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 Nipah virus is a zoonotic pathogen that infects a wide species range including 

humans. It was first discovered in Malaysia in 1998 during a large outbreak, but since has 

spread to Bangladesh and India causing almost yearly outbreaks in the region since 2001. 

The distinct geographic locations have led to two genetically varied strains. Infection of 

humans by Nipah virus leads to respiratory distress and acute encephalitis. Pathology 

caused by the virus is characterized by vasculitis, necrosis, and edema of small vessels of 

the lung and brain primarily. This work investigates differences of pathology and clinical 

signs in the hamster model between strains, aiming to explain differences seen in 

epidemiology reports. We also characterize infection of endothelial and smooth muscle 

cells, which make up the vasculature, and how they react to infection. After better 

understanding the pathology in vivo and in vitro, we developed and efficacy tested a 

single-dose Vesicular stomatitis virus based vaccine. Data from this work demonstrates 

that although the Bangladesh strain is delayed 2 days compared to the Malaysian strain 

they cause similar pathology in hamsters. We also show that Nipah virus replicated in 

smooth muscle cells but does not cause adverse effects. Finally this study presents a 

vaccine that is protective against Nipah virus pathology. Overall this work allows for 

future studies using the Bangladesh strain, better defines infection of primary vascular 

cells, and proposes a possible vaccine candidate for outbreak use.  
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CHAPTER 1 INTRODUCTION 

Henipavirus 

 

 The family Paramyxoviridae of the order Mononegavirales consists two 

subfamilies Paramyxovirinae and Pneumovirinae. Paramyxovirinae include four genera, 

Respirovirus, Morbillivirus, Henipavirus, and Rubulavirus (1). Members of this family 

are enveloped negative- sense single stranded RNA viruses that cause disease in 

vertebrates. Hendra virus, Cedar virus and Nipah virus are part of the genus Henipavirus. 

Hendra virus and Nipah virus are highly virulent zoonotic pathogens. Cedar virus is 

newly discovered and is yet to be only found in the bat reservoir (2). These viruses are 

classified as select agents and must be worked with under biosafety level 4 conditions. 

They are pleomorphic in structure varying in size from 180- 1900nm, averaging 500nm 

(Figure	  1-‐1c), making them longer than other paromyxovirses (3). Like other 

Paramyxoviruses, Henipaviruses, code 6 genes in a non-segmented genome as seen in 

Figure	  1-‐1a.  The genes encoded from 3’ to 5’ are the nucelocapsid (N), phosphoprotein 

(P), matrix (M), fusion (F), glycoprotein (G), and the large polymerase (L).  The genomes 

of Nipah virus and Hendra virus are longer than those of the other paromyxoviruses being 

18,246 and 18,234 nucleotides respectively but share a high sequence homology (4, 5).  
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Figure	  1-‐1:	  Schematic	  representation	  and	  electron	  micrograph	  of	  Nipah	  virus.	  	  

(A) Schematic retranslation of Niaph virus genome. Arrows represent open reading 

frames encoding the nucleocapsid protein (N), phosphoprotein (P), matrix protein (M), 

fusion protein (F), glycoprotein or attachment protein (G) and large protein (L) or RNA 

polymerase. (B) Representation of Niaph virus structure. The RNP complex is located in 

the center of the virus shown in red, purple, and green with the virion RNA in black. The 

matrix protein (dark blue) makes up virion architecture, underlying the viral envelope. 

The surface of the virion is covered with the attachment glycoprotein in light blue and the 

fusion protein in yellow. (C) Electron micrograph of Niaph virus budding from a cell. 

Micrograph reprinted with permission from Lippincott Williams (6). Copyright © 2013, 

Lippincott Williams, a Wolters Kluwer business 
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Nipah Virus Replication Cycle 

Receptor binding and fusion 

 The receptor for Nipah virus was identified as the receptor tyrosine kinase, ephrin 

B2 (7, 8). Ephrin is a type I transmembrane protein that is the ligand for EphB4/B2. 

Ephrins are highly conserved ligands that function in cell-to-cell interactions, signaling, 

angiogenesis and neuronal axon guidance (9–11). Eprhrin B2 is expressed on vascular 

endothelial cells, with high expression in the lung and brain. Ephrin B3 expression is 

limited to the CNS and heart. Ephrin B2/B3 expression is consistent with Nipah virus 

tropism (7, 8, 10, 12, 13). Nipah virus was found to have high affinity for ephrin B2 with 

slightly less affinity for ephrin B3 (12, 14). Nipah virus has two surface proteins: the 

glycoprotein (G) and fusion (F) protein.  G functions as the attachment protein binding 

ephrin B2/B3. G binding to its receptor triggers F, which acts to fuse the virus to the cell 

membrane independent of pH. However there is some evidence that macropinocytosis 

could also aid in cell entry (13).  

Replication 

 Once the virus has fused with the cell membrane the ribonucleocapsid enters the 

cytoplasm of the cell and the viral mRNA acts as the template starting transcription 

(Figure	  1-‐2) (15). Transcription is initiated at the promoter region in the 3’ UTR. Each of 

the 6 genes have individual start and stop sequences with intergenic regions between 

genes (1). The Nipah genome only has one promoter thus if the polymerase complex 

(P/L) falls off the template re-initiation will only occur at the 3’UTR, this results in a 

differential gradient of transcription. This means that transcripts closer to the 3’ end will 

be more abundant than ones towards the 5’ end (16). This process results in accumulation 
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of viral proteins in the cytoplasm. After accumulation of unassembled nucleocapsid 

protein, replication of the genome begins producing a full-length (+) sense anti-genome, 

which is the template for the new (–) sense RNA (6). Once completed genomes are 

encapsidated by the nucleoprotein forming the ribonucleoprotein (RNP).  
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Figure	  1-‐2:	  Replication	  schematic	  of	  paramyxovirus	  life	  cycle.	  	  

An incoming virion fuses with the plasma membrane and releases the RNP into the 

cytoplasm. mRNA is represented by solid lines with closed circles at the 5’ end and An 

representing the 3’ poly A tail. Dotted lines represent intracellular transport. Reprinted 

with permission from Lippincott Williams (6). Copyright © 2013, Lippincott Williams, a 

Wolters Kluwer business.  
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Budding and egress  

Both glycoproteins are processed after translation, prior to their association with 

the membrane for incorporation into a new virion. G is synthesized in the endoplasmic 

reticulum (ER) then matured through the golgi, eventually trafficking to the cell 

membrane. F is also synthesized transported to the ER as an inactive precursor that is 

proteolytically activated in the trans-Golgi network then trafficked to the plasma 

membrane (6, 17, 18). Nipah budding is thought to be triggered by the accumulation of 

matrix protein; matrix protein alone can produce virus like particles (19). The matrix 

protein is trafficked to the nucleus for post-translational modification then returns to the 

membrane to bridge the glycoproteins in the membrane with the RNPs (6, 20). In Nipah 

replication, viral proteins associate with specific sites on the host cell membrane, where 

they pinch off and result in a virion with an envelope containing host-derived membrane 

that contains viral glycoproteins encapsulating matrix proteins and RNPs (15). 

Nipah Virus Epidemiology  

Discovery of Nipah virus  

Malaysian outbreak 

  In 1998 there was an outbreak of respiratory sickness in swine in Malaysia. Soon 

after the agent jumped to the pig handlers causing similar respiratory symptoms as well 

as encephalitis. The outbreak originated in Northwestern peninsular Malaysia but quickly 

spread into the south as well as into Singapore (through pig exportation) (21, 22). At first 

the outbreak was misdiagnosed as Japanese encephalitis virus, which is endemic in rural 

Malaysia (23). The outbreak continued into 1999 infecting more than 250 humans with 



	   7	  

over 100 fatalities (24). In mid-March 1999 the causative agent was identified as a 

Hendra-like virus and subsequently named Nipah virus after the home village of the 

patient the virus was isolated from (4, 25–27). Later sequencing of Nipah virus isolates 

showed that pig and human isolates are very similar thus the outbreak could have been 

caused by as little as 1 or 2 introductions (28, 29). Retrospectively, it is thought that 

Nipah virus may have emerged as early as 1997, when unexplained small scale pig deaths 

were reported as well as 6 causes of encephalitis that later tested positive for Nipah 

specific IgG (21).  

The risk factors associated with this outbreak focused on direct contact or close 

proximity to pig or pig secretions (30, 31). This led to quarantining infected pig farms, 

evacuating people out of infected areas and public announcements about how to properly 

protect yourself when dealing with swine (23). Eventual containment of the outbreak was 

brought about by culling of over a million pigs in the infected areas as well as the 

discontinuing exportation until the outbreak subsided (22, 26, 31). These precautions 

eventually led to the end of the outbreak.  

Bangladesh outbreaks 

 After the initial outbreak ending in 1999 Nipah virus was dormant in the human 

population until 2001 when it emerged on the Indian subcontinent. Since the first 

outbreak there have been almost annual small-scale outbreaks occurring in Bangladesh 

and India. Even though positive serology was identified no virus was isolated from the 

Bangladesh/ India outbreaks until 2004 when it was confirmed to be Nipah virus (32). 

Differing from the Malaysian outbreak, the Bangladesh outbreaks are small, still 

occurring, and do not involve pig farms. Bangladesh lacks large-scale pig farms, instead 
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individual families may have a small number of various species of animals. Sequencing 

of virus isolates from the numerous outbreaks have shown over 23 individual 

introductions with higher variation than the Malaysian isolates (33). In comparing the 

Bangladesh outbreaks over time it appears that the average case fatality is 70% (33). 

Another difference between the Malaysia and Bangladesh Nipah virus is that the 

Bangladesh outbreaks support human to human transmission with about 7% of 

individuals spreading disease to a median of 7 people (33).  

Animal hosts 

Natural animal hosts 

 During the Malaysian outbreak field investigations looking for an animal host 

were initiated. Due to its similarities with Hendra virus fruit bats of the family Pteropus 

were heavily focused on as a possible natural reservoir. In a study done in 2001 collecting 

blood for serologic data Yob et al. found a prevalence of 25% in fruit bats in Malaysia 

but no virus was isolated (34). Urine and fecal samples were also collected for sampling 

of Nipah virus in hopes of isolating virus (35). Nipah virus was later isolated from pooled 

urine (36). It was also demonstrated that bats intermediately shed virus even though they 

show no signs of disease (37, 38). Further study of Pteropus bats have shown henipavirus 

positive bats in Malaysia, Cambodia, Bangladesh, and Africa following the bats 

geographic range, suggesting the possibility of spread of the virus outside current 

endemic areas (34, 39–42). 

 As previously stated pigs played a large role in the Malaysian outbreak. Once 

Nipah virus entered a large pig farm the virus spread rapidly with a close to 100% 

infection rate. Incubation in these animals was 7-14 days and mortality was between 5-
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15% (43). If signs of disease were seen they included neurologic signs in older pigs as 

well as increased abortions and respiratory signs in younger pigs. Other domestic animals 

tested positive in Malaysia but none as high in prevalence as pigs and bats. It is believed 

that theses animals, which include dogs, cats, and goats, became infected from pigs or 

bats and were dead end hosts (26, 34, 43, 44). Differing from the Malaysian outbreak 

there is thought to be no intermediate host during Nipah Bangladesh outbreaks.  

Experimental animal models 

Experimentally various species have been identified to support Nipah virus 

infection, replication, and disease. Guinea pigs were examined as a model and support 

viral replication; however, in general clinical presentation seemed to be mild to 

asymptomatic but death can occur (45). Infection in guinea pigs causes systemic vascular 

disease, fever, weight loss, and twitching. Another animal model for Nipah virus is the 

cat. This model mimics human disease showing signs of respiratory distress including 

fever and elevated respiratory rate, however there is no evidence of encephalitis in cats 

(46, 47). Cats present with clinical signs from day 4 to 8 with systemic vascular disease 

leading to death. Pigs have been infected experimentally and disease is similar to that 

which is seen with natural infection with high morbidity and low mortality (46, 48). 

However, like natural infection, experimentally some pigs are asymptomatic. If pigs do 

develop signs of infection it is often age dependent with older animals having neurologic 

signs and respiratory distress in younger animals (43, 46, 49). 

The three animal models used the most in Nipah virus research include hamsters, 

ferrets, and nonhuman primates. Hamsters are a small animal model that mostly 

recapitulates human disease. These animals have clinical signs of both respiratory disease 
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as well as neurologic involvement (50) Hamsters have systemic vasculitits with 

pathology of the lung and brain often leading to death. Viral shedding is detectable and 

transmission is possible (51, 52). In the hamster model dose and route of infection affect 

disease outcome; low dose infections end in encephalitis around day 12 post challenge 

while high does infections are more respiratory and animals start to die around day 5 post 

challenge (53). Anther animal model that displays both respiratory and neurologic signs 

is the ferret. Infected ferrets present between days 6-10 post challenge with cough, 

depression, nasal discharge, and hind limb paralysis (54). Viral shedding does occur and 

disease is lethal. Another animal model for Nipah disease is the nonhuman primate. Both 

squirrel monkeys and African green monkeys have been infected and show clinical 

disease. Squirrel monkeys only show mild clinical diseases in about half of challenged 

individuals but infection can be lethal (55). The nonhuman primate model that more 

closely resembles human disease is the African green monkey. This model is close to 

human disease presenting with both respiratory ad neurologic symptoms about 7 days 

post challenge (56). This model is mostly lethal at high doses and characterized by 

pathology of the lung and brain, frothy discharge, viral shedding and endothelial 

syncytia.  

Transmission 

 Transmission of Nipah virus Malaysia strain is thought to have occurred from bat 

to pig to human, mainly focusing on oral and urogenital secretions from pigs as the route 

of transmission (23, 30, 57). This transmission route is supported by the fact that 

educating people about proper personal protective equipment as well as culling pigs led 

to the end of the outbreak (26). There has however been some evidence that suggests 
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there could have been a few cases of infection passed from patient to healthcare worker. 

In a serologic study in Malaysia of 363 healthcare workers from hospitals that handled 

most Nipah patients, only 3 had positive Nipah IgG titers with no IgM or neutralization 

detectable (58). All 3 nurses described caring for Nipah infected patients for over a 

month. Of these 3, 2 described mild febrile illness prior to blood sampling. Another study 

also found 1 asymptomatic nurse with antibodies positive for Nipah (59). The finding of 

4 health care workers with antibodies against Nipah virus suggests that person-to-person 

transmission may have occurred in Malaysia.  

In the Bangladesh outbreaks it is thought that the virus is spread from bats to 

humans from drinking raw date palm sap or coming in direct contact with bat secretions 

(41, 60). One of the reasons that date palm sap is a possible transmission route is that 

Nipah virus outbreaks in Bangladesh coincide with the date palm harvest season, late 

December to early April (33). At this time, bark is shaved off the tree and a tap is inserted 

allowing sap to drip into open pots. Pots are collected daily and sap is sold for immediate 

consumption (raw) as well as processing into molasses (61, 62). Reports of bats visiting 

sap harvest locations were confirmed by infrared photography, which documented 185 

bat visits in 20 nights with 84% of the bats directly contacting the sap (41). In case 

studies it has been found that there is a higher reporting prevalence of infected 

individuals having contact with or drinking raw date palm sap than not (63). However, 

Nipah virus has not been isolated from date palm sap. Several experimental studies have 

shown that Nipah virus is recoverable from various juices (mirroring fruit dropped from 

bats) and artificial date palm sap days after being spiked with virus (52, 64).  
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Also differing from the Malaysian outbreak, transmission in Bangladesh has been 

attributed to person-to-person contact (44, 65–67). In reviewing cases between 2001-

2007 in Bangladesh, Luby et al. found that out of 122 patients questioned 51% became 

sick after having direct contact with an infected patient 5-15 days earlier (33). Human to 

human spread of virus is thought to be attributed to respiratory droplets released during 

coughing fits. In a later study it was identified that 7% of cases transmit infection, most 

often to health care workers or family members (68). Two outbreaks, one in 2001 in India 

and one in 2004 in Fardpur supported the largest number of person-to-person 

transmission as well as spaned up to 5 generations of person-to-person transmission (67, 

69). There has also been documentation of corpse-to-human transmission of the virus 

(70). A few studies suggest nosocomial transmission and in one study swabs were taken 

of the walls and bed frame of a patients room and found to be positive 5 weeks after 

death, supporting environmental stability and nosocomial transmission (58, 67, 70, 71). 

Experimentally, the Bangladesh strain of Nipah virus has been identified in respiratory 

secretions and oral/ nasal swabs and has been documented to be transmitted by direct 

contact and, not as efficiently, by fomite in the hamster model (51, 72). Together these 

data support a more efficient person-to-person transmission of the Bangladesh strain over 

the Malaysian, with the lack of an intermediate host identified in Bangladesh.  

Human disease 

Clinical manifestations 

 Incubation periods for Nipah virus is estimated to be 4-45 days with most 

incubation periods lasting 2 weeks (73, 74)The average duration of illness in humans for 

Nipah virus is around 9 days (from fever to death) but has lasted anywhere from 2-30 
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days with some patients recovering (75). The age range of infected individuals is a large 

spread, 2-75 years, with variations in average age between outbreaks, most often middle 

age individuals are infected (73, 75, 76). In the case of the Malaysian outbreak the male 

to female ratio was highly skewed towards males, however this could be attributed to the 

route of infection and the male prevalence in pig handling (75). The male to female 

proportion throughout the Bangladesh outbreaks are still male skewed but are close to 

50/50 (67, 73). Generally Nipah virus symptoms fit under two categories: respiratory 

distress or acute encephalitis. Major clinical symptoms of Nipah virus infection in 

humans are listed in Table	  1-‐1. Generally, patients present with flu like symptoms 

including fever, headache, drowsiness, myalgia, and dizziness (73, 74).  Other 

manifestations of Nipah virus infection include are flexia, fast resting heartbeat, high 

blood pressure, segmental myoclonus, and doll eye syndrome (6). The Malaysian strain 

of the virus had higher prevalence of acute encephalitis than the Bangladesh isolate (74). 

