
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1993

Quantitative and qualitative evaluation of Linda in a distributed Quantitative and qualitative evaluation of Linda in a distributed

environment environment

Harish Vedavyasa
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Vedavyasa, Harish, "Quantitative and qualitative evaluation of Linda in a distributed environment" (1993).
Graduate Student Theses, Dissertations, & Professional Papers. 5546.
https://scholarworks.umt.edu/etd/5546

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5546&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5546?utm_source=scholarworks.umt.edu%2Fetd%2F5546&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

Maureen and Mike
MANSFIELD LIBRARY

Copying allowed as provided under provisions,
of the Fair Use Section of the U.S.

COPYRIGHT LAW, 1976.
Any copying for commercial purposes

or financial gain may be undertaken only
with the author’s written consent.

Q uantitative and Q ualitative E valuation

o f Linda in a D istr ib u ted E nvironm ent

by

H arish V edavyasa

Bachelor o f T echnology

Karnataka R egional E ngineering C ollege, India 1991

P resen ted in partial fulfillm ent o f th e requirem ents

for th e degree o f

M aster o f Science

U niversity o f M ontana

1993

UMI Number: EP41010

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI EP41010

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.
Microform Edition © ProQuest LLC.

All rights reserved. This work is protected against
unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

*5

Vedavyasa, Harish, M. S., April 1993 Computer Science

Quantitative and Qualitative Evaluation of Linda in a Distributed Environment.

Director: Dr. Ray Ford

Distributed computing and database management are of paramount importance in a

network environment. Distributed programming tools facilitate design and implementation

of such systems. Design and implementation are two distinct phases while realizing a dis

tributed system. In the design phase, one looks at the protocols that are required to build a

system. In the implementation phase, one tries to map these protocols onto the distribut ed

programming tool available. The design of a robust Object Registration System is considered

here. Before this design is implemented in C-Linda, a parallel language, quantitative and

qualitative evaluation of C-Linda is done in order to find out the features and limitations of

this programming tool. The results of this evaluation is then used to implement a prototype

Object Registration System.

i i

A cknow ledgem ent

I am deeply indebted to Dr. Ray Ford. Dr. Youlu Zlieng . Dr. Roly

R edm ond , and Dr. R am akrishna Neniani . without whose guidance and

help this thesis would not have been possible. In particular. I am very

grateful to Dr. Ray Ford for his valuable advice and inspirarive ideas

tha t resulted in ou tstand ing results. My special thanks to Dr. Youlu

Zheng for providing me w ith valuable literature on UYIX Signals which

was of valuable help during system im plem entation.

Finally, I would like to thank the D epartm ent of C om puter Science.

University of M ontana, for the com puting resources and relevant literature

tha t m ade this thesis possible.

Date : April 14 1993 Harish Yedavvasa

. i i i

C O N T E N T S

C h ap ter 1: In tro d u ctio n

1.1 Problem S ta t e m e n t ..

C hap ter 2: D esig n

2.1 Normal S ta r tup , O peration, and T e rm in a t io n

2.2 A bnorm al S t a r t u p ..

2.3 A bnorm al O RB T e rm in a t io n ...

2.4 A bnorm al OM T e rm in a t io n ...

2.5 D iscussion

C hap ter 3: Q u a lita tiv e E valuation

3.1 In troduction to L in d a ..

3.2 ORS Im plem en ta tion in L i n d a ...

3.3 M eth o d o lo g y ...

3.4 Q ualita tive E v a lu a t io n ..

C hapter 4: Q u a n tita tiv e E valuation

4.1 Specification ...

4.2 Im pact of Q uan ti ta tive Evaluation on ORS Im plem entation

C hapter 5: S u m m ary and C onclusions

5.1 S u m m a ry

5.2 P ro to type Im plem enta tion of O R S ...

5.3 C o n c lu s io n ...

R e fer e n c es .. ;

i v

. . 4

. S

16

16

26

•_>S

20

30

42

52

54

54

55

■58

C hapter 1

Introduction

D istributed com puting and da tabase m anagem ent are of param ount im portance in a

network environm ent. T h e form er allows faster com putation because it supports parallelism

and the la t te r allows efficient d a ta m anipula tion and storage.

Distributed program m ing tools facilitate design and im plem entation of such sysrems.

Design and im plem entation are two distinct phases while realizing a d istributed system. In

the design phase, one looks a t the protocols tha t are required to build a system. In the

im plem entation phase, one tries to m ap these protocols onto the d istributed programm ing

tool available.

Before building any d is tr ibu ted system, it is better, and sometimes necessary, to evaluate

the program m ing tool available. Evaluation has two facets.

o A quan tita t ive evaluation involves designing benchmarks to measure the performance

of the p rogram m ing tool. This later helps in designing the system with op tim um con

figuration.

o A qualita tive evaluation involves discovering capabilities of the given programm ing tool.

Some designs lead to s traightforward im plem entation, some can be implemented with

certain difficulty, and still o thers cannot be im plem ented with the given programm ing

tool.

1.1 P rob lem S ta te m en t

In a network environm ent, several users may have to share a large database of objects.

In order to reduce object redundancy and elim inate object inconsistency, there is a dem and

for a d is tr ibuted object support system th a t meets all user requirements. This situation

dem ands an O bjec t Registration System th a t allows users to register object definitions and

instances, and to access objects registered by o ther users on the network. The design and

im plem entation of an O bjec t Registration System can be stated more formally as follows:

4

Design and im plem ent a network-based O bject Registration System (ORS) tha t allows

users to access and modify a d is tr ibu ted object database. The database is a collection of

object definitions, instances, and m ethods. The following are the requirements.

o ORS m ust allow norm al s ta r tu p and shutdown.

o ORS should be robust. It should be able to recover from network an d /o r processor

failures.

o ORS m ust be as efficient as possible. (B ut efficiency can be sacrificed for greater relia

bility).

Given these requirem ents, the next problem is to design reliable and robust high level

d istribution system protocols to support O bject Registration System functions. This design

does not assum e anyth ing about the underlying im plem entation details. Subsequently, the

problem is to im plem ent the high level design and distribution protocols with a specific

program m ing tool. T he tool tha t is being experim ented with is C-Linda. a combination of

the coordinating language Linda with the program m ing language C.

5

C hapter 2

D esign

T he object registration system uses an object-oriented paradigm to create a basic data

m anagem ent capability. T he set of d a ta form ats form the object classes, the da ta themselves

form d a ta object instances, and sim ulation com ponents form object methods. The focus of

the design is on developing the d is tr ibu tion protocols to meet the requirem ents s tated earlier.

As illustrated in Figure 1, the d is tr ibu ted d a ta m anagem ent of ORS uses the paradigm

of the O bject Request Broker (O RB), pa t te rned after th a t suggested by the Object M an

agement Group [3]. The ORB provides system users transparen t access to objects tha t may

be physically located anywhere within the system. The ORS has a O bject .Manager (OM).

which distributes OR.B instances to every machine partic ipa ting in the d istribu ted system,

and also monitors the O R B s’ activity. Each ORB interacts with local users, other ORB.-,

and with the global OM. The O R B 's com m unicate am ong themselves and the OM by passing

messages. Thus ORB s and OM share an abstrac t global da ta space. Users add or delete

d a ta in this space through interaction with ORB. They can share information with other

users through this common space.

The OM distributes O R B 's such tha t each machine gets exactly one ORB instance. The

machine on which OM executes is designated as the m aster and the rest are called workers.

The m aster also has a copy of O RB executing on it. Figure 2 illustrates this point.

The ORS functionality prim arily consists of three d istinct phases:

o S ta r tup : In this phase, the OM distr ibutes the O R B ’s.

o O peration : In this phase, each ORB interacts with its local user(s) and responds to

object requests. An object requested a t processor P, is resolved locally (i.e., by O R B ,

on Pi) if the object is found in the d a ta space associated with O R B , . The object is

resolved globally if com m unication is required between O R B , and some remote O R B j

th a t has the required object in its d a ta space. In both cases, com m unication required

for object resolution (local or global) is transparen t to the user (Figure 3).

o Term ination : This is the concluding phase where O R B ’s and OM are term inated .

6

G icb a l (ACs‘
' ' d a ia s p a c e

P ro c e s s o r A

OM

S p aw n S p aw n

Inform ation E x ch an g e
- < ORB;O R B

P ro c e s s o r CP ro c e s s o r B ;C

O b jec t R eg istra tio n
\ a n d Inform ation
\ re tr iev a l

U se r
U ser

Figure 1: R elationship am ong OM, O RB, and Users

Figure 4 il lustrates the above m entioned phases. (Appendix A describes the tim ing diagrams

used in m ore detail)

2.1 N orm al S ta r tu p , O p era tion , and T erm ination

At system s ta r tu p , the OM spawns an instance O R B , on each processor P, listed in it-

s processor table. T he OM expects an acknowledgement from O R B , im mediately after it

s tarts. Thus, each O R B , m ust send an acknowledgement ack, to OM as soon as it begins ex

ecution on processor P t. If OM receives acknowledgements from all ORB instances spawned,

normal s ta r tu p is complete. F igure 5 illustrates normal s ta r tup .

Following norm al s ta r tu p , the system enters the operation phase. During this phase,

in addition to O R B com m unication used to resolve object requests, the OM and O R B ’s

periodically com m unica te to ensure proper functioning of the system as a whole. At a

regular interval, referred to as system tick, each O R B , sends an alivei message to OM, and

OM sends an a l i veom message to one of the ORBs. Thus for N active O R B ’s, each O R B ,

should receive an a l i v e jm message every N system ticks. Figure 6 shows the details of the

7

Master

Spawn 0
OM ORBO

Spawn n
Spawn 1

Spawn

ORB2 ORB nORB1

Worker nWorker 2Worker 1

Figure 2: M aster and Worker m achines

normal operation.

Normal system te rm ina tion is always in itia ted by OM. It sends a t e r m i n a t e , message

to every O R B t . The ORBs in tu rn respond w ith an acknowledgement ack , and te rm inate

themselves. W hen the OM receives N acknowledgements, it te rm inates ORS (Figure 7).

As illustrated in Figure 8, any individual O RB instance can initiate its own term ination

before-overall system te rm ination . T he O R B , sends a t e r m in a t e , message to OM. and OM

responds with an acknowledgement. O RB{ now term inates. After receiving the term ination

message, the OM considers O R B , on processor P, dead for all purposes. The OM will not

try to spawn another O RB instance on processor P,.

2.2 A bnorm al S tartu p

The scenario described in the previous section seems very much desirable bu t completely

ignores system or com ponent faults. In a world lull of uncertainties, network and processor

failures cannot be ignored. Hence, the particu lar fault cases considered are

SpawnSpawn

Add
Object X

Add
Object YSet

Dbject
G e t
O b je c t Y

Req jest
Object X

Object Y

Object X

Object-. X ^

User on
Machine C

Machine B
(ORB 1)

Machine C
(ORB 2)

Jseron
Machine B

Machine A
(OM)

Figure 3: Local and Global resolution o f O bjects

9

Informat on
request '"'~

Informat on
request

User

Figure 4:

>awn 2

StartuD

acl

O c e r a t io n
alivi

aiiv<

Inform ation
r e q u e s t

;erminate 2term;

T erm in a t io n

ack

Worker 1
Worker2 U s e rM a s te r

O RS F unctionality : Startup, O peration, and Term ination

10

[ck i

ORB iOM

OM

ick n
ick 2Spawn 1

Spawn nSpa'

ORB nORB 2ORB 1

Figure 5: Norm al Startup

o ORB failure during s ta r tup ,

o ORB failure during operation, and

o OM failure during operation.

During the s ta r tu p process, if OM fails to receive an acknowledgement from any of the O R B 's

within a specified t im e o u t interval, the OM assumes tha t e ither the machine or the network

connecting th a t m achine is down. It is generally impossible to distinguish between these

two. It can also be the case tha t the ORB process might have been accidently term inated.

In order to distinguish between these possibilities, OM a t tem p ts to place another instance

of ORB on th a t machine.

Let the k th a t te m p t by OM to spawn an O RB instance, O R B ^ k , on processor P, be

represented by message sorbi^. in response to receipt of sorbi^, Pi will spawn ORBi^k and

generate the acknowledgement ack t Assumi ng tha t for processor Pi, OM has not received

the acknowledgement ack, tk in response to sort,,*, the OM will subsequently a t te m p t to

spawn another instance, O R B ltk+\ on processor P, by sending sorbi^+i (refer to Figure 9).

11

alive

N system
ticks alive i. 1 s y s t e m tick

live i

ORB iOM

OM

alive i

ORB i

Figure 6: Norm al Operation

12

terminate i

ORB i terminates

ack i
OM

terminates

OM

OM

ick n
ick 2

terminate 2

ORB nORB 2ORB 1 o °

Figure 7: N orm al System Term ination

OM

:erminate i ack i

ORB i

ORBi wants to
terminate

OM
acknowledges
termination

ack i

ORB i
terminates

OM ORBi

Figure 8: Norm al O F B term ination

13

Spawn i,1

^ ,— Acknowledgement is lost

Timeout
Spawn i,2

Master Worker i

Figure 9: A bnorm al Startup : Spawning another OFLB instance

Several different scenarios arise at this point.

o As illustrated in Figure 10. if OM receives ack,j,.. the OM im m ediately sends a te rm i

nation message, to P, to te rm ina te ORB,.t;+i.

o As il lustra ted in Figure 11. if OM receives a c / y ^ i . normal operation continues. If

OM subsequently receives ack ,y.. the OM im mediately sends t e r m in a t e , ^ to te rm inate

ORBi'k-

o If OM receives no acknowledgement from either of ORB,,k or O R B i ^ + x , it assumes

th a t the network link connecting processor P, is down or the processor Ps is dead. The

OM does not a t te m p t to spawn m ore ORB instances on processor P, a t this stage.

