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Ecology and Persistence of Sylvatic Plague in Phillips County, Montana 

A bstract

Epizootic plague occurred among populations o f black-tailed prairie dogs {Cynomys 
ludovicianus) in Phillips County, Montana from 1992 to 2001. During this time, some 
colonies were completely or nearly extirpated by the disease while others were apparently 
unaffected. I evaluated differences in small mammal and flea communities associated 
with prairie dog colonies with a history of plague, colonies with no history o f plague, and 
“off-colony” sites where plague history was unknown. I also screened blood samples 
from small mammals for ,evidence of antibody to Yersinia pestis, the etiologic agent of 
plague, and screened fleas for the presence o f Y. pestis and Bartonella spp. Small 
mammal species composition was essentially identical between colonies with and without 
a history o f plague. Deer mice (Peromyscus maniculatus) were the most abundant small 
mammal found throughout the study area and occurred in higher numbers on prairie dog 
colonies with no history of plague ttian at colonies with a history of plague. Flea burdens 
on prairie dogs were higher at colonies with no history of plague and flea burdens on deer 
mice were higher on prairie dog colonies (regardless o f plague history) than at off-colony 
sites. Coarse-scale habitat association was important in determining flea burdens on deer 
mice. No blood samples or fleas were positive for Y, pestis but a small number of fleas 
(1.4% of flea pools tested) taken from deer mice, coyotes (Canis latrans), and a black
tailed prairie dog were Bartonella-positive. It appears that Y. pestis infection is rare or 
absent in the small mammal populations sampled and that infection does not persist in 
small mammals at prairie dog colonies that have previously been affected by epizootics. 
There is no evidence that Bartonella spp. are pathogenic to wildlife, but Bartonella 
infection was found at several prairie dog colonies where there is currently a population 
o f endangered black-footed ferrets {Mustela nigripes), warranting further investigation 
into the possible effects o f this organism on ferrets and their main prey base, prairie dogs.
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INTRODUCTION

The important and complex role that pathogens play in the ecology and 

conservation o f wildlife populations has been the subject o f several recent reviews (e.g. 

Daszak et al. 2000; Deem et al. 2001; Cleaveland et al. 2002). O f particular interest are 

those diseases that pose a threat to the persistence o f sensitive, threatened, or endangered 

species (Thome and Williams 1988; McCallum and Dobson 1995). Pathogens can affect 

host populations either directly, through mortality of individuals, or indirectly by a 

variety o f mechanisms such as reducing fecundity or altering predator avoidance 

behavior. However, while many of the most noteworthy pathogens and parasites of wild 

animals may lead to death o f the individual, host mortality as the end result o f infection is 

probably the exception rather than the rule (Yuill 1987). Basic epidemiological theory 

suggests that host-pathogen coevolution will lead to moderate levels of pathogen 

virulence in a manner than maximizes transmission potential. A highly virulent pathogen 

that infects a host and causes mortality before that host becomes capable of transmission 

will generally be selected against. Therefore, direct mortality o f the host should only 

occur when host mortality facilitates pathogen transmission or when the pathogen is a 

generalist, capable of infecting a variety of host species (Yuill 1987; Aguirre and Starkey 

1994).

One notable exception to the host-pathogen coevolution model involves 

introduced pathogens, which often cause high mortality in naïve host populations. Two 

classic examples o f introduced diseases causing high mortality in wildlife populations are 

rinderpest in African ungulates and avian malaria in Hawaiian land birds. Rinderpest 

caused the death o f millions o f domestic and wild ungulates in Africa at the end of the
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19* century and is considered to be responsible for altering the distribution o f many large 

herbivores on the African continent (Scott 1981). Introduced avian malaria was likely 

involved in the decline and extinction o f some native Hawaiian avifauna in historic times 

and continues to negatively impact bird populations in the Hawaiian Islands today (van 

Riper et al. 1986). Another disease that has been widely introduced and is now of 

conservation concern for many species of mammals is plague.

The etiologic agent o f plague is Yersinia pestis, a Gram-negative coccobacillus of 

the family Enterobacteriaceae that is transmitted by the bite o f infected fleas 

(Siphonaptera) (Perry and Fetherston 1997). Transmission of Y. pestis can also, less 

commonly, be accomplished by direct contact with the blood o f infected animals, 

inhalation o f infected respiratory droplets, or through consumption o f infected animal 

tissues. Plague is a zoonotic disease, one that is maintained in wild populations of 

animals, with humans acting only as incidental hosts (Perry and Fetherston 1997). In 

nature, Y. pestis continuously circulates among hosts and primarily affects wild rodents, 

although many other groups of wild and commensal mammals have been shown to 

harbor infection (Barnes 1982).

Y. pestis likely evolved in Asia and has since been successfully introduced onto 

all continents except Antarctica and Australia. In North America, the presence of Y. 

pestis was first identified '-'1900, arriving in Pacific Coast ports via infected rats {Rattus 

sp.) on ships from Asia (Eskey and Haas 1940). By 1908 the disease had spread to native 

wild rodents outside San Francisco, California (Wherry 1908) and subsequently 

underwent a rapid range expansion into the interior West, where by -1950 the range o f 

plague in the United States covered 15 states (Bames 1993). Since then the range o f the



disease in the United States has remained relatively stable, today encompassing most 

areas west o f the 100^ meridian (Cully et al. 2000).

In North America, concern over plague has centered around its effects on prairie 

dogs (Cynomys spp.), which are uniformly susceptible to the disease (Cully and Williams 

2001). Prairie dogs are burrowing rodents that occupy short- and mixed-grass prairie 

habitats o f the Great Plains and intermountain basins in western North America. Several 

authors contend that prairie dogs play a keystone role in prairie ecosystem processes by 

altering grassland habitat structure through their burrowing activity and by providing 

critical food and shelter resources to a suite o f associated species (Kotliar et al. 1999; 

Miller et al. 2000). Although once abundant, prairie dogs now inhabit only a fraction of 

their historic range. O f the five species of prairie dogs in North America, two are 

currently listed as either threatened (the Utah prairie dog, C. parvidens) or endangered 

(the Mexican prairie dog, C. mexicanus) under the Endangered Species Act (Miller and 

Cully 2001). The United States Fish and Wildlife Service [USFWS] recently reviewed a 

petition to list the black-tailed prairie dog (C. ludovicianus) as threatened and found that 

threatened status was warranted but precluded by higher priority actions (USFWS 2000). 

In this finding they identified plague as the greatest threat to the long-term persistence of 

black-tailed prairie dogs.

This study was initiated in response to several years o f epizootic plague activity 

among populations o f the black-tailed prairie dog in Phillips County, Montana. Phillips 

County contains the most extensive populations of prairie dogs in the state and is also a 

réintroduction site for the endangered black-footed ferret (Mustela nigripes)^ an obligate 

associate o f prairie dogs. Two other species o f conservation concern that occur in



association with prairie dogs in Phillips County are the burrowing owl {Athene 

cunicularid) and mountain plover {Charadrius montanus). Wildlife managers have few 

tools with which to manage or mitigate the effects of plague on prairie dogs. The 

purpose o f this study was to gain a better understanding of what species are involved in 

plague ecology in this region and how infection is maintained between periods of 

epizootic activity among prairie dogs.
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Chapter 1. Comparison of Small Mammal and Flea Communities at Sites 

With and Without a History of Sylvatic Plague in Phillips County, Montana.

Abstract. I compared small mammal and flea commimities between prairie dog colonies 
with a history o f plague, prairie dog colonies with no known history of plague, and “off- 
colony” sites where plague history was unknown. I also evaluated the effect o f host sex, 
host age, collection year, plague history, and habitat on flea loads of small mammals. 
Small mammal species composition was essentially identical at colonies with and without 
a history o f plague, but all the same species (except for prairie dogs) and several 
additional species were captured off colonies in a variety of habitats. Deer mice were 
least abundant at sites with a history of plague during both years o f the study. Only deer 
mice and prairie dogs were captured in sufficient numbers for analyses o f flea loads. Flea 
loads were significantly higher on prairie dogs from colonies with no history of plague 
and flea loads on deer mice were higher on prairie dog colonies (regardless of plague 
history) than at off-colony sites. Site plague history and coarse-scale habitat association 
appeared to be the most significant factors influencing prevalence o f flea loads on deer 
mice, the most abundant small mammal host in the study area. Patterns of flea 
abundance and small mammal species composition suggest that areas of diverse habitat 
associated with the Missouri River corridor may be most suitable for the persistence of 
plague in southern Phillips County.

Introduction

Yersinia pestis, the etiologic agent o f plague, is unique in its ability to infect such 

a great diversity o f host species, essentially any mammal, although rodents are considered 

to be of primary importance in plague epizootiology. In general, the sylvatic (wild 

animal) cycle o f Y. pestis infection is characterized by relatively stable periods of activity 

where it circulates at low levels within the enzootic or “maintenance” host community, 

followed by explosive epizootics involving one or more species o f epizootic or 

“amplifying” host that often experience high mortality (Poland and Bames 1979). 

Epizootic host mortality effectively “amplifies” the disease by creating a surplus of 

infected, host-seeking fleas in the environment. In western North America, these 

epizootic hosts include species o f prairie dogs (Cynomys), ground squirrels 

(Spermophilus), woodrats (Neotoma), and chipmunks (Tamias) (Bames 1993). Plague-



associated die-offs among prairie dogs can be particularly dramatic, with mortality often 

approaching 100% in colonies of Gunnison’s (C. gunnisoni) and black-tailed (C  

ludovicianus) prairie dogs. The high degree o f sociality and high population densities 

seen in prairie dogs leads to frequent contact between individuals, facilitating flea 

exchange and pathogen transmission (Cully and Williams 2001). This exacerbates the 

inherently high susceptibility to plague characteristic of these species. Several studies 

have confirmed the amplifying role played by prairie dogs, as Y. pe^/w-positive fleas 

and/or sera from sympatric hosts are often only taken during and immediately after an 

epizootic among prairie dogs (see Bames 1993; Cully et al. 1997)

Fleas show considerable heterogeneity in the role they play in the maintenance 

and transmission o f the disease. However, while only about 30 species of flea are proven 

plague vectors, all should be considered biologically able to transmit the bacterium under 

the right conditions. Following a blood meal from a host o f sufficient bacteremia, the 

bacteria multiply in the stomach of the flea and within a few days may completely block 

the proventriculus (foregut), inhibiting successful subsequent feeding attempts. As the 

flea attempts to feed, ingested blood enters the proventriculus but is then regurgitated, 

along with a quantity o f bacteria, as a result o f the blockage. In this way a new host may 

be inoculated with the plague bacterium (Perry and Fetherston 1997). Furthermore, 

largely because Y. pestis-mÏQciQd fleas have been recovered from rodent burrows many 

months after an epizootic, several authors (Olsen 1981; Bames 1982; Cully and Williams

2001) have acknowledged that fleas probably also play an active role in the maintenance 

o f plague, in addition to their role as a vector.