Neurologic symptoms are paired with MRI results of disseminated small discrete lesions 

in the white matter and to lesser extent the gray matter (74, 76, 77).  Respiratory distress 

is characterized by difficulty breathing, coughing, shortness of breath, and atypical 

pneumonia (73).  
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Table	  1-‐1:	  Common	  clinical	  symptoms	  and	  other	  features	  of	  Nipah	  virus	  

infection.	  

General Respiratory Neurologic  
fever cough convulsions 
headache shortness of breath abnormal reflex 
dizziness respiratory difficulty altered mental status 
myalgia abnormal chest radiographs unconsciousness 
severe weakness  Interstitial pneumonia elevated lymphocytes in CSF 
vomiting   Elevated protein in CSF 
diarrhea   lesions in white and gray matter 

  



	   15	  

 Both outbreaks support relapsing encephalitis, often occurring in people with a 

primary infection that was acute or asymptomatic. Late-onset or relapsing infection can 

occur anytime from months to years later and is often associated with neurological sequel 

(74, 76, 78, 79). About 10% of survivors experience relapse but it is speculated that this 

could be an underestimate (79). Magnetic resonance imaging (MRI) findings from 

relapsing patients often showed a change from discrete small legions to more confluent 

wide spread lesions (74). Symptoms associated as high risk factors for a poor outcome 

are brain stem involvement, virus in the cerebrospinal fluid (CSF), and seizures (24, 74). 

Pathology  

 Most of what we know about human pathology comes from the Malaysian 

outbreak, where necropsies were more common. Common pathologic findings central to 

disease include systemic vasculitis, endothelial destruction, and CNS involvement (76, 

80). Specifically, Nipah virus pathology affects blood vessels of the CNS, lung, heart, 

and kidney. Typically small vessels (e.g. capillaries, venules) showed vasculitis, while 

medium to large vessels remained uninfected (75, 77). Vasculitis is characterized by 

destruction of the endothelium, mural fibroid necrosis and karyorrhexis (Figure	  1-‐3). 

There are also reports of inflammatory infiltration, thrombosis, necrosis, and 

hemorrhaging in infected vessels. In some cases giant multinucleated syncytia, are seen 

in vessel walls and endothelial cells throughout infected organs. Syncytia formation is 

more prevalent in cases were duration of illness lasts from 6-15 days (75). 



	   16	  

 

Figure	  1-‐3:	  Cartoon	  representation	  of	  pathology	  caused	  by	  Niaph	  virus	  

infection.	  	  

The major organs affected by Nipah virus pathology include the brain, lung and spleen. 

The images on the right are from the organs of experimentally infected animals showing 
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a representation of classic Nipah virus pathology. Vasculitis is central to infection and is 

characterized by edema, fibrin, perivascular inflammation, and endothelial syncytia.  

 The main infection induced pathology findings are in the CNS, paricularly brain. 

Again, vascular induced thrombosis was observed along with parenchymal necrosis. 

There are also appearances of some viral inclusions throughout both the white and gray 

matter. Matching MRI findings taken during infection, necrotic legions or plaques were 

observed with microcystic degeneration, microinfractions, and perivascular cuffing (75, 

77, 80). Immunohistochemistry (IHC) staining of the CNS showed Nipah positive 

antigen staining in blood vessels as well as neurons that are associated with vasculitis or 

necrotic plaques (75). There is also positive staining in viral inclusions.  

 Other organs are also affected during infection. The lung is the next location of 

prominent virus induced pathology. Findings of vasculitis and necrosis are associated 

with small blood vessels. Syncytial cells are observed in alveolar spaces along with 

hemorrhaging causing pulmonary edema (75). Besides the lung and CNS pathology is 

observed in the spleen, lymph nodes, kidney and heart. Pathology documented in these 

organs consisted of vasculitis, fibroid necrosis, and some hemorrhaging (75). IHC 

staining for Nipah virus in these organs mainly focuses around blood vessels. Specifically 

in the endothelium and tunica media (smooth muscle cells surrounding vessels) (75).  

 Pathology of late-onset encephalitis differs significantly from acute pathology. In 

the case of late-onset encephalitis the few necropsies performed show no vasculitis in any 

organ (81). Pathology in the CNS is more predominant and disseminated compared to 

acute encephalitic patients (78, 81). The viral inclusions in relapse patients are larger and 

more extensive. Lesions of the parenchymal are more confluent and larger causing 
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neuronal loss and gliosis (59). Also differing from acute infection peracymal cuffing is 

limited and necrotic plaques are not found (75). Viral staining of these patients 

demonstrate prominent glial and neuronal staining that are more diffuse than acute 

patients with no blood vessel staining (75).  

Cell tropism 

 Nipah virus pathologic features can be attributed to the tropism of Nipah virus. 

Nipah virus cell tropism is linked directly to receptor expression. Ephrin B2 and B3 are 

the receptors of the virus associating with the G of the virus. Ephrin B2 is found on 

arterial endothelial cells, smooth muscle cells, as well as neurons while ephrin B3 is more 

closely associated with the brain stem (10, 17). Ephrin expression levels vary in different 

organs and thus regulates Nipah virus infection (10). Ephrins are very conserved proteins, 

which probably accounts for the wide species range of Nipah virus (82). In cell culture, 

permissiveness of cells to Nipah virus has been linked to ephrin expression, however few 

cases of non-ephrin binding have been observed as well as the involvement of 

macropinocytosis (13, 82, 83). In general the virus favors vascular tropism, infecting 

endothelial cells and the tunic media as well as neuronal cells (80). Major organ and cell 

types found to be involved during Nipah virus infection are summarized in Table	  1-‐2 

(17). 
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Table	  1-‐2:	  Organ	  and	  cells	  tropism	  of	  Nipah	  virus	  infection	  in	  Humans.	  	  

	  
Organ cell types infected 
Brain endothelial cells 
  tunica media 
  neurons 
  rare- glical cells, ependyma 
Lung endothelial cells 
  tunica media 
  rare- bronchiolar epithelium  
Spleen Periarteriolar sheath cells 
  macrophages 
Kidney endothelial cells 
  tunica media 
Heart endothelial cells 
  tunica media 
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Treatment and Prevention 

Treatment 

Since the discovery of Nipah virus there have been numerous attempts to discover 

a treatment for infection (Table	  1-‐3). At the time of the Malaysian outbreak Ribavirin, a 

nucleoside inhibitor used to stop viral RNA synthesis, was made available to patients; 

this antiviral has been shown to be effective against other RNA viruses including 

Respiratory syncytial virus (84). The drug was given to 140 patients with 54 patients 

acting as controls. Patients in the Ribavirin group had a mortality rate of 32% compared 

to 54% in the control group, hospital stay and time on a ventilation system were also 

shorter in the treated group (85, 86). In an experimental setting Ribavirin limits 

replication in vitro (87–89). However, when Ribavirin was tested in the hamster model 

against Nipah virus, alone and in combination with Chloroquine, protection was not 

afforded (90, 91). Ribavirin was also evaluated in the African green monkey as a 

treatment option against Hendra virus and found to increase time to death, but not 

decrease mortality skewing disease to encephalitis over respiratory signs (92). Currently, 

Ribavirin is not used as a treatment option against Nipah virus.  

Another treatment option proposed for Nipah virus are fusion inhibitory peptides. 

The peptides act to blocking fusion of the F protein with the cellular membrane. By using 

the conserved heptad repeat region in the fusion protein of Hendra virus, Nipah virus, or 

human parainfluenza virus 3 researchers have been able to reduce cell fusion in tissue 

culture as well as show plaque reduction against live Nipah virus (93–97). It is proposed 

that the fusion inhibitory peptides act after the fusion protein undergoes conformational 
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changes inhibiting its structural formation into a 6-helix coiled coil bundle, which is 

needed for fusion (97, 98). 

Another strategy under development as a treatment against Nipah virus is 

antibodies. Early studies showed that passive transfer of polyclonal sera from vaccinated 

hamsters could be used to prevent death in naive hamsters given before Nipah virus 

challenge (99). Evolution of antibody therapy against Nipah virus focuses on monoclonal 

antibody development. First attempts used murine derived antibodies against NiV-F or 

NiV-G. Both F and G derived antibodies protected hamsters before challenge. The 

antibody against NiV-F protected100% of animals 1 hour after challenge and 50% if 

administered 24 or 48 hours after while the NiV-G antibody only protected 50% 1 hour 

after (100).  

Next generation antibodies came from using a peptide display library and a 

human monoclonal antibody that could neutralize both Hendra and Nipah viruses (101). 

This antibody, m102.4, was then fully matured creating a full length human IgG antibody 

that is fully cross neutralizing against both viruses (102). This antibody was tested post 

challenge in the ferret model (Nipah virus challenge) and the African green monkey 

(AGM) model (Hendra virus challenge) and was found to be protective (54, 103). In 

ferrets the antibody was given 10 hours post challenge and showed protection (54).  In 

the AGM m102.4 was given 10, 24, or 72 hours after challenge and again 48 hours after 

the first dose resulting in complete protection (103, 104).  
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Table	  1-‐3:	  Treatments	  tested	  against	  Nipah	  virus	  infection.	  	  

Treatment in vitro Species Efficacy Reference 

Ribavirin Cell culture  
• Reduced 

replication (87–89) 

  Human • Reduced 
mortality (85, 86) 

  Hamster • None (90, 91) 

  NHP 
• None 
• Encephalitis 

skewed 
(92) 

Inhibitory peptides Cell culture  
• Reduced fusion 
• Reduced plaques (93–97) 

Sera transfer  Hamster • Protection (99) 
Murine antibody  Hamster • Protection (100) 

Humanized antibody 
m102.4 Cell culture  • Neutralization (101, 102) 

  Ferret • Protection (54) 

  NHP • Protection (103) 
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Vaccines 

As early as 2004 possible vaccine candidates were starting to be developed 

against Nipah virus infection (Table	  1-‐4). Approaches focused on the surface 

glycoproteins G and F of Nipah virus. Due to biocontainment requirements some vaccine 

studies were performed without challenge. This study measured immune response to 

infection rather than efficacy. One such study was used a recombinant Newcastle disease 

virus expressing F or G as a vaccine vector. This vector was tested in mice and pigs using 

a prime boost strategy (105). Both vectors produced an antibody response as well as 

demonstrated neutralization suggesting the possibility of protection; however, animals in 

this study were never challenged. Another approach at protecting against Nipah virus 

disease focused on Venezuelan equine encephalitis replicon particles encoding G or F 

from Nipah virus (106). This vaccine was administered in 3 doses to mice and produced 

antibodies and neutralizing antibodies. Virus like particles (VLP) were also tested as a 

possible vaccine. This multi-dose vaccine was produced by expressing Nipah virus M, G, 

and F.  The particles were fusogenic in nature and looked like wild type virions by 

electron microscopy. Antibody production and neutralization were measured after mice 

were immunized 3 times. 

 The next batch of vaccine candidates were tested in the hamster model testing for 

both immune response and efficacy. A DNA vaccine in two doses using codon optimized 

Nipah F or G in expression plasmid pCAGGS was perfrmed in mice (107). The presence 

of antibodies and neutralizing antibodies were used to support the possibility of efficacy. 

In a study using the hamster model, this approach did not protect animals from lethal 

Nipah virus challenge (DeBuysscher et. al, unpublished). Another candidate was created 
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using Vaccinia virus recombinants expressing Nipah virus G or F as well as a co-

immunization with both F and G constructs in a prime boost strategy (99). Hamsters had 

high levels of neutralizing and non-neutralizing antibodies and were protected from 

infection with no detectable virus after challenge. This study also completed a passive 

transfer of sera from vaccinated hamsters to naïve animals; again protecting 100% of 

animals from disease, suggestion antibodies were important for protection. One of few 

single dose vaccines candidates include an adeno- associated virus (AAV) expressing G 

(108). This vector was tested in hamsters with 100% protection. After vaccination 

neutralizing antibodies were measured.  

Another disease model used in some studies to test efficacy is the pig, which is 

the intermediate Nipah virus host. A recombinant Canarypox virus expressing F or G and 

was tested with a prime boost vaccination schedule (49). Vaccinated pigs were protected, 

having no evidence of viral shedding, only low levels of Nipah RNA were detected in the 

olfactory bulb, trigeminal ganglion, and trachea, however no virus was isolated and there 

was little pathology compared to controls. This vaccine also produced neutralizing 

antibodies. Other large animal model for Nipah infection that has been used for vaccine 

efficacy testing is the cat and ferret. A recombinant soluble glycoprotein (sG) of Nipah or 

Hendra viruses were produced and coupled with CpG and administered in multiple doses 

to cats and ferrets to test the efficacy (109–111). These studies found that the sG from 

Hendra virus was more cross-reactive, thus this antigen was focused on. Immunization 

with sG is thought to block receptor and to produce high levels of neutralizing antibodies. 

Ferrets challenged 20 days after immunization or 12 months after immunization were 

protected from disease (111). Two separate studies propose a non-replication 
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recombinant Vesicular stomatitis virus (rVSV) as a vector for Nipah vaccination (112–

114). Both studies use a rVSV lacking its own glycoprotein and coding for Nipah virus F 

or G or a single-cycle F and G rVSV. Constructs protect hamsters or ferrets from disease 

and reduce virus replication in tissues. The constructs, when administered produce a 

strong immune response with neutralizing antibodies. 

One vaccine was tested in the African green monkey model of Nipah virus 

infection. This vaccine was administered in multiple doses with a vector based on a 

measles recombinant system expressing Nipah G (115). This vaccine was tested in 

hamsters and African green monkeys in 2 doses and demonstrated protection against 

lethal outcome and disease.   
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Table	  1-‐4:	  Vaccine	  candidates	  against	  Nipah	  virus	  infection.	  

Vaccine platform Species Vaccine schedule 
Nipah virus 

challenge dose 
(route) 

Efficacy Ref. 

Newcastle virus 
expressing either F 

or G 

Mice 
Pigs Prime with 1 boost N/A 

• T-cell 
response 

• Neutralizing 
antibodies 

• Long lasting 

 
(105) 

Venezuelan equine 
encephalitis virus 
expressing G or F 

Mice Prime with 2 boosts NA • Neutralizing 
antibodies (106) 

VLPs comprised 
of G, F and M Mice Prime with 2 boosts NA • Neutralizing 

antibodies  (116) 

DNA vaccination 
(pCAGGS G or F) 

Mice 
Hamsters Prime with 1 boost NA 

• Neutralizing 
antibodies 

• No protection 
in hamsters 

(107) 
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Vaccinia virus 
(VV) expressing G 

and/or F 
Hamster Prime with 1 boost 1x103 PFU 

(intraperitoneal) 

• Protection 
• Passive 

antibody-
protects 

(99) 

Adeno associated 
virus (AAV) 
expressing G 

Mice  
Hamster Single immunization 1e4 PFU, Nipah or 

Hendra 

• 100% Nipah 
• 50% Hendra 
• Antibodies in 

mice 

(108) 

Recombinant 
canarypox virus 

expressing G or F 
Pigs Prime with boost 2.5x105 PFU 

(intranasal) 

• Reduction in 
virus 

• Inhibition of 
viral shedding 

(49) 

Soluble Nipah or 
Hendra G 

Cats 
ferrets 

Prime with boost 
Prime with 2 boosts 

5x104 TCID50 
(oronasal) 

 
5x102 TCID50 

(subcu.) 

• Protection 
• Non-sterile 

immunity 

(109–
111) 

Recombinant 
vesicular 

stomatitis virus 
(VSV) expressing 

G or F 
 

Mice 
Hamsters 

Ferrets 
 

Single immunization 
 

N/A 
 

• Neutralizing 
antibodies 

• Protection in 
hamsters 

(112–
114) 

Recombinant 
measles virus 
expressing G 

Hamster 
NHP Prime with 1 boost N/A 

• Protection in 
hamsters 

• No clinical 
signs in NHP 

(115) 
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CHAPTER 2 AIMS 

Goal: To understand pathogenesis of Nipah virus and to create a vaccine to protect 

against Nipah virus infection and disease. 

Specific Aim 1: Comparison of the pathogenicity of Nipah virus isolates from 

Bangladesh and Malaysia in the Syrian hamster. 

  We hypothesize that infection and disease caused by Nipah Bangladesh will be 

more severe that Nipah Malaysia. In this aim we will establish the hamster as a model for 

Nipah Bangladesh as well as compare infection and pathogenicity of Nipah Bangladesh 

and Nipah Malaysia.  

Specific Aim 2: Defining the mechanisms of pathogenicity of Nipah virus in smooth 

muscle and endothelial cells. 

  We hypothesized that Nipah virus infects and replicates in endothelial and smooth 

muscle cells, leading to viral pathogenesis and cell destruction. In this aim we plan to 

further characterize the role of these two important cell types for Nipah infection and 

pathogenicity both in vivo and in vitro.  

Specific Aim 3: Development and characterization of a recombinant vesicular 

stomatitis virus based Nipah vaccine. 

  We hypothesize that a replicating recombinant vesicular stomatitis virus based 

vector expressing Nipah proteins (antigens) is an effective vaccine candidate. In this aim 

we will use the hamster model to test the immunogenicity and efficacy of a new Nipah 

vaccine candidate. 
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CHAPTER 3 COMPARISON OF THE PATHOGENICITY OF NIPAH VIRUS 

ISOLATES FROM BANGLADESH AND MALAYSIA IN THE SYRIAN 

HAMSTER  

Abstract 

Nipah virus is a zoonotic pathogen that causes severe disease in humans. The 

mechanisms of pathogenesis are not well described. The first Nipah virus outbreak 

occurred in Malaysia, where human disease had a strong neurological component. 

