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Director: Dr. Ray Ford

Distributed computing and database management are of paramount importance in a 

network environment. Distributed programming tools facilitate design and implementation 

of such systems. Design and implementation are two distinct phases while realizing a dis

tributed system. In the design phase, one looks at the protocols that are required to build a 

system. In the implementation phase, one tries to map these protocols onto the distribut ed 

programming tool available. The design of a robust Object Registration System is considered 

here. Before this design is implemented in C-Linda, a parallel language, quantitative and 

qualitative evaluation of C-Linda is done in order to find out the features and limitations of 

this programming tool. The results of this evaluation is then used to implement a prototype 

Object Registration System.
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C hapter 1

Introduction

D istributed com puting  and da tabase  m anagem ent are of param ount im portance in a 

network environm ent. T h e  form er allows faster com putation  because it supports parallelism 

and the la t te r  allows efficient d a ta  m anipula tion  and storage.

Distributed program m ing  tools facilitate design and im plem entation of such sysrems. 

Design and im plem entation  are  two distinct phases while realizing a d istributed system. In 

the design phase, one looks a t the  protocols tha t are required to build a system. In the 

im plem entation phase, one tries to m ap these protocols onto the d istributed programm ing 

tool available.

Before building any d is tr ibu ted  system, it is better,  and sometimes necessary, to evaluate 

the program m ing tool available. Evaluation has two facets.

o A quan tita t ive  evaluation involves designing benchmarks to measure the performance 

of the p rogram m ing tool. This later helps in designing the system  with op tim um  con

figuration.

o A qualita tive evaluation involves discovering capabilities of the given programm ing tool. 

Some designs lead to s traightforward im plem entation, some can be implemented with 

certain difficulty, and  still o thers cannot be im plem ented with the given programm ing 

tool.

1.1 P rob lem  S ta te m en t

In a network environm ent, several users may have to share a large database of objects. 

In order to reduce object redundancy and elim inate object inconsistency, there is a dem and 

for a d is tr ibuted  object support system th a t  meets all user requirements. This situation 

dem ands an O bjec t Registration  System th a t  allows users to register object definitions and 

instances, and to  access objects  registered by o ther users on the network. The design and 

im plem entation of an O bjec t Registration  System can be stated more formally as follows:
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Design and  im plem ent a network-based O bject Registration System (ORS) tha t allows 

users to access and  modify a d is tr ibu ted  object database. The database  is a collection of 

object definitions, instances, and  m ethods. The following are the requirements.

o ORS m ust allow norm al s ta r tu p  and  shutdown.

o ORS should be robust. It should be able to recover from network an d /o r  processor 

failures.

o ORS m ust be as efficient as possible. (B ut efficiency can be sacrificed for greater relia

bility).

Given these requirem ents, the next problem  is to design reliable and robust high level 

d istribution system  protocols to support O bject Registration System functions. This design 

does not assum e anyth ing  about the  underlying im plem entation details. Subsequently, the 

problem is to im plem ent the high level design and distribution protocols with a specific 

program m ing tool. T he  tool tha t is being experim ented with is C-Linda. a combination of 

the coordinating language Linda with the  program m ing language C.
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C hapter 2

D esign

T he  object registration system  uses an object-oriented paradigm to create a basic data 

m anagem ent capability. T he  set of d a ta  form ats  form the object classes, the da ta  themselves 

form d a ta  object instances, and sim ulation com ponents form object methods. The focus of 

the design is on developing the d is tr ibu tion  protocols to meet the requirem ents  s tated  earlier.

As illustrated  in Figure 1, the  d is tr ibu ted  d a ta  m anagem ent of ORS uses the paradigm  

of the O bject Request Broker (O RB), pa t te rned  after th a t  suggested by the Object M an

agement Group [3]. The ORB provides system  users transparen t access to objects tha t may 

be physically located anywhere within the  system. The ORS has a O bject .Manager (OM). 

which distributes OR.B instances to every machine partic ipa ting  in the d istribu ted  system, 

and also monitors the O R B s’ activity. Each ORB interacts  with local users, other ORB.-, 

and with the global OM. The O R B 's  com m unicate  am ong themselves and the OM by passing 

messages. Thus ORB s and OM share an abstrac t global da ta  space. Users add or delete 

d a ta  in this space through interaction with ORB. They can share information with other 

users through this common space.

The OM distributes O R B 's  such tha t each machine gets exactly one ORB instance. The 

machine on which OM executes is designated as the m aster and  the rest are called workers. 

The m aster also has a copy of O RB executing on it. Figure 2 illustrates this point.

The ORS functionality prim arily  consists of three d istinct phases:

o S ta r tup  : In this phase, the OM distr ibutes the O R B ’s.

o O peration : In this phase, each ORB interacts with its local user(s) and responds to 

object requests. An object requested a t processor P, is resolved locally (i.e., by O R B , 

on Pi) if the  object is found in the d a ta  space associated with O R B , .  The object is 

resolved globally if com m unication is required between O R B ,  and some remote O R B j  

th a t  has the required object in its d a ta  space. In both  cases, com m unication required 

for object resolution (local or global) is transparen t to the user (Figure 3).

o Term ination : This is the concluding phase where O R B ’s and OM are term inated .
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Figure 1: R elationship  am ong OM, O RB, and Users

Figure 4 il lustrates  the above m entioned phases. ( Appendix A describes the tim ing diagrams 

used in m ore detail)

2.1 N orm al S ta r tu p , O p era tion , and T erm ination

At system  s ta r tu p ,  the  OM spawns an instance O R B ,  on each processor P, listed in it- 

s processor table. T he  OM expects an acknowledgement from O R B , im mediately after it 

s tarts. Thus, each O R B ,  m ust send an acknowledgement ack, to OM as soon as it begins ex 

ecution on processor P t. If OM receives acknowledgements from all ORB instances spawned, 

normal s ta r tu p  is complete. F igure 5 illustrates normal s ta r tup .

Following norm al s ta r tu p ,  the system enters the operation phase. During this phase, 

in addition to  O R B  com m unication  used to  resolve object requests, the OM and O R B ’s 

periodically com m unica te  to ensure proper functioning of the system  as a  whole. At a 

regular interval, referred to as system  tick, each O R B ,  sends an alivei  message to  OM, and 

OM sends an  a l i veom message to one of the  ORBs. Thus for N  active O R B ’s, each O R B ,  

should receive an a l i v e jm message every N  system ticks. Figure 6 shows the  details of the
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Figure 2: M aster and Worker m achines

normal operation.

Normal system te rm ina tion  is always in itia ted  by OM. It sends a t e r m i n a t e , message 

to every O R B t . The ORBs in tu rn  respond w ith an acknowledgement ack , and te rm inate  

themselves. W hen the  OM receives N  acknowledgements, it te rm inates ORS (Figure 7).

As illustrated in Figure 8, any individual O RB instance can initiate its own term ination 

before-overall system te rm ination . T he O R B , sends a t e r m in a t e , message to OM. and OM 

responds with an  acknowledgement. O RB{  now term inates. After receiving the term ination 

message, the OM considers O R B ,  on processor P, dead for all purposes. The OM will not 

try  to spawn another O RB instance on processor P,.

2.2 A bnorm al S tartu p

The scenario described in the  previous section seems very much desirable bu t completely 

ignores system or com ponent faults. In a world lull of uncertainties, network and processor 

failures cannot be ignored. Hence, the particu lar fault cases considered are
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Figure 5: Norm al Startup

o ORB failure during s ta r tup , 

o ORB failure during operation, and 

o OM failure during operation.

During the s ta r tu p  process, if OM fails to receive an acknowledgement from any of the  O R B 's  

within a specified t im e o u t  interval, the OM assumes tha t e ither the  machine or the network 

connecting th a t  m achine is down. It is generally impossible to distinguish between these 

two. It can also be the  case tha t the  ORB process might have been accidently term inated. 

In order to distinguish between these possibilities, OM a t tem p ts  to  place another instance 

of ORB on th a t  machine.

Let the k th a t te m p t  by OM to spawn an O RB instance, O R B ^ k ,  on processor P, be 

represented by message sorbi^.  in response to receipt of sorbi^,  Pi will spawn ORBi^k and 

generate the  acknowledgement ack t Assumi ng tha t for processor Pi, OM has not received 

the acknowledgement ack, tk in response to  sort,,*, the OM will subsequently a t te m p t to 

spawn another instance, O R B ltk+\ on processor P, by sending sorbi^+i (refer to Figure 9).
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Spawn i,1

^  ,—  Acknowledgement is lost

Timeout
Spawn i,2

Master Worker i

Figure 9: A bnorm al Startup : Spawning another OFLB instance 

Several different scenarios arise at this point.

o As illustrated  in Figure 10. if OM receives ack,j,.. the OM im m ediately sends a te rm i

nation message, to P, to te rm ina te  ORB,.t;+i.

o As il lustra ted  in Figure 11. if OM receives a c / y ^ i .  normal operation continues. If 

OM subsequently  receives ack ,y.. the  OM im mediately sends t e r m in a t e , ^  to te rm inate  

ORBi'k-

o If OM receives no acknowledgement from either of ORB,,k  or O R B i ^ + x , it assumes 

th a t  the  network link connecting processor P, is down or the processor Ps is dead. The 

OM does not a t te m p t  to spawn m ore ORB instances on processor P, a t this stage. 

However, it periodically tests access to P, by spawning a simple hello,  process. As 

il lustrated  in Figure 12, if successfully s tar ted  on P,, hello, sends a message back to 

OM and term inates . Upon receiving this message, the OM again enters the two stage 

cycle described above, a t tem p tin g  to s ta r t  an ORB instance on P,. If at any tim e the 

OM receives an acknowledgement from O R B or O R B , tic+i ,  which were assumed to 

be dead, functioning resumes normally and no further a t tem p ts  to s ta r t  a new O R B i

14



spawn i, 1

timeout spawn i,2
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second
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Figure 10: A bnorm al Startup : Term inating recently spawned O R B instance

Spawn i,1

timeout
^pawn i,2

Ack from 
second ORB 
instance

a ck j

Received ack. 
from the first 

ORB instance 
Terminate it.
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Figure 11: A bnorm al Startup : T erm inating previously spawned O R B Instance
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Spawn i, 1

timeout
Acknowledgement lost

iwn i,2

Acknowledgement lostt im e o u t___

Spawn hello i

helloi
Since hello m essage  

is received from r 
worker i, it is alive.
So try to spawn an 

ORB instance

Spawn i,3

Worker iMaster

Figure 12: A bnorm al Startup  : Testing a Machine with ’’helio” m essage

are m ade  (see Figure 13). In any case, the OM will t e r mi na t e  all but the O R B  tha t 

responds w ith  the first acknowledgment.

2.3 A b n orm al O R B  T erm in ation

During norm al operation, the OM uses the one-out-of-n-rule to evaluate the s ta tus  of 

ORBi  in question. T h a t  is, if OM receives one a h v t l message out of the  last .V cycles, then 

it assumes th a t  ORBi  is alive (see Figure 14). If OM gets no response from O R B , lor :Y 

system  ticks, the  OM a t tem p ts  to spawn a new ORB instance by sending sorb^j  to processor 

P,, where j-1 is the  num ber of ORB instances previously spawned on processor Pt. If in the 

m eantim e, O M  receives a response from a previously spawned O R B , tX (where x <  j )■ the 

OM sends t e r m i n a t e Xt} to P, to cancel the a t tem p t to s tar t a new ORB.

2.4 A b n orm al O M  T erm in ation

T he  O R B 's ,  in a  similar way, m onitor the  status of OM. When an O RB instance O R B ,

16
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does not receive any response, i.e., a l i v t om message, from OM for k system ticks, it broadcasts 

a  message om dead t (t) to all O R B 's,  where t is the local tim e at which message is sent by 

O RBi  (F igure 15). An O R B 2 on processor P: receiving such a message responds based on 

the  following factors.

o If O R B j  still thinks th a t  OM  is alive, i.e., it received an a h r t jm message from OM 

w ith in  its t im eout period, it im mediately sends a negative acknowledgement no, to 

ORBi  (Figure 16a).

o If O R B j  th inks th a t  OM is dead, i.e., it has also failed to receive? an a l iveom message trom 

OM within its tim eout period, it constructs its reply based 011 the following condition; 

(Figure 16b and 16c).

Let tj  be the  t im estam p and j be the ID of O R B j  receiving omdead.  (t.) from O R B . .

-  If ti >  tj ,  then send a positive acknowledgement yesj.

-  If f, =  t j .  and i >  j, then  send a positive acknowledgement yes, .

-  If the  above two conditions fail, then send a negative acknowledgement no: to

ORBi.

W hen an O R B t that earlier initia ted an omdead,  message receives a negative acknowl

edgem ent n o j , it does not a t te m p t  to res tart the  OM. but it enters an in term ediate  sta te  

W a i t i n g F o r O M A l i v e .  If O R B , does not receive alu'Lora message within the next tim eout 

period, it will send another om dead , message with a new tim estam p. As long as the O R B , 

is in the W a i t i n g F o r O M A l i v e  s tate, it responds with a positive acknowledgement, yes.  to 

all omdead  requests from other ORBs. O R B l exits from the W a i t i n g F o r O M A l i v e  s ta te  

only when it gets an a liveom message, or when it receives no riOj messages and is selected to 

s ta r t  a new OM.

In general there are m any ways to select the new host for an OM when OM failure is 

detected. Here we use local t im estam p  and ORB ID ’s to choose a unique ORB to res tart 

OM when m ore than  one ORB has in itia ted  omdead  message. If O R B ,  receives no negative 

acknowledgements within a certain  tim eout period, it assumes th a t  all o ther O R B ’s have 

agreed th a t  OM is down, and th a t  it has been elected to revive OM. O R B ,  now tries to 

spawn OM on the  m aster machine. If it succeeds, normal operation resumes. If not, O R B , 

spawns an OM  on processor P, and this OM takes over from the deceased OM (Figure 17).
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N system  
ticks e la p s e ^ .

