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ABSTRACT 

 
Ekernas, Lars Stefan, M.S., May 2010  Organismal Biology and Ecology 
 
FEMALE COMPETITION AND THE ROLE OF TESTOSTERONE IN A 
POLYGYNOUS SYSTEM 
 
Chairperson: Dr. Vanessa Ezenwa 

 
 

Testosterone plays an important role in male competitive ability, and it may play a 
similar function in females. Female-female competition for resources is often associated 
with high testosterone, both within females and in comparison to males. Positive 
associations between testosterone and competition are most likely to be seen in systems 
with high female-female competition. Resource defense polygyny may be one such 
system since females congregate on high-quality nutrient sources, leading to substantial 
opportunities for interference competition. I studied female Grant’s gazelle (Nanger 
granti), a classic resource defense polygynous species, to investigate female competition 
and its relationship to testosterone. I found substantial evidence for competition between 
females. Females frequently engaged in agonistic behavior, on average initiating over 
two agonistic bouts per hour, and higher-ranking females initiated more agonism than 
lower-ranking females. Testosterone appeared to play an important role in competitive 
ability. Immunoreactive fecal testosterone metabolites (fT) were strongly positively 
correlated to both dominance rank and number of agonistic bouts initiated per hour, but 
only agonism was associated with fT when dominance and agonism were accounted for 
simultaneously. Females had similar fT concentrations as males. fT was positively 
associated with immunoreactive fecal glucocorticoid metabolites (fGCM), and this 
relationship was not due to associations between dominance and fGCM. Month also 
influenced testosterone physiology. Females had lower fT during a drought than after 
rains had begun. In addition, fT increased more from August to November in high-
ranking females than in low-ranking females. My results suggest that female-female 
competition may be substantial in resource defense polygynous systems. Testosterone 
might play an important role in mediating competitive ability in females, but it was also 
associated with higher glucocorticoid secretion. Future studies on females would be well 
served to investigate the consequences of testosterone secretion and how they relate to 
female competition. 
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Introduction 

 

 Androgens play an important role in male competition (Hirschenhauser and 

Oliveira 2006), and they may serve a similar function in females. In males, androgens are 

associated with a suite of physiological and behavioral traits that increase competitive 

ability, including muscle hypertrophy, aggression, reproductive behavior, and territory 

defense (Wingfield et al. 2001). In females physiological effects of androgens appear 

broadly similar, as they are associated with muscle hypertrophy, female-female 

aggression, sexual behavior, and reproductive status (reviewed in Staub and De Beer 

1997). Androgens play a particularly important role in shaping aggressive behavior. 

Androgens generally tend to make future aggressive bouts more intense, but usually do 

not cause increases in the frequency of aggression. Observed relationships between 

androgens and aggression are thus generally a result of aggression increasing androgens 

rather than vice versa (Sapolksy 1998). Nonetheless, if behavioral effects of androgens 

are similar in males and females, there may be predictable associations between 

testosterone and female behavior. 

 Androgens positively associate with female aggression in many settings (Gill et 

al. 2007). Androgens can both increase in response to aggression and have activational 

effects on aggression in females, leading to positive associations between testosterone 

and aggression (Albert et al. 1992; Staub and De Beer 1997). Two lines of evidence 

suggest that androgens play an important role in female-female agonism over competition 

for resources: variation in androgens among females, and male-female androgen ratios. 

Among females, maximum testosterone levels are higher in avian social systems where 

female-female competition is more intense (Ketterson et al. 2005). In addition, 

dominance rank is positively associated with androgens among females in several 

mammals (Clarke and Faulkes 1997; Beehner et al. 2005; Dloniak et al. 2006; Shargal et 

al. 2008). Male:female androgen ratios can also be a marker of female competition, 

which was first noted in studies of phylogenetically closely related species (Sannen et al. 

2003). Female bonobos (Pan paniscus) are more aggressive and hold higher dominance 

rank than female chimpanzees (Pan troglodytes), and the male:female testosterone ratio 

is lower (i.e. closer to 1) in bonobos than in chimpanzees (Sannen et al. 2003). Similar 
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results have been found in comparisons of female-dominant spotted hyenas (Crocuta 

crocuta) to male-dominant brown hyenas (Hyaena brunnae) and striped hyenas (Hyaena 

hyaena; Racey and Skinner 1979; van Jaarsveld and Skinner 1987). Across mammals, 

males typically have androgen levels 2-6 times higher than females in species with 

relatively little female competition (Rasmussen et al. 1984; Holekamp and Talamantes 

1991; Shargal et al. 2008). However, in mammals where female competition is intense 

females can have higher androgen levels than males (rock hyrax Procavia capensis 

Koren et al. 2006; spotted hyenas Crocuta crocuta Goymann et al. 2001). 