Subsequent outbreaks have occurred in Bangladesh and India and transmission and 

disease processes in these outbreaks appear to be different from those of the Malaysian 

outbreak. Until this point, virtually all Nipah virus studies in vitro and in vivo, including 

vaccine and pathogenesis studies, have utilized a virus isolate from the original 

Malaysian outbreak (NiV-M). To investigate potential differences between NiV-M and a 

Nipah virus isolate from Bangladesh (NiV-B), we compared NiV-M and NiV-B infection 

in vitro and in vivo. In hamster kidney cells, NiV-M-infection resulted in extensive 

syncytia formation and cytopathic effects, whereas NiV-B-infection resulted in little to no 

morphological changes. In vivo, NiV-M-infected Syrian hamsters had accelerated virus 

replication, pathology and death when compared to NiV-B-infected animals. NiV-M 

infection also resulted in the activation of host immune response genes at an earlier time 

point. Pathogenicity was not only a result of direct effects of virus replication, but likely 

also had an immunopathogenic component. The differences observed between NiV-M 

and NiV-B pathogeneis in hamsters may relate to differences observed in human cases. 

Characterization of the hamster model for NiV-B infection allows for further research of 

the strain of Nipah virus responsible for the more recent outbreaks in humans. This model 
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can be used to study NiV-B pathogenesis, transmission, and countermeasures that could 

be used to control outbreaks. 

Author Summary 

Nipah virus causes severe disease in humans and outbreaks have occurred in two 

geographic regions, Malaysia and Bangladesh, and viruses have been isolated during 

outbreaks from both of these regions (NiV-M and NiV-B, respectively). The original 

outbreak of Nipah virus occurred in Malaysia and caused severe encephalitis in humans. 

All subsequent outbreaks of Nipah virus have occurred in Bangladesh or India and 

disease has been characterized as having a strong respiratory component. Nipah virus is a 

public health concern that can cause up to 100% lethality in humans and there is no 

approved treatment or vaccine. Current research should focus on understanding disease 

progression and pathogenicity. We compared NiV-M and NiV-B infection and disease 

progression using the Syrian hamster model. We found that NiV-M is more destructive in 

cultured hamster cells and has faster onset of cytopathogenicity compared to NiV-B. This 

is also true in hamsters, where although both viruses are pathogenic and cause a similar 

disease, pathology caused by NiV-M infection is accelerated. These data show that there 

is a difference in disease progression between the two strains of Nipah virus and will 

allow for a more detailed understanding of the events leading to disease caused by these 

viruses. 

Introduction 

Nipah virus is a member of the family Paramyxoviridae, genus Henipavirus, and 

was discovered in 1998–99 to be the etiological agent responsible for an outbreak of 

severe respiratory disease in pigs (4) and encephalitis in humans in Malaysia (74). All 
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subsequent outbreaks of Nipah virus have occurred in Bangladesh or India, beginning in 

2001, and have occurred on an almost annual basis (117). Genetic data demonstrate that 

the isolates from Malaysia (NiV-M) and Bangladesh (NiV-B) represent two distinct 

Nipah virus strains (28, 117). Nipah virus outbreaks have case fatality rates of up to 

100% and there are no approved vaccines or treatments and these viruses have been 

categorized as a biosafety level 4 (BSL4) agents. Nipah virus differs from other 

paramyxoviruses in its ability to infect a wide range of mammals including bats (36), 

dogs (4, 26), horses (118), pigs (4), and cats (4, 80). Wildlife surveillance at the time of 

the first outbreaks, along with several subsequent studies, has identified fruit bats of the 

family Pteropodidae as the natural reservoir of Nipah virus (32, 34, 36, 119).  

During the first Nipah virus outbreak in Malaysia, NiV-M caused over 265 cases 

of encephalitis with 105 human deaths, resulting in a case fatality rate of 40% (4). 

Common clinical manifestations of Nipah virus infection included fever, headache, 

respiratory disease, encephalitis and loss of consciousness (75, 120). Fatal human cases 

of NiV-M infection were characterized by pathology involving the respiratory tract, 

central nervous system (CNS), heart, kidney and spleen (75). NiV-M infection causes 

vasculitis characterized by destruction of the endothelium, syncytia formation, 

thrombosis and necrosis, with infiltration of inflammatory cells throughout affected 

organs. In the lungs of infected humans, pulmonary edema, alveolar hemorrhage and 

pneumonia were documented as well as occasional multinucleated giant cells found in 

alveolar space (75). During this outbreak, the disease predominantly affected the nervous 

system with prominent signs of brain stem dysfunction. Magnetic resonance imaging of 

the brains of infected individuals showed focal lesions throughout the white matter (75).  
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In a study examining 94 Nipah virus-infected patients in Malaysia, only 6% showed 

abnormal chest radiographs, and of these, only one presented with a cough (74). Also, 

cases of late onset or relapsing encephalitis were documented during the Malaysia 

outbreak (74). During the Malaysian outbreak, pigs predominantly showed signs of 

respiratory disease and were determined to be an intermediate host (24, 27). 

Epidemiologically, reports of infection with NiV-B differ from that of NiV-M 

infection in several aspects. Clinically, NiV-B infection resulted in a higher percentage of 

respiratory disease and a higher case fatality rate, reaching up to 100%, compared to 

NiV-M infection (120). This disparity could reflect the differences in availability of 

health care and in reporting (73). Disparities, however, could also be caused by intrinsic 

differences in the pathogenicity of NiV-M and NiV-B. NiV-B is transmitted from bats to 

humans by multiple routes including the ingestion of contaminated date palm sap (60), 

and can subsequently be transmitted nosocomially (71), or by human-to-human 

transmission (44, 65–67). Common clinical signs and symptoms of NiV-B infection 

included fever, altered mental status, headaches, cough, and difficulty breathing (73, 

121). During the Bangladeshi outbreaks, acute respiratory distress was noted in many 

patients (73, 122). Febrile neurologic illnesses were also documented in some outbreaks 

of NiV-B, with lesions found in the gray and white matter of the brain (69, 121, 123). In 

one study looking at 92 patients, 69% had difficulty breathing and 62% had a cough (73). 

Limited studies have been conducted to describe the pathology in NiV-B infected 

patients. 

In contrast to most other paramyxoviruses, Nipah virus has a broad species 

tropism and there are few suitable animal models that recapitulate human disease. 
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Experimentally cats, guinea pigs, ferrets, pigs, non-human primates, and Syrian hamsters 

have been shown to support NiV-M viral replication resulting in clinical signs of 

infection (47, 56, 124). The Syrian hamster is the only small rodent model that closely 

mimics multiple aspects of human disease (47, 48, 50, 80). When infected 

intraperitoneally (i.p.) or intranasally (i.n.) with NiV-M, hamsters develop respiratory 

disease and/or encephalitis. The pathological changes that occur in the hamster are 

similar to those described in humans. The presence of vasculitis, necrosis, and 

inflammation is seen in both the human and hamsters. Viral antigen and disease 

pathology is observed in lung, kidney and heart tissue (50, 53). Similar to human 

infections that lead to encephalitis, hamsters show antigen positive neurons, necrosis, and 

vasculitis in the CNS (50). These similarities in infection between humans and hamsters 

make the Syrian hamster a suitable model for the study of Nipah virus pathogenesis. 

This study was designed to compare NiV-B and NiV-M infections in a hamster-

derived cell line, followed by a comparison of the pathogenesis and immune responses to 

infection by both virus strains in the Syrian hamster. Our results demonstrated that 

hamster cells are permissive for infection by both virus strains, with NiV-M causing 

increased syncytia formation and cytopathic effect (CPE) compared to NiV-B. In vivo, 

NiV-B infection resulted in a delayed disease progression compared to NiV-M infection. 

Overall NiV-M is more cytopathic in vitro and causes an accelerated disease in vivo, 

compared to NiV-B. 



	   34	  

Materials and Methods 

Ethical statement 

All work with Nipah virus, potentially infectious materials, and infected hamsters 

was completed in the BSL4 facility at the Rocky Mountain Laboratories, Division of 

Intramural Research, National Institute of Allergy and Infectious Diseases, National 

Institutes of Health. All standard operating procedures applied were approved by the 

Institutional Biosafety Committee (IBC). All animal experiments were approved by the 

Institutional Animal Care and Use Committee of the Rocky Mountain Laboratories and 

performed following the guidelines of the Association for Assessment and Accreditation 

of Laboratory Animal Care, International (AAALAC) by certified staff in an AAALAC-

approved facility. 

Virus propagation 

NiV-B and NiV-M were provided by the Special Pathogens Branch of the Center 

for Disease Control and Prevention, Atlanta, GA, USA. NiV-M was isolated from a 

human case (cerebrum) in 1999 and passaged on Vero E6 cells a total of four times 

before used in experiments (125). NiV-B was isolated from a throat swab of a lethal 

human infection from Bangladesh in 2004 and passaged in Vero E6 cells a total of three 

times (28). Viruses were propagated on Vero E6 cells in Dulbecco's Modified Eagle’s 

medium (DMEM) (Sigma) supplemented with 10% fetal calf serum, 2 mM l-glutamine, 

50 IU/mL penicillin and 50 µg/mL streptomycin (Life Technologies). Supernatants were 

collected and clarified by low-speed centrifugation and stored in liquid nitrogen. 
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Virus titration 

For plaque assays, Vero C1008 (European Collection of Cell Cultures) were 

grown to confluency in 6-well plates. Media was replaced with 250 µL of serial 10-fold 

dilutions of virus in DMEM and incubated for 1 hr at 37°C, rocking every 15 min. The 

virus inoculum was replaced with 2 mL of a 1:1 mixture of 2× minimal essential medium 

(MEM) and 1.6% low-melt agarose (Life Technologies). The cells were then incubated 

for 3 d at 37°C, 5% CO2 before staining with 2 mL of a 0.25% crystal violet solution in 

10% formalin for 3 hr at room temperature. The stain and overlay were then removed 

from the wells and the plaques were enumerated. 

To determine the 50% tissue culture infectious dose (TCID50), monolayers of 

Vero C1008 cells were grown in 96-well plates and 100 µL of serial 10-fold diluted 

samples in MEM containing 2% FBS, were added to the wells. Cells were then incubated 

for 5 d at 37°C, 5% CO2 and then scored for CPE. 

Cell lines and in vitro infections 

Baby hamster kidney cells (BHK-21) from the American Type Culture Collection 

were propagated in MEM (Sigma) supplemented with 10% fetal calf serum, 2 mM l-

glutamine, 50 IU/mL penicillin and 50 µg/mL streptomycin (Life Technologies). Nipah 

virus infections were performed in 48-well plates when cells reached 95–100% 

confluency. Infections were performed by replacing medium with 250 µL of diluted virus 

(multiplicity of infection (MOI) of 0.1 and 0.01) in MEM, 2% FBS. After 1 hr, the 

inoculum was replaced with MEM supplemented with 2% FBS. Supernatants were 

collected at 1 hr, and 1, 2, and 3 days post infection (dpi) for virus titration. Cells were 

stained using the Kwik Diff Kit (Thermo scientific) to visualize syncytia according to the 
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instructions of the manufacturer. Cells were monitored for CPE with a light microscope 

and images were captured using a Nikon DS-Fi1 camera. 

Inoculation of hamsters and sample collection 

Groups of 5 to 6 week old female Syrian hamsters (Harlan) were inoculated with 

the indicated doses of NiV-M or NiV-B diluted in sterile DMEM and administered via 

the i.p. route in a total volume of 500 µL. Control animals received the equivalent 

volume of sterile DMEM by the same route. Two groups were inoculated i.n. with 105 

TCID50 per hamster of either NiV-M or NiV-B diluted in sterile DMEM. Fifty 

microliters of virus preparation was delivered to each nare using a pipette. Hamsters were 

weighed and scored daily for clinical signs for two weeks. When signs of disease no 

longer existed, animals were monitored but no longer weighed. The health of animals 

was assessed and scored according to the following criteria: 0 = no signs of disease; 1 = 

ruffled fur; 2 = ruffled fur & weight loss <5%; 3 = ruffled fur, hunched posture & weight 

loss >5%; 4 = ruffled fur, hunched posture & weight loss >10%; 5 = ruffled fur, hunched 

posture, weight loss >15%, or encephalitic signs, or hemorrhagic signs, or paralytic signs 

or dyspnea; 6 = ruffled fur, hunched posture, weight loss >20%, or encephalitic signs, or 

hemorrhagic signs, or paralytic signs or dyspnea; 7 = death. Euthanasia occurred at a 

score of 5 and above. At the time of euthanasia, animals were bled (EDTA- and heparin-

treated vacutainer tubes) via cardiac puncture. Necropsies were performed to collect lung, 

spleen, heart and brain tissue. Tissues were placed in lysis buffer RLT (Qiagen) for RNA 

extraction, or 10% formalin for histopathology and immunohistochemistry (IHC) 

analysis. 



	   37	  

RNA extraction and quantitative real-time RT-PCR (qRT-PCR) 

Tissues (30 mg pieces) were homogenized in RLT buffer and removed from the 

BSL4 using approved standard operating procedures. Total RNA was extracted using 

RNeasy kit (Qiagen), according to the manufacturers' instructions. Whole blood was 

collected and inactivated in AVL buffer and removed from the BSL4 using approved 

standard operating procedures. Total RNA was extracted using QIAamp viral RNA kit 

(Qiagen), according to the manufacturers' instructions. 

The RNA was quantified on a nanodrop 8000 spectrophotometer (Thermo 

Scientific). Real-time quantitative RT-PCR (qRT-PCR) was performed on a rotor-gene 

6000 instrument (Corbett Life Science) using QuantiFast probe reagents (Qiagen) 

targeting the NiV-M or NiV-B nucleocapsid protein gene. Primers and probes used were: 

NiV-B sense (5′-GTTCAGGCCAGAGAAGCTAAATTT-3′), NiV-B antisense (5′-

CCTCTTCGTCGACATCTTGATCA-3′), NiV-M sense (5′- 

GTTCAGGCTAGAGAGGCAAAATTT-3′), NiV-M antisense (5′- 

CCCCTTCATCGATATCTTGATCA-3″), NiV-B probe (5′-6FAM-

CTGCAGGAGGTGTGCTCATCGGAGG-TAMRA-3′) and NiV-M probe (5′-6FAM-

CTGCAGGAGGTGTGCTCATTGGAGG-TAMRA-3″). qRT-PCR components were 

used at the concentrations recommended by the manufacturer and 5 µL of RNA was 

added to each reaction and the following thermocycling parameters were used: 50°C for 

10 min, 95°C for 5 min, and 40 cycles of 95°C for 5 s, 60°C for 10 s. Dilutions of RNA 

extracted from a known titer of each Nipah virus were run in triplicate to generate a 

standard curve from which sample TCID50 equivalents were extrapolated. Hamster 

immune gene expression was determined as previously described (126). Briefly, RNA 
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was extracted from tissues and qRT-PCR was performed as described above using gene-

specific primers and probes under multiplex conditions. The fold-change in each gene 

was calculated by normalizing the change in CT (ΔCT) to the CT values for RPL18 (as an 

internal reference gene) for each sample and comparing this to the CT values of 

uninfected hamsters (2−ΔΔCT). 

Histopathology and immunohistochemistry 

Tissues were fixed in 10% neutral buffered formalin for 7 d with one volume 

change, then transferred out of the BSL4 using approved standard operating procedures. 

Tissues were then placed in cassettes and processed with a Sakura VIP-5 Tissue Tek, on a 

12 hr automated schedule, using a graded series of ethanol, xylene, and ParaPlast Extra. 

Embedded tissues were sectioned at 5 µm and dried overnight at 42°C prior to staining 

with hematoxylin and eosin (H&E). 

Specific Nipah virus IHC was performed using an anti-Nipah virus N protein 

rabbit primary antibody at a 1:5000 dilution (kindly provided by L. Wang, CSIRO 

Livestock Industries, Australian Animal Health Laboratory, Australia) (54). The tissues 

were then processed using the Discovery XT automated processor (Ventana Medical 

Systems) with a DAPMap (Ventana Medical Systems) kit. 

Statistics 

Statistical analyses were performed on the data form the TCID50 and qRT-PCR 

experiments using a 2-way ANOVA with a Bonferroni's post-test. To determine whether 

there were significant differences in the time to death between the viruses, we performed 

a log-rank test. The mean and SEM is represented and significance (* = p<0.05, ** = 

p<0.01 and *** = p<0.001) is reported where appropriate. 
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Results 

NiV-M causes increased cytopathology in BHK-21 cells, compared to NiV-B 

To determine the cellular responses and replication kinetics of the two Nipah virus strains 

in a hamster cell line, we infected BHK-21 cells with either NiV-M or NiV-B at MOIs of 

either 0.01 or 0.1. As early as 1 dpi, syncytia formation was apparent in all NiV-M-

infected cultures. By 3 dpi, and at both MOIs, NiV-M-infected cells showed extensive 

CPE and nearly complete destruction of the cell monolayer (Figure	  3-‐1A). NiV-B-

infected cells showed little CPE at any of the time points sampled, regardless of the 

inoculation dose. At 3 dpi, NiV-B-infected cells began to form small syncytia. At both 

MOIs, NiV-M replicated sooner and reached higher virus titers in the supernatant at 

earlier time points compared to NiV-B (Figure	  3-‐1B and C). At the lower MOI, NiV-M 

reached a titer that was 4 logs higher at 3 dpi than NiV-B (Figure	  3-‐1B), whereas end 

titers were similar for both Nipah virus strains at the higher MOI, with a faster 

progression for NiV-M (Figure	  3-‐1C).  