However, it periodically tests access to P, by spawning a simple hello, process. As

il lustrated in Figure 12, if successfully s tar ted on P,, hello, sends a message back to

OM and term inates . Upon receiving this message, the OM again enters the two stage

cycle described above, a t tem p tin g to s ta r t an ORB instance on P,. If at any tim e the

OM receives an acknowledgement from O R B or O R B , tic+i , which were assumed to

be dead, functioning resumes normally and no further a t tem p ts to s ta r t a new O R B i

14

spawn i, 1

timeout spawn i,2

First ORB is
alive. Therefore
terminate the

second

terminate i,2

ack i,

Master Worker i

Figure 10: A bnorm al Startup : Term inating recently spawned O R B instance

Spawn i,1

timeout
^pawn i,2

Ack from
second ORB
instance

a ck j

Received ack.
from the first

ORB instance
Terminate it.

terminate i, 1

ack i, 1

Worker iMaster

Figure 11: A bnorm al Startup : T erm inating previously spawned O R B Instance

15

Spawn i, 1

timeout
Acknowledgement lost

iwn i,2

Acknowledgement lostt im e o u t___

Spawn hello i

helloi
Since hello m essage

is received from r
worker i, it is alive.
So try to spawn an

ORB instance

Spawn i,3

Worker iMaster

Figure 12: A bnorm al Startup : Testing a Machine with ’’helio” m essage

are m ade (see Figure 13). In any case, the OM will t e r mi na t e all but the O R B tha t

responds w ith the first acknowledgment.

2.3 A b n orm al O R B T erm in ation

During norm al operation, the OM uses the one-out-of-n-rule to evaluate the s ta tus of

ORBi in question. T h a t is, if OM receives one a h v t l message out of the last .V cycles, then

it assumes th a t ORBi is alive (see Figure 14). If OM gets no response from O R B , lor :Y

system ticks, the OM a t tem p ts to spawn a new ORB instance by sending sorb^j to processor

P,, where j-1 is the num ber of ORB instances previously spawned on processor Pt. If in the

m eantim e, O M receives a response from a previously spawned O R B , tX (where x < j)■ the

OM sends t e r m i n a t e Xt} to P, to cancel the a t tem p t to s tar t a new ORB.

2.4 A b n orm al O M T erm in ation

T he O R B 's , in a similar way, m onitor the status of OM. When an O RB instance O R B ,

16

Spawn i,1

Acknowledgement losttimeout
iawn i,2

timeout

iawn

Acknowledgement
from previously
spawned ORB
received. Hence
there is no need to
spawn new ORB Worker iMaster

Figure 13: A bnorm al Startup : No new O R B instance spawned

k-out-of-n rule
failed. Spawn a

new ORB instance

Master receives a
delayed alive
m essage from the
previous ORB.
Hence terminate
the latest ORB
instance spawned.

alive i

spawn i,

aiive i

terminate i,j

Master

Figure 14: A bnorm al Operation

Worker i

17

does not receive any response, i.e., a l i v t om message, from OM for k system ticks, it broadcasts

a message om dead t (t) to all O R B 's, where t is the local tim e at which message is sent by

O RBi (F igure 15). An O R B 2 on processor P: receiving such a message responds based on

the following factors.

o If O R B j still thinks th a t OM is alive, i.e., it received an a h r t jm message from OM

w ith in its t im eout period, it im mediately sends a negative acknowledgement no, to

ORBi (Figure 16a).

o If O R B j th inks th a t OM is dead, i.e., it has also failed to receive? an a l iveom message trom

OM within its tim eout period, it constructs its reply based 011 the following condition;

(Figure 16b and 16c).

Let tj be the t im estam p and j be the ID of O R B j receiving omdead. (t.) from O R B . .

- If ti > tj , then send a positive acknowledgement yesj.

- If f, = t j . and i > j, then send a positive acknowledgement yes, .

- If the above two conditions fail, then send a negative acknowledgement no: to

ORBi.

W hen an O R B t that earlier initia ted an omdead, message receives a negative acknowl

edgem ent n o j , it does not a t te m p t to res tart the OM. but it enters an in term ediate sta te

W a i t i n g F o r O M A l i v e . If O R B , does not receive alu'Lora message within the next tim eout

period, it will send another om dead , message with a new tim estam p. As long as the O R B ,

is in the W a i t i n g F o r O M A l i v e s tate, it responds with a positive acknowledgement, yes. to

all omdead requests from other ORBs. O R B l exits from the W a i t i n g F o r O M A l i v e s ta te

only when it gets an a liveom message, or when it receives no riOj messages and is selected to

s ta r t a new OM.

In general there are m any ways to select the new host for an OM when OM failure is

detected. Here we use local t im estam p and ORB ID ’s to choose a unique ORB to res tart

OM when m ore than one ORB has in itia ted omdead message. If O R B , receives no negative

acknowledgements within a certain tim eout period, it assumes th a t all o ther O R B ’s have

agreed th a t OM is down, and th a t it has been elected to revive OM. O R B , now tries to

spawn OM on the m aster machine. If it succeeds, normal operation resumes. If not, O R B ,

spawns an OM on processor P, and this OM takes over from the deceased OM (Figure 17).

18

N system
ticks e la p s e ^ .

OM

timeout

Broadcasted m essage
is received by ORBj

ORBi O R B j

Figure 15: Requesting OM statu s from other ORB's

A more interesting type of OM f a i l u r e occurs when the network link between the pro

cessor Pi and P]1 which hosts OM. is severed, thus partitioning the network. The processors

in the network parti t ion w ithout the OM will take at most A' system ticks before coming to

an agreement th a t the OM is dead, and s tarting a new OM in tha t partition. Thus we end

up with having two parti tioned subnetworks, each with its own OM.

W henever the d istribu ted system recovers from a failure and returns to norm al (either the

network connection is reestablished or the original OM is restarted), the ORS will have more

than one OM instance active. In order to m aintain a single OM. each OM instance 0.1/, on

processor Pi periodically broadcasts a t e n n i n a t e om^ t) message (where t is the t im es ta m p

indicating the s ta r tu p tim e of the OM). Any OM instance OA/, on processor Pd receiving

one such message will te rm ina te if j > i. or if j = i and tj > t t . Tin? result is th a t the OM

on the processor which has the smallest number survives. If there are two OM on the same

processor, the OM th a t was s ta r ted earlier survives. T he original OM on the m aster m achine

always sends te rm ir ia te0Tnio message. This message guarantees tha t the OM on the m aste r

machine will take over the job of managing ORB s when it comes back to life (Figure IS).

19

mdead, ti, i

ORB i ORBj

ORB j knows that OM is alive.
Send a negative

acknowledgement.

(a)

ti < tj

ti omdead, ti, i

YE

NO

ORBjORB i

Both ORB instances think that OM
is dead.

ti = tj and i > j

ORBjORB i

ORB with a higher
number gets a
positive
acknowledgement

(b) l . c L

Figure 16: Sending a reply to the request 011 OM status

20

Spawn

Acknowlegerr
is lost

Timeout

Spawn OM

ack

OM
(Worker i)

ORB iMaster (Worker i)

OM

ack

ORBiMaster

OM on master is created Creating OM on the sam e machine

Figure 17: Creating a new OM

OM on master
terminates other

OMs :erminate

acl

OM
(master)

OM
(worker i)

Figure 18: Original OM taking control back

21

2.5 D iscussion:

T he ORS design as described in this chapter functions normally under normal conditions.

In order to establish the robustness of the ORS design, the behavior of the ORS under

various fault conditions m ust be analyzed.

The following are the faults th a t are considered here :

o Failure of one or more worker machines. In the worst case, all the worker processors

fail.

o Failure of the m aster.

o Network failure resulting in l.lie partitioning of ORS. i.e.. w i t h M ORBs having an O M

and (N - AI) O RBs without OM.

o Network delay.

Let Px-Pi- • •• P n be N worker processors and P0 b e t h e master processor. Let

represent the O bject M anager instance on processor P, s tarted at local tim e t. and O R B ;

denote the O bjec t Request Broker instance on processor P,.

Let U denote the set of all processors in the distributed environm ent. P denote the set

of active processors, and Q denote the set of dead processors. At any time. P U Q — i and

p n Q = 6

T he ORS in its steady s ta te has an O bject Manager CbU(0,(l. A O bject Request Brokers:

O R B i . O R B o O R B n , P = { P0. Pu ... Ps }. and Q = {}.

C ase 1: Failure o f worker processors

W hen one or m ore worker processors fail, Q p 0 and P0 £ Q. Assume th a t processor P,

fails, Q = { Pi } and P = U - Q.

A. Effect on S y s te m O peration: The OM on PQ detects O R B , failure when the

OM stops receiving alive, messages. The OM marks O R B , as dead, and the ORS system

continues w ith ju s t one less ORB in the ORS system. When P, is restarted , the hello, process

th a t is periodically spawned by the OM reaches P, and successfully sends a message back to

OM. The OM then res tarts O R B , on processor P, bringing the system to normal. M ultiple

22

processor failures are identified as a sequence of single processor failures, each treated as

described above.

B. Effect on user requests: We assume th a t failure of processor Pt means that there

cannot be an active user on P t , so there can be no local object requests. User requests

em anating from users on processors in set P will see a m ixed response. Locally resolvable

requests are not at all affected by o ther processor failures. Requests tha t get globally resolved

on a processor in set P will continue to function normally. However, objects registered on a

processor in set Q cannot be retrieved. T he result of an a t te m p t to access such an object

will be “object unavailable due to processor/network failure". W hen the processor hosting

the object is revived, the object again becomes accessible.

Case 2: Failure o f the m aster

W hen the m aster processor fails. Lb € Q.

A. Effect on sy s te m O peration: All O R B ’s stop receiving a lice,m messages, but clue

to the cyclic na tu re of alive om message generation, one of the O R B 's. say O R B , , senses OM

failure first. It sends an om dead ; message to rest of the ORBs; however, they all respond

with a negative acknowledgement, no. Upon receiving one or m ore no messages. O R B , enters

the in term ediate s ta te where it waits for an al iceom message. O R B l+\ senses failure next,

and it sends o m d ta d l+\ to all ORBs. O R B l+1 will receive a yesi from O R B , and no from

the rest, thus forcing ORBi+i into the in term ediate s tate . This process continues until the

last ORB detects OM failure. In response to its omdead message the last ORB receives a

positive acknowledgement from all o ther ORBs, which are all now in the in term ediate state.

The algorithm sketched earlier(Section 2.4 on Page 18) is used to select a processor to host

a replacement OM. For N ORBs. this process takes X system ticks.

If one or more worker processors fail along with the m aster, the surviving ORBs still

detect OM failure in the same wav. An ORB instance th a t initiates an omdead message will
“ O

receive M < N messages in response. However, as long as one or more worker processors

survive, the active ORBs can still proceed with electing a single active ORB to restart OM

because the absence of messages from dead ORBs will not affect the election process. T h a t

is, if an active ORBi does not receive any message from O R B } within its timeout period, it

proceeds with its operation, assuming th a t this represents agreem ent th a t OM is dead.

23

W hen the m a s te r recovers and the original OM starts functioning, there will be two OM in

the ORS system , i.e., O M Q,tj and OM,,ti- W hen OM on the m aster sends a terminal .eJ1n{0A.}

message, OAR,a voluntarily term inates . The OM will then revive the dead ORBs. if any

(Refer to Case 1).

B . Effect on user requests: T he failure of m aster does not affect the user request-

s. Local and global resolution of objects still function normally for objects on accessible

processors.

Case 3: N etw o rk Failure

A. Effect on S y s te m O peration: Network failun? causes a partitioning of ORS.

A ssum ing.that the system is in steady sta te before network failure. Q = {}, and P = U. and

tha t network parti tion ing divides the set of active processors P into ifft and PR such that IR

U T e P . For the network partition TI i , 0 1 = 1I_> and for network partition I I . . . Q? = L R .

Let Pq € Eli . This subsystem will behave as in Case 1. with \R worker processor failures.

For parti tion LR the situa tion appears as OM failure plus d/_. worker processor failures (Case

3). Thus the two subsystem s function independently with separate OMs.

B. Effect on user requests: O bjects registered on ORBs in one network partition

cannot be retrieved by ORBs on the other partition. Thus some user requests may not be

satisfied. W hen the network connection is reestablished, objects on the o ther side of the

parti tion become visible to the entire system.

Case 4: N etw o rk delay

A. Effect on S y s te m O peration: Network delays may create situations where an ORB

or an OM makes a wrong decision, i.e.. where a process that is actually alive is assumed

to be dead. However, in cases of both ORB and OM processes, the protocol described

above guarantees th a t an a t te m p t to s ta r t a new O R B J O A l will eventually result in a single

process dom ination. T h a t is, if the alive message from O R B ; is excessively delayed, the OM

presumes th a t the O RB is dead and s tar ts a new ORB. W hen the OM receives the delayed

message, it acts to te rm ina te the recently spawned ORB. The system thus comes back to

normal. In s ituations where the message from the OM to ORB, gets delayed and O R B ,

24

sends omdead message to o ther ORBs, O R B t should get hack negative acknowledgements

th a t prevent it from spawning a new OM.

B . E ffe c t on u s e r r e q u e s t s : Sometimes network delay m ay cause delay in the system

response to user requests. If the network delay exceeds certain tim eout periods associated

with object resolution, an “inaccessible ob jec t” result might be sent to the user when there

is no processor or network failure.

25

C hapter 3

Q ualitative Evaluation

Following the design of high level protocols to meet distribution and reliability require

ments, the next goal is to realize these protocols in C-Linda, the parallel program m ing

language selected to im plem ent the ORS design. Following a brief introduction to O-Linda,

I will address several questions th a t need to be answered before proceeding with the actual

im plem entation. These questions will be answered by a systematic evaluation of C-Linda

(Qualitative Evaluation in C hap ter 3 and Quantitative; Evaluation in the following chapter).

3.1 In trodu ction to Linda

Linda is a p rogram m ing model based on a shared global tuple space and several

tuple space operations [2]. These tuple space operations can be em bedded in any s tandard

language such as C or F O R T R A N , creating a new parallel language. Linda's tuple space

abstraction perm its bo th com m unication and synchronization, as well as mechanisms for

creating and coord inating m ultip ie execution threads. The tuple space forms an associative

shared m em ory th a t consists of sets of d a ta called tuples.