 Positive associations between androgens and female behavior are most likely to 

be seen in social systems where female intrasexual competition is intense. If higher 

dominance rank is associated with higher fitness, as is the case in many female mammals 

(Clutton-Brock et al. 1986; Ellis 1995; Woodroffe and MacDonald 1995), then 

mechanisms that increase competitive ability should have evolved in females. Androgens 

mediate competitive ability in males (Hirschenhauser and Oliveira 2006), and if 

androgens serve a similar function in females then natural selection might favor females 

with higher androgens and thus higher dominance in systems where female competition 

is intense. Resource defense polygyny may be one such system. In resource defense 

polygynous systems females congregate on areas with high quality resources, and males 

defend these areas to monopolize the females accessing those resources (Emlen and 

Oring 1977). Since females congregate at clumped nutrient resources, there is substantial 

opportunity for interference competition (Reiter et al. 1981). I expect female behavior in 

these systems to be punctuated by bouts of agonism, and for androgens to associate with 

dominance and agonism. 

 Although androgens have beneficial effects on competitive ability, in males 

androgens are associated with a number of factors that decrease long-term fitness. Similar 

associations may be prevalent in females. In males, testosterone is associated with 

increased energy expenditure, increased injury risk, and decreased immune function 

(reviewed in Wingfield et al. 2001). Testosterone might have similar consequences in 

females. One factor in particular that testosterone may influence is glucocorticoid 

secretion. Glucocorticoids are steroid hormones typically associated with stress and 

physical activity. When secreted at elevated levels for prolonged periods, they have a 
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variety of detrimental effects on immune function, reproductive behavior, and stored 

energy reserves (Sapolsky et al. 2000). Field studies indicate that testosterone often 

positively associates with glucocorticoids (Duffy et al. 2000; Muehlenbein 2006; Zysling 

et al. 2006; Koren and Geffen 2009). Such an association might be a consequence of 

testosterone increasing energetically expensive behavior and physiological processes that 

in turn increase glucocorticoid secretion. However, the positive associations between 

testosterone and glucocorticoids contrast with laboratory studies indicating that 

testosterone inhibits glucocorticoid secretion in response to stressors (Viau 2002; Seale et 

al. 2004). Lab studies have generally not accounted for changes in behavior (such as 

aggression) that may result from testosterone – changes that could lead to increased 

activity and/or stress and thus stimulate glucocorticoid secretion.   

Here I investigate relationships between behavior and testosterone in female 

Grant’s gazelle (Nanger granti). Grant’s gazelle exhibit classic resource defense 

polygyny, where females form groups that move between male territories (Walther et al. 

1983). Female competitive ability has a strong effect on fitness in several ungulates 

(Clutton-Brock et al. 1986; Côté and Festa-Bianchet 2001). Competitive ability may be 

particularly important for Grant’s gazelle since females congregate on patchy, high-

quality nutrient resources that likely are monopolizable, potentially leading to high rates 

of agonistic behavior. I tested whether: 1) The male:female testosterone ratio is at the 

lower end of the reported range; 2) Females engaged in agonistic behavior; 3) 

Testosterone is positively correlated with female competitive behavior, specifically 

dominance and agonistic behavior; and 4) Testosterone is associated with higher 

glucocorticoids. 

 

Methods 

 

Study site and population 

 I studied Grant’s gazelle at Mpala Research Center (MRC; 0o17’N, 37 o52’ E, 

1800m ASL) in the Laikipia District of central Kenya. Rainfall at MRC averages 500-600 

mm/year and typically falls in a trimodal fashion with peaks occurring April-May, 

August, and October. Vegetation consists of semi-arid savannah with a mix of grassland 
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and Acacia bushland, and the area is interspersed with open glades of one to several 

hectares dominated by short grasses. Acacia drepanolobium and Acacia mellifera are the 

dominant tree species, and the 22,000ha area encompasses both black cotton vertisols and 

red rocky friable soils. MRC supports 21 species of native ungulates, several species of 

domestic livestock, and a full suite of native carnivores (Ezenwa 2003; Ogada et al. 

2003). In 2008-2009, Laikipia experienced a 10-month drought from December 2008-

September 2009. Rainfall during that 10-month span totaled 88mm, compared to 147mm 

in the two months October-November 2009 after the rains began (MRC unpublished 

data).  

Grant’s gazelle are selective browsers and grazers frequenting grassland, 

bushland, and open woodland (Spinage et al. 1980). Group size usually ranges from 6-20 

animals, with larger groups generally seen in more open habitats. Group composition is 

relatively fluid, and females can freely join and leave groups (Walther 1972). Males 

defend high-quality areas to maximize reproduction. There is considerable sexual 

dimorphism, and males generally weigh about 50 percent more than females (Estes 

1991). Breeding occurs year-round, but there are peaks during the rainy seasons (Walther 

et al. 1983). Grant’s gazelle are arid-adapted and fairly drought tolerant (Estes 1991), but 

at the study site some individuals showed marked improvements in body condition from 

August 2009 (drought) to November 2009 (rainy season), suggesting that resource 

conditions improved with the onset of the rains (Ezenwa unpublished data). Data 

collected in August 2009 therefore reflect conditions during the drought when resources 

were more limited, while November 2009 samples reflect improved resource conditions. 