	   40	  

 

  



	   41	  

Figure	  3-‐1:	  NiV-M replicates more efficiently and causes increased 

cytopathogenicity in hamster cells compared to NiV-B. 	  

To study the cytopathogenicity of these Nipah viruses, BHK-21 cells were infected with 

NiV-M or NiV-B at an MOI of 0.01 and stained using the Kwik Diff Kit at 1, 2, and 3 

dpi. Arrows point to multinucleated giant cells (A). To examine the viral growth kinetics, 

BHK-21 cells were infected with Nipah virus at an MOI of 0.01 (B) or 0.1 (C) and 

supernatants were collected at the indicated time points. Supernatants of NiV-M at an 

MOI of 0.1 at 3 dpi were not collected due to extensive destruction of the cell monolayer. 

Virus was titrated on Vero C1008 cells and the results are expressed as the mean of three 

replicates and error bars indicate the SEM. The dotted line denotes limit of detection for 

the assay. A 2-way ANOVA with Bonferroni's post test was used to compare the viruses 

(* = p<0.05) (B and C). 
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Disease progression during NiV-B infection of hamsters is delayed compared to NiV-M 

infection 

To date, NiV-B infection has not been examined in an animal model. To assess the 

suitability of the hamster as a model for NiV-B infection, as well as to compare the two 

strains, hamsters were inoculated i.p. with 10-fold serial dilutions of Nipah virus from 105 

to 1 TCID50 (Figure	  3-‐2). Animals were evaluated for clinical signs of disease on a daily 

bases according to a scoring system outlined in the Materials and Methods section. Only 

one hamster showed abnormal clinical signs on the day prior to euthanasia, which 

consisted of ruffled fur. All other hamsters did not display abnormal clinical signs until 

the day euthanasia was necessary. Hamsters challenged with either virus strain showed 

clinical signs of respiratory distress and/or neurologic dysfunction leading to a score that 

required euthanasia. Signs of respiratory disease included labored abdominal breathing 

and hunched posture; neurological dysfunction included imbalance, partial paralysis and 

seizures. Similar to previous studies with NiV-M, respiratory distress was observed only 

in animals infected at the highest doses (104 and 105 TCID50/animal) (53). The majority 

of animals inoculated with the lower doses of Nipah virus (100 through 103 

TCID50/animal) displayed neurologic dysfunction prior to euthanasia. One animal 

infected with NiV-M at the highest dose (105 TCID50) and two animals infected with 

NiV-B (one inoculated with 104 and one with 105) presented with both respiratory and 

neurologic dysfunction, while the rest of animals had either respiratory or neurological 

signs of distress that required euthanasia. NiV-M-infected animals showing severe 

respiratory signs of disease were euthanized between 5–7 dpi, whereas animals 

displaying neurological disorders were euthanized between days 5–11. Disease 
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progression in NiV-B-infected animals was generally slower, and animals displaying 

severe respiratory distress or neurological dysfunction were euthanized on 8–9 dpi or 8–

14 dpi for NiV-M and NiV-B infection, respectively (Table	  3-‐1). The slower disease 

progression in NiV-B-infected animals was reflected in the overall survival curves with 

80% lethal disease outcome even at the highest dose of infection Figure	  3-‐2:Hamsters 

inoculated with NiV-B show delayed disease progression compared to NiV-M-infected 

hamsters.and Table	  3-‐1. The LD50 for NiV-M and NiV-B was 68 and 528 TCID50, 

respectively. At both 103 and 105 TCID50, there was a statistically significant difference 

in the time to death between the two virus strains, with death occurring approximately 

two days later for NiV-B infected animals at each dose (Table	  3-‐1). To determine if the 

delay in survival is associated with the route of infection, we inoculated hamsters i.n. 

with 105 TCID50 of either NiV-M or NiV-B. The mean time to death was delayed by two 

days in hamsters inoculated with NiV-B compared to NiV-M (Figure	  3-‐2). Both routes 

of inoculation showed a two-day delay in NiV-B compared to NiV-M, although the mean 

time to death was later in both virus groups with the i.n. compared to i.p. route. 
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Figure	  3-‐2:Hamsters inoculated with NiV-B show delayed disease progression 

compared to NiV-M-infected hamsters. 	  

Groups of 5 hamsters were inoculated i.p. with 10-fold serial dilutions of virus from 105 

to 1 TCID50. The hamsters were monitored for 30 dpi for survival. 
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Table	  3-‐1: Clinical signs and outcome of hamsters inoculated with NiV-M or NiV-

B.	  
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Figure	  S	  1:	  Hamsters inoculated intranasally with NiV-B show delayed disease 

progression compared to NiV-M-inoculated hamsters.	  	  

Groups of 5 hamsters were inoculated i.n. with 105 TCID50. The hamsters were monitored 

for survival. A log- rank test was used to compare survival curves (* = p<0.05). NiV-B 

infected animals had a mean time to death of 11.6 days and NiV-M infected animals 9.4 

days. 

 

  



	   48	  

Both Nipah viruses replicate in hamster lung, brain and spleen tissue 

To compare the pathogenesis of NiV-M to NiV-B, groups of hamsters were inoculated 

with 105 TCID50 of either Nipah virus and tissues were collected on 1, 3 and 5 dpi for 

both virus groups, and 7 dpi for NiV-B. Based on the time to death at this dose from our 

survival experiment, 7 dpi tissues were not collected for NiV-M-inoculated animals for 

this pathology experiment. Viral RNA was detected using Nipah virus N-specific qRT-

PCR (Figure	  3-‐3). In NiV-M-inoculated animals, replication was detected at an earlier 

time point than NiV-B replication. As early as 1 dpi, viral RNA was detected in lungs, 

brain and spleen tissue of some NiV-M-infected animals. NiV-B-infected animals had 

detectable levels of viral RNA at 1 dpi in lung tissue of some hamsters, and in the spleen 

by 3 dpi. Both strains showed an increase in viral RNA over time in the lungs, brain and 

spleen, with the highest overall titers in the lungs at the last time point sampled. We 

assessed viremia in hamsters inoculated with either virus by qRT-PCR. Levels of viral 

RNA were barely detectable and viral RNA was undetectable in some animals at each 

time point (data not shown). 
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Figure	  3-‐3: NiV-B replication is delayed in hamster organs compared to NiV-M 

replication. 	  

Hamsters were inoculated with 105 TCID50 of Nipah virus and 9 animals/group were 

euthanized at 1, 3, 5, and 7 (for NiV-B only) dpi and tissues were collected. Total viral 

RNA was extracted and Nipah virus N-specific viral RNA was quantified by qRT-PCR. 

Gray bars represent NiV-B and white NiV-M. Bars represent the mean and error bars 

represent the SEM. 
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Host gene expression in lung, brain and spleen tissue of hamsters is differentially 

regulated during Nipah virus infection 

To examine the kinetics of the host immune response to Nipah virus infection, and 

compare responses between NiV-M and NiV-B infections, the expression level of a 

subset of cytokine and chemokine mRNAs were examined by qRT-PCR in the lungs, 

brain and spleen (Figure	  3-‐4). Throughout the infection, the largest overall response was 

seen in the lungs. At 1 dpi, a statistical difference in the upregulation of interleukin-4 (IL-

4), interleukin-6 (IL-6), tumor necrosis factor (TNF), and interferon-γ (IFNγ) was 

observed between NiV-M and NiV-B infections, with higher expression of these genes in 

response to NiV-M. A similar result was measured at 3 dpi for IFNγ in the lungs (Figure	  

3-‐4). At 3 dpi, IL-4, IL-6 and TNF were upregulated similarly in response to both virus 

strains and remained upregulated throughout the course of infection. Upregulation of the 

gene for myxovirus resistance protein-2 (Mx2) in the lungs was detected only at the last 

time point for both virus strains. IFNγ-induced protein 10 (IP-10) mRNA increased 

starting at 1 dpi and remained upregulated in the lungs throughout the course of infection, 

peaking at 3 dpi in NiV-M-infected hamsters and 5 dpi in NiV-B-infected hamsters. IL-4, 

IL-6 and TNF were also upregulated in brain (Figure	  3-‐4). There was a significant 

increase in Mx2 transcription in the spleens of NiV-M-infected hamsters at 3 dpi 

compared to NiV-B. In the brain, IL-4, IL-6 and TNF were slightly upregulated over 

control animals. IL-4, IL-6, TNF, and IFNγ mRNAs were downregulated in the spleen. 
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Figure	  3-‐4:	  Host gene expression in lung, brain and spleen tissue of hamsters is 

differentially regulated during infection with Nipah viruses. 	  

Quantitative RT-PCR for IL-4, IP-10, IL-6, Mx2, TNF and IFNγ was performed on lung, 

brain and spleen tissues from groups of 9 hamsters inoculated with 105 TCID50 of NiV-M 

(white bars) or NiV-B (gray bars) at the indicated time points. Data are shown as the 

fold-change of each gene over uninfected controls and normalized to an internal reference 

gene (RPL18). Error bars represent the SEM. A 2-way ANOVA with Bonferroni's post-

test was used to determine statistical significance between viruses (* = p<0.05, ** = 

p<0.01 and *** = p<0.001). 
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Histopathological changes occurred earlier in NiV-M-infected hamsters compared to 

NiV-B-infected animals 

To compare the pathology between the two strains, hamsters were inoculated with 105 

TCID50 of NiV-B or NiV-M and tissues were examined histologically. Pathology was 

observed for both infections and was composed of a mild to moderate multifocal, 

subacute, bronchointerstitial pneumonia with vasculitis on 5 dpi for NiV-M and NiV-B 

infection (Figure	  3-‐5). By 7 dpi in NiV-B-infected animals, the pneumonia progressed to 

marked, multifocal to coalescing, subacute bronchointerstitial pneumonia with vasculitis, 

necrosis, edema, and fibrin deposits. The pneumonia in both groups, on day 5 dpi for 

NiV-M infection and 7 dpi for NiV-B infection, was characterized by effacement of 

terminal bronchioles and adjacent alveoli by small to moderate numbers of macrophages, 

neutrophils, lymphocytes and plasma cells. Multifocal vasculitis was observed with 

disruption of the arterial tunica media by small numbers of neutrophils and lymphocytes. 

Syncytial endothelial cells were found in affected small to medium caliber vessels. 

Hamsters from the final time points had moderate to marked lesions in the lungs and 

demonstrated a loss of pulmonary architecture with replacement by cellular and 

karyorrhectic debris with small to moderate amounts of hemorrhage, fibrin deposits and 

edema. IHC revealed viral antigen in alveolar capillary endothelium, small and medium 

caliber arteriolar endothelium, and in mononuclear inflammatory cells starting at 3 dpi 

for NiV-M infection and 5 dpi for NiV-B infection (Figure	  3-‐5B). The presence of viral 

antigen was strongly associated with areas of inflammation. No pathological changes 

were observed in the CNS of hamsters infected at the high dose used in the pathology 

study. 
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Figure	  3-‐5: NiV-M infection results in accelerated pathology compared to NiV-B 

infection in hamsters.  

Nipah virus inoculated hamsters were euthanized at 3, 5 and 7 dpi (for NiV-B only) and 

lung sections were stained with H&E (A) and for Nipah virus nucleocapsid protein (IHC) 

(B) Images were taken at a magnification of 100× and 400× (insets). Asterisks denote 

arteries with vasculitis as demonstrated by recruitment of inflammatory cells with 

effacement of the tunica intima and tunica media. Open arrows denote areas of acute 

hemorrhage and closed arrows indicate fibrin deposits. 
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Discussion 

Nipah virus is a zoonotic pathogen that causes encephalitis and pulmonary disease 

with a high case fatality rate and is classified as a category C pathogen by the NIAID's 

pathogen priority list (120). Two strains of Nipah virus, NiV-M and NiV-B, have been 

isolated from geographically and temporally separated outbreaks (28). Human outbreaks 

caused by these strains differ in disease progression and epidemiologically (121). The 

Syrian hamster has been established as a disease model for NiV-M infection (50, 53), but 

NiV-B infection studies have not been reported for any animal model. The goal of this 

study was to compare the replication, pathogenesis, and immune response to infection 

with NiV-M and NiV-B using in vitro and in vivo methods. BHK-21 cells infected with 

NiV-M showed more severe damage and supported higher virus replication compared to 

NiV-B-infected cells. Hamsters infected with NiV-B had a delay in disease progression 

and increased survival rates compared to NiV-M infected animals. 

In vitro, BHK-21 cells were permissive for infection by both NiV-M and NiV-B. 

NiV-M replicated to higher titers in the supernatant at an earlier time point, and infection 

resulted in widespread syncytia formation causing extensive CPE. Widespread CPE was 

not observed in NiV-B-infected BHK-21 cells, although a few syncytia were present at 

later time points. The differences observed in virus replication and syncytia formation 

could be attributed to either higher viral replication causing more syncytia, or more 

syncytia formation resulting to higher virus load. Differences in replication efficiency 

including protein production, viral assembly and budding could explain the higher virus 

production and large number of syncytia observed in NiV-M infected cultures. 

Conversely, differences in fusion kinetics could account for disparate amounts of 
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syncytia that then lead to variation in virus replication. The high amount of fusion and 

syncytia formation in cells could result in the infection of cells that were not initially 

infected at the low MOIs used in our experiments. This could lead to higher overall levels 

of virus production. Previous studies using paramyxoviruses have demonstrated that viral 

spread can occur by cell-cell fusion; the surface proteins of Nipah virus are present at the 

cell junctions and have been shown to initiate fusion and spread of virus (127–129). 

Slower fusion kinetics could lead to less and slower formation of syncytia observed in 

NiV-B infected cells. The affinity of Nipah virus glycoprotein to its receptors, ephrin B2 

and B3, as well as the ability of the glycoprotein to trigger the fusion protein could also 

affect fusion rates. Further experiments need to be completed to examine the relationship 

between replication and syncytia formation. 

In our experiments, we chose i.p. as the route of inoculation due to the more 

uniform disease progression and outcomes described in previous Nipah virus studies (50). 

It is likely that i.p. inoculation would more readily allow for the detection of subtle 

differences between strains that may not be detectable in a less uniform infection route, 

such as i.n. When infected with NiV-M or NiV-B, hamsters developed clinical signs of 

disease similar to human infection (30, 50, 74, 75). The onset of disease and death in 

hamsters was rapid and occurred between 5–14 dpi, which corresponds to human cases, 

where symptoms start to develop between 7–10 dpi (24, 84, 130). We observed earlier 

replication of NiV-M than NiV-B in all organ types sampled, although, once NiV-B RNA 

was detected, it reached similar values within two days. Earlier replication of NiV-M in 

tissues corresponded with earlier pathologic changes and accelerated disease and death 

compared to NiV-B infection. In humans, CNS pathology is documented, but in our 
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comparative pathology experiment, we did not observe pathology in the CNS. This is 

likely attributed to the high dose of inoculum for the pathology experiment (105 TCID50) 

and route of inoculation (i.p.). However, we did observe pathology in the lungs consisting 

of multifocal subacute bronchointerstitial pneumonia with vasculitis. The pneumonia was 

characterized by inflammation in the terminal bronchioles and alveoli spaces, necrosis, 

hemorrhage, fibrin deposits, edema and syncytia in endothelial cells. In human cases, 

fibrinoid necrosis, vasculitis, pulmonary edema, alveoli hemorrhaging, and syncytia were 

documented (24, 75, 84). It is probable that hamsters inoculated with this high dose (105 

TCID50) succumbed to infection due to inflammation, edema, and widespread vasculitis 

in the lungs that caused interstitial pneumonia. Even with low levels of viral antigen, 

pathology was severe enough to cause a fatal outcome. 

The typical dose that humans are infected with, as well as the route of infection is 

not known. In hamsters, both virus strains caused respiratory distress and/or neurological 

dysfunction in a dose-dependent manner. Based on previous data in hamsters, it is likely 

that dose and route of infection might play a role in Nipah virus outcome in humans (53). 

Disease progression could be altered by the transmission route, which could include 

fomite (51, 71), oral ingestion (60, 131), and respiratory droplets (51, 58, 132). In this 

study, inoculation of hamsters with NiV-B resulted in a delay in disease progression and 

the LD50 was approximately a log higher compared to NiV-M. However these data are 

contrary to what has been reported in humans, where NiV-B results in higher case fatality 

rates compared to NiV-M. Since we did not observe a difference in disease that would 

explain differences in the epidemiological data for the two Nipah virus strains, factors 

other than the intrinsic pathogenicity likely contribute to the disparities in the 
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documented epidemiological data. The suboptimal health care, lack of supportive care 

and inconsistencies in reporting could account for higher documented case fatality rates 

and differences in disease manifestations during NiV-B outbreaks (73). 

