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Abstract

Casady, Lucas A. M.Sc., May 2004 Mathematics

Asymptotic Reductions of a Model Describing Facilitated Diffusion in
Membrane Transport

Supervisor: Leonid V. Kalachev | &

Many nutrients that a cell needs are large and composed of lipid-insoluble molecules.
These do not easily cross cell walls. In order to transport these large hydrophilic
permeants, cells have specialized membrane-embedded proteins called carriers that by
a conformational change, transport a specific permeant from one side of the membrane
to the other. This mechanism is called facilitated diffusion.

In this thesis we will study the mechanisms of facilitated diffusion from a math-
ematical perspective. The goal of our study is to produce various asymptotically
reduced models describing facilitated diffusion transport across membranes under
various possible physiological conditions. These simplified models can later be used
for parameter identification using experimental data. Also, such simplified models
may be included as parts of more complex heterogeneous pharmacokinetics models.

il
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Chapter 1

Introduction

Drugs come in all shapes and sizes, both physically and chemically. The way drugs
are administered and absorbed varies as well (orally, rectally, pulmonarially, intra-
venously, etc.). However, regardless of how a drug is taken or what the drug is, all
drugs follow the same life cycle. The drug must first be absorbed into the blood
stream, distributed throughout the body by the blood, received and used at the site
of action (a very small percentage of the administered drug), and/or excreted. [1,2]
Despite the same life cycle, drugs interact with cells and their membranes differ-
ently depending upon their molecular size, structure, and solubility. Initially almost
all drugs are absorbed into the blood stream and are then distributed around the
body in the water phase of the blood plasma. Since the entire blood volume cir-
culates throughout the body in approximately one minute, the drug is distributed
throughout the circulatory system relatively quickly. Approximately sixty percent
of a person’s total body weight is composed of water, 8.5 pereent of which is blood.
That leaves 51.5 percent of the total body weight being composed of water that is
in the body tissues. Most drugs are readily transferred from the blood to the body

fluid. If the structure of the drug molecules is such that they can penetrate the cells,
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then they are absorbed into the cells as well [1,3].

Generally speaking, drug molecules can be classified into three categories. First
are the molecules that do not diffuse from the blood into the body fluids. These
molecules bind to proteins contained in the blood. After binding to the protein the
molecule is too big to freely diffuse out of the bloodstream. Second are lipid-insoluble
molecules. These molecules diffuse out of the bloodstream readily, but are not quickly
absorbed into the cells. Cellular membranes are composed of a wall of fat molecules
called phospholipids. The exterior and interior of the cellular membrane is made up
of a densely packed layer of protein heads. The inside of the membrane is comprised

of lipid chains that resemble tails attached to the protein head. (See Figure 1.) [1,4,5]

Figure 1. Model of the cell membrane. The surface of the membrane is made up of a densely
packed layer of protein heads. The interior part of the membrane is comprised of lipid chains

attached to the proteins. The large structures are large protein molecules [1).
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Since the cellular walls are made up primarily of lipids, lipid-insoluble molecules
do not readily diffuse across the membrane wall. The third type of drug molecules
are those that are either lipid-soluble, or are so small that they pass through the tiny
gaps (about 8 angstroms in diameter) in the membrane walls. In this thesis we are
going to concern ourselves with the second type of drug molecules [1,5,6].

Many nutrients that a cell needs are large and composed of lipid-insoluble molecules.
These do not easily cross cell walls. In order to transport these large hydrophilic per-
meants, cells have specialized membrane-embedded proteins called carriers that by a
conformational change, transport a specific permeant from one side of the membrane
to the other. This mechanism is called facilitated diffusion [3,7].

In this thesis we will study the mechanisms of facilitated diffusion from a math-
ematical perspective. The goal of our study is to produce various asymptotically
reduced models describing facilitated diffusion transport across membranes under
various possible physiological conditions. These simplified models can later be used
for parameter identification using experimental data. Also, such simplified models

may be included as parts of more complex heterogeneous pharmacokinetics models.

1.1 Model mechanism of facilitated diffusion trans-
port

The driving force of a permeant A across a membrane is either its own electrochemical
gradient, or that of another permeant, which is competing with A for -the protein-
carrier. In some cases this may lead to counter-transport. If the driving concentration
gradient goes to zero transport stops [7].

On the membrane surface the permeant molecule binds to the carriers at the
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binding sites. The permeant-carrier complex goes through a conformational change
and releases the permeant on the other side of the membrane. At this point the
carrier is either “loaded” by a molecule of permeant B and reverses the process, or it
is “loaded” by a resetting chemical such as potassium which is transported outside of
the cell and released. The carrier may cross the membrane and return to the outside

of the membrane surface empty|8].

During our analysis we will use the following notation:

e A represents the permeant on the outside of the cell;
e B represents the permeant on the inside of the cell;

e ( represents the resetting-chemical on the outside of the cell;

F represents the resetting-chemical on the inside of the cell;

e P represents the protein-carrier:
P, is the protein-carrier on the “A-side” of the membrane and,;

P, is the protein-carrier on the “B-side” of the membrane;

(2 represents the permeant-carrier complex:
@, is the AP, complex and

Q- is the BP, complex;

@z is the GP, complex and

Q4 is the F P, complex;
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e a b, g, f, ;, P2, @1, g2 Tepresent the concentrations of A, B, G, F, P, P, (),

and (2, respectively;

e ki and ki represent the rate constants for the production of AP, and BP;

complexes, respectively;

e ki and k; represent the disassociation rate constants of the AP, and the BFP,

complexes, respectively;

e ki and k; represent the rates of the conformational changes of the loaded

carriers;
e ki and k] represent the constant rates at which the carriers are reset;

e kb and kJ represent the rate constants for the production of FP; and GP,

complexes, respectively;

e k. and kg represent the disassociation rate constants of the F'P, and the GP

complexes, respectively.

The above notation as well as schematic representation of facilitated diffusion
transport model are illustrated in Figure 2.

In this figure the sequential stages consisting of the carrier loading and reloading
processes are shown in detail. In stage I the protein-carrier picks up the permeant,
leading to stage II. From stage II to stage III the complex reorients to release the
permeant on the inside of the cell. In stage IV the protein-carrier picks up the
resetting-chemical. From stage V to stage VI the complex reorients to release the

resetting-chemical to the outside of the cell and the process repeats. Any of these
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stages can be reversed by changes in the concentration gradient or by numerous other

counter-transport mechanisms.

