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A bstract

Casady, Lucas A. M.Sc., M ay 2004 M athem atics

A sy m p to tic  R ed u ctio n s o f  a  M od el D escr ib in g  F acilita ted  D iffu sion  in  
M em b ran e  T ransport

Supervisor: Leonid V. Kalachev

Many nutrien ts th a t a cell needs are large and composed of lipid-insoluble molecules. 
These do not easily cross cell walls. In order to  transport these large hydrophilic 
perm eants, cells have specialized m em brane-em bedded proteins called carriers th a t by 
a  conform ational change, tran sp o rt a  specific perm eant from one side of th e  m em brane 
to  the  other. This mechanism is called facilitated diffusion.

In th is  thesis we will study  the  mechanisms of facilitated diffusion from a m ath
em atical perspective. The goal of our study is to  produce various asym ptotically 
reduced models describing facilitated diffusion transport across m em branes under 
various possible physiological conditions. These simplified models can la ter be used 
for param eter identification using experim ental da ta . Also, such simplified models 
may be included as parts of more complex heterogeneous pharm acokinetics models.
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C hapter 1 

Introduction

Drugs come in ail shapes and sizes, bo th  physically and chemically. T he way drugs 

are adm inistered and absorbed varies as well (orally, rectally, pulmonarially, in tra

venously, etc.). However, regardless of how a drug is taken or what the  drug is, all 

drugs follow the same life cycle. T he drug m ust first be absorbed in to  the  blood 

stream , d istribu ted  throughout the  body by the blood, received and used a t the site 

of action (a very small percentage of the adm inistered drug), and /o r excreted. [1,2] 

Despite the  same life cycle, drugs interact w ith cells and their m em branes differ

ently depending upon their m olecular size, structure , and solubility. In itially  almost 

all drugs are  absorbed into the  blood stream  and are then  distributed around the 

body in the  w ater phase of th e  blood plasma. Since the entire blood volume cir

culates throughout the body in approxim ately one m inute, the drug is d istributed  

throughout the  circulatory system  relatively quickly. Approximately sixty percent 

of a  person’s to ta l body weight is composed of w ater, 8.5 percent of which is blood. 

T hat leaves 51.5 percent of th e  to ta l body weight being composed of w ater th a t is 

in the body tissues. Most drugs are readily transferred  from the blood to  the  body 

fluid. If the  struc tu re  of the  drug molecules is such th a t  they can penetra te  the  cells,
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then  they are absorbed into the cells as well [1,3].

Generally speaking, drug molecules can be classified into three categories. F irst 

are the molecules th a t do not diffuse from the blood in to  the  body fluids. These 

molecules b ind to  proteins contained in the blood. A fter binding to the  pro tein  the 

molecule is too  big to  freely diffuse ou t of the bloodstream . Second are lipid-insoluble 

molecules. These molecules diffuse out of the bloodstream  readily, but are not quickly 

absorbed into the  cells. Cellular m em branes are composed of a wall of fat molecules 

called phospholipids. The exterior and  interior of the  cellular m em brane is m ade up 

of a densely packed layer of protein heads. The inside of the  membrane is comprised 

of lipid chains th a t resemble tails a ttached  to  the protein head. (See Figure 1.) [1,4,5]

F igure 1. Model of the cell membrane. The surface of the membrane is made up of a densely 

packed layer of protein heads. The interior part of the membrane is comprised of lipid chains 

attached to the proteins. The large structures are large protein molecules [Ij.
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Since the cellular walls are m ade up prim arily of lipids, lipid-insoluble molecules 

do not readily diffuse across the m em brane wall. The th ird  type of drug molecules 

are those th a t are either lipid-soluble, or are so small th a t they pass through the  tiny 

gaps (about 8 angstrom s in diam eter) in the  membrane walls. In this thesis we are 

going to  concern ourselves w ith the second type of drug molecules [1,5,6].

Many nutrients th a t  a cell needs are large and composed of lipid-insoluble molecules. 

These do not easily cross cell walls. In order to  transport these large hydrophilic per

m eants, cells have specialized m em brane-em bedded proteins called carriers th a t by a 

conform ational change, transport a  specific perm eant from one side of the  m em brane 

to  the  other. This m echanism is called facilitated diffusion [3,7].

In th is thesis we will study the  m echanism s of facilitated diffusion from a m ath 

em atical perspective. The goal of our study  is to produce various asym ptotically 

reduced models describing facilitated diffusion transport across mem branes under 

various possible physiological conditions. These simplified models can later be used 

for param eter identification using experim ental data. Also, such simplified models 

m ay be included as p arts  of more complex heterogeneous pharm acokinetics models.

1.1 M odel m echanism  o f facilitated  diffusion tran s
port

T he driving force of a  perm eant A  across a  m em brane is either its own electrochem ical 

gradient, or th a t of another perm eant, which is com peting w ith A  for the protein- 

carrier. In some cases th is may lead to  counter-transport. If the driving concentration 

gradient goes to  zero tran spo rt stops [7].

On the m em brane surface the perm eant molecule binds to  the carriers a t the
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binding sites. The perm eant-carrier complex goes through a conform ational change 

and releases the perm eant on the other side of the m em brane. At th is point the 

carrier is either “loaded” by a  molecule of perm eant B and reverses the process, or it 

is “loaded” by a resetting  chemical such as potassium  which is transported  outside of 

the  cell and released. T he carrier may cross th e  membrane and retu rn  to  the outside 

of the  membrane surface em pty[8].

D uring our analysis we will use the following notation:

•  A  represents the  perm eant on the outside of the cell;

•  B  represents the  perm eant on the inside of the cell;

•  G  represents the  resetting-chem ical on the  outside of th e  cell;

•  F  represents the  resetting-chem ical on th e  inside of the  cell;

•  P  represents th e  protein-carrier:

P i is the protein-carrier on the “A-side” of the m em brane and;

P 2 is the protein-carrier on the “B-side” of the m embrane;

•  Q  represents th e  perm eant-carrier complex:

Q i is the A P i  complex and 

Q 2  is the  B P 2 complex;

Qz is the GPi complex and 

Q 4 is the F P 2 complex;
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•  a, b, g, / ,  p i, p 2 , Qi, Q2  represent the concentrations of A , B ,  G, F , Pi, P 2 , Q i, 

and Q 2  respectively;

•  k f  and represent the  ra te  constants for the production of A P i  and B P 2  

complexes, respectively;

•  k {  and k^  represent the  disassociation ra te  constants of the  A P i  and the  B P 2  

complexes, respectively;

•  k ^  and k^  represent the  rates of the conform ational changes of the  loaded 

carriers;

•  and k^  represent the  constant rates a t which the carriers are reset;

•  k ^  and k ^  represent the  rate  constants for the production of F P 2  and GPi 

complexes, respectively;

•  fcg and  k^  represent the  disassociation ra te  constants of the  F P 2  and the GPi 

complexes, respectively.

T he above notation  as well as schem atic representation of facilitated diffusion 

tran sp o rt model are illustra ted  in Figure 2.

In th is figure the sequential stages consisting of the  carrier loading and reloading 

iwocesses are shown in detail. In stage I the  protein-carrier picks up the  perm eant, 

leading to  stage II. From stage II to  stage III the  complex reorients to  release the  

perm eant on the inside of th e  cell. In stage IV the protein-carrier picks up the 

resetting-chem ical. From stage V to  stage VI the  complex reorients to  release the 

resetting-chem ical to  th e  outside of the  cell and  th e  process repeats. Any of these
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stages can be reversed by changes in the concentration gradient or by num erous other 

counter-transport mechanisms.

