
University of Montana University of Montana

ScholarWorks at University of Montana ScholarWorks at University of Montana

Graduate Student Theses, Dissertations, &
Professional Papers Graduate School

1993

Reliable file locking manager and monitor in a client/server Reliable file locking manager and monitor in a client/server

distributed system environment distributed system environment

Kuang-hsin Lin
The University of Montana

Follow this and additional works at: https://scholarworks.umt.edu/etd

Let us know how access to this document benefits you.

Recommended Citation Recommended Citation
Lin, Kuang-hsin, "Reliable file locking manager and monitor in a client/server distributed system
environment" (1993). Graduate Student Theses, Dissertations, & Professional Papers. 5095.
https://scholarworks.umt.edu/etd/5095

This Thesis is brought to you for free and open access by the Graduate School at ScholarWorks at University of
Montana. It has been accepted for inclusion in Graduate Student Theses, Dissertations, & Professional Papers by an
authorized administrator of ScholarWorks at University of Montana. For more information, please contact
scholarworks@mso.umt.edu.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by University of Montana

https://core.ac.uk/display/267573175?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://scholarworks.umt.edu/
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/etd
https://scholarworks.umt.edu/grad
https://scholarworks.umt.edu/etd?utm_source=scholarworks.umt.edu%2Fetd%2F5095&utm_medium=PDF&utm_campaign=PDFCoverPages
https://goo.gl/forms/s2rGfXOLzz71qgsB2
https://scholarworks.umt.edu/etd/5095?utm_source=scholarworks.umt.edu%2Fetd%2F5095&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@mso.umt.edu

K U M /6 - H 5 / N L(W

Maureen and Mike
MANSFIELD LIBRARY

The University ofMontana
Permission is granted by the author to reproduce this material in its entirety,
provided thatthis material is usedfor scholarly purposes andis properly cited
in published works and reports.

** Please check “Yes ” or “No ” and provide signaturer

Yes, I grant permission _2S_
No, I do not grant permission------

H!*

Author’s Signature ______

Date: I f ~ ~ 3 _______

Any copying for commercial purposes or financial gain may be undertaken
only with the author’s explicit consent.

M A L1C O PY .PM 4

A Reliable File Locking Manager and Monitor in
a Client/Server Distributed System Environment

Kuang-Hsin Lin

Department of Computer Science
University of M ontana

Presented in partial fulfillment of the requirements
for the degree of

M aster o f Computer Science
University of Montana

October 12,1993

Approved by

Chairman, Board of Examiners

£)ean, Graduate School

Tltnr. lu. i<M3
Date

UMI Number: EP40559

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

UMI EP40559

Published by ProQuest LLC (2014). Copyright in the Dissertation held by the Author.

D'issertafort Pdbfehfeg

Microform Edition © ProQuest LLC.
All rights reserved. This work is protected against

unauthorized copying under Title 17, United States Code

ProQuest LLC.
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106- 1346

A *

Lin, Kuang-Hsin., M.S., October 1993

A Reliable File Locking Manager and Monitor in a Client/Server
Distributed System Environment (49 pp.)

Director: Dr. Youlu Zheng

ABSTRACT

The focus of this project is to develop two server programs which are Network Lock
Manager (NLM) and Network Status Monitor (NSM) as well as a client program to
provide network file and record locking services in a client/server distributed system
environment.

NLM and NSM are Remote Procedure Call (RPC)-based services that normally
execute autonomous "daemon" services on Network File System (NFS). They work
together to provide a reliable file and record locking over NFS.

The client program which works as a communicating interface between application
programs and the server programs NLM and NSM is also an RPC-base service. The
functions rflock() and rfcntl() in the client program provide' the exactly same services as
the functions of UNIX system calls flock() and fcntl(), and extend the file locking
capability over NFS in a reliable manner.

ii

Computer Science

iii
TABLE OF CONTENTS

A bstract..ii
Table of Contents ... iii
List of Figures... v

Chapter 1 Introduction and Overview...1
1.1 Client Server M odel...1
1.2 Background.. 1
1.3 Remote Procedure Call (RPC) Overview...2
1.4 Project Approach .. 4
1.5 NLM Overview...5
1.6 NSM Overview..................... 6
1.7 System Failure...................... 8

Chapter 2 NLM Protocol... 10
2.1 Introduction.. 10
2.2 NLM RPC-based Procedures... 10
2.3 Semantics of NLM Operations...11

Chapter 3 NSM Protocol... 18
3.1 Introduction.. 18
3.2 NSM RPC-based Procedures... 18
3.3 Semantics of NSM Operations.. 19

Chapter 4 System Analysis.. 22
4.1 Concurrent Or An Iterative Design.. 22
4.2 Design A Reliable File Locking Service.. 23
4.3 A Better D esign..25

Chapter 5 System Design and Implementation... 26
5.1 Implementation Approach..26
5.2 RPCgen .. 26
5.3 Designing the Server...27

5.3.1 Six Steps To Build A Server...................................... 27
5.3.2 Implement NLM As A Concurrent Server... 30
5.3.3 Implement NSM As An Iterative Server .. 31

5.4 Designing The C lient.......................:...31
5.5 The Interaction Between The NLM and The N SM .. 34
5.6 How An RPC System W ork..36

5.6.1 RPC Library C alls ..37
5.6.2 Using RPC Library Calls in a Program..38

iv

Chapter 6 Conclusion 40

Bibliography.. 41
Acknowledgment... 42
Appendix 1 .. ,.....................43
Appendix 2 .. 45
Appendix 3 47

LIST OF FIGURES

Figure 1 -1 4
Figure 1 -2 .. 7
Figure 4 -1 ... 22
Figure 4 -2 23
Figure 5 -1 .. 28
Figure 5 -2 ..33
Figure 5 -3 .. 36
Figure 5 -4 .. 39

CHAPTER ONE
Introduction and Overview

1.1 Client Server Model

The client/server paradigm is a method to allow a programmer to establish

communication between two application programs and to pass data back and forth, and

these two application programs can be executed on the same machine or on different

machines.