There are six basic tuple-space operations in C-Linda.

o o u t(t) - causes a new tuple t to be evaluated and added to the tuple space.

o in (t) - causes some tuple s to be withdrawn from the tuple space. The tuple s is

chosen from am ong those th a t m atch the tem pla te t. The values of the actuals in s

are assigned to the formals in t . If no m atching t is available when in(t) executes, the

invoking process is blocked until one such m atching tuple is available. If many m atching

s :s are available, one is chosen arbitrarily.

o rd(t) - it is identical to in (t) except tha t the m atched tuple remains in the tuple space

for use by o ther processes.

o inp (t) - it is a non-blocking form of in (t) . It ret urns a 0 if no matching tuple exists or

26

else w ithdraw s the m atching tuple and returns a 1.

o r d p (t) - it is a non-blocking form of r d (t)

o e v a l (t) - it is very similar to o u t (t) except th a t the tuple t is evaluated after it is

placed in the tup le space, ra the r than before. This implicitly creates new process to

evaluate each field of t .

T here are two kinds of tuples : process tuples, which are under active evaluation, and

d a ta tuples, which are passive [4]. Processes accomplish work by generating, using, and

consuming d a ta tuples. A process tuple is a process that executes, then turns into a data

tuple at te rm ination tim e conceptually indistinguishable from all d a ta tuples.

A tuple is a sequence of typed values, e.g., a tuple with a string, a real number, an integer,

a variable, and a function as its param eters is shown below:

(” a s tr in g” , 15.25 , 22 , x , fu n c t io n (p))

An o u t operation adds a passive d a ta tuple into the tuple space. The following operation

adds a 3-param eter passive d a ta tuple into the tuple space:

o u t (” a s t r i n g ” , 15.25 , 22)

An e v a l operation adds a process tuple into the tuple space. T he following operation

adds a 2-param eter active process tuple into the tuple space:

eva l (s q u a r e - r o o t (1 0) , m e a n (1 2 ,2 3 ,3 4))

This process tuple has two processes associated with it; the square-root process and the

process to com pute the mean of three numbers.

An anti-tup le is a sequence of typed fields; some of which m ay be actuals, whereas others

may be formals. A formal is prefixed with a question mark, e.g.,

(” a s t r i n g ” ,? r ,? i ,3 0 ,?z)

27

Here the first and the fourth fields are actuals, and the rest are formals. in. inp, rd. and

rdp a t te m p t to m a tch a passive d a ta tuple in the tuple space with the an ti-tuple supplied

as the opera tion ’s argum ent.

o in (” co o rd ” , 10 , 20) m atches the tuple (’’coord” , 10, 20) in the tuple space.

o in (” c o o rd ” , ?x , 30) m atches all tuples with the first argument as string "coord'',

and the th ird argum ent equal to 30. For instance, the tuple (’’coord ” , 75 , 30) will

m atch the given an ti- tup le (’’coord” , ?x , 30). W hen the tuple is retrieved from the

tuple space, the value of formal param eter x is set to 75.

The eval operation adds process tuples, which means tha t it provides a mechanism

for dynam ically creating processes. In some ways it is similar to the s tandard UNIX fo rk

system call. Both eval and fork create new processes. However the process created by fo rk

is inherently rela ted to the parent process, whereas in Linda, processes created bv e v a l have

no special relationship with the process tha t created them: they pass their result into the

tuple space, not to their parent process.

An exam ple of a L inda system tha t creates 100 (parallel) processes to perform square-root

on the first 100 integers is:

for (i = 0 ; i < 100 ; i - f+) eval(sqrt(i)):

100 process tuples are thrown into the tuple space. Each process com putes the sqrt function

concurrently for one value, then converts it into a passive data tuple. Thus 100 result tuples

are eventually formed, which can be read from the tuple space by the parent or any other

active Linda process.

3.2 ORS Im p lem en ta t io n in Linda

The decision to im plem ent the distribution protocol for ORB using Linda has two im por

tan t ramifications.

o The abs trac t design m ust be translated into abstract Linda.

o The abstract L inda m ust be transla ted into a real Linda, taking into account particular

im plem entation restrictions and constraints.

28

Thus the following questions need to be answered before one can proceed with im plem en ta

tion.

A bstract Linda:

o Is it possible to m ap a process onto a specific processor using Linda's eval?

o How can we m ap exactly one process instance to each processor (e.g., exactly one O R B ;

on processor P,-)?

o How’ can we pass messages from one process to another?

Real Linda:

o How can a user com m unica te with an O R B R

o How does the m aster (OM) detect process (O R B t) failures?

o How does message size affect system performance?

o In a non-homogeneous collection of processors, which machine should run the OM?

o W hat o ther restrictions on abs trac t Linda are imposed by its im plem entation, and how

do they affect the im plem entation of ORS design?

In order to answer these questions, qualitative and quan tita t ive analyses of real and

abstract Linda are necessary.

3.3 M eth o d o lo g y :

o E nvironm ent. All experim ents are conducted on a cluster of IBM RS6000 w orksta

tions running AIX 3.2. T he cluster is supported by a central server which is slightly

more powerful th a n o ther workstations. W ith the remaining machines of equal pro

cessing power, the environm ent can be considered as homogeneous. Linda tuple space

operations create and m anage a tuple space tha t is logically d istributed across all work

stations. In fact, the tup le space is implemented as a collection of local tuple lists,

one per workstation, each containing those tuples generated locally. Access to non-local

tuple lists is supported via interprocess communication.

29

o Program s. All experim ental program s are w ritten in C-Linda and compiled wkh

c lc(v2 .4 .6) com piler from Scientific C om puting Associates. Program s are distributed

to all the machines using t sn e t utility program and then executed, t s n e t is an util

ity for invoking network Linda executables, setting up configuration files, distributing

executables to rem ote machines, executing, removing executables, and killing remote

processes. The configuration file contains the names of all machines participating in the

distributed system and the d a tag ram port num ber used for interprocess communication.

o T im in g . Three functions are provided in the C'-Linda toolkit for tim ing modules. The

tim ing functions im plem ent a stopw atch facility tha t is useful for collecting statistics

on parallel execution. These tim ing functions measure real time.

The three tim ing functions are :

- s ta r tt im er () : initializes the stopwatch.

- t im ersp lit (la b e l) : takes a tim e split (i.e., a stopwatch reading) when called, and

labels the tim e split w ith the specified label.

- pr in ttim esQ : prints all tim e splits executed so far in the tabular format with

labels.

o R esults. Each test p rogram is executed several times, with execution times averaged

to produce the final result. All the programs are run under conditions when the load on

the partic ipa ting workstations, the server, and the local network are fairly static and

minimal (i.e., when no o ther user is executing programs, leaving only system daemons

active).

3.4 Q ualitative eva luation :

Q ualitative evaluation is an a t te m p t to answer some of the specific questions raised during

im plem entation of the ORS design in C'-Linda. This evaluation is driven by the problems

and concerns tha t arise during im plem entation.

Q uestion 1: Is it possible to spawn a process on a specific processor using Linda opera

tions?

30

M A IN

Begin

eval (Worker-process)

in (destination-machine-uame)

End I* MAIN * /

W orker-process

Begin

gethostnarae(Host-machine-name)

out (Host-machine-name)

End /* Worker Process */

Figure 19: Program 1

Im p o rta n ce : T he ORS design requires tha t instances of both OM and O RB be located

on particu lar processors.

1-A (A b strac t Linda): A bstract Linda is a program m ing model based on a shared

global tuple space with several tuple space operations. Because abstrac t Linda makes no

reference to processors and their names, it does not directly support processor directed

prim itive process m anagem ent.

1-B (C-Linda):

In Linda, eval is the only operation th a t creates active processes on remote machines.

The eval prim itive in C-Linda provides no direct form of process m anagem ent, bu t a C-Linda

based process m anagem ent protocol can be developed.

Referring to Figure 19 P rogram 1, the main-program spawns a worker on one of the

processors from the list of processors in the “tsnet.nodes’1 file th a t defines the processors

partic ipa ting in the d is tr ibu ted system 2. In C-Linda, the following default s trategy is used

to m ap processes to processors. Each Linda program has a “tsnet.nodes” file th a t lists the

processors partic ipa ting in the d istribu ted program. The processor listed in the m iddle of

S o u rc e code for all programs is listed in Appendix B. The outline of programs is shown here.
2The name of the processors is sequentially listed on each line in the '“tsnet.nodes" file. In the discussion tha t follows, the

first item refers to the processor listed on the first line, the middle item refers to Lite processor Listed in the middle Line.

31

M A IN

Begin

loop N times

eval (Worker-process)

loop N times

in (des tination-machine-name)

E nd /* M A IN */

W ork er-p rocess

Begin

get host name(Host-machine-name)

o u t (Host-machine-nam e)

End /* Worker Process */

Figure 20: Program 2

the " tsnet.nodes” file is used as the e v a l 's ta rge t unless it is the local host. If the middle

item is the n am e of the local host, then the processor listed jus t above it is selected. Here

we have some indication th a t the ev a led process does not get. m apped to the local host,

which is confirmed la ter by ano ther test. If more than one eva l call is made, although the

destination of the first call be predicted, the destination processors for subsequent calls to

eval are random ly chosen (See Figure 20, P rogram 2).

The protocol to do direc ted eval is il lustrated in Figures 21 and 22. The main routine s im

ply evals a worker process tup le with one argum ent. Upon reaching a destination machine,

the process discovers the nam e of its destination machine by calling a built-in C'-function

g e t h o s t n a m e . T h e process then compares its destination with its intended destination. If

they do not m a tch , the e v a led process te rm inates and sends a message to the main routine

indicating failure. T h e m aste r routine eva ls another such process, and continues until it

succeeds in placing a process a t th e correct destination. This m ethod of random spawning

works because C-Linda m aps processes to processors in a round robin fashion. The exact

order in which th e processors are chosen is random. This program may not always succeed

in placing the process on a given machine. If one tries to do a directed ev a l to the local host,

it never succeeds because the curren t C-Linda im plem entation never makes an a t te m p t to

eval a process on th e local host.

The program also fails if one tries to m ake a directed eval to a processor which already

32

M A IN

Begin

ou t (D est ina tion -addres?)

loop forever

begin

eval (Worker-process)

in (success-flag)

if (success-flag = T R U E)

Exit th e loop

end

End I* M A IN */

Figure 21: Program 3 (Part-1)

has one ev a led process running. This gives an indication tha t two processes are not eva led

on the same processor. The following test confirms this claim. Program 4 ! J i s t e d in the

Appendix B. contains a main routine which evals a few processes, then term inates alter

all the processors reach their destination. The program executes without any problem if

the num ber of processes spawned is less th an the num ber of actual processors listed in the

“tsnet.nodes’’' file. However, if the num ber of evals is more than the num ber of processors

listed in the processor list, the program never term inates. There is nothing wrong with

the program logic, bu t the program fails to te rm ina te because all the processes do not run

simultaneously. W hen the num ber of processes evaled is more than the number of processors

listed in the “tsnet.nodes '’ file, the first N processes are m apped one-to-one on the first A’

processors (barring the host). T he remaining processes, tha t are stacked in a waiting list,

get m apped to a processor as soon as the process running on th a t processor term inates. In

program 5, shown in A ppendix B, the process tha t gets m apped to a processor term inates

only after all the processes get m apped to a processor. Because this condition can never be

met, the program enters a deadlock.

C-Linda R esu lt S u m m ary (Q u estion 1):

o C-Linda does not directly support process (eval) to processor mapping.

o It is possible to predict the destination of the only the first eva l operation.

3 P ro g ram 4 is a slight m odification of P ro g ram 3. See A ppendix B source code listing for m ore details.

33

o In most cases it is possible to im plem ent a process to processor m apping protocol based

on making repea ted evals which succeed only when m apped to the correct destination.

o In some cases the process to processor m apping protocol does not succeed in placing a

process on the required processor.

Q uestion 2: How can we spawn exactly one process (O RB) on one processor ?

Im p ortan ce : T he ORS design requires tha t exactly one ORB instance is running on

one processor when the ORS is in the operating phase.

2-A (A b stract Linda): A bstrac t Linda, as explained before, does not support pro

cessor based process m anagem ent. Hence any notion that is processor specific cannot be

realized in A bstrac t Linda.

2-B (C-Linda):

The protocol to m ap exactly one process on one processor is illustrated in Figure 23.

Program 6. This program evals N - 1 processes. The destination machines are chosen

randomly but when all A - 1 processes find a destination, each processor except the local

host has exactly one process running on it. The ORS design requires that if one of the

ORBs stops com m unicating with the OM. a new ORB instance has to be spawned on that

processor. However, in C-Linda it is not possible to eval another process on a processor

which already has one process running (See 1-B).

C-Linda R esu lt S u m m a ry (Q u estion 2):

o By spawning as m any processes as there are processors, one can have exactly one process

on a processor.

o Only norm al s ta r tu p is supported by the C-Linda im plem entation.

o C-Linda cannot always m a in ta in exactly one process on a processor. When proces

sor or network failure d isturbs normal operation, the one-to-one m apping can also be

disturbed.

34

W orker-process

Begin

gethos tnam e(Host-machine-name)

rd (Destination-m achine-naine)

if (Destination-m achine-iiam e = Host-machine-nameJ

begin

o u t (T R U E)

end

else /* Host-machine-name is not D estina tion-m achine-nam e * /

begin

o u t (T R U E)

te rm ina te

end

End /* Worker Process */

Figure 22: Program 3 (Part 2)

Q u e s t io n 3: How can a user com municate with the evaled process (O RB)?

I m p o r t a n c e : T h e prim ary objective of developing an O bject Registration System is to

enable users to add. delete, and execute object or object instances in a d is tr ibu ted environ

ment. It is very im p o rtan t th a t the user on processor P, be able to com m unicate with the

ORB on th a t processor.

3 -A (A b s t r a c t L i n d a) : A user is associated with a processor. Thus com m unication

between user and an ev a led process is, in effect, communication between the eva led process

and a user on a particu la r processor. Abstract Linda does not support processor based

themes; hence a specific com m unication channel cannot be established between an eva led

process and a user in A bstrac t Linda.