T

Key:

@ Permeant coming inte the membrane from the outside

Permeant leaving the membrane to the inside

@ Resetting chemical coming into the membrane from the
inside

@ Resetting chemical leaving the membrane to the outside

.Protein—Carrier

Figure 2. Diagram of Facilitated Diffusion Transport Mechanism [8].
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1.2 Asymptotic Approximation Techniques

1.2.1 Asymptotic Approximation Algorithm

For mathematical analysis of the facilitated diffusion process we employ asymptotic
approximation techniques [9]. We present an outline of the algorithm below.

Before proceeding, we should take a moment to rationalize this asymptotic ap-
proximation approach. When designing a mathematical model for any natural process
or phenomenon one must weigh the pros and cons of a complex model against those
of a more simple model. One tries to find the best balance between the two. The
model must be complex enough to capture the dominant features of the process, yet
simple enough to be accessible to the analytic and numeric methods available. For
this reason, a good mathematical model is not going to model the physical reality
perfectly, but adequately.

Imagine that we have a choice of two different models, one more complex but
slightly more accurate than the other. We say that the more complex model, or
extended model, is perturbed, and a simpler model is unperturbed. The difference
between the two is that the perturbed one, compared to the unperturbed model,
contains additional terms depending on usually small numerical parameters. By set-
ting these parameters to zero we get the corresponding unperturbed model from the
perturbed one. The perturbations can be categorized into two groups: regular per-
turbations and singular perturbations.

Consider tw'o hypothetical models:

model Aq : Lou = fy,

model A, : Lou + eLiyu = fo + €f;.

Here fo and f; are known functions, € is a small positive scalar parameter, u is
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the unknown function, and Ly and L; are general operators. Ag represents the simple
unperturbed model and A, represents the extended model. The terms ¢L,u and €f,
represent perturbations. We will denote the solution of Ag by ug(t) and the solution

of A, by u.(t). Solutions are defined in domain D.

The problem A, is called regularly perturbed in a domain D if

sup ||ue(t) — up(t)|| — 0 as e — 0.
D

Otherwise, the problem A, is called singularly perturbed.

In this thesis we will use the Euclidean Norm.

In general, problem A, is not solvable directly. We will consider a function U(¢, €)
defined in a subdomain D; of D. In particular cases, D; might coincide with D.

The function U(t,€) is called an asymptotic approximation of the solution wu.(t)

with respect to the parameter € in the subdomain D, if

sup ||u(t) — U(t,€)|]| — 0 as e — 0.
Dy

Moreover, if sup ||ue(t) — U(t, €)|| = O(€*), then we say that U(t, €) is the asymptotic
approximatior? 1of uc(t) in D, to within accuracy of order €.

Note: The notation a(e) = O(e*) means that there exists numbers c, ¢g > 0 such
that for 0 < ¢ < ¢ the inequality ||a(e)|| < ce holds.

The asymptotic method is a method of constructing an asymptotic approxima-

tion U(t, ¢) for the solution u.(t) of problem A.. The advantage of this approach is

8
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that often the construction of U(t) is easier than the construction of u.(t), i.e., the
problems that comprise U,(t) are simpler than the original problem for A..
In our case we will be able to formulate our model in terms of differential equations.

Let us consider a general example:

d
ed—;‘ = F(u,t,€). (1.2.1)
In each of the cases below we will construct uniform asymptotic approximation
in D; = D =[0,T}], T fixed, of the solution to the original problem in the form of a
truncated power series in the powers of e:
du dllu

€E+T = F(t,e) + IIF(7,¢€). (1.2.2)

Here T = t/e is a stretched variable,

F(t,e) = Fo(t) + eFy(t) + ... + FFr(t) + ... (1.2.3)

is the regular part of the expansion and,

NF(r,€) = HoF(1) + eIl F(T) + ... + " TI F(7) + ... (1.2.4)

is the boundary layer part. In what follows, we assume that IL,F(r) — 0 as
T — 00. This will guarantee that the boundary functions only play a role near the
initial point. We then expand all the terms in power series in powers of ¢, and equate
coefficients multiplying like powers of ¢ separately for the regular and boundary

layer functions.
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In this thesis we will construct series in the powers of ¢,

> €(Filt, ) + ILF(r,€)), (1.2.5)
i=0

such that the kth partial sum (truncated series),

k
U(t,e) = Y €(Filt,e) + ILF(7,€)), (1.2.6)

i=0

will give the asymptotic approximation to the solution u.(¢) within an accuracy of
order €*! in domain D;. Ui(t,€) is then called the asymptotic series for the function
uc(t) (or the asymptotic expansion for u.(t)) in the domain D; as ¢ — 0. For most
applications and for most of the cases studied below we will be interested only in the

leading order approximation.

1.2.2 Conditions of the Asymptotic Approximation Algorithm

Let us formulate one of the central theorems of asymptotic analysis for an ODE

system used in pharmacokinetic modeling [9]:

du dv
— —_— I < t < T . -
€ F(u,v,t), T flu,v,t), 0Lt<LT, (1.2.7)
u(0,¢) = u®,  ©v(0,¢) =~ (1.2.8)

We assume that the functions F(u,v,t) and f(u,v,t) are continuous together with
their derivatives with respect to © and v in some domain

G = {llull <a || <a,0<t<T}.

10
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Condition 1:

Let F(@,7,t) = 0 have an isolated root with respect to G : u(t) = $(v(t),t),
(@(t),t) € D = {||7|| £ a,0 <t < T}, and suppose that the corresponding

reduced problem has a unique solution in the interval 0 <t < T.

System (1.2.7) has an associated system:

d_ﬁ
EdT

By virtue of Condition 1, @ = ¢(v,t) is a steady state of system (1.2.7).

= F(&,v,t), 7 > 0. (1.2.9)

Condition 2:

Let the steady state i = ¢(v,t) of the associated system be asymptotically

stable in the sense of Lyapunov, uniformly in (v,t) € D as 7 — oo [11].

This means that for any € > 0, there exists a 6 = d(¢) > 0 such that if

|2(0) — (v, t)|| < & then ||a{7) — @(v,t)}} < € for 7 > 0, and also & — ¢(v,t) when

T — OQ.

Several roots of the equation F(u,v,t) = 0 might satisfy Condition 2. However

we want a solution @(7) that approaches the steady state. Therefore we stipulate

condition 3:

Condition 3:

Let the solution u(T) of the problem for 4 witht = 0 exist for T > 0 and

tend to the steady state $(v°,0) as 7 — 0o0. This means that u® belongs to

the domain of attraction of the steady state ¢(v°,0).