The client/server paradigm divides communicating applications into two broad

categories, depending on whether the application waits for communication or initiates it.

In general, an application that initiates communication is called client. End users usually

invoke client software when they use a network service. Most client software consists of

conventional application programs. Each time a client application program executes, it

contacts a server, sends a request, and awaits a response. When the response arrives, the

client continues processing.

By comparison, a server is the program that waits for incoming communication

requests from a client. The server receives a client's request, performs the necessary

computation, and returns the result to the client.

1.2 Background

Network File System (NFS), developed by Sun Microsystems Incorporated (SUN)

provides on-line remote access to shared file systems over various networks.

1

2

Theoretically, NFS is a kind of client/server communication but it hides all the complicated

client/server operations from users so that from the end users' point of view, NFS is

almost invisible. Once a remote file system has been mounted on a local file system, users

access remote files using exactly the same operations as they use for local files. However,

NFS is stateless, so that a server need not maintain any state information about the clients

that it services. This means that a client is independently responsible for completing work,

and that a server need not remember any thing from one call to the next. With no state left

on the server, there is no state to recover when the server crashes and comes back up. So,

from the client's point of view, a crashed server appears no different from a very slow

server.

Because of this statelessness, NFS cannot provide inherently statefull services like

file locking. Instead, this service is provided by two cooperating processes: the Network

Lock Manager (NLM) and the Network Status Monitor (NSM). The NLM and NSM are

Remote Procedure Call (RPC)-based services that normally execute as autonomous

''daemon'' services on both NFS client and server systems. They work together to provide

stateful file and record locking over NFS. This philosophy was first introduced by SUN,

and it has been adopted by most UNIX systems to provide network file and record locking

services over NFS.

1.3 Remote Procedure Call (RPC) Overview

RPC allows a client to execute procedures on other networked computers or

servers. RPC is also a user programming tool. It makes the client/server model more

powerful and easier to program in than yesterday's low-level network socket interface.

3

Normally the RPC model can be divided into three categories

RPC specification

RPC protocol compiler - RPCgen

RPC library routines

The RPC specification provides a procedure-oriented interface to remote services.

Each server supplies a program that is a set of procedures. NFS is one such "program".

The combination of host address, program number and procedure number specifies one

remote service procedure. RPC does not depend on services provided by specific

protocols, so it can be used with any underlying transport protocol (TCP/IP or UDP/IP).

The RPCgen, an RPC protocol compiler, is the most important tool for writing

distributed applications. It is used to generate the code, a client/server interface stub, to do

the job that is described in the RPC specification.

The RPC library routines isolate the C programmer from the specialized data

structure developed on top of UNIX IPCs (Inter Processes Communication) for the

purpose of remote procedure calling. The basic process consists of the client finding the

appropriate service, checking authentication, and placing a request to run a service

procedure. After a client request is made and validated, the server replies to the client with

results generated by the selected procedure.

4

OSI Layers

7. Application

6. Presentation

5. Session

4. Transport

3. Network

l-2Data-link
Physical

Network

UDPTCP

Hardware
Interface

XDR

IP

User
Application

RPC

Figure 1-1. RPC systems within the OSI reference model.

1.4 Project Approach

The objective of this project is to design and implement NLM and NSM that are a

RPC-based client/server model to provide a reliable network file and record locking

services over the NFS.

5

In this project, the design and implementation of NLM and NSM are based on the

well known protocol, SUN's NLM and NSM protocols, so that the NLM and NSM can

accept all the clients' requests in different UNIX systems.

In addition to the NLM and NSM that work as a server, a client program that

works as a communication interface between an application program and a server is

included in this project.

1.5 NLM Overview

The NLM, called the lock daemon in a UNIX system, is a process running in the

background providing advisory file and record locking in an NFS environment.

When a lock service is requested by a client, the server NLM will request a lock,

which may be a file locking or a record locking on the local file system for the client. Once

the lock is acquired, the server NLM will send a reply to the client indicating that the lock

has been acquired. In addition to providing the locking service, the NLM also provides

several functions such as lock-test which tests if a region is locked by another process,

unlock which releases a lock, lock-cancel which cancels a blocked locking request and

lock-reply which sends a reply back to the client. All these functions can be requested

synchronously or asynchronously.

The client portion of an NLM may choose to implement any one of the functions

provided by a server using either set of procedure calls.

6

For the synchronous requests, requests and replies are just like normal procedure

calls. The caller (client) requests a service from the callee (server) and then waits for a

reply from the callee.

For the asynchronous requests, the caller (client) does not wait for a reply after

sending a request. After the server completes the requested job, the server will act as a

client, requesting a "reply" procedure call from the client, which acts as a server.

1.6 NSM Overview

The NSM, called state daemon in a UNIX system, provides information on the

status of network hosts. Each NSM keeps track of its own "state" and notifies any

participating computers of a change in this state. We shall consider an example for clarity.

Let us assume that a process on computer A has locked a region in a file system mounted

over NFS on computer B. If B now receives a request for the same region from computer

C, There are two possibilities: either B waits (under certain circumstances forever) until

the end of A's process, or it checks whether A is crashed and hanging in the network. If

this is the case, the locking process no longer exists and the region is immediately released

to C (via B). Therefore, once one of the two connected machines crashes, all the regions

locked by the crashed machine should be released. On the other hand, when the crashed

machine reboots (re-starts), it should re-send locking requests to recover all the locks that

were lost. The so-called NSM, network status monitor, exists to handle lock recovery and

release when a connected machine has crashed.

7
The following figure (Figure 1-2) shows the execution of a lock operation in the network.

User
program

NLMNLM

Client
program NSMNSM 0 . S.

Client computer A Server computer B

Figure 1-2. A lock operation in the network.

Let us examine the sequence of NLM and NSM operations in Fig. 1-2 in more detail:

(1) A user program on computer A generates a request to the client program to lock a

file.

