

Several unidentified moles and shrews 
Lagomorpha

Leporidae ?Hypolagus sp. 
Oreolagus sp.

Rodentia

Perissodactyla

Mylagaulids
Sciurids
Aplodontids
Eomyids
Cricetids
Heteromyids
Geomyids

Equidae

Rhinoceratoidae

Hypohippus sp. (clarendonian) 
Merychippus sp.
Megahippus sp. (clarendonian) 
Pliohippus sp. (clarendonian)

?
Artiodactyla

?Blastomeryx 
? Dromomeryx sp. 

Antilocaparidae ?Merycodus sp. (clarendonian)
Camelidae ?

Unidentified oreodontids
Salientia ?
Proboscidea? ?
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APPENDIX I: X-Ray Diffraction patterns
see Plate 1, Plate 3, figure 26, appendix C, appendix D for sample location, 

peak values are in D-spacing; y-axis is in counts per second (cps);
x-axis in 2-theta
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APPENDIX J: Clast count data rom post mid-miocene unconformity strata
Clast Lithology Sample and Clast Percentages

Provenance RAPIII117 RAPIII59 Rapll87 RAPII42 RAPII137
Tscfg Tscb Tscb Tscgs Qlo

Prot Argt/Sltit/gy qtz 19.61 7.95 13.04 5.06 0.00
Prot Red/Pink/Mrn SS/qtz 17.65 12.50 13.04 18.99 0.00
Pz Qtz (white/tan/brown) 27.45 25.00 40.58 34.18 0.00

Mm-Pp chert-chert breccia 0.00 2.27 1.45 2.53 0.00
Cret Lithic SS 15.69 39.77 8.70 15.19 26.00
Mez Mud/Porcl 5.88 1.14 5.80 13.92 74.00
Cnz Tffcs Sed 5.88 0.00 1.45 1.27 0.00

?? (Cz) White/tan SS-sIt 0.00 5.68 10.14 3.80 0.00
Ign Plutonic 7.84 5.68 5.80 5.06 0.00

total clasts 51 88 69 79 50

Argt - Argillite 
SItit - Siltite 

Qtz - Quartzite 
SS - Sandstone 
Mud - Mudstone 

Pore! - Porcelianite 
Sed - Sedimentary 
Tffcs - Tuffaceous

Mrn - Maroon
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APPENDIX K: Point Count Data of Arikareean Trcp sandstones
Gazzi-Dlckinson method used

Il3.3-f,m lll27.2a-c Ill27.2b-m Il51.1a-v.e 1151.Ib-v. 1153.1-m *11127.la-v.e.
Qm 30.8 15.6 27.4 20.4 36 31.8 24.6
Qp 6 10.8 8.2 11 10.2 8 17
Chrt 0.4 2 1.6 2.8 0.8 2 0.4
Pig 18.6 11.4 16.2 15 16.4 16.8 22.2
Kspr 7.4 7.2 6.2 3.2 2.6 3 9.4
Prx 0 0 0.8 0.2 0.6 0.6 0.2
Muse 0.2 1.6 1 0.6 1.4 3.2 2
Biot 6.6 2.2 3.8 1 4.2 8.6 2.8
Hbde 1 0.4 1 0.6 2 1.2 0.8
Olv 0 0 0 0.2 0 0.2 0.2
Ls 3 10.4 6.8 14.2 5.6 5 6.4
Lv 9.4 9.6 10.6 5.4 12 6.2 7.8
LP 14.2 23.6 14.2 20.8 4.4 10 0
Lm 1.4 4.2 1.4 3.8 1.8 1.2 4.4
Hvs 0 0 0.2 0 0.4 0.2 0.6
Opq 0.4 0.2 0 0.2 1.6 0.6 0.4
Chlr+altr 0.6 0.8 0.6 0.6 0 1.4 0.8
TOTAL 100 100 100 100 100 100 100

Q FL- TOT 91.2 94.8 92.6 96.6 89.8 84 92.2
Q 0.408 0.300 0.402 0.354 0.523 0.498 0.456
F 0.285 0.196 0.242 0.188 0.212 0.236 0.343
L 0.307 0.504 0.356 0.458 0.265 0.267 0.202

Qm TOT 90.8 92.8 91 93.8 89 82 91.8
Qm 0.339 0.168 0.301 0.217 0.404 0.388 0.268
F 0.286 0.200 0.246 0.194 0.213 0.241 0.344
Lt 0.374 0.631 0.453 0.588 0.382 0.371 0.388

Orogen TOT 18.8 32.8 27.2 33.4 28.6 21.2 31.6
Qp 0.340 0.390 0.360 0.413 0.385 0.472 0.551
Lv 0.500 0.293 0.390 0.162 0.420 0.292 0.247
Ls 0.160 0.317 0.250 0.425 0.196 0.236 0.203

Granitic Maturity 56.8 34.2 49.8 38.6 55 51.6 56.2
Qm 0.542 0.456 0.550 0.528 0.655 0.616 0.438
P 0.327 0.333 0.325 0.389 0.298 0.326 0.395
K 0.130 0.211 0.124 0.083 0.047 0.058 0.167

Lithic-TOT 28 47.8 33 44.2 23.8 22.4 18.6
Ls 0.107 0.218 0.206 0.321 0.235 0.223 0.344
Lm 0.050 0.088 0.042 0.086 0.076 0.054 0.237
Lp+Lv 0.843 0.695 0.752 0.593 0.689 0.723 0.419

Ign-Accs 7.8 4.2 5.8 2.2 7.6 13 5.6
Biot 0.846 0.524 0.655 0.455 0.553 0.662 0.500
Muse 0.026 0.381 0.172 0.273 0.184 0.246 0.357
Hbde 0.128 0.095 0.172 0.273 0.263 0.092 0.143
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