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Kem, Steven E., M.S., Oct. 2000 Forestry

South Fork TenderfoofCreek: Watershed Analysis

Director: Donald F. Potts

Landowners in Montana face complex challenges in managing their properties 
with a multitude of often-conflicting management goals. The Bair Ranch 
Foundation owns and manages 8,220 acres of forest and rangelands in the 
Tenderfoot Creek watershed 35 miles Northwest o f White Sulphur Springs, MT in 
the Little Belt Range. The Foundation was rechartered in 1997 as a non-profit 
organization focused on conservation research and education, with a main long
term goal o f managing the ranch property formerly owned by the Bair family to 
improve understanding and application of Ecosystem Management concepts. Land 
ownership in the South Fork watershed is checkerboard with the United States 
Forest Service and the Bair Foundation as principal landowners, and Montana 
Department o f Natural Resources and Conservation (DNRC) and the Zehntner 
family owning the remainder.

With the management goals of maintaining a watershed that is ecologically 
healthy, economically productive, and a useful arena for conservation education 
and research, the Bair Ranch Foundation sought to conduct a watershed analysis in 
the South Fork watershed to 1) determine possible cumulative watershed effects 
from past management activities (primarily timber harvest and cattle grazing) 2) 
provide a baseline for future natural resource research to be conducted in the 
Tenderfoot watershed and 3) provide information to aid in informed land 
management and restoration planning . The Bair Ranch Foundation lands in the 
South Fork of Tenderfoot Creek watershed provide an excellent opportunity to 
foster the unification of conservation and resource management education.
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Purpose of the Study

This study was designed to serve as a watershed analysis/ baseline assessment to 

assist landowners and managers in the South Fork of Tenderfoot Creek (Bair 

Ranch Foundation, USFS, and Zehntner) in making informed, ecology-based land 

management decisions. The underlying goal o f the study centers on the idea that 

given the overall condition of the watershed, future land management and possible 

restoration efforts would evolve as part of a combined effort to protect the many 

aquatic resources of the South Fork and ultimately Smith River watersheds. From 

an ecological standpoint, one of the main priorities in future land management 

decisions in the South Fork will be restoration and protection of the habitat of the 

97% genetically pure westslope cutthroat trout population, a species of special 

concern in Montana.

Literature Review 

Cumulative Effects -  Watershed Analysis

The U.S. Congress in 1969 formally recognized the concept o f cumulative 

environmental effects (Coboum 1989). A cumulative effect has been defined by 

many organizations, but can be understood generally as impacts on the 

environment that result from incremental impacts of land uses when combined 

with other past, present and reasonably foreseeable future uses of the land (Reid



1998). As a result o f activities such as channelization, road construction, livestock 

grazing, mining and water diversion, most streams and riparian zones in the 

western U.S. have been greatly altered since Euro-American settlement (Kauffman 

etal. 1997).

Starting with the concept that a watershed is a unified ecological unit, a 

cumulative watershed effect is a specific type of cumulative effect shaped by 

processes that involve the generation or transport o f water (Figure 1 from 

Kauffman et al. 1997)

. Figure 1 - Components o f Riparian and Stream Ecosystem Function

Riparian
Ecosystem

  Soils/ "
Geomorphology 
„ (su bstrates)

Hydrology

Figure T illustrates the linkages of the biotic, hydroiogic, and geo- 
morphtc com ponents com bined to shape the unique structure and 
function of riparian and stream ecosystem s. Each arrow represents 
an infinite number of biological and physical processes and interre
lationships am ong these ecosystem  features. Because of these inex
tricable linkages, human or natural actions that alter any on e com 
ponent or process will have feed-forward influences that can affect 
all other com ponents of the ecosystem .
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Cumulative watershed effects analysis provides a method for analyzing the 

erosion hazards, hydrologic effects and biotic responses to the combined effects of 

these different land uses (Montgomery et al. 1995). While Congress required that 

cumulative impacts be evaluated as part of the National Environmental Policy Act 

(NEPA) in the early 70/s, little progress in actual application of cumulative effects 

concepts occurred through the 70’s and 80’s. Eventually, courts in the Western 

U.S. began upholding lawsuits by environmental groups stating that cumulative 

watershed effects were not adequately addressed in forest management plans.

The importance of understanding cumulative effects in designing far-sighted, 

sustainable land-use and conservation strategies cannot be overstated. While many 

dismiss the term as a buzzword or hazy concept that derives its teeth solely from 

legal necessity, a thorough understanding of cumulative effects provides a 

conceptual framework for approaching land use planning. Reid (1998) suggests 

addressing the following basic questions in developing an understanding of 

cumulative watershed effects for possible restoration projects: a) what areas are 

important for fish, and why? b) where has habitat been impaired? c) what aspects 

o f habitat have changed? d) what caused those changes? e)what is the relative 

importance of the various habitat changes to fish? f) what is the present trend of
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changes in the system? G) what changes are reversible? H) what is the expected 

effectiveness o f potential remedies? I) what are the effects of those remedies on 

other land uses and ecosystem components? and J) what are the relative costs of 

the potential remedies over the long term? These questions provide a framework 

for cumulative effects analysis that provides the underlying conceptual framework 

for the South Fork watershed analysis and management recommendations.

Restoration

Restoration has been defined as the process of returning a river or watershed to a 

state in which it can function “ecologically in a self-sustaining way, more nearly 

resembling its former function prior to human induced disturbance.” (Bisson et. al. 

1992) The National Research Council (NRC) argued that “restoring altered, 

damaged, or destroyed lakes, rivers, and wetlands is a high-priority task” (NRC 

1992).

Restoration and habitat management in the past have been hurt by a lack of focus 

on ecological context and a lack of knowledge of the processes involved in the 

degradation of aquatic resources (Frissell 1998). By focusing initially on strategic 

issues in study design, planning and evaluation, researchers and ultimately 

managers can avoid a) wasting precious resources, b) misunderstanding and 

misrepresenting success or failure of projects c) underestimating the possible risk
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of cumulative, synergistic effects from multiple land use activities and d) 

increasing the risk o f ecosystem scale environmental crises (Frissell 1998).

Frissell (1998) suggests asking the following questions in order to develop an 

“ecologically sound, guiding strategy for restoration.” a) What processes are 

causing habitat loss? b) How can these processes be reversed? c) Are structures 

even feasible? Or are other kinds o f treatments necessary d) should effort be 

concentrated in certain localities, or dispersed across the watershed? e) which 

species will benefit from a given action, and will the benefits be long term? f) 

what is the risk that unwanted side effects could accrue from a particular set of 

treatments?”

Too often in past aquatic restoration projects, the focus has been on small-scale, 

in-channel structures that ignore the underlying cause of degradation and do not 

allow enough time for natural recovery (Kauffman et a l l 997, Stanford et al.

1996). Numerous examples of costly, structure-based projects that have 

experienced structural failure or unwanted physical or biological consequences 

suggest the benefits of carefully planned projects that utilize natural recovery in 

the plan (Frissell 1998). Here too the questions o f scale and underlying strategy 

are prominent. Fixing the symptoms o f habitat decline in the most heavily 

disturbed reaches of the most degraded streams will not reverse or even halt the
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negative effects of the underlying, watershed-scale causes o f decline. Simply 

placing physical structures in a highly degraded reach or introducing an extirpated 

species back into its former habitat is not a viable restoration effort because the 

underlying processes and function of the ecosystem are not taken into 

consideration. In the wake o f technological solutions to declining salmonid 

populations (hatcheries, ladders, instream structures) it has become clear that the 

natural processes affecting fishery declines are interrelated and complex and that 

successful restoration depends on moving the emphasis to the restoration of 

ecological processes and function.

Ultimately, the goal o f any ecologically-based restoration project should aim at 

restoring the “natural ecosystem processes” which will through time allow for the 

recovery o f the structure and function of the ecosystem. The Natural Research 

Council suggested that “restoration is different from habitat creation, reclamation, 

and rehabilitation-it is a holistic process not achieved through the isolated 

manipulation of individual elements” (NRC 1992).

They continue on to recommend in the planning stages that riparian zones be 

separated into those with predictably rapid, slow or little chance of recovery.

Initial restoration plans should target those areas capable of rapid recovery to 

increase the probability of successful restoration and keep costs down. Once you
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have determined which sites will be restored first, the underlying causes of 

degradation must be minimized or halted completely (Kaufmann et al. 1997, 

Frisell 1998, Kondolf and Micheli 1995).

Westslope Cutthroat Trout -  Basic Biology and Habitat Range

The WCT (Oncorhynchus clarki lewisi) has developed three distinct lifestyle 

strategies over its range: adfluvial, which migrate between lakes and streams; 

fluvial that migrate between small tributaries and rivers, and nonmigratory 

residents of tributaries (Behnke 1992). The South Fork Tenderfoot Creek 

population is nonmigratory. Spawning occurs from March to July when water 

temperatures are at or near 10 degrees Celsius (Behnke 1992, Shepard et al.

1997). While other subspecies of cutthroat trout demonstrate piscivory as an 

adaptive feeding trait, westslope are specialized as invertebrate feeders (Behnke 

1992).

By the time of the Lewis and Clark expedition, WCT had evolved to become the 

most widely distributed native trout in the inland Northwest. Its historic range 

West of the continental Divide included all major drainages of the Columbia River 

basin (Behnke 1992, Leary et al. 1991). They were originally the most abundant 

salmonid in the upper Kootenai river drainage and the entire Clark Fork drainage 

of Montana and Idaho down to the current Washington/Idaho border. They are
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also native to the Salmon and Clearwater drainages of the Snake River drainage in 

Idaho where they are believed to have moved over from the Clark Fork system 

(Behnke 1992).