OM

timeout

Broadcasted m essage  
is received by ORBj

ORBi O R B j

Figure 15: Requesting OM statu s from other ORB's

A more interesting type  of OM f a i l u r e  occurs when the network link between the pro

cessor Pi and P]1 which hosts OM. is severed, thus partitioning the network. The processors 

in the  network parti t ion  w ithout the OM will take at most A' system ticks before coming to 

an agreement th a t  the OM is dead, and s tarting  a new OM in tha t partition. Thus we end 

up with having two parti tioned  subnetworks, each with its own OM.

W henever the d istribu ted  system recovers from a failure and returns to norm al (either the 

network connection is reestablished or the original OM is restarted), the ORS will have more 

than  one OM instance active. In order to m aintain  a single OM. each OM instance 0.1/, on 

processor Pi periodically broadcasts a t e n n i n a t e om^ t) message (where t is the t im es ta m p  

indicating the s ta r tu p  tim e of the OM). Any OM instance OA/, on processor Pd receiving 

one such message will te rm ina te  if j >  i. or if j =  i and tj >  t t . Tin? result is th a t  the OM 

on the processor which has the  smallest number survives. If there are two OM on the  same 

processor, the OM th a t  was s ta r ted  earlier survives. T he  original OM on the m aster  m achine 

always sends te rm ir ia te0Tnio message. This message guarantees tha t the OM on the  m aste r  

machine will take  over the  job of managing ORB s when it comes back to  life (Figure IS).
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2.5 D iscussion:

T he ORS design as described in this chapter functions normally under normal conditions. 

In order to  establish the  robustness of the  ORS design, the behavior of the ORS under 

various fault conditions m ust be analyzed.

The following are the  faults th a t  are considered here :

o Failure of one or more worker machines. In the worst case, all the worker processors 

fail.

o Failure of the  m aster.

o Network failure resulting in l.lie partitioning of ORS. i.e.. w i t h  M  ORBs having an O M  

and ( N  - AI)  O RBs without OM.

o Network delay.

Let Px-Pi- • •• P n  be N  worker processors and P0 b e  t h e  master processor. Let 

represent the  O bject M anager instance on processor P, s tarted  at local tim e t. and O R B ; 

denote the O bjec t Request Broker instance on processor P,.

Let U denote the set of all processors in the distributed environm ent. P denote the set 

of active processors, and Q denote the set of dead processors. At any time. P  U Q — i and 

p  n  Q =  6

T he ORS in its steady s ta te  has an O bject Manager CbU(0,(l. A O bject Request Brokers: 

O R B i . O R B o .  ... O R B n , P =  { P0. Pu  ... Ps  }. and Q =  {}.

C ase 1: Failure o f worker processors

W hen one or m ore worker processors fail, Q p  0 and P0 £  Q. Assume th a t  processor P, 

fails, Q =  { Pi } and P  =  U - Q.

A. Effect on S y s te m  O peration: The OM on PQ detects O R B ,  failure when the

OM stops receiving alive,  messages. The OM marks O R B ,  as dead, and the ORS system  

continues w ith  ju s t  one less ORB in the ORS system. When P, is restarted , the hello,  process 

th a t  is periodically spawned by the  OM reaches P, and successfully sends a message back to 

OM. The OM  then  res tarts  O R B , on processor P, bringing the system to normal. M ultiple
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processor failures are identified as a  sequence of single processor failures, each treated  as 

described above.

B. Effect on user requests: We assume th a t  failure of processor Pt means that there

cannot be an active user on P t , so there can be no local object requests. User requests 

em anating  from users on processors in set P will see a m ixed response. Locally resolvable 

requests are not at all affected by o ther  processor failures. Requests tha t get globally resolved 

on a processor in set P will continue to function normally. However, objects registered on a 

processor in set Q cannot be retrieved. T he  result of an a t te m p t  to  access such an object 

will be “object unavailable due to processor/network failure". W hen the processor hosting 

the object is revived, the object again becomes accessible.

Case 2: Failure o f  the  m aster

W hen the  m aster processor fails. Lb € Q.

A. Effect on sy s te m  O peration: All O R B ’s stop receiving a lice,m  messages, but clue

to the cyclic na tu re  of alive om message generation, one of the O R B 's. say O R B , ,  senses OM 

failure first. It sends an om dead ; message to rest of the ORBs; however, they all respond 

with a negative acknowledgement, no. Upon receiving one or m ore no messages. O R B ,  enters 

the in term ediate  s ta te  where it waits for an al iceom message. O R B l+\ senses failure next, 

and it sends o m d ta d l+\ to all ORBs. O R B l+1 will receive a yesi  from O R B , and no from 

the rest, thus forcing ORBi+i  into the in term ediate  s tate . This process continues until the 

last ORB detects OM failure. In response to its omdead  message the  last ORB receives a 

positive acknowledgement from all o ther ORBs, which are all now in the in term ediate state. 

The algorithm  sketched earlier(Section 2.4 on Page 18) is used to  select a processor to host 

a replacement OM. For N  ORBs. this process takes X  system  ticks.

If one or more worker processors fail along with the m aster, the surviving ORBs still 

detect OM failure in the same wav. An ORB instance th a t  initiates an omdead message will
“  O

receive M  < N  messages in response. However, as long as one or more worker processors 

survive, the active ORBs can still proceed with electing a single active ORB to restart OM 

because the absence of messages from dead ORBs will not affect the election process. T h a t  

is, if an active ORBi  does not receive any message from O R B } within its timeout period, it 

proceeds with its operation, assuming th a t  this represents agreem ent th a t  OM is dead.
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W hen the  m a s te r  recovers and the  original OM starts  functioning, there  will be two OM in 

the ORS system , i.e., O M Q,tj and OM,,ti- W hen OM on the m aster sends a terminal .eJ1n{0A.} 

message, OAR,a voluntarily  term inates . The OM will then revive the  dead ORBs. if any 

(Refer to  Case 1).

B . Effect on user requests: T he  failure of m aster does not affect the user request- 

s. Local and global resolution of objects still function normally for objects on accessible 

processors.

Case 3: N etw o rk  Failure

A. Effect on S y s te m  O peration: Network failun? causes a partitioning of ORS. 

A ssum ing.that the  system  is in steady sta te  before network failure. Q =  {}, and P =  U. and 

tha t network parti tion ing  divides the set of active processors P into ifft and PR such that IR 

U T e P .  For the  network partition  TI i , 0 1 =  1I_> and for network partition  I I . . .  Q? =  L R . 

Let Pq €  Eli . This subsystem  will behave as in Case 1. with \R  worker processor failures. 

For parti tion  LR the situa tion  appears as OM failure plus d/_. worker processor failures (Case 

3). Thus the  two subsystem s function independently with separate OMs.

B. Effect on user requests: O bjects registered on ORBs in one network partition

cannot be retrieved by ORBs on the other partition. Thus some user requests may not be 

satisfied. W hen the network connection is reestablished, objects on the o ther side of the 

parti tion  become visible to the entire system.

Case 4: N etw o rk  delay

A. Effect on S y s te m  O peration: Network delays may create situations where an ORB 

or an OM makes a  wrong decision, i.e.. where a process that is actually  alive is assumed 

to be dead. However, in cases of both ORB and OM processes, the protocol described 

above guarantees th a t  an a t te m p t to s ta r t  a new O R B J O A l  will eventually result in a single 

process dom ination. T h a t  is, if the alive message from O R B ; is excessively delayed, the OM 

presumes th a t  the  O RB is dead and  s tar ts  a new ORB. W hen the OM receives the delayed 

message, it acts to te rm ina te  the recently spawned ORB. The system thus comes back to 

normal. In s ituations where the message from the OM to ORB,  gets delayed and O R B ,
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sends omdead  message to  o ther ORBs, O R B t should get hack negative acknowledgements 

th a t  prevent it from spawning a new OM.

B . E ffe c t  on u s e r  r e q u e s t s :  Sometimes network delay m ay cause delay in the system 

response to  user requests. If the network delay exceeds certain  tim eout periods associated 

with object resolution, an  “inaccessible ob jec t” result might be sent to the user when there 

is no processor or network failure.
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C hapter 3

Q ualitative Evaluation

Following the  design of high level protocols to meet distribution and reliability require

ments, the next goal is to  realize these protocols in C-Linda, the parallel program m ing 

language selected to  im plem ent the ORS design. Following a brief introduction to O-Linda, 

I will address several questions th a t  need to be answered before proceeding with the actual 

im plem entation. These questions will be answered by a systematic evaluation of C-Linda 

(Qualitative Evaluation in C hap ter  3 and Quantitative; Evaluation in the following chapter).

3.1 In trodu ction  to  Linda

Linda is a p rogram m ing  model based on a shared global tuple space and several 

tuple space operations [2]. These tuple  space operations can be em bedded in any s tandard  

language such as C or F O R T R A N , creating a new parallel language. Linda's tuple space 

abstraction perm its  bo th  com m unication and synchronization, as well as mechanisms for 

creating and coord inating  m ultip ie  execution threads. The tuple space forms an associative 

shared m em ory  th a t  consists of sets of d a ta  called tuples.

There are six basic tuple-space operations in C-Linda.

o o u t(t )  - causes a new tuple  t to be evaluated and added to the tuple space.

o in ( t )  - causes some tuple  s to be withdrawn from the tuple space. The tuple s is 

chosen from am ong those th a t  m atch the tem pla te  t. The values of the actuals in s 

are assigned to the formals in t .  If no m atching t is available when in(t) executes, the 

invoking process is blocked until one such m atching tuple is available. If many m atching  

s :s are available, one is chosen arbitrarily.

o rd(t) - it is identical to in ( t )  except tha t the m atched tuple remains in the tuple space 

for use by o ther  processes.

o inp (t) - it is a non-blocking form of in (t) .  It ret urns a 0 if no matching tuple exists or
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else w ithdraw s the  m atching  tuple  and returns a 1.

o r d p ( t )  - it is a non-blocking form of r d ( t )

o e v a l ( t )  - it is very similar to  o u t ( t )  except th a t  the  tuple t  is evaluated after it is 

placed in the  tup le  space, ra the r  than  before. This implicitly creates new process to 

evaluate each field of t .

T here  are two kinds of tuples : process tuples, which are under active evaluation, and 

d a ta  tuples, which are passive [4]. Processes accomplish work by generating, using, and 

consuming d a ta  tuples. A process tuple is a process that executes, then turns into a data  

tuple  at te rm ination  tim e conceptually indistinguishable from all d a ta  tuples.

A tuple is a sequence of typed values, e.g., a tuple with a string, a real number, an integer, 

a variable, and  a function as its param eters  is shown below:

(” a s tr in g” , 15.25 , 22 , x , fu n c t io n (p ))

An o u t  operation adds a passive d a ta  tuple into the tuple space. The following operation 

adds a 3-param eter passive d a ta  tuple into the tuple space:

o u t ( ” a  s t r i n g ” , 15.25 , 22)

An e v a l  operation adds a process tuple into the tuple space. T he following operation 

adds a 2-param eter active process tuple into the tuple space:

eva l ( s q u a r e - r o o t  (1 0 ) ,  m e a n  (1 2 ,2 3 ,3 4 ) )

This process tuple  has two processes associated with it; the square-root process and the 

process to com pute the mean of three numbers.

An anti-tup le  is a sequence of typed fields; some of which m ay be actuals, whereas others 

may be formals. A formal is prefixed with a question mark, e.g.,

( ” a  s t r i n g ” ,? r ,? i ,3 0 ,?z)
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Here the  first and  the  fourth  fields are actuals, and the  rest are formals. in. inp, rd. and 

rdp a t te m p t to  m a tch  a passive d a ta  tuple in the  tuple space with the an ti-tuple  supplied 

as the opera tion ’s argum ent.

o in (” co o rd ” , 10 , 20) m atches the tuple (’’coord” , 10, 20) in the tuple space.

o in (” c o o rd ” , ?x , 30) m atches all tuples with the first argument as string "coord'', 

and the  th ird  argum ent equal to 30. For instance, the tuple (’’coord ” , 75 , 30) will 

m atch  the  given an ti- tup le  ( ’’coord” , ?x , 30). W hen the tuple is retrieved from the 

tuple space, the  value of formal param eter  x is set to 75.

The eval operation  adds process tuples, which means tha t it provides a mechanism  

for dynam ically  creating processes. In some ways it is similar to the s tandard  UNIX fo rk  

system call. Both  eval and fork create new processes. However the process created by fo rk  

is inherently  rela ted  to the parent process, whereas in Linda, processes created bv e v a l  have 

no special relationship with the process tha t created them: they pass their result into the 

tuple space, not to their parent process.

An exam ple of a L inda system  tha t creates 100 (parallel) processes to perform square-root 

on the first 100 integers is:

for ( i =  0 ; i <  100 ; i - f+ )  eval(sqrt(i)):

100 process tuples are thrown into the tuple space. Each process com putes the sqrt  function 

concurrently for one value, then converts it into a passive data  tuple. Thus 100 result tuples 

are eventually formed, which can be read from the tuple space by the parent or any other 

active Linda process.

3.2 ORS Im p lem en ta t io n  in Linda

The decision to im plem ent the distribution protocol for ORB using Linda has two im por

tan t ramifications.

o The abs trac t design m ust be translated  into abstract Linda.

o The abstract L inda m ust be transla ted  into a real Linda, taking into account particular 

im plem entation  restrictions and constraints.
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Thus the  following questions need to be answered before one can proceed with im plem en ta

tion.