Cytokine and chemokine mRNAs were quantitated in the hamsters over the 

course of infection and several immune genes were upregulated in the lung, brain, and 

spleen, although there was a slight downregulation of some genes in the spleen. NiV-M 

induced an earlier and more robust immune response compared to NiV-B, which 

eventually reached similar levels to hamsters infected with NiV-M. Early TNF activation 

during NiV-M infection may contribute to recruitment of inflammatory cells, as observed 

in the lungs of infected hamsters by histopathology. The upregulation of IP-10 in the 

lungs coincided with lymphocyte recruitment, appearance of vascular damage, and 

necrosis in the lungs. IP-10 upregulation has been documented in other Nipah virus 

studies, specifically focusing on endothelial cells (133, 134). Teruya-Feldstein et al 

reported that high levels of IP-10 are found in necrotic tissue and in areas of vascular 

damage associated with Epstein-Barr virus-positive lymphoproliferative processes in 

mice (135). They demonstrated a correlation between IP-10 regulation, tissue necrosis, 

and vascular damage during viral infection. Similarly, IP-10 is upregulated in the airways 

of patients with pulmonary diseases such as tuberculosis and plays a role in recruitment 

of activated T cells (136). IL-6 gene expression was increased earlier in the lung in NiV-

M compared to NiV-B infected hamsters. IL-6 activates T cells (137) and the recruitment 

of T cells likely contributed to the widespread vasculitis associated with Nipah virus 

infection and disease. Recruitment of lymphocytes could also be a way for Nipah virus to 

disseminate throughout the host, as it has recently been published that lymphocytes and 



	   61	  

monocytes can carry virus without becoming infected and release virus at distant sites 

from the original infection (83, 138). In the lungs, IL-4 was also upregulated, following 

similar kinetics than IL-6. IL-4 promotes differentiation of B cells, and is upregulated is 

indicative of the activation of a Th2 response (139). However, during disease, specific 

antibody production would not occur fast enough, since animals succumb to infection 

before significant antibody production can likely occur. Due to the use of the hamster as a 

model, we are limited in the amount of reagents available for a detailed examination of 

the immune response and future work is needed to get a more complete picture of the 

immune response to Nipah virus infection. In general NiV-M infection caused earlier 

induction of immune genes which probably corresponds to the earlier pathology 

observed. It is possible that the strong early immune response in Nipah virus-infected 

animals might contribute to disease via an immunopathogenic mechanism. 

In conclusion, there is a delay in NiV-B-induced disease progression compared to 

NiV-M, specifically in time to death, virus replication, pathology and immune responses. 

NiV-M is more cytopathic in vitro and more pathogenic in vivo. Viral antigen staining 

was low in tissues, although the pathologic changes were extensive and the inflammatory 

response was robust, suggesting disease progression may not only be a result of direct 

effects of the virus, but likely has an immunopathogenic component. The experimental 

data presented herein characterizes the hamster as a suitable small animal model for NiV-

B infection, showing clinical signs, viral tropism, and pathologic changes similar to those 

observed in humans. These data are important to further the understanding of Nipah virus 

infection and pathogenesis. By applying the hamster model for NiV-B this allows for 
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future studies in transmission, pathology and therapeutics, specifically focusing on the 

Nipah virus strain responsible for recent outbreaks. 

Acknowledgments 

This work is published in full in PLoS NTD 2013;7(1):e2024. doi: 

10.1371/journal.pntd.0002024 (140). 

http://www.plosntds.org/article/info%3Adoi%2F10.1371%2Fjournal.pntd.0002024 

The authors would like to thank Tina Thomas, Rebecca Rosenke and Dan Long 

(Rocky Mountain Veterinary Branch, Division of Intramural Research (DIR), NIAID, 

NIH) for histopathology work, Friederike Feldmann and Elaine Haddock (DIR, NIAID, 

NIH) for BSL4 technical assistance and Anita Mora (DIR, NIAID, NIH) for graphics. 

Author Contributions 

Conceived and designed the experiments: BLD JP. Performed the experiments: 

BLD JP DS EdW VJM HF. Analyzed the data: BLD JP DS EdW VJM HF. Wrote the 

paper: BLD JP HF. 

 

  



	   63	  

CHAPTER 4 CHARACTERIZATION OF CELL-TYPE SPECIFIC INFECTION 

OF NIPAH VIRUS IN VITRO AND IN VIVO 

Abstract 

Nipah virus infects humans and animals causing respiratory distress and 

encephalitis. Infection with Nipah virus is systemic causing wide spread vasculitis. 

Previous studies have identified vascular endothelial and smooth muscle cells as targets 

of infection. In this study we provided further evidence for infection in vivo in these cells 

as well as characterized pathology in endothelial cells and lack thereof in smooth muscle 

cells. To further define effects of infection on these cells we used primary human cells in 

vitro. Experiments in culture revealed that both cell types are permissive to infection and 

can produce high virus titers. Similar to the situation in vivo in humans and animals there 

was little change in smooth muscle cell morphology following infection. We discovered 

that smooth muscle cells unlike endothelial cells do not express measureable amounts of 

Nipah virus receptor on the surface, which prohibited fusion and viral spread. These data 

suggest that smooth muscle cells get infected ephrin-independently and act as a 

continuous source for virus production.  

Introduction 

Nipah virus is a zoonotic pathogen causing respiratory distress as well as 

encephalitis in humans. It is a member of the genus Henipavirus in the family 

Paramyxoviridae. Since its discovery in 1998 in Malaysia and Singapore, Nipah virus has 

been found to be the cause of almost yearly outbreaks on the Indian subcontinent. The 

natural reservoir of the virus is the pteropid fruit bat (32). During the Malaysian outbreak 

the pig was identified as an intermediate host amplifying and spreading the virus to 
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humans (118). In Bangladesh, where current outbreaks occur, Nipah virus is transmitted 

from bats to humans and then from human to human (72).  

Clinical infection in humans is characterized by fever, cough, dyspnea, headache 

and loss of consciousness. Average duration of illness is 9 days, resulting in mortality in 

about 70% of patients (75). Autopsies of patients have found common hallmarks of 

Nipah virus disease including systemic vasculitis, endothelial destruction, and CNS 

involvement (76, 80). More specifically, Nipah virus causes vasculitis of small blood 

vessels of the CNS, lung, heart, and kidney. The endothelium of medium to large vessels 

seems to be refractory for Nipah virus infection (62). Vessels infected with Nipah virus 

show inflammation with leukocyte infiltration, thrombosis, necrosis, as well as 

hemorrhages (80). Vasculitis of these vessels is often described as destruction of the 

endothelium with fibrinoid necrosis. Part of the destruction of the endothelium is the 

formation of giant multinucleated cells, called syncytia.  

The two main target organs of Nipah virus infection are brain and lung. Infection 

of the CNS produces viral inclusions throughout the white and gray matter resulting in 

degeneration and perivascular cuffing (75, 77, 80). Immunohistochemistry (IHC) of the 

brain for Nipah virus antigen results in positive staining of blood vessels and neurons that 

are associated with vasculitis and necrotic plaques (56, 77). Pathologic changes in the 

lung are also characterized by vasculitis and necrosis in small blood vessels. Syncytia can 

been found in alveolar spaces causing pulmonary edema. Viral antigen staining is seen in 

the endothelium and tunica media of blood vessels as well as in the alveolar spaces of the 

lung (140).  
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Pathologic findings correspond to Nipah virus receptor expression. The receptors 

for Nipah virus has been identified as the receptor tyrosine kinase ephrin B2 and B3 (7, 8, 

12). The receptor is a highly conserved transmembrane ligand that normally functions in 

cell-to-cell signaling, angiogenesis and neuronal axon guidance (9, 11). The highly 

conserved receptor is thought to account for the broad species tropism of Nipah virus 

(82). Expression of ephrin B2 is localized to arterial endothelial cells, smooth muscle 

cells and neurons with high expression in the lung and brain, while ephrin B3 expression 

is restricted to the brain stem and heart (7, 8, 10, 12, 17). The expression levels of ephrins 

are regulated in organs and during various times in the cell cycle, thus limiting Nipah 

virus infection to organs with high expression (10).  

In cell culture, various cell lines have been evaluated for permissibility to Nipah 

virus infection as well as ephrin expression. In most cases infection has been directly 

linked to ephrin expression; however a few cases of ephrin-independent  infection have 

been reported including the possibility of macropinocytosis (13, 82, 83).  

The goal of this study was to characterize virus replication and cytotoxicity in 

both endothelial cells and smooth muscle cells during Nipah virus infection. We first 

detected Nipah virus infection in the endothelium and tunica media in vivo in tissue 

derived from infected hamsters and African green monkeys. Subsequently, we found that 

both primary cultures of human endothelial and smooth muscle cells are permissive to 

infection resulting in cytotoxicity in endothelial but not smooth muscle cells. The non-

cytotoxic phenotype was associated with the low to no ephrin expression decreasing viral 

cell-to-cell spread and syncytia formation. Overall our results suggest that Nipah virus 

can infect smooth muscle cells by an ephrin-independent manner and serve as a source 
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for virus propagation without cell destruction.  We also demonstrate that primary human 

endothelial and smooth muscle cells are a suitable in vitro system mirroring vascular in 

vivo infection.  

Materials and Methods 

Ethical statement 

All work with Nipah virus and potentially infectious materials and animals was 

completed in the BSL4 facility at the Rocky Mountain Laboratories, Division of 

Intramural Research, National Institute of Allergy and Infectious Diseases, National 

Institutes of Health. The Institutional Biosafety Committee (IBC) approved all standard 

operating procedures applied. Animal experiments were approved by the Institutional 

Animal Care and Use Committee of the Rocky Mountain Laboratories and performed 

following the guidelines of the Association for Assessment and Accreditation of 

Laboratory Animal Care, International (AAALAC) by certified staff in an AAALAC-

approved facility. 

Cells and Virus  

Vero C1008 cells (European Collection of Cell Cultures, Salisbury, UK), primary 

human microvascular lung endothelial cells (EC) (Lonza), and primary human pulmonary 

artery smooth muscle cells (SMC) (Lonza) were purchased and propagated according to 

manufactures reconditions. HeLa cells expressing ephrin B2 or ephrin B3 were kindly 

provided by Chris Broder (Uniform Services University, MD). Nipah virus (Malaysian 

strain) was kindly provided by the Special Pathogens Branch of the Center for Disease 

Control and Prevention, Atlanta, GA, USA. Virus were propagated on Vero E6 cells in 
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Dulbecco's Modified Eagle’s medium (DMEM) (Sigma) supplemented with 10% fetal 

calf serum, 2 mM l-glutamine, 50 IU/mL penicillin and 50 µg/mL streptomycin (Life 

Technologies) and supernatants were clarified by low-speed centrifugation and stored in 

liquid nitrogen. 

Tissue staining  

 Historical tissue blocks from Nipah virus infected hamster (140) and African 

green monkey (AGM) (104) were analyzed for effects of infection on endothelial and 

smooth muscle cells. Embedded tissues were stained with hematoxylin and eosin (H&E). 

Specific Nipah virus IHC was performed using an anti-Nipah virus nucleocapsid rabbit 

primary antibody at a 1:5000 dilution (kindly provided by L. Wang, CSIRO Livestock 

Industries, Australian Animal Health Laboratory, Australia) (54). The tissues were then 

processed using the Discovery XT automated processor (Ventana Medical Systems) with 

a DAPMap (Ventana Medical Systems) kit. Tissues were also stained for with 1:100 anti-

smooth muscle actin mouse monoclonal (Millipore) and 1:700 anti-CD31 (LifeSpan 

BioSciences) for identification of smooth muscle cells and endothelial respectively.  

In vitro infection 

 Nipah virus infection was performed on cells in 48-well plates when cells had 

reach 90-95% confluence. Growth media was removed and diluted virus was added in 

250 µL of fresh media (multiplicity of infection (MOI) of 5, 0.1, and 0.01). After 1 hr, the 

inoculum was replaced with fresh media. Supernatants were collected at 1 hr, and for 

every day after infection up to 20 days for virus titration. On a separate plate, cells were 

infected as above and stained using the Kwik Diff Kit (Thermo scientific) to visualize 

syncytia according to the instructions of the manufacturer. Cells were monitored for 
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cytopathic effect (CPE) with a light microscope and images were captured using a Nikon 

DS-Fi1 camera. Cells were grown on 8-well chamber slides and infected as above at an 

MOI of 5. These cells were fixed at the designated time points in formalin for 24 hours 

then the formalin was replaced and the samples were removed from BSL-4 for 

immunofluorescence.  

Virus visualization 

 Vero C1008 cells were grown to confluence in 96-well plates in normal growth 

media. Ten-fold serial diluted samples in Dulbecco's Modified Eagle’s medium (DMEM) 

(Sigma) supplemented with 2% fetal calf serum, 2 mM l-glutamine, 50 IU/mL penicillin 

and 50 µg/mL streptomycin (Life Technologies) were added to the well. Cells were then 

incubated for 5 days at 37°C, 5% CO2 and the scored for CPE.  

For viral protein expression, SMC were infected with Nipah virus at MOI 1, and 

0.01 and cells were collected in SDS buffer 2 days later. Cells were centrifuged and the 

cell pellet was used for 10% SDS-polyacrylamide gel electrophoresis. Proteins were 

transferred to a PVDF membrane (GE healthcare, UK) and probed with Nipah N specific 

rabbit sera (kindly provided by L. Wang, CSIRO Livestock Industries, Geelong, 

Australia).  

Chamber slides, for immunofluorescence, were infected with Nipah virus at an 

MOI of 5 then fixed at the designated time point in 10% formalin overnight. Formalin 

was then exchanged and slides were taken out of BSL4. After fixation, slides were 

washed in PBS then incubated in 0.2% triton x100 for 7 minutes followed by blocking in 

PBS/4% BSA for 10 minutes. Slides were then incubated in Nipah N specific rabbit sera 
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followed by anti-rabbit alexa 488. ProLong Gold antifade reagent with DAPI (Invitrogen) 

was applied to the slides and all slides were visualized by confocal microscopy.  

Ephrin expression 

 Endogenous expression of ephrin was quantified in cell culture by flow 

cytometry. Cells were collected for flow cytometry and washed using PBS containing 15 

mM EDTA. Cells were incubated with recombinant Human EphB4 (the ligand to Nipah 

virus receptor ephrin B2/ B3) labeled with human FC (R&D) for 1 hr, washed then 

incubated with anti-human IgG (H+L) alexa 647 (Life Technologies) and fixed in 4% 

paraformaldehyde (PFA). Flow cytometry was performed using an LSR II (BD 

Biosciences) and data were analyzed using FlowJo software (Treestar Inc.). 

Lentivirus infection and co-cultures 

 SMC and EC were transduced with lenti viruses expressing red fluorescent 

protein (RFP) or green fluorescent protein (GFP) (Cellomics Technology) respectively 

per the manufactures protocol. Briefly, cells were incubated in growth media with 6 µg 

polybrene, and lentivirus stock for 24 hrs at 37°C followed by regular growth media 

exchange. Fluorescing SMC and EC cells were mixed in culture before Nipah virus 

infection (MOI 5). Cells were visualized for syncytia formation, CPE, and virus infection 

by Kwik Diff Kit and IFA.   

Ephrin transfections and infections 

 SMC were transfected with human ephrin B2 in a CMV promotor driven 

expression plasmid (Sino Biological Inc.) or Nipah virus fusion (F) and glycoprotein (G) 

using the Nucleofector kit for primary smooth muscle cells (Lonza). Cultured cells at 
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5x105 in Nucleofector solution were mixed with DNA (1 µg ephrin, and 1 µg of F and 1 

µg G) then loaded into a cuvette. The Nucleofector device was used with program A033 

after which media was added to cells and cells were plated in 12-well plates. In the case 

of F and G transfection, cells were mixed with EC the day after transfection and then 

stained with Kwik Diff Kit 24 hrs later. After 2 days, ephrin B2 transfected cells, were 

transferred into BSL-4 and infected at MOI 5 with Nipah virus. Cells were observed for 2 

days and stained by Kwik Diff Kit.  

Results 

Nipah virus infects smooth muscle and endothelial cells of the lung vasculature with 

distinct cytopathogenicity 

 Nipah virus infection in hamsters and African green monkeys (AGM) is 

characterized by systemic infection with vasculitis. In order to better understand the 

cellular targets of Nipah virus infection we focused on the vasculature of the lung, one of 

the target organs of infection. Historic tissue blocks of hamsters and AFMs lungs were 

used to identify vascular cells infected with Nipah virus. The hamster tissue was derived 

from animals 5 days after intraperitoneal infection with 1000 LD50 of Nipah virus and 

AGM tissues was derived from animals 10 days after intratracheal infection with 1x105 

PFU of Nipah virus. Tissues were stained for Nipah virus nucleocapsid as well as 

endothelial marker CD31 and smooth muscle actin to visualize infection in the vascular 

endothelial and tunica media. Stained sections showed Nipah virus positive cells 

surrounding small arteries in both hamsters and AGMs (Figure	  4-‐1). Closer inspection 

showed antigen positive cells within the actin smooth muscle layer and the endothelium. 

Pathology observed in the tissues originated in the endothelial layer with syncytia 
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formation only observed in the endothelium of infected animals. Pathology was absent in 

the tunica media (Figure	  4-‐1). These data are similar to what has been reported from 

human infections.  
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Figure	  4-‐1:	  In	  vivo	  lung	  sections	  confirm	  Nipah	  virus	  antigen	  in	  endothelial	  

and	  smooth	  muscle	  cells.	  	  

Lung tissue from hamsters (left column) and African green monkeys (right column) were 

sectioned and stained. The top row is stained with H&E. Asterisks denote vascular 

degeneration of EC, stars denote hemorrhage and arrowheads denote perivascular 

inflammation. The middle row shows staining for anti-smooth muscle actin in green and 

virus necleocapsid in red. Arrows point to infected SMC and arrowheads to infected EC. 

The last row is tissue stained for anti-CD31 in brown and viral nucleocapsid in red.  
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Primary human endothelial and smooth muscle cells support Nipah virus replication 

	  
To determine effects of Nipah virus infection on endothelial and smooth muscle cells in 

vitro, we used primary human microvascular endothelial cells from the lung (EC) as well 

as human pulmonary artery smooth muscle cells (SMC). We infected monolayers of both 

cells with Nipah virus at an MOI of 5, 0.1, and 0.01 and collected supernatants starting 1 

hour after infection and continuing until extensive cytopathic effect (CPE) was observed 

(for EC) or primary cell viability decreased (for SMC). Cells were observed for CPE, 

syncytia formation, or other morphologic changes throughout the experiment. As early as 

1 day following infection EC cells started to undergo morphologic changes including 

formation of syncytia (Figure	  4-‐2A). By day 3, most EC cells were dead and peeled off 

the plate, showing complete destruction of the monolayer by Nipah virus infection. In 

contrast, SMC cells did not show any CPE or morphologic changes over 3 weeks in 

culture (Figure	  4-‐2A).  