MAP 1. Historic Range of Westslope Cutthroat Trout
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East of the continental divide the known historical range includes the upper South 

Saskatchewan river basin south of the Bow River, as well as the upper Missouri 

basin east to approximately 60 km below Great Falls near Ft. Benton, MT (as well 

as the headwaters of the Judith, Milk, and Marias rivers downstream of Ft.



Benton). Evidence also suggests the existence o f WCT populations in some 

headwaters in the Missouri basin in northwestern Wyoming and southern Alberta 

(Leary et al. 1991, Behnke 1992).

The current limited range of WCT compared to its once vast historical range is 

striking. In the upper Missouri River Basin by the late 1980’s, WCT populations 

existed in approximately 80 streams compared to its historical range of 

approximately 3600 streams (American Wildlands et al. 1997). The remaining 

populations are located primarily in isolated, headwater areas and high 

elevation/low order streams where exotic species have been unable to hybridize 

and human impacts are minimized (Shepard et al. 1997). Major causes for WCT 

decline include habitat loss due to effects of road building and logging, mining, 

grazing, water diversion for agriculture, as well as competition, predation and 

hybridization from introduced species (Shepard et al. 1997).

While estimates on the amount of range decline vary, recent figures for the state o f 

Montana using the Montana River Information System suggest that 100% 

genetically pure populations occupy 1% of their historic range in the Upper 

Missouri (600 out o f 57,365 possible stream miles with approximately 2500 miles 

untested) (MT FWP 1999). While the sizable loss o f habitat presents a daunting 

barrier to long term WCT survival, these figures tend to underestimate the severity

9



of habitat decline because they utilize total stream miles in the computation 

without taking into account stream volume. Because WCT have been isolated in 

high elevation, low order streams with relatively little volume, the habitat area 

available to them has been reduced to an even greater extent than that suggested 

by stream mile calculations (Behnke 1992).

A joint USFS/BLM study on extinction risk for WCT in the upper Missouri Basin 

suggests that 71% of the 144 remaining populations with genetic purity levels 

greater than 90% have a very high risk of extinction within 100 years (Shepard et 

al. 97). 18% of the populations received a high risk rating, while 10% were 

deemed at a moderate risk for extinction. The estimation was calculated using a 

Bayesian viability assessment procedure based on a subjective evaluation of 

population survival and reproductive rates as affected by environmental 

conditions. None of the existing populations received a low risk of extinction 

rating (Shepard et al. 1997).

The Tenderfoot Creek watershed received a rating of very high probability o f 

extinction within 100 years. The risk of extinction to remaining WCT populations 

is extremely high because they are predominately isolated in higher elevation 

reaches where stochastic events (massive debris flow and scour, flooding, 

droughts, ice-over, stand-replacing fire) might wipe out a population with no
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possibility of recolonization from adjacent streams. The impact of existing and 

future land use activities, while not absolutely clear, contributes substantially to 

low persistence probabilities for remaining populations. Among the management 

risk factors correlated with impacts on WCT population parameters (spawning 

habitat available, fry survival etc.), grazing and the existence of nonnative species 

demonstrate the highest and most consistent impacts (Shepard et al. 1997). The 

relative impacts o f timber harvest and roads were not clearly determined in the 

study. Reduced analysis of integrated risk factors suggested that cumulative 

effects and catastrophic risk are also important factors in determining survival 

probability. A more recent study by Shepard suggests that regression models that 

include temperature and location, mining impacts, pool habitat proportion and 

stream order best explain WCT densities (Shepard et al. 1998).

Protection and Restoration o f  WCT

Debate remains over the level of protection, or restoration scheme that will best 

foster improvement in the range and quality o f cutthroat populations and available 

habitat. The Montana westslope cutthroat trout, “Salmo sp.,” was listed as an 

endangered species in the U.S. Department of the Interiors redbook on endangered 

species between 1966 and 1973. The lack of specific distinction stemmed from 

misidentification with the Yellowstone cutthroat trout (Oncorhynchus clarki
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bouvieri). Due to classification confusion the westslope was taken off the original 

endangered species list in 1973.

A petition to list the westslope as threatened throughout its range under the 

Endangered Species Act was filed in June 1997 by six regional non-profit 

environmental organizations and Bud Lilly, a world-famous fly-fishing guide and 

conservationist. They recommend listing based on a collection of studies and 

agency reports suggesting that remaining WCT populations remain threatened by 

human induced impacts that threaten the long-term viability o f the species 

(American Wildlands et al. 1997).

At present, the Montana Department of Fish, Wildlife and Parks lists the WCT as 

a species of special concern. Guidelines for the long-term protection of the species 

are presented in the WCT Conservation Agreement published in May 1999 with 

the cooperation of all relevant state and federal agencies (MT FWP 1999). Details 

of the agreement were developed by the WCT Technical Committee directed by 

Brad Shepard of the Montana Department of Fish, Wildlife and Parks. The overall 

goal of the agreement is “to insure the long-term, self-sustaining persistence of the 

subspecies within each of the five major river drainages they historically inhabited 

in Montana, and to maintain the genetic diversity and life history strategies 

represented by the remaining local populations” (MT FWP 1999). The agreement
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also states that the protections afforded to pure populations will be provided to 

slightly introgressed populations (less than 10%) until the agencies detail the role 

of these habitats and populations in restoration efforts. (Objective 2) Further 

genetic testing in the highest reaches o f the South Fork could potentially 

demonstrate that genetically pure WCT exist in the watershed.

Protection also includes measures to expand small, isolated populations where 

possible and the maintenance or development o f high quality habitats to avoid 

local extinction due to small population size or stochastic occurrence. The 

agreement includes the possibility o f using existing genetic stocks to restore a 

population in other locations. If  a pure population is lost, it must be replaced by 

rehabilitating an introgressed population to make it pure or by establishing a new, 

pure population. The agreement ultimately seeks to drastically reduce or halt 

threats to the viability of WCT, then restore and expand a sufficient number of 

viable populations to ensure the long-term survival of WCT in Montana. The 

ultimate success or failure of the agreement depends to a great extent on the 

cooperation of public land managers and users, as well as voluntary collaboration 

with private landowners.

Again, the most effective methodology for WCT restoration remains to be seen. 

The current conservation agreement is a positive step yet implementation of the
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plan is far from concrete and will take decades. Clear, positive results are at least 

decades away. Arguments for the most stringent protection under the Endangered 

Species Act are convincing, but can be offset by possible public backlash to 

federal authority. Listing could also tie-up federal agency time and budgets on 

ESA involvement that could be spent on active restoration field work (Enk 2000).

Ecological Function o f  Riparian Areas

The physical structure o f waterways is made up of the mixture of pools, riffles, 

falls, instream cover and bank stabilization provided by fallen trees, rootwads, 

gravel and boulders. Much of the physical character o f the stream develops from 

plants, trees and other vegetation in the riparian zone. Referred to as large woody 

debris, the logs and branches that naturally fall into the stream create substrate 

characteristics and flow velocities that are beneficial for salmonid production and 

serve as an energy source for other aquatic organisms (Budd et al. 1987, Beschta 

1994, Naiman 1992).

The extreme importance of riparian zones in maintaining water quality, and 

influencing aquatic and wildlife habitat is as clear as the highly degraded state of 

much of the countries’ riparian environments (Kaufmann et al. 1997). A great deal 

of research has gone into the many factors involved in classifying, protecting and 

restoring riparian ecological conditions in the United States. In an effort to halt
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riparian degradation and begin the process of restoration, government agencies at 

the federal, state and local level have adopted riparian management policies, 

regulations and assessment procedures that range greatly in the level of protection 

and effectiveness. Some common themes from research in riparian conservation 

are that effective riparian protection plans need to be site specific and are often 

complex, requiring conscientious planning by natural resource managers, land 

owners and local officials.

The importance o f comprehensive riparian ecosystem protection and restoration 

through farsighted land management cannot be overstated. To adequately protect 

and/or restore riparian resources, it is essential to understand the normal functions 

of a healthy riparian system. These functions include regulating water temperature, 

sediment filtering, streambank building, storing water, aquifer recharge, providing 

fish and wildlife habitat, and dissipating stream energy (Naiman 1992, Hansen et 

al. 1995, Wissmar and Beschta 1998, Elmore 1992).

Ideally, for restoration purposes, land managers would be able to use pristine 

riparian zones as a reference guide to monitor the effectiveness of their recovery 

actions. They could measure vegetation and wildlife densities, determine average 

stream flows and model their restoration efforts on the characteristics of the
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reference stream. Unfortunately, examples of pristine streams and uncompromised 

riparian areas are rare.

Importance of Riparian Function - The health of riparian vegetation is a major 

determinant of the overall health of riparian ecosystems (Naiman 1992, Hansen et 

al. 1995). Healthy riparian vegetation serves as a bank stabilizer, lessening erosion 

during high flow periods, and also reduces damage to streambanks from grazing 

animals, ice flows and log debris (Beschta 1994). High levels of suspended 

sediments due to increase erosion can cause significant harm to aquatic organisms 

(contaminating salmonid spawning beds) and gradually alters the soil, drainage 

and vegetation characteristics of the riparian zone. The roots of riparian 

vegetation stabilize streambanks in such a way that overhanging banks are created, 

providing cover for aquatic organisms (Hansen et al. 1995). Nutrient filtering in 

riparian zones have also been shown to be effective in reducing levels o f 

agricultural nonpoint-source pollution (Elmore 1992).

Although riparian ecosystems make up a small portion of overall land area in the 

Western U.S. (approximately 1- 2%), they are far and away the most productive 

wildlife habitats, benefiting the greatest number of species (Ames 1977, Patton 

1977). Population densities of upland bird species in areas adjacent to riparian
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zones are directly influenced by the quality o f riparian or wetland areas nearby 

(Carothers 1977).

Regarding aquatic wildlife, riparian vegetation can provide up to 90% of the 

organic matter needed to support stream communities (Naiman 1992, Hansen et al. 