ÎMembrane <

Key;

Permeant coming Into the membrane from the outside 

Permeant leaving the membrane to the inside 

Resetting diem ical coming into the mend>rane from the

inside

Resetting chemical leaving the m«mbr ane to  the outside

Protein Carrier

Figure 2. Diagram  of Facilita ted  Diffusion T ransport Mechanism [8].
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1.2 A sym p totic  A pproxim ation  Techniques

1.2.1 A sym p to tic  A pproxim ation  A lgorithm

For m athem atical analysis of the  facilitated diffusion process we employ asym ptotic 

approxim ation techniques [9]. We present an outline of the  algorithm  below.

Before proceeding, we should take a moment to  rationalize th is asym ptotic ap

proxim ation approach. W hen designing a m athem atical m odel for any n a tu ra l process 

or phenomenon one m ust weigh th e  pros and cons of a  complex model against those 

of a more simple model. One tries to  find the best balance between the  two. The 

model m ust be complex enough to  capture the dom inant features of the process, yet 

simple enough to  be accessible to  the  analytic and num eric m ethods available. For 

this reason, a good m athem atical model is not going to  model the physical reality 

perfectly, bu t adequately.

Imagine th a t we have a choice of two different models, one more complex bu t

slightly more accurate than  the  other. We say th a t the  more complex model, or

extended model, is perturbed, and  a  simpler model is unperturbed. T he difference 

between the two is th a t the  pertu rbed  one, com pared to  the unpertu rbed  model, 

contains additional term s depending on usually sm all num erical param eters. By set

ting these param eters to  zero we get the  corresponding unperturbed  m odel from the 

perturbed one. T he perturbations can be categorized into two groups; regular per

turbations and  singular perturbations.

Consider two hypothetical models:

model A q : L qu =  /o,

model A  : L qU -H eL^u =  /o +  e /i .

Here /o and / i  are known functions, e is a  small positive scalar param eter, u  is
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the  unknown function, and Lq and L i  are general operators. Aq represents the  simple 

unperturbed m odel and represents the  extended model. T he term s eL iu  and e /i 

represent perturbations. We will denote the  solution of A q by U o { t )  and the  solution 

of by u^{t). Solutions are defined in dom ain D.

The problem  A^ is called regularly perturbed in a  dom ain D if

Otherwise, the  problem A^ is called singularly perturbed.

In th is thesis we will use the Euclidean Norm.

In general, problem  Â  ̂ is not solvable directly. We will consider a function U (t, e) 

defined in a subdom ain D\  of D. In  particu lar cases, Di  m ight coincide w ith D.

The function U {t,e)  is called an asymptotic approximation  of the solution u^{t) 

w ith respect to  the  param eter e in th e  subdom ain D\  if

sup ||u ,(t) -  C/(t,e)
Di

0 as e —» 0 .

Moreover, if sup l|ue(t) — U(t, €)|| =  0{e^),  then  we say th a t  U{t, e) is the  asym ptotic
Di

approxim ation of u^{t) in D\  to  w ith in  accuracy of order e^.

Note: The no tation  a{e) =  0{e^)  m eans th a t there exists num bers c, cq >  0 such 

th a t for 0 <  € <  Co th e  inequality ||a (€ )|| <  ce^ holds.

The asym ptotic m ethod is a  m ethod of constructing an asym ptotic approxim a

tion U{t,e) for the  solution u^{t) of problem  A^. The advantage of th is approach is

8
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th a t  often the construction of U^{t) is easier than  the construction of i.e., the

problem s th a t comprise U((t) are sim pler th an  the  original problem  for A^.

In our case we will be able to  form ulate our model in term s of differential equations. 

Let us consider a general example;

€—  — F{u, t , e ) .  (1.2.1)

In each of the cases below we will construct uniform asym ptotic approxim ation 

in D i = D  =  [0, T], T  fixed, of the solution to  the original problem  in the  form of a 

trunca ted  power series in  the  powers of e:

e ^  +  ^  =  F ( i ,e )  +  n F (T ,e ). (1.2 .2)

Here r  =  t /e  is a  stretched variable,

i^(t, c) =  +  ... +  €^Ffc{t) +  ... (1.2.3)

is the  regu lar part of the  expansion and,

H F (r , e) =  HoF ( t ) +  e n iF ( r )  +  ... +  e''HfcF(T) +  ... (1.2.4)

is the  b ou n d ary  layer part. In w hat follows, we assume th a t I l jF ( r )  0 as

r  —> oo. This will guarantee th a t the  boundary functions only play a role near the  

in itial point. We then  expand all the  term s in power series in powers of e, and equate 

coefficients m ultiplying like powers of e separately for the regu lar and b o u n d a ry  

layer  functions.
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In  th is thesis we will construct series in the  powers of e,

+  (1.2.5)
j=0

such th a t the A:th partia l sum (truncated  series),

k
U k ( t ,  e) =  £) +  n iF ( T ,  £ )) .  (1 .2 .6 )

1=0
will give the  asym ptotic approxim ation to  the  solution Ue{i) w ithin an accuracy of 

order in dom ain D i. Uk{t, e) is th en  called the asymptotic series for the function 

u^{t) (or the  asymptotic expansion for Ue(t)) in the dom ain £>i as e —> 0. For m ost 

applications and for m ost of the cases studied below we will be interested only in the  

leading order approxim ation.

1.2.2  C onditions o f  th e A sym p to tic  A pproxim ation  A lgorithm

Let us formulate one of the  central theorem s of asym ptotic analysis for an OD E 

system  used in pharm acokinetic m odeling [9]:

fjq)
e— = F { u ,v , t ) ,  —  =  / ( u ,u , i ) ,  0 <  t  <  r ,  (12 .7 )

m(0, e) =  u®, u(0, e) =  u®. (1.2.8)

We assume th a t  the  functions F{u, v, t)  and /(w , u, t) are continuous together w ith 

their derivatives w ith  respect to  u  and v  in some dom ain 

G  =  {||w|| <  a, ||u|| <  a, 0 <  t  <  r } .

10

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



C o n d i t io n  1:

Let F{ll, v , t )  = 0 have an isolated root with respect to v. : ü{t) — <^{v{t), t), 

{v{t),t) €  D  =  { ||n || <  a , 0 <  i <  r } ,  and suppose that the corresponding 

reduced problem has a unique solution in the interval 0 < t < T .

System  (1.2.7) has an  associated system:

diijL
e —  =  F{û, V,  t), T >  0. (1.2.9)

By virtue of C o n d i t io n  1, û  =  4>{v,t) is a  steady sta te  of system  (1.2.7). 

C o n d i t io n  2:

Let the steady state û  =  0(v, t) o f  the associated system he asymptotically 

stable in the sense o f  Lyapunov, uniformly in {v,t) €  D  as t  —* oo [11].

T his means th a t  for any e >  0, there exists a  <5 =  5(e) >  0 such th a t if

||û(0) — <^(u,t)|] <  6 th en  ||ü (r)  — 4>{v,t)\\ <  e for r  >  0, and also v, —> <j>{v,t) when

r  —» oo.