To assess the ability of Nipah virus to infect SMC, as seen in vivo, we collected cells 2 

days after infection to test for Nipah protein expression (B). Western blot analysis using 

an anti-Nipah N polyclonal serum confirmed infection and replication in SMC. Viral 

growth kinetics from primary cells confirmed that both EC and SMC supported Nipah 

virus replication (Figure	  4-‐2). At both, high and low MOI, EC produced high viral loads, 

reaching peak titers already by day 1 or 2; these cells showed complete CPE on day 3 

post infection. In contrast, SMC showed lower viral titer at early time points after 

infection compared to EC but reached similar high titer a few days later. Titers in SMC 

remained relatively high over an extended period of time with no obvious CPE. These 
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data demonstrate that both endothelial and smooth muscle cells can be infected in vitro 

mimicking the distinct pathology seen in infected animal models and human cases.  
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Figure	  4-‐2:	  Human	  primary	  endothelial	  and	  smooth	  muscle	  cells	  are	  

permissive	  to	  Nipah	  virus	  infection.	  	  

(A) Morphologic effects of Nipah virus infection on cells. EC and SMC were infected at 

an MOI of 0.1 and morphologic changes were visualized with the Kwik Diff Kit on days 

1, 3, and 5 post infection. (B) Protein expression of Nipah virus nucleocapsid. SMC were 

infected at MOI 1 and 0.01 or mock infected and collected for western blot analysis 2 

days post infection. Nipah virus proteins were used as a positive control in lane 1. (C) 

Quantification of viral replication in primary cells. Cells were infected at a MOI of 1 or 

0.1 and supernatants were collected at the designated time points. Viral progeny in the 

collected supernatant was measured by a TCID50 assay. 
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Smooth muscle cells have limited cell-to-cell spread compared to endothelial cells 

	  
To further characterize cell susceptibility including identifying number of initially 

infected cells and fusion capacity in cultures, we performed an immunoflourscent time 

course study in EC and SMC. Cell monolayers were infected at an MOI of 5 for an hour, 

washed and incubated until fixed at the designated times shown (Figure	  4-‐3), then 

stained with anti-Nipah N polyclonal serum. Expression of Nipah viral nucleoprotein was 

first observed at 8 hours post infection (hpi) in EC and by 10 hpi in SMC. By 12 hpi EC 

samples showed the first evidence of syncytia formation followed by large syncytia and 

100% infection by 14 hpi and cell destruction over the next 2-4 hours (Figure	  4-‐3). In 

contrast to EC, SMC infection remained focal with little to no syncytia formation and a 

lack of cell-to-cell virus spread (Figure	  4-‐3). These data suggest differences in virus 

entry, replication and/or maturation limiting Nipah virus infection to individual smooth 

muscle cells in contrast to a fulminant infection throughout the EC monolayer.  
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Figure	  4-‐3:	  Visualization	  of	  Nipah	  virus	  infection	  over	  time	  in	  endothelial	  and	  

smooth	  cells.	  	  

EC and SMC cultures were infected at a MOI of 5 and samples were fixed in formalin at 

the designated time point (8 hrs through 2.5 d post infection). Cells were permeabilized 

with triton x100 then stained with an anti- Nipah virus nucleocapsid antibody (green) and 

DAPI (blue).  
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Primary smooth muscle cells have minimal ephrin B2/B3 surface expression 

 

Since infection of SMC is very inefficient, even with a high MOI, and the virus 

shows little ability to spread from cell-to-cell by initiating fusion, we hypothesized that 

SMC might express little or no ephrin B2/3. In order to test this hypothesis we used flow 

cytometry to measure ephrin expression on the cell surface. Cells were grown to 

confluency and then incubated with recombinant human EphB4-FC (the receptor for 

ephrin ligand). Analysis of both Vero and EC, which both are susceptible to cytolytic 

replication of Nipah virus, expressed measurable amounts of ephrin on their cell surface 

(Figure	  4-‐4). In contrast, SMC showed little to no measureable ephrin surface 

expression. The lack of a functional receptor explains the low percentage of infected 

SMC seen in vivo and in vitro.  
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Figure	  4-‐4:	  Smooth	  muscle	  cells	  show	  little	  ephrin	  expression	  on	  the	  cell	  

surface	  compared	  to	  more	  susceptible	  cells.	  	  

Cells were collected and surface stained for ephrin expression by flow cytometry using 

recombinant EphB4-FC. Tinted histograms represent negative controls and colored lines 

represent replicates. HeLa cells were used as negative control cells and HeLa cells 

stabling expressing either ephrin B2 or B3 were used as positive controls. 
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Ephrin expression promotes spread of Nipah virus in smooth muscle cells 

 

To test whether SMC are capable of fusing we transfected them with Nipah virus 

fusion and glycoprotein and mixed them with EC, with the notion that the glycoproteins 

on the SMC surface would fuse with the naïve EC expressing RFP. Alone, the transfected 

SMC did not fuse, but in combination with EC, wide-spread syncytia were observed 

(Figure	  4-‐5A,B). The involvement of EC in the syncytium (Figure	  4-‐5C) was confirmed 

by the presence of RFP which was expressed only in EC (Figure	  4-‐5D); which could 

only fuse by binding SMC expressing Nipah virus glycoproteins. 

To further confirm the fusogenic capacity of SMC and EC we co-cultured the 

cells and then infected them with Nipah virus (Figure	  4-‐5,F). For this experiment, cells 

were fluorescently labeled using a lentivirus system, SMC-RFP and EC-GFP, in order to 

distinguish the cell types. In the co-cultures, we observed some cases where fusion 

occurred between SMC and EC (Figure	  4-‐5F) resulting in a colocalization of flourscent 

proteins (RFP and GFP) and with viral proteins (white) in the cytoplasm. Fusion was not 

observed in uninfected mixed cultures (Figure	  4-‐5E). These data show that SMC are 

capable of fusing with cells that express ephrin on their surface. 
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Figure	  4-‐5:	  Smooth	  muscle	  cells	  expressing	  Nipah	  glycoproteins	  are	  able	  to	  

fuse	  with	  naïve	  endothelial	  cells	  in	  mixed	  culture.	  

(A) Glycoprotein transfection of SMC enables fusion with EC. SMC cultures were 

transfected with Nipah virus fusion and glycoprotein using nucleofector then mixed with 

naïve EC. Cells were visualized with Kwik Diff Kit and demonstrate syncytia formation 

24 hrs after mixing. (B) Infected smooth muscle cells mixed with naïve labeled 

endothelial cells results in labeled syncytia. EC were transduced with lenti-RFP prior to 

being mixed with SMC. SMC were infected at an MOI of 5, incubated for an hour, 

washed and mixed with EC expressing RFP. One day after –culturing syncytia were 

observed. An example of a SMC is outlined in orange, EC in yellow, and a syncytium in 

blue for better visualization. (C) Visualization of virus infection and syncytia in mixed 

culture of smooth muscle and endothelial cells.  SMC and EC were transduced with 

lentivirus constructs expressing either GFP or RFP, respectively. After expression was 

confirmed cells were mixed followed by infection with Nipah virus at an MOI 5 (right 

panel) or mock infection (left panel). Cells were fixed 12 hrs after infection and stained 

with anti-Nipah nucleocapsid antibody (white) and dapi (blue). Syncytia composed of 

both SMC and EC are yellow in color.  
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Ephrin expression in smooth muscle cells rescues characteristic Nipah virus cytopathic 

effect and syncytia formation 

 

To further confirm the role of ephrin for cytolytic Nipah virus replication in SMC, 

we transfected SMC with a plasmid expressing either ephrin B2 or an irrelevant protein 

(GFP) prior to infection. Plasmid transfection did not result in morphologic changes 

(Figure	  4-‐6). Two days post transfection SMC were infected with Nipah virus at an MOI 

of 5 and observed for morphologic changes as an indicator for Nipah virus replication 

and spread. As early as 24 hpi small-scale syncytia started to form in SMC (Figure	  4-‐6). 

At 48 hpi transfected cells were fused and started to show typical CPE. This experiment 

demonstrates that Nipah virus cytotoxicity in SMC can be achieved through expression of 

ephrin B2 on the cell surface.  
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Figure	  4-‐6:	  Ephrin	  expression	  on	  the	  surface	  of	  smooth	  muscle	  cells	  rescues	  

Nipah	  virus	  induced	  cytopathology	  including	  syncytia	  formation.	  	  

SMC were either transfected with a GFP or ephrin B2 expression plasmid using 

nucleofactor reagent. The left panel shows naïve, the middle GFP transfected and the 

right 2 panels ephrin B2 transfected SMC. Cells are shown non-infected (top row) or 

after 24 (middle row) and 48 hr (bottom row) post infection. Cells were visualized by 

light microscopy at 24 hrs and then stained with Kwik Diff Kit at 48hrs post infection.  
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Discussion 

Nipah virus is a zoonotic pathogen that causes encephalitis and respiratory 

distress in humans. Since its discovery in 1998 in Malaysia Nipah virus has been 

responsible for multiple smaller outbreaks in Bangladesh and India (121). The basic 

understanding of Nipah virus pathology in humans is solely derived from a few early 

autopsies; most of what we know about pathology is from studying disease in animal 

models. The most commonly used models for Nipah virus that recapitulate human 

disease are the hamster and the African green monkey (50, 56). A hallmark finding of 

pathology reports from infected humans and experimentally infected animals is the 

presence of viral antigen in the vasculature (141). Specifically, both endothelial cells 

lining the luminal side of the vessels as well as the tunica media surrounding the vessel 

walls have been reported as sites of viral replication (17). However, little is known about 

their role in virus spread and pathology.  The goal of this study was to better define the 

role of endothelial cells and smooth muscle cells during Nipah virus infection. 

In vivo we observed Nipah virus antigen systemically throughout the vasculature 

of infected animals. Focusing on the lung, staining of hamster and AGM tissue identified 

positive for viral antigen in the endothelium and the smooth muscle layers surrounding 

vessels. We observed syncytia formation and pathology particularly in endothelial cells, 

whereas smooth muscle cells seemed to be less infected with no obvious pathology. 

Antigen staining of smooth muscle cells seemed to be localized to SMC of the tunica 

media both in proximity to infected EC as well as in areas of uninfected EC. Indicating 

that both EC and SMC can become infected independently of each other. Taken together 
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our data confirms infection of endothelial and smooth muscle cells but raises the question 

why there is different cytopathology.  

To study possible explanations for differences in cytopathology between these 

cell types we created an in vitro system using primary human cells. Human lung 

endothelial cells (EC) and human smooth muscle cells (SMC) were selected as surrogates 

for human vessels. Both primary cells were permissive to Nipah infection and replicated 

virus to high titers. Interestingly, smooth muscle cells once infected did not undergo 

morphologic changes, which mirror the situation in vivo. Unlike SMC, EC showed 

widespread cytopathology including syncytia formation within hours of infection.  

Interestingly it appeared that the SMC were persistently infected for the lifetime 

of the primary cell culture, producing virus at high titer throughout. This phenomenon 

could allow for continuous viral production with little host cell consequence, thus acting 

as a virus production factory. Other viruses like rat virus (a parvovirus), 

encaphlamyocarditis virus, cytomegalovirus and Epstein-Barr virus have the capacity to 

infect SMC (142–146).  Infection of SMC by Epstain-Barr virus and 

encaphlamycardiditis virus leads to a lytic infection, proving that infection of SMC can 

contribute to pathogensis of a viral infection (145, 146). In contrast, infection of SMC by 

cytomegalovirus and rat virus leads to viral latency or persistence (142–144, 147). The 

survival of infected SMC during viral infection in these systems leads to persistence 

similar to our results for NiV infection. In vivo, viral replication in SMC appears to be 

controlled by destruction of the surrounding EC, causing inflammatory cell recruitment 

and necrosis of the surrounding tissue, eventually destroying the vascular architecture and 

thus also affecting SMC.  
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To further identify the mechanisms of Nipah infection of these cells we stained 

infected cells over the lifetime of the primary culture for Nipah virus antigen. EC 

exhibited 100% infection with mass syncytia formation in as short as 16 hpi. In contrast, 

staining of SMC cultures revealed low level infection (about 10%) throughout with little 

evidence of virus spread and no obvious cytopathogenicity. The differences in percentage 

of infected cells between primary cells could account for the differences in CPE; 

however, it does not account for the lack of syncytia formation. Previous studies 

demonstrate that Nipah virus spread from cell-to-cell is accomplished by surface 

expression of the Nipah glycoproteins of infected cells which than leads to fusion with 

neighboring uninfected cells by interaction with the receptor, ephrin B2 or B3 (127, 148, 

149). The non-fusigenic nature of these cells could be contributed to either ephrin 

expression or an inability of the cells to fuse. Other explanations of viral spread include 

viral production and spread from EC, from viral penetration through the damaged 

endothelium, or through capillaries. Since we see SMC infected independent of EC 

infection spread from EC or from damage to EC is unlikely.  

Due to the low number of cells initially infected at a high MOI we choose to first 

pursue receptor expression. Our experiment indicated that EC express ephrin on the cell 

surface, while SMC showed little to no receptor surface expression. This supported our 

hypothesis that there is a lack of receptor on the surface of SMC limiting viral infection, 

spread and syncytia formation. How the original cells became infected in the absence of 

the measurable surface receptor is yet unknown. Biologically smooth muscle cells 

express ephrin during cell differentiation and maturing, and thus some cells in our 

cultures could be of varying maturity (11, 150). This is, however, unlikely due to 
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selection of cells for primary culture by using numerous mature smooth muscle markers. 

It could also be that the amount of ephrin is lower than detection of our assay or that only 

on a small percentage of cells in the population express it. Another explanation could be 

that Nipah virus in SMC uses a different mechanism for viral entry. Early studies of 

Nipah entry identified macropinocytosis as a possible entry mechanism for Nipah virus 

(13). Another explanation could be the presence of a second receptor for Niaph virus 

entry in SMC. For example, measles virus, a member of the same family, can use either 

CD46 or SLAM as its cell entry receptor (151).  

To further study the impacts of ephrin expression and the ability of SMC to fuse 

we co-cultured either infected or glycoprotein transfected SMC with naïve EC. This 

experiment resulted in fusion between SMC and EC demonstrating that SMC are capable 

of expressing Nipah virus glycoproteins on the surface thus leading to fusion with EC. 

We also transfected naïve SMC with human ephrin B2 followed by viral infection, which 

resulted in productive Nipah virus replication and cytopathogenicity including syncytia 

formation. Together these data demonstrate that the lack of host cell damage in smooth 

muscle cells can be linked to the absence of receptor expression.  

In this paper we investigated infection of EC and SMC by Nipah virus both in 

vitro and in vivo. We found that both in tissue as well as cell culture smooth muscle cells 

are productively infected; however, little SMC derived pathology is observed in either 

case. We show that primary human SMC and EC can act as a surrogate system for Nipah 

virus infection of the vasculature. By studying infection of this in vitro system, we 

postulated that SMC could serve as a reservoir for Nipah virus production and or 

persistence, much like infection with rat virus and cytomegalovirus. Previous research of 
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SMC and EC interactions show that direct EC damage by virus infection can lead to 

proliferation of SMC (152, 153). SMC express ephrin on their cell surface during 

developmental stages and thus proliferation could account for differences in susceptible 

of SMCs to Nipah virus infection . Even though previous papers have identified SMC as 

a target of Nipah virus infection, this is the first study to specifically research the effects 

of Nipah virus infection on SMC. Further research will have to identify potential 

secondary receptors on target cells that lack ephrins such as SMC. A better understanding 

of the mechanisms of Nipah virus infection will promote the development of new 

therapeutic approaches against this serious regional public health threat.  
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CHAPTER 5 SINGLE-DOSE LIVE-ATTENUATED NIPAH VIRUS VACCINES 

CONFER COMPLETE PROTECTION BY ELICITING ANTIBODIES 

DIRECTED AGAINST SURFACE GLYCOPROTEINS. 

Abstract  

Background: Nipah virus (NiV), a zoonotic pathogen causing severe repiratory illness 

and encephalitis in humans, emerged in Malaysia in 1998 with subsquent outbreaks on an 

almost annual basis since 2001 in parts of the Indian subcontinent. The high case fatality 

rate, human-to-human transmission, wide-ranging reservoir distribution and lack of 

licensed intervention options are making NiV a serious regional and potential global 

public health problem. The objective of this study was to develop a fast-acting, single-

dose NiV vaccine that could be implemented in a ring vaccination approach during 

outbreaks.  

Methods: In this study we have designed new live-attenuated vaccine vectors based on 

recombinant vesicular stomatitis viruses (rVSV) expressing NiV glycoproteins (G or F) 

or nucleoprotein (N) and evaluated their protective efficacy in Syrian hamsters, an 

established NiV animal disease model. We further characterized the humoral immune 

response to vaccination in hamsters using ELISA and neutralization assays and 

performed serum transfer studies.  

Results: Vaccination of Syrian hamsters with a single dose of the rVSV vaccine vectors 

resulted in strong humoral immune responses with neutralizing activities found only in 

those animals vaccinated with rVSV expressing NiV G or F proteins. Vaccinated animals 

with neutralizing antibody responses were completely protected from lethal NiV disease, 

whereas animals vaccinated with rVSV expressing NiV N showed only partial protection. 
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Protection of NiV G or F vaccinated animals was conferred by antibodies, most likely the 

neutralizing fraction, as demonstrated by serum transfer studies. Protection of N-

vaccinated hamsters was not antibody-dependent indicating a role of adaptive cellular 

responses for protection.  