A bstract Linda:

o Is it possible to m ap  a process onto a specific processor using Linda's eval?

o How can we m ap  exactly  one process instance to each processor (e.g., exactly one O R B ; 

on processor P,-)?

o How’ can we pass messages from one process to another?

Real Linda:

o How can a user com m unica te  with an O R B R

o How does the  m aster  (OM ) detect process ( O R B t) failures?

o How does message size affect system  performance?

o In a  non-homogeneous collection of processors, which machine should run the  OM?

o W hat o ther restrictions on abs trac t Linda are imposed by its im plem entation, and how 

do they affect the  im plem entation  of ORS design?

In order to answer these questions, qualitative and quan tita t ive  analyses of real and 

abstract Linda are necessary.

3.3 M eth o d o lo g y  :

o E nvironm ent. All experim ents  are conducted on a cluster of IBM RS6000 w orksta

tions running AIX 3.2. T he cluster is supported by a central server which is slightly 

more powerful th a n  o ther  workstations. W ith  the remaining machines of equal pro

cessing power, the  environm ent can be considered as homogeneous. Linda tuple space 

operations create  and m anage a  tuple  space tha t is logically d istributed  across all work

stations. In fact, the  tup le  space is implemented as a collection of local tuple  lists, 

one per  workstation, each containing those tuples generated locally. Access to non-local 

tuple  lists is supported  via interprocess communication.
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o Program s. All experim ental program s are w ritten  in C-Linda and compiled wkh 

c lc(v2 .4 .6 )  com piler from  Scientific C om puting  Associates. Program s are distributed 

to  all the  machines using t sn e t  utility  program  and then executed, t s n e t  is an util

ity for invoking network Linda executables, setting up configuration files, distributing 

executables to  rem ote  machines, executing, removing executables, and killing remote 

processes. The configuration file contains the names of all machines participating in the 

distributed system  and the  d a tag ram  port num ber used for interprocess communication.

o T im in g . Three functions are provided in the C'-Linda toolkit for tim ing  modules. The 

tim ing functions im plem ent a  stopw atch facility tha t is useful for collecting statistics 

on parallel execution. These tim ing functions measure real time.

The three tim ing functions are :

-  s ta r tt im er ()  : initializes the stopwatch.

-  t im ersp lit ( la b e l)  : takes a tim e split (i.e., a stopwatch reading) when called, and 

labels the tim e split w ith  the specified label.

-  pr in ttim esQ  : prints all tim e splits executed so far in the tabular format with 

labels.

o R esults. Each test p rogram  is executed several times, with execution times averaged 

to produce the final result. All the programs are run under conditions when the load on 

the partic ipa ting  workstations, the server, and the local network are fairly static and 

minimal (i.e., when no o ther user is executing programs, leaving only system daemons 

active).

3.4 Q ualitative  eva luation  :

Q ualitative evaluation is an a t te m p t  to answer some of the specific questions raised during 

im plem entation of the  ORS design in C'-Linda. This evaluation is driven by the problems 

and concerns tha t arise during im plem entation.

Q uestion  1: Is it possible to  spawn a process on a specific processor using Linda opera

tions?
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M A IN

Begin

eval (Worker-process) 

in (destination-machine-uame)

End I*  MAIN * /

W orker-process

Begin

gethostnarae( Host-machine-name) 

out (Host-machine-name)

End /*  Worker Process */

Figure 19: Program 1

Im p o rta n ce  : T he  ORS design requires tha t instances of both  OM and O RB be located 

on particu lar  processors.

1-A (A b strac t  Linda): A bstract Linda is a program m ing model based on a shared 

global tuple  space with several tuple space operations. Because abstrac t Linda makes no 

reference to processors and their names, it does not directly support processor directed 

prim itive process m anagem ent.

1-B (C-Linda):

In Linda, eval is the only operation th a t  creates active processes on remote machines. 

The eval prim itive in C-Linda provides no direct form of process m anagem ent, bu t a C-Linda 

based process m anagem ent protocol can be developed.

Referring to  Figure 19 P rogram  1, the  main-program spawns a  worker on one of the 

processors from the  list of processors in the “tsnet.nodes’1 file th a t  defines the processors 

partic ipa ting  in the d is tr ibu ted  system 2. In C-Linda, the following default s trategy is used 

to m ap  processes to  processors. Each Linda program has a “tsnet.nodes” file th a t  lists the 

processors partic ipa ting  in the d istribu ted  program. The processor listed in the m iddle  of

S o u rc e  code for all programs is listed in Appendix B. The outline of programs is shown here.
2The name of the processors is sequentially listed on each line in the '“tsnet.nodes" file. In the discussion tha t  follows, the 

first item refers to the processor listed on the first line, the middle item refers to Lite processor Listed in the middle Line.
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M A IN

Begin

loop N times

eval (Worker-process) 

loop N times

in (des tination-machine-name)

E nd  /*  M A IN  */

W ork er-p rocess

Begin

get host name( Host-machine-name) 

o u t  (Host-machine-nam e)

End /*  Worker Process */

Figure 20: Program  2

the " tsnet.nodes” file is used as the  e v a l 's  ta rge t unless it is the local host. If the middle 

item is the  n am e  of the  local host, then  the  processor listed jus t above it is selected. Here 

we have some indication th a t  the  ev a led  process does not get. m apped to the local host, 

which is confirmed la ter by ano ther  test. If more than one eva l call is made, although the 

destination of the first call be predicted, the destination processors for subsequent calls to 

eval are random ly  chosen (See Figure 20, P rogram  2).

The protocol to  do direc ted  eval  is il lustrated  in Figures 21 and 22. The main routine s im 

ply evals  a worker process tup le  with one argum ent. Upon reaching a destination machine, 

the process discovers the  nam e of its destination machine by calling a built-in C'-function 

g e t h o s t n a m e .  T h e  process then  compares its destination with its intended destination. If 

they do not m a tch ,  the  e v a led  process te rm inates  and sends a message to the main routine 

indicating failure. T h e  m aste r  routine  eva ls  another such process, and continues until it 

succeeds in placing a process a t th e  correct destination. This m ethod of random spawning 

works because C-Linda m aps processes to  processors in a round robin fashion. The exact 

order in which th e  processors are chosen is random. This program may not always succeed 

in placing the  process on a given machine. If one tries to do a directed ev a l  to the local host, 

it never succeeds because the curren t C-Linda im plem entation never makes an a t te m p t to 

eval a process on th e  local host.

The program  also fails if one tries to m ake a directed eval to a processor which already
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M A IN

Begin

ou t  (D est ina tion -addres?)

loop forever

begin

eval (Worker-process) 

in (success-flag) 

if (success-flag =  T R U E )

Exit th e  loop

end

End I*  M A IN  */

Figure 21: Program  3 (Part-1)

has one ev a led  process running. This gives an indication tha t two processes are not eva led  

on the same processor. The following test confirms this claim. Program  4 ! J i s t e d  in the 

Appendix B. contains a main routine which evals  a few processes, then term inates alter 

all the processors reach their destination. The program executes without any problem if 

the  num ber of processes spawned is less th an  the num ber of actual processors listed in the 

“tsnet.nodes’’' file. However, if the num ber of evals  is more than the num ber of processors 

listed in the  processor list, the program  never term inates. There is nothing wrong with 

the program logic, bu t the program  fails to te rm ina te  because all the processes do not run 

simultaneously. W hen the  num ber of processes evaled  is more than  the number of processors 

listed in the “tsnet.nodes '’ file, the first N  processes are m apped one-to-one on the first A’ 

processors (barring the host). T he  remaining processes, tha t are stacked in a waiting list, 

get m apped  to a processor as soon as the process running on th a t  processor term inates. In 

program 5, shown in A ppendix  B, the process tha t gets m apped to a processor term inates 

only after all the  processes get m apped  to a processor. Because this condition can never be 

met, the program  enters a deadlock.

C-Linda R esu lt  S u m m ary  (Q u estion  1):

o C-Linda does not directly  support process (eval)  to processor mapping.

o It is possible to predict the destination of the only the first eva l operation.

3 P ro g ram  4 is a  slight m odification  of P ro g ram  3. See A ppendix  B source code listing for m ore details.
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o In most cases it is possible to  im plem ent a process to processor m apping protocol based 

on making repea ted  evals which succeed only when m apped to the correct destination.

o In some cases the  process to  processor m apping protocol does not succeed in placing a 

process on the  required  processor.

Q uestion  2: How can we spawn exactly  one process (O RB) on one processor ?

Im p ortan ce  : T he ORS design requires tha t exactly one ORB instance is running on 

one processor when the  ORS is in the operating phase.

2-A (A b stract  Linda): A bstrac t Linda, as explained before, does not support pro

cessor based process m anagem ent. Hence any notion that is processor specific cannot be 

realized in A bstrac t Linda.

2-B (C-Linda):

The protocol to  m ap  exactly one process on one processor is illustrated in Figure 23. 

Program  6. This program  evals N  - 1 processes. The destination  machines are chosen 

randomly but when all A - 1 processes find a destination, each processor except the local 

host has exactly one process running on it. The ORS design requires that if one of the 

ORBs stops com m unicating with the  OM. a new ORB instance has to be spawned on that 

processor. However, in C-Linda it is not possible to eval another process on a processor 

which already has one process running (See 1-B).

C-Linda R esu lt  S u m m a ry  (Q u estion  2):

o By spawning as m any  processes as there are processors, one can have exactly one process 

on a processor.

o Only norm al s ta r tu p  is supported  by the C-Linda im plem entation.

o C-Linda cannot always m a in ta in  exactly one process on a processor. When proces

sor or network failure d isturbs normal operation, the one-to-one m apping can also be 

disturbed.
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W orker-process

Begin

gethos tnam e( Host-machine-name) 

rd  (Destination-m achine-naine)

if (Destination-m achine-iiam e =  Host-machine-nameJ 

begin

o u t  (T R U E )

end

else /*  Host-machine-name is not D estina tion-m achine-nam e * / 

begin

o u t  (T R U E ) 

te rm ina te

end

End /*  Worker Process */

Figure 22: Program  3 (Part 2)

Q u e s t io n  3: How can a user com municate with the evaled  process (O RB)?

I m p o r t a n c e  : T h e  prim ary  objective of developing an O bject Registration System is to 

enable users to add. delete, and execute object or object instances in a d is tr ibu ted  environ

ment. It is very im p o rtan t  th a t  the user on processor P, be able to com m unicate  with the 

ORB on th a t  processor.

3 -A  ( A b s t r a c t  L i n d a ) :  A user is associated with a processor. Thus com m unication  

between user and an ev a led  process is, in effect, communication between the eva led  process 

and a user on a particu la r  processor. Abstract Linda does not support processor based 

themes; hence a specific com m unication channel cannot be established between an eva led  

process and a  user in A bstrac t Linda.

3 -B : C - L in d a :

A simple protocol th a t  a t te m p ts  to  establish communication between a user and an ev a led  

process is described in P rogram  7 (Figure 24). The M AIN -M OD U LE(O M ), running  on 

processor Pj ev a ls  an O R B  process on processor Pi. The ORB uses a g e t s  routine (g e t s  is 

a s tandard  C function to  read  a string from the  user) to read a message from the  user, then
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M A IN

Begin

loop (N - 1) times

eval (W orker-process)

E nd  !* MAIN * /

Figure 23: Program  6

echos the message back on the  user's screen using a printf statem ent. The message should 

be read from the  user on the  processor on which the ORB-process is running. However, 

in the C-Linda im plem entation , the spawned O R B  process spawned is unable to read any 

information from the  user on e ither the rem ote  machine or the local machine. Further, any 

ou tpu t generated is prin ted  on the  machine th a t  hosts OM. This lest shows that a process 

evaled  on processor P, cannot directly com m unicate  with the user on that processor via 

simple I /O .

The com m unication protocol is modified in Program  S (Figure do) so that the evaled 

ORB process reads from one file and writes messages into another file on its host processor 

P,. Test execution shows th a t  spawned processes are able to read and write into files on their 

host processor, so th a t  files can be used as logical “pipes" between ORB and user processes.

C-Linda R esu lt  S u m m a r y  (Q u estion  3):

o User and ev a led  processes com m unicate  indirectly through files. That is. the user 

process writes com m ands into an input file and reads the result from the o u tp u t  file, 

while the O RB reads the com mands from input file and writes the results into the 

ou tpu t file.

Conclusion:

o Direct com m unication between user processes and evaled  processes (O RB) on a pro

cessor is not possible.

Q uestion 4: How does the m aster  (OM) de tec t ORB failure and vice-versa ?

Im portance  : To build a robust d is tribu ted  system, it is necessary for both the OM and 

the ORBs to detect the  failures of o ther components.
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4-A  (A b strac t  Linda): In abstrac t Linda, the  OM and ORBs are process tuples which 

periodically exchange inform ation to  ensure proper functioning. W hen the OM process tuple  

fails to get messages from the  O RB process tuple within the tim eout period, the OM detects 

ORB failure and the OM creates a new process tuple to function as an ORB. Likewise the 

ORBs can also detect OM failure when they stop receiving a h v e om message from the OM.

4-B: C-Linda

All C-Linda programs are executed using tsn e t  utility program. This utility  program 

distributes the executables to all the  machines listed in the "tsnet.nodes" file[2j. Program  9 1 

illustrates a trivial ORS system  where the OM 0:1  the m aster eva ls  ORB.s 011 all the worker 

processors. W hen the normal s ta r tu p  is complete, the ORBs periodically send alive message 

to OM and the OM sends aliveom message to all ORBs. Under this sieacly state, if an O R B ; 

fails, the OM detects failure only when it stops receiving the periodic al ic t .  message within 

its tim eout period. Thus failure detection is not instant and it takes at least one system 

tick to sense failure. In the experim ent. ORB failure was sim ulated  by te rm inating  the ORB 

process on processor Pt through an external term ination  signal. As soon as one of the ORB 

process is killed, the tsn et utility  im mediately sensed ORB failure and te rm inated  all o ther 

ORBs and the OM. Thus the OM never was able to detect ORB failure, as the tsn e t  utility 

provided an im m ediate, conflicting response (i.e.. to te rm inate  all system processes).