 

Behavioral and fecal sampling 

Grant’s gazelle were captured using drive-nets in January-February 2009 and 

helicopter net-gunning in August 2009 (Kock et al. 1987). For drive-netting, 200-300m 

long drive-nets were set up along natural escape routes, and animals were driven into the 

nets by vehicle. Upon capture, each animal was tagged with a unique set of color ear-

tags, standard body measurements and weight were recorded, and a fecal sample was 

collected. Age was estimated using a combination of tooth wear measurements and the 

relationship between horn size and age (Spinage 1976; Stelfox et al. 1985). To evaluate 
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tooth wear on live female gazelle, a subset of animals were sedated (N = 9) and an 

impression of the upper molar was taken using dental silicon. Tooth impressions were 

used to classify age according to criteria described in Stelfox et al. (1985). The 

relationship between tooth wear and mean horn length was used to estimate age for all 

additional females (Ezenwa, unpublished data). Pregnancy was assessed in all females by 

abdominal palpation, which reliably detected late-term pregnancies but likely missed 

earlier pregnancies (Pratt and Hopkins 1975). Lactation was assessed by manual milking 

of the teats. Handling time for each animal (females and males) averaged 23 minutes 

(range: 11-51 min). A total of 34 males and 26 females were captured in August 2009, 

and fecal samples from this period were used for male-female comparisons to avoid 

confounding seasonal effects. 

 Focal behavioral observations were collected on 12 tagged adult females during 

November 2009. At the beginning of each observation I recorded group size, group 

composition, other ungulate species present in the group, date and time, and a GPS 

location. I collected behavioral data using continuous focal sampling (Martin and Bateson 

1993). Behavioral samples were targeted to last 60 minutes, but were ended early if the 

focal subject went out of sight for 10 minutes. To increase the number of individuals 

sampled, I ended samples after 30 minutes if I observed 2 or more bouts of agonism 

initiated by the focal animal during the first 30 minutes. Samples lasting less than 10 

minutes were excluded from all analyses. Behavioral data were recorded using a hand-

held digital voice recorder and subsequently scored into JWatcher (Blumstein and Daniel 

2007). Behavior was scored as feeding, moving, agonistic, subordination, reproductive 

(e.g. copulating, receiving courtship displays, mounting), grooming, or vigilant. Agonism 

was scored to include chasing, fighting, vegetation horning, threats, and supplants. I 

stratified behavioral sampling by time of day including: early morning (0600-0900), late 

morning (0900-1200), early afternoon (1200-1500), and late afternoon (1500-1800). 

Focal observations were spaced evenly across these periods for each focal subject, and 

focal subjects were never sampled more than once in a given time period on any day. 

Females were sampled multiple times in November for both behavior and feces, and 

since these data were collected over a short time frame (~4 weeks), I averaged all fecal 

hormone values for each individual and used those averages in all statistical tests. The 
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rate at which each animal initiated agonism was calculated from the total number of 

agonistic events observed during focal samples divided by the total focal sampling time 

for that individual. To account for the effect of group size on agonistic behavior, for each 

focal animal I calculated mean group size by averaging the total number of adult and 

subadult females seen in the group in each focal sample. Analyses on the relationships 

between dominance, behavior, and hormone concentrations were done on November 

2009 behavioral and fecal samples to match behavior to hormone concentrations.  

 To quantify agonism I recorded all instances of agonism involving tagged females 

during and outside of focal samples, noting which animal initiated the interaction and 

which animal ‘won’ the interaction. These observations included all 12 focal adult 

females in addition to 3 younger tagged females (2.5 year old). I used agonistic 

interactions between tagged adult females to assign dominance scores to each individual. 

Dominance was scored using the normalized David’s rank, Dij, which accounts both for 

the number of observations between each dyad and for the relative dominance score of 

each animal j that animal i dominates or subordinates to (de Vries et al. 2006). Larger 

numbers indicate higher dominance, negative numbers indicate low dominance, and 

animals at the 50th percentile of dominance have a score of 0. Individuals were 

considered high ranking if Dij was greater than 0, and were considered low ranking if Dij 

was below 0. A single tagged female who was never observed to engage in agonism with 

other tagged females was excluded from all rank analyses. Although Dij places greater 

weight on dyads with a larger number of observed agonistic interactions, the number of 

animals that animal i dominates or subordinates to has a much larger effect on Dij than 

the number of agonistic interactions observed between i and a given animal j. Dominance 

as measured by Dij is therefore largely independent from the rate at which animal i 

engages in agonistic behavior. 

 

Hormone analyses 

 Hormones circulating in the blood stream are in part cleared by the liver and 

excreted in feces. Hormone concentrations in feces thus reflect the cumulative amount of 

free hormone experienced by an animal over the course of several hours (Keay et al. 

2006). In tandem with behavioral observations, fresh fecal samples were collected from 
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tagged individuals whenever defecations were observed. Immediately after being 

retrieved (<60min after defecation was observed), fecal samples were placed in a cooler 

with ice, and within 12 hours a subsample was homogenized, placed in a 15ml screw top 

tube, and stored at -20oC.  

 To extract hormones from feces, I dried a subsample of the frozen feces to 

calculate percent water. I used this figure to determine the wet feces equivalent of 0.2g 

dry feces, and placed this amount of feces ±10% in a test tube for hormone extraction. 