(2) The NLM on computer A receives a request from the client program to lock a file
/

in computer B.

(3) The NLM on client computer A uses an RPC request to ask the server computer

B to locks a region of a file for it. In normal situations, a LOCK_OK signal will be

return to the client NLM on computer A.

8

(4) (On Client computer A) After the client NLM receives a LOCK_OK signal from

server NLM, it will use an RPC to request the local NSM to monitor the server

computer B.

(4) (On Server computer B) After the server NLM sends a LOCK_OK signal to the

client NLM, it will use an RPC to request the local NSM to monitor the client

computer A.

(5) Both NSMs are monitoring each other.

(6) The NLM on server computer B locks the file for the client computer A.

1.7 System Failure

As in other NFS services such as read() and write(), so too for network-wide

locking: The first commandment is transparency to the local file system. After a server

crashes and restarts, the lock service attempts to reproduce the status as it was before the

crash, so that the application running on the client should notice nothing of the

interruption other than a time delay. Of course, this is only possible for the server; failure

of a client computer would also destroy the application program. In this case the server

can and must release the lock of a process that has ceased to exit. In both cases, the

partner involved knows nothing of the interruption until the computer that crashed is

restarted.

After system (server) start-up, but before the NLM passes over to normal

operation, the system waits for a short time called the grace period. During this time

9

interval, client computers have a chance to reinstall the lock that was lost when the system

crashed. A new lock may only be requested after this waiting period.

CHAPTER TWO

NLM Protocol

2.1 Introduction

This chapter discusses the NLM and describes how NLM is defined to be a remote

program using SUN RPC. The NLM contains 19 procedures providing advisory file and

record locking. By invoking these procedures, the client can do all the locking related

operations remotely from the server.

2.2 NLM RPC-based Procedures

The following specification summarizes the protocol used by the NLM using RPC

language. The detailed data structures for NLM procedures are in appendix 1.

/* NLM procedures */

program NLM_PROG {
version NLM_VERSX {

/* synchronous procedures */
void NLM_NULL(voi d) = 0;
nlm_testres NLM_TEST(struct nlm_testargs) = 1;
nlm_res NLM_LOCK(struct nlmjockargs) = 2;
nlm_res NLM_CANCEL(struct nlm_cancargs) = 3;
nlm_res NLM_UNLOCK(struct nlm_unlockargs) = 4;
nlm_res NLM_GRANTED(struct nlm_testargs) = 5;

/* sever NLM call-back procedure to grant lock */
void NLM_TEST_MSG(struct nlm_testargs) = 6;

/* asynchronous requests and responses */
void NLM_LOCK_MSG(struct nlm_lockargs) = 7;

10

11
void NLM_CANCEL_MSG(struct nlm_cancargs) = 8;
void NLM_UNLOCK_MSG(struct nlm_unlockargs) = 9;
void NLM_GRANTED_MSG(struct nlm_testargs) = 10;
void NLM_TEST_RES(struct nlm_testres) =11;
void NLM_LOCK_RES(nlm_res) = 12;
void NLM_CANCEL_RES(nlm_res) = 13;
void NLM_UNLOCK_RES(nlm_res) = 14;
void NLM_GRANTED_RES(nlm_res) =15;

/* private procedures *1
int NLM_PRV_REG(struct lock_node) = 60;
int NLM_PRV_RM(struct status) = 61;
int NLM_PRV_RESEND(struct status) = 62;

} = i;
} = 100021;

The NLM provides synchronous and asynchronous procedures that provide the

same functionality. The server portion of an NLM implementation must support both the

synchronous and asynchronous procedures.

The asynchronous procedures implement a message passing scheme to facilitate

synchronous handling of locking and unlocking. Each of the functions Test, Lock, Unlock

and Grant is separated into a message part and a result part. An NLM (parent process)

will send a message to another NLM (child process) to perform some action. The

receiving NLM will queue the request. When the request is de-queued and completed, the

NLM will send the appropriate result via the result procedure. For example an NLM may

send an NLM_LOCK_MSG and will expect an NLM_LOCK_RES in return. These

functions have the same functionality and parameters as the synchronous procedures.

2.3 Semantics of NLM Operations

12

The following sections describe how each of the NLM remote procedures operates.

2.3.1 NLM_NULL (Procedure 0)

By convention, procedure 0 in any RPC program is termed null because it does

not perform any action. An application can call it to test whether a given server is

responding.

2.3.2 NLM_TEST (Procedure 1)

This procedure tests to see whether the lock specified by arguments is available to

this client.

2.3.3 NLM_LOCK (Procedure 2)

This procedure supports two types of file region locking, which are BLOCK and

NON-BLOCK. If the "BLOCK" is requested and the lock request cannot be granted

immediately, the server will return a status of "LOCK_BLOCKED" for this procedure

call. When the request can be granted, the server will make a call-back to the client with

the NLM_GRANTED (procedure 5) procedure call. If the "NON-BLOCK" is requested

and the lock cannot be granted immediately, no NLM_GRANTED call-back will be made.

2.3.4 NLM_CANCEL (Procedure 3)

This procedure cancels an outstanding blocked lock request. If the client made an

NLM_LOCK procedure with "BLOCK" request, and the procedure was blocked by the

13

server, the client can choose to cancel this outstanding lock request by using this

procedure.

2.3.5 NLM.UNLOCK (Procedure 4)

This procedure will remove the lock specified by the arguments.

2.3.6 NLM.GRANTED (Procedure 5)

This procedure is a call-back procedure from the server NLM (running on the host

where the file resides) to the client. With this procedure, the server is the caller and the

client is the recipient.

A client issuing an NLM_LOCK procedure that blocks will be returned a status of

"LOCK_BLOCKED", indicating the lock cannot be granted immediately. At a later point,

when the lock is granted, the server will issue an NLM_GRANTED procedure call to the

client to indicate the lock has been granted.

2.3.7 NLMTESTJV1SG (Procedure 6)

This procedure is one of the asynchronous RPCs. It performs the same function as

the NLM_TEST procedure.