Bames (1993) and Piesman and Gage (2000) listed several aspects o f flea ecology 

that are important to the maintenance and transmission o f Y. pestis in a natural setting. 

Among other factors they cited flea density/abundance and degree of host-specificity as 

important. The degree of host-specificity exhibited by fleas varies by taxa and 

circumstance. While some fleas are generalist in their host preferences, most show some 

proclivity for one species or a group o f biologically or ecologically related species of 

hosts (Thomas 1988; Lewis 1998). For example, it is not uncommon for prairie dogs to 

carry fleas that are typical parasites o f ground squirrels o f the genus Spermophilus, the 

closest extant relative of prairie dogs (Pizzimenti 1975) that occupy a similar ecological 

niche. Flea host-specificity often breaks down in the absence o f a living preferred host, 

facilitating interspecific exchange of fleas which might otherwise not occur.

Because they suffer such high mortality as a result o f plague epizootics, prairie 

dogs serve as a very good “sentinel” for the presence of Y. pestis. Land managers in 

Phillips County have monitored and mapped prairie dog colonies since 1979 such that 

good data now exist on the location and year of plague epizootics there. The situation in 

Phillips County provides a unique opportunity to compare attributes of small mammal 

and flea communities between sites with and without a history o f plague, with the goal of 

identifying any differences that may predispose some areas to plague epizootics. Host 

associations of fleas in Montana were reviewed by Jellison and Senger (1973), however 

no quantitative studies o f this group have come from Montana and very few specimen 

records exist firom Phillips County. Given that plague has become such an important 

consideration in prairie dog management and conservation (Cully and Williams 2001) 

and Phillips County is the state’s stronghold for prairie dogs, an understanding o f host-



flea ecology here may aid in future management actions that aim to mitigate the negative 

effects o f plague on prairie dogs and associated species.

The specific objectives of this study were to 1) compare small mammal 

abundance and community composition between sites with a history of plague, sites with 

no history o f plague, and sites where plague history was unknown; 2) describe host-flea 

relationships in the study area; 3) compare prevalence and intensity o f flea burdens on 

hosts between the three types o f sites; and 4) evaluate the relative importance of several 

intrinsic (host sex, age class) and extrinsic (plague history, year, habitat) factors affecting 

flea loads. I also review the literature on flea collections from prairie dogs, focusing on 

interspecific exchange of fleas between associated mammals (potential reservoir hosts for 

Y. pestis) and prairie dogs. Results o f serologic tests for antibody against Y. pestis among 

my study populations and PCR analysis o f fleas for the presence of Y. pestis and 

Bartonella will be reported in Chapter 2.

Study Area

The study took place in southern Phillips County, Montana (Figure 1). Shrub and 

grassland habitats typical o f the northern Great Plains predominated, with major 

vegetation components being big sagebrush (Artemisia tridentata) and greasewood 

(Sarcobatus vermiculatus) in shrub-dominated areas and western wheatgrass (Agropyron 

smithii), blue grama (Bouteloua gracilis)^ needle-and-thread (Stipa comata), and green 

needlegrass (Stipa viridula) in the grasslands. Plains prickly pear (Opuntia polyacanthd) 

and fringed sagewort (Artemisia frigidd) were common herbaceous understory plants. In 

addition, the southern margin o f the county borders the Missouri River and consisted of 

forested ‘̂ breaks” topography with ponderosa pine (Pinus ponderosa), Douglas-fir
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Figure 1. The Study Area: southern Phillips County, Montana. Prairie dog colonies 
In red.

aMalta
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Figure 2. Locations of mamma! trapping grids in southern Phillips County, Montana. June -  August 2002 & 2003. Points 
in red were sampled in 2002 and 2003; points in green were sampled in 2003 only.

30 Kilo neters
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(Pseudotsuga menziesii), and Rocky Mountain juniper (Juniperus scopulorum). Stands 

o f plains cottonwood {Populus deltoïdes) and willows (Salix spp.) occurred on 

bottomlands adjacent to the river. Elevations o f study sites were between 740 and 

1,050m. The area was a mosaic of federal, state, and private land ownership and 

supported —300 active black-tailed prairie dog colonies. The majority o f study sites were 

located on the Charles M. Russell National Wildlife Refuge (CMR) with the remainder 

located on adjacent Bureau of Land Management (ELM) lands north of the refuge 

(Figure 2).

Materials and Methods -  Small Mammal Trapping

I identified three types of sites for study during June -  August 2002 and 2003: 1) 

sites with no known history of plague, 2) sites with a history of plague, and 3) sites where 

plague history was unknown. Sites with no known history of plague were prairie dog 

colonies that had been continually active since plague epizootics among prairie dogs were 

first observed in Phillips County in 1992. Sites with a history of plague were also prairie 

dog colonies and were identified through regular mapping efforts by CMR and ELM 

personnel such that the location and year of epizootics among prairie dogs were known. 

Plague epizootics occurred between 1992 and 2001 at sites included in this study. Some 

colonies with a history o f plague had natural recolonization o f prairie dogs subsequent to 

the epizootic, some received translocated prairie dogs in an effort to reestablish colonies 

by CMR personnel (see Dullum 2001), and some still had no prairie dogs present.

Finally, “off-colony” sites had no sentinel species such as the prairie dog to indicate 

whether plague had been present and thus plague history was essentially unknown. All
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off-colony sites were located >500m from the edge o f the nearest prairie dog colony and 

all sites were separated by >500m to insure independence.

While y. pestis has not been isolated from prairie dogs or their fleas in Phillips 

County, we (biologists working in Phillips County and I) are confident that die-offs 

attributed to plague were in fact plague epizootics for three reasons. First, all o f these 

colonies were protected from poisoning and all but three were protected from recreational 

shooting during the time when die-offs occurred. Shooting pressure on the remaining 

colonies was very low or absent. Second, no other disease has yet been identified that 

causes such high mortality in prairie dogs (Bames 1993). Third, antibody to Y. pestis has 

been consistently found in coyotes {Canis latrans) and badgers {Taxidea taxus) in the 

study area (R. Matchett, USFWS, unpublished data).

I chose sites non-randomly to satisfy conditions of plague history and to represent 

several different habitats in the study area. I sampled 36 sites in 2002 and 60 sites (36 

resampled from 2002 and 24 new) in 2003. Five sites sampled in 2002 and scheduled to 

be resampled in 2003 were treated with an insecticide, Delta Dust (.05% Deltamethrin), 

in June of 2003 (prior to sampling) to reduce flea populations as part of the black-footed 

ferret réintroduction program on CMR. All five sites were prairie dog colonies with no 

history of plague and the insecticide was applied into all prairie dog burrows at the 

treatment colonies at a quantity o f 4g/burrow. Flea collections from hosts at these five 

sites are reported in Table 2 but excluded from all statistical analyses.

Each study site consisted of a 10 x 10 grid of 100 Sherman live-traps (H.B. 

Sherman, Tallahassee, Florida) with 10m spacing and 20 Tomahawk live-traps 

(Tomahawk Live Trap Co., Tomahawk, Wisconsin) placed at prairie dog burrows on
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colony sites and systematically throughout the grid on off-colony sites. I baited Sherman 

traps with rolled oats and Tomahawk traps with a mixture o f com, oats, and barley.

Traps were open for four consecutive days and nights at each site. I determined species, 

sex, age (juvenile or adult), weight, and reproductive condition for each captured animal.

I marked all animals by clipping a small patch of fur from the back and then released 

them at the site o f capture following flea collection.

I report minimum small mammal population densities as the number o f animals 

per hectare and determined this by dividing the total number of unique individuals at a 

site by the effective trapping area of the grid. I estimated effective trapping area by 

adding to the actual area of the grid a boundary strip equal to one half the mean 

maximum distance moved by a species (Wilson and Anderson 1985). This approach 

provides only a relative measure o f density and figures reported should be interpreted as 

minimum population densities because capture probabilities were not estimated and are 

assumed to be <1.00 over the course of four trap-nights. I did not explicitly estimate 

population size o f small mammals at each site because capture rates were low enough at 

many sites to preclude a formal estimate from being made with traditional mark-recapture 

techniques. I also did not estimate densities for prairie dogs because Tomahawk traps 

intended for prairie dogs were placed at locations to maximize trap success (at active 

burrow entrances) rather than systematically. Trapping and handling protocols adhered 

to all pertinent guidelines established by the Animal Care and Use Committee (1998) of 

the American Society o f Mammalogists and were approved by the Institutional Animal 

Care and Use Committee at the University of Montana.
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Materials and Methods — Flea Collection and Identification

I collected fleas from hosts by brushing the animal with a commercially available 

flea comb over a white enamel pan. The entire body was combed as many times as 

needed until no more fleas were observed. I anesthetized most animals with isoflurane 

(“IsoFlo” Abbot Laboratories, North Chicago, Illinois or “IsoSol” Halocarbon 

Laboratories, River Edge, New Jersey) prior to flea collection to facilitate blood sampling 

as part o f the associated serologic survey. Fleas were either refrigerated or frozen in vials 

containing 2% NaCl solution with a small amount (<0.01%) o f Tween 80 until 

identifications could be made. I also sampled fleas from prairie dog burrows by attaching 

a square piece of white flannel cloth to the end of a flexible plumber’s snake. In this 

method, the cloth is extended as far into the burrow as possible, left for several seconds, 

and then retrieved. I placed burrow sampling cloths in plastic bags and froze them 

overnight to kill captured fleas; then I collected the fleas and placed them in vials as 

above. I classified burrows as either active or inactive based on the presence/absence of 

fresh digging and/or fresh droppings. The number of burrows sampled per colony was 

100 in 2002 and 50 in 2003, or as many as possible for very small or inactive colonies.

I consulted three different references when making flea identifications (Hubbard 

1947; Furman and Catts 1982; Holland 1985) and adopted current taxonomic revisions 

from Lewis (2000,2002). I preserved a male and female voucher specimen (when 

available) o f each species by clearing the flea in 10% KOH solution, dehydrating it, and 

mounting it in Canada balsam.
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Materials and Methods — Habitat Sampling

In 2003,1 quantified habitat attributes at each trapping grid by estimating percent 

cover o f bare ground, litter, woody debris, lichen, forb, cactus, grass, and shrub at 20 

randomly placed Ix lm quadrats. I estimated percent cover for each attribute as <5%, 5- 

25%, 25-50%, 50-75%, and 75-100%. I then calculated total percent cover for the site by 

averaging the mid-points o f the cover estimate for each quadrat (Daubenmire 1959). At 

sites with trees, I counted the number o f stems of each species within 5m of the center 

point o f the quadrat and converted counts to stems/ha. I also recorded dominant species 

o f shrub and tree at each quadrat.

Data Analysis

I compared small mammal minimum population densities between the three types 

of sites using a one-way ANOVA with Tukey pair-wise comparisons and between years 

using r-tests. The two basic measures I used to quantify parasite burdens on hosts were 

prevalence and intensity (Rozsa et al. 2000). Prevalence is simply the proportion of hosts 

carrying > 1 flea and intensity is the mean or median number o f fleas per infested host. I 

only used data collected from the first capture o f an individual animal in analyses. I also 

tested whether the observed frequency distribution o f flea burdens on hosts was 

significantly different from random by employing an index o f dispersion (Wilson et al.