11
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Tikhonov’s Theorem

Under Conditions 1-3 and for sufficiently small e, the original perturbed
problem has a unique solutions u(t, €), v(t,€) such that the following lim-

iting equalities hold:

lim._ov(t,e) =7(t) for 0 <t < T,

lim,_ ou(t,e) =u(t) for 0 <t <T.

These equalities show that in the limit the solution (¢, €), v(t, €¢) of the original
problem tend to the solution of the reduced problem. Transition to the limit for v
takes place for all £ in the interval 0 < t < T. Moreover this limiting process is
uniform. Transition to the limit for u takes place for any ¢t except ¢ = 0. The limiting
process for u will be uniform outside some small é-vicinity of the initial point. The
subinterval [0, §], where the fast change of the solution u(¢, €) from the initial value
to values close to %(t) takes place, is called the boundary layer.

Thus T(t) will be the asymptotic approximation to v(t, €) in the interval 0 <t < T,
and =(t) will be the asymptotic approximation to u(t,¢) for § < ¢ < T, where § is
asymptotically small. Possible behavior of the solution u(t, €} for various values of
for some specific singularly perturbed ODE problem can be seen in Figure 3 below.

We will use this and related results for our analysis in this thesis [9).

12
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Figure 3. Comparison of the leading order asymptotic approximation with the nu-

merical solutions of the singularly perturbed problem for various values of epsilon.
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Chapter 2

Analysis of a simplified model

2.1 Formulation of the model

We start with the model that does not take into account possible asymmetry of
the protein-carrier resetting process (see assumptions below), and focus just on the

transport process of the permeant from the outside to the inside of the cell.

We make the following simplifying assumptions on the “resetting” process:
e a’>p°

e P and () cannot leave the membrane, and complex formation and disassociation

only occurs at the membrane wall,

o kf =k; = kf > ki and k¥ (note: since kj = k; = ki, wehave Q; = Q, = Q,
and P, = P, = P, so we assume instantaneous equilibrium redistribution of free
and occupied protein carrier sites between the “inside” and “outside” boundaries

of the membrane.).

14
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Note: The third simplifying assumption that the conformational change is instan-
taneous is not a physically realistic assumption. In fact is has been shown experimen-
tally that this conformational change is rate limiting. Nevertheless, these simplifying
assumptions will provide us with a perspective from which to more simply draw some
physically significant results. These results will then be able to be included as parts

of more complex and realistic heterogeneous pharmacokinetics models.

We discuss the experimental setup for which the volumes on both sides of the
membrane are the same and the initial conditions are chosen to satisfy: a(0) =
a’,5(0) = 0,p(0) = p%¢q(0) = 0. With these assumptions we get the following

reaction scheme representing the model:

kt ks
—_— —_—
A+P Q P+ B,
f— —
ki kg

where A is the permeant, P is the carrier, Q is the permeant/carrier complex, and B
is the permeant on the intracellular side of the membrane.
We will address the following cases:

e Case 1: The first forward reaction and the second forward reaction are both
fast (k¥ and ki are large) and both reverse reactions are moderate (k7 and k5

are moderate),

e Case 2: The first forward reaction and the second reverse reaction are both fast
(ki and k5 are large) and the first reverse reaction and second forward reaction

are moderate (ki and kj are moderate),

15
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e Case 3: The first forward and first reverse reactions are both fast (ki and ky
are large) and the second forward and second reverse reactions are moderate

(k3 and k; are moderate),

e Case 4: The first reverse and second forward reactions are both fast (ki and k3
are large) and the first forward and second reverse reactions are both moderate

(kf and k; are moderate),

e Case 5: The second forward and second reverse reactions are fast (k3 and k;
are large) and the first forward and first reverse reactions are moderate (k; and

ki are moderate),

e Case 6: All the reaction rates are moderate and p°/a° is small.

Using the Law of Mass Action we write the system of differential equations for con-

centrations of the species:

Z_‘t‘ — kg - ktap, (2.1.1)

% — kyq — kibp, (21.2)

5;1; = kyq—kiap+kyq— kibp= %+%, (2.1.3)

% = —(kyq—kifap+kyq— k3bp) = — (%% + %) = -%- (2.1.4)
16
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Equations (2.1.3) and (2.1.4) can be re-written as follows:

de db dp
'&‘E'{‘E{—E—O, (2.1.5)
da db dq
Zrata =" (2.1.6)

Solving (2.1.5), we get: a + b + p =const.

Using initial conditions, we get that the constant is a® — p®. This gives us:

p=a+b+p’—a (2.1.7)

Solving (2.1.6), we get: a + b+ g =const.

Using initial conditions, we get that the constant is a®. Thus,

g=a’—a—b. (2.1.8)

Since p and q are expressed in terms of a and b we only need to analyze equations

(2.1.1) and (2.1.2), where p is given by equation (2.1.7) and q is given by (2.1.8).

17
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2.2 Analysis of Case 1

We start with Case 1, assuming that the first forward (k}) and second forward (k7)

reactions are both fast, and the other two reactions are moderate.

2.2.1 Re-scaling the equations

In (2.1.1) and (2.1.2) we make the following substitutions: a = Gao; b = bby; t =

tto; P = Ppo; q = Ggo. We obtain:

aopda - -
tz 7 = ki 90d — K aopodp,
bodb _

%}E = kz doq — k; bopobp.

Multiplying by tg and dividing the first equation by ag and the second equation by

bo, we get:
da k;tho . -
= =275 — kttopod ,
di o q 1 toPoap
db kI qoto -
—_— = 2 % Oq - k;topobp
d bo

Let us choose ag = by = pg = go = a®. Then,

da —y - ~
Eli,: = kl toq — kftoapao,
b _ . z
d—i. = kg toq - k;tobpao.

Since the first forward (k) and the second forward (kJ) reactions are both fast, and

the other two reactions are slow, we can make the following choice of characteristic

18
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. 1
time scale: tg = = We now have:

A
Et: =q— Ea ap,
db ~ o
L R
dt kj k;

Finally, we introduce the following substitutions:

1k k¥ k¥ ks
== éao; % = z%ao =5 = é; B = 7&:%’ 0 < € < 1 is a small parameter.
We get:
da
— — €§ = —ap, 2.2.1
er —ed=—ap (2.2.1)
db .
€5 efq = —bp. (2.2.2)

Re-scaling equations (2.1.7) and (2.1.8) gives us:

—~ po
G=1-—(a+b). (2.2.4)

Substituting equations (2.2.3) and (2.2.4) into (2.2.1) and (2.2.2), we obtain:

da . - pY
N L e(1—a-b) =—ala P
€ e(l—a—b) a@a+b+ 0 ),
db . - g
ed—i—e,@(l——a-—b)=—'yb(a+b+ga—1).
19
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The re-scaled initial conditions are: @(0) = 1, and 5(0) = 0.