In order to prevent tsn e t  from detecting failures, the ORB m ust be able to trap  all the 

term in a tio n  signals th a t  can cause its te rm ination and perform a normal te rm ination  prior 

to destroying its tuple  space. However there are signals which can never be trapped by ORB: 

when one of these signals are generated, the entire system falls apart .

C-Linda R esu lt  S u m m ary  (Q uestion  4):

o An accidently te rm inated  ORB term inates the entire ORS system.

o Term ination signals sent by the operating system cause O R B  term ination. Most of 

these te rm ination  signals can be trapped by the ORB and the  O RB can in itia te  normal 

te rm ination  upon receiving these signals.

4 See A ppendix  B
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M A IN

Begin

eval (O RB-process)

End /*  MAIN * /

O R B -p ro cess

Begin

gets (message) 

prin tf  (message)

End /*  ORB-process  */

Figure 24: Program  7

o Some te rm ination  signals can never be trapped  by the ORB. 1 hese signals eventually  

lead to system  term ination .

Conclusion:

o C-Linda does not allow O R B  and the OM to detect failure.

o A com pletely  robust ORS system cannot be built using the current Linda im p lem en ta 

tion.

Q u estion  5: Can L inda program  work with UNIX fo rk  calls ?

Im portance: O ne of the  functions of ORB in the ORS design is to support m ultip le

users on a single machine. In order to  do this, either the ORB has to serve each user in a 

tim esharing fashion or it has to spawn a new process to serve every user.

5-A: A b stra ct  Linda: A bstrac t Linda is system independent. It does not assum e 

anything about the  underlying architecture or the operating system. Hence, there should 

not be any problem  with using UNIX fork calls in abstract Linda programs.

5-B: C-Linda:

There  are two approaches to  support m ultiple ORS users. One approach is to have a 

single O RB process th a t  a t tends  to all users’ need by timesharing. The second approach  is 

to have the  O RB instance on a processor create a separate process for each user requesting
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M A IN

Begin

eval (ORB-process)

End  I*  MAIN * /

O R B  - p r o c e s s  

Begin

O pen  FILE-A

message =  Read (F ILE -A )

O pen  FILE-B

W rite (FILE-B  , message)

End /*  ORB-process */

Figure 25: Program 8

service. This la tte r  approach is a s tandard  method used normally in client-server based 

applications. In order to realize the  second approach, a process has to be spawned lo serve 

each user. However, using eval to create a server process for each user will not work because 

in C-Linda the destination processor of an eval opera! ion is never the local host. Moreover. 

C-Linda does not allow m ore th an  one process to be spawned on out1 processor (Sec* 1-B).

The only o ther option left is to  use the l TNIX fork com m and to create a new process. 

The process created inherits all run-tim e information from the parent process. Program  10 ’ 

dem onstrates  the effect of using UNIX fork calls in (.'-Linda routines. In this program, the 

m ain-m odule spawns the processes using eva l and each spawned process spawns two sub- 

processes using fork. T he  new subprocesses created com m unicate  with the main-routine by 

sending messages. Upon testing the program, it was noted th a t  the main-routine received 

multiple messages from a sub-process when only one message was sent. The Linda, system 

behaved unpredictable-, and the  system  finally crashed. This behavior results because the  

forked process inherits a  copy of all d a ta  structures from the parent process, including the 

message table and hash table used to manage the (.'-Linda tuple  space. Thus, there will 

be multiple hash tables and message tables. Further, the alarm s for the child process are 

cleared when fork is called [5]. C-Linda uses the alarm signal (SIGALRM ), hash tables, 

and message tables for its norm al tup le  space m anagem ent. Calling fork interferes with this 

normal operation and produces unpredic table results.

6See A ppendix  B

39



C -Linda R esu lt  S u m m a ry  (Q u estion  5):

0  C-Linda does not work properly when the  UNIX fo rk  function is called. System 

execution becomes chaotic and term inates abnormally.

o It is impossible to  create a new process to handle each user. Instead, the ORB should 

serve each user in a tim eshared  fashion.

O ther L im ita tion s  o f  Linda Im p lem en ta tion

o Linda uses S IG T E R M  (Software term ination  signal), SIGALRM (Alarm signal), and 

SIGIO ( I /O  signal) signals for its proper operation. These signals should nor be rede

fined in the  C-Linda program. Further, functions like sleep, usleep. longjump. setjmp. 

alarm, ualarm  should not be used in the program. These function calls redefine signals 

used by C-Linda. which may result in im proper operation of the (.'-Linda system.

o The program  should not contain functions th a t  allocate or deallocate memory segments. 

Function calls like calloc, malloc, and sbrk should not be used in C-Linda programs.

o The processes created by using eval can only accept simple data  types as argum ents. 

Aggregates (an array or a dynamically allocated chunk of memory) cannot be passed 

as param eters  to the evaled processes.

C-Linda allows the following eval operation where the  spawned process has two p a ra m 

eters: an integer, and a  real number.

eva l(process(10  , 13.34 ))

C-Linda does not allow th e  following eval operation where the param eter passed to the 

evaled process is an array of numbers.

eval(process(array))

This lim itation  of C-Linda forces a restriction during ORS implementation. Complex 

information th a t  needs to  passed to a spawned process has to be passed as a message in 

the global tup le  space. F urther  the tuple m atching  is fairly rigid and objects of dynam ic 

size cannot be retrieved from the tuple space using anti-tuples.
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Chapter 4

Q uantitative Evaluation

This chap ter  describes benchm arks tha t reflect performance measures for different p r im i

tives of parallel com puta tion  with ORS implementation in mind. The benchm ark is based on 

Linda tup le  s p a c e . ' T he  results of a benchmark are influenced not only by the perform ance 

of the underlying architecture, but also by the im plem entation of Linda on tha t arch itectu re  

[ ! ] •

Srikanth K am bhatla ,  Jon Inouye. and Jonathan  Walpole[l] describe the benchm arking  

of Linda on parallel machines via a software architecture. Benchm arking using software 

arch itecture makes the resulting benchmarks portable since the use of software arch itectu re  

masks the diversities of underlying architectures. "BeLinda’’ is the software benchm ark tha t 

is based on Linda tuple  space. “BeLinda" defines an appropria te  level of abstraction for 

comparing different parallel platforms. Using "BeLinda". three different Linda based para l

lel architectures were evaluated: Sequent S ym m etry" .  The Intel iP S C /2  and the Cogent 

X TM  8. B enchm ark  results on these architectures were then com pared. Results showed tha t 

the cost of doing any Linda prim itive operation on shared m em ory architecture is su b s ta n 

tially less th an  on any o ther machine. Distributed memory architecture and hybrid network 

architecture incur com m unication overhead during tuple space operations. Overall perfor

mance of Sequent Sym m etry  is be t te r  than the rest. iPSC /2 . which is based on d is tr ibu ted  

memory m odel, is com paratively be tte r  than the Cogent X TM , which is based 011 hybrid 

networking. These results led to the conclusion th a t  com munication plays a big role in the 

im plem entation  of any parallel architecture.

My approach to benchm arking specifies the performance with respect to ORS on a spe

cific parallel architecture: A cluster of workstations in a network environm ent. W hereas 

‘‘BeLinda’' gives a comparision of Linda implementation on different parallel architectures.

6 Sequent S y m m etry  is based  on sh a red  m em ory  arch itec tu re .

7 In te l iP S C /2  a rch ite c tu re  consists of a  d is tr ib u te d  m em ory m odel.

8Cogent XTM  w o rk sta tio n s form ed a hybrid  netw ork of a shared  bus and a  crossbar.
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4.1 Sp ecif ication  :

The benchm ark  suite  is a set of seven individual programs that evaluate the  characteristics 

of C-Linda. T he  benchm ark  suite is designed with the ORS design in mind, and with the 

specific goal of providing answers to the following questions.

o W h at is the average tim e taken  to perform each primitive operation ?

o It is known th a t  messages and d a ta  should be placed in the tuple space as tuples. W hat 

is the effect of the num ber of param eters  in the tuple for each prim itive operation?

o Tuples are ex trac ted  from the tuple  space by tuple matching. What, is the effect of the 

num ber of actual (known) and formal (unknown) parameters in an anti-tuple?

o Messages and d a ta  have to be moved in and  out of the tuple space during ORS operation. 

W hat is the  effect of the size of the message on system performance? Is it be t te r  to 

send d a ta  in num erous small packets or as a single huge packet?

o As user adds m ore objects  into the tuple space, the size of the tuple space grows. Is 

there any lim it on tuple  space size ? If so, what is the m aximum limit ?

o ORBs and OM periodically exchange alive messages. W hat is the average latency tim e 

between sending and receiving messages ?

o In the ORS, there is a single m aster  and several worker machines. W hat factors de te r

mine the selection of a m aste r  machine ?

B enchm ark 1 (p rim itives.c l):

Benchmark P rogram  l 9 evaluates the cost of doing the basic Linda prim itive operations 

by performing N  p rim itive operations of each type. The time is then divided by N  to  obtain 

the average tim e for each individual operation.

9 Source code Listing of a ll th e  B enchm ark  P ro g ram s is lis ted  in A ppendix  C. Inline code shows th e  a lg o rith m  used in pseudo 
code.
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Operation

IN

Time (sec) 

0.0050272

OUT 0,0030588

RD 0 .0049597

IN? 0 .0050056

RD? 0 .0050089

EVAL 0 .0032121

T a b le  1

B e n c h m a r k  P r o g r a m  1:

M A I N

Begin

Start T im e =  G etT inn:()  

loop N times

do-a-prim itive-operation /*  e.g., O U T  */

S topT im e =  G etT iine

AverageTiine =  ( S to pT im e  - S ta r tT im e  ) /  N

End /*  MAIN' */

Prim itive  operations th a t  add tuples into the tuple  space (o u t  and eva l)  take almost 

the same time. Prim itive operations tha t remove the tup le  from the tuple space fall under 

another category and they take almost the same tim e, which is higher than  the tim e taken 

by o u t  and ev a l  (See Table 1). Tuple reading operations take more time since they have to 

do tuple m atching  before removing the tuple from the  tuple  space. Hence the difference in 

time roughly corresponds to the tuple-m atching overhead.

Graph 1 shows the effect of sending multiple messages. From the graph it is d e a r  tha t 

there is no additional overhead when multiple messages are sent in succession.
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B e n c h m a r k  2 ( a c t u a l s .c l ) :

B enchm ark  Program  2 evaluates the cost of executing a primitive operation with a varying 

num ber of actuals in the tuple. This is achieved by varying the number of actuals and timing 

the o u t ,  in ,  and, r d  operations.

B e n c h m a r k  P r o g r a m  2:

M A I N  ■

Begin

S tar lT iine  =  GetTim t. ' l) 

loop N times

O U T  ( p a ra m l ,  p a ra m j .  ... , param.X )

S topT im e =  G etT im e

AverageTime =  ( StopTime - S t. ir tTiine ) /  N

End /*  MAIN */

T he  results in Table 2 and G raph 2 show tha t the number of actual param eters  in a tuple 

does not add significant overhead while adding or retrieving tuples. The only overhead is 

the  t im e  taken to  perform a prim itive operation. This would mean tha t instead of sending 

several single param ete r  messages, it is more efficient to send a few m ulti-param eter  messages. 

Moreover, in cases where several param eters  have to be passed from one node to another,
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Number of Actual parameters 

(1000 messages)

1 2 4 e 16 32 64 c i 2

OUT 3 . 3 0 7 6 7 2 3 . 4 3 2 1 5 4 3 . 3 0 8 1 8 0 3 . 2 9 5 5 7 9 3 . 2 5 6 8 7 1 3 . 5 5 0 1 3 2 3 . 4 7 3 9 1 9 5 . 2 9 9 5 4 5

IN 5 . 8 5 5 9 5 9 5 . 9 8 8 7 6 5 6 . 0 0 3 9 5 5 6 . 2 1 9 7 0 5 6 . 4C 0 1 9 S 6 . 1 8 7 5 C 5 6 . 3 3 0 4 7 1 6 . 9 2 S 3 2 6

RD 5 . 8 8 6 4 0 1 6 . 0 8 9 6 3 5 5 . 9 2 0 3 5 0 6 . 1 0 1 1 8 0 6 . 2 5 5 1 7 3 € . 2 3 9 1 2 5 6 . 2 5 5 2 3 8 6 . 9 3 3 6 8 7

Table 2

the cost of adding or deleting a few param eters  is insignificant when compared to the tim e 

taken to perform the primitive operation.

B enchm ark 3 (form als.cl):

Benchm ark Program  3 evaluates the  cost ol executing a prim itive operation with a varying 

num ber of formals in the anti-tuple. This is achieved by varving the number of formals in 

the tuple ans tim ing rd and in operations.

B en ch m ark  P rogram  3:

M A I N

Begin

S ta r tT i in e  =  G e tT im e j)  

loop N times

IN ( fo rm ali .  a c tu a l l  actualX  )

S to pT im e  =  G etT im e

A verageT im e =  ( S topT im e - S ta r tT im e  ) /  N 

E nd  /*  M A IN  */

The num ber of known and unknown param eters  does not have much effect on the time 

to perform a prim itive operation. No conclusive stand, regarding the exact nature of tuple
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matching, can be taken from the results obtained (See Table 3). The results seem to indicate 

th a t  tuple  m atching  takes more tim e when the number of forma! param eters  in the ant i-tuple 

is zero or m axim um  and takes the least time for an in term ediate  num ber of formal param eters.