2002): 7d = (s^/mean)(n-l), where s^/mean is the variance-to-mean ratio and n is the 

number of hosts examined. This index is then compared to the Chi-square distribution 

with (n-1) degrees of freedom.

I used chi-squared tests to compare prevalence o f flea parasitism on hosts between 

sites (i.e. plague, no plague, off-colony) and nonparametric Mann-Whitney and Kruskal-
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Wallis tests to compare flea load intensities on hosts between sites. I then incorporated 

site/plague history into logistic regression models to evaluate the relative importance of 

several factors as predictors of flea prevalence. All model parameters were categorical 

and included host sex, host age (juvenile or adult), sampling year, plague history, and 

region. I then used these same factors to test for differences in flea load intensity using 

the Mann-Whitney test. The “region” parameter arose from a relationship I observed in 

the 2002 data that suggested that flea loads may be higher in some parts o f the study area 

than others. Specifically, flea loads appeared to be higher at sites in the western portion 

o f the study area that were in close proximity to the more heterogeneous as well as more 

mesic habitats of the Missouri Breaks and river corridor. I used the presence of forested 

cover as an indicator of heterogeneous/mesic habitat (Figure 3) and these forested areas 

were usually associated with steep coulees interspersed with areas of shrub/grass- 

dominated habitat and eroded badlands, creating a dynamic habitat mosaic that stood in 

contrast to the more homogeneous character o f the eastern and northern “upland” study 

sites. The term “breaks” is used to describe the topographic and habitat features 

described here and will be used from here on in reference to sites associated with the 

forested/heterogeneous habitats therein. I chose a buffer distance o f 500m and identified 

sites within 500m of forested habitat as “breaks” sites and sites >500m from forested 

habitat as “upland” sites using remotely sensed land cover data (Fisher et al. 1998) and 

Arc View GIS v3.2 software.

Another useful metric o f flea burden is the total flea index (Gage 1999) which is 

the mean number of fleas per host examined and combines aspects of both prevalence 

and intensity. I used simple linear regression to test for a relationship between the total
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Figure 3. Location of mammal trapping grids in relation to areas of forested cover (green shading) in southern Phillips 
County, Montana. Sites colored red are prairie dog colonies with a history of plague, sites colored yellow are colonies with 
no history of plague, and off-colony sites are colored black.
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Table 1. Number and species of mammals captured in Phillips County, Montana. 
June -  August 2002 & 2003.

Species individuals Recaptures Total Captures
Black-tailed Prairie Dog 
(Cynomys ludovicianus)

Striped Skunk 
{Mephitis mephitis)

290 80

0

370

Prairie Vole 
{Microtus ochrogaster)

Unknown Vole*
{Microtus sp.)

Bushy-tailed Woodrat 
{Neotoma cinerea)

Northern Grasshopper Mouse 
{Onychomys teucogaster)

15

11

26

0

18

13

31

Olive-backed Pocket Mouse 
{Perognathus fasciatus)

Deer Mouse
{Peromyscus maniculatus)

13

1,057 1,178

19

2,235

Western Harvest Mouse 
{Reithrodontomys megaiotis)

Merriam's Shrew 
{Sorex merriami)

12

0

14

Desert Cottontail 
{Sylvilagus audubonii)

Least Chipmunk 
(Tamias minimus)

26

0

33

*Unconflrmed identification: either M, ochrogaster or M pennsylvanicus.
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flea index for sympatric populations of prairie dogs and associated small mammals and 

for a relationship between the total flea index for a host species and minimum population 

density. I only included sites at which >5 hosts were sampled. I performed all statistical 

analyses using SPSS vl 1.5 and tests were considered significant at p<.05.

Results

Sm all Mammals

A total o f 1,460 individual small mammals representing 11 species were captured 

throughout the study (Table 1). Deer mice {Peromyscus maniculatus) and black-tailed 

prairie dogs accounted for 92.3% of all captures and were the only two species caught in 

sufficient numbers for statistical analyses. Deer mice were captured at all sites except 

one, which was a wet meadow occupied by voles {Microtus sp.) and western harvest mice 

{Reithrodontomys megaiotis). However, these two species were sympatric with deer 

mice at other sites. Aside firom a prairie vole (M  ochrogaster) taken at one prairie dog 

colony with a history of plague, small mammal species composition at colonies with and 

without a history of plague were identical. Species found in association with prairie dogs 

included deer mice, northern grasshopper mice {Onychomys leucogaster), desert 

cottontails {Sylvilagus audubonii), and the one prairie vole. Although none were trapped 

as part o f this study, evidence o f northern pocket gopher {Thomomys talpoides) activity 

was present at colonies with and without a history o f plague, as well as at off-colony 

sites. The one specimen of Merriam’s shrew {Sorex merriami) is notable as it is only the 

tenth specimen known from Montana and the second from Phillips County (Foresman 

2001). This specimen was taken in a Sherman trap in habitat with 6-28% cover o f big 

sagebrush, 28-50% grass cover, 1-5% forb cover, and 21-39% bare ground. This is very
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Figure 4. Mean minimum density of deer mice {Peromyscus maniculatus) by year 
and site category in Phillips County, Montana. June -  August 2002 & 2003. Bars 
represent 95% confidence intervals.
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similar to the sagebrush-grass habitat jfrom which MacCracken et al. (1985) reported 

taking one S. merriami in Carter County, Montana.

Figure 4 shows means and 95% confidence intervals for minimum deer mouse 

density by site and year. In 2002 minimum densities were highest at off-colony sites 

( jc = 8.47 mice/ha) and lowest at plague sites { x -  4.20), although the differences 

between sites were not significant (F=2.93, p=.067). In 2003 minimum densities were 

significantly higher at off-colony ( 3c = 11.34) and no plague (3c = 14.16) sites than at 

plague sites (3c = 4.32; F=7.65, p<.010). Minimum densities were higher at all three 

types o f sites in 2003 than in 2002 and with all sites combined densities were 

significantly higher in 2003 (3c = 10.36) than in 2002 (3c = 6.69; r=2.53, p=.013).

20



Table 2. Host-flea associations in Phillips County, Montana. June - August 2002 & 2003.

^  ^  HfT7t Species 
Flea S p e c le s ^ ^ '"  ------------ ,

Cynomys
ludovicianus

Microtus
sp.

Neotoma
cinerea

Onychomys
leucogaster

Peromyscus
maniculatus

Reithrodontomys
megaiotis

Sylvilagus
audubonii

Tamias
minimus

Prairie Dog 
Burrow Total

Aetheca wagneri 
Amaradix euphorbi 

Callistopsyllus terinus 
Cediopsylla inaequalis 
Corrodopsylfa curvata 

Epitedia wenmanni 
Eumolpianus eumoipi 

Foxella ignota 
Malaraeus telchinus 

Orchopeas agilis 
Orchopeas leucopus 

Oropsylla hirsuta 
Oropsylla tuberculata 

Oropsylla sp.
Peromyscopsylla hesperomys 

Pleochaetis exilis 
Pulex simulans

4 9 22 1,168 3 2 12 1,220
4 4
7 7

28 28
1 1
3 1 4

1 1 1 3
8 1 9

2 3 91 96
81 81

40 14 1 55
219 148 367
73 41 114
2 2

2 20 94 1 117
1 1

890 159 1,049
Total 1,184 48 91 54 1,384 3 30 1 363 3,158
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Host-Flea Associations

A total o f 3,158 fleas representing 16 species were collected from eight species of 

host and prairie dog burrows (Table 2). No fleas were collected from olive-backed 

pocket mice {Perognathus fasciatus) or the one Merriam’s shrew, and collection was not 

attempted from the one striped skunk {Mephitis mephitis). The most abundant flea 

collected, Aetheca wagneri^ also had the widest host distribution, being collected from six 

host species as well as prairie dog burrows. Likewise, the most abundant host species 

examined, deer mice, harbored the greatest number of flea species (10). All were typical 

parasites of deer mice except for one specimen each o f Corrodopsylla curvata, a flea 

commonly found on shrews, Eumolpianus eumoipi, a chipmunk flea, and Foxella ignota, 

a pocket gopher flea. Northern grasshopper mice also carried F. ignota.

Three species o f flea were collected from prairie dogs: Oropsylla hirsuta, O. 

tuberculata, and Pulex simulans. These are common parasites of black-tailed prairie 

dogs throughout their range and were recovered only from prairie dogs and their burrows 

and not from any other host. In fact, there was no relationship between flea loads on 

sympatric populations o f deer mice and prairie dogs (r^=.027, p=.589; Appendix I), and 

no flea species were common to prairie dogs and any other host species, although some 

fleas typical o f other hosts were recovered from burrows. The number o f O. hirsuta 

collected from prairie dogs at colonies with a history o f plague was significantly more 

than expected (%^=203.13, p<.001) based on the overall distribution of the three species 

o f flea collected from prairie dogs. The majority o f fleas collected from prairie dogs at 

colonies with a history of plague (63.6%, 96/151) were O. hirsuta, whereas O. hirsuta
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Table 3. Number of hosts examined and total flea burdens on small mammals in
Phillips County, Montana. June — August 2002 & 2003.

Host Species n Prevalence(%) Range Median
Intensity

Mean SD*
Cynomys ludovicianus 216 75 0 - 5 4 6 8.29 833

Microtus sp. 21 67 0 - 1 1 2 3.36 2.98
Neotoma cinerea^ 4 100 7 - 4 3 21.5 23.25 18.98

Onychomys ieucogaster 24 75 0 - 1 1 2 306 2.73
Perognathus fasciatus 9 0 0 — - -

Peromyscus maniculatus 831 54 0 - 2 5 2 2.63 2.56
Reithrodontomys megaiotis 10 30 0 - 2 1 1.33 0.58

Sylvilagus audubonii 21 57 0 - 7 1 2.33 2.27
Tamias minimus 3 33 0 -1 1 1.00 -

Standard deviation
^Two individuals of this species had very high flea burdens (36 and 43 collected) and some fleas 
escaped during the collection process. Therefore, range and intensity figures presented are 
underestimates.

comprised only 11.9% (123/1,031) of fleas collected from prairie dogs at sites with no 

history o f plague (Appendix II). A summary of burrow sampling effort for each year of 

the study is given in Appendix III.

Flea Abundance

Prevalence, range, and intensity of flea burdens for hosts are reported in Table 3. 