Several roots of the  equation F { u ,v , t )  =  0 m ight satisfy C o n d i t io n  2. However

we want a  solution û{r)  th a t approaches the  steady state. Therefore we stipulate

condition 3:

C o n d itio n  3:

Let the solution ü { t )  o f the problem fo r  û  with t = 0 exist fo r  r  >  0 and 

tend to the steady state  ^ (u°,0 ) as r  oo. This means that belongs to 

the domain o f attraction o f the steady state  </>(u®, 0).
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T ik h o n o v ’s T h eo rem

Under C o n d i t io n s  1 -3  and fo r  sufficiently small e, the original perturbed 

problem has a unique solutions u{t, e), v{t, e) such that the following lim

iting equalities hold:

lim(_o f ((, e) - tJ(t) for 0 <  i <  T , 

lime_o u{t, e) =  il{t) for 0 < t  < T .

These equalities show th a t in the lim it the  solution u{t,e), v{t,e)  of the original 

problem  tend to the  solution of the reduced problem. T ransition to the limit for v 

takes place for all t in the  interval 0 <  f <  T . Moreover th is lim iting process is 

uniform. Transition to  the  limit for u  takes place for any t except i =  0. The lim iting 

process for u will be uniform  outside some small 5-vicinity of the  initial point. The 

subinterval [0,5], where the fast change of the  solution u{t,e)  from the initial value 

to  values close to  u{t)  takes place, is called the  boundary layer.

Thus v{t) will be th e  asym ptotic approxim ation to  e) in the  interval 0 < t  < T ,  

and  H{t) will be the asym ptotic approxim ation to  u{t, e) for S < t < T ,  where 5 is 

asym ptotically small. Possible behavior of th e  solution u{t, e) for various values of e 

for some specific singularly pertu rbed  OD E problem  can be seen in Figure 3 below.

We will use th is and  related  results for our analysis in th is thesis [9].
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Figure 3. Com parison of th e  leading order asym ptotic approxim ation w ith the nu

merical solutions of the  singularly pertu rbed  problem  for various values of epsilon.
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C hapter 2 

A nalysis o f a sim plified m odel

2.1 Form ulation o f th e  m odel

We sta rt w ith the  model th a t does not take into account possible asym m etry of 

the  protein-carrier resetting process (see assum ptions below), and focus ju s t on the 

transport process of th e  perm eant from the outside to  the inside of the cell.

We make th e  following simplifying assum ptions on the  “resetting” process;

•  a® >

•  P  and Q  cannot leave the m em brane, and complex form ation and disassociation 

only occurs a t the  m em brane wall,

•  ^  and k f  (note: since k ^  = k ^  = k f ,  we have Qi = Q 2 = Q,

and Pi = P2  =  P, so we assum e instantaneous equilibrium  redistribution of free 

and occupied protein carrier sites between the “inside” and “outside” boundaries 

of the m em brane.).
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Note: The th ird  simplifying assum ption th a t the conform ational change is instan 

taneous is not a  physically realistic assum ption. In fact is has been shown experim en

tally  th a t th is conform ational change is ra te  limiting. Nevertheless, these simplifying 

assum ptions will provide us w ith a  perspective from which to  more simply draw  some 

physically significant results. These results will then be able to  be included as parts 

of more complex and  realistic heterogeneous pharm acokinetics models.

We discuss the  experim ental setup  for which the  volumes on both  sides of the 

m em brane are the sam e and the in itial conditions are chosen to  satisfy: a (0) =  

a®, 6(0) =  0,p(0) =  g(0) =  0. W ith  these assum ptions we get the  following

reaction scheme representing the model:

k+

A  + P  Q  P  + B,

fcf *:+

where A  is the perm eant, P  is the carrier, Q is the perm ean t/carrier complex, and B  

is the  perm eant on the  intracellular side of the membrane.

We will address th e  following cases:

•  Case 1: The first forward reaction and the second forward reaction are bo th  

fast { k f  and are large) and b o th  reverse reactions are m oderate (fcf and k^  

are m oderate),

•  Case 2: The first forward reaction and the  second reverse reaction are b o th  fast 

{k^ and k ^  are large) and the  first reverse reaction and  second forward reaction 

are m oderate (k^  and k ^  are m oderate),
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•  Case 3: The first forward and first reverse reactions are b o th  fast {k^  and 

are large) and the  second forward and  second reverse reactions are m oderate 

{k2  and k^  are m oderate),

•  Case 4: The first reverse and second forward reactions are bo th  fast (fcf and k ^  

are large) and the  first forward and second reverse reactions are both  m oderate 

(ki  and k^  are m oderate),

•  Case 5: The second forward and second reverse reactions are fast (k^  and k^  

are large) and the  first forward and first reverse reactions are m oderate ( k f  and 

k ï  are m oderate),

•  Case 6: All the  reaction rates are m oderate and is small.

Using the Law of M ass A ction we write th e  system  of differential equations for con

centrations of the species:

—  — fci g — Ajj”ap, (2 .1.1)

^  g -  k^bp, (2 .1.2)

= k ^q  — k ia p  + k ^ q  — k^hp — — (2.1.3) 

Ê  9 -  k t a p  +  k - , q -  k*bp)  =  +  ( 2 . 1 . 4 )
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E quations (2.1.3) and (2.1.4) can be re-w ritten  as follows;

Solving (2.1.5), we get: a + h + p  =const.

Using initial conditions, we get th a t the constant is aP — p^. T his gives us:

p  — Q -{■ b jp  — oP. (2.1.7)

Solving (2.1.6), we get: a + b + q =const.

Using in itial conditions, we get th a t the constant is a®. Thus,

q = aP — a — b. (2.1.8 )

Since p  and q are expressed in term s of a and  6 we only need to  analyze equations

(2.1.1) and  (2.1.2), where p is given by equation (2.1.7) and q is given by (2.1.8).
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2.2 A nalysis o f C ase 1

We s ta r t  w ith Case 1, assum ing th a t  the first forward (&^) and second forward (fcj) 

reactions are bo th  fast, and the  o ther two reactions are moderate.

2.2.1 R e-scaling th e  equations

In (2.1.1) and  (2.1.2) we m ake the following substitutions; a =  aao; b = bbo; t  =  

tto\ p  =  ppo', q = qqo- We obtain:

qqq -  A:+aopoàp,
tod t

=  QoQ -  bopobp.
bodb
todt

M ultiplying by to and dividing the  first equation by uq and the second equation by 

bo, we get:

dà k ïqo to^  , + .
=  q -  topoap,

dt ao

^  -  k^topobp.
dt bo

Let us choose uq =  6q =  po =  5o =  a®. Then,

^  =  k^toq — k^toàpa^,

=  ^2 toq — k^tobpaP.

Since the  first forward { k f  ) and  the  second forward {k^ ) reactions are b o th  fast, and

the o ther two reactions are slow, we can make th e  following choice of characteristic
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tim e scale: to — We now have: 

dà ,  &+ 0- -

dtr tĈ k-y

Finally, we in troduce the  following substitutions: 

1 ^0. T ^2 0 . ^2 a ^2-  = — a ; — =  — a y  — T-r; 0  =  — , 0 <  € <C 1 is a small param eter.
6 ky € ky ky ky

We get:

dt

Re-scaling equations (2.1.7) and (2.1.8) gives us:

— eg — ~àpi (2.2 .1)

— e0q =  —'ybp. (2 .2.2)

p  =  à b — — — 1, (2.2.3)

q = l - ( a  + b). (2.2.4)

Substitu ting equations (2.2.3) and  (2.2.4) into (2.2.1) and (2.2.2), we obtain:

dà 0
€ -^  — e{l — à — b) = —à(à  -h 6 +  ^  — 1),

—  e / ? ( l  — à — 5 )  =  — ')b{à - j -  6 4— -  —  1) .
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T he re-scaled initial conditions are: â (0) =  1, and 6(0) =  0.