B en ch m ark  4 (m essage.c l):

Benchm ark Program  4 measures the time to send messages of different sizes.

B en ch m ark  P rogram  4:

-M ain-m odute  spawns two processors f'i and / V

-Pi  sends a sequence of packets of size ;Y to Pi.

-T im e taken by P2 to receive packets is me.isured.

-E xper im en t  is repeated for different packet sizes.

From the  results, it is clear tha t up to a certain extent, it is b e t te r  to send a few large 

packets than  to send several small packets of data. For example, the results in Table 4 show 

th a t  the tim e to send 10000 bytes of message would be 3d.07 seconds for 10,000 packets 

of size 1, 0.7 seconds for 100 packets of size 100, and 0.0424 seconds for 1 packet of size 

10,000. However, to send a very huge packet of size 2,000,000, it is m ore efficient to send 

two packets of size 1,000,000 ra ther  than  a single packet, i.e., 219.G29 seconds vs. 20.672
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Nur ac er  o f  F o r m a l  p a r a m e t e r s

(1COO O p e r a t i o n s )

0 1 2 3 4 S 6 7 6

i s
(NO Of

p a e a n s )

I  6 . 7 7 6 5 9 6 . 4 2 7 C 3

2 6 . 3 6 2 6 9 6 . 2 0 1 8 4 6 . 0 2 6 2 9

4 5 . 9 5 1 6 5 6 . 1 4 9 0 0 5 - 7 8 3 2 7  6 . 2 5 9 0 2  5 . 6 1 8 9 2

fi 6 . 2 3 7 7 ? 5 . 9 3 1 5 7 5 . 7 9 2 3 2  5 . 8 1 3 9 3  5 . 7 9 2 9 6  5 - 9 5 * 5 6  6 . 1 1 5 3 2  5 . 9 C 6 6 6  6 . 4 6 6 5 2

Table 3
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S i z e

N u r e e r  c f  p a e x e i a

1 10 SC IOC 1DC0

1 0 . 0 1 2 8 0 . 0 8 0 8 0 . 1 6 3 0 . 6 9 6 . 7 3 8 3 3 . C * " '  32 2 . 0 2 :  
v _

100 o . o : : 0 . 3 7 5 0 . 3 1 3 o . i c ' 3 . 1 9 8 3 2 . 2 9 3  1 6 3 . 3 5 “

10CC 0 . 0 1 3 4 0 . 1 2 1 C. 199 0 . 3 5 8 3.  628 8 2 . 9 '  >452

1 0 0 0 0 0 . 4 2 8 1. 3 . 3 1 1 3 1 . 1 2 3 >245

5 0 0 0 0 0 . 1 2 1 8 1 . 0 9 9 5 . 5 4 6 1 2 . 2 3 “ >212

1OC000 0 . 2 4 3 2 . 0 ? 1 1 S . 4 J 5 2 0 . 8 4 . I K

5CCCC3 1 . 0 2  9 1 0 . 6 2 1 1 2 5 . 6 >215

1 0 0 0 0 0 0 2 . 0 9 1 20 . 61 2 >259

20CCC0- : 2 : 3 . 6 2 9 >215

Table 4

seconds. This implies th a t  the re  is a limit on the message size that can be placed in the 

tup le  space. Results show th a t  packet size greater than  000.000 cannot be efficiently sent

from one process to another.

B en ch m ark  5 (flood.cl):

Benchm ark Program  5 measures the impact of flooding the tuple space with messages. 

B en ch m ark  P rogram  5:

M A I N

Begin

Do Until ProgramCroshes 

O U T  ( A-Message )

End  /*  MAIN */

This benchm ark finds the  size of the tuple space. From the results in Table 5 and G raph 

5, it can be seen th a t  as the  size of the message increases, the number of messages tha t 

can be accom odated in th e  tup le  space decreases. T he  graph  is similar to  a  hyperparabolic
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function, where the  product of x and y is a constant. This indicates that the size of the 

tuple space is a constant defined in the im plem entation  as (about) 3,000.000 bytes.

B en ch m ark  6 (latency.cl):

Benchmark Program  6 measures the average tim e to exchange messages between two 

processes running on different machines.

Benchm ark Program  6:

-Spawn processes Pi and P>.

-Pi  and P2 exchange N  messages.

-T h e  time taken is measured.

Latency, in this context, is the tim e taken to send a message to a process on a different host 

and receive a response back from th a t  process. From the results in Table 6, it can be noted 

tha t the average latency time between any two processes running on different workstations 

in a homogeneous environm ent is the  same.
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(for SCO message transfers to ana frc j

M ac hine  1 Machine 2 Time l ae e:

H uc kle l i n e u p 6.  3

S c h w c  ly Banrtack 6 . :

C ap rc n B ig n o ie £ .2

Table 6

Benchm ark 7 (d istr ib u tion .c l):

Benchmark Program  7 measures the time taken to d istr ibute  N identical processes irom 

a machine.

B enchm ark P rogram  7:

-Spaw n N  processes.

-F ind  ou t  the  dest ina t ion  of the spawned processes.

-D eterm ine  the tim e taken.

Discussion:

Distribution of N  processes to machines from a given machine will give a distribution 

of processes as discussed in C hap te r  3. This d istribution is a measure of the power of the 

machine, in the sense th a t  a  given processor will receive more processes only if it is able to 

execute them  to te rm ina tion , one by one. From the results in Table 7, it can be seen tha t 

the processor “huckle” executes to completion more processes than  the rest, indicating tha t 

it is more powerful th an  the  rest. T he  tim e taken indicates the tim e taken to d istribute and 

realize the work. From the  result, it can be seen th a t  work distribution from ‘l in e u p ” took 

less time than  the  rest.
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N um ce r

h a s  no  p r o c e s s e s  s p a w n e d  or. 

©J p r o c e s s e s  s p a v n e c  : H Q

i t s e l f )

h u c k i e t i n c u p b a n n a c k s c n i v e l y  S t i l l w a t e r  l e i t r . i c a c r c n f c ; ? r . c l e  T I K E t s e .

0 20 19 20 15  2 i 20 21 1 1 . 5 3 9

31 0 17 22 19  19 IT IT 1 2 . S i s

3 C 19 0 19 1 9 22 r 15 l l

28 18 19 0 2 0  13 19 n .

23 21 21 19 o : : 16 - -

22 2- 25  21 C : :

20 20 2'. 0 19 1C ' 1 5

26 I ? j : 22 22 0 i : . 4  -35

Table 7

4.2  I m p a c t  o f  Q u a n t i t a t i v e  e v a l u a t i o n  o n  O R S  I m p l e m e n t a t i o n :

o In O R S  im plem entation, when messages have to be read, it is preferable to us*1 non

blocking versions ( in p  and r d p )  than blocking versions (in  and rd ) .  This allows the 

C'-Linda program to handle timeouts in tailed read operations without, taking additional 

time.

o W hile transferring inform ation from one ORB to another, it is generally more efficient 

to  send a few large packets than  numerous small packets. However, a very large packet 

of da ta  can fill the entire tuple space, which can crasli the system.

o T he size of the tuple space is limited. The sum of inform ation stored in the tuple 

space, objects and messages, cannot exceed this limit. If the  ORS has stored lot of 

information, then only a  part  of it can be in the active tuple space and the rest has to 

be on secondary storage.

o In a homogeneous network, the average time to pass messages between any two proces

sors is the  same irrespective of the two processors involved. Further, the distribution
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experim ent shows th a t  in a homogeneous network with processors of unequal power, 

any processor can have the  OM running on it. For example, in the experim ental envi

ronm ent, it is b e t te r  to have the  m aster  on the processor “lineup” than  on the more 

powerful server processor “huckie” .
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C hapter 5

Sum m ary and C onclusions

5.1 S u m m a ry

C hapter 2 describes the ORS design th a t  satisfies all requirem ents stated  in C hap ter  1. 

The design is robust as it can absorb processor and network failures. However, as s ta ted  

earlier, all the protocols described in the design cannot be directly  m apped to the actual 

im plem entation in C-Linda. The qualitative and quan tita t ive  evaluation showed iliar it is 

indeed true. C hap te r  3 exposes some of the im plem entation limitations of C-Linda through a 

series of experim ents. Q ualita tive  evaluation shows tha t fault tolerance, which is a key note in 

the design, cannot be achieved with the current C-Linda im plem entation. C hapter 4. through 

a set of benchm ark programs, shows tha t message size and tuple space size are constrained 

by C-Linda which can cause serious problems in ORS im plem entation. Results garnered

from the preceding two chapters give enough hints to direct the actual ORS im plem entation

in C-Linda. For instance, the im plem entation  need not concentrate  on having sub-sections 

of programs to  handle processor failures since C-Linda does not tolerate processor failures.

5.2 P r o to ty p e  im p lem en ta t io n  o f ORS

The pro to type system  has the following features.

o The system  is capable of normal s ta r tup , operation, and term ination.

o T he system  is not robust and  is prone to processor failures.

o Com m unica tion  between the  user and ORB is through files. T he  user interacts with an 

independent program  which interacts with the ORB on th a t  machine through files.

o The user can register simple objects and retrieve them.

o The system  supports  a “super-ORS-user” who can control system behavior and te rm i

nation.

o T he  ORB keeps a log of all user com mands and the s ta tus  of OM.
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o T he OM saves all the  objects  in the  tup le  space at regular intervals. It also keeps a log 

of other system inform ation like O RB alive messages.

o T he system also saves all ob jec t tuples im m ediately  before normal system term ination. 

Thus, inform ation can be accessed across different ORS sessions.

Given the  ORS, one should have a  d is tr ibu ted  environm ent to run this software. Network 

programs generated by C-Linda execute w ith the  following restrictions. All the processors 

in the d is tr ibu ted  system m ust be listed in the configuration file "tsnet.nodes” . Processors 

cannot be added dynam ically  to this file during program  execution. The program has to be 

red istributed and executed using t s n e t  in order to have a new configuration for the d is tr ibu t

ed system. Merely listing processor nam es in “tsnet.nodes" is not the only requirement for 

program execution in the d is tr ibu ted  environm ent. T h en ' must be a login account with the 

same nam e on every machine listed in “tsnet.nodes" file. Further, the login accounts have 

to set up such th a t  each m achine trus ts  the  o ther (this information has to be given in the 

file “.rhosts" file in UNIX environm ent). Once this has been set up, the user on one machine 

can log on to another m achine with the same user nam e without typing in the password. 

This environm ent is stric tly  required by C-Linda programs because C-Linda internally uses 

r s h  com m and to execute rem ote  processes.

5.3 C onclusion

D esign

The ORS design is robust as it can w ithstand  processor failure and network partitioning. 

The Object Registration System  re tu rns  back to  the  normal configuration when processor 

a n d /o r  network fault is rectified.

Im p lem en ta tion

o A bstract Linda is well suited  for im plem enting ORS design because its high level a p 

proach to d is tr ibu ted  program m ing hides most of the details of communication and 

process m anagem ent. T h e  only lim ita tion  it has is directed process to processor m a p 
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ping, which is easily circumvented by a simple protocol.

o T he curren t C-Linda im plem entation  of abstrac t Linda is not robust, and cannot provide 

a robust im plem en ta tion  of the  ORS.

o In order to  build a robust ORS in real Linda, the following changes need to be m ade in 

C-Linda im plem entation .

— T he ts n e t  utility  program  which manages the  tup le  space should be m ore flexible. 

Instead of te rm ina ting  the entire ORS system upon detecting  te rm ination  of a 

rem ote process (O RB), tsn e t  should allow p rogram m er intervention at tha t point. 

This concept is very similar to UNIX signal handling, where one can call a function 

when a signal is raised.

— C-Linda should allow the use of signals in C-Linda programs. Instead of reserving 

the signals for system  use and thus preventing user handling of those signals, an 

a l te rna te  C-Linda im plem entation  should be provided so th a t  the C-Linda system  

distinguishes between program invoked signals and its internal signals. Likewise. 

C-Linda should provide its own version of m a l lo c  function.

Future D irections:

o Isolation of an O RB instance either due to processor failure or network parti tion ing  

leaves the objects registered on the isolated processor inaccessible to user requests from 

O RBs on o ther processors. This problem is specific to data  m anagem ent in a d is tr ibu ted  

system. T he ORS is a form of d istributed database  system  where each processor holds 

a pa r t  of the  d a ta  and  no two processors store com m on information. W hen  a processor 

fails, all inform ation th a t  is associated with it is lost unless the processor periodically 

saves d a ta  on its secondary storage. The stored da ta ,  however, will not be available to 

the  d is tribu ted  system  as long as tha t processor is down. In order to avoid tem porary  

d a ta  loss due to  processor failure, objects th a t  are registered through an O RB m ust be 

stored on m ore than  one processor so tha t the objects are still available to the  ORS when 

one processor fails. T he  d a ta  still m ay not be retrievable though if both the  processors 

fail, though the  probability  th a t  both fail is much lower than  a  single processor failure,
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d a ta  redundancy  requires special protocols to sim ulate concurrent updates to replicated 

objects. T hese  are  th e  issues th a t  are not dealt in the ORS design. D eterm ining the 

type of d a ta  d is tr ibu tion  is another m ajor step in having a robust system. F u rther  

investigation needs to be done in this direction.

o T he  s tru c tu re  of objects  has to  be carefully designed depending upon user needs. This 

is an essential step in having a working ORS system.

o T he  user interface, which is a simple com m and line, can be improved with a window 

interface.

o C om m unica tion  between the O RB and the user is established through files in the current- 

version of ORS. This m ode of com m unication is very slow when compared to other forms 

of com m unica tion  channels available. Use of shared memory for communication is an 

a lte rna tive  m e thod  which can be given some thought.
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time tO
M essage

reply

time t3 
time t4—x

Machine A Machine B

(i) At time to, machine A sends a  m essage to machine B

(ii) Machine B receives the m essage at time t1

(iii) Machine B sends a  reply at time t2

(iv) Machine A receives reply at time t3

(v) Machine A sends another m essage at time t4 and is lost.