1995). Fish populations have also been found to decrease significantly 

downstream from riparian alterations through the effects o f temperature increase, 

siltation, debris barriers, introduction of chemicals and increases in flow 

fluctuations (Budd et al. 1987).

Human Settlement-History

“The creek and country were named from long ago, that place where horses 

traveled “tenderfooted”. They bruised their feet crossing on the path of stones, 

broke their hooves and wore them off to hurts that made them lam e... The creek 

runs soft and deep, then falls and races wide and pools again to spread across the 

rocks and wash away the silence of an empty land.” The preceding passage was 

taken from “Tenderfoot”, an unpublished chronicle o f homestead life by Carolyn 

Mongar Woirhaye, daughter of the original homesteaders in the South Fork 

Tenderfoot drainage who first arrived in May 1886. Early trappers, prospectors 

and big game hunters traveled through the area but did not set up permanent 

residence. Their impacts on watershed health were significant as the decimation of
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beaver, deer and elk populations was widespread (Woirhaye -u n p u b .). Before the 

first trappers and prospectors arrived in the Little Belts, plains Indians considered 

the area sacred ground where different tribes could gather peacefully to take 

advantage of the restorative powers provided by the hot springs. Crow to the South 

and Blackfeet in the North used the Smith River valley as a travel route and 

hunting ground as evidenced by the remains of buffalo jumps (Rademacher 2000). 

While small bands may have lived in the Tenderfoot region year round, little 

evidence exists o f significant impacts to the watershed.

The Mongars, along with two other families that arrived soon after, raised cattle 

and sheep in the South Fork from 1886 until 1918, surviving harsh winters that left 

the road into the drainage covered by snow sometimes until early July. The 

hardships they endured during the long winters are impressive. During the spring 

of 1916, especially harsh storms decimated the Mongars sheep herd with only 90 

sheep surviving out o f the original 1700. While difficult to gauge in hindsight, the 

impacts of sheep and cattle on riparian areas and channel morphology starting with 

the original homesteaders has clearly been significant.

Following the flu epidemic in fall 1918, and with memories of floods, blizzards 

and fires, the Mongars and Chambers decided that it was time to move from the 

Tenderfoot. During my field time in the South Fork, I had the privilege of meeting
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George Mongar, grandson of the original homesteaders, who brought his family to 

camp at the site o f the original homestead for the summer.

Howard Zehntner bought property and has leased state lands in the South Fork 

since the late 1950’s. Together with sons Lee and Steve, the Zehntner’s run a 

cattle ranching operation in the Main and South Fork drainage, enduring the same 

harsh winter conditions faced by the Mongars a hundred years earlier.

Methods

Watershed Characterization

Land managers in state and federal agencies throughout the West eventually 

developed a wide range of standardized cumulative effects procedures in the 

1980’s, but the majority of those methods lacked technical credibility and often 

were limited in the type of cumulative effect they addressed. Some examples of 

standard methods include use of index values, mechanistic models, and checklists 

for specialist input (Reid 1998).

More recent methodologies o f watershed analysis have been created that provide 

contextual information necessary for cumulative effects assessment, as well as a 

more complete characterization of the watershed. Many have developed into an 

integral component ofland management plans. (USDA Forest Service 1993, Reid
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1998, Bisson et al. 1992). This watershed analysis was based on portions of three 

of the more prominent methodologies in use today. These include the method 

used by the state o f Washington (WFPB 1993), the USFS and BLM method 

developed for use on federal lands (McCammon et al. 1998), and a watershed 

analysis checklist for watershed management developed by Satterlund and Adams 

(1992).

A d Hoc Study Design

Based on the intent and the goals o f the study as well as time and resource 

constraints, the watershed analysis developed into an ad hoc evaluation with 

analysis procedures taken from a variety of sources. The initial step involved 

researching and collecting available data for the South Fork and surrounding 

watersheds. This included gathering land use history and available maps on forest 

and grazing practices in the South Fork Tenderfoot drainage from the USFS -  

Lewis and Clark National Forest and the Bair Ranch Foundation. These maps 

included cattle grazing allotments, ownership, landtype associations, land use 

history, as well as recent and proposed timber harvests. The next step involved 

collecting all available pre-existing data on stream assessments and fishery 

surveys from the Lewis and Clark Forest Service Supervisor’s Office in Great 

Falls. It was also necessary to gather available GIS layers and hydrologic data for
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the Tenderfoot Creek Experimental Forest from the Rocky Mountain Research 

Station in Bozeman, Montana.

The procedures brought together for the study were chosen based on whether they 

helped answer questions related to future land management in the watershed as 

well as whether they were achievable in the context o f one field season with 

limited resources. For this reason a combination of field-based procedures and 

office-based methods of watershed characterization were used. Because the study 

involves a combination of methodologies, some information is given to explain 

why the particular aspects of watershed function are included in the study as well 

as explaining the procedural specifics.

Erosion - Fine Sediment Evaluation

This procedure first attempts to predict expected levels o f fine sediments in 

streams based on landtype associations which correlate parent material type and 

weathering to the landform. By separating stream segments based on landtype 

associations, the goal is to compare existing levels of fine sediment with the 

habitat requirements o f WCT.

With the given time and resource constraints, the best methodology for 

determining the current level of fines as a gauge of watershed health included
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combining elements o f the Idaho Cumulative Effects Procedure with sediment size 

determination procedures used in the University of Montana Riparian and 

Wetlands Research Program (RWRP) assessment (RWRP 1999, IDL 1994). The 

stream network in the drainage was separated into stream segments or “polygons” 

based on land type associations, channel confinement classes based on the ratio o f 

floodplain width to bankfull width (entrenchment ratio), gradient classes based on 

field measurement and obvious land management borders. Percentages of fine 

sediments < 6.35 mm in selected reaches were estimated at 5-7 random sites 

within the selected reach and averaged. Percentage of fine sediments were then 

compared with levels estimated to negatively effect spawning habitat, i.e. > 20%.

Water Quality -  Nutrient Assessment

Several forms of nitrogen were sampled for the study. Dissolved nitrogen forms 

included nitrite (N 02) plus nitrate (N 03) and ammonia (NH4). Because nitrite is 

unstable in most streams, the nitrite plus nitrate is primarily nitrate. The forms of 

phosphorous measured include orthophosphorous and total phosphorous. 

Orthophosphorous is more readily available for uptake by aquatic vegetation than 

is total phosphorous (USGS 1995, 1999).

Latitude and longitude of the five sampling sites were specified using USGS 71/2- 

minute maps. After the four collection sessions spread from late August to early
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October, samples were packed in ice and transported to the Montana Department 

of Health and Human Services Environmental Lab in Helena, MT. The 

Environmental Lab analyzed the samples according to EPA quality-assurance 

procedures. Concentrations were reported in mg/L.

Riparian Ecological Condition

The importance of riparian function was detailed previously in the literature 

review section. The University of Montana Riparian and Wetland Research 

Project (RWRP) Lotic Health Assessment was utilized on the South Fork and 

perennial tributaries of the watershed to characterized the ecological condition of 

riparian zones (RWRP 1999). The RWRP methodology focuses on characteristics 

of streamside vegetation and channel health as a means of determining human 

impacts and overall ecological condition. The RWRP assessment procedure was 

utilized because it provides the necessary data for a qualitative analysis with which 

to make future management and restoration recommendations. An example of the 

procedure is provided in Appendix A.

Assessment Methodology

Vegetation and Physical characteristics included in the riparian assessment 

include:

-Canopy Coverage and age class estimates of trees, shrubs, forbs and graminoids 
-Canopy cover o f invasive weeds and undesireable herbaceous species
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-Browse utilization levels o f trees and shrubs
-Amount o f fine material present to hold water and act as a rooting medium 
-Percentage of polygon with human caused exposed soil surface 
-Percentage of streambank with active lateral cutting 
-Percentage of streambank structurally altered by human activity 
-Percentage of streambank with deep binding root mass 
-Level of channel incisement
-Revised Pfankuch Rating -  Channel assessment procedure developed in the 
USFS Northern Region to measure and evaluate the resistance of mountain stream 
channels to the detachment of bed and bank materials, and to provide information 
about the capacity of streams to adjust and recover from changes in flow and/or 
sediment production.
-Rosgen Stream Type- Designed as an aide in designing river restoration 
programs, the Rosgen system utilizes physical attributes, including entrenchment 
ratio, width to depth ratio, sinuosity, slope and dominant bed material as a means 
to universally classify stream channels.

The RWRP procedure relies on ocular estimates for canopy coverages, channel 

and bank substrate size classification and physical characteristics such as 

“percentage of streambank structurally altered by human impacts”. To assure as 

high a level of accuracy as possible and avoid individual sampling bias, the 

estimates were discussed and agreed upon by two or more field observers with 

experience in canopy cover estimation. Physical site characteristics including 

width-depth ratios, average riparian width, entrenchment ratio, slope and sinuosity 

were averaged from 4-6 measured sites spread throughout each polygon.

Stream Temperature Assessment

The original goal in this section o f the evaluation was to evaluate the degree of 

canopy closure provided by riparian vegetation relative to what is necessary to
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maintain the desired stream temperature based on existing fishery requirements. 

Based on maximum peak summer temperature limits for westslope cutthroat trout, 

the goal was to evaluate the current condition of canopy closure through field 

measurements and compare target shade values with existing conditions. The next 

step involved monitoring stream temperature periodically throughout the field 

season to correlate estimates from canopy closure percentages. Comparing pre 

and post timber-removal aerial photos, no change in canopy density in riparian 

zones is evident in the watershed, eliminating the usefulness of the correlation 

procedure. Instead, stream temperature measurements were taken at water quality 

sample sites periodically throughout the field season. Thermographs would have 

been ideal but were not available. Data on water temperature extremes from the 

Tenderfoot Experimental Forest suggest that seasonal high water temperatures for 

the watershed occur sometime in mid August, so monitoring focused around that 

time period. Water temperature data from past fisheries and hydrologic 

assessments completed during the past four years by the Forest Service were also 

included in the range of water temperatures evident in the watershed.