2.3.8 NLM_LOCK_MSG (Procedure 7)

This procedure is one of the asynchronous RPCs. It performs the same function as

the NLM_LOCK procedure.

14

Like NLM.LOCK, this procedure supports ’’BLOCK" and "NON-BLOCK"

requests. If "BLOCK" is requested and the lock request cannot be granted immediately,

the server will return an NLM_LOCK_RES (procedure 12) with a status of

"LOCK_BLOCKED". When the request can be granted, the server will make a call-back

to the client with an NLM_GRANTED_MSG (procedure 10) procedure. If "NON

BLOCK" is requested and the lock cannot be granted immediately, the server will return

an NLM_LOCK_RES procedure with a status of "LOCK_DENIED" and no

NLM_GRANTED_MSG call-back will be made.

2.3.9 NLM_CANCEL_MSG (Procedure 8)

This procedure is one of the asynchronous RPCs. It performs the same function as

the NLM_CANCEL procedure.

If the client makes an NLM_LOCK_MSG procedure with a "BLOCK" request,

and the procedure is blocked by the server, the client can choose to cancel this outstanding

lock request by calling this procedure.

2.3.10 NLM_UNLOCK_MSG (Procedure 9)

This procedure is one of the asynchronous RPCs. It performs the same function as the

NLM_UNLOCK procedure.

2.3.11 NLM_GRANTED_MSG (Procedure 10)

15

This procedure is one of the asynchronous RPCs. It performs the same function as

the NLM_GRANTED procedure. Like NLM_GRANTED, it is a call-back procedure

from the server NLM (running on the host where the file resides) to the client.

A client issuing an NLM_LOCK_MSG procedure that blocks will be returned a

status of "LOCK_BLOCKED", indicating the lock cannot be granted immediately. At a

later point, when the lock is granted, the server will issue an NLM_GRANTED_MSG

procedure call to the client to indicate the lock has been granted.

2.3.12 NLM_TESTJRES (Procedure 11)

This procedure is one of the asynchronous RPCs. The server calls this procedure

to return results of the NLM_TEST_MSG procedure to the client (the host issuing the

NLM_TEST_MSG call).

2.3.13 NLM_LOCK_RES (Procedure 12)

This procedure is one of the asynchronous RPCs. The server calls this procedure

to return the results of the NLM_LOCK_MSG procedure to the client (the host issuing

the NLM_LOCK_MSG call)

2.3.14 NLM_CANCEL_RES (Procedure 13)

16

This procedure is one of the asynchronous RPCs. The server calls this procedure

to return the results of the NLM_CANCEL_MSG procedure to the client (the host issuing

the NLM_CANCEL_MSG call).

2.3.15 NLM_UNLOCK_RES (Procedure 14)

This procedure is one of the asynchronous RPCs. The server calls this procedure

to return the results of the NLM_UNLOCK_MSG procedure to the client (the host

issuing the NLM_UNLOCK_MSG call).

2.3.16 NLM_GRANTED_RES (Procedure 15)

This procedure is one of the asynchronous RPCs. The server calls this procedure

to return the results of the NLM_GRANTED_MSG procedure to the client (the host

issuing the NLM_GRANTED_MSG call).

2.3.17 NLM_PRV_REG (Procedure 60)

This procedure is one of the private synchronous RPCs. The procedure will be

called by a local client program. Every time a client want to lock a remote file, the client

should invoke this procedure to record the lock information in the local NLM server so

that if the remote machine crashes the local server can reclaim the lock automatically.

2.3.18 NLM_PRV_RM (Procedure 61)

17

This procedure is one of the private synchronous RPCs. It is a call-back procedure

to remove a lock and a lock node from a linked list.

2.3.19 NLM_PRV_RESEND (Procedure 62)

This procedure is one of the private synchronous RPCs. It is a call-back procedure

that will reclaim all the locks in the given remote host.

CHAPTER THREE

NSM Protocol

3.1 Introduction

This chapter describes the NSM protocol that is related to, but separate from, the

NLM protocol. The NSM protocol is not specified as a part of the NLM protocol, in

order to allow implementation flexibility and to facilitate the development of new

mechanisms without requiring the revision of related protocols.

The NLM uses the NSM protocol to enable it to recover from crashes of either the

client or server host. To provide this functionality the NSM and NLM protocols on both

the client and server hosts must cooperate.

The NSM is a service that provides applications with information on the status of

network hosts. Each NSM keeps track of its own "state" and notifies any other NSM of a

change in this state upon request. The state is merely a number which increases by one

each time the state of the host changes.

Applications register the network hosts which they are interested in with the local

NSM. If one of these hosts crashes, the NSM on the crashed host, after a reboot, will

notify the NSM on the local host that the state changed. The local NSM can then re-send

the request to recovery the lock which was lost when the host crashed. The detailed

description for this will be discussed in the next chapter.

3.2 NSM RPC-based Procedures

18

The following specification summarizes the protocol used by the NSM using RPC

language. The detailed data structures for NSM procedures are in appendix 1.

program SM_PROG {
version SMJVERS {

void SM.NULL(void) = 0;
struct sm_stat_res SM_STAT(struct sm_name) = 1;
struct sm_stat_res SM_MON(struct mon) = 2;
struct sm_stat SM_UNMON(struct mon_id) = 3;
struct sm_stat SM_UNMON_ALL(struct my_id) = 4;
void SM_SIMU_CRASH(void) = 5;
void SM_NOTIFY(struct stat_chg) = 6;

} = i;
} = 100024;

3.3 Semantics of NSM Operations

The following sections describe how each of the NSM remote procedures operates.

3.3.1 SM_NULL (Procedure 0)

By convention, procedure 0 in any RPC program is termed null because it does

not perform any action. An application can call it to test whether a given server is

responding.

3.3.2 SM_STAT (Procedure 1)

This procedure tests to see whether the NSM agrees to monitor the given host.