3 -B : C - L in d a :

A simple protocol th a t a t te m p ts to establish communication between a user and an ev a led

process is described in P rogram 7 (Figure 24). The M AIN -M OD U LE(O M), running on

processor Pj ev a ls an O R B process on processor Pi. The ORB uses a g e t s routine (g e t s is

a s tandard C function to read a string from the user) to read a message from the user, then

35

M A IN

Begin

loop (N - 1) times

eval (W orker-process)

E nd !* MAIN * /

Figure 23: Program 6

echos the message back on the user's screen using a printf statem ent. The message should

be read from the user on the processor on which the ORB-process is running. However,

in the C-Linda im plem entation , the spawned O R B process spawned is unable to read any

information from the user on e ither the rem ote machine or the local machine. Further, any

ou tpu t generated is prin ted on the machine th a t hosts OM. This lest shows that a process

evaled on processor P, cannot directly com m unicate with the user on that processor via

simple I /O .

The com m unication protocol is modified in Program S (Figure do) so that the evaled

ORB process reads from one file and writes messages into another file on its host processor

P,. Test execution shows th a t spawned processes are able to read and write into files on their

host processor, so th a t files can be used as logical “pipes" between ORB and user processes.

C-Linda R esu lt S u m m a r y (Q u estion 3):

o User and ev a led processes com m unicate indirectly through files. That is. the user

process writes com m ands into an input file and reads the result from the o u tp u t file,

while the O RB reads the com mands from input file and writes the results into the

ou tpu t file.

Conclusion:

o Direct com m unication between user processes and evaled processes (O RB) on a pro

cessor is not possible.

Q uestion 4: How does the m aster (OM) de tec t ORB failure and vice-versa ?

Im portance : To build a robust d is tribu ted system, it is necessary for both the OM and

the ORBs to detect the failures of o ther components.

36

4-A (A b strac t Linda): In abstrac t Linda, the OM and ORBs are process tuples which

periodically exchange inform ation to ensure proper functioning. W hen the OM process tuple

fails to get messages from the O RB process tuple within the tim eout period, the OM detects

ORB failure and the OM creates a new process tuple to function as an ORB. Likewise the

ORBs can also detect OM failure when they stop receiving a h v e om message from the OM.

4-B: C-Linda

All C-Linda programs are executed using tsn e t utility program. This utility program

distributes the executables to all the machines listed in the "tsnet.nodes" file[2j. Program 9 1

illustrates a trivial ORS system where the OM 0:1 the m aster eva ls ORB.s 011 all the worker

processors. W hen the normal s ta r tu p is complete, the ORBs periodically send alive message

to OM and the OM sends aliveom message to all ORBs. Under this sieacly state, if an O R B ;

fails, the OM detects failure only when it stops receiving the periodic al ic t . message within

its tim eout period. Thus failure detection is not instant and it takes at least one system

tick to sense failure. In the experim ent. ORB failure was sim ulated by te rm inating the ORB

process on processor Pt through an external term ination signal. As soon as one of the ORB

process is killed, the tsn et utility im mediately sensed ORB failure and te rm inated all o ther

ORBs and the OM. Thus the OM never was able to detect ORB failure, as the tsn e t utility

provided an im m ediate, conflicting response (i.e.. to te rm inate all system processes).

In order to prevent tsn e t from detecting failures, the ORB m ust be able to trap all the

term in a tio n signals th a t can cause its te rm ination and perform a normal te rm ination prior

to destroying its tuple space. However there are signals which can never be trapped by ORB:

when one of these signals are generated, the entire system falls apart .

C-Linda R esu lt S u m m ary (Q uestion 4):

o An accidently te rm inated ORB term inates the entire ORS system.

o Term ination signals sent by the operating system cause O R B term ination. Most of

these te rm ination signals can be trapped by the ORB and the O RB can in itia te normal

te rm ination upon receiving these signals.

4 See A ppendix B

37

M A IN

Begin

eval (O RB-process)

End /* MAIN * /

O R B -p ro cess

Begin

gets (message)

prin tf (message)

End /* ORB-process */

Figure 24: Program 7

o Some te rm ination signals can never be trapped by the ORB. 1 hese signals eventually

lead to system term ination .

Conclusion:

o C-Linda does not allow O R B and the OM to detect failure.

o A com pletely robust ORS system cannot be built using the current Linda im p lem en ta

tion.

Q u estion 5: Can L inda program work with UNIX fo rk calls ?

Im portance: O ne of the functions of ORB in the ORS design is to support m ultip le

users on a single machine. In order to do this, either the ORB has to serve each user in a

tim esharing fashion or it has to spawn a new process to serve every user.

5-A: A b stra ct Linda: A bstrac t Linda is system independent. It does not assum e

anything about the underlying architecture or the operating system. Hence, there should

not be any problem with using UNIX fork calls in abstract Linda programs.

5-B: C-Linda:

There are two approaches to support m ultiple ORS users. One approach is to have a

single O RB process th a t a t tends to all users’ need by timesharing. The second approach is

to have the O RB instance on a processor create a separate process for each user requesting

38

M A IN

Begin

eval (ORB-process)

End I* MAIN * /

O R B - p r o c e s s

Begin

O pen FILE-A

message = Read (F ILE -A)

O pen FILE-B

W rite (FILE-B , message)

End /* ORB-process */

Figure 25: Program 8

service. This la tte r approach is a s tandard method used normally in client-server based

applications. In order to realize the second approach, a process has to be spawned lo serve

each user. However, using eval to create a server process for each user will not work because

in C-Linda the destination processor of an eval opera! ion is never the local host. Moreover.

C-Linda does not allow m ore th an one process to be spawned on out1 processor (Sec* 1-B).

The only o ther option left is to use the l TNIX fork com m and to create a new process.

The process created inherits all run-tim e information from the parent process. Program 10 ’

dem onstrates the effect of using UNIX fork calls in (.'-Linda routines. In this program, the

m ain-m odule spawns the processes using eva l and each spawned process spawns two sub-

processes using fork. T he new subprocesses created com m unicate with the main-routine by

sending messages. Upon testing the program, it was noted th a t the main-routine received

multiple messages from a sub-process when only one message was sent. The Linda, system

behaved unpredictable-, and the system finally crashed. This behavior results because the

forked process inherits a copy of all d a ta structures from the parent process, including the

message table and hash table used to manage the (.'-Linda tuple space. Thus, there will

be multiple hash tables and message tables. Further, the alarm s for the child process are

cleared when fork is called [5]. C-Linda uses the alarm signal (SIGALRM), hash tables,

and message tables for its norm al tup le space m anagem ent. Calling fork interferes with this

normal operation and produces unpredic table results.

6See A ppendix B

39

C -Linda R esu lt S u m m a ry (Q u estion 5):

0 C-Linda does not work properly when the UNIX fo rk function is called. System

execution becomes chaotic and term inates abnormally.

o It is impossible to create a new process to handle each user. Instead, the ORB should

serve each user in a tim eshared fashion.

O ther L im ita tion s o f Linda Im p lem en ta tion

o Linda uses S IG T E R M (Software term ination signal), SIGALRM (Alarm signal), and

SIGIO (I /O signal) signals for its proper operation. These signals should nor be rede

fined in the C-Linda program. Further, functions like sleep, usleep. longjump. setjmp.

alarm, ualarm should not be used in the program. These function calls redefine signals

used by C-Linda. which may result in im proper operation of the (.'-Linda system.

o The program should not contain functions th a t allocate or deallocate memory segments.

Function calls like calloc, malloc, and sbrk should not be used in C-Linda programs.

o The processes created by using eval can only accept simple data types as argum ents.

Aggregates (an array or a dynamically allocated chunk of memory) cannot be passed

as param eters to the evaled processes.

C-Linda allows the following eval operation where the spawned process has two p a ra m

eters: an integer, and a real number.

eva l(process(10 , 13.34))

C-Linda does not allow th e following eval operation where the param eter passed to the

evaled process is an array of numbers.

eval(process(array))

This lim itation of C-Linda forces a restriction during ORS implementation. Complex

information th a t needs to passed to a spawned process has to be passed as a message in

the global tup le space. F urther the tuple m atching is fairly rigid and objects of dynam ic

size cannot be retrieved from the tuple space using anti-tuples.

40

Chapter 4

Q uantitative Evaluation

This chap ter describes benchm arks tha t reflect performance measures for different p r im i

tives of parallel com puta tion with ORS implementation in mind. The benchm ark is based on

Linda tup le s p a c e . ' T he results of a benchmark are influenced not only by the perform ance

of the underlying architecture, but also by the im plem entation of Linda on tha t arch itectu re

[!] •

Srikanth K am bhatla , Jon Inouye. and Jonathan Walpole[l] describe the benchm arking

of Linda on parallel machines via a software architecture. Benchm arking using software

arch itecture makes the resulting benchmarks portable since the use of software arch itectu re

masks the diversities of underlying architectures. "BeLinda’’ is the software benchm ark tha t

is based on Linda tuple space. “BeLinda" defines an appropria te level of abstraction for

comparing different parallel platforms. Using "BeLinda". three different Linda based para l

lel architectures were evaluated: Sequent S ym m etry" . The Intel iP S C /2 and the Cogent

X TM 8. B enchm ark results on these architectures were then com pared. Results showed tha t

the cost of doing any Linda prim itive operation on shared m em ory architecture is su b s ta n

tially less th an on any o ther machine. Distributed memory architecture and hybrid network

architecture incur com m unication overhead during tuple space operations. Overall perfor

mance of Sequent Sym m etry is be t te r than the rest. iPSC /2 . which is based on d is tr ibu ted

memory m odel, is com paratively be tte r than the Cogent X TM , which is based 011 hybrid

networking. These results led to the conclusion th a t com munication plays a big role in the

im plem entation of any parallel architecture.

My approach to benchm arking specifies the performance with respect to ORS on a spe

cific parallel architecture: A cluster of workstations in a network environm ent. W hereas

‘‘BeLinda’' gives a comparision of Linda implementation on different parallel architectures.

6 Sequent S y m m etry is based on sh a red m em ory arch itec tu re .

7 In te l iP S C /2 a rch ite c tu re consists of a d is tr ib u te d m em ory m odel.

8Cogent XTM w o rk sta tio n s form ed a hybrid netw ork of a shared bus and a crossbar.

41

4.1 Sp ecif ication :

The benchm ark suite is a set of seven individual programs that evaluate the characteristics

of C-Linda. T he benchm ark suite is designed with the ORS design in mind, and with the

specific goal of providing answers to the following questions.

o W h at is the average tim e taken to perform each primitive operation ?

o It is known th a t messages and d a ta should be placed in the tuple space as tuples. W hat

is the effect of the num ber of param eters in the tuple for each prim itive operation?

o Tuples are ex trac ted from the tuple space by tuple matching. What, is the effect of the

num ber of actual (known) and formal (unknown) parameters in an anti-tuple?

o Messages and d a ta have to be moved in and out of the tuple space during ORS operation.

W hat is the effect of the size of the message on system performance? Is it be t te r to

send d a ta in num erous small packets or as a single huge packet?

o As user adds m ore objects into the tuple space, the size of the tuple space grows. Is

there any lim it on tuple space size ? If so, what is the m aximum limit ?

o ORBs and OM periodically exchange alive messages. W hat is the average latency tim e

between sending and receiving messages ?

o In the ORS, there is a single m aster and several worker machines. W hat factors de te r

mine the selection of a m aste r machine ?

B enchm ark 1 (p rim itives.c l):

Benchmark P rogram l 9 evaluates the cost of doing the basic Linda prim itive operations

by performing N p rim itive operations of each type. The time is then divided by N to obtain

the average tim e for each individual operation.

9 Source code Listing of a ll th e B enchm ark P ro g ram s is lis ted in A ppendix C. Inline code shows th e a lg o rith m used in pseudo
code.

42

Operation

IN

Time (sec)

0.0050272

OUT 0,0030588

RD 0 .0049597

IN? 0 .0050056

RD? 0 .0050089

EVAL 0 .0032121

T a b le 1

B e n c h m a r k P r o g r a m 1:

M A I N

Begin

Start T im e = G etT inn:()

loop N times

do-a-prim itive-operation /* e.g., O U T */

S topT im e = G etT iine

AverageTiine = (S to pT im e - S ta r tT im e) / N

End /* MAIN' */

Prim itive operations th a t add tuples into the tuple space (o u t and eva l) take almost

the same time. Prim itive operations tha t remove the tup le from the tuple space fall under

another category and they take almost the same tim e, which is higher than the tim e taken

by o u t and ev a l (See Table 1). Tuple reading operations take more time since they have to

do tuple m atching before removing the tuple from the tuple space. Hence the difference in

time roughly corresponds to the tuple-m atching overhead.

Graph 1 shows the effect of sending multiple messages. From the graph it is d e a r tha t

there is no additional overhead when multiple messages are sent in succession.

43

600

500

400-

.1 300-

200 -

100E030 40 50 60
Number of O p e r a t io n s

20

Thousands)

i -a 0'_! ---- !n

G r a p h 1

B e n c h m a r k 2 (a c t u a l s .c l) :

B enchm ark Program 2 evaluates the cost of executing a primitive operation with a varying

num ber of actuals in the tuple. This is achieved by varying the number of actuals and timing

the o u t , in , and, r d operations.

B e n c h m a r k P r o g r a m 2:

M A I N ■

Begin

S tar lT iine = GetTim t. ' l)

loop N times

O U T (p a ra m l , p a ra m j , param.X)

S topT im e = G etT im e

AverageTime = (StopTime - S t. ir tTiine) / N

End /* MAIN */

T he results in Table 2 and G raph 2 show tha t the number of actual param eters in a tuple

does not add significant overhead while adding or retrieving tuples. The only overhead is

the t im e taken to perform a prim itive operation. This would mean tha t instead of sending

several single param ete r messages, it is more efficient to send a few m ulti-param eter messages.

Moreover, in cases where several param eters have to be passed from one node to another,

44

Number of Actual parameters

(1000 messages)

1 2 4 e 16 32 64 c i 2

OUT 3 . 3 0 7 6 7 2 3 . 4 3 2 1 5 4 3 . 3 0 8 1 8 0 3 . 2 9 5 5 7 9 3 . 2 5 6 8 7 1 3 . 5 5 0 1 3 2 3 . 4 7 3 9 1 9 5 . 2 9 9 5 4 5

IN 5 . 8 5 5 9 5 9 5 . 9 8 8 7 6 5 6 . 0 0 3 9 5 5 6 . 2 1 9 7 0 5 6 . 4C 0 1 9 S 6 . 1 8 7 5 C 5 6 . 3 3 0 4 7 1 6 . 9 2 S 3 2 6

RD 5 . 8 8 6 4 0 1 6 . 0 8 9 6 3 5 5 . 9 2 0 3 5 0 6 . 1 0 1 1 8 0 6 . 2 5 5 1 7 3 € . 2 3 9 1 2 5 6 . 2 5 5 2 3 8 6 . 9 3 3 6 8 7

Table 2

the cost of adding or deleting a few param eters is insignificant when compared to the tim e

taken to perform the primitive operation.