Prevalence of flea parasitism ranged from 0% for olive-backed pocket mice to 100% for 

bushy-tailed woodrats (Neotoma cinerea). Woodrats also had the highest mean and 

median intensity of the hosts examined. Frequency distributions of flea loads are given 

for prairie dogs and deer mice in Figures 5 and 6, respectively. Both showed a highly 

aggregated distribution which was significantly different from random (p<.001). This 

type o f aggregation is typical of most macroparasite distributions (Wilson et al. 2002) and 

indicates that a minority of hosts carried the majority of the flea burden.
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Figure 5. Frequency distribution of flea loads for black-tailed prairie dogs
{Cynomys ludovicianus) in Phillips County, Montana. June -  August 2002 & 2003.
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Figure 6. Frequency distribution of flea loads for deer mice {Peromyscus 
maniculatus) in Phillips County, Montana. June — August 2002 & 2003.
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For prairie dogs, both prevalence (x^=20.96, p<.001) and intensity (C/=1360, 

p=.001) o f flea loads were significantly higher on colonies with no history of plague than 

on colonies with a history of plague (Appendix IV). Most prairie dog colonies with a 

history o f plague were in close proximity to the breaks habitats, which resulted in the 

‘plague history” and “region” variables being significantly correlated (Spearman 

coefficient=.688, p<.001). Because of this correlation, separate logisitic regression 

models were run incorporating these two parameters to avoid effects o f collinearity. In 

each model (Appendix V) site and region were significant predictors o f prevalence 

(p<.001), as was age class (adults were more likely to carry fleas than juveniles, p<.003). 

Intensity of flea burdens were also higher on adult prairie dogs than on juveniles 

(C/=2714.5, p=.048).

Prevalence (x^=34.87, p<.001) and intensity (//=14.63, p=.001) of flea loads were 

significantly different between the three types of sites for deer mice. Pair-wise 

comparisons showed that prevalence was significantly higher on prairie dog colonies 

(regardless of plague history) than at off-colony sites (p<.003). Intensity was also higher 

on prairie dog colonies (no plague: x  =3.00, median = 2; plague: x  =3.18, median = 2) 

than at off-colony sites ( x  =2.15, median = 2; Appendix IV). However, the only 

statistically significant difference was between no plague and off-colony sites ((7=14002, 

p<.001). As with prairie dogs, two logistic models were considered (Appendix V) and 

again site and region were significant predictors of prevalence (p<.002). The only other 

significant parameter was host sex (p=.036) in the first model. In addition to differences 

in flea intensity on deer mice by site plague history, deer mice from the breaks habitats 

carried higher intensity of flea loads ((7=22209, p=.028) than deer mice from upland
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Figure 7. Percent frequency distribution of flea toads on deer mice (Peromyscus 
maniculatus) carrying at least one flea upon first capture in Phillips County, 
Montana. June -  August 2002 & 2003. Each flea load category is separated by site 
of capture and bars represent the percent of individuals from each category 
carrying that number of fleas.
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sites. There were also differences due to sex and age (p<.041), with adult males carrying 

the highest average flea burden. There was no relationship between flea loads on deer 

mice and deer mouse minimum population density (r^=.017, p=.319; Appendix I).

Qualitatively, the overall distributions of flea load intensity on deer mice from the 

three different types o f sites show some interesting patterns (Figure 7). Mice sampled 

from off-colony sites tended to have most individuals in the lowest flea load categories 

and very few in the highest categories, while those sampled from prairie dog colonies had 

a stronger representation in the tail o f the distribution. Although the sample size of
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individuals from the highest categories was too small to test for significance, the 

difference between sites in the highest (10+) category is striking. The percent o f animals 

carrying 10+ fleas was more than twice as high at prairie dog colonies with a history of 

plague (7.4%, 5/68) than at colonies with no plague history (3.4%, 6/174) and only one o f 

206 (0.5%) deer mice carrying at least one flea upon first capture at off-colony sites 

harbored >10 fleas.

Discussion

Deer mice are often the most abundant small mammal found in grassland and 

shrub-steppe habitats o f the northern Great Plains (Hingtgen and Clark 1984; Agnew et 

al. 1986; Rauscher and Kissell 1996; Anderson and Williams 1997). Likewise, deer mice 

were the most abundant and, at some sites, the only small mammal present in this study. 

Relative abundance of small mammals associated with prairie dog colonies and nearby 

off-colony sites has been examined (O’Meilia et al. 1982; Agnew et al. 1986) but only 

one study (Anderson and Williams 1997) has compared small mammal abundance 

between prairie dog colonies with and without plague. Anderson and Williams (1997) 

found no difference in deer mouse populations between plague-positive and plague-free 

sites. I found no difference in minimum deer mouse density between colonies with and 

without a history plague in 2002 but found significantly higher minimum deer mouse 

densities on colonies with no history o f plague in 2003 (Figure 4). Anderson and 

Williams (1997) based their comparisons on whether plague was active at the time of 

trapping whereas I based comparisons on historical occurrence o f plague among prairie 

dogs. In both years o f my study minimum deer mouse densities on colonies with a 

history of plague were lowest o f the three types o f sites examined. Habitat sampling
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indicated no significant differences in ground cover between colonies with and without a 

history o f plague that may have influenced these numbers. While small mammal 

populations can fluctuate widely, these estimates are three-month averages over a period 

o f two summers -  the time of year when most plague epizootics occur in this region. If 

these data are representative of long-term trends in small mammal abundance associated 

with the different types o f sites, then factors other than density o f associated mammalian 

hosts may be o f greater importance in affecting the course o f plague epizootics among 

prairie dogs.

It is interesting to note the complete separation o f flea species taken from black

tailed prairie dogs and associated mammals in this study. O f 252 prairie dogs examined, 

none carried fleas common to any other host, and of nearly 500 associated small 

mammals examined, none carried a flea species recovered from prairie dogs. This is 

remarkable, as fleas common to other hosts were taken from prairie dog burrows, 

densities o f associated small mammals were often high on prairie dog colonies (up to 30 

individuals/ha), and nearly every small mammal taken on colony sites immediately 

retreated to a prairie dog burrow upon release (B. Holmes, personal observation). The 

use of prairie dog burrows for escape cover during daily activity, or even as permanent 

residence once abandoned, is likely common practice for species such as deer mice and 

grasshopper mice that regularly occur in sympatry with prairie dogs, providing an ideal 

environment for interspecific exchange of fleas and the potential for vector-bome 

pathogen transmission. A literature review of flea collections from prairie dogs of all 

species (Table 4) indicates that exchange of fleas between associated mammals and 

prairie dogs is indeed relatively rare. Excluded from this review of atypical or accidental
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Table 4. Literature review of flea collections from prairie dogs {Cynomys sppj, highlighting the occurrence of fleas which are 
not typical parasites of the ground-dwelling sciurids Cynomys and Spermophilus. Also highlighted are fleas that are generalist 
in their host preferences, sometimes found on prairie dogs, but not obligate parasites of ground-dwelling sciurid rodents.

Prairie Dog Prairie Dogs Total Atypical
Study Location Species Examined Fleas Fleas Species Normal Host

Seery et al. (2003) Colorado Black-tailed 220 780 0 - -
Karhu and Anderson (2000) Colorado Black-tailed ? ? 0 — —
Trevino-Villarreal et al. (1998) Mexico Mexican 40 158 0 “ —
Anderson and Williams (1997) Wyoming White-tailed 208 795 13 Aetheca wagneri Peromyscus

6 Cediopsylla Inaequalis Sylvilagus
5 Hystrichopsylla dipplel generalist (mice, voles, 

squirrels)
50 Rhadlnopsylla fratema Peromyscus, Spermophilus

Cully et al. (1997) New Mexico Gunnison's 195 528 1 Monopsylla vison Tamlasclurus
1 Rhadlnopsylla sectllls Peromyscus, Spermophilus

Mellink and Madrigal (1993) Mexico Mexican 22 20 0 — -
Ubico et al. (1988) Wyoming White-tailed 32 170 1 Aetheca wagneri Peromyscus

1 Hystrichopsylla dippiei generalist (mice, voles, 
squirrels)

4 Rhadlnopsylla fratema Peromyscus, Spermophilus
2 Rhadlnopsylla sectllls Peromyscus, Spermophilus

Kletzmann (1987) South Dakota Black-tailed 41 102 0 - -
Larson et al. (1985) North Dakota Black-tailed >21 89 0 - -
Pfaffenberger et al. (1984) New Mexico Black-tailed 50 983 91 Echldnophaga gallinacea birds
Pizzimenti (1975) (multiple) All 128 516 0 — -
Tyler and Buscher (1975) Oklahoma Black-tailed 30 ? 0 - -

Fitzgerald (1970) Colorado Gunnison's 87 179̂ 1 Rhadlnopsylla fratema Peromyscus, Spermophilus
Lechleitner et ai. (1968) Colorado Gunnison's 59 88“ 0 - —
Poorbaugh and Gier (1961) Kansas Black-tailed 2 57 0 — —
Holdenried and Morlan (1956) New Mexico Gunnison's 134 923 0 — -
Jellison and Kohls (1936) Montana Black-tailed 10 140 0 « -
This Study Montana Black-tailed 252 1,184 0 —
®total of 213 fleas collected, only 179 identified to species total of 299 fleas collected, only 88 identified to species
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flea occurrences on prairie dogs are records o f fleas which are typically found on ground 

squirrels o f the genus Spermophilus. As mentioned above, because prairie dogs and 

ground squirrels are ecologically and phylogenetically closely related, exchange of fleas 

between these animals is not remarkable. Furthermore, with respect to plague 

transmission, most ground squirrels (like prairie dogs) show high mortality when exposed 

to Y. pestis and are generally considered to be epizootic hosts, facilitating the spread of 

the plague organism during epizootics but unimportant in the maintenance of the disease 

during interepizootic periods (Poland and Bames 1979). Like this study, Lechleitner et 

al. (1968) found no fleas common to prairie dogs and any other host species and 

suggested that flea-bome transmission o f Y. pestis infection from a competent reservoir 

host into a population of prairie dogs is an improbable event. Data from this study and 

from a review of published flea records from prairie dogs support this supposition.

Pulex simulans is generally considered to be a poor plague vector (Hopla 1980) 

while fleas o f the genus Oropsylla^ o f which O. hirsuta and O. tuberculata were collected 

from prairie dogs in this study, are considered to be relatively important plague vectors 

(Bames 1993). The relative abundance o f O. hirsuta was much higher at prairie dog 

colonies with a history of plague than at colonies with no history of plague in this study. 

However, it is unclear whether higher relative abundance o f O. hirsuta may have 

influenced the course o f past plague epizootics or if  it may be an effect of past plague 

epizootics. For instance, the observed difference may represent an “equilibrium” 

situation where microclimatic conditions naturally favor higher relative abundance of O. 

hirsuta at these sites. Because O. hirsuta is a capable vector, a higher relative abundance 

o f this species on prairie dogs may facilitate intraspecific transmission of Y. pestis once
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the pathogen enters a prairie dog colony. On the other hand, the observed distribution 

may be the result o f past plague epizootics which have somehow selected against P. 

simulans, resulting in the higher relative abundance o f O. hirsuta currently observed. I 

am unable to distinguish between these two scenarios. However, this is a pattern worth 

further exploration and illustrates the importance o f considering flea species composition 

in addition to abundance.