To simplify notation we drop the  tildes and substitu te  p* for p^/a^:

— e(l — a — b) — —a (a  -I- 6 -t- p* — 1), (2.2.5)

— €0(1 — a — h) = —')h{a -|- 6 -|- p* — 1). (2.2.6)

2.2.2 T h e leading order approxim ation: R egular functions

Setting e equal to  zero, we get:

T  6g =  1 — p*. (2.2.7)

If we divide (2.2.5) by and (2.2.6) by 7 6 0  and take the difference of the  two equations

in the leading order approxim ation, we get:

1 d c i Q  (1 —  do —  bo)   1 dbo 0  { 1  — ü q  — bo)
do dt do 760 dt 7 bo

Differentiating equation (2.2.7), we obtain  —  =  — — .

Thus, we can simplify (2.2.8) to:

\Oo 760/  dt \d o  760/

Dividing bo th  sides by ( =  4- -1= ) and re-arranging term s, we get:
\ d o  760/

(2 .2 .8 )
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=  jp. ( (2/2.9)^  ^  / 7^0 -
dt \  760 +  ao /

We can w rite (2.2.9) stric tly  in term s of ôô since bo = 1 — p* — oq:

T his is a  separable ODE, and  its implicit solution is:

a j  +  +  7) +  . (P -  -  + +

In order to  find Ci we need an initial condition for ôô, which we will find during 

construction of the boundary  functions.

2.2 .3  T he leading order approxim ation: B oundary functions

For the  boundary functions Iloa and II06 firom (2.2.5) and (2.2.6) we have;

° : —(ôô(0) +  IIoa)(âô(0) +  Iloa +  &o(0) +  II06 — (ao(0) +  6q(0))),
d r

=  —7 (60(0 ) +  I lo 6 ) ( a o ( 0 )  +  IIou  +  60( 0 ) +  IIo6 — (a o (0 )  +  6 o (0 ) ) ) .
dIlo6

dr

Simplifying these, we get:

d lloa
d r

=  —(ao(0) +  nou)(nou +  II06), (2.2.11)

=  - 7 (60(0 ) +  n o 6 ) ( n o a  +  n o 6). ( 2 .2 . 1 2 )
d r
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After dividing both sides of (2.2.11) by (ao(0) +  Iloa) and both sides of (2.2.12) by 

7(60(0) +  II06), and taking the difference, we get:

7  dlloa 1 c?rio6

(flo(O) +  Iloa) dr  (6o(0) +  II06) dr  

Integrating and  taking exponents of bo th  sides yields:

V O ) +  Ho6 =  C 2 (V 0 ) +  Hoa)'^. (2.2.13)

Initial conditions in the leading order approxim ation are:

V o )  +  Iloa(O) =  1,

60(0) +  Ilo6(0) =  0.

Substitu ting the  initial conditions into (2.2.13) and solving for C 2 we get: C 2 =  0. 

Substitu ting  th is back into (2.2.13), we get:

V O ) +  n o 6(r) =  0. (2.2.14)

As T —> 00 the  Ho term  in (2.2.14) will vanish. This m eans th a t 60(0) m ust be zero, and

hence, from equation (2.2.14) we obtain  th a t IIo6(r)  =  0. Since o^(O) +  6o(0) =  1 — p*

and 60(0) =  0, we know

âS{0) = l - p * .  (2.2.15)

Thus,

n o a (0 )= p * . (2.2.16)
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Substitu ting  (2.2.15) back into (2 .2.11) we get: 

dlToO
dr — —Ilon(l — p* 4- Ilofl).

Separation of variables yields: —— ------- ==
n o a - p *  +  l

Using initial condition (2.2.16) we find th a t Cg =  Thus, we have;

n .« (T ) =  (2-2-17)

We can see th a t th e  boundary functions go to  zero as r  —> oo.

2.2 .4  T h e regular fu n ction s’ constant o f  integration

Since we now know the initial condition (2.2.15) for SÔ, we can find C\ in the leading 

order regular function expression:

Cl =  -  m + 7 )  - 1(13+ i ) H / j ( i  -  p '))]].

So, the  implicit solution to  the  leading order regular function is:

35 +  ln(35(/J +  7) +  7(P’ -

(2.2.18)

-  P " ) |l -  (., y)  -  P’ »l-

2.2.5 D iscu ssion

The concentration of perm eant A  is modeled, in the  leading order approxim ation, by 

the  sum o^(f) +  rio a(r), defined by (2.2.18) and (2.2.17). If the concentration of A  is
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large, i.e., as ao —> 1, 

dGâô ...jp'-y 4-/)  ——̂ T>    ,
dt  p*7 — 1

This means that, as the concentration of A increases without bound, the rate of 

trans-membrane transport approaches a limit. Note that if we make the assumption 

that 7 =  /? =  1 (the membrane transport is perfectly symmetric), then we have;

This is a linear ODE and its solution is:

  f  2p* \  I —p* 1 — P*
ao(t) =  C ex p  f —-— — t I H  — , which approaches — - —  as t —> oo. This

m eans th a t perm eant A diffuses in to  and through the m em brane until equilibrium  is 

reached. The equilibrium  concentrations of A  and B  are the  same:
 , . T—, . 1   P*
ao{oo)  =  f>o(oo) =  — - — .

This process is illu stra ted  in Figure 4.
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Figure 4. G raphs of a (t) and b (t)  for various values of (3 and 7  w ith e =  0.01, a° =  1, 

and 2)0 == 0.1. If the  value of /? or 7  is no t specified it was set equal to  1.
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2.3 A n alysis o f C ase 2

For Case 2, where (k^ )  and (k ^ )  are large, we make the following substitution: 

jtf-

Now we perform  the same analysis as before and check how the model behavior 

changes. Going back to  equations (2.1.1) and (2.1.2) and m aking the above substitu

tion for to we get:

dà ,  o~~
32 =  g -  T ^ a  ap, 
dt ki

Introducing param eters:

-  =  ^ a O ;  ^  =  7  =
€ ki e ki ki

we get:

dâ
dt

+  e')bp =  pq.
at

(2.3.1)

We recall th a t  g — 1 — â — 6 and p  = {à + b + p* — 1), and substitu te  these into (2.3.1) 

to  obtain:

e i  -  e (l -  à  -  6) =  - â ( à  + b + p * - l ) ,  (2.3.2)
dt

e—  +  676(0 -h 6 -1- p* — 1) =  P{1 — à — b). (2.3.3)
dt 
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T he re-scaled in itial conditions are: à(0) =  1, 6(0) =  0 .

We will om it the  tildes in w hat follows in order to  simplify notation.

2.3.1 T h e leading order approxim ation: R egular functions  
for C ase 2

Setting e equal to  zero we obtain:

0 =  —(%o((Zo bo p* — 1), and

0 =  P{1 — ao — bo).

Solving these together we get a^(t) =  0, and

a ^ ( t ) + ^ ( t )  =  l, (2.3.4)

so bo(t) =  1.

Next, we calculate the  first order approxim ation of th e  regular functions.