Conclusions: The rVSV vectors expressing Nipah virus G or F are prime candidates for 

new ‘emergency vaccines’ to be utilized for NiV outbreak management.   

Introduction 

Nipah virus (NiV; family Paramyxoviridae, genus Henipavirus) was discovered 

to be the causative agent of an outbreak of viral encephalitis in pig farmers in Malaysia in 

1998. This initial large outbreak has been followed by smaller nearly annual outbreaks in 

Bangladesh and India (62, 74). Disease in humans is characterized by respiratory distress 

and/or encephalitis, with histopathologic changes in the lung and brain showing 

multinucleated giant cells throughout the microvasculature (62, 74, 80). NiV is highly 

pathogenic in humans and has reached up to 100% case fatality rates (average 70%) 

(154). Transmission of NiV from its natural reservoir, Pteropus fruit bats, to pigs and 

humans has been documented, as well as human-to-human transmission (34, 44, 67).  

Currently there are no approved vaccines or therapeutics for human use against 

NiV infections. Although a public health concern to regional, national and even 

international authorities, a widespread campaign to vaccinate a large percentage of the at-

risk human population against NiV infection currently seems unfounded. Outbreaks are 

rare, result in relatively few cases, are focal and isolated, and human-to-human 

transmission is generally confined to health care workers and family members engaging 

in close contact with exposed individuals, thus, rather favoring a ring vaccination 
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approach. Therefore, a vaccine that produces a rapid and robust immune response after a 

single immunization with the potential for peri-exposure application (‘emergency 

vaccine’) would be most beneficial.  

Current vaccine approaches for protection from NiV infection have focused on 

the use of NiV glycoprotein (G) and/or fusion protein (F) as immunogens in various 

platforms, including DNA vaccines, subunit vaccines, non-replicating vectors, as well as 

replicating vectors (49, 54, 99, 105–113, 115, 116, 155, 156). Efficacy of most of the 

previously tested vaccine candidates required a prime/boost(s) approach, which would 

not favor their use in an emergency situation for rapid dissemination during an outbreak. 

In order to develop a vaccine appropriate for ring vaccination, we generated live-

attenuated recombinant vesicular stomatitis viruses (rVSVs) encoding individual NiV 

proteins using the established reverse genetic system for VSV (157). The VSV system 

has been used to generate vaccine candidates for many disease-causing viruses (158–

161). As a fast-acting single-dose vaccine, rVSV-based vaccines have been reported to 

elicit effective humoral and cellular immune responses, as well as to protect peri-

exposure (159, 162). 

Herein, we tested the protective efficacy of three rVSVs expressing either the 

nucleoprotein (N), F or G of the Malaysian strain of NiV. Following a single dose, the 

vaccine vectors expressing G and F fully protected Syrian hamsters from lethal NiV 

challenge, whereas the N expressing vector conferred only partial protection. Using 

passive serum transfer, we further determined that full protection is conferred by 

glycoprotein (F, G)-specific antibodies, most likely the neutralizing fraction, elicited by 

the rVSV vaccines. However, other components of the immune system, such as cellular 
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responses, also contribute to protection as demonstrated by partial efficacy and lack of 

protection in passive transfer studies in the case of the N expressing vaccine vector.    

Materials And Methods 

Cells and Viruses.  

Vero C1008 cells (European Collection of Cell Cultures, Salisbury, UK) and baby 

hamster kidney cells expressing the bacteriophage T7 promoter (BHK-T7) (kindly 

provided by Dr. Naoto Ito, Gifu University, Japan (163)) were used. NiV (Malaysian 

strain) was kindly provided by the Special Pathogens Branch, Center for Disease Control 

and Prevention, Atlanta, and propagated as previously described (140).  

Generation of rVSV Vectors.  

The plasmid pVSVXN2 (kindly provided by J. Rose, Yale University, New Haven) was 

modified as previously described to encode the open reading frame (ORF) for Zaire 

ebolavirus (ZEBOV) glycoprotein (GP) in place of that encoding the VSV glycoprotein 

(G) (164, 165). NiV F, G, or N ORFs from the Malaysian strain of NiV, were amplified 

similarly and cloned into pVSVXN2ΔG/ZEBOV-GP downstream of ZEBOV-GP 

(Figure	  5-‐1A). BHK-T7 cells were transfected using transit-LT1 Transfection Reagent 

(Mirus, Madison, WI) along with individual plasmids encoding the VSV N, P, and L 

ORFs and the modified VSV genomic plasmids as shown in Figure	  5-‐1A. Cells were 

incubated at 37°C for 7 days, at which time supernatant was collected and passaged once 

on fresh Vero cells. Cultures were monitored daily for cytopathogenic effect (CPE) and 

supernatants or cells were collected for sequence confirmation and analysis of protein 
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expression. The rescued viruses are referred to as rVSV-ZEBOV-GP-NiVF, rVSV-

ZEBOV-GP-NiVG and rVSV-ZEBOV-GP-NiVN. 
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Figure	  5-‐1:	  Construction and characterization of recombinant VSV	  (rVSV)	  vectors 

expressing NiV glycoprotein	  (G),	  fusion protein	  (F),	  or nucleoprotein	  (N).	  	  

(A) Schematic representation of the vaccine constructs. rVSV-ZEBOV-GP-NiV 

constructs were engineered by cloning NiV protein open reading frames into the vector 

directly downstream of the ZEBOV-GP, which replaced VSV-G. (B) Verification of 

foreign protein expression. ZEBOV-GP expression was verified by western blot analysis 

of rVSV vector-infected cell lysates using the anti-ZEBOV-GP antibody 43.3.7. 

Expression of NiV proteins was verified by flow cytometry. Cells were infected with the 

different NiV protein-expressing rVSV vaccines (colored lines) or uninfected (gray lines) 

and surfaced stained with antibodies specific for the respective protein, anti-G 1187 and 

anti-F 835. In the case of N expression (colored line), cells were fixed in 4%PFA, then 

permeabilized using saponin, followed by intracellular N-specific antibody staining. (C) 

Verification of fusogenic activity of F and G. Vero C1008 cells were infected with rVSV-

ZEBOV-GP-NiVF, rVSV-ZEBOV-GP-NiVG, or co-infected with rVSV-ZEBOV-GP-

NiVF and rVSV-ZEBOV-GP-NiVG at an MOI of 0.1, incubated for 2 days and stained 

with the Kwik Diff Kit. Medium (DMEM) alone was used as a negative control. 
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Analysis of Protein Expression.  

Vero cells were infected with the different rVSVs at a multiplicity of infection 

(MOI) of 1. Two days later, cell culture supernatants were collected, centrifuged, and the 

resulting pellet was subjected to 10% SDS-polyacrylamide gel electrophoresis. Proteins 

were transferred to a PVDF membrane (GE healthcare, UK) and ZEBOV-GP was 

detected using the monoclonal antibody 43.3.7 (kindly provided by  A. Takada, Hokkaido 

University, Sapporo, Japan). Flow cytometry was performed to detect NiV F, G and N 

expression. Virus-infected Vero cells (12 h post infection) were collected and washed in 

PBS containing 15 mM EDTA. For surface staining, cells were incubated with the 

primary antibodies anti-G 1187 (148) and anti-F 835 (kindly provided by Hector Aguilar-

Carreno, Washington State University, USA), followed by incubation with goat anti-

rabbit antibodies conjugated to Alexa 488 (Life Technologies) and fixed in 4% 

paraformaldehyde (PFA). For intracellular staining, cells were fixed in 4% PFA for 10 

min, then washed and incubated in buffer containing 0.2% saponin (Sigma) for 10 min. 

After permeabilization, cells were incubated with an anti-NiV N rabbit antiserum (54) 

(kindly provided by L. Wang, CSIRO Livestock Industries, Geelong, Australia), followed 

by the above mentioned goat anti-rabbit antibodies in the presence of saponin. Flow 

cytometry was performed using an LSR II (BD Biosciences, San Jose, CA) and data were 

analyzed using FlowJo software (Treestar Inc., Ashland, OR). To measure the fusogenic 

activity of expressed NiV F and G, Vero cells were grown in 48-well plates and infected 

with individual rVSVs or co-infected with rVSV-ZEBOV-GP-NiVF and rVSV-ZEBOV-

GP-NiVG for 1 h at a MOI of 0.1. After 2 days, cells were stained and fixed with the 

Kwik Diff kit (Thermo Scientific).   
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Immunization and Challenge of Syrian Hamsters.  

Groups of 10, 4-5 week old, Syrian hamsters (Harlan, Indianapolis, IN) were 

vaccinated intraperitoneally (i.p.) with 105 plaque forming units (PFU) of the specified 

rVSV vectors, or mock-vaccinated with DMEM in a total volume of 500 µL. Two days 

prior to NiV challenge (day 26 post vaccination), blood was collected by retro-orbital 

bleeding for analysis of antibody responses. After 28 days, animals were challenged i.p. 

with 1000 LD50 (6.8 x 104 TCID50) of NiV and monitored for clinical signs of disease. 

Necropsies were performed on four animals from each group 5 days post challenge to 

measure viral load, attempt virus isolation, and assess histopathology. Brain, lung, and 

spleen tissues were collected and placed in RLT lysis buffer (Qiagen, Valencia, CA) for 

RNA extraction, and in 10% formalin for histopathology and immunohistochemistry 

(IHC) analysis. The remaining six animals were used to monitor survival for 42 days post 

challenge.  

Immune Response to Vaccination.  

Antibody responses were measured by enzyme-linked immunosorbent assay 

(ELISA) as described previously (51). Neutralizing titers were determined by a 

neutralizing tissue culture infections dose 50% (NTCID50) assay.  

Histopathology and Immunohistochemistry.  

Hamsters tissues were collected and processed as described previously (140). 

Embedded tissues were sectioned and stained with hematoxylin and eosin (H&E) or the 

above mentioned anti-NiV N rabbit antiserum at a 1:5000 dilution for 

immunohistochemistry (IHC) (54).  
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Quantitative Real-Time RT-PCR (qRT-PCR) and Virus Titration.  

Tissues were processed for qRT-PCR as described previously targeting the NiV N 

(140). Defined dilutions of NiV RNA were used in triplicate to generate a standard curve 

from which sample TCID50 equivalents were extrapolated. NiV isolation and titration was 

performed as previously described (51). A similar method was used in a qRT-PCR assay 

targeting VSV N with the Fwd primer: CGGAGGATTGACGACTAATGC, Rev primer: 

CGAGCCATTCGACCACATC and probe: FAM- CGC CAC AAG GCA G-MGB.  

Passive Transfer of Antibodies.  

Groups of 18, 4-5 week old, hamsters were vaccinated i.p. with 105 PFU of the 

specified rVSV vaccine vectors. After 28 days, animals were exsanguinated via cardiac 

puncture, serum was inactivated by gamma-irradiation (5 Mrads) and measured for 

antibody titers by ELISA and NTCID50 assay as described above. Positive sera were 

pooled from each group. Groups of six naïve hamsters were given 1 mL of serum i.p. 1 

day prior to, and 1 day post i.p. challenge with 1000 LD50 (6.8 x 104 TCID50) of NiV and 

monitored for clinical signs for 42 days.  

Ethics and Biosafety.  

All work with NiV was completed in the BSL4 facility at the Rocky Mountain 

Laboratories, NIAID, NIH under standard operating procedures approved by the 

Institutional Biosafety Committee. All animal experiments were approved by the 

Institutional Animal Care and Use Committee and performed following the guidelines of 

the Association for Assessment and Accreditation of Laboratory Animal Care, 

International (AAALAC) by certified staff in an AAALAC-approved facility.  
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Results 

Rescue of replication-competent rVSV vectors 

To generate rVSVs expressing NiV proteins, the F, G, or N ORFs were amplified and 

individually inserted into pVSVXN2ΔG/ZEBOV-GP downstream of the ZEBOV-GP 

gene as previously described (165) (Figure	  5-‐1A). Individual genome constructs were 

transfected together with the VSV helper plasmids into BHK-T7 cells and the 

supernatants were passaged once onto fresh Vero cells. Cultures demonstrating CPE were 

verified for viral protein expression using western blotting of whole cell lysates for the 

detection of ZEBOV-GP, and flow cytometry for the detection of NiV F and G on the 

cell surface and NiV N intracellular. All three rescued rVSVs expressed ZEBOV-GP, and 

the individual viruses also expressed either NiV F, G, or N (Figure	  5-‐1B). To verify the 

structural and functional integrity of surface expressed NiV F and G, their fusogenic 

activity was tested by co-infecting a monolayer of Vero cells with rVSV-ZEBOV-GP-

NiVF and rVSV-ZEBOV-GP-NiVG. We observed large-scale cell-to-cell fusion 

resulting in multinucleated syncytia formation, a phenomenon that requires the presence 

of functional NiV F and G on the cell surface (Figure	  5-‐1C).  

Immunization with rVSV vectors elicits strong specific antibody responses 

The humoral immune response to vaccination was assessed in Syrian hamsters, a well-

established NiV animal disease model (50, 53). Groups of 10 hamsters were immunized 

with a single i.p. dose of 105 PFU of the different rVSV vectors (rVSV-ZEBOV-GP-

NiVF, rVSV-ZEBOV-GP-NiVG or rVSV-ZEBOV-GP-NiVN) and rVSV-ZEBOV-GP as 

the control. After 26 days, blood samples were obtained and tested for NiV-specific 

antibodies by ELISA using antigen prepared from whole inactivated NiV particles. In 
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contrast to the animals in the control group (rVSV-ZEBOV-GP), all other vaccinated 

animals showed high levels of antibodies titers ranging from 1600 to ≥3200 (Table 1). In 

addition, we tested all sera for the presence of neutralizing antibodies against NiV. As 

expected, vaccination of hamsters with rVSV-ZEBOV-GP or rVSV-ZEBOV-GP-NiVN 

did not result in the generation of neutralizing antibodies (Table 1). In contrast, all 

animals from the groups vaccinated with rVSV-ZEBOV-GP-NiVF and rVSV-ZEBOV-

GP-NiVG generated neutralizing antibody titers ranging from 80 to ≥640 (Table	  5-‐1).  
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Table	  5-‐1:	  Humoral	  immune	  responses	  to	  foreign	  proteins	  26	  days	  after	  rVSV	  

vaccination	  as	  measured	  by	  ELISA	  (whole	  inactivated	  NiV	  particle	  antigen)	  

and	  NTCID50	  assay	  (against	  live	  Nipah	  virus).	  

	  
 ZEBOV-GP NiV F NiV G NiV N 

Animal ELISA 

Titer 

Neut.  

Titer 

ELISA 

Titer 

Neut. 

Titer 

ELISA 

Titer 

Neut. 

Titer 

ELISA 

Titer 

Neut. 

Titer 

1 <20 <20 ≥3200 160 ≥3200 640 1600 <20 

2 <20 <20 ≥3200 80 ≥3200 320 ≥3200 <20 

3 <20 <20 ≥3200 160 ≥3200 ≥640 ≥3200 <20 

4 <20 <20 ≥3200 80 ≥3200 ≥640 ≥3200 <20 

5 <20 <20 ≥3200 320 ≥3200 ≥640 ≥3200 <20 

6 <20 <20 ≥3200 180 ≥3200 320 ≥3200 <20 

7 <20 <20 ≥3200 320 ≥3200 ≥640 1600 <20 

8 <20 <20 ≥3200 320 ≥3200 ≥640 ≥3200 <20 

9 <20 <20 ≥3200 320 ≥3200 320 1600 <20 

10 <20 <20 ≥3200 320 ≥3200 ≥640 1600 <20 
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Vaccination confers protection against lethal Nipah virus infection 

The animals (10 per group) from the immune response study above were 

subsequently challenged i.p. with 1000 LD50 of NiV. For the protection study we added a 

group of six hamsters that was mock-vaccinated (DMEM). Six animals in each group 

were monitored for survival. Animals in both control groups, DMEM and rVSV-

ZEBOV-GP, developed clinical signs of disease between days 5 and10 post challenge, 

resulting in respiratory distress with varying degree of neurologic dysfunction, and were 

euthanized according to the approved protocol (Figure	  5-‐2A). All animals in the groups 

vaccinated with rVSV-ZEBOV-GP-NiVF and rVSV-ZEBOV-GP-NiVG were completely 

protected from clinical disease with no significant weight loss (Figure	  5-‐2A and B). 

Hamsters vaccinated with rVSV-ZEBOV-GP-NiVN were partially protected (two of six 

animals) with no clinical signs of disease, while the remaining four animals had to be 

euthanized 9 days post challenge (Figure	  5-‐2A, and B).  
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Figure	  5-‐2:	  Survival of vaccinated hamsters following Nipah virus challenge.	  	  