Canopy Cover Removal Impact Assessment

The primary goal of this procedure is to measure the probability of channel 

impacts from increased peak flows resulting from canopy removal. Given the lack 

of historical hydrologic data for the South Fork, an ad hoc methodology was
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developed. The first step involved determining a channel stability rating based on 

the revised Pfankuch procedure (Pfankuch 1978).

Using the conversion of Stability Rating to reach condition by stream type, each of 

the 25 polygons in the watershed is given a stability score based on the Pfankuch 

channel stability rating system, with an adjustment to account for differing value 

ranges for each stream type (Rosgen 1996). The Pfankuch rating system has been 

widely used in the Northwest as a means of qualitatively indexing how resistant 

stream channels and banks are to the forces exerted by increased flows as well as 

presenting an idea of how the stream will adjust and recover to alterations in the 

timing and intensity o f flows (Pfankuch 1978). Ratings greater than the mean 

values for that stream type suggest the initial stages or existence of channel 

instability. These include a heightened potential for increased erosion with 

increases in streamflow magnitude and duration. Values lower than the averages 

suggest that while instability does not currently exist, the system has the potential 

for instability with increased channel disturbance.

Using aerial photographs to determine the canopy removal index (i.e. percentage 

canopy removal from timber harvest) combined with the channel stability index 

(CSI) based on the revised Pfankuch rating, the risk o f adverse hydrologic impacts 

was estimated based on the Idaho State Cumulative Effects Assessment Procedure
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(IDL 1994). Hydrologists on the Assessment Development team developed the 

risk ratings based on best professional estimates. Given the previous information 

regarding variability between basins and lack of specific research quantifying the 

relationship between canopy cover removal and increased streamflows, the Idaho 

estimation of hydrologic risk is a best guess measure to identify potential problem 

areas. An analysis of historical channel change is definitely an important aspect of 

developing alternative management strategies. While the scope o f this study did 

not allow for permanent cross-section measurement sites to gauge channel 

alteration, future hydrologic research in the watershed would benefit from the 

development of a long-term channel morphology database.

Color copies of aerial photos of the South Fork Watershed were obtained from the 

Supervisor’s Office of the Lewis and Clark National Forest for the years 

1989,1990 and 1994 (scale = 1:15,840) to determine pre-harvest canopy cover 

estimates for the three sections where canopy cover was removed between 1996- 

1998 (sections 3,5 and 31 see map 5). These photos were enlarged 200% to match 

the scale of the post harvest digital photos at 1:7920. Estimates were determined 

by dividing each section into 10-acre parcels, then occularly estimating canopy 

density for each parcel by comparing with a reference crown coverage scale used 

by the USFS Intermountain Forest and Range Experiment Station. Post-logging 

canopy cover levels for the entire watershed were determined using the same
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method using digital aerial photos from flights in the Fall and Winter o f 1998/99 

by Andersen Engineering Company in Dillon, MT (rectified using obvious 

landmarks- scale 1: 7920). These flights were completed after a moratorium on 

logging was enacted pending future land management and land swap decisions.

Road System BMP and Density Assessment

The next step involved working with the Montana BMP Audit Procedure Group 

to thoroughly examine the road and skid trail system in the watershed. The eastern 

region Best Management Practice (BMP) team surveyed two stands adjacent to

tBstreams on Bair property on October 8 , 1999. With training experience gained 

with the Eastern Montana BMP team and training in Road Obliteration Survey 

techniques with the USFS, all roads in the watershed were evaluated using the 

Idaho Sediment Delivery and Erosion Source Evaluation procedure. This 

procedure was designed to determine how much surface erosion is occurring in the 

watershed as a result o f roads, skid trails, and mass failures, and what amount of 

eroded sediments is actually delivered to the stream channel. The criteria included 

examination of:

a) erosion from unstabilized cut and fill slopes

Roads

b) location, construction and maintenance of ditches

c) maintenance and drainage availability on road surfaces
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d) observed level of actual sediment delivery from roads 

Skid Trails

e) level of rutting and erosion on skid trails

f) skid trail proximity to riparian zones 

Mass Failure

g) Relative frequency and size of slumps

h) Failure proximity to streams

Road Density -  Road density was determined using post logging aerial photos at a 

scale o f 1: 7290. Road distance was calculated by measuring the length of roads in 

the section and then using the section line as a 1-mile reference. Area was 

determined by measuring section perimeter lengths and multiplying. Section 31 is 

actually 1.28 sq. miles in area.

Watershed Characterization -  Results and Discussion

Physiography

The South Fork Tenderfoot Creek watershed lies in the west-central region of the 

Little Belt Mountains, approximately 35 miles Northwest o f White Sulphur 

Springs, Montana. The South Fork flows east to west for the first half of its length 

then turns sharply to the northwest, where it reaches the confluence with the Main
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Tenderfoot, a westerly flowing stream whose headwaters originate approximately 

10 miles upstream. The Main Tenderfoot feeds into the Smith River approximately 

9 stream miles downstream from the confluence. The watershed covers 

approximately 7,250 acres or 11.34 square miles. UTM coordinates for the 

approximate center of the watershed are 04903 50E, 5196916N in zone 12. Lands 

in the watershed include all or portions of T13N R4W Sect. 1,12; T13N R5W 

Sect. 3-10; T14N R4W Sect. 25,36; and T14N R5W Sect. 28-33.

The Rimrock Ridge provides the watershed delineation on the southern edge, with 

private landownership bordering. The northern and western watershed boundaries 

are adjacent to a portion of the Lewis and Clark National Forest that was proposed 

as the possible Tenderfoot/Deep Creek wilderness area by Congressman Pat 

Williams due to its remote location. The eastern boundary marks the boundary 

between Post and Mongar Creek, with adjacent lands in checkerboard ownership 

pattern split by the Bair Foundation and USFS.

The South Fork watershed ranges in elevation above mean sea level from 4650 

feet at the confluence with the main Tenderfoot to 7195 feet at the top o f Rimrock 

Ridge. Hypsometric analysis by digital planimeter gave a mean watershed 

elevation of 5904 feet. The South Fork Tenderfoot Creek flows 4.6 miles from its
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headwaters to the Main Tenderfoot. Average elevation decrease over the entire 

course of the creek is 439.5 ft/mile.

Slope

The Arcview Spatial Analyst feature was utilized to characterize slope in the 

watershed. Each 30x30-meter grid was assigned a slope class from which a 

percentage of the total watershed area in each class was determined. The 

breakdown of slope classes in the South Fork is as follows:

Slope % of Watershed

0-15% 61.6

16-30% 24.8

31-45% 3.9

46-77% 0.7

Geology

While geologic maps specific to the South Fork have not been developed, detailed 

maps of adjacent areas, including the TCEF and Sheep Creek areas give a picture 

of the geologic structure of the area (see map 3 from Fames 1995). While the 

geologic units have experienced uplifting and faulting, the area has maintained a 

simple geologic structure. Moving from oldest to youngest geologic units, the
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basement rock of the Little Belt Range is made up of Early Proterozoic gneiss, 

part o f the continental crust with the original rock at approximately 2.4 billion 

years old (Fames et al. 1995).

The next geologic unit o f Cambrian Flathead Sandstone lies on top of early- 

pronounced faulting, uplift and erosion o f the crystalline crust dated to between 

600 and 800 million years before present. The Flathead Sandstone is a fine to 

coarse-grained sandstone cemented with quartz and ranges in thickness from 

approximately 275 to 450 feet thick. It is generally firmly cemented, highly 

resistant to weathering and forms ledges or steep slopes. Along with the Wolsey 

shale strata, the Sandstone layer is practically flat with a dip of 1 to 2 degrees in 

some areas (Fames et al. 1995, McCleman 1969).

Clay soil and silty clay soil, with depths ranging from 0 to 2 meters developed on 

top of the Middle Cambrian Wolsey Shale strata (approx. 560 million years old) in 

open meadow areas. Up to 400 feet o f Wolsey exists on the northern edge of the 

Main Tenderfoot, where it weathers to form clay-rich soils and gentle slopes with 

low permeability, but high erodibility. During spring runoff and other wet 

periods, low-lying areas are saturated and seeps develop along the margins o f 

colluvial and alluvial sediments in thin aprons on the Wolsey Shale. Trilobite 

fossils were discovered within the Wolsey strata as well (Fames et al. 1995).
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The most recent strata in the Tenderfoot Creek region are made up of igneous 

intrusive sills from the Eocene, approximately 50 million years old. Horizontal 

quartz porphyrytic intrusions 3 to 15 meters thick cut into the older Cambrian and 

Proterozoic strata. Fractures and pore spaces in the coarse-grained quartz porphyry 

capture, hold and transmit groundwater to Tenderfoot Creek and allow for the 

growth o f coniferous vegetation. Tertiary rocks less than 47 million years old do 

not exist in the central region of the Little Belt Range (Fames et al. 1995).

MAP 2 Geology of the Tenderfoot Creek Watershed
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Landtypes

Detailed soil surveys by the NRCS have not been completed in the Little Belt 

Range. The available soil classification comes from landtype surveys made by the 

Lewis and Clark National Forest. The classification system relies heavily on 

stereoscopic photo interpretation o f landform properties, with field observations 

that crossed representative areas o f all the landtypes identified. Soils are classified 

at the family level o f the soil taxonomy and representative soil profiles arc 

characterized using standard soil survey procedures. Riparian areas o f the South 

Fork and its tributaries were broken up into 25 polygons based on vegetation type, 

distinct management changes and obviously recognized landmarks for future 

assessments (see Map 3).