Understanding Timing Diagrams
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/* Benchmark Program 1 */
/* File : primitives.cl 
* Description :This program evaluates the cost of doing Linda out(), in() 

rd(), inp (), rdp<), and eval() operations by performing size primitive operations of each type. The time is then 
In case of eval(), a null eval which does no processing is performed.

real_main(int argc,. char ** argv) { 
int i; 
int size;
if (argc != 2) exit (); size = atoi(argv[l]);
start^timer(); /* Start the timer */
for (T = 0; i < size; i++) /* Do size out() operations */ out("hello"); timer_split("out"); /* Get the time */ 
print_times(); /* print the time */start timer();/* Start the timer */
for (T =0; i < size; i++)/* Do size rd() operations */ rd("hello"); timer_split("rd");/* Get the time */ 
print_times(); /* print the time */start timer(j;/* Start the timer */for (T = 0 ;  i < size; i++)/* Do size in() operations */ 

in("hello"); timer_split("in");/* Get the time */ print_times(); /* print the time */start timer();/* Start the timer */ for (T = 0 ;  i < size; i++)/* Do size out() out("hello"); timer_split("out");/* Get the time */ 
print_times(); /* print the time */start^_timer (j ;/* Start the timer */ for (T = 0 ;  i < size; i++)/* Do size rdp() rdp("hello"); 
timer_split("rdp");/* Get the time * print_times(); /* print the time */start timer();/* Start the timer */ 
for (T = 0;  i < size; i++)/* Do size inp() inp("hello"); 
timer_split("inp");/* Get the time */ 
print_times(); /* print the time */start^_timer ();/* Start the timer */ for (T = 0 ;  i < size; i++)/* Do size eval() operations */ 

eval();
timer_split("eval");/* Get the time */ print_times(); /* print the time */

operations */

operations */

operations */
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/* Benchmark Program 2 */ 62
/* actuals.cl */.
real_main(int argc, char** argv) { 

int i,size,typel; int worker(int);
if (argc != 2) {
printf ("Usage : %s FormalNum (1..7)\n",argv[0]);

}typel = atoi(argv[l]); 
eval(worker(typel));

int worker(int type) {
int i , j;

for (j = 0; j < 10; j++) {
start_timer(); 
if (type = 1)for (i = 0; i < 1000 ; i++)

out(1); else if (type = 2)
for (i = 0; i < 1000 ; i++)out(1,2); 
else if (type = 3)for (i =0; i < 1000 ; i++)out (1,2,3,4); else if (type = 4)for (i =0; i < 1000 ; i++)out(1,2,3,4,5,6,7,8); else if (type = 5)for (i = 0; i < 1000 ; i++)out (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16); 
else if (type = 6)for (i = 0; i < 1000 ; i++)

out(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32); 
else if (type = 7)for (i =0; i < 1000 ; i++)

out (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,2 9,30, 
31,32,33,34,35,36,37,38,39,40, 41,42,43,44,45,4 6,47,48,4 9,50,51,52,53,54,55,56,57,58,59,60,61, 62, 63, 64); 

elsefor (i = 0; i < 1000 ; i++)
out(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16.17.18.19.20.21.22.23.24.25.26.2 7,2 8,29,30,31,32,

33.34.35.36.37.38.39.40.41.42.43.44.45.4 6,4 7,48,4 9,
50,51,52,53,54,55,56,57,58,5 9, 60, 61, 62, 63, 64,1,2,3, 4, 5, 6, 7, 8, 9, 10, 11, 12,13, 14, 15, 16, 17, 18, 19, 20,21, 22,23.24.25.26.27.28.2 9,30,31,32,33,34,35,36,37,38,39,
40.41.42.43.44.45.4 6,47,48,4 9,50, 51,52,53, 54,55,56, 57,58,59,60,61,62,63,64,1,2,3,4,5,6,7,8,9,10,11,12, 
13, 14,15,16,17,18,19,20,21,22,23, 24,25,26,27,28,29, 
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44-, 45, 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63, 
64,1,2,3,4,5,6,7,8,9,10,11,12,13, 14,15,16,17,18,19, 
20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36, 
37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59, 60, 61,62, 63, 64, 1, 2, 3,4, 5, 6,7,8, 9, 
10,11,12,13,14,15,16,17,18,19,20-, 21, 22, 23, 24,25, 26, 27,28,29,30,31,32,33,34,35,36,37,38,39,40, 41,42,43,



63
44,45, 46, 47, 48,4 9,50,51,52,53,54,55,56, 57, 58, 59, 60,
61,62,63,64,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, 
17,18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 2'8, 29, 30, 31, 32, 33, 34,35,36,37,38,39,4 0,41,42,43,44,45,46,47,48,4 9,50,
51,52,53,54,55,56,57,58,5 9, 60, 61, 62, 63, 64,1,2,3,4,5, 
6,7, 8, 9,10, 11,12, 13,14, 15,16,17, 18, 19, 20,21,22,23, 24,25,26,27,28,2 9,30,31,32,33,34,35,36,37,38,39,40,41, 
42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58, 59, 60, 61, 62, 63, 64, 1,2,3, 4,5, 6, 7, 8, 9, 10, 11, 12, 13,14, 
15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31, 
32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64); 
timer split("Out done"); if (type = 1)
for (i =0; i < 1000 ; i++) rd(1); else if (type = 2)
for (i = 0; i < 1000 ; i++)

rd(l,2); else if (type = 3)
for (i = 0; i < 1000 ; i++)rd(l, 2,3,4) ; else if (type = 4)for (i =0; i < 1000 ; i++)

rd (1,2, 3, 4, 5, 6, 7,8); else if (type = 5)for (i = 0; i < 1000 ; i++)
rd(l,2,3,4,5, 6, 7,8,9,10,11,12,13,14,15,16); else if (type = 6)for (i =0; i < 1000 ; i++)rd(1,2,3,4,5,6,7,8, 9,10,11,12,13,14,15,

16,17,18, 19,20, 21,22,23,24,25,26,2 7,28,29> 30,31,32); else if (type = 7)for (i = 0; i < 1000 ; i++)
rd(l,2,3,4,5,6,7,8,9,10,11,12,13,14, 15,16,17,18,19,20,21,22,23,24,25,26,27,28,2 9,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,
45,4 6,47,48,49,50,51,52,53,54,55,56,57,58,
59, 60, 61, 62, 63, 64) ; else

for (i = 0; i < 1000 ; i++)rd(l,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17,18,19,20,21,22,23,24,25,26,27,28,29,30,31.32.33.34.35.36.37.38.39.4 0,41,42,43,44,
45.4 6,47,48,49, 50,51, 52,53,54,55, 56,57,58,59, 60, 61, 62, 63, 64,1, 2, 3,4,5, 6, 7, 8, 9, 10, 11,12.13.14.15.16.17.18.19.20.21.22.23.24.25,26, 27, 28, 29, 30, 31,32, 33,34, 35,36, 37, 38,39,
40.41.42.43.44.45.46.47.48.4 9,50,51,52,53,
54,55, 5 6,57,58,59,60, 61,62, 63, 64,1, 2,3,4, 5,6, 7,8, 9,10,11, 12,13,14,15,16,17,18,19,20,21,
22.23.24.25.26.27.28.29.30.31.32.33.34.35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,
64,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17, 18,19,20,21,22,23,24,25,2 6,27, 28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,
45.4 6,47,48,49,50,51,52,53,54,55,56,57,58,59, 60, 61, 62, 63, 64,1,2,3,4,5, 6,7,8, 9,10, 11,
12.13.14.15.16.17.18.19.20.21.22.23.24.25,
26, 27,28, 29,30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40.41.42.43.44.45.46.47.48.4 9,50,51,52,53,
54,55,56, 57,58,59,60, 61,62, 63, 64,1,2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,
22.23.24.25.26.27.28.29.30.31.32.33.34.35,36.37.38.39.40.41.42.43.44.45.46.47.48.4 9,



50,51,52,53,54,55,56,57,58,59,60,61,62,63, 64,1,2,3, 4,5,6, 7, 8, 9,10,11,12,13,14,15,16,17.18.19.20.21.22.23.24.25.26.27.28.2 9,30,
31,32,33,34,35,36,37,38,39,40,41,42,43,44,
45.4 6,47,48,4 9,50,51,52,53,54,55,56,57,58, 
59, 60, 61, 62, 63, 64, 1,2,3,4,5, 6, 7,8,9, 10, 11,
12.13.14.15.16.17.18.19.20.21.22.23.2 4,25, 
26,27,28, 29,30,31, 32,33, 34,35, 36,37, 38,39,40.41.42.43.44.45.46.47.48.4 9,50,51,52,53,
54,55,56,57,58,59,60,61,62,63,64);

timer_split("Read done"); 
if (type = 1)for (i =0; i < 1000 / i++)

in (1);
else if (type = 2)for (i = 0; i < 1000 r i++)in (1,2) ;
else if (type = 3)
for (i =0; i < 1000 r i++)in (1, 2, 3, 4) ;
else if (type = 4)for (i = 0; i < 1000 •/ i++)in(1,2,3,4,5, 6, 7,8) ;else if (type = 5)for (i =0; i < 1000 ; i++)in(1,2,3, 4, 5, 6,7, 8,9,10,11,12,13,14,15,16); else if (type = 6)
for (i =0; i < 1000 ; i++)in(1, 2, 3,4,5, 6, 7, 8, 9,10,11,12,13,14,15,16,
17,18,19,20,21,22,23,24,25,26,27,28,2 9,30,31,32); else if (type = 7)

for (i = 0; i < 1000 ; i++)in(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, 17,18,19,20,21,22,23,24,25,26,27,28,29,30, 
31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,
60, 61, 62, 63, 64) ;elsefor (i = 0; i < 1000 ; i++)in(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17.18.19.20.21.22.23.24.25.26.27.28.29.30,31.32.33.34.35.36.37.38.39.40.41.42.43.44,

45.4 6,47,48,49,50,51,52,53,54,55,56,57,58,59.60.61.62.63.64.1.2.3.4.5.6.7.8.9.10.11,
12.13.14.15.16.17.18.19.20.21.22.23.24.25,2 6,27,28,29,30,31,32,33,34,35,36,37,38,39,4 0,41,42,43,44,45,4 6,47,48,4 9,50,51,52,53,
54.55.56.57.58.59.60.61.62.63.64.1.2.3.4.5,
.6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22.23.24.25.26.27.28.29.30.31.32.33.34.35,36.37.38.39.40.41.42.43.44.45.46.47.48.49,
50,51,52,53,54,55,56,57,58,5 9,60,61,62,63,64.1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16,17.18.19.20.21.22.23.24.25.26.27.28.29.30,31.32.33.34.35.36.37.38.39.40.41.42.43.44,
45.4 6,47,48,49,50,51,52,53,54,55,56,57,58,
59.60.61.62.63.64.1.2.3.4.5.6.7.8.9.10.11,12.13.14.15.16.17.18.19.20.21.22.23.24.25, 
26,27,28,29,30,31,32,33,34,35,36,37,38,39,4 0,41,42,43,44,45,4 6,47,48,4 9,50,51,52,53,
54.55.56.57.58.59.60.61.62.63.64.1.2.3.4.5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,
22.23.24.25.26.27.28.29.30.31.32.33.34.35,
36.37.38.39.40.41.42.43.44.45.46.47.48.49,
50,51,52,53,54,55,56,57,58,59,60,61,62,63,64.1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16,



17,18,19,20,21,22,23,24,25,26,27,28,29,30,
31,32,33,34,35,36,37,38,39,40,41,42,43,44,45.4 6,47,48,4 9,50,51,52,53,54,55,56,57,58,
59,60,61,62,63,64,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
26,27,28,2 9,30,31,32,33,34,35,36,37,38,39,40.41.42.4 3,44,45,46,47,4 8,4 9,50,51,52,53,
54,55,56,57,58,59,60,61,62,63,64); 
timer_split("In done");
print__times () ;

} return type;
}
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/.* Benchmark Program 3 */ 6 6

/* formals.cl */
real_main(int argc, char** argv) { 

int i , j; 
int type,count; 
int f;
if (argc != 3) { 
printf ("Usage : %s FormalNum (1..4) actuals \n",argv[0]);
exit(1);

}type = atoi(argv[1]); count = atoi(argv[2]);
for (j = 0; j < 5 ; j++) { start__timer(); 
if (type = 1)for (i =0; i < 1000 ; i++) 

out(1); else if (type = 2) for (i = 0; i < 1000 ; i++) out(1,2); else if (type = 3) for (i =0; i < 1000 ; i++) out(1,2,3,4); 
else if (type = 4) for (i =0; i < 1000 ; i++)

out (1,2,3,4,5,6,7,8); timer_split("Out done"); 
if (type = 1)for (i =0; i < 1000 ; i++) {if (count == 0) 

rd (1); elserd(?f);
}else if (type = 2) for (i = 0; i < 1000 ; i++) {
if (count ==0) rd(1,2) ; 
else if (count == 1) rd(?f,2);
else rd (?f, ?f) ;

' }else if (type = 3)
for (i =0; i < 1000 ; i++) {switch(count) {case 0 : rd(l,2,3,4); break; 

case 1 :rd(?f,2,3,4); break; case 2 :rd(?f,?f,3,4);break; case 3 :rd(?f,?f,?f,4);break; 
default :rd(?f,?f,?f,?f) ;