Fecal samples were then placed in 10ml 95% ethanol and boiled in a water bath at 78.5oC 

for 30min to dissolve hormone into the ethanol. After boiling, tubes were centrifuged for 

15min, and the ethanol was poured into a new screw cap test tube while the old test tube 

containing the wet fecal pellet (now devoid of hormone) was discarded. The new tube 

containing ethanol with dissolved hormone was placed in a 72 oC water bath while under 

forced air to evaporate the ethanol, leaving hormone residue on the side of the tube. The 

screw cap was firmly tightened, and samples were refrigerated and transported from the 

field site to the lab, where they were reconstituted in 2ml of 95% ethanol upon arrival 

(total time before reconstitution = 5 days) and stored at -20 oC for one month until 

extraction was completed. To complete the extraction I evaporated the remaining 2ml 

ethanol, reconstituted samples in 1ml 100% methanol and stored at -80 oC. 

Cortisol and testosterone metabolite analyses were performed with ELISA kits 

(Assay Designs, Ann Arbor, MI). Cortisol assays have low cross-reactivity (<4%) for 

other steroid hormones. Testosterone assays also have a very low cross-reactivity (<1%) 

for steroid hormones other than 19-hydroxytestosterone (14.6%) and androstendione 

(7.2%). Cortisol extracts were assayed at a 30-fold methanol dilution. For testosterone, 

sample dilutions ranged from 60-501:1 dilution, based on testosterone concentration in 

the sample. Samples were run in duplicate, and I used the average of the two samples in 

all analyses. Samples were re-analyzed if the coefficient of variation between the 

duplicates exceeded 15%. Interplate coefficient of variation was 9.4% for testosterone 

plates and 11.3% for cortisol plates. Intraplate coefficient of variation was 8.6% for 

testosterone plates and 6.9% for cortisol plates. Hormone concentrations are reported as 

immunoreactive fecal testosterone metabolites (fT) and immunoreactive fecal 

glucocorticoid metabolites (fGCM). Hormone concentrations were read as pg/ml from 
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the assay, which I divided by the amount of dry feces from which hormones were 

extracted to report fT and fGCM in ng/gdry feces.  

The cortisol assay has been validated for Grant’s gazelle, with experimental 

injections of ACTH in captive Grant’s gazelle indicating that fecal glucocorticoid 

concentrations reflect circulating hormones from 14-20 hours previously (Ezenwa & 

Creel unpublished data). To validate the testosterone assay for this species, I ran a serial 

dilution of a pooled sample of extracts and found that binding curves for the serial 

dilution of extract were parallel to those from testosterone standards in the range of 29-

2000 pg/ml. For biological validation, I analyzed fT concentrations in fecal samples 

collected from 6 untagged juveniles <12 months old between June-August 2009 and 

compared these to fT values for adults. Contrary to expectation, there was no difference 

in fT between juveniles and adults when pregnant and lactating females were excluded 

from analyses (Permutation test, juveniles n=6, adults n=52 (females n=18, males n=34), 

observed mean fT difference=-33.3, 95% CI: -94.4–78.6, P=0.50). These results therefore 

do not provide validation for the testosterone assay. 

 

Statistical analyses 

 Pregnancy is associated with increases in both testosterone and glucocorticoids in 

mammals (Humphreys et al. 1985; Tsutsui 1992; Gudermuth et al. 1998; Keller-Wood 

and Wood 2001); controlling for reproductive status is thus important when analyzing 

testosterone and glucocorticoid data from female mammals. Since it was only possible to 

test directly for pregnancy during the capture (August 2009), I compared fT in pregnant 

females to non-pregnant females in this period and used the lowest testosterone value of a 

pregnant female from August (761 ng/gdry feces) as a threshold for determining likely 

pregnancies for all other sampling periods. All females that had testosterone 

concentrations higher than this threshold in November (n=5) and August (n=1) were 

considered to be potentially pregnant and were excluded from analyses when necessary to 

avoid potentially confounding effects of pregnancy. Because females that had recently 

given birth may have had endocrine profiles similar to pregnant females, and parturition 

data for lactating females at capture was unknown, lactating females were excluded from 

analyses comparing pregnant and non-pregnant females.  
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 I used permutation tests to compare hormone differences between males and 

females and between pregnant and non-pregnant females. Permutation tests are non-

parametric, distribution-free tests that test the probability of finding the observed 

differences in distributions between two groups if all data are randomly assigned to one 

group or the other (Hesterberg et al. 2005). Permutation tests were performed in R (R 

Development Core Team 2005; code in Appendix I). 

 I used the Pearson product-moment correlation (r) to examine associations 

between dominance rank Dij, agonistic behavior, fT, fGCM, and age. Residuals were 

inspected for normality using Q-Q plots and histograms of the residuals, and I used 

Spearman’s rank correlation (rs) when residuals showed non-normal distributions. 

Multiple linear regressions were used to account for the effects on fT or fGCM of age, 

dominance, and agonism simultaneously. I treated age, Dij, and agonistic bouts initiated 

per hour as explanatory variables; response variables were fT and fGCM. 

I tested for effects of monthly differences using permutation tests on hormone 

values from all animals. I also used Wilcoxon rank sum tests to compare the distribution 

of fT and fGCM in August to those of fT and fGCM in November for females that were 

sampled in both August and November and who were likely not pregnant during either 

period (n=7). I used permutation tests to compare changes in fT and fGCM from August 

to November among high-ranking versus low-ranking females. For clarity I report the 

sample size for each statistical test in the text. Except permutation tests, all statistical tests 

were performed in SPSS (SPSS Inc, Chicago, IL). All statistical tests are 2-tailed, with an 

alpha value of 0.05. 