B enchm ark 3 (form als.cl):

Benchm ark Program 3 evaluates the cost ol executing a prim itive operation with a varying

num ber of formals in the anti-tuple. This is achieved by varving the number of formals in

the tuple ans tim ing rd and in operations.

B en ch m ark P rogram 3:

M A I N

Begin

S ta r tT i in e = G e tT im e j)

loop N times

IN (fo rm ali . a c tu a l l actualX)

S to pT im e = G etT im e

A verageT im e = (S topT im e - S ta r tT im e) / N

E nd /* M A IN */

The num ber of known and unknown param eters does not have much effect on the time

to perform a prim itive operation. No conclusive stand, regarding the exact nature of tuple

45

5.5]
d)
i 5"

4.5-
I

4]

3 .5 h

3 — 0 100 2C0 3CO 400 50U
N u m b e r of a c tu a l p a r a m e te r s

cut • raaa

Graph 2

matching, can be taken from the results obtained (See Table 3). The results seem to indicate

th a t tuple m atching takes more tim e when the number of forma! param eters in the ant i-tuple

is zero or m axim um and takes the least time for an in term ediate num ber of formal param eters.

B en ch m ark 4 (m essage.c l):

Benchm ark Program 4 measures the time to send messages of different sizes.

B en ch m ark P rogram 4:

-M ain-m odute spawns two processors f'i and / V

-Pi sends a sequence of packets of size ;Y to Pi.

-T im e taken by P2 to receive packets is me.isured.

-E xper im en t is repeated for different packet sizes.

From the results, it is clear tha t up to a certain extent, it is b e t te r to send a few large

packets than to send several small packets of data. For example, the results in Table 4 show

th a t the tim e to send 10000 bytes of message would be 3d.07 seconds for 10,000 packets

of size 1, 0.7 seconds for 100 packets of size 100, and 0.0424 seconds for 1 packet of size

10,000. However, to send a very huge packet of size 2,000,000, it is m ore efficient to send

two packets of size 1,000,000 ra ther than a single packet, i.e., 219.G29 seconds vs. 20.672

46

Nur ac er o f F o r m a l p a r a m e t e r s

(1COO O p e r a t i o n s)

0 1 2 3 4 S 6 7 6

i s
(NO Of

p a e a n s)

I 6 . 7 7 6 5 9 6 . 4 2 7 C 3

2 6 . 3 6 2 6 9 6 . 2 0 1 8 4 6 . 0 2 6 2 9

4 5 . 9 5 1 6 5 6 . 1 4 9 0 0 5 - 7 8 3 2 7 6 . 2 5 9 0 2 5 . 6 1 8 9 2

fi 6 . 2 3 7 7 ? 5 . 9 3 1 5 7 5 . 7 9 2 3 2 5 . 8 1 3 9 3 5 . 7 9 2 9 6 5 - 9 5 * 5 6 6 . 1 1 5 3 2 5 . 9 C 6 6 6 6 . 4 6 6 5 2

Table 3

1

j

¥

1
l

D
J V , j

I \ ! 1

j \
B !

\ / |

B

p \ 1
1

i \ / »

/ 1
1

* r - ~
i

0 1 2 3 * 5 6 7
N v 'T itc * C" rC'iTia- p c i aiT<c tr”’ < c

G raph 3

S i z e

N u r e e r c f p a e x e i a

1 10 SC IOC 1DC0

1 0 . 0 1 2 8 0 . 0 8 0 8 0 . 1 6 3 0 . 6 9 6 . 7 3 8 3 3 . C * " ' 32 2 . 0 2 :
v _

100 o . o : : 0 . 3 7 5 0 . 3 1 3 o . i c ' 3 . 1 9 8 3 2 . 2 9 3 1 6 3 . 3 5 “

10CC 0 . 0 1 3 4 0 . 1 2 1 C. 199 0 . 3 5 8 3. 628 8 2 . 9 ' >452

1 0 0 0 0 0 . 4 2 8 1. 3 . 3 1 1 3 1 . 1 2 3 >245

5 0 0 0 0 0 . 1 2 1 8 1 . 0 9 9 5 . 5 4 6 1 2 . 2 3 “ >212

1OC000 0 . 2 4 3 2 . 0 ? 1 1 S . 4 J 5 2 0 . 8 4 . I K

5CCCC3 1 . 0 2 9 1 0 . 6 2 1 1 2 5 . 6 >215

1 0 0 0 0 0 0 2 . 0 9 1 20 . 61 2 >259

20CCC0- : 2 : 3 . 6 2 9 >215

Table 4

seconds. This implies th a t the re is a limit on the message size that can be placed in the

tup le space. Results show th a t packet size greater than 000.000 cannot be efficiently sent

from one process to another.

B en ch m ark 5 (flood.cl):

Benchm ark Program 5 measures the impact of flooding the tuple space with messages.

B en ch m ark P rogram 5:

M A I N

Begin

Do Until ProgramCroshes

O U T (A-Message)

End /* MAIN */

This benchm ark finds the size of the tuple space. From the results in Table 5 and G raph

5, it can be seen th a t as the size of the message increases, the number of messages tha t

can be accom odated in th e tup le space decreases. T he graph is similar to a hyperparabolic

48

350-
!

300-j

I
250-

Ii
2 0 0 -

fc
150

50 ;

100 1000
N u m b e r o f p a c k e t s

10CC0

: --*»■ p .- ic k e :s iz e = 1 — p a c k e t s ; z e = 10 0

G raph 4

function, where the product of x and y is a constant. This indicates that the size of the

tuple space is a constant defined in the im plem entation as (about) 3,000.000 bytes.

B en ch m ark 6 (latency.cl):

Benchmark Program 6 measures the average tim e to exchange messages between two

processes running on different machines.

Benchm ark Program 6:

-Spawn processes Pi and P>.

-Pi and P2 exchange N messages.

-T h e time taken is measured.

Latency, in this context, is the tim e taken to send a message to a process on a different host

and receive a response back from th a t process. From the results in Table 6, it can be noted

tha t the average latency time between any two processes running on different workstations

in a homogeneous environm ent is the same.

49

K eajuqre j j . i e K a x ia u x M essages

100C 3CT9i

10C0C : : n

IO0OCC 2 ' 2

1COCOOO

IOOOOOCC

3CQ0C33C

Table 5

v<L>CD
to

<0

M e s s a g e s iz e

30f
25-i

2 0 - V

15
\

\10'
\

5-,

100 0 1 0 0 0 0 10CQ00 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 10C000C0C

Graph 5

50

(for SCO message transfers to ana frc j

M ac hine 1 Machine 2 Time l ae e:

H uc kle l i n e u p 6. 3

S c h w c ly Banrtack 6 . :

C ap rc n B ig n o ie £ .2

Table 6

Benchm ark 7 (d istr ib u tion .c l):

Benchmark Program 7 measures the time taken to d istr ibute N identical processes irom

a machine.

B enchm ark P rogram 7:

-Spaw n N processes.

-F ind ou t the dest ina t ion of the spawned processes.

-D eterm ine the tim e taken.

Discussion:

Distribution of N processes to machines from a given machine will give a distribution

of processes as discussed in C hap te r 3. This d istribution is a measure of the power of the

machine, in the sense th a t a given processor will receive more processes only if it is able to

execute them to te rm ina tion , one by one. From the results in Table 7, it can be seen tha t

the processor “huckle” executes to completion more processes than the rest, indicating tha t

it is more powerful th an the rest. T he tim e taken indicates the tim e taken to d istribute and

realize the work. From the result, it can be seen th a t work distribution from ‘l in e u p ” took

less time than the rest.

51

(H os e M a c h i n e

N um ce r

h a s no p r o c e s s e s s p a w n e d or.

©J p r o c e s s e s s p a v n e c : H Q

i t s e l f)

h u c k i e t i n c u p b a n n a c k s c n i v e l y S t i l l w a t e r l e i t r . i c a c r c n f c ; ? r . c l e T I K E t s e .

0 20 19 20 15 2 i 20 21 1 1 . 5 3 9

31 0 17 22 19 19 IT IT 1 2 . S i s

3 C 19 0 19 1 9 22 r 15 l l

28 18 19 0 2 0 13 19 n .

23 21 21 19 o : : 16 - -

22 2- 25 21 C : :

20 20 2'. 0 19 1C ' 1 5

26 I ? j : 22 22 0 i : . 4 -35

Table 7

4.2 I m p a c t o f Q u a n t i t a t i v e e v a l u a t i o n o n O R S I m p l e m e n t a t i o n :

o In O R S im plem entation, when messages have to be read, it is preferable to us*1 non

blocking versions (in p and r d p) than blocking versions (in and rd) . This allows the

C'-Linda program to handle timeouts in tailed read operations without, taking additional

time.

o W hile transferring inform ation from one ORB to another, it is generally more efficient

to send a few large packets than numerous small packets. However, a very large packet

of da ta can fill the entire tuple space, which can crasli the system.

o T he size of the tuple space is limited. The sum of inform ation stored in the tuple

space, objects and messages, cannot exceed this limit. If the ORS has stored lot of

information, then only a part of it can be in the active tuple space and the rest has to

be on secondary storage.

o In a homogeneous network, the average time to pass messages between any two proces

sors is the same irrespective of the two processors involved. Further, the distribution

52

experim ent shows th a t in a homogeneous network with processors of unequal power,

any processor can have the OM running on it. For example, in the experim ental envi

ronm ent, it is b e t te r to have the m aster on the processor “lineup” than on the more

powerful server processor “huckie” .

53

C hapter 5

Sum m ary and C onclusions

5.1 S u m m a ry

C hapter 2 describes the ORS design th a t satisfies all requirem ents stated in C hap ter 1.

The design is robust as it can absorb processor and network failures. However, as s ta ted

earlier, all the protocols described in the design cannot be directly m apped to the actual

im plem entation in C-Linda. The qualitative and quan tita t ive evaluation showed iliar it is

indeed true. C hap te r 3 exposes some of the im plem entation limitations of C-Linda through a

series of experim ents. Q ualita tive evaluation shows tha t fault tolerance, which is a key note in

the design, cannot be achieved with the current C-Linda im plem entation. C hapter 4. through

a set of benchm ark programs, shows tha t message size and tuple space size are constrained

by C-Linda which can cause serious problems in ORS im plem entation. Results garnered

from the preceding two chapters give enough hints to direct the actual ORS im plem entation

in C-Linda. For instance, the im plem entation need not concentrate on having sub-sections

of programs to handle processor failures since C-Linda does not tolerate processor failures.

5.2 P r o to ty p e im p lem en ta t io n o f ORS

The pro to type system has the following features.

o The system is capable of normal s ta r tup , operation, and term ination.

o T he system is not robust and is prone to processor failures.

o Com m unica tion between the user and ORB is through files. T he user interacts with an

independent program which interacts with the ORB on th a t machine through files.

o The user can register simple objects and retrieve them.

o The system supports a “super-ORS-user” who can control system behavior and te rm i

nation.

o T he ORB keeps a log of all user com mands and the s ta tus of OM.

54

o T he OM saves all the objects in the tup le space at regular intervals. It also keeps a log

of other system inform ation like O RB alive messages.

o T he system also saves all ob jec t tuples im m ediately before normal system term ination.

Thus, inform ation can be accessed across different ORS sessions.

Given the ORS, one should have a d is tr ibu ted environm ent to run this software. Network

programs generated by C-Linda execute w ith the following restrictions. All the processors

in the d is tr ibu ted system m ust be listed in the configuration file "tsnet.nodes” . Processors

cannot be added dynam ically to this file during program execution. The program has to be

red istributed and executed using t s n e t in order to have a new configuration for the d is tr ibu t

ed system. Merely listing processor nam es in “tsnet.nodes" is not the only requirement for

program execution in the d is tr ibu ted environm ent. T h en ' must be a login account with the

same nam e on every machine listed in “tsnet.nodes" file. Further, the login accounts have

to set up such th a t each m achine trus ts the o ther (this information has to be given in the

file “.rhosts" file in UNIX environm ent). Once this has been set up, the user on one machine

can log on to another m achine with the same user nam e without typing in the password.

This environm ent is stric tly required by C-Linda programs because C-Linda internally uses

r s h com m and to execute rem ote processes.

5.3 C onclusion

D esign

The ORS design is robust as it can w ithstand processor failure and network partitioning.

The Object Registration System re tu rns back to the normal configuration when processor

a n d /o r network fault is rectified.

Im p lem en ta tion

o A bstract Linda is well suited for im plem enting ORS design because its high level a p

proach to d is tr ibu ted program m ing hides most of the details of communication and

process m anagem ent. T h e only lim ita tion it has is directed process to processor m a p

55

ping, which is easily circumvented by a simple protocol.

o T he curren t C-Linda im plem entation of abstrac t Linda is not robust, and cannot provide

a robust im plem en ta tion of the ORS.

o In order to build a robust ORS in real Linda, the following changes need to be m ade in

C-Linda im plem entation .

— T he ts n e t utility program which manages the tup le space should be m ore flexible.

Instead of te rm ina ting the entire ORS system upon detecting te rm ination of a

rem ote process (O RB), tsn e t should allow p rogram m er intervention at tha t point.

This concept is very similar to UNIX signal handling, where one can call a function

when a signal is raised.

— C-Linda should allow the use of signals in C-Linda programs. Instead of reserving

the signals for system use and thus preventing user handling of those signals, an

a l te rna te C-Linda im plem entation should be provided so th a t the C-Linda system

distinguishes between program invoked signals and its internal signals. Likewise.

C-Linda should provide its own version of m a l lo c function.