3.3.3 SM_MON (Procedure 2)

20

This procedure initiates the monitoring of the given host. This call enables the

NSM to respond to notification of change of state calls (SM_NOTIFY) for the host

specified in the arguments, and to notify that host, via the SM_NOTEFY call, when its

state (that is, crash and reboot) changes.

When an NSM receives an SM_MON call it must save the name of the host in a

notify list on the disk. If the host running the NSM crashes, on reboot it must send out an

SM_NOTIFY call to each host in the notify list.

3.3.4 SM_UNMON (Procedure 3)

This procedure stops monitoring the host specified in the argument.

3.3.5 SM_UNMON_ALL (Procedure 4)

This procedure stops monitoring all hosts for which monitoring was requested.

3.3.6 SM_SIMU_CRASH (Procedure 5)

This procedure simulates a crash. The NSM releases all its current state

information and reinitializes itself, incrementing its state variable. It reads through its

notify list (see SM_MON) and informs the NSM on all hosts on the list that the state of

this host has changed, via the SM_NOTIFY procedure.

3.3.7 SM_NOTIFY (Procedure 6)

21

When an NSM receives the SM_NOTIFY call it must search its notify list for the

monitored host. The host will be found in the notify list if an SM_MON call was made to

the NSM to register the host.

CHAPTER FOUR

System Analysis

4.1 A Concurrent Or An Iterative Design

The server designs can be divided into two categories: Those that handle requests

iteratively and those that handle them concurrently.

Client
Calling Process

request
information

Client
Calling Process

Client
Calling Process

reply with
result

Registered
Compute
Procedure

Server

fork
fork Child Process

fork
Child Process

Child Process

Figure 4.1. Multi-tasking via a concurrent server.

The concurrent server (Figure 4.1) is driven by the arrival of a request and not by

the time slicing mechanism in the operating system. When a request arrives the server will

22

23

fork a child process to handle the request so that the server can continue to accept other

requests without being blocked.

The iterative server (Figure 4.2) can only accept one request at a time. This means

if there are two requests coming at the same time, one of them will be blocked until the

server completely finishes the other one.

Process req. 2Process req. 1
Compute
Procedure

Client
Request 2

Client
Request 1

Server

Figure 4.2. An iterative server handles two requests

In this project, the server of the NLM is designed as a concurrent server and the

server of the NSM is designed as an Iterative server. The reasons for these two different

designs will be discussed in more detail a little later.

4.2 Design A Reliable file Locking Service

A reliable file locking service has to provide at least two functions: forever-lock

' detecting and crash recovery.

24
Forever-Lock Detecting

When a client program requests a file lock service from a server, the server will

fork a child process to lock the file for the client and then this child process will go to

sleep until an unlock request arrives and kills this sleeping process. But when the client

program requests a lock and exits without releasing the lock first, the lock will be held by

the server forever.

In Order to solve this problem, the client program must have the ability to detect

itself so that if the calling client exits without releasing the lock, this sleeping process can

be notified and canceled. To do this, every time the client program request a remote lock

service from the remote server, the client program has to register itself in the local server

so that the local server can monitor the client program. If the client exits without releasing

the lock, the local server will notify the remote server that the calling client no longer

exists so the remote server can kill the sleeping process.

Another situation that will cause forever-lock is when the client host goes down

before the client program releases a lock in remote host. In this case, the client host must

have a way to notify the remote host to release all the locks requested by the client host.

To solve this problem, every time a client requests a lock from a remote server, the

client must register the remote host name in its local server so that when the client host

crashes and restarts, it will go through the remote host list (notify list) and notify each of

the remote hosts in the list to remove all the locks requested by the client host.

25
Crash Recovery

When a server host crashes, all the locks that are requested by the client host will be lost.

To recover these locks, the server program must save all the client requests on disk so that

when the server host crashes and restarts, it can go through these requests and notify each

individual client host to reclaim the locks again. Of course, the client host will reclaim the

locks automatically without interupting the application which is running on the client host.

4.3 A Better Design

SUN, the first developer of NLM and NSM, has long been known for its unreliable

remote file locking service. One of the biggest problems is that when a process locks a

remote file by using the UNIX system call flock(), its child process can not detect it. This

means when a remote file is locked by a process and then if its child process issue a remote

lock on the same file again, the system will reply a LOCK_GRANTED to the child

process. In this case, a process can not guarantee to lock a file exclusively.

In this project, this problem has been solved by using fcntl(). Like flock(),fcntl() is

a UNIX system call that can provide file locking but without the unreliable problem of

flock(). When a client program requests a file locking using the system call flock() or

fcntl(), the server always use fcntl() to lock the file for the client. Because of this small

change, this program can provide more reliable network file locking service than SUN's

program.

CHAPTER FIVE

System Design and Implementation

5.1 Implementation Approach

The target system contains two server programs, NLM and NSM, and one client

program. The server programs work as daemon processes waiting for the request from the

client program.

This system design is based on the SUN RPC so the RPCgen and some of the RPC

library routines are used.

5.2 RPCgen

RPCgen developed by SUN is an RPC protocol compiler to help programmers to

build a client/server communication model without worring about the complicate

networking programming. It reads the RPC protocol specification as an input and

produces client and server program stubs that use lower-level RPC calls. RPCgen

supports multiple transports and it generates a dispatch routine that is capable of handling

multiple procedures and versions.

If you use RPCgen, you don't have to write the code for RPC communications in

your client and server programs. Instead, these functions are performed by the client and

server stubs that the RPCgen generates from your RPC protocol specification. These stubs

include the code to marshal arguments, to send an RPC message, to dispatch an incoming

call to the correct procedure, to send a reply, and to translate arguments and results

26

27

between the external representation and native data representation. However, the files that

RPCgen produces do not form complete programs. They need to be customized and

require some interface routines that the programmer must write. All these will be

discussed in more detail in next section.

5.3 Designing the Server

5.3.1 The Six Steps To Build A Server

Figure 5.1 shows the input fils required for RPCgen and the output files it

generates. To create the required files and combine them into a NLM or NSM server, the

following five steps have to be taken.