 

Results 

 

Sex, pregnancy, age, and testosterone 

 Pregnancy was strongly associated with immunoreactive fecal testosterone 

metabolite (fT) concentrations, and pregnant females had significantly higher fT than 

non-pregnant females (August capture samples, pregnant n=3, non-pregnant n=18, 

Permutation test, observed mean fT difference=1312, 95% CI: -318–755, P=0.0014). 

Comparing all females to males, fT reached 10-fold greater concentrations in females 
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(range: 58-4791 ng/g dry feces; n=26) than in males (range 78-453 ng/gdry feces; n=34), 

and females had marginally higher mean fT concentrations than males (Permutation test, 

observed mean fT difference=-308, 95% CI: -322–274, P=0.059; Figure 1). However, 

after excluding pregnant and lactating females, I found no difference in mean fT between 

females and males (males n=34, range 78-453 ng/gdry feces; females n=18, range: 58-447 

ng/gdry feces; Permutation test, observed mean fT difference=37, 95% CI: -53–53, P=0.26). 

Age was positively correlated with August fT in non-pregnant females (n=18, r=0.85, 

P<0.001). Overall, the male:female mean testosterone ratio was 0.4:1 including all 

females, and 1.2:1 when excluding pregnant and lactating females.  

 

Dominance, agonism, and testosterone 

Females frequently engaged in agonistic behavior, initiating an average of 2.1±0.5 

(SE) agonistic bouts per hour (n=12 females, range: 0-5.6 bouts per hour, 39.7 hours of 

total focal behavioral data in November). Higher-ranking animals initiated more agonistic 

bouts (n=11, r=0.81, P=0.003; Figure 2). Animals might be expected to engage in 

agonism more frequently when group size is larger and they have more potential females 

to dominate. However, I found no association between group size and number of 

agonistic bouts initiated per hour (n=11, r=0.09, P=0.79).  

fT was positively associated with dominance (n=9, r=0.86, P=0.003; Figure 3a) 

and number of agonistic bouts initiated per hour among non-pregnant females (n=8, 

r=0.91, P<0.001; Figure 3b). Including both agonism and dominance in a multiple linear 

regression indicated that agonism was marginally positively associated with fT while 

dominance was not associated with fT (Multiple linear regression, n=8, F=15.1, Dij 

β=0.15 P=0.67, agonism β=0.80 P=0.059).  

Age was positively associated with dominance (n=11, r=0.73, P=0.02; Figure 4), 

but I found no association between age and agonistic bouts initiated per hour (n=8, 

r=0.40, P=0.33). Although age was positively associated with August fT, I found no 

association between age and November fT (n=8, rs=0.38, P=0.35). 
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Testosterone, glucocorticoids and monthly variation 

Testosterone-glucocorticoid associations 

 fT was positively associated with fGCM in August (n=26, rs=0.47, P=0.02). 

However, this association disappeared when pregnant and lactating females were 

excluded (n=18, rs=0.27, P=0.28). In November there was a positive correlation between 

fT and fGCM across all females (n=14, rs=0.53, P<0.001), and unlike in August this 

relationship remained when females likely to be pregnant were excluded (n=9, rs=0.70, 

P=0.04). 

 

Dominance-glucocorticoid associations 

 Associations between fT and fGCM may have been mediated by dominance or 

agonistic behavior; however I found no associations between dominance and fGCM or 

agonism and fGCM. There was no association between dominance and November fGCM 

among non-pregnant females (n=8, r=0.37, P=0.32). Including age as a covariate did not 

change relationships between dominance and fGCM (Multiple linear regression, n=8, 

F=0.66, Dij β=0.47 P=0.38, age β=-0.03 P=0.95). Even after including fT in the model 

dominance was only marginally negatively associated with fGCM, while fT remained 

positively associated with fGCM (Multiple linear regression, n=9, F=7.0, Dij β=-0.90 

P=0.09, fT β=1.5 P=0.015). 

Number of agonistic bouts initiated per hour was marginally correlated to 

November fGCM among non-pregnant females (n=8, r=0.63, P=0.095). Including age as 

a covariate did not alter the relationship between agonism and fGCM (Multiple linear 

regression, n=7, F=0.69, agonism β=0.49 P=0.32, age β=0.04 P=0.93). After including 

fT in the model, neither agonism nor fT was associated with fGCM (Multiple linear 

regression, n=8, F=3.2, agonism β=-0.34 P=0.68, fT β=1.0 P=0.23). 