Prairie dogs sampled from colonies with a history o f plague had significantly 

lower prevalence and intensity o f flea burdens than prairie dogs sampled from colonies 

with no plague history. This difference may be an artifact o f management activities and 

explained by the fact that many of these plague sites had prairie dogs present as a result 

o f translocation by CMR personnel rather than by natural recolonization, although some 

degree of immigration may have occurred subsequent to releases. Processing of prairie 

dogs for release in Phillips County includes treatment with insecticide to kill fleas (R. 

Matchett, USFWS, personal communication), so with limited or no natural immigration 

o f prairie dogs from discrete source populations, reestablishment o f pre-epizootic flea 

levels may be slow to occur. However, prairie dog releases occurred in 1997 — 1999 on 

CMR and I sampled these populations in 2002 and 2003. Karhu and Anderson (2000) 

found that flea populations had returned to pre-treatment levels within one year after 

treatment of wild prairie dog colonies with pyriproxyfen, an insecticide. If flea burdens 

observed on prairie dogs from colonies with a history o f plague do represent fully 

reestablished, “climax” flea populations, then this would suggest that different local-scale 

factors are influencing the flea burdens observed on prairie dogs and deer mice, as there
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was no relationship between flea loads on sympatric populations o f these two species 

(Appendix I).

That deer mice sampled from prairie dog colonies (regardless o f plague history) 

had higher prevalence and intensity o f flea burdens than those sampled off colonies is 

also difficult to explain. I have already shown that mice were not acquiring prairie dog 

fleas, even though these fleas were relatively abundant on prairie dogs and in burrows at 

colony sites. In addition, flea load differences between sites were not confounded by host 

density, as there was no relationship between minimum deer mouse density and total flea 

index. One possibility is that mice occupying prairie dog colonies may be using 

abandoned prairie dog burrows for permanent residence. The microclimate in these 

burrows, which is characterized by high relative humidity and low temperature 

fluctuations (Hoogland 1995), probably provides an environment more favorable for the 

development and survival of fleas than would occur on the surface or in shallower 

burrows typically excavated by deer mice (Reynolds and Wakkinen 1987). While there 

were some differences in prevalence and intensity of flea loads between the sexes and 

between age classes for deer mice, there was no significant difference in age-sex structure 

o f populations sampled at the three types of sites which might confound these results. 

Also, because both sexes and age classes should be represented in any persistent 

population o f mammalian hosts, differences in flea loads due to sex or age class should 

not be of functional importance in predisposing some areas to plague epizootics.

In addition to the presence of a preferred host, the distribution and abundance of 

ectoparasites may be influenced by both abiotic (e.g. temperature, humidity) and biotic 

(e.g. habitat) factors of the host’s environment. Seasonal effects on the abundance of
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fleas have been well-described (Schwan 1986; Lang 1996) and are likely driven by 

changes in temperature and precipitation/humidity. The importance o f habitat 

associations in determining flea species composition and abundance has been shown in 

several studies (Benton and Miller 1970; Berseth and Zubac 1987; Krasnov et al. 1997). 

Lindsay et al. (1999) also showed a significant difference between habitat types in the 

abundance of immature Ixodes scapularis ticks. I evaluated the effects o f coarse-scale 

habitat association (the ‘Yegion” variable) on flea loads for prairie dogs and deer mice. 

Because flea loads on prairie dogs were likely confounded by management actions, as 

described above, I focus here on deer mice. Both prevalence and intensity o f flea loads 

were significantly higher on deer mice sampled from breaks sites than from the more 

homogenous upland sites. These differences associated with habitat are probably 

proximate effects, with precipitation, humidity, and/or soil characteristics promoting flea 

development and survival in these areas. No matter what the ultimate factors that cause 

these differences, that deer mice occupying these more heterogeneous/mesic habitats 

carried greater flea loads has important implications for the maintenance o f a vector- 

bome disease such as sylvatic plague.

Maintenance of Y. pestis infection is thought to be dependent upon continued 

circulation among competent hosts (Bames 1993; Perry and Fetherston 1997). Because 

transmission dynamics are driven by the frequency of infective flea bites, the hosts most 

important in transmission are expected to be those supporting the greatest number of 

vectors (Perkins et al. 2003). Conditions that favor higher flea loads on an abundant and 

widespread species that is considered to be a competent host of plague, such as the deer 

mouse, therefore become mechanistically significant. Moreover, in addition to
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supporting deer mouse populations with higher flea loads, the breaks habitats supported 

populations o f all the same potential host species found elsewhere in the study, but with 

two additional species: bushy-tailed woodrats and least chipmunks {Tamias minimus). 

Woodrats and chipmunks (and their associated flea fauna) are known to be important in 

the ecology o f sylvatic plague in many areas throughout the western United States 

(Bames 1982; Gage et al. 1995). In most plague foci these species have traditionally 

been considered to be epizootic hosts, although Davis et al. (2002) regularly found 

seropositive Merriam’s chipmunks {T. merriami) and dusky-footed woodrats {N. 

fuscipes) throughout 17 years o f testing in California.

The concept o f landscape epidemiology was developed by Pavlovsky (1966) and 

embodies the idea that complex interactions between wildlife (host), vector, habitat, and 

climate result in spatially structured systems where disease agents are more likely to 

persist in some areas than others. These natural foci (or nidi) are areas in which pathogen 

transmission and/or maintenance is favored by the right combination o f the above- 

mentioned factors. Several authors (Olsen 1981; Gage et al. 1995; Biggins and Kosoy 

2001) have proposed that the factors most likely to support permanent plague foci 

involve several host species co-occurring in areas of diverse or patchy habitats. To date, 

this idea has prevailed over the concept o f monohostality for maintenance o f sylvatic 

plague in North America. The breaks habitats associated with the Missouri River in 

Phillips County may, then, provide the right set of conditions for the enzootic 

maintenance of plague and serve as a source area for epizootic plague to radiate out from. 

Factors implicating these areas are: 1) extensive plague epizootics among prairie dogs on 

CMR have occurred among colonies in close proximity to the breaks while those colonies
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removed from these diverse habitats (in the UL Bend area) have not experienced 

epizootics, 2) the breaks habitats are more diverse and patchy than adjacent “upland” 

areas, supporting populations o f woodrats and chipmunks, species o f known 

epizootiological importance in other plague foci, and 3) vector populations on the most 

common small mammal host, the deer mouse, are higher in the breaks habitats than in 

other areas.

Interpretation o f these results should be done with caution. Data presented here 

are strictly correlational and two years of serologic and PCR surveillance for evidence of 

K pestis infection among these same small mammals has resulted in no positives (see 

Chapter 2). There are prairie dog colonies within the breaks which have not experienced 

plague epizootics while other colonies in Phillips County, far removed from the breaks 

habitats, have. I do not intend to suggest that enzootic plague cannot be maintained in 

structurally homogenous environments or in areas where mammalian diversity is low, 

only that more complex habitats may provide better conditions for maintaining a 

pathogen with such a wide host range. Evidence o f persistent, circulating Y. pestis 

infection among a population of hosts (one species or several) is needed in order to 

implicate an area in the long-term maintenance o f sylvatic plague.
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Chapter 2. Survey for Evidence of Yersinia pestis and Bartonella Infection Among 

Small Mammals and Their Fleas in Phillips County, Montana.

Abstract. The means by which sylvatic plague is maintained between epizootics 
involving highly susceptible species such as prairie dogs and ground squirrels are poorly 
understood. The most extensive populations of black-tailed prairie dogs in Montana 
occur in Phillips County where plague epizootics have significantly reduced populations 
at some colonies while other colonies have apparently not been affected. During June -  
August 2002 and 2003,1 collected blood samples and fleas from small mammals at 
prairie dog colonies with a history of plague, prairie dog colonies with no history of 
plague, and “off-colony” sites where plague history was unknown. Blood samples were 
screened for antibody against Yersinia pestis, the etiologic agent o f plague, and fleas 
were screened for the presence of Y. pestis and Bartonella spp. with PCR. No blood 
samples or fleas were positive for Y. pestis but a small number o f fleas (1.4% of flea 
pools tested) taken from deer mice, coyotes, and a black-tailed prairie dog were 
Bartonella^i^ositvwQ. It appears that Y. pestis infection is rare or absent in the small 
mammal populations sampled and that infection does not persist in prairie dog colonies 
that have previously been affected by epizootics. To date there is no evidence that 
Bartonella spp. are pathogenic to wildlife. However, Bartonella infection appears to be 
established in several prairie dog colonies where there is currently a population of 
endangered black-footed ferrets. Further investigation into the possible affects of 
Bartonella on ferrets and their main prey base, prairie dogs, should be considered.

Introduction

The maintenance of plague (Yersinia pestis) infection in the wild depends on a 

complex set o f interactions between host, vector, pathogen, and environmental factors. 

How these factors interact to support permanent or semi-permanent foci o f plague in 

nature is poorly understood. The sylvatic (wild animal) cycle of Y. pestis infection is 

characterized by relatively stable periods of enzootic activity where it circulates at low 

levels within the “maintenance” host community, followed by explosive epizootics 

involving one or more species o f “amplifying” host that often experience high mortality. 

Conditions favoring the persistence o f plague in a landscape nearly always involve

36



several potential mammalian hosts o f varying susceptibility and their associated fleas 

(Gage et al. 1995).

Over 200 species of mammals worldwide, and at least 76 in the United States, are 

known to become infected with Y, pestis in the wild, including all four species o f prairie 

dogs {Cynomys spp.) in the United States (Bames 1993; Cully 1993). To date, there is no 

evidence that plague has affected populations of the Mexican prairie dog (C  mexicanus, 

Trevino-Villarreal et al. 1998). Individual species vary greatly in their susceptibility to 

the disease, and a number of challenge studies have been undertaken, usually involving 

rodents, to determine levels o f susceptibility and, accordingly, what role different host 

species may play in the epidemiological cycle o f plague in nature (e.g. Holdenried and 

Quan 1956; Quan et al. 1985; Thomas et al. 1988). In general, species range from the 

highly resistant kangaroo rats {Dipodomys spp.) to those that show a relatively moderate 

and/or heterogeneous response to infection such as deer mice {Peromyscus maniculatus) 

and voles {Microtus spp.) to those that exhibit a uniformly high mortality, including 

prairie dogs and ground squirrels {Spermophilus spp.) (Holdenried and Quan 1956; Gage 

et al. 1995).

Persistence of the plague bacterium within a landscape may take several forms. 

One potential scenario is that certain areas may accommodate the right combination of 

host, vector, and environmental interactions which support persistent infection once the 

organism is initially introduced. Once host and/or vector populations and environmental 

conditions reach a critical threshold the cycle may shift to epizootic mode, thereby 

involving more susceptible species, seeding new areas as permanent foci, or eventually 

running its course and receding to the original focal area. Another possibility is that
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plague is ubiquitous across the landscape, generally present at low levels, whereby 

observed epizootics among “sentinel” species (those such as prairie dogs or ground 

squirrels that are diurnal and readily apparent to humans) are improbable events which 

belie constant plague activity in an area. Meyer and Eddie (1938:334), working in 

California, suggested this type o f interaction, stating that “sylvatic plague persists 

probably indefinitely in an area once invaded.” They took this position after isolating Y. 

pestis fi*om fleas collected fi*om “the same colony or series o f burrows” where they had 

found plague-positive ground squirrels 20 years prior. Prairie dogs often recolonize 

“plagued-out” colonies within one or two years following epizootics (Menkens and 

Anderson 1991 ; Anderson and Williams 1997; Cully et al. 1997) and these colonies may 

then persist for many years or experience a plague epizootic again. Bames (1982) 

reported a recurrence of plague epizootics within four to five years and Cully et al. (1997) 

reported a plague epizootic again the year after recolonization. Whether these cases in 

which the same colonies experience plague again after one or several years represent a 

continued presence of infection among hosts in that area or a réintroduction of Y. pestis 

from surrounding areas is not known.