1. Write the RPCgen specification for the server program, including names and numbers

for the remote procedures and the declarations of their arguments.

2. Run RPCgen to check the specification and, if valid, generate the four source code

files that will be used in the server program.

3. Customize the server-side stub that is generated by RPCgen.

4. Develop each remote procedure in the RPC specification.

5. Develop the server interface routines.

6. Compile and link together the server programs.

28

compiler

RPCgen

specification
for remote
program compiler

client

server

Lockdjxdr.c

LockdJi

Lockd svc.c

interface
routines

client
application

interface
routines

remote
procedure

Figure 5-1. The files required to build a client and server from the output o f rpcgen, and the
compilation steps required to process them.

5.3.1.1 Step 1: Write An RPCgen Specification

In this project, the RPCgen specifications for NLM and NSM are based on SUN's

NLM and NSM protocols and some private procedures are added for internal

communication. The specifications are shown in chapter 2.2 and 3.2.

5.3.1.2 Step 2: Run RPCgen

After the specification has been completed, the next step is to run RPCgen to

check for syntax errors and generate four files of code as Figure 5.1 shows.

29

RPCgen uses the name of the input file when generating the names of the four

output files. For example, because the input file began with lockd, the output files will be

named: lockd.h, lockd_clnt.c, lockd_svc.c and lockd_xdr.c.

• lockd.h is a head file containing all the user defined types and structures

• lockd_clnt.c is a client-side stub.

• lockd_svc.c is an server-side stub.

• lockd_xdr.c is an interface routine to communicate with XDR routines.

5.3.1.3 Step 3: Customize the Server Stub

In this project, the servers have to be daemon processes. So the server stub,

lockd_svc.c , which is generated by RPCgen has to be customized to work as a daemon

process. To make a daemon process, the following procedures have to be done:

• Close all open file descriptors

• Change the current working directory

• Reset the file access creation mask

• Disassociate from the process group

• Disable the control terminal

5.3.1.4 Step 4: Develop the Remote Procedures

Remote procedures are the kernel of a server. There are 19 remote procedures in

the NLM server and 7 in the NSM server. All these have to be implemented to provide a

complete lock service.

30

5.3.1.5 Step 5: Develop the Client Interface Routines

The files which are generated by RPCgen do not form complete programs. They

require client-side and server-side interface routines to connect the stubs (generated by

RPCgen) and the implementation programs.

On the client side, the interface routines accept calls from the server-side stub, and

pass control to the procedure that implements the specified call. For each procedure in the

server, we need an interface routine to translate from the argument types which are passed

by server-side stub to the argument types that the called procedure use.

5.3.1.6 Step 6: Compile and Link Together the Server Program.

A server program consists of four main files: The remote procedures, the server-

side stub (generated by RPCgen), the server-side interface routines, and the XDR

procedures (generated by RPCgen). When all these files have been compiled and linked

together, the resulting executable program becomes the server.

5.3.2 Implement NLM As A Concurrent Server

In a UNIX system, a process can hold a locked region only when the process is

alive. This means if a process locked a region and terminated without releasing the locked

region, the operating system will release the locked region automatically. In order to

accept more requests from the clients without being blocked by the previous lock request,

the NLM server has to be designed as a concurrent server.

31

The concurrent NLM server will fork a child process to handle the lock service

when it receives a lock request from the client. The child process will lock the region for

the client and then go to sleep forever. To do this makes the child process remain alive.

(To remove the lock just simply kill the child process.)

5.3.3 Implement NSM As An Iterative Server

From the point of view of efficiency, an iterative server is more efficient than a

concurrent server. For the NSM server, it is not necessary to work concurrently, so an

iterative design is the best choose.

5.4 Designing The Client

5.4.1 Develop the Client Procedure

In this project, the client procedure consists of three functions: ropen(), rflock(),

and rfcntlQ. These three functions work as an interface between application programs and

server programs.

ropen() - This function extends the UNIX system call open() to provide a table to
indicate each file descriptor and its file path. It is necessary to do this because
there is no UNIX system call that can retrieve the file path from a given file
descriptor.

rflock() - This function works the same way as the UNIX system call flock() but works

with ropen() instead of regular "open". When this function is called, it will

check whether the given file descriptor is a remote file or a local file. If the

32

file is a local file, it will issue a system call flock(). Otherwise it will invoke

the remote procedures in the target remote host.

rfcntl() - This function works the same way as the UNIX system call fcntl(), which

provides a file region (record) lock services. Like function rflock(), it works

with ropen() instead of regular "open" and also it will check whether the given

file descriptor is a remote file or local file. If the file is a local file, it will issue

a system call fcntl(). Otherwise it will invoke the remote procedure in the

target remote host.

In addition to the three functions, the client program also contains three special

macro definitions:

#define open(x,y) ropen(x,y)
tfdefine flock(x,y) rflock(x,y)
#define fcntl(x,y,z) rfcntl(x,y,z)

With these three macro definitions, the programmer can use regular system calls

open(), flock() and fcntl() to work with either a remote file or a local file, so that the

whole system is transparent for a programmer. The preprocessor will translate these three

system calls into the client functions ropen(), rflock() and rfcntl() before the program is

compiled.

5.4.2 Develop the Client Interface Routines

33

On the client side, the original application program controls processing. It calls

interface routines using the same procedure names and argument types as it originally used

to call those procedures which have become remote in the distributed version. Each

interface routine must convert its arguments to the form used by RPCgen, and must then

call the corresponding client-side communication procedure.

5.4.3 Compile and Link Together the Client Program

A complete client program consists of four main files: The client procedure, the

client-side interface routines, the client-side stub, and XDR procedures. When all these

four files have been compiled and linked together, the resulting executable program

becomes the client.

returnsreturns

interface routines

Client
calling procedure

server stub
network
transport

interface routines

Server
called procedure

client stub

network
transport

request messages

reply messages

NETWORK

Figure 5-2. Remote
procedure call
communication.