Map 3 -  Pologyon delineation
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Ten polygons, primarily on Deadman’s Creek and the upper tributaries are 

classified as type 42, with strongly developed forest soils underlain by grayish- 

brown silty clay loam topsoils 4 to 15 inches thick. The subsoil is characterized as 

a red to gray silty clay containing 10% to 35% shale chips or gravel. The soils are 

approximately 20 to 40 inches deep, moderately well drained and have slightly 

acidic topsoils with moderately alkaline subsoils. This landtype has a Type III 

limitation for road maintenance due to possible road cutbank mass failures, 

meaning the limitation is difficult and costly to overcome (Holdorf 1981).

Six polygons, primarily along the South Fork are classified as type 200, with soils 

forming in texturally layered alluvial deposits along the floodplain. Soils strata are 

deep, well or moderately well drained and often calcareous. The water table in this 

landtype is deep and fluctuates, providing subirrigation to riparian vegetation. 

Logging activity is basically prohibited in these areas that correspond to the SMZ 

or streamside management zone regulations. Road building on main channels has 

historically occurred at a high level due to the relatively flat slope of these areas 

(Holdorf 1981).

Five polygons, primarily along Mongar Creek and Zehntner’s Tributary have the 

type 59 association, with weakly to moderately developed grassland soils
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developing mostly in weathered shales. Topsoils are dark brown loam 5 to 15 

inches thick with brown clay loam subsoils with 10 to 35 percent shale chips and 

cobble. Soils are 20 to 40 inches deep, well drained and neutral to moderately 

alkaline. The underlying shale bedrock greatly reduces water movement and 

vegetation root development. A severe erosion hazard for stock trails or roads 

limits this type. Road density in this landtype is very low <1.0 mile/sq. mile.

Climate

The dominant climatic patterns of a region determine yearly precipitation levels 

and thereby determine groundwater and stream system dynamics. The climate of 

the Little Belts is basically Continental with strong Pacific Maritime influence 

along the Continental Divide (Holdorf 1981).

Temperature- Average daily temperature and precipitation levels for the closest 

Western Region Climate Center data site at Kings Hill Pass are given in Figure 2 

(following page).
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Figure 2. Daily precipitation and temperature averages for Kings Hill, MT
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Freezing temperatures and snow have occurred in every month of the year, with 

growing seasons ranging from 30 to 75 days (Holdorf 1981). Strong polar frontal 

systems dominate the winter climate of the region with temperature inversions 

causing lower elevations to maintain temperatures up to 10 to 20 degrees 

Fahrenheit colder than higher elevations (Fames 1995).

Precipitation-Average annual mean precipitation for the South Fork watershed 

for the 1961-1990 base period was 61.2 cm (24.1 inches) (Fames 1995). 

Precipitation levels are governed by winter snowfall and to a lesser extent by the 

brief “rainy” season in late spring and early summer. 60% of the annual 

precipitation falls during March through June, with overland flow and erosion 

primarily associated with spring snowmelt (Holdorf 1981). Rainfall intensity - 

duration frequency curves for Helena and Miles City are presented in Appendix B. 

Frequency curves for the S. Fork should approximate those of the surrounding 

area.

Evaporation- Potential evapotranspiration in the South Fork was estimated using 

Linacre’s method (1977) and available temperature data from the nearby 

Tenderfoot Creek Experimental Forest (Fames et al. 1995). Mean minimum 

temperature data was substituted for the mean monthly dewpoint temperature, 

which was not available. Results using Linacre’s method are presented in Figure 3
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assuming an environmental lapse rate o f -5  degrees F for every 1000 feet of 

elevation gain. The mean watershed elevation (5904 ft.) derived from hypsometric 

analysis was converted to meters and used in the calculations. Fahrenheit 

temperatures were converted to Celsius equivalents. The approximate latitude of 

the center region of the watershed is 47 degrees North.

700(Ta+0.006z)/100-L + 15(Ta-Td) where Ta = mean daily temp. (C)
Td = mean minimum temp. (C) 
z = elevation (m) L = latitude

Figure 3 - Potential ET in South Fork using Linacre’s Method

Month Daily ET (mm) Monthly ET (mm)
Oct 2.38 73.78
Nov 1.14 34.2
Dec 1.45 44.95
Jan 1.08 33.48
Feb 1.53 42.84
Mar 2.01 62.31
Apr 3.63 108.9
May 6.84 212.04
Jun 7.62 228.6
Jul 7.35 227.85
Aug 5.32 164.92
Sep 3.63 108.9
Mean Yearly Potential ET 1342.77

Land Use and Cover Conditions

Before logging activity began in 1996, land use in the South Fork watershed was 

focused primarily on livestock grazing, with impacts concentrated primarily in
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lowland areas and in riparian zones in the upland areas. Small-scale agriculture 

in the form of forage production on state and Zehntner lands has also occurred. 

Recreation impacts have historically been focused on the Main Tenderfoot, with 

minimal impacts in the South Fork drainage.

Distribution of land cover classes based on Wildlife Spatial Analysis Lab 

coverages is presented in Figure 4.

Figure 4 - Distribution of land cover classes

Land Use
Acres

Altered Herbaceous 6.005
Broadleaf Riparian 5.285
Conifer Riparian 5.371
Douglas-fir 1593.666
Douglas-fir/Lodgepole Pine 143.125
Graminoid and Forb Riparian 11.291
Lodgepole Pine 2452.338
Low/Moderate Cover 572.226
Grasslands
Mixed Broadleaf Forest 191.928
Mixed Mesic Forest 65.907
Mixed Mesic Shrubs 374.970
Mixed Subalpine Forest 1050.569
Mixed Whitebark Pine Forest 68.458
Mixed Xeric Forest 286.830
Moderate/High Cover 38.540
Grasslands
Montane Parklands and 76.444
Subalpine Me
Ponderosa Pine 212.010
Rock 12.527
Sagebrush 17.682
Shrub Riparian 12.011
TOTAL A CR ES 7197.183
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Ownership -  Map 4 displays ownership in the South Fork watershed. The area is 

in checkerboard pattern ownership with approximate percentages o f the watershed 

owned as follows; USFS -  52% Bair Ranch Foundation -  34% Private (Non-Bair) 

-  9% and State -  5%. The proposed land exchange between the USFS and Bair 

Ranch Foundation would consolidate all lands in the watershed south o f the South 

Fork in Bair ownership. The approximate ownership percentages given the 

exchange would be; USFS -  30%, Bair -  56%, with Private and State remaining 

the same. Given specific regulations, including minimal grazing impacts, no 

timber removal or road building, the proposed Conservation Easement for the 

main tributary and riparian areas o f the South Fork would aid in long-term habitat 

protection for the WCT population 

Map 4 -  Ownership in the South Fork watershed
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Forest land condition -  The South Fork watershed contains several forest cover 

types (Pfister et al. 1977). Approximately 77% of Bair lands in the watershed are 

classified as Douglas Fir (Pseudotsuga menziesii) types, while lodgepole pine 

(Pinus contorta) forest types occupy approximately 15 % of Bair lands in the 

watershed. Ponderosa pine (Pinus ponderosa) and limber pine (Pinus flexilis) 

cover types are restricted to small acreages less than 1% of the total. Riparian 

areas in the drainage are predominantly Picea X (hybrid white and Engelmann 

spruce) / Red-osier dogwood (Comus stolonifera) habitat types. While the forest 

understory in non-logged areas remains more or less undisturbed, skid trails and 

slash piles have had a significant impact on the soils and vegetation in logged 

areas. Also, vegetation utilization in riparian areas has remained low in 

comparison with impacts to stream channel morphology from unrestricted grazing 

access to the streams.

Range Condition

Grazing information from USFS allotment records at the Kings Hill District Office 

in White Sulphur Springs detail overall livestock numbers for the South Fork 

drainage. Over 100 years ago when the Mongar homestead was established as the 

first permanent residence in the South Fork, the total livestock (sheep and cattle) 

population of the little Belt range numbered close to 100,000, as compared to 

3,000 currently. The late 1890’s saw an 80% decrease in sheep population and
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60% decrease in cattle numbers across the range. Grazing intensity remained 

relatively constant from this point until the 1940’s when economic changes moved 

local ranchers to focus primarily on raising cattle and move away from the sheep 

industry (Bond 2000).

Grazing records dating to the early 30’s show that Bair Company lands supported 

4 bands of sheep with a total o f 900-1200 head from July 1 to approximately Sept 

15 until 1969 when the switch to cattle occurred. The current yearly allotment on 

Bair Ranch Foundation lands is broken up into alternating yearly upper and lower 

pastures. The allowed allotment of 50 head on USFS lands and 150 head on Bair 

property are allowed to range freely from July 1 to September 30 (Bond 2000). 

Typically the cattle are placed as low as possible within the drainage and are 

collected after having moved up the drainage. Little exists in the form of fencing, 

alternative water sources, or active management of grazing effects. The streams of 

the watershed serve as the primary water source and act as primary travel corridors 

demonstrated by the multitude of trails adjacent to streams.

The Zehntner family has maintained approximately 200-250 head of cattle since 

moving to the drainage in the late 5O’s on a combination of state leased and 

privately held lands.
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Watershed Hydrology -Rosgen Stream Classification / Channel Stability

Stream polygons in the South Fork were classified in the field according to the 

Rosgen classification system (Rosgen 1996). The breakdown of Rosgen 

classification by polygon can be examined in Figure 5, with polygons delineated 

in map 3. Polygons were given a channel stability rating using the modified 

Pfankuch channel evaluation procedure and field observations (Pfankuch 1978). 