The genus Bartonella is a group o f Gram-negative bacteria that are intracellular 

blood parasites. Some of these are known human pathogens: B. quintana is transmitted 

by the human body louse {Pediculus humanus) and causes trench fever; B. henselae is 

transmitted by the cat flea (Ctenocephalides felis) and causes cat scratch disease; and B. 

bacilliformis, the etiologic agent o f verruga peruana and Oroyo fever in South America, 

is transmitted by sand flies of the genus Lutzomyia (Schwartzman 1996; Piesman and 

Gage 2000). Additional Bartonella strains, many of which have not yet received specific
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designation, have been isolated from wild animals and/or their ectoparasites 

(Breitschwerdt and Kordick 2000). However, unlike V. pestis, little is known about the 

potential role o f Bartonella spp. as pathogens of wildlife. Collinge et al. (2001) have 

proposed to use data on Baronella occurrence as a model for plague transmission 

dynamics within and among prairie dog colonies. Bartonella occurs naturally in prairie 

dogs and has also been isolated from prairie dog fleas, suggesting flea-bome transmission 

in this system (Stevenson et al. 2003). Because Bartonella often occurs at higher 

prevalence than Y. pestis among prairie dogs and associated mammals (M. Kosoy, CDC, 

unpublished data), this organism may prove to be useful in describing general patterns o f 

vector-bome disease transmission in this system in the absence o f plague.

This survey was initiated in response to several years of epizootic plague activity 

among black-tailed prairie dogs (C. ludovicianus) in Phillips County, Montana. Plague 

epizootics among prairie dogs were first detected in Phillips County in 1992 and have 

resulted in significant decreases in population size of prairie dogs in some areas while 

other areas have apparently been unaffected (R. Matchett, USFWS, unpublished data). 

The purpose o f this study was to describe the prevalence o f Y. pestis infection among 

small mammals and their fleas and to address several aspects of the ecology and 

maintenance o f sylvatic plague in southem Phillips County. First, I wanted to test 

whether there was a difference in Y. pestis antibody prevalence between sites with a 

history o f plague, sites with no history of plague, and sites where plague history was 

unknown. This would address the question of whether, once present, Y. pestis infection 

remains at low, enzootic levels in an area. Second, because plague epizootics at my study 

sites occurred from 1992 to 2001 (one to 11 years prior to sampling), I had the
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opportunity to test whether sites with a more recent history of plague were more likely to 

still have detectable levels o f Yi pestis infection compared to sites where epizootics had 

occurred long ago. Related to this, I was able to test whether there was some threshold 

period o f time that Y. pestis infection is likely to persist in an area following an epizootic 

among prairie dogs. Lastly, I describe the prevalence o f Bartonella infection in the fleas 

o f mammalian hosts from southem Phillips County. This is the first report o f Bartonella 

infection in wildlife populations in Montana.

Materials and Methods -  Sample Collection

Descriptions o f the study area, small manunal trapping, and flea collection 

methods are given in detail in Chapter 1. I collected blood and flea samples from small 

mammals at 60 sites during June -  August 2002 and 2003. Fifteen sites were prairie dog 

colonies with no history o f plague, 15 were prairie dog colonies with a history of plague 

occurring from 1992 to 2001, and 30 were “off-colony” sites (>500m from the edge of 

the nearest prairie dog colony). I sampled 36 sites in 2002 (12 no plague, 12 plague, 12 

off-colony) and all 60 sites (36 from 2002 resampled) in 2003 (Appendix VI). I 

anesthetized individual animals with isoflurane (“IsoFlo” Abbot Laboratories, North 

Chicago, Illinois or “IsoSol” Halocarbon Laboratories, River Edge, New Jersey) prior to 

blood and flea sampling. The anesthetic comes in liquid form and I placed several drops 

onto cotton inside a film canister with holes in the lid. I then placed the film canister into 

either a plastic bag or a homemade PVC induction chamber where the animal received 

the anesthesia. I collected blood samples of —200 pi from the retro-orbital sinus of 

smaller animals (mice, voles, woodrats) using micro-hematocrit tubes (Chase Scientific, 

Rockwood, Tennessee) as described by Stone (1953). This method of blood collection is
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fast and Douglass et al. (2000) found no difference in handling mortality for bled and un

bled animals using this technique. For larger animals (prairie dogs, cottontails), I 

collected ^ 0 0  pi o f blood by clipping a hindfoot toenail to induce bleeding.

In 2002,1 immediately placed whole blood samples on ice and then stored them 

in a conventional (-20°C) freezer upon return from the field. I transported samples to the 

University o f Montana, Missoula, MT on dry ice at the end o f the field season and stored 

them at -70®C until diagnostics were done. In 2003,1 centrifuged most blood samples the 

day o f collection to separate off serum which was then stored as above. I collected the 

remainder o f samples onto individual Nobuto filter papers (Advantec MFS, Pleasanton, 

California) which were air-dried, placed in paper envelopes, and stored at room 

temperature (Wolff and Hudson 1974).

Materials and Methods -  Sample Diagnostics

All laboratory diagnostics were performed at the Centers for Disease Control and 

Prevention, Division of Vector-Bome Infectious Diseases, Plague Section, Fort Collins, 

Colorado. Serologic analyses generally followed protocols described by Chu (2000). I 

screened serum samples for the presence of antibody against 7. pe^/w-specific Fraction 1 

(FI) antigen using either competitive enzyme-linked immunosorbent assay (c ELIS A) or 

passive hemagglutination assay (PHA). I screened all Nobuto strips using PHA. I did 

not perform serologic analyses for Bartonella because prior research has shown that 

serology performs poorly in detecting Bartonella infection (Kosoy et al. 1997). Also, due 

to time constraints, I did not attempt to culture Bartonella.

Following identification, I placed fleas into pools o f one to 10 individuals 

corresponding to the same species, host, date, and site of capture. I used a multiplex
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Table 1. Number and source of whole blood and serum samples collected in
southern Phillips County, Montana. June -  August 2002 & 2003.

Source______________________ # Blood/Serum Samples
Cynomys ludovicianus 107

Microtus sp. 21

Neotoma cinerea 4

Onychomys leucogaster 24

Peromyscus manicufatus 787

Reithrodontomys megalotis 4

Sylvilagus audubonli 14

Tamias minimus 3

Total 964

polymerase chain reaction (PGR) assay to screen flea pools for the presence of V. pestis 

and Bartonella as described by Stevenson et al. (2003). This assay targets specific DNA 

sequences that code for portions of the pla  and gltA genes o f Y. pestis and Bartonella, 

respectively. A positive result for a pool means that one to all of the fleas in that pool 

contained an infected blood meal. I did not record the presence/absence o f a blood meal 

in the gut o f fleas before testing, so some unfed fleas undoubtedly were screened for 

these agents.

Results

The source and number of samples collected for serologic analysis is given in 

Table 1. A total o f 964 whole blood or serum samples were collected from eight 

different host species during June -  August 2002 and 2003. None of these samples were 

positive for antibody against Y. pestis by cELISA or PHA.

42



Figure 1. Location oï Bartonella-^oûüyt flea samples collected in southern Phillips County, Montana. June -  August 
2002 & 2003. Points in red represent mammal trapping grids where positive samples were collected. Points in green are 
grids where no positive samples were collected.

B lack-footed Ferret 
R éintroduction  A rea

30 Kilometers
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Table 2. Bartonella-pos\t\\e flea pools taken from mammals in southern Phillips
County, Montana. June -  August 2002 & 2003.

Year Date Host # Fleas Species Site
2002 10 July Peromyscus manlculatus 1 Aetheca wagneri Sagebrush

10 July Peromyscus manlculatus 1 Aetheca wagneri Sagebrush
11 July Peromyscus manlculatus 3 Aetheca wagneri North Hawley
22 July Peromyscus manlculatus 1 Aetheca wagneri Long-X
22 July Cynomys ludovicianus 1 Oropsylla tuberculata Valentine
15 August Peromyscus manlculatus 1 Aetheca wagneri Dry Fork Creek

2003 3 June Peromyscus manlculatus 4 Aetheca wagneri Rock Creek
5 July Peromyscus manlculatus 1 Aetheca wagneri Camp Knowles
16 July Peromyscus manlculatus 1 Aetheca wagneri Bell Ridge #5
18 July Peromyscus manlculatus 5 Aetheca wagneri East Legg
27 August Canis latrans 5 Pulex simulans Wilderness
27 August Canis latrans 4 Pulex simulans^ Sagebrush
27 August CanIs latrans 4 Pulex simulans^ Sagebrush
27 August Canis latrans 6 Pulex simulans^ North Hawley
27 August Canis latrans 5 Pulex simulans^ North Hawley

^Toolswith the same superscript indicate samples came from the same animal.

In addition to fleas collected from small mammals as a part o f this study, four 

fleas from two black-footed ferrets and 24 fleas from three coyotes {Canis latrans) were 

submitted by CMR biologist R. Matchett for testing. A total o f 451 pools representing 

1,435 fleas collected in 2002 and 643 pools representing 1,598 fleas collected in 2003 

were screened for the presence of Y. pestis and Bartonella, Of 1,094 flea pools tested, 

none were positive for Y. pestis and 15 (1.4%) were positive for Bartonella (Figure 1). 

Bartonella-i^ositiwQ fleas were present in both years of the study and were collected from 

deer mice, coyotes, and one black-tailed prairie dog (Table 2). Broken down by species,

1.3% (9/676) o f flea pools from deer mice, 0.3% (1/259) of pools from prairie dogs, and 

100% (5/5, representing three individuals) o f flea pools taken from coyotes were positive 

for Bartonella.
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Discussion

Plague epizootics among prairie dogs are well documented (Lechleitner et al.