Future D irections:

o Isolation of an O RB instance either due to processor failure or network parti tion ing

leaves the objects registered on the isolated processor inaccessible to user requests from

O RBs on o ther processors. This problem is specific to data m anagem ent in a d is tr ibu ted

system. T he ORS is a form of d istributed database system where each processor holds

a pa r t of the d a ta and no two processors store com m on information. W hen a processor

fails, all inform ation th a t is associated with it is lost unless the processor periodically

saves d a ta on its secondary storage. The stored da ta , however, will not be available to

the d is tribu ted system as long as tha t processor is down. In order to avoid tem porary

d a ta loss due to processor failure, objects th a t are registered through an O RB m ust be

stored on m ore than one processor so tha t the objects are still available to the ORS when

one processor fails. T he d a ta still m ay not be retrievable though if both the processors

fail, though the probability th a t both fail is much lower than a single processor failure,

56

d a ta redundancy requires special protocols to sim ulate concurrent updates to replicated

objects. T hese are th e issues th a t are not dealt in the ORS design. D eterm ining the

type of d a ta d is tr ibu tion is another m ajor step in having a robust system. F u rther

investigation needs to be done in this direction.

o T he s tru c tu re of objects has to be carefully designed depending upon user needs. This

is an essential step in having a working ORS system.

o T he user interface, which is a simple com m and line, can be improved with a window

interface.

o C om m unica tion between the O RB and the user is established through files in the current-

version of ORS. This m ode of com m unication is very slow when compared to other forms

of com m unica tion channels available. Use of shared memory for communication is an

a lte rna tive m e thod which can be given some thought.

57

R eferences

1. Srikanth K am bhatla , Jon Inouye, and Jon a th an Walpole, Benchmarking Parallel M a

chines via a Software Architecture, Oregon G rad u a te Institu te of Science and Technology.

Technical Report No. C s /E 90-002, January 1990.

2. Scientific Associates Inc., C-Linda Reference Manual. August 1990.

3. Andrew Binstock. E m e r g i n g Standards, Unix Review.

4. Nicholas Carriero, and David G elernter, How to Write Parallel Programs: A Firs!

Course , The M IT Press, Cambridge, MA, 1990.

5. R ichard Stevens. Advanced Programming in the ['X IX (nvironment. Addison-Weslev

Publishing Company, Inc., Septem ber 1992.

58

A P P E N D IX A

59

time tO
M essage

reply

time t3
time t4—x

Machine A Machine B

(i) At time to, machine A sends a m essage to machine B

(ii) Machine B receives the m essage at time t1

(iii) Machine B sends a reply at time t2

(iv) Machine A receives reply at time t3

(v) Machine A sends another m essage at time t4 and is lost.

Understanding Timing Diagrams

60

A P PE N D IX B

60

/* Benchmark Program 1 */
/* File : primitives.cl
* Description :This program evaluates the cost of doing Linda out(), in()

rd(), inp (), rdp<), and eval() operations by performing size primitive operations of each type. The time is then
In case of eval(), a null eval which does no processing is performed.

real_main(int argc,. char ** argv) {
int i;
int size;
if (argc != 2) exit (); size = atoi(argv[l]);
start^timer(); /* Start the timer */
for (T = 0; i < size; i++) /* Do size out() operations */ out("hello"); timer_split("out"); /* Get the time */
print_times(); /* print the time */start timer();/* Start the timer */
for (T =0; i < size; i++)/* Do size rd() operations */ rd("hello"); timer_split("rd");/* Get the time */
print_times(); /* print the time */start timer(j;/* Start the timer */for (T = 0 ; i < size; i++)/* Do size in() operations */

in("hello"); timer_split("in");/* Get the time */ print_times(); /* print the time */start timer();/* Start the timer */ for (T = 0 ; i < size; i++)/* Do size out() out("hello"); timer_split("out");/* Get the time */
print_times(); /* print the time */start^_timer (j ;/* Start the timer */ for (T = 0 ; i < size; i++)/* Do size rdp() rdp("hello");
timer_split("rdp");/* Get the time * print_times(); /* print the time */start timer();/* Start the timer */
for (T = 0; i < size; i++)/* Do size inp() inp("hello");
timer_split("inp");/* Get the time */
print_times(); /* print the time */start^_timer ();/* Start the timer */ for (T = 0 ; i < size; i++)/* Do size eval() operations */

eval();
timer_split("eval");/* Get the time */ print_times(); /* print the time */

operations */

operations */

operations */

61

/* Benchmark Program 2 */ 62
/* actuals.cl */.
real_main(int argc, char** argv) {

int i,size,typel; int worker(int);
if (argc != 2) {
printf ("Usage : %s FormalNum (1..7)\n",argv[0]);

}typel = atoi(argv[l]);
eval(worker(typel));

int worker(int type) {
int i , j;

for (j = 0; j < 10; j++) {
start_timer();
if (type = 1)for (i = 0; i < 1000 ; i++)

out(1); else if (type = 2)
for (i = 0; i < 1000 ; i++)out(1,2);
else if (type = 3)for (i =0; i < 1000 ; i++)out (1,2,3,4); else if (type = 4)for (i =0; i < 1000 ; i++)out(1,2,3,4,5,6,7,8); else if (type = 5)for (i = 0; i < 1000 ; i++)out (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16);
else if (type = 6)for (i = 0; i < 1000 ; i++)

out(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32);
else if (type = 7)for (i =0; i < 1000 ; i++)

out (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,2 9,30,
31,32,33,34,35,36,37,38,39,40, 41,42,43,44,45,4 6,47,48,4 9,50,51,52,53,54,55,56,57,58,59,60,61, 62, 63, 64);

elsefor (i = 0; i < 1000 ; i++)
out(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16.17.18.19.20.21.22.23.24.25.26.2 7,2 8,29,30,31,32,

33.34.35.36.37.38.39.40.41.42.43.44.45.4 6,4 7,48,4 9,
50,51,52,53,54,55,56,57,58,5 9, 60, 61, 62, 63, 64,1,2,3, 4, 5, 6, 7, 8, 9, 10, 11, 12,13, 14, 15, 16, 17, 18, 19, 20,21, 22,23.24.25.26.27.28.2 9,30,31,32,33,34,35,36,37,38,39,
40.41.42.43.44.45.4 6,47,48,4 9,50, 51,52,53, 54,55,56, 57,58,59,60,61,62,63,64,1,2,3,4,5,6,7,8,9,10,11,12,
13, 14,15,16,17,18,19,20,21,22,23, 24,25,26,27,28,29,
30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44-, 45, 46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,
64,1,2,3,4,5,6,7,8,9,10,11,12,13, 14,15,16,17,18,19,
20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,
37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59, 60, 61,62, 63, 64, 1, 2, 3,4, 5, 6,7,8, 9,
10,11,12,13,14,15,16,17,18,19,20-, 21, 22, 23, 24,25, 26, 27,28,29,30,31,32,33,34,35,36,37,38,39,40, 41,42,43,

63
44,45, 46, 47, 48,4 9,50,51,52,53,54,55,56, 57, 58, 59, 60,
61,62,63,64,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17,18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 2'8, 29, 30, 31, 32, 33, 34,35,36,37,38,39,4 0,41,42,43,44,45,46,47,48,4 9,50,
51,52,53,54,55,56,57,58,5 9, 60, 61, 62, 63, 64,1,2,3,4,5,
6,7, 8, 9,10, 11,12, 13,14, 15,16,17, 18, 19, 20,21,22,23, 24,25,26,27,28,2 9,30,31,32,33,34,35,36,37,38,39,40,41,
42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58, 59, 60, 61, 62, 63, 64, 1,2,3, 4,5, 6, 7, 8, 9, 10, 11, 12, 13,14,
15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,
32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64);
timer split("Out done"); if (type = 1)
for (i =0; i < 1000 ; i++) rd(1); else if (type = 2)
for (i = 0; i < 1000 ; i++)

rd(l,2); else if (type = 3)
for (i = 0; i < 1000 ; i++)rd(l, 2,3,4) ; else if (type = 4)for (i =0; i < 1000 ; i++)

rd (1,2, 3, 4, 5, 6, 7,8); else if (type = 5)for (i = 0; i < 1000 ; i++)
rd(l,2,3,4,5, 6, 7,8,9,10,11,12,13,14,15,16); else if (type = 6)for (i =0; i < 1000 ; i++)rd(1,2,3,4,5,6,7,8, 9,10,11,12,13,14,15,

16,17,18, 19,20, 21,22,23,24,25,26,2 7,28,29> 30,31,32); else if (type = 7)for (i = 0; i < 1000 ; i++)
rd(l,2,3,4,5,6,7,8,9,10,11,12,13,14, 15,16,17,18,19,20,21,22,23,24,25,26,27,28,2 9,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,
45,4 6,47,48,49,50,51,52,53,54,55,56,57,58,
59, 60, 61, 62, 63, 64) ; else

for (i = 0; i < 1000 ; i++)rd(l,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17,18,19,20,21,22,23,24,25,26,27,28,29,30,31.32.33.34.35.36.37.38.39.4 0,41,42,43,44,
45.4 6,47,48,49, 50,51, 52,53,54,55, 56,57,58,59, 60, 61, 62, 63, 64,1, 2, 3,4,5, 6, 7, 8, 9, 10, 11,12.13.14.15.16.17.18.19.20.21.22.23.24.25,26, 27, 28, 29, 30, 31,32, 33,34, 35,36, 37, 38,39,
40.41.42.43.44.45.46.47.48.4 9,50,51,52,53,
54,55, 5 6,57,58,59,60, 61,62, 63, 64,1, 2,3,4, 5,6, 7,8, 9,10,11, 12,13,14,15,16,17,18,19,20,21,
22.23.24.25.26.27.28.29.30.31.32.33.34.35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,
64,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,
17, 18,19,20,21,22,23,24,25,2 6,27, 28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,
45.4 6,47,48,49,50,51,52,53,54,55,56,57,58,59, 60, 61, 62, 63, 64,1,2,3,4,5, 6,7,8, 9,10, 11,
12.13.14.15.16.17.18.19.20.21.22.23.24.25,
26, 27,28, 29,30, 31, 32, 33, 34, 35, 36, 37, 38, 39,
40.41.42.43.44.45.46.47.48.4 9,50,51,52,53,
54,55,56, 57,58,59,60, 61,62, 63, 64,1,2, 3, 4, 5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,
22.23.24.25.26.27.28.29.30.31.32.33.34.35,36.37.38.39.40.41.42.43.44.45.46.47.48.4 9,

50,51,52,53,54,55,56,57,58,59,60,61,62,63, 64,1,2,3, 4,5,6, 7, 8, 9,10,11,12,13,14,15,16,17.18.19.20.21.22.23.24.25.26.27.28.2 9,30,
31,32,33,34,35,36,37,38,39,40,41,42,43,44,
45.4 6,47,48,4 9,50,51,52,53,54,55,56,57,58,
59, 60, 61, 62, 63, 64, 1,2,3,4,5, 6, 7,8,9, 10, 11,
12.13.14.15.16.17.18.19.20.21.22.23.2 4,25,
26,27,28, 29,30,31, 32,33, 34,35, 36,37, 38,39,40.41.42.43.44.45.46.47.48.4 9,50,51,52,53,
54,55,56,57,58,59,60,61,62,63,64);

timer_split("Read done");
if (type = 1)for (i =0; i < 1000 / i++)

in (1);
else if (type = 2)for (i = 0; i < 1000 r i++)in (1,2) ;
else if (type = 3)
for (i =0; i < 1000 r i++)in (1, 2, 3, 4) ;
else if (type = 4)for (i = 0; i < 1000 •/ i++)in(1,2,3,4,5, 6, 7,8) ;else if (type = 5)for (i =0; i < 1000 ; i++)in(1,2,3, 4, 5, 6,7, 8,9,10,11,12,13,14,15,16); else if (type = 6)
for (i =0; i < 1000 ; i++)in(1, 2, 3,4,5, 6, 7, 8, 9,10,11,12,13,14,15,16,
17,18,19,20,21,22,23,24,25,26,27,28,2 9,30,31,32); else if (type = 7)

for (i = 0; i < 1000 ; i++)in(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16, 17,18,19,20,21,22,23,24,25,26,27,28,29,30,
31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,
60, 61, 62, 63, 64) ;elsefor (i = 0; i < 1000 ; i++)in(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17.18.19.20.21.22.23.24.25.26.27.28.29.30,31.32.33.34.35.36.37.38.39.40.41.42.43.44,

45.4 6,47,48,49,50,51,52,53,54,55,56,57,58,59.60.61.62.63.64.1.2.3.4.5.6.7.8.9.10.11,
12.13.14.15.16.17.18.19.20.21.22.23.24.25,2 6,27,28,29,30,31,32,33,34,35,36,37,38,39,4 0,41,42,43,44,45,4 6,47,48,4 9,50,51,52,53,
54.55.56.57.58.59.60.61.62.63.64.1.2.3.4.5,
.6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22.23.24.25.26.27.28.29.30.31.32.33.34.35,36.37.38.39.40.41.42.43.44.45.46.47.48.49,
50,51,52,53,54,55,56,57,58,5 9,60,61,62,63,64.1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16,17.18.19.20.21.22.23.24.25.26.27.28.29.30,31.32.33.34.35.36.37.38.39.40.41.42.43.44,
45.4 6,47,48,49,50,51,52,53,54,55,56,57,58,
59.60.61.62.63.64.1.2.3.4.5.6.7.8.9.10.11,12.13.14.15.16.17.18.19.20.21.22.23.24.25,
26,27,28,29,30,31,32,33,34,35,36,37,38,39,4 0,41,42,43,44,45,4 6,47,48,4 9,50,51,52,53,
54.55.56.57.58.59.60.61.62.63.64.1.2.3.4.5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,
22.23.24.25.26.27.28.29.30.31.32.33.34.35,
36.37.38.39.40.41.42.43.44.45.46.47.48.49,
50,51,52,53,54,55,56,57,58,59,60,61,62,63,64.1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16,

17,18,19,20,21,22,23,24,25,26,27,28,29,30,
31,32,33,34,35,36,37,38,39,40,41,42,43,44,45.4 6,47,48,4 9,50,51,52,53,54,55,56,57,58,
59,60,61,62,63,64,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,
26,27,28,2 9,30,31,32,33,34,35,36,37,38,39,40.41.42.4 3,44,45,46,47,4 8,4 9,50,51,52,53,
54,55,56,57,58,59,60,61,62,63,64);
timer_split("In done");
print__times () ;