Figure 5 -  Rosgen classification -Channel Stability Rating

POLYGON# ROSGEN
m uuii-itzu

PFANKUCH
KCUUVCRl
POTENTIAL

SOUTH FORK
1 A4/A3/B4 77 - FAIR POOR
2 C4B 70-GOOD GOOD
3 C4B 83-GOOD GOOD
4 C4B/C3/C3B 63-GOOD GOOD
5 C3B 77-GOOD GOOD
6 C3 89-FAIR GOOD
7 C4 70-GOOD GOOD
8 C3 78-FAIR GOOD
9 C3 79-FAIR GOOD

MONGAR CREEK
10 B4 105-POOR EXCELLENT
11 B3 100-POOR EXCELLENT
12 B3A 89-POOR VERY POOR
13 A3 79-GOOD VERY POOR

ZEHNTNER'S TRIB
14 B4 90-POOR EXCELLENT
15 B4 82-FAIR EXCELLENT
16 B3 72-FAIR EXCELLENT
17 A3 76-GOOD VERY POOR

DEADMAN'S CREEK
18 C5/B5C 85-FAIR FAIR
19 B4A 82-FAIR MODERATE
20 A4 95-GOOD VERY POOR

21 A5/B5/D5B 91-POOR VERY POOR

LOWER SOUTH TRIB
22 B4A 64- GOOD EXCELLENT
23 A4 69-GOOD VERY POOR

UPPER SOUTH TRIB
24 B4A 72-GOOD EXCELLENT

UPPER NORTH TRIB
25 A2 65-GOOD EXCELLENT
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Aside from the “good” scores of inherently stable, high gradient A type reaches, 

existing channel condition in the South Fork drainage is generally fair to poor. 

Unstable streambanks and increased width to depth ratios from cattle impacts are 

the dominant factor in low stability ratings.

The hydrologic characteristics o f the South Fork watershed were characterized 

using aerial photos, topographic maps and through field measurements. Minimal 

pre-existing data was gathered from the USFS, consisting of 1 year’s worth of 

cross-sectional data and proper functioning condition surveys. Because no 

streamflow or precipitation data was available specific to the South Fork, 

“synthetic hydrology” techniques were utilized to determine mean annual flow and 

create a flow duration curve with the aim of giving a general characterization of 

the hydrologic character of the basin. Ideally, given more available hydrologic and 

climatic data, a physical process distributed parameter hydrologic model such as 

TOPMODEL could provide a more site specific and detailed characterization of 

the South Fork watershed (Beven et al. 1995)

Estimates of peak discharges for the South Fork watershed near the confluence 

with the Main Tenderfoot were calculated using the methodology developed by 

Parrett, Hull and Omang (1987). After they determined peak discharges for
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various recurrence intervals for over 350 gauging stations in the region, they used 

simple regression analysis to develop regional equations relating peak discharge 

with channel geometry data. Using the average bankfull width measurement o f 

polygon #9 at the mouth = 6.5 feet, peak discharges are given for the South Fork 

in Table #3. The figures are based on equations developed for the Southwest 

Region of Montana. The coefficients o f determination for the region ranged 

between .80 and .90, with 59 gauging sites used in the regression analysis.

Figure 6_- Peak discharge estimates for selected recurrence intervals-South Fork

Daily streamflow data measured at sites from the nearby Tenderfoot Creek 

Experimental Forest were used to develop a regional flow duration curve as a 

means for typifying precipitation/hydrologic characteristics o f the region. 

Streamflow measurements were not taken in the South Fork because of obvious 

difficulty in using data from one field season to characterize temporally variable 

hydrologic data.

Q2 = .189 W(bf)176 =9 cfs 

Q10 = 1.42 W(bf)17= 30 cfs 

Q50 = 4.64 W(bf)149 = 75 cfs

Q5 = .722 W (bf)1'82 = 22 cfs

Q100 = 7.02 W(bf)L47 = 100 cfs

Q25 = 2.94 W(bf)157 = 56 cfs
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Figure 7. Flow Duration Curves —  Upper and Lower Tenderfoot Creek

Flow Duration Curves - Upper and Lower Tenderfoot Creek (93-98)

Upper

Lower

0,01 0.10
Non-exceedance Probability Log Scale

In general, discharge frequency curves plotted at the same scale can be utilized to

compare the hvdrologic characteristics of watersheds. Discharge values for the

Experimental Forest were normalized by dividing by the Q50 (the discharge

exceeded 50% of the time). Typically, a curve with a steep slope throughout

suggests a highly variable or flashy stream, while less steep slopes suggest a
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slower response to rainfall. The slope at the lower end of the flow duration curve 

demonstrates the effect of storage, in soil or groundwater (Smith and Stopp 1978). 

Large storage amounts that provide significant baseflow tend to flatten out the 

lower end of the curve. Watersheds that receive large quantities of snow or remain 

swampy during wet seasons store water at these times and usually have flatter 

slopes at the upper end of the curve. Waterways with significant floodplain storage 

demonstrate the same effect, with a flattened upper section (Smith and Stopp 

1978). The curves for Upper and Lower Tenderfoot Creek, with similar climatic 

and geologic characteristics suggest that the South Fork watershed demonstrates 

significant baseflow capacity and does not rely to the same extent on direct runoff 

from snowmelt or surface collection during the rainy season.

Quantitative Morphology

The drainage density of a watershed also provides information on how quickly 

precipitation and snowmelt moves through the hydrologic system. The higher the 

drainage density, the more rapid the watershed’s response to precipitation and the 

greater likelihood of flooding given the same amount of precipitation. Factors 

including soil depth and infiltration capacity, geologic permeability, mean annual 

flood magnitude, slope, vegetation and land use all have an influence on drainage 

density. Also the higher the rainfall intensity, the greater the drainage density. 

Areas of the Badlands in South Dakota have drainage densities approaching 200
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miles per square mile (Smith and Stopp 1978). Watershed area and stream mileage 

were measured by planimeter in English units for the South Fork. Drainage 

density is a relatively low 1.38 miles/sq. mile, with 16.47 miles of intermittent and 

perennial streams and an area o f 11.34 square miles. This figure suggests that the 

South Fork responds relatively slowly to precipitation events.

The steepness of a watershed provides the necessary energy for the detachment 

and transport o f material, i.e. erosion and sediment production. The relief ratio, 

calculated by dividing the difference in elevation between the basin mouth and 

watershed divide by the maximum length of the basin parallel to the primary 

channel, suggests an average slope for a watershed. It is correlated with speed of 

response to precipitation and levels of sediment production. The relief ratio for the 

South Fork is 439.5 ft/mile or approximately 8 %, suggesting a high gradient 

system with significant available energy for water transportation.

The Compactness coefficient is the ratio o f the perimeter o f a watershed to the 

circumference of a circle with the same area. Kc = .28 (Perimeter length/ Sq. root 

o f Watershed Area). A circular watershed with a ratio close to one is a more 

efficient and “flashy” or floodprone system. With a compactness coefficient of 

1.13, the South Fork drainage tends towards lower times of concentration
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suggesting flashiness. A visual inspection of the general shape of the watershed 

confirms the oval, relatively circular shape of the watershed.

Water Use

Surface flow in the South Fork watershed is generated by precipitation runoff, 

primarily from snowmelt. The South Fork and its tributaries are the primary water 

source for the minimal water use in the drainage. Aside from livestock use, the 

Zehntner Ranch diverts a minimal portion of the stream flow near Deadman’s 

Creek to power a small generator for electricity. A table summarizing water rights 

and permits follows.

Figure 8 - Summary of Water Rights and Uses

Owner___________Year________ Type____________ Quantity

State Lands 1900 irrigation 3 cfs

USFS 1905 stock use 4.49 gal./min

Zehntner’s 1960 stock use 30 gal/day/AUM

Fishery Health

The most recent fisheries surveys conducted by the USFS in 1997 and 1999 

suggest that the WCT population in the South Fork remains healthy and viable 

with slight genetic introgression, despite declines in habitat quality from various
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sources. The most recent relative abundance estimate for the main South Fork 

based on electroshocking studies performed by the USFS during 1997 is 

approximately 50 fish per 100 meters, with all ages well represented. Density 

estimates for a second order stream of its size suggest a robust population with 

medium to high WCT density (Enk 2000). Rainbow Trout and hybridized WCT 

were found in the South Fork below the falls near the state/USFS boundary in 

section 30, T14N, R5E. Genetic testing based on allele frequencies at the 

diagnostic loci completed at the University o f Montana Wild Trout and Genetics 

Laboratory demonstrate that the South Fork WCT population above the falls 

remains approximately 96% pure. Because only two of 10-12 diagnostic loci had 

non-WCT genes (Rainbow Trout or Yellowstone CTT), the introgression was 

most likely caused by a decades old one-time stocking event whose effects are 

fading out due to back-crossing with native WCT (Enk 2000). The fisheries’ 

biologist for the Lewis and Clark National Forest suggests that the South Fork 

population is most likely moving towards an increasingly lower level of 

hybridization with primarily pure fish most abundant. While it may not be used as 

a restocking population in the statewide restoration scheme, according to the 

guidelines of the WCT Conservation Agreement, the South Fork population merits 

the highest level of protection.



While the WCT population in the South Fork remains robust, there are a range of 

possible threats given land-use history and possible stochastic events. The 

population remains protected from “ natural” hybridization by a set of falls located 

approximately _ of a mile upstream from the confluence with the Main Tenderfoot 

in NW1/4, SE1/4, section 30, T14N, R5E on National Forest land.. Current threats 

to the WCT population in the South Fork include loss o f spawning habitat due to 

increased fine sediment levels (bank erosion, roads etc.) and loss o f habitat due to 

stochastic events such as drought, floods, ice-over and scouring flows (Weaver 

and Fraley 1993).

Because the South Fork WCT population is isolated in the headwaters of the 

watershed, recolonization from adjacent populations is not possible. Perhaps the 

greatest threat to the isolated South Fork population is the cumulative effects of 

existing land use activities (grazing, timber harvest, and recreation) that can 

combine to simplify stream systems and reduce habitat availability. Reduced 

stream habitat complexity remains one o f the most widespread cumulative effects 

o f past forest activities, especially in combination with other land use activities, 

like grazing impacts, that lead to incised, straightened channels (Bisson et al.