2.3.2 T he first order approxim ation: R egular functions for 
Case 2

Collecting the regular term s of first order in e from equations (2.3.2) and (2.3.3) we 

get:

® — 1 +  Ù0 +  bo — —ao(ai — 6i) — ui(ao -h bo +p*  — 1), (2.3.5)
dt

+  ybo(^o -h bo +  p* — 1) — —/3(ui +  6i). (2.3.6)
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Since ao =  0 and 6q =  1, we know th a t — =  0, and therefore from equations
at at

(2.3.5) and (2.3.6) we ob tain  Ui =  0 and  6i =

2.3 .3  T he leading order approxim ation: B oundary Functions  
for C ase 2

Using the standard  procedure, we have:

— —(ao(0) +  lloa)(ao(0) +  Iloa +  6q(0) +  Ilo5 +  p* — 1) (2.3.7)

=  —rioa(p* +  rioa +  n o 6),

  — /?(! — (&o(0) +  Iloa) — (6o(0) +  Hq^)) =  —/?(IIoa +  IIo6)- (2.3.8)

Initial conditions for the  boundary functions in the leading order are

noa(O) =  1 -  0^(0) =  1, (2.3.9)

no6(0) =  - ^ ( 0 )  =  - 1 .  (2.3.10)

T he steady sta te  of system  (2.3.7), (2.3.8) is (0,0), and d e t[ J (0 ,0) — A/] =  0 yields 

eigenvalues:

, -{p* + 0) ±  y/{p* +  0 Y  -  4p*0
Ai,2 = ---------------------- 2-------------------------------------■

Since the eigenvalues are real, distinct, and  less than  zero (due to  the  fact th a t p* and 

0  are positive) the steady s ta te  is a  stab le  node. Therefore the  boundary functions 

approach zero as r  —> oo.
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2 .3 .4  D iscussion

Since dâô/dt = â â l jd t  — 0 w ith ôô{0) =  â ï(0 ) =  0 and the  steady sta te  (0,0) for the 

boundary  functions is a  stable node, we conclude th a t perm eant A  is absorbed into 

and through  the m em brane a t a  fast rate. T h is is clearly seen in Figure 5 below.
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Figure 5. G raphs of a (t)  and b (t)  for various values of (d and 7 w ith  e =  0 .01, a® =  1, 

and  =  0.1. If the  value of /? or 7  is not specified it was set equal to 1.
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2.4 A nalysis o f  C ase 3

For Case 3, where (fcf) and  (fcf) are large, we make the following substitution: 

0̂ =  - p -

Now we perform  the same analysis as before and check how the model behavior 

changes. Going back to  equations (2.1.1) and (2.1.2) and making the  above substitu

tion for to, we get:

dâ _ k'l
Æ  ■ i f  “

Introducing param eters:

-  =  2  =  f 3 = ’̂ a \
€ «2 e ^2 Kg

we arrive at:

dà
€-7= =  79 -  ap, dt

(2.4.1)

db _
-p  =  o — p to .
a

We recall th a t  q =  l  — a ~ b  and p = {à + b + p* -  1). Substitu ting these into (2.4.1), 

we obtain:

=  7̂(1 — à — b) — à{à +  6 -t" p* — 1), (2.4.2)

—= =  1 — à — b — j5b{à -^h-\-p* — 1). (2.4.3)
dt

The re-scaled initial conditions are: â(0) =  1, 6(0) =  0.
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We om it the  tildes in w hat follows in order to  simplify notation.

2.4 .1  T he lead ing order approxim ation: R egular functions  
for C ase 3

Setting  € equal to  zero in (2.4.2), we get:

7(1 — ao “  bo) — ao(ao +  60 +  P* — 1)* (2.4.4)

Solving th is for ïïô, we obtain,

_  (1 -  (7 +  p* +  60)) ±  M l - ' y  - p *  -  6q)2 -  47(60 -  1)
ao = -------------------------------------------------------     . (2.4.5)

We can substitu te  (2.4.5) into (2.4.3) to  get an equation in term s of 6q only. To find 

the  correct sign in (2.4.5) we need to  first discuss the boundary  functions. Once we 

find the  right sign, we will analyze the  long term  behavior of the regular functions.

2.4.2  T he lead ing order approxim ation: B oundary Functions 
for C ase 3

Using the standard  asym ptotic procedure we arrive at:

^  =  7 (1  -  (ô ï(0 )  +  n „ a )  -  (6o(o) +  noM ) (2 .4 .6 )
d r

— (ôô(0 ) +  rioa)(âô(0 ) +  Iloa +  i>o(0 ) +  P* ~  1 ),

=  0. (2.4.7)
d r

Initial conditions in  the  leading order are:
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0^{0) +  noa{0) =  1, (2.4.8)

6o(0) +  IIo6(0) =  0. (2.4.9)

Clearly rio6( r ) =  const. Since IIo6 —> 0 as r  -h- oo, th e  constant is zero and, therefore,

6o(0) =  0. Thus, (2.4.6) becomes:

dlloa
dr — (ûq(0) +  JIqu)) — (ao(0) +  IIon)(cio(0) +  Hofl +  ~  1), (2.4.10)

Prom (2.4.4) we have 7(1 — &o(0)) =  ao(0)(ao(0) + p* — 1). Using th is we simplify 

(2.4.10) to:

=  -T H oa -  203{0)noo -  (Doa)^ -  noo(p* -  1), (2.4.11)

with 55(0) =  +  +  Note th a t  since we w ant 55(0) >  0

(concentrations are non-negative), we choose the positive sign in (2.4.5).

2.4.3 S tab ility  analysis for th e  regular functions

Solving (2.4.4) for 6o yields

^  7 ( 1 - 5 5 )  ^ 5 5 (5 5 +  P - - 1 )  (2.4.12)
+  7

Substitu ting  (2.4.4) into equation (2.4.3), we can write:

— (^0 +  60+ ^ * ““ 1)(“  P^o) — F'(O’O-)̂ o)- (2.4.13)at 7

The equilibrium  points of equation (2.4.13), if they exist, m ust belong to  null-clines,

^ = l - ô ^ - p * ,  (2.4.14)
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bo =  (2.4.15)

as well as the null-cline given by (2.4.12).

By setting (2.4.12) equal to  (2.4.14) we can see th a t these null-clines do not cross, 

(since when we solve for ôô we get th a t  p* =  0 which is not possible). Therefore we 

have no meaningful steady sta tes belonging to  (2.4.14).

Setting (2.4.12) equal to  (2.4.15) and solving for aS we get:

_ _  l - ( p *  +  7 - f ^  1) ±  v^(p* 4 - 7  +  ^"  ̂ -  1)^+ 4 7 (1 -t-(/?7)-i) ,0  .
-  2 -t- 2 ( M - i ------------------------------------•

Since we are only interested in in the  first quadrant, we choose the positive sign 

in (2.4.16). We denote th is unique steady sta te  by (ô^*,6o*)-

Taking the derivative of the right hand  side of equation (2.4.13) w ith respect to  bo, 

we get:

db.'0 \dbo  J  \  ^  )  \ l d b o  /

   *
For stability we need 60 ) <  0.

dbo _
Since a t the  steady  s ta te  60 =  th e  first product in the  right-hand-side is zero.