 

Monthly differences 

Month (August vs. November) had a strong effect on fT, but a weaker effect on 

fGCM. I found no differences in fT between August and November when including all 

females (Permutation test, August n=26, November n=14, observed mean fT difference 

= -289, 95% CI: -633–525, P=0.39). However, fT was significantly higher in November 
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than August when pregnant and lactating females were excluded (Permutation test, 

August n=18, November n=9, observed mean fT difference = -212, 95% CI: -153–144, 

P=0.006). Furthermore, of the 7 adult females that were sampled in both August and 

November and who were likely not pregnant during either period, all had higher fT in 

November than August (Wilcoxon signed rank test, P=0.02). fT rose significantly more 

from August to November in high-ranking than low-ranking females (Permutation test, 

high-ranking n=5, low-ranking n=2, observed mean fT change difference = 395, 95% CI: 

-322–395, P<0.001; Figure 5a). 

fGCM was higher in November than in August when including all females 

(Permutation test, August n=26, November n=14, observed difference = -334, 95% CI:  

-332–304, P=0.048). However, there were no differences in fGCM between November 

and August when pregnant and lactating females were excluded (Permutation test, 

August n=18, November n=9, observed mean fGCM difference = -154, 95% CI: -222–

202, P=0.17). fGCM was marginally higher in November than in August when restricting 

analysis to the 7 non-pregnant females sampled in both August and November (Wilcoxon 

signed rank test, P=0.07). Unlike with fT, fGCM did not change differently in high-

ranking compared to low-ranking females from August to November (Permutation test, 

high-ranking n=5, low-ranking n=2, observed mean fGCM change difference = 142, 

95% CI: -357–414, P=0.48; Figure 5b).  

 

Discussion 

 

 Theory on resource defense polygyny suggests that female competition should be 

strong in these systems. Studying a classic resource defense polygynous species, I found 

significant support for this hypothesis in behavioral data, relationships between 

testosterone and behavior, and male:female testosterone ratios. Females frequently 

engaged in agonistic behavior, initiating more than two bouts per hour on average. 

Agonistic behavior was associated with dominance, and fT strongly correlated with 

agonistic behavior. Females and males also had similar fT concentrations.  

Agonistic behavior between females was high relative to other ungulates, 

averaging 2.1 bouts per hour and ranging as high as 5.6 bouts per hour. Of the eight wild 
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female ungulate species studied to date, only two (mountain goats Oreamnos americanus 

and Roosevelt elk Cervus elephaus roosevelti) engaged in agonism more frequently 

(reviewed in Fournier and Festa-Bianchet 1995; Weckerly 1999). High-intensity 

agonistic behavior such as chases and fights were rare in Grant’s gazelle, as all observed 

agonistic interactions (175 interactions between tagged females) were low-intensity and 

quickly resolved. This is similar to what has been found in other female ungulates 

(Fournier and Festa-Bianchet 1995; Holand et al. 2004; Heitor et al. 2006), and likely 

reflects females trying to maximize nutrient intake while minimizing energy expenditure. 

Dominance was positively associated with agonistic behavior, suggesting that high-

ranking females may have taken advantage of their rank by frequently displacing other 

females; alternately more aggressive females may have attained higher rank. 

Female Grant’s gazelle exhibited an exceptionally tight linear association between 

agonistic behavior and fT. Testosterone is broadly associated with agonistic behavior in 

male vertebrates (Sapolsky 1998), and testosterone is likewise associated with agonistic 

behavior in a wide suite of mammalian females (Glickman et al. 1992; Albert et al. 1993; 

Plusquellec and Bouissou 2001; Beehner et al. 2005). Studies investigating associations 

between agonism and testosterone often find positive associations that fit threshold 

patterns rather than linear relationships. Such patterns often result from aggressive 

interactions causing massive increases in circulating testosterone (e.g. Wingfield et al. 

1990). Fecal testosterone concentrations – which reflect aggregate circulating hormones 

over many hours – likely smooth out some of these spikes, making linear associations 

more likely (e.g. Beehner et al. 2005). Nonetheless, the correlation I found between 

agonism and fT in female Grant’s gazelle is exceptionally tight, suggesting that agonistic 

behavior may be particularly closely linked to testosterone secretion in this system. 

Dominance was also correlated to fT. However, accounting for agonism and 

dominance simultaneously indicated that dominance did not directly associate with fT; 

instead this relationship appears to have been driven by the positive associations between 

agonism and both fT and dominance. Testosterone at normal physiological 

concentrations usually does not activate aggression. Positive associations between 

aggression and testosterone more often result from aggression increasing testosterone 

secretion (reviewed in Sapolsky 1998). One possible explanation for fT having been 



 14

more strongly associated with agonism than dominance is that high rank may have 

increased agonism, which then increased testosterone secretion. Dominance rank is often 

associated with testosterone, including in four of the six female mammals in which it has 

been studied (Clarke and Faulkes 1997; Beehner et al. 2005; Dloniak et al. 2006; Shargal 

et al. 2008; but see Von Engelhardt et al. 2000; Koren and Geffen 2009). Notably, 

females are dominant to males in the two species where this relationship was not found 

(ring-tailed lemurs Lemur catta Von Engelhardt et al. 2000; rock hyrax Procavia 

capensis Koren and Geffen 2009). High-ranking females in these species thus do not 

experience being dominated by other animals, which could have some effect on androgen 

physiology. However, as of yet there is no clear explanation for interspecific variation in 

the relationship between female dominance rank and testosterone. 

Mean fT levels were similar between males and non-pregnant females in August 

2009. This seemingly contradicts expectations from investigations on female testosterone 

in other species (Longcope 1986). However, studies on male:female androgen ratios 

broadly indicate that this ratio may be lower in mammalian species where there is more 

intense female-female competition. For example, in cooperatively breeding rock hyrax, 

female intrasexual competition is high, females are dominant to males, and females have 

higher mean testosterone levels than males (M:F testosterone ratio<1; Koren et al. 2006). 