1992, Hicks et al. 1991). While our understanding o f the complexities involved in 

alterations to stream habitat and salmonid populations from cumulative impacts 

has greatly improved, our ability to completely define and understand our effects
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remains limited (Hicks et al. 1991). Recent studies have also suggested that the 

cumulative effects of land use activities may not be apparent for up to 70-100 

years after the original activities (Reid 1998, NRC 1992).

Field-based Assessment- Results and Discussion 

Fine Sediment Evaluation

The desired outcome o f this part o f the study was to establish whether erosion 

from various land uses contributes significant sediment to streams. The percentage 

of fine sediments is an important indicator of fishery habitat health (Heede and 

Rinne 1990, Weaver and Fraley 1993). Bjomn and Reiser (1991) among other 

studies, demonstrated that survival and emergence of salmonid embryos begins to 

decline if  the percentage of fine sediments exceeds 20 -  30% (by volume) in 

spawning riffles.

Weaver and Fraley (1993) conducted a study in a natural stream channel designed 

to specify quantitative predictors o f fish response to a range of sediment levels, 

with the ultimate aim of suggesting specific standards to protect the westslope 

species. By simulating the characteristic incubation conditions of natural 

westslope redds and altering the percentage of fines, they found a significant 

inverse relationship (r2 = .072, P<. 005, N = 17) between cutthroat fry emergence 

success and percentage of fines less than 6.35 mm. Specifically, mean fry

53



emergence success was 76, 55, 39,34,26, and 4% respectively in simulated redds 

with 0, 10,20,30,40 and 50% fines less than 6.35mm present. With increasing 

percentages of fines, potential spawning sites are covered. When the spaces 

between gravel sized particles in redds are filled with fines, groundwater- 

sufacewater exchange is blocked and Dissolved Oxygen (DO) levels decrease. 

Trout fry have difficulty emerging as a result while the eggs do not receive as 

much oxygen. Typical threshold levels set by fisheries biologists for optimal 

spawning habitat for westslope cutthroat trout are 5% fines, with significant 

alterations in spawning habitat occurring with fines levels above 20% (Behnke 

1992).

Because the South Fork WCT population currently remains free from the effects 

of competition from brook trout, hybridization from rainbow trout and over

utilization by humans, negative effects on spawning habitat from increased fine 

sediment levels would not significantly impact overall reproduction rates (Enk 

2000). The real damage potential o f increased fines would come after a significant 

population crash, when the loss of spawning habitat combined with lower 

reproductive potential could combine to create difficult conditions for population 

recovery.



Increased levels of fine sediments in streams typically originate from one or more 

of several human induced sources. Possible sediment sources in the South Fork 

include; increased streambank erosion from cattle/wildlife trampling, loss of deep 

binding root mass due to overgrazing of riparian vegetation, and the building and 

use of logging roads that cross or are located near streams. Level o f road use has 

been shown to have a dramatic impact on sediment yields from road segments, 

with a heavily used road segment contributing as much as 130 times as much 

sediment as an abandoned road (Reid and Dunne 1984). Failure to maintain 

logging roads long-term can prove damaging to aquatic life as sediment pulses 

caused by plugged culverts, gully erosion etc. may enter the stream system for 

decades after construction and logging (USDA Forest Service 1996).

The estimated percentage of fine sediments < 6.35 mm in diameter broken down 

by polygon for the South Fork, Mongar and Deadman’s Creek is given in Figure 9. 

Results for other tributaries are not presented because previous fish sampling 

studies showed a lack of fish habitat in those tributaries.

55



Figure 9 - Fine Sediment Estimates in WCT habitat
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The estimated levels of fine sediments< 6.35 mm in fish bearing portions of the 

watershed ranges from 15% to 30%, with an average of 22.4%. Equivalent levels 

in Weaver and Fraley (1993) suggest that fry emergence success with that fine 

sediment level would be approximately 40%. It should be noted that the fine 

sediment levels are estimations and are not representative o f the entire polygon 

substrate proportions. Exact levels o f available high quality spawning habitat are a 

possible subject o f further study in the watershed. As stated earlier, due to a lack 

of competition and utilization, decreased fry emergence due to increased sediment

levels is currently not a serious threat to the WCT population. Potential impacts
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from increased fines would be more likely given a population crash from drought, 

ice over, etc., when the loss of spawning habitat combined with lower 

reproductive potential could create difficult conditions for population recovery.

Attempting to draw correlations between elevated fine sediment levels and 

specific land use activities remains problematic. Some stream systems have 

naturally high levels of fines due to geologic and soil characteristics. It would not 

be unreasonable to suggest that the high intensity o f grazing impacts to the banks 

and channels in the South Fork have elevated erosion rates and thereby increased 

levels o f fines in the streams. The additional impact of sediment inputs from road 

surfaces must also be taken into consideration but is difficult to measure without 

historical sediment data. Provided with pre-logging and road building sediment 

data, the impacts of the road system could have been characterized quantitatively. 

The section on sediment inputs provides a qualitative description of sediment 

inputs to streams from the road system, skid trails and mass failures.

Water Quality-Nutrient Assessment

While not an original aspect of the analysis procedure, water quality analysis was 

added as a possible means of identifying land-use or cumulative impacts. 

Increased levels of nutrients, especially different forms of nitrogen and 

phosphorous, can spur growth of existing aquatic vegetation. Excessive plant
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growth and eventual decay alters the balance of stream systems, causing 

significant changes in dissolved oxygen (DO) levels with resulting negative 

impacts on aquatic biota (USGS 1995).

Without historical nutrient data, it is not feasible to make determinations of 

possible relationships such as increased nitrate levels due to timber extraction or 

increased phosphorous levels from a specific source. Although the specific 

impacts o f nutrient increases on salmonid and invertebrate populations has not 

been studied in great detail (Hicks et al. 1991), the opportunity to determine 

obvious nutrient level oddities or fluctuations between sample sites was deemed to 

be of value in determining possible abnormalities in watershed function.

The process of developing TMDL (total maximum daily load) levels for essential 

water quality parameters, as required by the re-authorization of the Clean Water 

Act in 1987 is still in initial stages in the state o f Montana. Nonetheless, the 

TMDL committee for the Clark Fork River, comprised of dischargers, local 

governments, conservation groups and consulting scientists, developed a voluntary 

nutrient reduction plan (VNRP) that suggests instream targets for nutrient levels 

and likely loading levels required to achieve the intended levels.



The Clark Fork TMDL group decided to focus on total nutrient levels and utilized 

work by Dodds et ak 1997 to determine acceptable levels of 30 ppb (.03 mg/L) 

dissolved inorganic nitrogen (DIN) and 39 ppb (.039 mg/L) total P in the middle 

river and 20ppb (.02 mg/L) in the upper river (Watson et al, 1999). The 

development of a TMDL for the South Fork Tenderfoot Creek Watershed would 

ideally involve monitoring of nutrients, sediment levels, and discharge patterns of 

the South Fork or a reference watershed with similar hydrogeologic, topographic 

and climatalogical characteristics. Without historical streamflow, nutrient or 

sediment data in the South Fork to suggest possible TMDL levels, the 

recommended levels set out by the Clark Fork VNRP group were used as a 

reference to point out nutrient levels that may warrant further analysis Box plots 

of nutrient levels at the 5 sampling sites on the South Fork are presented in Figure 

10. (N = 4)

Figure 10 Box-plots of Total Phosphorous and Dissolved Inorganic Nitrogen

Total P hosphorous (mg/L)



Dissolved Inorganic Nitrogen (mg/L)
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When compared with the Clark Fork VNRP acceptable levels of 39 ppb (.039 

mg/L) total P (based on data from small, shallow streams similar to the South 

Fork), total phosphorous levels in the South Fork do not demonstrate a significant 

warning signal that warrants concern at present. While DIN levels in the South 

Fork are above the suggested levels for the Clark Fork, historical stream surveys 

and recent field-work have not detailed significant algae blooms in the South Fork 

that might suggest a problem with nutrient levels in the stream. The nutrient data 

presented can be used as a baseline level for comparison with future nutrient 

monitoring No further water quality analysis is warranted at this juncture, 

although periodic monitoring should be included in future watershed analysis.
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Riparian Ecological Assessment

The South Fork and its six perennial tributaries in the watershed were broken 

down into 25 habitat assessment polygons in an effort to formulate useful 

management and restoration recommendations to land owners. Polygon length was 

determined by a combination of obvious physical/ownership boundaries, 

noticeable changes in riparian vegetation types and obvious changes in stream 

geomorphology. Upper and lower polygon boundaries, as well as other points of 

interest were recorded as waypoints using the Garmin GPS 12 handheld unit. 