P i
We argue th a t -== <  0 by the  Implicit Function Theorem  [10] as follows. Let us

dbo
re-write the im plicit function representation  (2.4.4) as

G { üq , 60) =  û q (û o  +  60 ~  1 ) +  7 (®o +  &o “  1 ) — 0-

Invoking the Implicit Function Theorem,

dap _  dGjdbp  ________ 00 + 1________^  q
dbo "9(7/ d o o  200  4- 60 +  P* ~  1 +  7
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A nd finally, we can see from equation (2.4.4) th a t 
__

{a^ + bo +p* — 1) is positive. Therefore, we have th a t - =  <  0 , which means_ dbo
is a  stable steady s ta te , and bo th  oq and  6o approach this steady sta te  as t ^  oo.

2 .4 .4  S tab ility  analysis for th e  boundary functions

T he steady states for the  system  (2.4.6) and  (2.4.7) are:

(noa*,rio6*)i =  (0 , 0) and

(Doa*, no6*)2 =  (1 -  7 -  P" -  20^(0), 0).

Since the abscissa of (IToa*, Ilo6*)2 is negative we are not interested in th a t steady 

sta te . Therefore th e  only physically viable steady sta te  is (0,0).

We calculate:

( ^ )  =  1 -  7 -  P* -  205(0).

Since 05(0) =  1  ^  P ') + ^  1 ^  ^

we see th a t (hloa', rio6*)i <  0. Therefore (0,0) is a  stable steady sta te .

2.4.5 D iscussion

Recall th a t the only steady sta te  for regular functions th a t had  any physical signifi

cance was:

j— ao

w ith given by (2.4.16) w ith positive sign.

For sym m etric m em brane tran spo rt (/? =  7 =  1) we have:

% ( « )  =  M oo) =  - ( P -  +  1) + V ( ( P -  +  1) ! ± 8)
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T he following sequence of graphs illustrate  th is result for various param eter values.
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~Q~ b(t)0.0
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0.4

0.2
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time

a{t) 
^  b(t)0.8
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p = 0-5
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time

0.8

0.6

P
I  0.4 «

P = 1.5

0.2

time

0.8

7= 0.5

0.2

10

time

Figure 6 . G raphs of a (t)  and b (t)  for various values of /? and 7  w ith e =  0.01, a° =  1, 

and  pO =  Q 1 If th e  value of or 7 is no t specified it was set equal to  1.
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2.5 A nalysis o f Case 4

For Case 4, where {ki ) and (A:^) are large, we make the following substitu tion:

Once again, we go back to  equations (2.1.1) and (2.1.2) and  m ake the new substitu tion  

for to and get:

do, k-̂  _ Alj g---
Æ

db ,  k2 0 ^
—= — Q — -— d bp.
dt k^

Introducing new param eters as follows:
1 0 7V ; ^ = T&; ^

we get:

e ^  + €pàp = -jq, (2.5.1)
dt

e—= — eq — —bp. 
dt

Recall th a t g =  1 — a  — 6 and p =  (â +  6 +  p* -  1). We substitu te  these into (2.5.1) 

and  get:
(in — "■

€ - ^  + epà{à +  & +  p* -  1) =  7(1 -  â  -  6), (2.5.2)

_  e(l _  â  -  6) =  -b {à  +  6 +  p* -  1). (2.5.3)
dt

T he re-scaled in itial conditions are: à(0) =  1, 6(0) =  0.

We om it the tildes now.
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2.5.1 T h e leading order approxim ation: R egular functions 
for Case 4

Setting e equal to  zero we get;

0 =  7(1 — ÜQ — 60), and

0 =  -b^{âS + b^ + p* -  1).

Solving these together we get bo =  0, and

a S + h = l ,  (2.5.4)

so ÔÔ =  1.

Next we calculate the first order approxim ation of the  regular functions.

2.5.2 T h e first order approxim ation: R egular functions for 
C ase 4

Collecting the regular term s of first order in e from equations (2.5.2) and (2.5.3) we 

get:

+  (3âô{o,o +  +  p* — 1 ) =  —7(^1 +  ^i)> (2.5.5)
dt

—------ 1 +  uq ^0 — —̂ o(tti — 5i) — 5i(ao +  — 1). (2.5.6)
dt

Since =  1 and 60 =  0, we know th a t {dâô/dt) =  (dbo/dt) =  0, and therefore from
~(3p*

equations (2.5.5) and (2.5.6) we obtain  61 =  0 and a\ =
7

37

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



2.5.3 T h e leading order approxim ation: B oundary Functions  
for C ase 4

Using the standard  procedure, we have: 

dlXoU
dr — 7(1 (ûo(0) Iloa) — (Iloa +  llo6)} — —'7(IIoa +  II06), (2.5.7)

— ““ (5o(0) +  Ilo6)(ao(0) +  Iloa +  60(0 ) ■+• II06 +  p* — 1) (2.5.8)

=  —n o 6 (rioa +  rio6 + p*).

Our boundary  function in itial conditions in the  leading order are

U o a (O )  -  0, (2.5.9)

no6(0) =  0. (2.5.10)

The analysis of th is case is sim ilar to  th a t of Case 2. As in Case 2, the  steady sta te

of system (2.5.7), (2.5.8) is (0,0) and d e t[J(0 ,0 ) — XI] — 0 yields eigenvalues:

_  - (p *  +  7 ) ±  V(P* +  7 )^ -  4p*7
Ai,2 -  2 •

Since the eigenvalues are real, d istinct, and less th a n  zero (because p* and 7  are 

positive) the  steady sta te  is a  stab le  node. Therefore the  boundary functions, obtained 

as solutions of (2.5.7)-(2.5.10), are  identically zero.

2.5.4 D iscussion

Since dâô/dt = d a l/d t  =  0 w ith ôô(0) =  1, ô ï(0) =  —/?p*/7, and the steady sta te  

(0,0) for the  boundary  functions is a  stable node, we conclude th a t the  concentration
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of perm eant A  changes very little. T his means th a t A  is not absorbed into and 

transported  through the  mem brane. This is illustrated in the  graphs below.

a{t) 
O b{t)0.8

I 0.6£0
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0.2

time
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time
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OÔ Q O O 0 0 O O O 0 0OOO0

time

a(t)
o b(t)0.8
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00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  0  G O  0 - 0
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Figure 7. G raphs of a (t) and b (t)  for various values of (3 and 7 w ith € =  0.01, = I,

and =  0.1. If th e  value of ^  or 7  is not specified it was set equal to  1.
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2.6 A nalysis o f C ase 5

For Case 5, where {k^)  and {k^)  are large, we m ake the following substitu tion;

0̂ =  ~r^-
K

Now we perform  the same analysis as before and  check how the model behavior 

changes. Going back to  equations (2.1.1) and (2.1.2) and making the above substitu 

tion for to, we get:

dà _ o~~

1 1 

Making substitutions:

€ fc f’ e fcf k ï  '

we get:

dà ~ a- ~
^  =  9 - / 3 a p .

db _ -

We recall th a t  q = I — à — b and p  =  (à +  6 -I- p* -  1). We substitu te  these in the

above system  and get:

—L = 1 — à — b ■— j3à{à -|- 6 +  p* — 1), (2.6.1)
dt

e—= =  1 — à — b — ')h{à -1- 6 +  p* — 1)- (2.6.2)
dt

The re-scaled initial conditions are: a(0) =  1, 6(0) =  0.
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In w hat follows we simplify no tation  by om itting the  tildes.