5.5 The Interaction Between The NLM and The NSM

34

This section will describe the interaction between the NLM and the NSM for the

synchronous procedures to show their interdependency.

Locking

The NLM_LOCK RPC requests may be blocking or non-blocking. When the

server NLM receives the NLMJLOCK request, it must make a call to the SM_MON

procedure on its local NSM to monitor the calling host. The SM_MON call includes the

name of the host to be monitored and an RPC to be called if the NSM is notified of a state

change (crash and restart) for the monitored host.

If the lock can be granted immediately, or the call was non-blocking, the RPC

returns immediately with the appropriate status (granted or denied).

If the lock can not be granted immediately (it conflicts with an existing lock) and

the call is a blocking call, the RPC will return with a blocked status, thus allowing the

client NLM to continue processing. At this point the client NLM can choose to cancel the

outstanding lock request by calling the NLM_CANCEL RPC. Upon reception of an

NLM_CANCEL request, the server NLM should then delete the outstanding lock request,

and may request its local NSM to stop monitoring the calling host by calling the

SMJJNMON RPC.

When the blocked lock request can be processed, the server NLM makes an

NLM_GRANTED call-back to the client NLM, indicating success or failure. Once the

35

lock has been granted, the client NLM instructs the local NSM to monitor the server via

the SM_MON RPC.

Server Crash Recovery

When the server host crashes then restarts, its NSM will go through the notify list

and will call the SM_NOTIFY procedure for each of these hosts to inform them of the

state change. Each local NSM that receives this SM_NOTIFY call will search their

notification list and make the corresponding RPC supplied in the previous SM_MON call,

to the interested parties. One of the interested parties will be the client NLM protocol

implementation that will have supplied an RPC that can go through the steps necessary to

re-establish the lost locks during the NLM server's grace period, (the grace period in this

project is 45 seconds)

Client Crash Recovery

If the client host crashes and then reboots the NSM will go through the same

process notifying the NSMs on hosts in the notification list (via the SM_NOTIFY

procedure call) that there was a change in state. The server NSM will receive this

notification call and in turn notify the server NLM, via the provided RPC, that the client

host had crashed. The server NLM can then dispose of all locks held by the crashed host.

Unlocking

A monitored lock is unlocked by making a call to the NLM_UNLOCK procedure.

The server NLM will process the request and release the lock. The server NLM can then

36

ask its local NSM to stop monitoring the calling host via the SM_UNMON procedure call.

At this point the server NLM will check existing blocked lock requests and service them if

possible.

5.6 How RPC Systems W ork

In general, services make themselves known to a network of clients through an

independent naming service (portmap daemon). This service can give clients the address

which is needed to open a communication channel with a server. The server can then

accept (or deny) client requests and send replies as necessary. The connection is closed

once the remote session is completed.

The following figure outlines the three steps necessary before an RPC client can

call a server.

server machineclient machine

portmapper

portC

portB

port Aclient
program server

program

Figure 5-3. Rpc client/server setup.

37

1. When any RPC server (daemon) is started, it establishes an address where it listens for

requests. It registers the port number (address) with the portmapper. It also registers

the RPC program numbers and versions that the server is prepared to service. The

client and server applications have arbitrary port numbers or addresses.

2. Before a client can make a remote procedure call (using a server program number), the

portmapper of the server machine is consulted to identify the port number (address)

that is to receive an RPC request message.

3. The client and server can now open a communication path to perform the remote

procedure execution. The client makes its request; The server sends a reply.

5.6.1 RPC Library Calls

In this section, several RPC library routines which are used in this project will be

discussed to show how to build a client and a server program by using the RPC library

calls.

clnt_create()

clnt_create() create the client handle for the specified server host, program

numbers, and version numbers (client-side).

clnt_call()

38

clnt_call() uses the client handle which is generated by clnt_create() to call the

remote procedure (client-side).

svcudp_create()

svcudp_create() creates a UDP/IP-based RPC transport (server-side).

svctcp_create()

svctcp_create() creates a TCP/IP-based RPC transport (server-side).

svc_registerO

svc_register() works directly with the portm ap to register a dispatch routine of a

specified protocol (server-side).

svcjrunO

svc_run() is an indefinite loop waiting for the requests (server-side).

5.6.2 Using RPC Library Calls in a Program

The following figure illustrates a sequence of calls made by a client and a server
using RPC library calls.

CLIENT SIDE

39

SERVER SIDE

clnt_create()

clntJcallQ

svctcp_create()
i

svc_register()

svcudp_create()

svc_register()
I

svc_run()

Figure 5.4. An example sequence of RPC calls made by a simple client and a server. The sever
runs in a loop (svc_run()), waiting for the request from the client.

The client uses clnt_create() to create the handle for the specified server host,

program, and version number (transport protocol is selectable as TCP or UDP) then uses

clnt_call() to connect with the server to request a remote procedure service by using the

handle.

The server uses svcudp_create() and svctcp_create() to create a TCP and a UDP

RPC service transports at a particular socket, and then uses svc_register() to register them

with the portmapper, after that uses svc_run() to start the process of waiting on the end of

a socket, listening for a valid connection. Once a request is accepted, the process branches

to the named procedure (requested by the client) with the input (request) argument, and

returns the result (reply).

CHAPTER SIX

Conclusion

This program is based upon a client/server network model using the RPC to

provide a reliable file and record locking server over the NFS.

This program has been tested on SUN workstations. To port this program to other

systems, minor changes in this program may be necessary. This is because some system

calls used in this program for accessing a mounted file system are not universal standard.

For example, statfs() that is a system call to returns information about a mounted file

system is not identical between SUN and BSD environments. Nevertheless, my study

showed that the RPC Library is not completely compatible between different system

environments. In some situations, the communication will become unreliable between two

different systems.

For further study of this project, one can investigate the RPC Library to find the

problems which make the communication between different system unreliable.

40

BIBLIOGRAPHY

X/Open Company Limited. X/Open CAE Specification. Protocols for X/Open
Internetworking: XNFS, Issue 4, 1992.