To simplify notation we drop the tildes and substitute p* for p°/a®:

d
qg-eu—ambyz—qa+b+f—4x (2.2.5)
db )

€~ ef(l—a—b)=—vybla+b+p* —1). (2.2.6)

2.2.2 The leading order approximation: Regular functions

Setting € equal to zero, we get:
@y +by=1-—p" (2.2.7)

If we divide (2.2.5) by @g and (2.2.6) by vb and take the difference of the two equations

in the leading order approximation, we get:

ldag (1—ag—by) 1 dby B(1-—75—bo)

— = — - - — . 2.2.8
7 dt @ Vo dt 7 by (2:2:8)
d db
Differentiating equation (2.2.7), we obtain (—i% =-=-

Thus, we can simplify (2.2.8) to:

1 1\ dag — (1 ﬁ)
— 4+ =) —=(1- —b - - = ).
(66 ’Ybo) dt ( % = bo) ao  vbo

1 1
Dividing both sides by (: + T) and re-arranging terms, we get:
o  Y0o

20
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ddg by —
220 p (1-9_——-@) (2.2.9)
dt +bo + ag
We can write (2.2.9) strictly in terms of @g since by = 1 — p* — @g:
dan 1—p*—ag(1+ 8
290 _ pr __0( }’) . (2.2.10)
dt 1—p* — (1 - 1)

This is a separable ODE, and its implicit solution is:

1B+ _ B+t +C)
(v=1)(B+~) v-1

do + In(@ (8 +v) +v(@" — 1))(

In order to find C; we need an initial condition for @y, which we will find during

construction of the boundary functions.

2.2.3 The leading order approximation: Boundary functions

For the boundary functions Ifpa and Ilpb from (2.2.5) and (2.2.6) we have:

Aot _ _ (@5(0) + Thoa)(@(0) + Toa + Bo(0) + Tlob ~ (75(0) +55(0))),
b (0) + o) @0) + Mo + o0) + o — (a5(0) + o(0)))

Simplifying these, we get:

Aot _ _(25(0) + Hoa)(Ioa + Tb), 2211)
dg:b = —7(bo(0) + TIpb)(ITpa + Mob). (2.2.12)
21
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After dividing both sides of (2.2.11) by (@g(0) + IIga) and both sides of (2.2.12) by
v(bo(0) + TIpb), and taking the difference, we get:

Y dllpa 1 dIlgb

(@(0) + Moa) dr  (bo(0) + Mpb) d7

Integrating and taking exponents of both sides yields:

b0(0) + Iob = C2(@5(0) + pa)”. (2.2.13)
Initial conditions in the leading order approximation are:
&3(0) + Hoa(O) =],

Bo(0) + Tob(0) = 0.

Substituting the initial conditions into (2.2.13) and solving for C, we get: Cy = 0.

Substituting this back into (2.2.13), we get:

bo(0) + Mb(7) = 0. (2.2.14)

As 7T — oo the [Ty term in (2.2.14) will vanish. This means that b(0) must be zero, and
hence, from equation (2.2.14) we obtain that IIpb(7) = 0. Since @5(0) + bo(0) = 1 —p*
and by(0) = 0, we know

3(0) =1-p". (2.2.15)

Thus,

[Ipa(0) = p*. (2.2.16)

22
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Substituting (2.2.15) back into (2.2.11) we get:

dilpa N
d: = —Ilpa(l — p* + Iha).
. . . Ipa (=7)_(1—p*
Separation of variables yields: = (3 - el"Mel-P"),
HQG, - p* +1

Using initial condition (2.2.16) we find that C3 = p*e? ~!. Thus, we have:

e~ T(]1 — p*
Hoa(r) = 2 f__(p*e_f ). (2.2.17)

We can see that the boundary functions go to zero as 7 — oo.

2.2.4 The regular functions’ constant of integration

Since we now know the initial condition (2.2.15) for @g, we can find C} in the leading

order regular function expression:

C = ((é:_p))g[ = 1)(B+ ) — (B + D[n(B(1 - p*))]I.

So, the implicit solution to the leading order regular function @y is:

@ + In(@(8 +v) +v(p* — 1)) (2(9; — 11))%: }Y))AY

(2.2.18)

(B+ 1)y
=B +7)

el Gt DI In(5(1 —p))).

2.2.5 Discussion

The concentration of permeant A is modeled, in the leading order approximation, by

the sum @g(t) + IMoa(7), defined by (2.2.18) and (2.2.17). If the concentration of A is

23
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large, i.e., as @g — 1,

day D+ 0
—-—)

dt pp*fy——l'

This means that, as the concentration of A increases without bound, the rate of
trans-membrane transport approaches a limit. Note that if we make the assumption
that v = # = 1 (the membrane transport is perfectly symmetric), then we have:

dag P - p*ag
_— 1____ *_2 — *_ .
dt (l—p*)( P %) =P 21-*19*

This is a linear ODE and its solution is:

* *

1-p
2

as t — oo. This

ao(t) = Cexp (— 2P

1 — *
t) + ———i, which approaches
1-—p* 2

means that permeant A diffuses into and through the membrane until equilibrium is

reached. The equilibrium concentrations of A and B are the same:

A

1—p
5
This process is illustrated in Figure 4.

0(00) = bo(c0) =

24
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Figure 4. Graphs of a(t) and b(t) for various values of 5 and v with ¢ = 0.01, a°® = 1,

and p® = 0.1. If the value of 3 or 7 is not specified it was set equal to 1.
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2.3 Analysis of Case 2

For Case 2, where (ki) and (k;) are large, we make the following substitution:
1

to = —.
0 P
Now we perform the same analysis as before and check how the model behavior

changes. Going back to equations (2.1.1) and (2.1.2) and making the above substitu-

tion for tg we get:

da . ki ..
a ! k;aap’
i ~ +
PR
i k1K

Introducing parameters:

1k ks ki
LB Bk B
e Kk € ki ky
we get
da - 5
€E—= — £ = - s
ai q Y

(2.3.1)
db -
— bp = fA4.
€= + evbp B4

We recall that § = 1 —& — b and p = (@ + b+ p* — 1), and substitute these into (2.3.1)

to obtain:
e% —e(l—a—b)=—a(@a+b+p—1), (2.3.2)
db S, . 3
ea—-t:+evb(a+b+p -1)=p(1—-a-0b). (2.3.3)

26
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The re-scaled initial conditions are: a(0) =1, b(0) = 0.