Groups of six hamsters were vaccinated i.p. with 105 PFU of rVSV-ZEBOV-GP, rVSV-

ZEBOV-GP-NiVF, rVSV-ZEBOV-GP-NiVG, rVSV-ZEBOV-GP-NiVN or mock 

vaccinated (DMEM) 28 days prior to challenge with 1000 LD50 of NiV. (A) The 

percentage of animals surviving over time. (B) Body weight loss over time. Weights are 

shown as percentage of starting body weight. 
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Vaccinated animals showed reduced viral loads and less pathology 

In order to determine the impact of vaccination on virus replication, we collected 

brain, lung and spleen tissues 5 days post NiV challenge from four hamsters of each 

group described above for NiV load determination and isolation. Viral loads were 

determined using a NiV N-specific qRT-PCR assay (Figure	  5-‐3). All NiV-vaccinated 

animals had lower organ levels of viral RNA compared to the animals in the control 

groups (>103 TCID50 equivalent/mg tissue), with rVSV-ZEBOV-GP-NiVF and rVSV-

ZEBOV-GP-NiVG vaccinated animals showing organ loads <1 TCID50 equivalent/mg 

tissue. rVSV-ZEBOV-GP-NiVN vaccinated animals showed a greater than 2-log 

reduction in viral organ loads compared to the rVSV-ZEBOV-GP vaccinated controls. In 

order to confirm that the positive immunohistochemistry described below (Figure	  5-‐4) 

represents replication of the challenge virus (NiV) rather than N expressed by the vaccine 

vector (rVSV-ZEBOV-GP-NiVN), we performed a VSV N-specific qRT-PCR assay. No 

VSV N RNA could be detected in lung tissue of the rVSV-ZEBOV-GP-NiVN vaccinated 

animals. NiV isolation was only successful from control animals (rVSV-ZEBOV-GP 

group).  
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Figure	  5-‐3:	  Vaccination reduces Nipah virus load in tissues.	  	  

Tissues (brain, spleen, lung) were collected in RLT buffer from four animals per group 

on day 5 after challenge and homogenized prior to total RNA extraction. Quantitative 

RT-PCR using an N-specific primer and probe set was used to determine TCID50 

equivalents by extrapolating from a standard curve from a NiV seed stock of known titer. 

Individual animals are represented by dots and horizontal lines represent the mean, error 

bars indicate standard error of the mean (SEM). 
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Figure	  5-‐4:	  Vaccination reduces Nipah virus pathology.	  	  

Four hamsters per group were euthanized 5 days post challenge and lung sections were 

stained with H&E (top panel) for histopathology evaluation and IHC targeting NiV N 

protein for virus replication (bottom panel). Infected lungs showed thickening of the 

alveolar septae (arrows) by congestion, fibrin, edema, and small numbers of 

inflammatory cells. Alveolar spaces are filled with fibrin, edema, and inflammatory cells 

(asterisk). Inset in IHC panel demonstrates positive staining of NiV N-antigen (arrow 

heads). Images were taken at a magnification of 200× and inset at 1000×. 
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 Staining for histological analysis was performed on lung tissue derived from the 

same 4 animals euthanized 5 days post challenge. All rVSV-ZEBOV-GP vaccinated 

control animals developed multifocal interstitial pneumonia characterized by thickening 

of the alveolar septae by small to moderate numbers of macrophages, fewer neutrophils, 

congestion, fibrin and edema (Figure	  5-‐4). Occasionally, small numbers of inflammatory 

cells, fibrin and edema filled the adjacent alveolar spaces. There was also multifocal 

pleural mesothelial hyperplasia. Alveolar and arteriolar endothelial cells and pulmonary 

arteriolar smooth muscle cells demonstrated diffuse viral antigen by IHC staining (Figure	  

5-‐4). Most animals (three out of four) in the partially protected rVSV-ZEBOV-GP-NiVN 

group developed pneumonia similar to that found in controls. These hamsters had rare 

and weak multifocal viral antigen staining, primarily within mononuclear cells in areas of 

pneumonia. All animals in the completely protected groups (rVSV-ZEBOV-GP-NiVF 

and rVSV-ZEBOV-GP-NiVG) showed no lesions and were negative for viral antigen by 

IHC staining (Figure	  5-‐4).  

Passive serum transfer protects naïve animals from Nipah virus infection 

 To test whether antibodies elicited by the rVSV vectors alone can afford 

protection against NiV challenge, we performed a passive transfer experiment. Groups of 

18 hamsters were vaccinated with 105 PFU i.p. of one of the rVSV vectors. After 28 days, 

sera were collected and pooled for each group. Pooled sera from rVSV-ZEBOV-GP-

NiVF and rVSV-ZEBOV-GP-NiVG had neutralization titers of 200 and 400, 

respectively, whereas sera collected from the rVSV-ZEBOV-GP and rVSV-ZEBOV-GP-

NiVN vaccinated groups were negative. Groups of six naïve hamsters were administered 

i.p. 1 mL of pooled serum the day prior to and the day following NiV challenge (1000 
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LD50). All animals, except one, that received serum without neutralizing activity (rVSV-

ZEBOV-GP and rVSV-ZEBOV-GP-NiVN) had to be euthanized according to protocol 

(Figure	  5-‐5). All animals that received serum displaying neutralizing activity (rVSV-

ZEBOV-GP-NiVF- or rVSV-ZEBOV-GP-NiVG) were completely protected from NiV 

challenge with no signs of disease.  
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Figure	  5-‐5:	  Passive serum transfer protects naïve hamsters from Nipah virus challenge.	  

Serum	  was	  collected	  from	  groups	  of	  18	  hamsters	  28	  days	  after	  vaccination	  

with	  105	  PFU	  of	  the	  specific	  vaccine	  vectors.	  One	  day	  prior	  to,	  and	  1	  day	  post	  

challenge	  with	  1000	  LD50	  of	  NiV,	  groups	  of	  six	  naïve	  hamsters	  were	  given	  1	  mL	  

of	  sera	  from	  immunized	  animals	  and	  monitored	  for	  42	  days	  for	  signs	  of	  

disease.	  	   	  
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Discussion 

Over the past decade, multiple distinct NiV vaccine approaches have been 

developed and evaluated in different animal models, including DNA vaccines, subunit 

vaccines (virus-like particles, soluble G protein), replication-deficient vectors as well as 

replication-competent vectors. Several of these approaches have only been evaluated for 

their ability to elicit immune responses, whereas others have been used to evaluate 

protective efficacy against NiV challenge in different animal models (49, 54, 99, 105–

110, 112, 113, 115, 116, 155, 156). 

With the exception of three recent studies, all vaccine approaches thus far have 

required a boosting immunization scheme for immunogenicity and/or efficacy and are 

therefor less likely to be useful for ring vaccination approaches in an outbreak situation. 

The three new studies include an adenovirus-associated virus vector expressing NiV G 

(108), replication-incompetent VSV pseudotypes expressing NiV G or F proteins (113) 

and a VSV virion with F and G that can undergo a single round of replication that was 

produced by co-infection of two VSV pseudotypes , one expressing F and one expressing 

G (114). The adenovirus-associated virus vector approach used relatively high vaccine 

doses, and the VSV approaches are based on replication-deficient pseudotype particles 

produced by plasmid transfections, both of which may be challenging in regards to 

vaccine production.   

Our goal was to develop a fast-acting, single-dose NiV vaccine suitable for use as 

a ring vaccination approach during outbreaks as they currently occur in Bangladesh. We 

chose live-attenuated rVSV vectors as our platform due to their ease of genetic 

modification and their subsequent efficient and cost-effective manufacturing. We 
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preferred a replication-competent vaccine as those generally provide better durability 

when compared to a replication-incompetent vaccine approaches, eliciting faster and 

more effective innate and adaptive immune responses (166). Replication-competent 

vaccine approaches, however, are commonly associated with safety concerns, but all of 

our previous vaccine work using the rVSV platform, including immunization of several 

immune-compromised animal species, has assigned this approach a good safety record 

(159, 167). Noteworthy, a live-attenuated rVSV-based vaccine vector was approved for 

use in a human laboratory exposure to Ebola virus (168). Among commonly used 

replicating vaccine vectors, VSV provides advantages over similar platforms, such as the 

limited pre-existing immunity against VSV in the human population and the only rare 

and mild human disease caused by VSV, which is largely an animal pathogen (169, 170). 

To further limit VSV immunity and pathogenicity, we removed VSV-G, the major target 

for neutralizing antibodies and a key VSV virulence factor (170). VSV-G was replaced in 

the vaccine vector by ZEBOV-GP to overcome the lack of a functional surface protein 

for virus entry. Virus entry cannot be achieved by any of the chosen NiV antigens, 

because henipavirus cell entry is dependent on the presence of both G and F proteins 

(149). The ZEBOV-GP was particularly chosen for its known targeting of important 

immune cells, such as mononuclear phagocytotic and antigen presenting cells (160, 165, 

171). Targeting of these cells allows for their strong stimulation and better antigen 

presentation by MHC class I and II pathways, and thus leads to more potent innate and 

adaptive immune responses (172, 173). 

In order to characterize the mechanism of protection afforded by the rVSV-based 

vaccine vectors, we examined the importance of the humoral immune responses. 
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Previously it has been demonstrated that protection against NiV challenge can be 

afforded by passive serum transfer that contains neutralizing antibodies (99). 

Additionally, m102.4, a human neutralizing monoclonal antibody, can protect against 

NiV and Hendra virus in several animal models (54, 103). The rVSV vaccine vectors 

expressing NiV F or G both induced glycoprotein-specific antibody responses that 

conferred complete protection against NiV challenge in a serum transfer study. 

Neutralizing antibody responses are most likely key for protection, as serum transfer of 

N-specific antibodies did not show any protective effect, even though the role of non-

neutralizing glycoprotein-specific antibodies for protection cannot be excluded. VSV is 

known to also elicit strong cellular immune responses (166, 174, 175). The role of 

cellular immune responses mediated through rVSV vectors is supported here by the 

partial protection achieved through vaccination with the rVSV vector expressing NiV N 

as well as the lack of protection in serum transfer experiments using sera with N-specific 

non-neutralizing antibodies. Therefore, these new rVSV vectors might be stronger 

vaccine candidates than vaccine platforms that more selectively trigger humoral immune 

responses, such as subunit protein vaccines (109, 110, 155). 

Conclusions 

Here we describe a vaccine approach and mechanism of protection that could be 

used to control NiV infections and spread in outbreak situation if used in a ring 

vaccination approach. Recent outbreaks have involved increased human-to-human 

transmission events, most often seen in family members or healthcare workers (67). Due 

to the ease in identifying high-risk individuals, those in close contact with patients, fast-

acting, single-dose vaccines, like the rVSV vectors here, would be advantageous for 
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targeted use during outbreaks over vaccines that need multiple injections and thus require 

more time between vaccination and protection. Another advantage of replication-

competent rVSVs has been its efficacy upon use peri-exposure, allowing for 

simultaneous vaccination and treatment in outbreak situations (159, 160, 165, 176, 177). 

Future studies are aimed to assess time to immunity and peri-exposure treatment efficacy 

of these new rVSV NiV vectors as well as efficacy studies in a second animal model to 

fulfill FDA requirements for licensing.  
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CHAPTER 6 GENERAL DISCUSSION AND CONCLUSIONS 

Nipah virus is a zoonotic pathogen that causes disease in humans in Asia. The 

initial outbreak of Nipah virus originated in Malaysia and caused over 100 human deaths 

as well as the culling of over 1 million pigs (26). Subsequent outbreaks have been 

localized to Bangladesh and India causing almost annual outbreaks. In the case of Nipah 

and Hendra viruses infection, there is no known treatment, infection is often fatal (~70% 

CFR), and may cause relapsing encephalitis (27, 78). Like many other emerging 

infectious diseases, Nipah virus emerged from a spill-over event from reservoir (bats) to 

domestic animals/livestock (pigs), followed by humans infection (sometimes human-to-

human transmission). Today, with the increase in land use causing human encroachment 

and deforestation the interface between human/wildlife is increasing leading to the 

increase prevalence of new human pathogens (179–181). Factors like human bushmeat 

consumption, climate change, movement of animal species, increased population and 

shrinking wilderness habitat all play a role in increased interaction between wildlife and 

humans (182–185). Over the years, examples of increased spillover has been seen with 

the emergence of human immunodeficiency virus (HIV), chikungunya virus, influenza, 

and Middle East respiratory syndrome coronavirus to name a few (186). Research should 

focus on this interface, studying emerging and reemerging pathogens in a one-health 

approach including both human and veterinary studies.   

 Focusing on multidisciplinary studies during the Nipah outbreak in Malaysia, we 

see effects on human health, livestock health, and damage to the economy all caused by 

the outbreak. Nipah virus was found to be a bat-borne pathogen that spilled over into pigs 

in Malaysia (32, 34). Once the connection between bats-pigs-humans was made, action 
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was taken to reduced interactions between species; this led to the end of the outbreak and 

spread of the virus (26). However, this was after the virus spread to Singapore and caused 

more than 250 cases, and left many with relapsing encephalitis (76). Beside the human 

impact, the outbreak halted animal trade, closed many farms, and lead to the culling of 

over 1 million pigs, thus causing great economic loss. The virus reemerged in Bangladesh 

in 2001 and causes small outbreaks there and in neighboring India on an almost yearly 

basis. These outbreaks are thought to be caused by human-bat interactions and often are 

linked to the harvesting and drinking of date palm sap (44, 131). After this connection 

was made steps were made to reduce bat-human contact and bat-date palm sap 

interactions; the effects are still under review but appear to be reducing cases (41, 187). 

Another factor causing concern over Nipah virus is the large host range of the reservoir 

species and the detection of Nipah-like sequences in bats in Thailand, Africa, and 

Australia further emphasizing the importance of Nipah virus and strengthen the need to 

study this zoonotic pathogen (2, 38–40, 68, 188). The study of this virus has led to 

reduced infectious, however outbreaks still occur and further research into Nipah virus 

needs to be completed to further understand viral infection, develop therapies or vaccines, 

as well as manage future outbreaks more efficiently. To contribute to completing these 

goals, we 1) studied variations of the virus strains, comparing them in animals; 2) better 

defined pathology in important cell types; and 3) developed and tested vaccine candidates 

for future use during outbreaks.  

Specifically we studied the outcome of infection with both Nipah strains in cell 

culture and in the hamster model focusing on pathogenesis and the host immune 

response. The strains were isolated from geographically and temporary separate 
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outbreaks(28, 125). Epidemiologic data and disease progression during outbreaks differs 

between strains. The current understanding of Nipah virus pathogenesis has come from 

human autopsies and experimental work with the Malaysian strain of Nipah virus. We 

infected hamster cells with both strains and found that Nipah Malaysia replicated faster 

and had more cytopathic effect (CPE) and syncytia formation compared to the 

Bangladesh strain. In the hamster model there was also a slight difference between 

strains. Overall there is a delay (about 2 days) in Nipah Bangladesh disease progression, 

including time to death, virus replication, pathology and immune response, compared to 

Malaysia infected animals. Overall infection with either strain resulted in similar disease 

and outcome in hamsters. This data hints that discrepancies in human life style, cultural 

differences, and quality of health care between the two countries could account for the 

differences in epidemiology reported rather than the differences in sequence (73, 189). 

We also studied infection in the microvasculature, a major target of Nipah virus 

infection. Specifically, we focused on studying Nipah infection in endothelial cells (EC) 

and smooth muscle cells (SMC) using both animal models and primary human cell 

culture. We found that in hamster and African green monkey tissue Nipah virus antigen 

was detected in EC lining small vessels in the lung as well as the surrounding SMC. EC 

positive for Nipah virus antigen often showed signs of pathogenesis including syncytia 

formation, while SMC were infected but showed no negative effect from infection. 

Similarly to in vivo data, studies in primary human EC and SMC showed permissibility to 

infection and only CPE in EC. Further experiments showed that only a small fraction of 

SMC were infected in culture even though viral titers produced were high. This led us to 

hypothesize that entry into the cell and/ or spread to neighboring cells could be the 
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limiting factor/s in SMC infection. In testing the ability of SMC to fuse we found that 

infected SMC could fuse with non-infected EC, thus proving the ability of SMC to form 

syncytia after infection. To test entry as the limiting factor we analyzed receptor 

expression and found that SMC express little to no ephrin B2/B3 on the surface. The 

exact mechanism of viral entry in SMC need to be further studied; this data suggests that 

cells could become infected by other means, be it macropinocytosis or a second receptor.  

After studying pathogenesis, we focused on creating a countermeasure that would 

protect from infection/disease. We created recombinant vesicular stomatitis virus based 

vaccines expressing Nipah virus antigens (glycoprotein, fusion protein, or nucleoprotein) 

and tested their efficacy in the hamster model. The glycoprotein and fusion protein 

group’s showed no signs of disease or weight loss after infection and were completely 

protected from disease. Nucleoprotein vaccinated animals were partially protected with 2 

out of 6 showing no clinical disease. As expected, control animals showed signs of 

disease and succumb to infection. In tissues we found that vaccination against Nipah 

reduced viral replication and antigen detection compared to control. This data supported 

the efficacy of our vaccines. In order to better understand the mechanisms of protection 

we did a passive transfer into naïve animals, which provided complete protection in 

vaccines that elicited neutralizing antibodies (F and G). Taken together this data suggest 

that neutralizing antibodies are enough to provide protection but that other cellular 

responses add to protection. This study showed that our vaccine was efficacious and that 

the VSV backbone is a strong inducer of antibodies and cellular responses that strengthen 

protection.  



	   121	  

 In conclusion, this work further elucidated pathology caused by Nipah virus 

infection and developed and testing of a potential vaccine candidate. We were the first to 

describe experimental infection of animals with Nipah Bangladesh as well as directly 

compare the strains under an experimental setting. Our work set the ground work for 

future experiments with the Bangladesh strain including further strain comparison in 

other animal models (190), transmission studies (51), and vaccine testing. Before this 

work little was known about Nipah infection in smooth muscle cells. Previous works 

have documented positive antigen staining in these cells but no work had yet studied their 

role in pathology and viral replication. Our work fills this gap of knowledge as well as 

leads to some interesting questions for further study. In this work we also describe a 

potent single dose vaccine that fully protects hamsters. This vaccine differs from 

previously published vaccines by eliciting a fast strong immune response after a single 

dose. Together our study adds to the fields understanding of Nipah virus pathology as 

well as proposes a possible vaccine candidate for use against disease, contributing to 

future management and treatment of outbreaks.  
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