}
}else if (type = 4)for (i = 0; i < 1000 ; i++) {
switch(count) {
case 0: rd(1,2,3,4,5,6,7,8); break; case 1: rd(?f,2,3,4,5,6,7,8); break; 
case 2: rd(?f,?f,3,4,5,6,7,8); break; case 3: rd(?f,?f,?f,4,5,6,7,8); break; 
case 4: rd(?f,?f,?f,?f,5,6,7,8); break; 
case 5: rd(?f,?f,?f,?f,?f,6,7, 8); break;



i++) {

case 6: rd(?f,?f,?f,?f, 
case 7:  rd(?f,?f, ?f, ?f, default:rd(?f, ?f, ?f, ?f,
}
}timer_split("Read done" 
if (type = 1) for (i = 0; i < 1000 ; 

if (count == 0) 
in(1); 

elsein(?f);
}else if (type = 2) 
for (i = 0; i < 1000 

if (count == 0) in (1,2); else if (count == 1) in(?f,2);
else in (?f,?f);

}else if (type = 3) 
for (i = 0; i < 1000 / i++) { switch(count) { 

case 0 case 1 case 2 case 3

?f,?f,7,8); break; 
?f, ?f,?f,8); break; 
? f , ? f , ? f , f ) ;

);

i++) {

}

,3,4); break; ,3,4); break; 
f,3,4);break; f,?f,4);break; 

default ;in(?f,?f,?f,?f);

in(l,2; in (?f, 2, in (?f, in (?f, ?l

}else if (type = 4)for (i = 0; i 
switch(count) case 0 

1 
2
34
5

<
{

1000

in(1,2, 
in(?f,2 in(?f,? in (?f, ? in(?f,? 
in(?f,? in(?f,? in(?f,? in (?f, ?f, ?f, ?f,

case case case case 
case case 6 
case 7 default 
}
}timer_split("In done"); 
print times();

i++) (
3,4,5,6,7,8); break;
,3,4,5,6,7,8); break; f,3,4,5,6,7,8); break; f,?f,4,5,6,7,8); break; f,?f,?f,5,6,7,8) ; break; 
f,?f,?f,?f, 6,7, 8); break; f,?f,?f,?f,?f,7,8) ; break; 
f, ?f, ?f, ?f, ?f, ?f, 8) ; break; ?f,?f,?f,f) ;
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/* Benchmark Program 4 */
/* message.cl */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
real_main(int argc, char** argv) { int i, try,status,size,freq; 

char name[30], host[30]; int worker(int,int,int);
if (argc != 3) {printf("Usage : %s SIZE FREQ\n",argv[0]); 

exit(0);
}size = atoi(argv[l]); 
freq = atoi(argv[2]); eval(worker(0,size,freq)); 
eval(worker(1,size,freq)); 
out("Start");

}

int worker(int id,int SIZE,int FREQ) { 
int i,len,type;FILE *fptr; 
char *buffer;
buffer = (char *)malloc(SIZE);

if (id == 0) { /* the Source worker */ system("getload"); for(i = 0 ;  i < SIZE - 1 ; i++) buffer[i] = ' A ' ; 
buffer[i] = ’ \0'; out("source-ready"); 
in("dest-ready"); rd("Start"); start_timer();for ( i = 0; i < FREQ ; i++)out("file",buffer:SIZE); timer_split("Writing DONE"); 
print times();
}else { /* the Destination worker */system("getload");in("source-ready");
out("dest-ready");rd("Start");
start_timer();for ( i = 0; i < FREQ ; i++)

in("file",?buffer:SIZE); timer_split("Reading DONE"); 
print times();
}return id;

}
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/* Benchmark Program 5 */ 
/* flood.cl */ 
real_main() {
long i;
char buffer[20000000] ; 
long j; 
long size;

if (argc != 2) {printf("Usage: %s <size>\n",argv[0]); 
exit(1);

}j = atoi(argv[1]); 
i =0;while(1) {i++;

out(buffer:j);printf("%d Successful\n",i);
}

}
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/* Benchmark Program 6 */
/* File : latency.cl * Description :

This program evaluates the communication overhead in sending and receving messages between two machines
* /real_main() {int ping(int),pong(int) ; 

char host[30],hostl[30]; int i,len;
for (i = 0; i < 10; i++) {
eval(ping(0));
eval(pong(1));
in ("host",?host:len) ;in("host",?hostl:len);printf("The processes are on %s and %s\n",host,hostl);
in(?int); in(?int);
}

}

int ping(int id) { 
int i;char host[30];
gethostname(host);out("host",host:30);start timer();for (T = 0; i < 500; i++)

{out("catch"); in("throw");
}timer_split("Done") ; print_times(); return id;

int pong(int id) { int i;
char host[30];
gethostname(host); out("host",host:30); for (i =0; i < 500; i++) 

{in("catch"); out("throw");
}return id;
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71
/* Benchmark Program 7 */
/* File : distribution.cl * Description :

This program distributes 120 similar processes to all the 
processors/machines in the distributed environment. Since there is no directed mapping onto a machine, the mapping 
is left to the program itself and during run-time, the actual mapping to the processor is obtained. Finally, the 
distribution stattistics is obtained.

* /

#include <stdio.h>#include <stdlib.h>
#include <string.h>

real_main() { 
char hostname[30]/ 
int i,j,k,len; int worker(int);int tincup, bannack,schively,Stillwater, lemhi,capron,bighole,huckle; 

gethostname(hostname); printf("Result on %s \n",hostname); printf(" huckle tincup bannack
schively Stillwater lemhi capron bighole\n"); 

for(k = 0; k < 5; k++) {
start_timer(); /* start the timer */ 
tincup = bannack = schively = Stillwater = 0; 
lemhi = capron =bighole= 0; 
huckle = 0 ;for(i - 0; i < 140; i++)/* Spawn the worker() */ eval(worker (i)); for(i =0; i < 140; i++) {

in("worker",?j,?hostname:len);/* Get the name of the machine on which the
worker is spawned */ if (hostname[0] == 't') /* Machine is tincup */tincup++;

else if (hostname[3] == bannack++; 'n') /* bannack */
else if (hostname[2] == 

bighole++; ' g') /* bighole */
else if (hostname[0] == lemhi++; ' 1' ) /* lemhi */
else if (hostname[0] == capron++; ' c') / * capron */
else if (hostname[1] == schively++; ' c') / * schively */
else if (hostname[1] == stillwater++; ' t ') / * Stillwater */
else if (hostname[0] == 'h') / * huckle */

huckle++;
}for(i =0; i < 1 4 0 ;  i++) 

in(?int);
timer_split("Done."); /* stop the timer */ /* print the time taken to do the distribution */ print times (); 

printf(" ¥3d %3d %3d %3d %3d
%3d %3d %3d\n",

huckle,tincup,bannack,schively,Stillwater,
lemhi,capron,bighole) ;



}

/* This is the worker process */ worker(int id) { 
char hostname[30];
/* get the name of the machine on which it is mapped */ 

gethostname(hostname);/* send that to the master */ 
out("worker",id,hostname:3 0); return id;
}
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74
/* Program 1 */
/* File : eval.cl* Description :* This program illustrates the nature of eval operation in
* C-Linda.
* /

/* The Master program */ 
real_main() {

int worker(int); 
char host [ 3 0 ] ;  
int len;
/* Spawn a worker using an eval operation */ 
eval(worker(1));
/* Get the name of the host machine onwhich the master is running */ 
gethostname(host,3 0 ) ;printf("The Host machine is : %s \n",host);
/* Get the name of the destinationmachine from the worker */
in(?host:len);
/* print the name of the machine */ printf("The worker was mapped on : %s \n",host);
/* read the passive tuple createdafter the worker terminates */
in(?int);

/*The worker process */ int worker(int id){
char host[30];

/* The worker process gets spawned by the master 
by an eval operation. As soon as it reaches a destination machine, it gets the name of the machine */ 
gethostname(host,30);

/* The worker sends the destination machinename to the master */
out(host:30);
/* The worker terminates and thus the worker 

process becomes a passive data tuple */ return id;
}

/* The following machines were listed in the tsnet.nodes file
* tincup.cs.umt.edu* schively.cs.umt.edu* capron.cs.umt.edu
* bighole.cs.umt.edu* bannack.cs.umt.edu* lemhi.cs.umt.edu
* stillwater.cs.umt.edu

Linda tries to map a process spawned by an



eval operation on one of these machines.
* /

/************************ RESULTS **************************/
/*Run 1 */The Host machine is : schively.cs.umt.edu
The worker was mapped on : bighole.cs.umt.edu
/*Run 2 */
The Host machine is : schively.cs.umt.eduThe worker was mapped on : bighole.cs.umt.edu
/* When this program was executed several times on schively, 

it consistently spawned the worker process on bighole (Notice that bighole is middle element in the tsnet.nodes file).
* /

/* When the same program was run on bighole with the same tsnet.nodes file, the worker process was spawned on capron (Note that capron is just above the middle element 
bighole. The Linda eval operation did not spawn a process on the host machine

* /

The Host machine is : bighole.cs.umt.eduThe worker was mapped on : capron.cs.umt.edu
/************************** END ************************** /
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/* Program 2 */ 76
/* File multipleeval.cl* Description :This program shows the behaviour of Linda eval when
* multiple eval operations are carried out
* /

/* The master program */ 
real_main() {

int worker(int); char host[30]; int i , len;
/* spawn six workers and get theirdestination processor names */
eval(worker(1)); 
in(?host:len);printf("The worker was mapped on
eval(worker(2)); in(?host:len);
printf("The worker was mapped on
eval(worker(3)); in(?host:len);printf("The worker was mapped on
eval(worker(4)); in(?host:len);
printf("The worker was mapped on
eval(worker(5)); 
in(?host:len);printf("The worker was mapped on
eval(worker(6)); 
in(?host:len);printf("The worker was mapped on

%s \n",host);

%s \n",host);

%s \n",host);

%s \n",host);

ss \n",host);

ss \n",host);
Master gives permission for the workers to terminate */ 

for (i = 0; i < 6 ; i++) out("perm");
The master collects all the passive data tuples created by workers after termination */ 

for (i = 0; i < 6 ; i++) in(?int);

/* The worker process */ 
int worker(int id){

char host[30];
/* Get the name of the machine on which theworker is mapped */ 
gethostname(host,30);

/* send the destination machine name to the master */ 
out(host:30);

/* Wait for permission from the master to terminate */ in("perm");



/* terminate the worker process */ 
return id;

}

I  ********************* RESULTS **************************/
/*Run 1 */
The worker was mapped on :: bighole.cs.umt.edu
The worker was mapped on :: capron.cs.umt.edu
The worker was mapped on :: tincup.cs.umt.edu
The worker was mapped on :: lemhi.cs.umt.edu
The worker was mapped on :: stillwater.cs.umt.edu
The worker was mapped on :: bannack.cs.umt.edu
/*Run 2 */
The worker was mapped on :; bighole.cs.umt.edu
The worker was mapped on :: tincup.cs.umt.edu
The worker was mapped on :: capron.cs.umt.edu
The worker was mapped on :: stillwater.cs.umt.edu
The worker was mapped on :: bannack.cs.umt.eduThe worker was mapped on :: lemhi.cs.umt.edu
/*Run 3. */
The worker was mapped on :: bighole.cs.umt.edu
The worker was mapped on :: lemhi.cs.umt.eduThe worker was mapped on :: stillwater.cs.umt.edu
The worker was mapped on :: bannack.cs.umt.eduThe worker was mapped on :: tincup.cs.umt.edu
The worker was mapped on :: capron.cs.umt.edu
/* From the results, it can be seen that the destination of the first eval operation can be predicted. The destination for the successive eval opearations is 

randomly selected (Note that the same processor is * not selected twice */
j  END **********************;*?*** j
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/* Program 3 */ 78
/* File : directed_eval.cl
* Description :

This program uses C-Linda primitives to do a directed
* processor to process mapping.
* /

#include <stdio.h> linclude <stdlib.h>
#include <string.h>
real_main() {char name[30]; 

int try;
gethostname(name,30) ;printf("The Master is running on : %s \n",name); 
do {printf("Enter the name of the Target machine :"); 
do {gets(name);} while(strlen(name) < 2); if (strcmp(name,"quit") == 0) exit(l); try = directed_eval(name,10); 
if (try < 0) printf("I failed\n"); else printf("I succeeded\n");
} while(1);

}

/* This function simulates directed eval in Linda.
*

* It makes "retry" number of attempts to get a process on the target processor "name". The function returns a negative number if it fails to do a directed eval */
int directed_eval(char *name , int retry){ int try,status; int worker(int); char host[30];

try = 0;
/* output the destination machine name to the tuple space */ 

out("target",name:strlen(name));
/* Keep spawning a worker process until it reaches the *' destination or until the number of retries exceeds the * specified limit */ do {

/* spawn a worker process using eval function */ 
eval(worker(try));

/* get the status of eval from the worker *//* The worker returns 1 if it got mapped on to the
* correct destination. Or else it returns a 0,* indicating failure */,

in("status",try,?status,?host);
/* If success, then exit the loop */ 

if (status == 1) break;
try++;

} while(try < retry); if (try == retry) return -1;



else return try;
} 79

/* This is the worker process that gets spawned
randomly onto a processor */ 

int worker(int id) {char host[30],target[30]; 
int len;
/* The worker gets the name of the processor on which it gets spawned. */ 
gethostname(host,30);

/* It reads the actual destination machine name */ in("target",?target:len);
/* If the current host name is not the destination, 

send a failure signal to the process that evaled this worker process */ if (strncmp(target,host, len) != 0) {out("status", id,0,host); out("target",target:len) ;
}/* If the current host is the destination, 

indicate success */else { out("status", id, 1,host);
}return id;