Douglas E. Comer. Internetworking with TCP/IP Vol. I. Prentice-Hall, 1991.

Douglas E. Comer, and David L. Stevens. Internetworking with TCP/IP Vol III. Prentice-
Hall, 1993.

John Bloomer. Power Programming with RPC. O'Reilly & Associates, Inc., 1992.

W. Richard Stevens. UNIX Network Programming. Prentice-Hall, 1990. pp. 72-82.

41

ACKNOWLEDGMENTS

I would particularly like to acknowledge Dr. Youlu Zheng for his effort and support, and
the initial idea for this project. His expertise is the technical backbone of this project.

I also would like to acknowledge Dr. James Ullrich and Dr. Steve Sheriff for their time
and effort in providing me with invaluable help and suggestions.

42

APPENDIX 1

Data Structures For NLM

enum nlm_stats {
LCK_GRANTED = 0,
LCK_DENIED = 1,
LCK_DENIED_NOLOCKS = 2,
LCK_BLOCKED = 3,
LCK_DENffiD_GRACE_PERIOD = 4

};

struct nlm_stat {
nlm_stats stat;

};

struct nlm_res {
netobj cookie;
nlm_stat stat;

};

struct nlm_holder {
bool exclusive;
int uppid;
netobj oh;
unsigned l_offset;
unsigned Lien;

};

union nlm_testrply switch (nlm_stats stat) {
case LCK_DENIED:

struct nlm_holder holder; /* holder of the lock */
default:

void;
1;

struct nlm_testres {
netobj cookie;
nlm_testrply test_stat;

};

/* call completed successfully */
/* request failed */
/* failed.(sever couldn't alloc, resources */
/* blocked, sever will make a call-back */
/* fail, sever has been rebooted */

43

struct nlm_lock {
string caller_name<LM_MAXSTRLEN>;
netobj fh; /* identify a file */
netobj oh; /* identify owner of a lock */
int uppid; /* Unique process identifier */
unsigned l_offset; /* File offset (for record locking) */
unsigned l_len; /* Length (size of record) */

};

struct nlm_lockargs {
netobj cookie;
bool block;
bool exclusive;
struct nlm_lock alock;
bool reclaim;
int state;

};

struct nlm_cancargs {
netobj cookie;
bool block;
bool exclusive;
struct nlm_lock alock;

};

struct nlm_testargs {
netobj cookie;
bool exclusive;
struct nlm_lock alock;

};

struct nlm_unlockargs {
netobj cookie;
struct nlm_lock alock;

};

/* the maximun length of the string */
const SM.MAXSTRLEN = 1024;

/* flag to indicate blocking behaviour. */
/* If exclusive access is desired. */
/* the actual lock data (see above) */

/* used for recovering locks */
/* specify local NSM state */

APPENDIX 2

Data Structures For NSM

/* sm_name is the name of the host to be monitored */
struct sm_name {

string mon_name<SM_MAXSTRLEN>;
};

enum res {
STAT_SUCC = 0, /* NSM agrees to monitor */
STAT_FALL = 1 /* NSM cannot monitor */

};

struct sm_stat_res {
res res_stat;
int state;

};

struct sm_stat {
int state; /* state number of NSM */

};

struct my_id {
string my_name<SM_MAXSTRLEN>; /* hostname */
int my_prog; /* RPC program number */
int my_vers; /* program version number */
int my_proc; /* procedure number */

};

struct mon_id {
string mon_name<SM_MAXSTRLEN>;
struct my_id my_id;

};

45

46

struct mon {
struct m on jd mon_id;
opaque priv[16]; /* private information */

};

struct stat_chge {
string mon_name<SM_MAXSTRLEN>;
int state;

};

APPENDIX 3

Programs Installation

Server Programs Installation

To install the server programs which are daemon processes, you have to check

your system menu to find out the proper directory for daemon programs then copy the

server programs to that directory. After that, consider the following different ways a

daemon process can be started.

1. Modify /etc/rc file to start a daemon process. Most system daemons are started by

the initialization script /etc/rc, which is executed by /etc/init when the system is

brought up to multi-user mode.

2. Modify /usr/lib/crontab file to start a daemon process. A standard UNIX process

named cron performs periodic tasks at given times during the day, taking its

instructions from the file /usr/lib/crontab. Therefore by modifying this file, one can

start a daemon process.

3. By executing the at command, which schedules a job for execution at some later

time.

4. Start a daemon from a user terminal, as a foreground job or as a background job.

This is usually done when testing a daemon.

After the server programs, lockd and statd, have been started, their "lifetime" is the

entire time that the system is operating; usually they do not die and get restarted later.

47

48

They spend most of their time waiting for some event to occur at which time they perform

their service.

Client Program Installation

The client program contains one header file (lockd.h) and one object file (lockd.o):

To install the header file, you can simply copy it into /usr/include directory. For the object

file, you can use one of the following ways to install it.

1. Use the user's command or to add the object file into the /usrAibAibc.a (library archive).

If you do this way, your don't have to explicitly link the object file (lockd.o) into your

executable file.

2. Use the user's command ar to build a new library archive in /usr/lib directory. If you do

this way, you have to link this library archive explicitly when your application program

is compiled. (Use option - I).

3. Copy the object file to /usr/lib directory. If you do this way, you have to link this object

file explicitly when your application program is compiled (Use option -L).

W rite an Application Program

To use the lock functions provided by the client program, the header file lockd.h

has to be included in the application program. With this header file, the programmer can

use regular system calls open(),flock(), and fcntl() to work with either a remote file or a

local file.

49

When the application program is compiled, a proper option may be needed (option

-1 or -L) depending on the way you install the object file (lockd.o).

W here are the programs ?

The source code and executable files are in fjord.cs.umt.edu:/home/fjord/lin/project.

	Reliable file locking manager and monitor in a client/server distributed system environment
	Let us know how access to this document benefits you.
	Recommended Citation

	00001.tif