We will omit the tildes in what follows in order to simplify notation.

2.3.1 The leading order approximation: Regular functions
for Case 2

Setting € equal to zero we obtain:
0 = —ag(ag + bo + p* — 1), and
0= (1 - — bo).

Solving these together we get @g(t) = 0, and

ao(t) + bo(t) = 1, (2.3.4)
so bo(t) = 1.
Next, we calculate the first order approximation of the regular functions.

2.3.2 The first order approximation: Regular functions for
Case 2

Collecting the regular terms of first order in € from equations (2.3.2) and (2.3.3) we

get:
d_ 1 T —f— T *
—di;—l-!-a_o-l*bo: —ao(ar — b1) — a1(@ + bo +p* — 1), (2.3.5)
dby —,_ = J—
ﬁ + ’Ybo(ao + b() +p - 1) = —ﬁ(al + bl) (236)
27
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5 _

Since @ = 0 and by = 1, we know that — = = 0, and therefore from equations

dt ~ dt
(2.3.5) and (2.3.6) we obtain @; = 0 and b; = :.g_ﬂ’..,

2.3.3 The leading order approximation: Boundary Functions
for Case 2

Using the standard procedure, we have:

dl;:a = —(do(0) + Moa)(ao(0) + Moa + b(0) + Meb +p* — 1)  (2.3.7)
= —Hpa(p* + Hoa + [ph),
PP _ 51— (@0(0) + Toa) — (5o(0) + Tob)) = —G(Toa + Tob).  (2.3.8)

dr

Initial conditions for the boundary functions in the leading order are

Moa(0) = 1 — @5(0) = 1, (2.3.9)

Meb(0) = —be(0) = —1. (2.3.10)

The steady state of system (2.3.7), (2.3.8) is (0,0), and det[J(0,0) — AI] = 0 yields

eigenvalues:

(p"+B)+ (p*+ 8 —4pB

Ajo= —
1,2 2

Since the eigenvalues are real, distinct, and less than zero (due to the fact that p* and
B are positive) the steady state is a stable node. Therefore the boundary functions

approach zero as 7 — oc.

28
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2.3.4 Discussion

Since dag/dt = da;/dt = 0 with @g(0) = @;(0) = 0 and the steady state (0,0) for the
boundary functions is a stable node, we conclude that permeant A is absorbed into

and through the membrane at a fast rate. This is clearly seen in Figure 5 below.

14 ” v . r 1<t .
—4 a(t) o Teeeeeeeee—eee-e - a(t) [$
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Figure 5. Graphs of a(t) and b(t) for various values of § and v with € =.0.01, a® = 1,

and p® = 0.1. If the value of 3 or v is not specified it was set equal to 1.
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2.4 Analysis of Case 3

For Case 3, where (k) and (k]) are large, we make the following substitution:

t—l
0—k2_-

Now we perform the same analysis as before and check how the model behavior

changes. Going back to equations (2.1.1) and (2.1.2) and making the above substitu-

tion for to, we get:

da ki. kb ..

TR
d?; -~ k; 01 ~
— =G—-2a%
a ! kz‘ap

Introducing parameters:

L O L R o
e ky e ky’ ky
we arrive at:
6d& s s
T Yq yi8
(2.4.1)

db . -
Zﬁ_q Bbp.

We recall that § =1 —ad — b and $ = (@ + b+ p* — 1). Substituting these into (2.4.1),

we obtain:
ei;% =y(l—a—b)—a(@a+b+p —1), (2.4.2)
db N
£:1—-a,-b—ﬁb(a+b+p —1). (2.4.3)

-~

The re-scaled initial conditions are: a(0) =1, b(0) =0.
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We omit the tildes in what follows in order to simplify notation.

2.4.1 The leading order approximation: Regular functions
for Case 3

Setting € equal to zero in (2.4.2), we get:

(1 — @ — bo) = @(@ + bo + p* — 1). (2.4.4)

Solving this for ag, we obtain,

(1—(7+p*+b_o))ﬂ:\/(1—-7~p*—5)2-47(53—1)
5 .

ag =

(2.4.5)

We can substitute (2.4.5) into (2.4.3) to get an equation in terms of by only. To find
the correct sign in (2.4.5) we need to first discuss the boundary functions. Once we

find the right sign, we will analyze the long term behavior of the regular functions.

2.4.2 The leading order approximation: Boundary Functions
for Case 3

Using the standard asymptotic procedure we arrive at:

dﬂoa
dr

= (1 — (@(0) + Moa) — (bo(0) + Teb)) (2.4.6)

—  (@(0) + Moa)(@(0) + Moa + bo(0) + Meb + p* — 1),

dllgh
dr

0. (2.4.7)

Initial conditions in the leading order are:
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a5(0) + Mya(0) = 1, (2.4.8)

bo(0) + Ieb(0) = 0. (2.4.9)
Clearly ITob(7) = const. Since IIyb — 0 as 7 — o0, the constant is zero and, therefore,
bo(0) = 0. Thus, (2.4.6) becomes:

dg:a = 7(1 — (@(0) + Mpa)) — (@o(0) + Moa)(@o(0) + Moa + p* — 1),  (2.4.10)

From (2.4.4) we have ¥(1 — @5(0)) = @5(0)(@o(0) + p* — 1). Using this we simplify

(2.4.10) to:
dllpa - 2 *
= —vIlpa — 2a5{0)IIpa — (Ilpa)* — Hpa(p* — 1), (2.4.11)
1—~—p* T—v—p )2 +4
with @g(0) = (I-y-p)+ \/; it adihs 7 Note that since we want @p(0) >0

(concentrations are non-negative), we choose the positive sign in (2.4.5).

2.4.3 Stability analysis for the regular functions

Solving (2.4.4) for by yields

(A-a)—a@+p —1)

— _ 7
= 2.4.12
b s (24.12)
Substituting (2.4.4) into equation (2.4.3), we can write:
dby . — Go .
- (@ +bo +p" — 1)(7 ~ Bbo) = F (@, bo)- (2.4.13)

The equilibrium points of equation (2.4.13), if they exist, must belong to null-clines,

bo =1 —ag - p*, (2.4.14)
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bo = — (2.4.15)
as well as the null-cline given by (2.4.12).

By setting (2.4.12) equal to (2.4.14) we can see that these null-clines do not cross,
(since when we solve for @ag we get that p* = 0 which is not possible). Therefore we

have no meaningful steady states belonging to (2.4.14).