} return type;
}

65

/.* Benchmark Program 3 */ 6 6

/* formals.cl */
real_main(int argc, char** argv) {

int i , j;
int type,count;
int f;
if (argc != 3) {
printf ("Usage : %s FormalNum (1..4) actuals \n",argv[0]);
exit(1);

}type = atoi(argv[1]); count = atoi(argv[2]);
for (j = 0; j < 5 ; j++) { start__timer();
if (type = 1)for (i =0; i < 1000 ; i++)

out(1); else if (type = 2) for (i = 0; i < 1000 ; i++) out(1,2); else if (type = 3) for (i =0; i < 1000 ; i++) out(1,2,3,4);
else if (type = 4) for (i =0; i < 1000 ; i++)

out (1,2,3,4,5,6,7,8); timer_split("Out done");
if (type = 1)for (i =0; i < 1000 ; i++) {if (count == 0)

rd (1); elserd(?f);
}else if (type = 2) for (i = 0; i < 1000 ; i++) {
if (count ==0) rd(1,2) ;
else if (count == 1) rd(?f,2);
else rd (?f, ?f) ;

' }else if (type = 3)
for (i =0; i < 1000 ; i++) {switch(count) {case 0 : rd(l,2,3,4); break;

case 1 :rd(?f,2,3,4); break; case 2 :rd(?f,?f,3,4);break; case 3 :rd(?f,?f,?f,4);break;
default :rd(?f,?f,?f,?f) ;

}
}else if (type = 4)for (i = 0; i < 1000 ; i++) {
switch(count) {
case 0: rd(1,2,3,4,5,6,7,8); break; case 1: rd(?f,2,3,4,5,6,7,8); break;
case 2: rd(?f,?f,3,4,5,6,7,8); break; case 3: rd(?f,?f,?f,4,5,6,7,8); break;
case 4: rd(?f,?f,?f,?f,5,6,7,8); break;
case 5: rd(?f,?f,?f,?f,?f,6,7, 8); break;

i++) {

case 6: rd(?f,?f,?f,?f,
case 7: rd(?f,?f, ?f, ?f, default:rd(?f, ?f, ?f, ?f,
}
}timer_split("Read done"
if (type = 1) for (i = 0; i < 1000 ;

if (count == 0)
in(1);

elsein(?f);
}else if (type = 2)
for (i = 0; i < 1000

if (count == 0) in (1,2); else if (count == 1) in(?f,2);
else in (?f,?f);

}else if (type = 3)
for (i = 0; i < 1000 / i++) { switch(count) {

case 0 case 1 case 2 case 3

?f,?f,7,8); break;
?f, ?f,?f,8); break;
? f , ? f , ? f , f) ;

);

i++) {

}

,3,4); break; ,3,4); break;
f,3,4);break; f,?f,4);break;

default ;in(?f,?f,?f,?f);

in(l,2; in (?f, 2, in (?f, in (?f, ?l

}else if (type = 4)for (i = 0; i
switch(count) case 0

1
2
34
5

<
{

1000

in(1,2,
in(?f,2 in(?f,? in (?f, ? in(?f,?
in(?f,? in(?f,? in(?f,? in (?f, ?f, ?f, ?f,

case case case case
case case 6
case 7 default
}
}timer_split("In done");
print times();

i++) (
3,4,5,6,7,8); break;
,3,4,5,6,7,8); break; f,3,4,5,6,7,8); break; f,?f,4,5,6,7,8); break; f,?f,?f,5,6,7,8) ; break;
f,?f,?f,?f, 6,7, 8); break; f,?f,?f,?f,?f,7,8) ; break;
f, ?f, ?f, ?f, ?f, ?f, 8) ; break; ?f,?f,?f,f) ;

67

/* Benchmark Program 4 */
/* message.cl */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
real_main(int argc, char** argv) { int i, try,status,size,freq;

char name[30], host[30]; int worker(int,int,int);
if (argc != 3) {printf("Usage : %s SIZE FREQ\n",argv[0]);

exit(0);
}size = atoi(argv[l]);
freq = atoi(argv[2]); eval(worker(0,size,freq));
eval(worker(1,size,freq));
out("Start");

}

int worker(int id,int SIZE,int FREQ) {
int i,len,type;FILE *fptr;
char *buffer;
buffer = (char *)malloc(SIZE);

if (id == 0) { /* the Source worker */ system("getload"); for(i = 0 ; i < SIZE - 1 ; i++) buffer[i] = ' A ' ;
buffer[i] = ’ \0'; out("source-ready");
in("dest-ready"); rd("Start"); start_timer();for (i = 0; i < FREQ ; i++)out("file",buffer:SIZE); timer_split("Writing DONE");
print times();
}else { /* the Destination worker */system("getload");in("source-ready");
out("dest-ready");rd("Start");
start_timer();for (i = 0; i < FREQ ; i++)

in("file",?buffer:SIZE); timer_split("Reading DONE");
print times();
}return id;

}
6 8

/* Benchmark Program 5 */
/* flood.cl */
real_main() {
long i;
char buffer[20000000] ;
long j;
long size;

if (argc != 2) {printf("Usage: %s <size>\n",argv[0]);
exit(1);

}j = atoi(argv[1]);
i =0;while(1) {i++;

out(buffer:j);printf("%d Successful\n",i);
}

}

6 9

/* Benchmark Program 6 */
/* File : latency.cl * Description :

This program evaluates the communication overhead in sending and receving messages between two machines
* /real_main() {int ping(int),pong(int) ;

char host[30],hostl[30]; int i,len;
for (i = 0; i < 10; i++) {
eval(ping(0));
eval(pong(1));
in ("host",?host:len) ;in("host",?hostl:len);printf("The processes are on %s and %s\n",host,hostl);
in(?int); in(?int);
}

}

int ping(int id) {
int i;char host[30];
gethostname(host);out("host",host:30);start timer();for (T = 0; i < 500; i++)

{out("catch"); in("throw");
}timer_split("Done") ; print_times(); return id;

int pong(int id) { int i;
char host[30];
gethostname(host); out("host",host:30); for (i =0; i < 500; i++)

{in("catch"); out("throw");
}return id;

70

71
/* Benchmark Program 7 */
/* File : distribution.cl * Description :

This program distributes 120 similar processes to all the
processors/machines in the distributed environment. Since there is no directed mapping onto a machine, the mapping
is left to the program itself and during run-time, the actual mapping to the processor is obtained. Finally, the
distribution stattistics is obtained.

* /

#include <stdio.h>#include <stdlib.h>
#include <string.h>

real_main() {
char hostname[30]/
int i,j,k,len; int worker(int);int tincup, bannack,schively,Stillwater, lemhi,capron,bighole,huckle;

gethostname(hostname); printf("Result on %s \n",hostname); printf(" huckle tincup bannack
schively Stillwater lemhi capron bighole\n");

for(k = 0; k < 5; k++) {
start_timer(); /* start the timer */
tincup = bannack = schively = Stillwater = 0;
lemhi = capron =bighole= 0;
huckle = 0 ;for(i - 0; i < 140; i++)/* Spawn the worker() */ eval(worker (i)); for(i =0; i < 140; i++) {

in("worker",?j,?hostname:len);/* Get the name of the machine on which the
worker is spawned */ if (hostname[0] == 't') /* Machine is tincup */tincup++;

else if (hostname[3] == bannack++; 'n') /* bannack */
else if (hostname[2] ==

bighole++; ' g') /* bighole */
else if (hostname[0] == lemhi++; ' 1') /* lemhi */
else if (hostname[0] == capron++; ' c') / * capron */
else if (hostname[1] == schively++; ' c') / * schively */
else if (hostname[1] == stillwater++; ' t ') / * Stillwater */
else if (hostname[0] == 'h') / * huckle */

huckle++;
}for(i =0; i < 1 4 0 ; i++)

in(?int);
timer_split("Done."); /* stop the timer */ /* print the time taken to do the distribution */ print times ();

printf(" ¥3d %3d %3d %3d %3d
%3d %3d %3d\n",

huckle,tincup,bannack,schively,Stillwater,
lemhi,capron,bighole) ;

}

/* This is the worker process */ worker(int id) {
char hostname[30];
/* get the name of the machine on which it is mapped */

gethostname(hostname);/* send that to the master */
out("worker",id,hostname:3 0); return id;
}

72

A PPE N D IX C

73 - a

74
/* Program 1 */
/* File : eval.cl* Description :* This program illustrates the nature of eval operation in
* C-Linda.
* /

/* The Master program */
real_main() {

int worker(int);
char host [3 0] ;
int len;
/* Spawn a worker using an eval operation */
eval(worker(1));
/* Get the name of the host machine onwhich the master is running */
gethostname(host,3 0) ;printf("The Host machine is : %s \n",host);
/* Get the name of the destinationmachine from the worker */
in(?host:len);
/* print the name of the machine */ printf("The worker was mapped on : %s \n",host);
/* read the passive tuple createdafter the worker terminates */
in(?int);

/*The worker process */ int worker(int id){
char host[30];

/* The worker process gets spawned by the master
by an eval operation. As soon as it reaches a destination machine, it gets the name of the machine */
gethostname(host,30);

/* The worker sends the destination machinename to the master */
out(host:30);
/* The worker terminates and thus the worker

process becomes a passive data tuple */ return id;
}

/* The following machines were listed in the tsnet.nodes file
* tincup.cs.umt.edu* schively.cs.umt.edu* capron.cs.umt.edu
* bighole.cs.umt.edu* bannack.cs.umt.edu* lemhi.cs.umt.edu
* stillwater.cs.umt.edu

Linda tries to map a process spawned by an

eval operation on one of these machines.
* /

/************************ RESULTS **************************/
/*Run 1 */The Host machine is : schively.cs.umt.edu
The worker was mapped on : bighole.cs.umt.edu
/*Run 2 */
The Host machine is : schively.cs.umt.eduThe worker was mapped on : bighole.cs.umt.edu
/* When this program was executed several times on schively,

it consistently spawned the worker process on bighole (Notice that bighole is middle element in the tsnet.nodes file).
* /

/* When the same program was run on bighole with the same tsnet.nodes file, the worker process was spawned on capron (Note that capron is just above the middle element
bighole. The Linda eval operation did not spawn a process on the host machine

* /

The Host machine is : bighole.cs.umt.eduThe worker was mapped on : capron.cs.umt.edu
/************************** END ************************** /

75

/* Program 2 */ 76
/* File multipleeval.cl* Description :This program shows the behaviour of Linda eval when
* multiple eval operations are carried out
* /

/* The master program */
real_main() {

int worker(int); char host[30]; int i , len;
/* spawn six workers and get theirdestination processor names */
eval(worker(1));
in(?host:len);printf("The worker was mapped on
eval(worker(2)); in(?host:len);
printf("The worker was mapped on
eval(worker(3)); in(?host:len);printf("The worker was mapped on
eval(worker(4)); in(?host:len);
printf("The worker was mapped on
eval(worker(5));
in(?host:len);printf("The worker was mapped on
eval(worker(6));
in(?host:len);printf("The worker was mapped on

%s \n",host);

%s \n",host);

%s \n",host);

%s \n",host);

ss \n",host);

ss \n",host);
Master gives permission for the workers to terminate */

for (i = 0; i < 6 ; i++) out("perm");
The master collects all the passive data tuples created by workers after termination */

for (i = 0; i < 6 ; i++) in(?int);

/* The worker process */
int worker(int id){

char host[30];
/* Get the name of the machine on which theworker is mapped */
gethostname(host,30);

/* send the destination machine name to the master */
out(host:30);

/* Wait for permission from the master to terminate */ in("perm");

/* terminate the worker process */
return id;

}

I ********************* RESULTS **************************/
/*Run 1 */
The worker was mapped on :: bighole.cs.umt.edu
The worker was mapped on :: capron.cs.umt.edu
The worker was mapped on :: tincup.cs.umt.edu
The worker was mapped on :: lemhi.cs.umt.edu
The worker was mapped on :: stillwater.cs.umt.edu
The worker was mapped on :: bannack.cs.umt.edu
/*Run 2 */
The worker was mapped on :; bighole.cs.umt.edu
The worker was mapped on :: tincup.cs.umt.edu
The worker was mapped on :: capron.cs.umt.edu
The worker was mapped on :: stillwater.cs.umt.edu
The worker was mapped on :: bannack.cs.umt.eduThe worker was mapped on :: lemhi.cs.umt.edu
/*Run 3. */
The worker was mapped on :: bighole.cs.umt.edu
The worker was mapped on :: lemhi.cs.umt.eduThe worker was mapped on :: stillwater.cs.umt.edu
The worker was mapped on :: bannack.cs.umt.eduThe worker was mapped on :: tincup.cs.umt.edu
The worker was mapped on :: capron.cs.umt.edu
/* From the results, it can be seen that the destination of the first eval operation can be predicted. The destination for the successive eval opearations is

randomly selected (Note that the same processor is * not selected twice */
j END **********************;*?*** j

77

/* Program 3 */ 78
/* File : directed_eval.cl
* Description :

This program uses C-Linda primitives to do a directed
* processor to process mapping.
* /

#include <stdio.h> linclude <stdlib.h>
#include <string.h>
real_main() {char name[30];

int try;
gethostname(name,30) ;printf("The Master is running on : %s \n",name);
do {printf("Enter the name of the Target machine :");
do {gets(name);} while(strlen(name) < 2); if (strcmp(name,"quit") == 0) exit(l); try = directed_eval(name,10);
if (try < 0) printf("I failed\n"); else printf("I succeeded\n");
} while(1);

}

/* This function simulates directed eval in Linda.
*

* It makes "retry" number of attempts to get a process on the target processor "name". The function returns a negative number if it fails to do a directed eval */
int directed_eval(char *name , int retry){ int try,status; int worker(int); char host[30];

try = 0;
/* output the destination machine name to the tuple space */

out("target",name:strlen(name));
/* Keep spawning a worker process until it reaches the *' destination or until the number of retries exceeds the * specified limit */ do {

/* spawn a worker process using eval function */
eval(worker(try));