In female resource defense polygynous spotted hyenas, female intrasexual competition is 

high, females are dominant to males, and the mean androgen M:F ratio is 14:1 for 

testosterone but 0.7:1 for androstenedione (Goymann et al. 2001). Among species with 

social systems where female intrasexual competition is likely less intense, M:F 

testosterone ratios range from 2:1 to 6:1 (African elephants Loxodonta africana 6:1, 

Rasmussen et al. 1984; California ground squirrels Spermophilus beecheyi 3:1, 

Holekamp and Talamantes 1991; Nubian ibex Capra nubiana 2:1, Shargal et al. 2008). A 

low M:F testosterone ratio in Grant’s gazelle therefore suggests that female competition 

may be high, a hypothesis my behavioral data also support, and which should perhaps be 

expected in a resource defense polygynous species where females congregate on clumped 

nutrient sources. Nonetheless, caution should be taken in interpreting these results. A 

small number of samples collected from territory-holding males in November 2009 

indicated that male fT reached far greater concentrations in November (n=4, max fT: 
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2791ng/gdry feces) than in August (n=34, max fT: 453 ng/gdry feces). Although these samples 

were not representative of all males in November, they do suggest that there may be 

substantial temporal variability in M:F testosterone ratios. At this point it is unclear 

whether hormone values in August 2009 – at the height of a drought – are representative 

of other periods. Nonetheless, relationships between fT and female behavior were strong 

and independent of any temporal variability in male fT levels.  

 I found a positive association between fT and fGCM among females in November 

2009. Glucocorticoids are commonly associated with energy mobilization and the stress 

response. Higher glucocorticoid concentrations can indicate higher energy expenditure, 

and chronic elevations of glucocorticoids have a variety of negative fitness consequences 

(Sapolsky 2002). Testosterone has been positively associated with glucocorticoid 

secretion in several field studies on birds and mammals (Duffy et al. 2000; Muehlenbein 

2006; Zysling et al. 2006; Koren and Geffen 2009), perhaps because animals need to 

mobilize stored energy reserves in response to testosterone-induced increases in energy 

expenditure. This appears to be the case for female Grant’s gazelle. 

 Notably, I failed to find an association between dominance rank and 

glucocorticoids – fT was the main variable associated with fGCM in November 2009. 

Dominance is expected to be associated with high glucocorticoids when maintaining 

dominance is costly (Creel 2001); conversely, low-ranking animals are expected to have 

higher glucocorticoids when being low-ranking is stressful and maintaining dominance is 

not costly (Sapolsky 2005). Since there was neither a positive nor a negative association 

between fGCM and rank, female Grant’s gazelle do not fit cleanly into either of these 

hypotheses. Females very rarely engaged in high-intensity agonism to establish 

dominance, so maintaining dominance did not appear costly. The question then is why 

low-ranking animals were not stressed. One explanation is that dominance may not have 

strong effects on behavior or physiology in these animals. Another explanation is that 

open social groups might allow low-ranking females to avoid particularly aggressive 

females by moving into different groups. Theory on the relationship between 

glucocorticoids and dominance rank has largely been developed in primates and 

carnivores with closed social groups (Creel 2005; Sapolsky 2005); species with open 

social groups may function differently. Alternately low-ranking females may not be 
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stressed by receiving low-intensity agonism such as threats and supplants that rarely 

escalate into more severe confrontations. Whatever the explanation, dominance rank did 

not appear to play a strong role in shaping glucocorticoid physiology in female Grant’s 

gazelle. 

In addition to behavior, month seems to have played an important role in shaping 

testosterone physiology in female gazelle. fT was higher among non-pregnant females in 

November after the rains had begun than it was in August during a drought period. 

Furthermore, over this time period fT concentrations rose significantly more among high-

ranking than low-ranking females. This is somewhat surprising since one might expect 

competition to be more intense, and thus fT levels to be higher, when fewer nutrients are 

available. One explanation is that females may have “trimmed the behavioral fat” and 

suppressed testosterone secretion and/or avoided agonistic behavior during the drought to 

conserve energy, particularly if there were no high-quality resources to compete for 

(Sapolsky 1986; Nelson 1993; Beehner et al. 2005). This might explain the higher fT 

values observed in November than August 2009. Alternately, there is a spike in breeding 

during rainy seasons in Grant’s gazelle (Walther et al. 1983), and there may be greater 

competition for resources during this period if more females were attempting to 

reproduce. This could explain both the overall shift towards higher fT in November and 

the rank-differences in fT change from August to November. If low-ranking females are 

less likely to reproduce during optimal times, high-ranking females would have been 

more likely to engage in agonistic behavior during the rainy season (November) and 

would have experienced a larger increase in fT than low-ranking females. Under such a 

scenario low-ranking females would experience no change in fT while high-ranking 

females would have higher fT in November, causing an overall shift towards higher fT in 

November. Similar shifts were not seen in fGCM, reinforcing the notion that competition 

did not have a strong effect on glucocorticoids. 

Results showing that fT increased during pregnancy are typical for mammals. 