Setting (2.4.12) equal to (2.4.15) and solving for @ we get:

__ 1= +y+ )£V +y+ 87 - 1)2+ 4y(1 4 (81)7))
° 2 +2(Bv)! '

(2.4.16)

Since we are only interested in Gg in the first quadrant, we choose the positive sign

in (2.4.16). We denote this unique steady state by (a_o*,b_o*).

Taking the derivative of the right hand side of equation (2.4.13) with respect to b,

we get:
7@ = (1) (5-08) + e -0 (S -0)
dbo(o(o) 0) (dbo ~ Bbo (@ o TP )'deo ¢
For stability we need g—E—F_(EE*, B ) < 0.
0 _
Since at the steady state by = %, the first product in the right-hand-side is zero.
We argue that % < 0 by the Implicit Function Theorem [10] as follows. Let us
0

re-write the implicit function representation (2.4.4) as
G(ag, bo) = @(@g + bo +p* — 1) +v(@ + bo — 1) = 0.
Invoking the Implicit Function Theorem,

dic _ 0G/0by o +

= — = - — <0.
dbo  0G/dag  2ag+bo+pt—1+7
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And finally, we can see from equation (2.4.4) that
— dF —
(@ + bo + p* — 1) is positive. Therefore, we have that — < 0, which means (ag*, by )

0
is a stable steady state, and both @g and by approach this steady state as t — oo.

2.4.4 Stability analysis for the boundary functions
The steady states for the system (2.4.6) and (2.4.7) are:

(Ilga™, gb*); = (0,0) and

(Tlga*, Tgb) = (1 — 7 = p* — 25(0), 0).

Since the abscissa of (ITga*, IIgb*), is negative we are not interested in that steady
state. Therefore the only physically viable steady state is (0,0).

We calculate,:

(dﬂoa) (ITga™, IIph*); = 1 — v — p* — 2ap(0).

dr
Q—y-p)+VOI-v—p)P+4y
2 b

!
) (Ilpa™, I1gb*); < 0. Therefore (0,0) is a stable steady state.

Since @(0) =

dﬂoa
dr

we see that (

2.4.5 Discussion

Recall that the only steady state for regular functions that had any physical signifi-

cance was:

with @ given by (2.4.16) with positive sign.

For symmetric membrane transport (3 = v = 1) we have:

a5(00) = Bafoo) = —FH D+ \/4((1)* +1)°+8)
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The following sequence of graphs illustrate this result for various parameter values.
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Figure 6. Graphs of a(t) and b(t) for various values of 8 and v with € = 0.01, a® = 1,

and p® = 0.1. If the value of 3 or 7 is not specified it was set equal to 1.
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2.5 Analysis of Case 4

For Case 4, where (k]) and (kJ) are large, we make the following substitution:
1

to = —.
0 s
Once again, we go back to equations (2.1.1) and {2.1.2) and make the new substitution

for iy and get:
da ki . ki ..

&R
1T

Introducing new parameters as follows:

+ - +
LB I8, 5 Ky
e k; €k ks
we get:

da - -

e— + efap = q, (2.5.1)
dt
6db i = —bB
ai

Recall that § =1 —a — b and § = (@ + b+ p* — 1). We substitute these into (2.5.1)

and get:
e% +efa@+b+p —1)=7(1—-a-—b), (2.5.2)
db - S,
e-ﬂ*e(l—a—b) = —b(a+b+p* —1). (2.5.3)

The re-scaled initial conditions are: a(0) =1, b(0) = 0.

We omit the tildes now.
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2.5.1 The leading order approximation: Regular functions
for Case 4

Setting € equal to zero we get:
0= y(1—a — bo), and
0 = —bo(as + by + p* — 1).
Solving these together we get by = 0, and
Go+bo=1, (2.5.4)

so ag = 1.

Next we calculate the first order approximation of the regular functions.

2.5.2 The first order approximation: Regular functions for
Case 4

Collecting the regular terms of first order in € from equations (2.5.2) and (2.5.3) we

get:
ddg _ o
— + Baa(@ +bo +p* — 1) = (@ +b), (2.5.5)
dbo — =
-(,% -1+ ag + bo = -*bo((ll - bl) — bl(ao + b() +p - 1) (256)
Since @ = 1 and b, = 0, we know that (dag/dt) = (dbe/dt) = 0, and therefore from

equations (2.5.5) and (2.5.6) we obtain b; = 0 and @y = —gp .
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2.5.3 The leading order approximation: Boundary Functions
for Case 4

Using the standard procedure, we have:

dHoa
dr

= "}’(1 — ((1_0(0) + Hoa) had (Hoa + Hob)) = —’)’(Hoa + Hob), (257)

dIlgh
dr

= —(bo(0) + IMob)(do(0) + Moa + bo(0) + Mpb +p* —1)  (2.5.8)

= —Ileb(Ilga + Heb + p*).
Our boundary function initial conditions in the leading order are

Ioa(0) = 0, (2.5.9)

Tob(0) = 0. (2.5.10)

The analysis of this case is similar to that of Case 2. As in Case 2, the steady state

of system (2.5.7), (2.5.8) is (0,0) and det[J(0,0) — A\I] = 0 yields eigenvalues:

_ =+ Ve +7)’ - dpty

)‘1,2 9

Since the eigenvalues are real, distinct, and less than zero (because p* and v are
positive) the steady state is a stable node. Therefore the boundary functions, obtained

as solutions of (2.5.7)-(2.5.10), are identically zero.

2.5.4 Discussion

Since dag/dt = da;/dt = 0 with ay(0) = 1, @;(0) = —8p*/7, and the steady state

(0,0) for the boundary functions is a stable node, we conclude that the concentration
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This means that A is not absorbed into and

transported through the membrane. This is illustrated in the graphs below.

of permeant A4 changes very little.
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Figure 7. Graphs of a(t) and b(t) for various values of 8 and v with € = 0.01, a® =1,

and p® = 0.1. If the value of 3 or v is not specified it was set equal to 1.
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2.6 Analysis of Case 5

For Case 5, where (k) and (k) are large, we make the following substitution:

1
t()z—

ki’

Now we perform the same analysis as before and check how the model behavior
changes. Going back to equations (2.1.1) and (2.1.2) and making the above substitu-

tion for to, we get:

da _ kT ..
b _ ks K
dt k;q kT

Making substitutions:

.1___]?21- 1_§ 0. 'gzkf 0
€

Tk e kO B
we get:
da  _ s
—= =q — pap,
ik pgap
db .
E—= == - b~

We recall that § =1 —da — b and § = (@ + b+ p* — 1). We substitute these in the

above system and get:

53%:1—&—8-—;3&(&+5+p*—1), (2.6.1)
db N
eﬁzl—a—b——'yb(a+b+p —1). (2.6.2)

The re-scaled initial conditions are: a(0) =1, b(0) = 0.
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In what follows we simplify notation by omitting the tildes.