}

fyc-k'k'k'k'kJc-k-k'k'k'k'kicjcic'k'kiclc-k'k'k-klc RESULTS ************************* j
The Master is running on : schively.cs.umt.edu
/* Any attempt to spawn the process on thehost machine fails */
Enter the name of the Target machine :schively I failed
Enter the name of the Target machine :schively 
I  failed
Enter the name of the Target machine :bannack I succeeded
Enter the name of the Target machine :tincup 
I succeeded
Enter the name of the Target machine :Stillwater I succeeded
Enter the name of the Target machine :capron 
I succeeded
Enter the name of the Target machine :lemhi 
I succeeded
Enter the name of the Target machine :bighole I succeeded

j ’k ' k ' k ' k . - k - k - k ' k i f k ' k ' k ' k ' k - k ' k - k ' k i f k ' k ' k ' k END ' k ' k . - k ' k ' k ' k ' k - k ' k - k ' k - k ' k ' k ' k ' k ' k - k . i d ' k ' k ' k - k l



/*Program 4 */

/* This program demonstrates how to spawn
processes on machines*/

#define NUM 5
real_main() {

int worker(int); 
int i,id;
/* There are 7 processors (including the

host machine) listed in tsnet.nodes file */
/* Spawn NUM processes using the eval operation */ 

for (i = 1; i <= NUM; i++) 
eval(worker(i));

/* Read messages from all workers */ for (i = 1; i <= NUM; i++) in("worker");
/* Send a terminate message to all workers. At this point* the master is absolutely certain that all the worker
* processors have reached a processor */for (i = 1; i <= NUM; i++) 

in("terminate");
/* Get the passive data tuple created after theworker terminates */ 

for (i = 1; i <= NUM; i++) {in(?id) ;printf("Worker %d terminated\n",id);
}

}

/* This is the worker process */ 
int worker(int id) {

/* Send a message to the master indicating that it reached a destination machine */ out("worker") ;
/* wait for terminate message from the master */ 
in("terminate"); return id;

}

/************************** RESULTS ***********************/
/* Sample run when NUM is 5*/Worker 2 terminated 
Worker 3 terminated 
Worker 1 terminated 
Worker 5 terminated Worker 4 terminated
/* Another sample run wheh NUM is 5*/
Worker 1 terminated 
Worker 3 terminated Worker 4 terminated 
Worker 2 terminated Worker 5 terminated
/* It is interesting to note that the program never



terminates when the number of evals exceed the number 
of active machines on which process can be evaluated 
(excluding the host machine). */

/*************************** END ************************* j
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/ *  P r o g r a m  5  * /
82

/*This program demonstrates how multiple processes 
spawned map onto the machines*/

/* The program is run on bannack.cs.umt.edu (The Master) and 
the workers are spawned on all machines (if possible) except 
the host(Master) machine */

#include <string.h> 
real_main() {int worker(int); 

int i,id,j,k,len; char host__name[30] ; 
int count = 0;
/* Spawn 36 processes. Since all the machines areof equal CPU power and have similar load conditions 

it is assumed that each machine gets 6 processes */ for (i = 0; i < 36; i++) 
eval(worker(i));

do { j = 0;
/* get the mapping of all processes that arecurrently mapped */ 
for (i = 0; i < 1 0  ; i++) {sleep(5); /* Give sufficient time forthe workers to settle */ if (inp { "Host", ?id, ?host__name: len) == 1) {

count++; j++;
printf("Worker %d evaluated on %s\n", 

id,host name);
}

}/* this print statement demarcates theset of active processes */printf (" \n" )
/* send terminate signal to all those active processes */ for (k = 0; k < j; k++) {

out("terminate"); 
in(?int);

}} while(count < 36);
/* Execute this loop till you get the whereabouts of all processes spawned */

},

/* the worker process */ 
int worker(int id) {extern char* get host(); 

char host_name [3T)] ;
/* Get the name,of the machine on which I am spawned */ 

strcpy(host_name,get_host());
/* send that message to the master */ out("Host",id,host_name:30);

/* Wait till the master sends a terminate message */ 
in("terminate");

}
return id;

/* clearly the sample run shows that all the 36 processes 
are not simultaneously evaluated on 6 machines. It has to be noted that the work is distributed among only 5 machines The host machine never gets involved in the eval operation)



Each machine handles exactly one process at a given time.
The rest of the evaled, but not mapped, processes wait for a process to terminate. The buffer where the evaled processes 
wait is clearly a stack. The LIFO structure clearly has a disadvantage since it provides ample scope for starvation if 
the eval is carried out continuously, such that the size of the stack, on an average, remains constant. Under this 
condition, the process, that was evaluated in the beginning,(but was unable to catch the first flight !) remains at the bottom of the stack forever */

j - k  Sam p le  cun

/* In the first batch, the first five evaluated processes get mapped to a processor */
Worker 4 evaluated on tincup.cs.umt.edu
Worker 3 evaluated on capron.cs.umt.edu
Worker 2 evaluated on bighole.cs.umt.edu
Worker 1 evaluated on schively.cs.umt.edu Worker 0 evaluated on stillwater.es.umt.e
/* By the time the first batch completes its work, the 

remaining processes spawned by eval are waiting in the tuple space to get mapped to a processor. Since the 
processes evaled last get mapped to processes first, it can be concluded that the evaled processes are placed on a stack */

Worker 31 evaluated on tincup.cs.umt.edu
Worker 32 evaluated on capron.cs.umt.edu
Worker 33 evaluated on bighole.cs.umt.edu
Worker 34 evaluated on schively.cs.umt.edu Worker 35 evaluated on Stillwater.cs .u mt.e
Worker 26 evaluated on tincup.cs.umt.edu
Worker 27 evaluated on bighole.cs.umt.edu
Worker 28 evaluated on capron.cs.umt.edu
Worker 2 9 evaluated on schively.cs.umt.edu 
Worker 30 evaluated on Stillwater.cs.umt.e
Worker 21 evaluated on tincup.cs.umt.edu
Worker 22 evaluated on bighole.cs.umt.edu
Worker 23 evaluated on capron.cs.umt.edu
Worker 24 evaluated on schively.cs.umt.edu Worker 25 evaluated on Stillwater.cs.umt.e
Worker 16 evaluated on tincup.cs.umt.edu 
Worker 17 evaluated on bighole.cs.umt.edu 
Worker 18 evaluated on capron.cs.umt.edu



Worker 19 evaluated on schively.cs.umt.edu 
Worker 20 evaluated on Stillwater.cs.umt.e
Worker 11 evaluated on tincup.cs.umt.edu
Worker 12 evaluated on bighole.cs.umt.edu
Worker 13 evaluated on capron.cs.umt.edu
Worker 14 evaluated on schively.cs.umt.edu 
Worker 15 evaluated on Stillwater.cs.umt.e
Worker 6 evaluated on tincup.cs.umt.edu
Worker 7 evaluated on bighole.cs.umt.edu
Worker 8 evaluated on capron.cs.umt.edu
Worker 9 evaluated on schively.cs.umt.edu Worker 10 evaluated on Stillwater.cs.umt.e
Worker 5 evaluated on Stillwater.cs.umt.e
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  E N D  * * * * * * * * * * * * * * * * * *  J
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/* Program 6 */
85/*This program shows how to spawn exactly oneprocess on a processor */

/* The processors listed in tsnet.nodes file are : 
tincup.cs.umt.eduschively.cs.umt.edu (Host machine)
capron.cs.umt.edubighole.cs.umt.edu
bannack.cs.umt.edu
lemhi.cs.umt.eduStillwater.cs.umt.edu
* /

finclude <string.h>
/* The Master program */ 
real_main() {int worker(int)/ int i,id,len; char host_name[30];

for (i = 1; i <= 6; i++) eval(worker(i)) ; 
for (i = 1; i <= 6; i++) {in ("Host", ?id, ?host__name : len) ;printf("Worker %d mapped on host %s\n",id,host_name)
}

/* terminate all the worker processes */ 
for (i = 1/ i <= 6/ i++) out("terminate");
/* Clean up the passive data tuples */ for (i = 1; i <= 6; i++) in(?int);

}

/* The worker process */ 
int worker(int id) {char host_name[30];

/* get the name of the machine to which it is mapped */ 
gethostname(host_name, 30) ; 
out("Host",id,host_name:30) ;

/* wait for the terminate message from the master */ 
in("terminate");
return id;

}

/************************* RESULTS ************************/ 
/*Sample run 1*/
Worker 4 mapped on host bighole.cs.umt.eduWorker 5 mapped on host capron.cs.umt.edu
Worker 6 .mapped on host lemhi.cs.umt.edu
Worker 1 mapped on host tincup.cs.umt.eduWorker 2 mapped on host stillwater.cs.umt.edu
Worker 3 mapped on host bannack.cs.umt.edu
/*Sample.run 2*/



Worker 2 mapped on host lemhi.cs.umt.edu
Worker 1 mapped on host bighole.cs.umt.eduWorker 6 mapped on host capron.cs.umt.edu
Worker 3 mapped on host tincup.cs.umt.eduWorker 5 mapped on host stillwater.cs.umt.edu
Worker 4 mapped on host bannack.cs.umt.edu
fic'k'k'k'k'k-k'k'k'k'k'k'k'k'kic'k'k'k'k'k-kjc'k EN D A1* * * * * * * * * * * * * * * * * * * /
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/* Program 7 */ 87
/* File : usercommn.cl
* Description :* This program tests the input-output communication
* abilities of a evaled process (ORB) with the
* external world */

finclude <stdio.h>
/*The Master program (OM) */ 
real_main() {

int worker(int);/* Spawn/eval a worker (ORB) */ 
eval(worker(0));in(Tint); /* read the passive tuple generated

when the worker terminates */
}

/* The Worker Process (ORB) */ int worker(int id) {
char message[40];

/* This command will make this line appear on the screen immediately. If this line is not used, the messages 
sent out by the worker process are not flushed out immediately, but are held in a buffer to be fulshed out when the program terminates or when the buffer becomes full */

setlinebuf(stdout);
/* Upon reaching a machine or processor Pi, the worker(ORB) executes the following commands */

/* The worker prints a prompt on the screen. Ideally, this message should appear on the screen associated with processor Pi. */
printf("Enter your name please ! :");/* The worker then reads a message from the user.The preferred situation is that the input from 

user on processor Pi is read in */ gets(message);
/* The message is then printed back on the screen */ 

printf("Your name is %s\n",message);
/* The worker process (ORB) now terminates, thus forming a 
passive integer data tuple which is eventually collected by the waiting master process */ 

return id;

/************************** RESULTS *************************/
The program shown above never terminates because, 

the worker is unable to read a message either from the user on the local host (The machine on which the master is running) 
or ther remote host (The machine on which the spawned process gets mapped).

However, the output from the worker appears on the local machine.



/* Program 8 */ 8 8

/* File : filecommn.cl
* Description :* This program illustrates that an evaled process can
* communicate with the remote user through files */

#include <stdio.h>
/*The Master program (OM) */ 
real_main() {int worker(int);
/* Spawn/eval a worker (ORB) */ eval(worker(0));in(?int); /* read the passive tuple generatedwhenthe worker terminates */

}

/* The Worker Process (ORB) */ 
int worker(int id) {

char message[40]; 
char host[30];char infile[50],outfile[50]; FILE *inptr,*outptr;

gethostname(host,3 0 ) ;  
sprintf(infile,"%s.in",host);
/* Open the in file */ 
inptr = fopen(infile,"r"); sprintf(outfile,"%s.out",host);
/* Open the out file */ outptr = fopen(outfile,"w");
/* Read a message from the infile */ fscanf(inptr,"%s",message);
/* Write the message to the out file */ 
fprintf(outptr,"The message read from %s.in is %s\n", 

host,message);
return id;

}

j  -k * * * -k -k * * * * * * ic * * * * * * * * * rt * * * RESULTS ******* ************ * ***** J  

All the *.in files had a message : 
test

The worker got mapped to machine bighole and a new file
bighole.cs.umt.edu.out was created which had the following line :
The message read from bighole.cs.umt.edu.in is test 
j  ■k-kic'kie-k'k^'kic'k'k-k'kie'k'k'kififi^^cieic'k'k END 'k'k'k'k'k'k'kic'k'k'kie'kick'k'k'k'k'k'k'k-k'kic'k'k'k j



/* Program 9 */
/* File : fork.cl * Description : This program shows UNIX fork and C-Linda eval interaction.

* /

real__main () {int worker(int); char who[40]; 
int i, len;
/* The main program evals a worker process */ eval(worker(0));
/* The main program reads messages sent by the worker* and the children of the worker processes created by
* UNIX fork command */ for ( i = 0; i < 30; i++){if (inp("message",?who:len) == 1)printf("Message from %s\n",who);

}
}

/* The worker process is created by an eval call */ 
int worker(int id) {

char message[40];
/* The worker process forks once to createa child process */ 
if (fork() == 0) { /* This is the child process */strcpy(message,"childl") ;

/* The child process sends a message to the master process */ out("message",message:40); return id;
} else if (fork() == 0) {/* The worker process creates another child*/ 

strcpy(message,"child2");/* The second child process sends a message to
the master process */ out("message",message:40); return id;

} else {/* The worker process also sends a message to the master */ 
strcpy(message,"parent"); out("message",message:40); return id;

}
}

/*********************** RESULTS ***************************/ 
The program never executes properly. The master is 

able to read the three messages sent by the worker and its children, but the program crashes sending a message saying 
that Linda is in panic mode. Obviously C-Linda process cannot run normally when UNIX fork calls are inserted in C-Linda code.
/ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  j
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