/* get the status of eval from the worker *//* The worker returns 1 if it got mapped on to the
* correct destination. Or else it returns a 0,* indicating failure */,

in("status",try,?status,?host);
/* If success, then exit the loop */

if (status == 1) break;
try++;

} while(try < retry); if (try == retry) return -1;

else return try;
} 79

/* This is the worker process that gets spawned
randomly onto a processor */

int worker(int id) {char host[30],target[30];
int len;
/* The worker gets the name of the processor on which it gets spawned. */
gethostname(host,30);

/* It reads the actual destination machine name */ in("target",?target:len);
/* If the current host name is not the destination,

send a failure signal to the process that evaled this worker process */ if (strncmp(target,host, len) != 0) {out("status", id,0,host); out("target",target:len) ;
}/* If the current host is the destination,

indicate success */else { out("status", id, 1,host);
}return id;

}

fyc-k'k'k'k'kJc-k-k'k'k'k'kicjcic'k'kiclc-k'k'k-klc RESULTS ************************* j
The Master is running on : schively.cs.umt.edu
/* Any attempt to spawn the process on thehost machine fails */
Enter the name of the Target machine :schively I failed
Enter the name of the Target machine :schively
I failed
Enter the name of the Target machine :bannack I succeeded
Enter the name of the Target machine :tincup
I succeeded
Enter the name of the Target machine :Stillwater I succeeded
Enter the name of the Target machine :capron
I succeeded
Enter the name of the Target machine :lemhi
I succeeded
Enter the name of the Target machine :bighole I succeeded

j ’k ' k ' k ' k . - k - k - k ' k i f k ' k ' k ' k ' k - k ' k - k ' k i f k ' k ' k ' k END ' k ' k . - k ' k ' k ' k ' k - k ' k - k ' k - k ' k ' k ' k ' k ' k - k . i d ' k ' k ' k - k l

/*Program 4 */

/* This program demonstrates how to spawn
processes on machines*/

#define NUM 5
real_main() {

int worker(int);
int i,id;
/* There are 7 processors (including the

host machine) listed in tsnet.nodes file */
/* Spawn NUM processes using the eval operation */

for (i = 1; i <= NUM; i++)
eval(worker(i));

/* Read messages from all workers */ for (i = 1; i <= NUM; i++) in("worker");
/* Send a terminate message to all workers. At this point* the master is absolutely certain that all the worker
* processors have reached a processor */for (i = 1; i <= NUM; i++)

in("terminate");
/* Get the passive data tuple created after theworker terminates */

for (i = 1; i <= NUM; i++) {in(?id) ;printf("Worker %d terminated\n",id);
}

}

/* This is the worker process */
int worker(int id) {

/* Send a message to the master indicating that it reached a destination machine */ out("worker") ;
/* wait for terminate message from the master */
in("terminate"); return id;

}

/************************** RESULTS ***********************/
/* Sample run when NUM is 5*/Worker 2 terminated
Worker 3 terminated
Worker 1 terminated
Worker 5 terminated Worker 4 terminated
/* Another sample run wheh NUM is 5*/
Worker 1 terminated
Worker 3 terminated Worker 4 terminated
Worker 2 terminated Worker 5 terminated
/* It is interesting to note that the program never

terminates when the number of evals exceed the number
of active machines on which process can be evaluated
(excluding the host machine). */

/*************************** END ************************* j

81

/ * P r o g r a m 5 * /
82

/*This program demonstrates how multiple processes
spawned map onto the machines*/

/* The program is run on bannack.cs.umt.edu (The Master) and
the workers are spawned on all machines (if possible) except
the host(Master) machine */

#include <string.h>
real_main() {int worker(int);

int i,id,j,k,len; char host__name[30] ;
int count = 0;
/* Spawn 36 processes. Since all the machines areof equal CPU power and have similar load conditions

it is assumed that each machine gets 6 processes */ for (i = 0; i < 36; i++)
eval(worker(i));

do { j = 0;
/* get the mapping of all processes that arecurrently mapped */
for (i = 0; i < 1 0 ; i++) {sleep(5); /* Give sufficient time forthe workers to settle */ if (inp { "Host", ?id, ?host__name: len) == 1) {

count++; j++;
printf("Worker %d evaluated on %s\n",

id,host name);
}

}/* this print statement demarcates theset of active processes */printf (" \n")
/* send terminate signal to all those active processes */ for (k = 0; k < j; k++) {

out("terminate");
in(?int);

}} while(count < 36);
/* Execute this loop till you get the whereabouts of all processes spawned */

},

/* the worker process */
int worker(int id) {extern char* get host();

char host_name [3T)] ;
/* Get the name,of the machine on which I am spawned */

strcpy(host_name,get_host());
/* send that message to the master */ out("Host",id,host_name:30);

/* Wait till the master sends a terminate message */
in("terminate");

}
return id;

/* clearly the sample run shows that all the 36 processes
are not simultaneously evaluated on 6 machines. It has to be noted that the work is distributed among only 5 machines The host machine never gets involved in the eval operation)

Each machine handles exactly one process at a given time.
The rest of the evaled, but not mapped, processes wait for a process to terminate. The buffer where the evaled processes
wait is clearly a stack. The LIFO structure clearly has a disadvantage since it provides ample scope for starvation if
the eval is carried out continuously, such that the size of the stack, on an average, remains constant. Under this
condition, the process, that was evaluated in the beginning,(but was unable to catch the first flight !) remains at the bottom of the stack forever */

j - k Sam p le cun

/* In the first batch, the first five evaluated processes get mapped to a processor */
Worker 4 evaluated on tincup.cs.umt.edu
Worker 3 evaluated on capron.cs.umt.edu
Worker 2 evaluated on bighole.cs.umt.edu
Worker 1 evaluated on schively.cs.umt.edu Worker 0 evaluated on stillwater.es.umt.e
/* By the time the first batch completes its work, the

remaining processes spawned by eval are waiting in the tuple space to get mapped to a processor. Since the
processes evaled last get mapped to processes first, it can be concluded that the evaled processes are placed on a stack */

Worker 31 evaluated on tincup.cs.umt.edu
Worker 32 evaluated on capron.cs.umt.edu
Worker 33 evaluated on bighole.cs.umt.edu
Worker 34 evaluated on schively.cs.umt.edu Worker 35 evaluated on Stillwater.cs .u mt.e
Worker 26 evaluated on tincup.cs.umt.edu
Worker 27 evaluated on bighole.cs.umt.edu
Worker 28 evaluated on capron.cs.umt.edu
Worker 2 9 evaluated on schively.cs.umt.edu
Worker 30 evaluated on Stillwater.cs.umt.e
Worker 21 evaluated on tincup.cs.umt.edu
Worker 22 evaluated on bighole.cs.umt.edu
Worker 23 evaluated on capron.cs.umt.edu
Worker 24 evaluated on schively.cs.umt.edu Worker 25 evaluated on Stillwater.cs.umt.e
Worker 16 evaluated on tincup.cs.umt.edu
Worker 17 evaluated on bighole.cs.umt.edu
Worker 18 evaluated on capron.cs.umt.edu

Worker 19 evaluated on schively.cs.umt.edu
Worker 20 evaluated on Stillwater.cs.umt.e
Worker 11 evaluated on tincup.cs.umt.edu
Worker 12 evaluated on bighole.cs.umt.edu
Worker 13 evaluated on capron.cs.umt.edu
Worker 14 evaluated on schively.cs.umt.edu
Worker 15 evaluated on Stillwater.cs.umt.e
Worker 6 evaluated on tincup.cs.umt.edu
Worker 7 evaluated on bighole.cs.umt.edu
Worker 8 evaluated on capron.cs.umt.edu
Worker 9 evaluated on schively.cs.umt.edu Worker 10 evaluated on Stillwater.cs.umt.e
Worker 5 evaluated on Stillwater.cs.umt.e
* E N D * * * * * * * * * * * * * * * * * * J

84

/* Program 6 */
85/*This program shows how to spawn exactly oneprocess on a processor */

/* The processors listed in tsnet.nodes file are :
tincup.cs.umt.eduschively.cs.umt.edu (Host machine)
capron.cs.umt.edubighole.cs.umt.edu
bannack.cs.umt.edu
lemhi.cs.umt.eduStillwater.cs.umt.edu
* /

finclude <string.h>
/* The Master program */
real_main() {int worker(int)/ int i,id,len; char host_name[30];

for (i = 1; i <= 6; i++) eval(worker(i)) ;
for (i = 1; i <= 6; i++) {in ("Host", ?id, ?host__name : len) ;printf("Worker %d mapped on host %s\n",id,host_name)
}

/* terminate all the worker processes */
for (i = 1/ i <= 6/ i++) out("terminate");
/* Clean up the passive data tuples */ for (i = 1; i <= 6; i++) in(?int);

}

/* The worker process */
int worker(int id) {char host_name[30];

/* get the name of the machine to which it is mapped */
gethostname(host_name, 30) ;
out("Host",id,host_name:30) ;

/* wait for the terminate message from the master */
in("terminate");
return id;

}

/************************* RESULTS ************************/
/*Sample run 1*/
Worker 4 mapped on host bighole.cs.umt.eduWorker 5 mapped on host capron.cs.umt.edu
Worker 6 .mapped on host lemhi.cs.umt.edu
Worker 1 mapped on host tincup.cs.umt.eduWorker 2 mapped on host stillwater.cs.umt.edu
Worker 3 mapped on host bannack.cs.umt.edu
/*Sample.run 2*/

Worker 2 mapped on host lemhi.cs.umt.edu
Worker 1 mapped on host bighole.cs.umt.eduWorker 6 mapped on host capron.cs.umt.edu
Worker 3 mapped on host tincup.cs.umt.eduWorker 5 mapped on host stillwater.cs.umt.edu
Worker 4 mapped on host bannack.cs.umt.edu
fic'k'k'k'k'k-k'k'k'k'k'k'k'k'kic'k'k'k'k'k-kjc'k EN D A1* * * * * * * * * * * * * * * * * * * /

8 6

/* Program 7 */ 87
/* File : usercommn.cl
* Description :* This program tests the input-output communication
* abilities of a evaled process (ORB) with the
* external world */

finclude <stdio.h>
/*The Master program (OM) */
real_main() {

int worker(int);/* Spawn/eval a worker (ORB) */
eval(worker(0));in(Tint); /* read the passive tuple generated

when the worker terminates */
}

/* The Worker Process (ORB) */ int worker(int id) {
char message[40];

/* This command will make this line appear on the screen immediately. If this line is not used, the messages
sent out by the worker process are not flushed out immediately, but are held in a buffer to be fulshed out when the program terminates or when the buffer becomes full */

setlinebuf(stdout);
/* Upon reaching a machine or processor Pi, the worker(ORB) executes the following commands */

/* The worker prints a prompt on the screen. Ideally, this message should appear on the screen associated with processor Pi. */
printf("Enter your name please ! :");/* The worker then reads a message from the user.The preferred situation is that the input from

user on processor Pi is read in */ gets(message);
/* The message is then printed back on the screen */

printf("Your name is %s\n",message);
/* The worker process (ORB) now terminates, thus forming a
passive integer data tuple which is eventually collected by the waiting master process */

return id;

/************************** RESULTS *************************/
The program shown above never terminates because,

the worker is unable to read a message either from the user on the local host (The machine on which the master is running)
or ther remote host (The machine on which the spawned process gets mapped).

However, the output from the worker appears on the local machine.

/* Program 8 */ 8 8

/* File : filecommn.cl
* Description :* This program illustrates that an evaled process can
* communicate with the remote user through files */

#include <stdio.h>
/*The Master program (OM) */
real_main() {int worker(int);
/* Spawn/eval a worker (ORB) */ eval(worker(0));in(?int); /* read the passive tuple generatedwhenthe worker terminates */

}

/* The Worker Process (ORB) */
int worker(int id) {

char message[40];
char host[30];char infile[50],outfile[50]; FILE *inptr,*outptr;

gethostname(host,3 0) ;
sprintf(infile,"%s.in",host);
/* Open the in file */
inptr = fopen(infile,"r"); sprintf(outfile,"%s.out",host);
/* Open the out file */ outptr = fopen(outfile,"w");
/* Read a message from the infile */ fscanf(inptr,"%s",message);
/* Write the message to the out file */
fprintf(outptr,"The message read from %s.in is %s\n",

host,message);
return id;

}

j -k * * * -k -k * * * * * * ic * * * * * * * * * rt * * * RESULTS ******* ************ * ***** J

All the *.in files had a message :
test

The worker got mapped to machine bighole and a new file
bighole.cs.umt.edu.out was created which had the following line :
The message read from bighole.cs.umt.edu.in is test
j ■k-kic'kie-k'k^'kic'k'k-k'kie'k'k'kififi^^cieic'k'k END 'k'k'k'k'k'k'kic'k'k'kie'kick'k'k'k'k'k'k'k-k'kic'k'k'k j

/* Program 9 */
/* File : fork.cl * Description : This program shows UNIX fork and C-Linda eval interaction.

* /

real__main () {int worker(int); char who[40];
int i, len;
/* The main program evals a worker process */ eval(worker(0));
/* The main program reads messages sent by the worker* and the children of the worker processes created by
* UNIX fork command */ for (i = 0; i < 30; i++){if (inp("message",?who:len) == 1)printf("Message from %s\n",who);

}
}

/* The worker process is created by an eval call */
int worker(int id) {

char message[40];
/* The worker process forks once to createa child process */
if (fork() == 0) { /* This is the child process */strcpy(message,"childl") ;

/* The child process sends a message to the master process */ out("message",message:40); return id;
} else if (fork() == 0) {/* The worker process creates another child*/

strcpy(message,"child2");/* The second child process sends a message to
the master process */ out("message",message:40); return id;

} else {/* The worker process also sends a message to the master */
strcpy(message,"parent"); out("message",message:40); return id;

}
}

/*********************** RESULTS ***************************/
The program never executes properly. The master is

able to read the three messages sent by the worker and its children, but the program crashes sending a message saying
that Linda is in panic mode. Obviously C-Linda process cannot run normally when UNIX fork calls are inserted in C-Linda code.
/ * j

	Quantitative and qualitative evaluation of Linda in a distributed environment
	Let us know how access to this document benefits you.
	Recommended Citation

	00001.tif