2.6.1 The leading order approximation: Regular functions
for Case 5

Setting € equal to zero in (2.6.2) we get:
vbo(@ +bo +p* — 1) =1 — a5 — bo. (2.6.3)

Solving this for by, we obtain:

ro (@4 - -DEVO@+p - D)+ 1) - @ - 1)

bo = 5 (2.6.4)

We can substitute (2.6.4) into (2.6.1) to get an equation in terms of @ only. To find
the correct sign in (2.6.4) we need to first discuss the boundary functions. Once we

find the right sign, we will analyze the long term behavior of the regular functions.

2.6.2 The leading order approximation: Boundary Functions
for Case 5

Using the standard procedure for the leading order boundary functions, we obtain:

Mos _, (2.6.5)
dr
A 1 (@(0) + Tioa) — (Bo(0) + Tloh) (266

— (Bo(0) + ob)(@a(0) + Moa + by(0) + Iob + p* — 1).
The initial conditions in the leading order approximation are:
ao(0) + Ipa(0) =1, (2.6.7)
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bo(0) + Ieb(0) = 0. (2.6.8)
Clearly Ilpa = const. Since Ilga — 0 as 7 — 00, const = 0 and therefore, ag(0) = 1.
Thus (2.6.6) becomes:

dg,f = —(Bo(0) + TIgb) — 1(B5(0) + Teb) (Bo(0) + Tob + p°). (2.6.9)

From (2.6.3) we have vbo(0)(bo(0) + p*) = —bo(0). Using this we simplify (2.6.9):

dIlpb
dr

with bo(0) = ~(yp* + 1) or by(0) = 0. Since we need bo(0) > 0, we choose by(0) = 0.

= —Tlob — 2vbo(0)Tob — ~v(Ilob)* — YIIobp*, (2.6.10)

Then,
dlleb
dr
Separation of variables yields:

== -—ngb - ")/Hob(ngb + p*).

b
YIgb + vp* + 1
It follows from bg(0) = 0 and the initial conditions in (2.6.8) that IIob(0) = 0. Thus,

= const - el el )

we obtain that [Iob(7) = 0.

2.6.3 Stability analysis for the regular functions

Solving (2.6.3) for ag yields,

ag=1-Dby (1 + P __) . (2.6.11)
1+ vbo

Substituting equation (2.6.3) into equation (2.6.1), we can write:

d———_— T 3 o
% = (@ + bo + p" — 1)(vbo — fag) = F(@v, bo). (2.6.12)
42
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The equilibrium points of equation (2.6.12), if they exist, must belong to null-clines,

Go=1—by — p, (2.6.13)
— b
@G = % (2.6.14)

as well as to the null-cline given by (2.6.11).

By setting (2.6.11) equal to (2.6.13), we can see that these null-clines do not cross
(since when we solve for by we get p* = 0 which is not possible). Therefore we have
no meaningful steady states belonging to (2.6.13).

Setting (2.6.11) equal to (2.6.14) and solving for by we get:

= _ —(+ B0 +p" =) £ V(v + B +p* — 1) +48(Y +1B)

bo = e (2.6.15)

Since only non-negative concentrations are possible, we choose the positive sign in
(2.6.15). We denote this unique steady state by (@g*,bo ).
Taking the derivative of the right hand side of equation (2.6.12) in with respect

to ap, we get:

N R VY
E(“O@O)Jo)**(ﬁ"‘l) (vbo — Bag) + (G5 +bo +p* — 1) (’Yda_o /3)-

For stability we need 3——%(&6*, E*) < 0.

Since @5 = (vbo)/B, the first product in the right-hand-side is zero.

Similar to Case 3 we may show that dag/dby < 0 By the Implicit Function Theorem
[10] And finally, we can see from equation (2.6.3) that (@ + b + p* — 1) is positive.
Therefore, we have that(dF/dag)’ < 0, which means (ag*, _BE*) is a stable steady state,

and both @ and by approach this steady state as t — oo.
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2.6.4 Stability analysis for the boundary functions

Since in this case the system of differential equations was directly solvable, stability

analysis is not necessary. Recall the solution of system (2.6.5) and (2.6.6) is:
Ioa(r) = eb(7) = 0.
Therefore (0,0) is trivially a stable steady state.

2.6.5 Discussion

Recall that the only steady state for regular functions that had any physical signifi-

cance was:

5o
_h

with by given by (2.6.15) (with positive sign).

For symmetric membrane transport (3 = v = 1) we have:

The following sequence of graphs shows this result for various parameter values.
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Figure 8. Graphs of a(t) and b(t) for various values of 3 and v with ¢ = 0.01, a® = 1,

and p® = 0.1. If the value of 8 or - is not specified it was set equal to 1.
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2.7 Analysis of Case 6

1

For Case 6 we make the following substitution: ¢ty = PR
1 P

> We obtain,

+,0°
kia

da  kyg a°
i kipo po’P

Since the rate constants are all of the same order, their ratios are all of order O(1).

We make the following substitutions:

1@ 1 4,k K. _k
e p° p ' kfa® ' K ”y—ki"ao'
We have:
da Y. lcT
PP R £
(2.7.1)
db 8. a;._
A

Recall that g=1—a —b and p = (@ + b + ¢ — 1). We substitute these into (2.7.1)

and get:
da _ . ~ 3
€ (_c—i? + a) =(y+a)(l—a-b), (2.7.2)
€ (%2:+a5) = (84 ab)(1 —a—b). (2.7.3)

The re-scaled initial conditions are: &(0) =1, 5(0) = 0.

Below we omit the tildes.
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2.7.1 The leading order approximation: Regular functions
for Case 6

Setting € equal to zero we get:

@ + by = 1. (2.7.4)

Dividing (2.7.2) by (v + @g), dividing (2.7.3) by (8 + abp), and taking the difference

of the two equations we arrive at:

. (da—ﬂr)— ! (d—b_o-i-ab_) (2.7.5)
Yy+a \ dt  °)  B+ab \ dt o] -
dag dbo

.7.4) that — = ——.
It follows from (2.7.4) that — dt

So, we simplify (2.7.5) to obtain:

(1 . )da—o_—aa+ abo
Y+@ B+ab/ dt y+d  B+ab

1 1
Dividing both sides by ( __) and using a little algebra, we get:

—_
Y+ ao B+ abg

dag _  —aof +avbo
dt  y+fB+a+ab

This can be written strictly in terms of @g since by = 1 — Ggp:

dig _ —aof + ay(l —ag)
dt y+B+a+a(l—dag)

(2.7.6)

This is a separable ODE with an implicit solution and is solved similar to Case 1.