1968; Fitzgerald 1970; Rayor 1985; Ubico et al. 1988; Menkens and Anderson 1991; 

Cully et al. 1997). Once the plague organism is introduced into a prairie dog colony, 

intraspecific contact between individuals probably becomes the most important means o f 

transmission. However, the means by which infection is maintained between epizootics 

and introduced into prairie dog populations are still poorly understood. I found no 

evidence o f Y. pestis infection in small mammals or their fleas during two field seasons of 

surveillance. This result suggests one o f three possible scenarios. First, active Y. pestis 

infection may have been completely absent from the study area during the two summers 

o f fieldwork and no small mammals sampled as part o f this effort had ever been exposed 

and, thus, were seronegative to Y. pestis. A second possibility is that there was some low 

level o f enzootic plague activity but I was unable to detect it because my sample size was 

too small, animals did not produce antibodies, or mortality was high among exposed 

animals such that only unexposed animals were represented in my sample. A third 

possible scenario is that persistent Y. pestis circulation does occur in southern Phillips 

County but in localized areas that were not sampled as part o f this study. The most 

conservative interpretation o f these negative data is that Y. pestis infection is not 

widespread among small mammals in southern Phillips County. Furthermore, I found no 

evidence that Y. pestis infection persists at sites with a history o f plague or that these sites 

were any more likely to produce plague-positive samples (sera or fleas) than sites with no 

history o f plague or off-colony sites where plague history was unknown.
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The only apparent plague epizootic among prairie dogs that I observed in Phillips 

County occurred at colony B048 during a preliminary season o f fieldwork in summer 

2001. In this case, I trapped small mammals and collected fleas from burrows within 

approximately two weeks o f the epizootic which eliminated all but two or three observed 

individual prairie dogs from a colony o f ~220 acres. No mammals were trapped on two 

0.81 ha trapping grids established at the site, but two pools o f six fleas each recovered 

from burrows tested positive with a PCR-based procedure used by a field team from the 

U.S. Army Medical Research Institute o f Infectious Diseases. The fleas were not 

identified prior to testing and the assay and equipment used to make the positive 

determination were in the development phase. Because no field samples were verified by 

established procedures in the laboratory, these can only be described as tentative 

positives. Flea and serum samples collected at this site one and two years later were all 

negative.

Two previous studies (Lechleitner et al. 1968; Cully et al. 1997) demonstrated 

that, in general, plague-positive fleas from prairie dogs, their burrows, and associated 

mammals are most likely to be collected during the course of an epizootic. These studies 

also illustrated that one year following the epizootic some plague-positive fleas may still 

be present in prairie dog burrows, but by two years following the epizootic there is little 

or no evidence of K pestis infection. In addition, Lechleitner et al. (1968) found only one 

o f 108 deer mice seropositive (the one seropositive came during the active epizootic) and 

Cully et al. (1997) only found prairie dogs seropositive. In both studies the epizootic 

appeared to diminish over the course o f about a year, a pattern that may be generalizeable 

to Phillips County. The B048 colony described above had a small number of prairie dogs

46



present in 2002 (one year after the epizootic) and fleas collected from burrows in the 

same areas where probable plague-positive fleas had been collected in 2001 were all 

negative. In 2003 a number of discrete areas within the colony had prairie dogs present 

and again no positive samples were found.

These and other studies have also illustrated how few animals are found 

seropositive even during an active plague epizootic among prairie dogs, and that routine 

serosurveillance of small mammals associated with prairie dogs has proven to be 

ineffective in identifying potential reservoir hosts (Lechleitner et al. 1968; Ubico et al. 

1988; Cully et al. 1997; Trevino-Villarreal et al. 1998). In contrast, Davis et al. (2002) 

found five different species o f rodent seropositive for plague during 13 of 17 years of 

testing in a relatively small (5.5ha) area in California. What these observations suggest is 

that a prairie dog colony per se is not an ideal focal area for the long-term maintenance of 

Y. pestis infection. The general scenario involving prairie dogs has been that the plague 

organism is introduced into a population of prairie dogs, high mortality occurs among 

these animals, large numbers o f infected fleas become available in the burrows which 

seek out new hosts, additional species sympatric with prairie dogs become involved, and 

then the epizootic runs its course such that no infection is evident within one to two years 

after the epizootic ceases. An important difference between these prairie dog colonies 

where plague infection is short-lived and areas such as Chuchupate Campground in 

California (Davis et al. 2002) where plague infection is persistent is the diversity of 

habitats in a localized area and the associated diversity o f host species, principally 

rodents. It is worth mentioning that the majority of human plague cases in the United 

States over the past 30 years (—80%) have occurred in the greater Four Comers area of
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the southwestern United States (Gage et al. 1995), a region with the highest rodent 

diversity in North America (Feldhamer et al. 1999).

I found evidence o f Bartonella spp. in the fleas o f deer mice, coyotes, and a 

black-tailed prairie dog, although prevalence was low (1.4% of flea pools tested).

Positive flea samples imply Bartonella bacteremia in the host from which the fleas were 

collected, however the flea could have acquired infection from a different host and 

subsequently come into contact with the host from which it was collected. In Colorado, 

Stevenson et al. (2003) found 13.1% o f prairie dog fleas containing bloodmeal remnants 

positive for Bartonella and also found 8.8% of fleas tested coinfected with Bartonella 

and Y. pestis. Although flea-bome transmission o f rodent-associated Bartonella spp. has 

not been proven, data from the current study and from Stevenson et al. (2003) suggest a 

flea vector.

Sequence analyses have shown that several distinct strains of Bartonella may be 

present in a given geographic area at any one time (Kosoy et al. 1997; Ying et al. 2002; 

Stevenson et al. 2003). In fact, Kosoy et al. (1997) isolated three phylogenetically 

distinct Bartonella strains from one species (the cotton rat, Sigmodon hispidus) at a single 

site in Georgia. Whether these different strains represent different species of Bartonella 

is not known. It is also unclear what role these different Bartonella spp. may play as 

pathogens o f wildlife. To date, the only evidence of possible pathogenic effects of 

Bartonella in wildlife is a study by Boulouis et al. (2001) who found that Bartonella 

birtlesii o f wild rodent {Apodemus sp.) origin reduced reproductive fitness in laboratory 

mice.
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The implications of Bartonella infection in rodents and coyotes in southern 

Phillips County are not known. Bartonella-posiiiwQ fleas were collected from coyotes 

and rodents at the same sites, although in successive years. Future sequence analyses of 

isolates from these animals are planned and should reveal whether Bartonella isolates 

from coyotes are similar to rodent isolates, suggesting a possible oral route of 

transmission via consumption o f infected small mammals, or whether these coyotes are 

infected with a canid-associated Bartonella similar to B. vinsonii subsp. berkhoffii found 

in coyotes elsewhere (e.g. Chang et al. 1999). Also worth mention is that many of the 

Bartonella-posiiiwQ flea pools were collected from prairie dog colonies where there are 

currently populations of black-footed ferrets or that are within the ferret recovery area on 

CMR (Figure 1). Persistent Bartonella infection may be present in these areas, however, 

nothing is known of possible pathogenic effects in the black-footed ferret, an endangered 

species. As such, future screening o f ferrets, prairie dogs (their main prey base), and 

associated fleas for the presence o f Bartonella is warranted.
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CONCLUSIONS AND RECCOMENDAXIONS

In this study I used data on the historic occurrence of sylvatic plague epizootics 

among black-tailed prairie dogs to evaluate differences in small mammal communities, 

flea communities, and disease prevalence associated with prairie dog colonies with a 

history o f plague, prairie dog colonies with no history plague, and off-colony sites where 

plague history was unknown. I found no evidence o f Yersinia pestis infection in small 

mammals or their fleas during two field seasons of surveillance, indicating that Y. pestis 

was either absent or occured at very low prevalence across much of the landscape in 

southern Phillips County during the time period sampled. Furthermore, I found no 

evidence that Y. pestis persists in prairie dog colonies which have previously experienced 

plague epizootics. Data from this and other studies suggest that, following an epizootic 

among prairie dogs, persistent Y. pestis infection recedes to (as yet, uncharacterized) 

focal areas in which conditions are more suitable for the long-term maintenance of this 

pathogen.

It is still unclear which species o f small mammals are involved in maintaining 

sylvatic plague in Phillips County. Given their numerical dominance, and the fact that 

they were the only species o f small mammal present at many sites with a history of 

plague in this study, it is hard to imagine a scenario where deer mice are not involved in 

plague epizootiology in this area. Deer mice show a heterogeneous response to challenge 

with Y. pestis and have a high reproductive rate, two factors that Poland and Bames 

( 1979) identified as important characteristics o f enzootic hosts. Many studies 

investigating the ecology o f plague associated with prairie dogs find that deer mice are 

the most abundant associated small mammal and, consequently, often rely on
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seroprevalence in deer mice as an indicator of plague activity (Lechleitner et al. 1968; 

Ubico et al. 1988; Cully et al. 1997; Luce et al. 1997; Chapter 2, this thesis). However, 

routine surveillance of these small mammals has resulted in few positives and little 

information gained regarding inter-epizootic maintenance o f K pestis. None of these 

studies have found persistent infection in a population of deer mice as has been shown for 

California voles {Microtus californicus) by Kartman and Hudson (1971). Also, there is 

no good data on how long detectable antibodies remain in deer mice in a natural setting, 

although it is assumed to be approximately the life o f the animal (—1 year in the wild). 

Quantifying patterns o f antibody production and persistence in deer mice is a major 

research need if  studies will continue to use this species as an indicator o f plague 

prevalence.

Routine serosurveillance of carnivores such as coyotes and badgers has been more 

successful in producing positive serology results (Messick et al. 1983; Gese et al. 1997; 

Dyer and Huffman 1999; Arjo et al. 2003). The most likely mechanism of infection for 

these predators, which are usually asymptomatic, is via consumption o f infected prey. 

Arjo et al. (2003) felt that the difference in serum antibody prevalence between two 

populations o f coyotes in Utah was due to differences in prey species composition 

associated with different habitats. A surveillance program that incorporates carnivore 

serosurveys to indicate probable areas of enzootic plague in rodents, followed by a 

focused survey of small mammals may prove to be effective in identifying potential 

plague foci.

In Chapter 1 ,1 described the potential role of mammalian (specifically rodent) 

biodiversity in facilitating plague persistence. I suggest, as others have (e.g. Gage et al.
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1995; Ostfeld and Keesing 2000; Biggins and Kosoy 2001), that areas with a higher 

diversity o f hosts are more suitable for the maintenance o f sylvatic plague than areas of 

low host diversity. While small mammal species composition was essentially the same at 

prairie dog colonies with and without a history of plague in this study, colonies with a 

history o f plague often occurred near or directly adjacent to the heterogeneous, forested 

habitats o f the Missouri Breaks. The increased structural diversity of these habitats 

provides a greater breadth of available niches and, thus, supports a greater diversity of 

rodent species. No paper has yet explicitly addressed the role of mammalian biodiversity 

in the ecology of sylvatic plague, although several have alluded to its importance.

Further investigation into this as one of the major factors influencing the ecology and 

distribution of plague in North America should be considered.
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Appendix 1

Scatterplot of total flea index for sympatric populations of deer mice {Peromyscus 
maniculatus) and black-tailed prairie dogs {Cynomys ludovicianus) in Phillips 
County, Montana. June — August 2002 & 2003. Each point represents a site where 
^  deer mice and ^  prairie dogs were sampled.
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Appendix I (continued)

Scatterplot of minimum population density vs. total flea index for deer mice 
{Peromyscus maniculatus) in Phillips County, Montana. June — August 2002 & 
2003. Each point represents a site where ^  deer mice were sampled.
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Appendix II

Species composition of fleas collected from black-tailed prairie dogs {Cynomys ludovicianus) at colonies with and without a 
history of sylvatic plague in Phillips County, Montana. June -  August 2002 & 2003. Fleas of the genus Oropsylla are 
considered competent vectors of plague while the flea Pulex simulans is considered a poor vector of plague.
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Appendix III

Burrow sampling summary. June -  August 2002.