2.6.1 T h e leading order approxim ation: R egular functions  
for Case 5

Setting e equal to  zero in (2.6.2) we get:

'y6o(ûo +  d- p* — 1) =  1 — Oq — ^0- (2.6.3)

Solving th is  for bo we obtain:

^  =  ( - 7 ( â ï ï  +  p* -  1) -  1) ±  y ( ? ( ô ^  +  p* -  1) +  1)^ -  47(0^ -  1) 2̂ 6 4)

We can substitu te  (2.6.4) into (2.6.1) to  get an equation in term s of ôô only. To find 

the correct sign in (2.6.4) we need to  first discuss the boundary functions. Once we 

find the  right sign, we will analyze the  long term  behavior of the regular functions.

2.6.2 T h e leading order approxim ation: B oundary Functions 
for C ase 5

Using the  standard  procedure for the  leading order boundary functions, we obtain:

dlloa
dr

=  0, (2.6.5)

^  =  1 -  (05(0) +  n„a) -  (6„(0) +  no6) {2.6.6)
d r

— 7 (60(0) +  rio6)(ao(0) +  IloO +  60(0) +  IÏ06 +  p* — 1).

The in itial conditions in the  leading order approxim ation are:

05(0) 4- noo(O) =  1, (2.6.7)

41

R ep ro d u ced  with p erm issio n  o f  th e  copyrigh t ow n er. Further reproduction  prohibited w ithout p erm ission .



6o(0) +  rio6(0) — 0. (2-6.8)

Clearly Iloa =  const. Since Iloa —̂ 0 as r  oo, const — 0 and therefore, 0^(0) =  1. 

T hus (2.6.6) becomes:

=  —(6o(0) +  flo^) ~  7(^o(0) +  rio^)(^o(0) +  +  p*). (2.6.9)

From (2.6.3) we have 76o(0)(6o(0) + p*) =  —6o(0). Using th is we simplify (2.6.9):

^  =  -n o 6  -  27V O )no6 -  7(nofe)" -  7no6p ', (2.6.10)

w ith 6o(0) =  — (7p* +  1) or 6o(0) =  0. Since we need 6o(0) >  0, we choose &o(0) =  0.

Then,
dno6

-IIo6 — 7llo6(no6 +  p*)-
no6

Separation of variables yields: „ -,---------------   =  const •_ 7no6 +  7P* +  l
I t follows from 6o(0) =  0 and the in itial conditions in (2.6.8) th a t Ilo6(0) =  0. Thus, 

we obtain th a t rio6(r) =  0.

2.6 .3  S tab ility  analysis for th e  regular functions

Solving (2.6.3) for aS yields.

tto — 1 — 6o ( 1 H —= ) • (2.6.11)
V 1 + 7 ^ 0 /

Substitu ting  equation (2.6.3) into equation  (2.6.1), we can write:

^  = {05+ b ^  + p* -  1 ) (7 ^  -  « )  =  F { a ^ M ) .  (2.6.12)
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T he equilibrium points of equation (2.6.12), if they exist, m ust belong to  null-clines,

a ^ = l ~ b ^ - p \  (2.6.13)

0 ^ = ^ ,  (2.6.14)

as well as to  the null-cline given by (2.6.11).

By setting (2.6.11) equal to  (2.6.13), we can see th a t these null-clines do not cross 

(since when we solve for bo we get p* =  0 which is not possible). Therefore we have 

no meaningful steady s ta te s  belonging to  (2.6.13).

Setting  (2.6.11) equal to  (2.6.14) and solving for bo we get:

— _  - { 7  +  /)(! +  7P* -  7 )) ±  %/(7 +  /5(1 +  7p* -  7))2 +  4/5(72 +  7/3)
^0 -  2 ( f  +  7/3) ■  ̂ ^

Since only non-negative concentrations are possible, we choose the positive sign in

(2.6.15). We denote th is unique steady s ta te  by (ôô*,&o*)-

Taking the derivative of the right hand  side of equation (2.6.12) in w ith respect 

to  we get: 

d F
dbo

{o-oibo), bo) =  +  1^  (7^0 — /%ô) +  (% +  60 +  p* — 1) ^ 7 ^ =  — ■

For stability  we need (ô?i*. bo*) < 0.

Since aS — {•ybo)/P, the  first product in the  right-hand-side is zero.

Similar to  Case 3 we m ay show th a t dâô/dbo <  0 by the Im plicit Function Theorem  

[10] A nd finally, we can see from equation (2.6.3) th a t (ôô +  60 +  P* — 1) is positive. 

Therefore, we have that(cfF /dâô)' <  0, which means (ôô*, bo ) Is a  stable steady sta te , 

and  b o th  ôô and bo approach this steady s ta te  as t  0 0 .
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2 .6 .4  S tab ility  analysis for th e  boundary functions

Since in th is case the system  of differential equations was directly solvable, stability  

analysis is not necessary. Recall the solution of system  (2.6.5) and (2.6.6) is:

n o a (r)  =  IIo6(t ) =  0.

Therefore (0,0) is trivially a  stable steady sta te .

2.6 .5  D iscussion

Recall th a t  the only steady s ta te  for regular functions th a t had any physical signifi

cance was:

_ iho

w ith 6o given by (2.6.15) (w ith positive sign).

For sym m etric m em brane tran sp o rt (̂ 0 =  7  =  1) we have:

35(00) =  6^(00) =  - ( l + P ’) +  V ( ( l + P * ) ^  +  8 ) ,

T he following sequence of graphs shows th is result for various param eter values.
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Figure 8 . G raphs of a (t) and b( t )  for various values of (3 and 7 w ith e =  0.01, = 1,

and p® =  0.1. If the  value of or 7  is not specified it was set equal to  1.
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2.7 A nalysis o f C ase 6

For Case 6 we make the following substitution: to =  , 2  » We obtain,

da k ^q  a®, ,

db _  k ^ q  k ^  a^~
dt k i P^  k f  p®

Since the  ra te  constants are all of the  same order, their ratios are all of order 0 (1 ). 

We make th e  following substitutions:

1 1 ^ k2 k ^  kî
e p° p* ki  a® ’ k ^

We have:

dà 7  _ 1
ap,

(2.7.1)

— —q — up, dt  € €

db /?_ o  r _
d i  =

Recall th a t  q = I — a — b and p =  (a +  6 4- e -  1). We substitu te  these into (2.7.1) 

and get:

e d- — {7 d" û) ( l  — 5 — S), (2.7.2)

e M  +  ^ 0  = { p  + a b ) { l - a -  b). (2.7.3)

T he re-scaled initial conditions are: a(0) =  1, 6(0) =  0.

Below we om it the  tildes.
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2 .7 .1  T he leading order approxim ation: R egular functions  
for Case 6

Setting  € equal to  zero we get:

ô^ +  ^ = l .  (2.7.4)

Dividing (2.7.2) by (7 +  ôô), dividing (2.7.3) by (P +  abo), and taking the  difference 

of the  two equations we arrive at:

^  +“■>) -
It follows from (2.7.4) th a t

7  +

dâô dbo
dt dt

So, we simplify (2.7.5) to  obtain:

(
1 1 \  doo —do ocbo

+   == -rr = ——=: +
7 + ao p  +  aboJ dt 7  + ao P +  abo

/ I  1 \
Dividing bo th  sides by ( ----------- 1----------=  I and using a little algebra, we get:

\7  + ô̂  P +  aboJ ^

dâ^ —âôP +  0:760
dt 7 +  +  uq +  abo

T his can be w ritten stric tly  in term s of ôô since 6q =  1 — ôô:

dcLo —doP +  07(1 — Oo)
(2.7.6)

d t P -¥ do T  0(1 — do)

T his is a  separable O D E w ith an im plicit solution and is solved sim ilar to  Case 1.