2.7.2 The leading order approximation: Boundary Functions
for Case 6

Using the standard procedure we write:
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dHOa
dr

dIlgb
dr

= (v + @5(0) + Moa)(1 — (0} — bo(0) — Moa — Ioh),

= (8 + abo(0) + allgh) (1 — @p(0) — by(0) — Tpa — Tph).

Applying equation (2.7.4), we simplify this to obtain:

dIl

d:“ = —(v + @(0) + Mya)(Iea + Mob), (2.7.7)
dllob _

—— = = (B + abo(0) + alleb)(Tloa + Mob). (2.7.8)

Now we divide equation (2.7.7) by (v + @o(0) + Ipa), divide equation (2.7.8) by
(B + abp(0) + allgh), and take the difference:

((’r +a'o'(3) + Hoa)) (dg:b) - ((ﬂ + aEE(;) n aHob)) (dg:b) - (279)

Integrating both sides, we get:

v+ @5(0) + Iga = C1(B + aby(0) + allyb). (2.7.10)
Initial conditions in the leading order approximation are:

@o(0) + Ipa(0) = 1
(2.7.11)
bo(0) + Ipb(0) = 0.

v+1

Substituting our initial conditions (2.7.11) into equation (2.7.10), we find that C; = 5

As 7 — 0o the II-functions must go to zero. Using the fact that @5(0) = 1 — bo(0) we

can re-write (2.7.10) as 7 — oo in the form:
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YH+1-B(0) =v+1+ %m 1)(Bo(0)).

Factoring leads to,

— «
0 = bo(0)(1 + E('r +1))
Therefore by(0) = 0 and @5(0) = 1. We can use this to re-write (2.7.7) and (2.7.8) as:
dIl
d;_’“ = —(7 + 1 + Moa)(Ioa + Igb), (2.7.12)
dllgb
d: = —(B + allph)(ITea + Iob). (2.7.13)

Dividing (2.7.12) by (2.7.13) and solving by separation of variables, we arrive at the

relation:

v+ 1+ Ilpa = Cy(B + allph). (2.7.14)

Initial conditions for the II-functions in the leading order approximation are:

oa(0) = 0,
(2.7.15)
IIeb(0) = 0.
7+1

Substituting (2.7.15) into (2.7.14) we find C, = 5

Using the expression for C, in equation (2.7.14), and solving for IIgh, we obtain:

6 /B ﬂﬂga
= —— IIya) — — = ————z, 2.7.16
g a(7+1)(7+1+ o) « = ot D ( )
Therefore:
dllpa _ GBllya
g = ~(r+1+Toa)(Toa+ —7=5). (2.7.17)

Solving (2.7.17) by separation of variables yields:
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Czexp(—(y+ 1+ B/a)THy +1)

Toa(r) = =G exn((y ¥ T 5/a)r)

Using initial conditions (2.7.15) we see that Ilpa(7) = 0. Thus from (2.7.16) we have
that IIpb(7) = 0 as well.

2.7.3 Discussion

Looking at equation (2.7.6) we see that if the concentration of A is kept large, i.e.,

@g is close to one,

dag -0
é .
dt 7Y+ B8+1

This means that, as the concentration of A increases without bound, the rate of

facilitated diffusion transport approaches a limit.

Note that if we make the assumption that vy = § = a = 1, we have:

dig  —apg+(1—a)  —2ag+1
dt 2+a,+(1—ag) 3

This is a linear ODE with solution:
ao = C - exp(—2t/3) + 1/2, which approaches 1/2 as t — oo.

This means that permeant A diffuses into and through the membrane until half of
the permeant is on the intracellular side of the membrane and the remainder stays
outside the cell. At this point equilibrium is reached. This is illustrated in the figures

below.
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Figure 9. Graphs of a(t) and b(t) for various values of 3 and vy with € = 0.01, a® = 1,

and p° = 0.1. If the value of 3 or 7 is not specified it was set equal to 1.
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2.8 Analyzing the simplified models

We summarize our findings in the following tables. In tables 2.8.1 and 2.8.6 we
present the reduced equations describing the rate of change of A and B depending
on the current concentrations of A and B. In tables 2.8.2 through 2.8.5 we present

approximate solutions for cases 2-5.

2.8.1 Summary of Case 1
Large | Small Parameters | Absorbtion of Permeant A
= F
K kI ki, ks | B= %2:, v = % Initially fast absorption,
1 1
then moderate absorbtion
Equations:
dﬁ —_ p* (f}’bO - /366 )
dt Yoo+ o /'
dbo _ _dao
dt —  dt’

2.8.2 Summary of Case 2

Large | Small Parameters Absorbtion of Permeant A
= ¥
ki, ks L ki, ki | 8= k—ﬁ%a, v = k}?af' Nearly instantaneous absorption,
1 1
through the membrane.
Equations:
ap =0,
by = 1.
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2.8.3 Summary of Case 3

Large | Small Parameters Absorbtion of Permeant A
_ k3 a® ki
kf, ki | kS, ks | B="2— = +1 Initially fast absorption,
k3 ki a®
then moderate absorption.

Equations:
g L@ Ay B+ Hy+ B - 1P+ (1 (B)7)
2+ 2(8v)! ’
g il e 0 s Vit +r+ 812+ 4y(1+ (By)7H)
2+ 2(87) '
2.8.4 Summary of Case 4
Large | Small Parameters Absorbtion of Permeant A
_ _ ki a® kT _ ]
ki, ki |kt ks | B= = 7= T o0 Little to no absorption
Equations:
ap = 1,
by = 0.

2.8.5 Summary of Case 5

Large | Small Parameters Absorbtion of Permeant A

_ _ kfa’ kra’
k;-v kZ ki!-x k2 /6= IIC]_ y Y= ’265

Slow absorption.

Equations: :
= _ —( B8 +9p" =) +Vr + B+ 7p* — 7))* +45(7° + 1)
’ 260y + B) ’
=~ B0 +9p" =) + V(v + B+ 99" —7))* + 46(* +76)
’ 2047 +7B)
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2.8.6 Summary of Case 6

Rate Constants Parameters Absorbtion of Permeant A
ko kT kr
all moderate =_—2_ y=_-1_ 5="2 Moderate absorption.
P=e '~ o ki P
Equations:
dag _  —aof + avbo

dt ~ y+fB+a5+aby

dby _ _d
dt —  dt’
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