C o lo n y D a te #  B u r ro w s  S a m p le d #  B u rro w s  w /F le a s #  A c tiv e #  In a c tiv e %  B u rro w s  w /F le a s T o ta l F le a s

C am p  C harlie 6 /1 7 /2 0 0 2 9 4 0 0 0 0 0

R ock  C reek 6 /2 0 /2 0 0 2 100 21 21 0 21 46

W avy 6 /2 4 /2 0 0 2 100 5 5 0 5 6

D um p Tow n 6 /2 5 /2 0 0 2 2 0 0 0 0 0 0

S a g e b ru s h 7 /3 /2 0 0 2 100 7 6 1 7 7

N orth H aw ley 7 /5 /2 0 0 2 100 13 13 0 13 15

W ild e rn ess 7 /1 9 /2 0 0 2 100 7 6 1 7 8

A irport 7 /1 9 /2 0 0 2 100 2 2 0 2 2

Long-X 7 /2 1 /2 0 0 2 100 6 6 0 6 7

L egg  W ell 7 /2 3 /2 0 0 2 100 3 3 0 3 5

S harp ta il 7 /2 7 /2 0 0 2 8 0 0 0 0 0

Big S now y 7 /2 7 /2 0 0 2 100 2 2 0 2 4

N orth M anning C orral 7 /2 8 /2 0 0 2 100 2 2 0 2 3

S o u th  D ead  Calf 7 /2 8 /2 0 0 2 100 3 2 1 3 10

E a s t R o b in so n 7 /2 9 /2 0 0 2 100 9 9 0 9 2 6

V alen tine 7 /3 1 /2 0 0 2 100 17 17 0 17 2 7

M ain L ocke 7 /3 1 /2 0 0 2 100 13 13 0 13 15

S q u a t R esev o ir 8 /1 1 /2 0 0 2 14 0 0 0 0 0

8101 8 /1 3 /2 0 0 2 100 2 2 0 2 2

BQ48 N orth 8 /1 5 /2 0 0 2 100 2 1 1 2 2

B 046  S o u th 8 /1 9 /2 0 0 2 100 0 0 0 0 0

B 049 8 /2 0 /2 0 0 2 100 1 1 0 1 1

Sm all Tow n 8 /2 3 /2 0 0 2 50 3 3 0 6 3

S o u th  Locke 8 /2 3 /2 0 0 2 50 6 6 0 12 7

Total 20 3 6 124 120 4 6 .0 9 196
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Appendix III (continued)

Burrow sampling summary. June -  August 2003.

C o lo n y D a te #  B u r ro w s  S a m p le d #  B u rro w s  w /F le a s #  A c tiv e #  In a c tiv e %  B u rro w s  w /F le a s T o ta l  F le a s

N orth H aw ley 6 /2 0 /2 0 0 3 50 3 3 0 6 4

S o u th  Locke* 6 /2 0 /2 0 0 3 50 0 0 0 0 0

M ain Locke* 6 /2 1 /2 0 0 3 50 0 0 0 0 0

V alen tine 6 /2 2 /2 0 0 3 50 4 4 0 8 4

D um p Tow n 6 /2 5 /2 0 0 3 18 0 0 0 0 0

R ock G reek 6 /2 5 /2 0 0 3 50 2 2 0 4 3

C am p  C harlie 6 /2 6 /2 0 0 3 50 15 15 0 30 38

W avy 6 /2 6 /2 0 0 3 50 2 2 0 4 2

S a g e b ru s h 7 /2 /2 0 0 3 50 4 4 0 8 6

L egg  Well* 7 /2 /2 0 0 3 50 0 0 0 0 0

Big S now y 7 /5 /2 0 0 3 50 0 0 0 0 0

Sharp ta il 7 /5 /2 0 0 3 4 1 0 1 25 3

S q u a t 7 /5 /2 0 0 3 2 0 0 0 0 0

E a s t R ob inson 7 /6 /2 0 0 3 50 5 4 1 10 7

Sm all Town* 7 /6 /2 0 0 3 50 0 0 0 0 0

W ild e rn e ss 7 /6 /2 0 0 3 50 11 10 1 22 2 0

E a s t L egg 7 /1 6 /2 0 0 3 50 1 1 0 2 1

S E  Legg 222 7 /1 6 /2 0 0 3 50 2 2 0 4 2

Airport* 7 /1 9 /2 0 0 3 50 0 0 0 0 0

Long-X 7 /2 0 /2 0 0 3 50 12 12 0 24 16

N orth M anning C orral 7 /2 0 /2 0 0 3 50 3 3 0 6 5

S o u th  H aw ley 7 /2 9 /2 0 0 3 50 11 9 2 2 2 3 9

M anning BLM 8 /2 /2 0 0 3 48 1 0 1 2 1

S o u th  M anning C orral 8 /2 /2 0 0 3 50 0 0 0 0 0

S o u th  D ead  C alf 8 /1 3 /2 0 0 3 50 2 2 0 4 3

B101 8 /2 1 /2 0 0 3 50 4 4 0 8 7

B 049 8 /2 1 /2 0 0 3 50 1 1 0 2 1

B 048  S o u th 8 /2 1 /2 0 0 3 50 3 3 0 6 4

B 048  North 8 /2 1 /2 0 0 3 50 1 0 1 2 1

T otal 1322 88 81 7 6 .6 6 167
♦Colonies treated with Delta Dust (.05% Deltamethrin) insecticide @ 4g/burrow in June 2003 -  prior to burrow sampling.
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Appendix IV

Prevalence of flea parasitism on black-tailed prairie dogs (Cynomys ludovicianus) by
site in Phillips County, Montana. June — August 2002 & 2003.
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Box-plots of flea burdens on black-tailed prairie dogs {Cynomys ludovicianus) by site 
in Phillips County, Montana. June — August 2002 & 2003. Bolded lines represent 
the median, boxes represent the interquartile range (IQR), whiskers represent data 
points within ±1,5X  the IQR, and asterisks are outliers.

50-

40-

U_
30-

»tnc
S

20 -

C

1 0 -

0 -

C o lo n y : N o  P la g u e C o lo n y : P l a g u e

67



Appendix IV (continued)

Prevalence of flea parasitism on black-tailed prairie dogs {Cynomys ludovicianus) by
age-sex class in Phillips County, Montana. June -  August 2002 & 2003.
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Box-plots of flea burdens on black-tailed prairie dogs {Cynomys ludovicianus) by 
age-sex class in Phillips County, Montana. June — August 2002 & 2003. Bolded 
lines represent the median, boxes represent the interquartile range (IQR), whiskers 
represent data points within ±1.5X the IQR, and asterisks are outliers.
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Appendix IV (continued)

Prevalence of flea parasitism on deer mice {Peromyscus maniculatus) by site in
Phillips County, Montana. June — August 2002 & 2003.
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Box-plots of flea burdens on deer mice (Peromyscus maniculatus) by site in Phillips 
County, Montana. June -  August 2002 & 2003. Bolded lines represent the median, 
boxes represent the interquartile range (IQR), whiskers represent data points 
within =t=1.5X the IQR, and asterisks are outliers.
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Appendix IV (continued)

Prevalence of flea parasitism on deer mice (Peromyscus maniculatus) by age-sex
class in Phillips County, Montana. June -  August 2002 & 2003.
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Box-plots of flea burdens on deer mice (Peromyscus maniculatus) by age-sex class in 
Phillips County, Montana. June -  August 2002 & 2003. Bolded lines represent the 
median, boxes represent the interquartile range (IQR), whiskers represent data 
points within ±1.5X the IQR, and asterisks are outliers.
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Appendix V

Logistic regression model summary for prevalence of flea parasitism on black-tailed
prairie dogs {Cynomys ludovicianus) in Phillips County, Montana. June -  August
2002 & 2003.

Variable® Coefficient SE Odds Ratio p-value

Model 1
Year -0.016 0.346 0.98 0.962
Site 1.880 0.388 6.55 <0.001
Sex 0.253 0.346 1.29 0.465
Age Class 1.165 0.387 3.21 0.003
Constant 0.896 0.175 — —

Model 2
Year -0.034 0.342 0.97 0.922
Region -1.687 0.383 5.41 <0.001
Sex 0.234 0.343 1.26 0.495
Age Class 1.215 0.387 3.37 0.002
Constant 1.088 0.172 — —

^Coefficient, odds ratio, and significance are compared against a reference 
category for each variable. Reference categories are: Yeai=2002, Site=plague, 
Sex=female, Age Class=juvenile, and Region==upland.

Logistic regression model summary for prevalence of flea parasitism on deer mice 
{Peromyscus maniculatus) in Phillips County, Montana. June — August 2002 & 
2003.

Variable® Coefficient SB Odds Ratio p-value
Model 1
Year 0.134 0.156 1.14 0.390
Site (No Plague) 0.950 0.165 2.59 <0.001
Site (Plague) 0.671 0.218 1.96 0.002
Sex 0.303 0.144 1.36 0.036
Age Class 0.243 0.195 1.28 0.211
Constant 0.198 0.108 — —

Model 2
Year -0.021 0.151 0.98 0.888
Region 0.441 0.142 1.55 0.002
Sex 0.247 0.142 1.28 0.081
Age Class 0.307 0.192 1.36 0.109
Constant 0.065 0.099 — —

^Coefficient, odds ratio, and significance are compared against a reference 
category for each variable. Reference categories are: Year=2002, Site=off-colony, 
Sex=female, Age Class=juvenile, and Region=upland.
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Appendix VI

Prairie dog colonies included in survey for Yersinia pestis and Bartonella in southern
Phillips County, Montana. June -  August 2002 & 2003.

Prairie Dog Colony - No Plague Prairie Dog Colony - Plague (year)
Airport B048 North (2001)
*East Legg B048 South (2001)
Legg Well B049 (2001)
Long-X B101 (2000)
Main Locke Big Snowy (1994/1995)
North Hawley East Robinson (1994)
Rock Creek Sharptall (1994)
Sagebrush Squat Resevoir (1994)
*SE Legg 222 Camp Charlie (1992)
Small Town Dump Town (1992)
*South Hawley ^Manning BLM (1992)
South Locke *North Dead Calf (1992)
Valentine North Manning Corral (1992)
Wavy South Dead Calf (1992)
Wilderness *South Manning Corral (1992)

^Colonies sampled in 2003 only. All other colonies were sampled in 2002 & 2003.

72


	Ecology and persistence of sylvatic plague in Phillips County Montana
	Let us know how access to this document benefits you.
	Recommended Citation

	tmp.1459884606.pdf.3Qxpt