Pregnancy is associated with increases in testosterone in a wide range of mammals 

(Tsutsui 1992; Gudermuth et al. 1998; Altmann et al. 2004). Increases in testosterone 

during pregnancy may be due to physiological reasons since testosterone is a precursor to 

estrogen (Millier et al. 1994; Simpson 2002), which increases during pregnancy (Siiteri 
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and Macdonald 1966). Associations between testosterone and pregnancy may also be 

linked to increased competition for resources. Pregnant females have higher resource 

requirements than other females, and as a result may be more forceful in acquiring 

nutrients. If so, they may engage in more frequent or more intense agonism (Wise 1974; 

Beehner et al. 2005), causing testosterone levels to rise. Alternately, increased 

testosterone levels due to physiological processes may promote agonistic behavior.  

Since pregnancy was associated with increased fT, pregnancy was an important 

factor potentially confounding relationships between fT, agonism, and dominance in this 

study. Unfortunately I had no way to reliably detect pregnancies outside of the capture. 

fT provided some insight, but I may have misdiagnosed high-fT non-pregnant females as 

pregnant and thus discarded important data. Testosterone levels in male vertebrates are 

thought to rise dramatically in response to challenges (Wingfield et al. 1990). If similar 

changes in circulating testosterone occurred in female gazelle and were reflected in fT, I 

likely misdiagnosed such females as pregnant and discarded them in analyses. I may also 

have misdiagnosed females with high baseline testosterone as pregnant and discarded 

them. I expect females with high testosterone to have shown the strongest associations 

between fT and behavior, and since these females were dropped from analyses my results 

may actually be conservative. 

Overall my results suggest that there is substantial female-female competition in 

Grant’s gazelle, and this may reflect a more general trend among females in resource 

defense polygynous systems. Furthermore, testosterone may be an important factor 

mediating competitive ability among females in this species, leading to similar fT levels 

between males and females. Given the costs known to be associated with testosterone in 

males, and the associations observed here between fT and fGCM in female gazelle, 

testosterone may have important fitness effects (direct and indirect) in females. Further 

studies on females would be well served to investigate these effects and how they relate 

to female competition. 
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Figure 1 Histogram of immunoreactive fecal testosterone (fT) from male and female Grant’s gazelle in August 
2009. fT was nearly significantly higher among females than males (Permutation test, P<0.06). Pregnant females 
(n=3) had higher fT concentrations than non-pregnant and non-lactating females (n=19, Permutation test, 
P<0.002). Parturition date was unknown for the lactating female marked in the figure, and could have been very 
recent prior to capture. 

Pregnant  

Lactating  

Pregnant  

Pregnant  
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Figure 2 Dominance Dij is positively correlated with number of agonistic bouts initiated per hour in female 
Grant’s gazelle (r=0.81, P<0.01). Each dot represents a single female in November 2009. 
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Figure 3 Immunoreactive fecal testosterone in female Grant’s gazelle is positively associated with a) 
Normalized David’s rank Dij (r=0.86, P<0.003); and b) number of agonistic bouts initiated per hour by the focal 
animal (r=0.91, P<0.001). Each dot represents a single female in November 2009; the fT value is the average of 
all fecal samples collected from that female in November 2009. Error bars show ±SE. 
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Figure 4 Age is positively associated with normalized David’s rank, Dij, in female Grant’s gazelle (r=0.73, 
P<0.02). Each dot represents a single female in November 2009.  
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Figure 5 Seasonal changes from August (drought) to November (rainy season) for non-pregnant females in a) fT and b) 
fGCM. Each dot represents hormone concentrations for one female in a given month, and lines connect samples from the 
same individual. High-ranking females are shown with solid lines, and low-ranking females are shown with dotted lines. 
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Appendix A 
 

Code used in R for permutation tests 
 
# This tests for differences in testosterone between males and females. Other tests use 
similar 
# code but with appropriate variables substituted in. 
 
step=read.table(AugHormones.csv',header=T,sep=",") 
names(step) 
 
sex=step$Sex   # Separates males from females 
  
my_var = step$T  # Creates vector with testosterone values 
 
n = 100000   # Number of permutations to run 
 
observed_mean = mean(my_var[sex=="M"],na.rm=TRUE)-
 mean(my_var[sex=="F"],na.rm=TRUE) # Observed mean difference in  
       # testosterone between males and 
       # females  
 
meandiff = rep(NA,n)  # Initializes the array to store the mean differences in 
 
# Permutations testing the difference in means when testosterone values are randomly 
# assigned to males or females 
 
for(i in 1:n) { 
 status.samp = sample(sex,length(sex),replace=FALSE) 
 meandiff[i] = mean(my_var[status.samp=="M"],na.rm=TRUE) - 
mean(my_var[status.samp=="F"],na.rm=TRUE) 
} 
 
hist(meandiff)    # Histogram of all permutations 
perc_greater = sum(meandiff > observed_mean,na.rm=TRUE)/length(meandiff) 
perc_less = 1-perc_greater 
two_tailed = 2*min(perc_greater,perc_less) 
two_tailed   # 2-tailed p-value indicating where the observed mean falls 
    # in the distribution of means from the permutations 
 
# 2-tailed pval, T, Males vs Females, p = 0.05912 
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