2.7 .2  T he leading order approxim ation: B oundary Functions  
for Case 6

Using the  standard procedure we write:
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— (7 +  ao(0) +  r io a )( l  — <2o(0 ) — ^o(O) — Iloa — Xloè),

■ — {P + abo(0) +  aIIo6)(l — ao(0) — 6o(0) — Iloa — Ilo6)-

Applying equation (2.7.4), we simplify th is to  obtain:

dlloa
dr — —(7 +  ao(0) +  IIoa)(rioa +  IÏ06), (2.7.7)

—̂ —  — —{0 +  o;6o(0) +  o;IIo6)(rioa 4- H06). (2.7.8)

Now we divide equation (2.7.7) by (7 +  o^(0) +  Iloa), divide equation (2.7.8) by 

{0 4- a6o(0) 4- aIIo6), and take the  difference:

r  1 ^  =  r  ^  (2 7 9)
V(7 +  ûïï(0) +  n o a )y  \  d r  J \ { 0  + abo{0) + aUob) J \  dr }  '  ̂ ’

Integrating bo th  sides, we get:

7  4- ao(0) 4- Iloa =  C i{0  4- 060(0) 4- o;IIo6). (2.7.10)

Initial conditions in the  leading order approxim ation are:

ao(0) 4“ Iloa(O) =  1

(2.7.11)

6o(0) 4 -no6(0) =  0.

7  4“ 1
Substitu ting  our in itial conditions (2.7.11) into equation (2.7.10), we find th a t Ci =  ———

As r  —»■ 00 the  Il-functions m ust go to  zero. Using the  fact th a t ôô(0) =  1 — 60(0) we 

can re-write (2.7.10) as r  —> 00 in th e  form:
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7 + 1 -  6o(0) =7 +1  + ^ ( 7  + l){bo{0)).

Factoring leads to,

o =  Q o ) ( i  +  ^ ( 7  +  i) )

Therefore 6o(0) =  0 and ôô(0) =  1 We can use this to  re-w rite (2.7.7) and (2.7.8) as:

dlloa
dr — (7 +  1 +  IIott)(Iloa +  IT0&), (2.7.12)

— —{P +  o:IIo6)(no<r +  II06). (2.7.13)

Dividing (2.7.12) by (2.7.13) and solving by separation of variables, we arrive a t the

relation:

7  +  1 +  Hon =  C 2 {P +  Alfob). (2.7.14)

Initial conditions for the  Il-functions in the  leading order approxim ation are:

Iloa(O) =  0,

(2.7.15)

no6(0) =  0.

Substitu ting  (2.7.15) in to  (2.7.14) we find C 2  =  •

Using the expression for C 2 in equation (2.7.14), and solving for Hob, we obtain:

Therefore:

- ( 7  +  1 +  noo)(noa  +  (2.7.17)
d r  a ( 7  + l)

Solving (2.7.17) by separation of variables yields:
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n  f 'i — ^ 3exp(—(7 +  1 +  /? /g ) r )(7 +  1) 
1 — Cg exp{—(7 +  1 +  (3/<y)T )

Using initial conditions (2.7.15) we see th a t  Iloa(r) =  0. Thus from (2.7.16) we have 

th a t  IIo6(r) =  0 as well.

2.7 .3  D iscussion

Looking a t equation (2.7.6) we see th a t if the  concentration of A  is kept large, i.e.,

ÔÔ is close to  one,

dcÏQ —j3 
dt 7  +  /3 +  r

T his m eans th a t, as the  concentration of A  increases w ithout bound, the ra te  of 

facilitated  diffusion tran sp o rt approaches a lim it.

Note th a t if we make the  assum ption th a t 7  =  /? =  o  =  1, we have: 

düQ —uq +  (1 — Uq) —2ÔQ +  1
dt 2 +  ÛQ +  (1 — Uq) 3

T his is a  linear ODE w ith solution:

=  <7 ■ exp(—2 t/3 ) +  1/ 2, which approaches 1/2 as i —> 00.

T his m eans th a t perm eant A  diffuses into and through the m em brane until half of 

the  perm eant is on the  in tracellular side of th e  membrane and the rem ainder stays 

outside the  cell. A t th is po in t equilibrium  is reached. This is illustrated  in the figures 

below.
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Figure 9. G raphs of a(t) and b( t )  for various values of (3 and 7 w ith e =  0.01, =  1,

and =  0.1. If the value of jd or 7  is no t specified it was set equal to  1.
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2.8 A nalyzing th e  sim plified  m odels

We sum m arize our findings in the following tables. In tables 2.8.1 and 2.8.6 we 

present the reduced equations describing the  ra te  of change of A and B depending 

on the  current concentrations of A and B. In  tables 2.8.2 through 2.8.5 we present 

approxim ate solutions for cases 2-5.

2.8.1 Sum m ary o f  Case 1

L arge Sm all P a ra m eters A b so rb tio n  o f  P erm ea n t A

J ^2 Initially fast absorption, 

then  m oderate absorbtion

E q u ation s:
dôô * f  7^0 —
dt

dbp
dt

P* IV jb o

dâ^
dt

2.8 .2  Sum m ary o f  Case 2

L arge Sm all P a ra m eters A b sorb tion  o f  P erm ean t A

Arf, A;+ B =
k^ aP ’ k i aP

Nearly instantaneous absorption, 

through the  membrane.

E q u ation s:

Uo ~  0,

bo =  1 .
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2 ,8 .3  Sum m ary o f  Case 3

L arge Sm all P aram eters A b so rb tio n  o f  P erm ean t A

k t ,  k ï ^2 ) ^2 Initially fast absorption, 

then  m oderate absorption.

E q u ation s:
_ 1 -  (p* + 7 + + \/(p* + 7 +  -  1)̂  + 4 7 ( 1  + (/?7)~̂ )

2 +  2 (/?7 )- i
ao

— _  1 -  (p* +  7 +  /? 1) +  y j {p*  +  7  +  /?-! -  1)2 +  47(1 +  (/?7)“ 0

2 +  2 ( M

2 .8 .4  Sum m ary o f  Case 4

L arge Sm all P aram eters A b sorb tion  o f  P erm ea n t A

t r , k t , I -
L ittle to  no absorption

E q uations:

ÔÔ — 1,

60 =  0 .

2.8 .5  Sum m ary o f  Case 5

L arge Sm all P a ra m eters A b so rb tio n  o f  P erm ea n t A

k t , ^2 k t ,  k ^
k t a" k t

/ ) =  Ï -  . T =  I -A/1 /V̂
Slow absorption.

E q u ation s:

60 =
-(7 +  /?(! +  IP* -  7 )) +  V (7  +  /)(! +  IP* -  l ) Y  +  4^ (7  ̂+  7 /̂ )

2/?(7 +  /))

60 =
- ( 7  +  /? (! +  7P* -  7 )) +  \ / ( 7  +  /? (!  +  IP *  -  i W  +  4 /)(7^  +  7 /^)

2(72 +  7 /?)
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2.8 .6  Sum m ary o f  C ase 6

R a te  C o n s ta n ts P a r a m e te r s A b s o rb tio n  o f  P e rm e a n t  A

all m oderate
k t a o ' ' ’' -  k t

M oderate absorption.

E q u ation s:
dâ^ _  —â^fS + a'jbo
dt 'y + /? + do + 0 6 0

dbo _  (W  
dt dt
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