Waypoints were then downloaded into an Arcview GIS format for further analysis 

and display of information. A table of polygon health scores, with problem areas 

defined, as well as Rosgen classification and restoration potential follows in 

Figure 11 divided into the mainstem and six tributaries (following page)..
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Figure 11. Riparian Health Assessment Scores
POLYGON# VEG. PHYSICAL TOTAL ROSGEN PROBLEM AREAS-COMMENTS

SOUTH FORK

1 91.7% 66.7%
Functional-At Risk 

69.4% A4/A3/B4
Bank Shear, Increase w/d ratio, cattle trails, Low DBR (deep binding root 
mass),2 road xinqs

2 83.3% 77.7%
Functional-At Risk 

77.7% C4B Downcutting, Extensive Bank Trampling - Banks Have Good DBRM

3 91.7% 55.5%
Functional-At Risk 

63.8% C4B
Bank Sloughing in steep,sandy gradients, older downcut w/developing 
floodplain

4 95.8% 72.2%
Functional

81.9% C4B/C3/C3B
early stage invasive weed problem, morebank instability in lower 2/5 with easy 
cattle access

5 91.7% 55.5%
Functional-At Risk 

63.9% C3B Numerous cattle crossinqs, high level of bank trampling, active lateral cutting

6 70.8% 61.1%
Nonfunctional

69.7% C3
stream meanders along fenced pasture, bank trampling on road side. Lower 
1/3 entranced

7 66.7% 55.5%
Functional-At Risk 

66.7% C4
understory heavily grazed,woody veg absent in pasture area, undercut banks, 
WAYPT 9 - Heavily Impacted site, increased fines below Wpt.9

8 79.2% 66.7%
Functional-At Risk 

65.3% C3
Heavy utilization entire poly-extensive bank trampling, high undesirable 
herbaceous content

9 95.8% 55.5%
Functional-At Risk 

65.3% C3
Heavy bank trampling-Cattle path across stream at fenceline above 
confluence w/Main-active lateral cuts

MONGAR CREEK

10 83.3% 66.7%
Functional-At Risk 

66.7% B4
excessive fine sediments, roadside sediment fence trampled, 3/4 of poly has 
trampled banks

11 83.3% 44.4%
Nonfunctional

66.6% B3
lower 1/3 heavily impacted by cattle trampling, corral abutts stream lower poly 
-stream flows in corral-cattle trails on upper 1/3 of poly

12 79.2% 55.5%
Nonfunctional

69.7% B3A
shrub coverage heavily grazed, Picea providing DBRM, some stretches banks 
held by forbs and qraminoids, 2/3 trampled

13 74.1% 83.3%

Proper
Functioning

80.7% A3
banks well vegetated - good DBRM -Grazing effects noticeably lessened 
above fenceline boundary of poly's 3 &4

ZEHNTNER'S TRIB

14 74.1% 33.3%
Nonfunctional

62.6% B4
banks lacking tree/shrub coverage&regeneration-Low DBRM, channel 
widening, bank compaction/shearing nearly throughout

15 77.8% 60.0%
Functional-At Risk 

68.4% B4
bank structurally altered for much of poly, high level of exposed ground, 
logging lower 1/3

16 59.3% 66.7%
Functional-At Risk 

63.4% B3
bank trampling and channel widening for majority of poly, some loss of 
woodies to utilization.

17 85.2% 83.3%

FTtyW
Functioning

84.2% A3
Lower levels of utilization and bank trampling, heavily forested/dense poly 
with reduced cattle access

DEADMAN'S CREEK

18 87.5% 44.4%
Nonfunctional

66.9% C5/B5C

1/3 of poly with active lateral cutting, deeply incised channel-little floodplain 
development, undercut banks, trampled banks, widened channel - channel 
splitting, heavy silt deposition

19 83.3% 50.0%
Nonfunctional

68.3% B4A

logging road w/in 8 ft. of channel for lower 1/3, heavily braided channel in 
high traffic areas, excessive fine sediments, stream widening, 4 headcuts 
lower poly, logging adjacent to SMZ entire poly

20 77.8% 66.7%
Functional-At Risk 

71.9% A4
lateral cutting, undercut banks, past and current channel incisement, cattle 
trails & crossinqs, channel wideninq in flat areas

21 66.6% 26.7%
Nonfunctional

46.6% A5/B5/D5B
extensive grazing, high level of bare ground, channel braiding in high traffic 
areas due to trampling and bank shear

LOWER SOUTH TRIB

22 81.5% 83.3%

Proper
Functioning

82.5% B4A
All ages present and reproducing successfully, occassional bank and channel 
trampling, overall pretty healthy

23 88.9% 93.3%

Proper
Functioning

91.2% A4
Minimal bank/channel trampling, minimal utilization, excellent DBRM, very 
healthy

UPPER SOUTH TRIB

24 74.10% 66.70%
Functioning-At 
Risk 70.2% B4A

Banks, channel heavily degraded due to cattle trampling - multiple 
trails/crossings, vegetation shows minimal grazing impacts

UPPER NORTH TRIB

25 96.3% 93.3%

Proper
Functioning

94.7% A2
Extremely healthyl Well armored, minimal cattle impacts, trees, shrubs 
reproducing successfully
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A series o f maps of polygon location, color- coded health status and restoration 

potential are presented as maps 5 and 6.

Map 5 -  Riparian Condition Assessment Scores

South Trio

Wfetersftsd Boundary 
Streans
Section Boundaries 

T rS  Riparian Health Score 
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M ap 6 -  Restoration Potential based on Stream type

Ijjppsf South Trio
i:<wer South Trib-

I' I Watershed Boundary 
/ \J  Streams

j Section Boundaries 
Recovery Potential 

SXCEIJ.ENT 
FAIR 
GOOD 
MODERATE 
POOR
VERY POOR

As demonstrated by the riparian health assessment scores in figure 11 and map 5,

the major human-caused impact in the South Fork drainage has clearly been the

grazing o f domestic livestock. 76% of polygons scored at the Non-Functional or

: unctional-At Risk level. O f the remaining six polygons with Proper Functioning

scores, five are located in steep, upper reaches with very limited cattle access. The

level o 'im pact to aquatic resources in the Western United States due to improper
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livestock use is well established. Estimates as high as 70% of the western United 

States have been grazed, with most riparian zones having been altered 

dramatically in the past one hundred years due to improper livestock grazing 

(Fleischner 1994, Elmore 1992, Adams and Fitch 1998).

Alterations to current grazing strategies will have the greatest positive impact in 

efforts to restore the streams in the South Fork to a higher level of ecological 

functioning. In developing new management strategies it is important to consider 

the “natural stress” of the impacted streams. In other words, streams with 

naturally high erosion potential cannot withstand a high degree of management 

stress (Elmore 1992). The disturbance sensitivity level developed by Rosgen based 

on stream type was utilized to suggest natural stress levels to be taken into account 

in future grazing strategies. Three out of 25 polygons in the watershed have a 

“low” or very low sensitivity level. The remaining polygons are split evenly 

between moderate and very high sensitivity levels. Taken generally, the watershed 

demonstrates a significant natural stress level, suggesting that continued impacts 

from intensive grazing would further degrade the stream systems ability to 

function properly.

Management stress should definitely not be looked at solely in terms of AUM’s 

(animal use months) but in terms o f the combined inputs of season of use, duration
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of use, grazing frequency, and control of distribution (Elmore 1992, MT DNRC 

1999).

As stated earlier, the lack of control of livestock distribution provides the greatest 

impacts to the stream system in the South Fork. Comparing the average vegetation 

health and average channel health portions of the overall riparian health score, 

81.6% to 63.4% supports this observation. The riparian vegetation remains 

relatively healthy in the “functional” zone, while the physical attributes of the 

system are barely above the non-functional range. The greatest impacts to stream 

function clearly are not due to over-utilization of vegetation but to unrestricted 

cattle access to the stream channel.

Season of use cannot easily be regulated as the allotment season runs the same 

period (July 1 to Sept. 30) each year, and fenced pastures to allow grazing rotation 

and rest are not in place. The possibility exists of fencing large portions of the 

South Fork to limit cattle access to specific watering sites. Such enclosures would 

also allow a rotational scheme in riparian pastures to spread out impacts to the 

stream system. Such a project would entail relatively high start-up costs and 

require constant maintenance of fencing, but has proven extremely effective in 

minimizing grazing impacts and promoting recovery (Elmore 1992, Adams and 

Fitch 1998).
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A “no change” option in grazing strategy on Bair Ranch Foundation lands will 

almost certainly continue to move the watershed into a lower state o f ecological 

function. Continued bank trampling and compaction further limits the ability of 

riparian areas to function as a “sponge”, regulating infiltration and release of 

groundwater during dry periods. High levels of bank trampling severely alter the 

natural migration o f stream channels within the floodplain and do not allow the 

system to maintain a more naturally variable state. A continuing increase in fine 

sediment levels from the erosive effects of bank trampling also further degrades 

WCT spawning habitat.

Stream Temperature Assessment

Water temperature is determined mostly by the rate of streamflow, elevation and 

the amount o f shade, but also by undercut embankments, organic debris, depth and 

velocity (Budd et al. 1987). Water temperatures in salmonid streams fluctuate 

daily, seasonally, annually and spatially (Bjomn and Reiser 1991). Riparian areas 

work effectively as reservoirs, storing runoff in soil spaces and wetland areas 

thereby maintaining stream flow after spring runoff and lowering stream 

temperature by discharging cooler stored water. Riparian vegetation also creates a 

microclimate that helps regulate water temperature by providing shade from solar 

radiation in the summer and acts as insulation to keep streams from freezing over

67



in the winter (Budd et al. 1987). Excessive loss o f riparian canopy cover to 

overgrazing, riparian timber removal or bank erosion increases the amount o f solar 

radiation reaching the stream, thereby altering stream temperature dynamics.

Daily stream temperature fluctuations occur to a much greater extent in smaller, 

lower volume streams such as the South Fork of Tenderfoot, which can have 

negative impacts on a wide range of aquatic organisms. Higher water 

temperatures reduce oxygen solubility, thereby lowering dissolved oxygen levels 

in streams. Possible effects on salmonid growth and survival include reduced 

growth efficiency, increased susceptibility to disease, and changes in growth rate 

and age at smolting. These effects would all tend to reduce a stream’s trout 

population (Hicks et al. 1991).

Studies on temperature effects on WCT suggest that the lower lethal temperature 

is 0.6 degrees Celsius, with an upper lethal temperature of 22.8 degrees Celcius 

(Bjomn and Reiser 1991). The Washington State Watershed Assessment 

Procedure sets a standard of 16 degrees Celcius, while Idaho has a 13 degree 

Celsius standard during spawning season (WFB 1993; IDL 1994) The state of 

Montana currently does not have specific standards for maximum stream 

temperature.
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Temperature measurements were taken at the water quality sample sites at four 

times throughout the field season starting in early August. Data on water 

temperature extremes from the Tenderfoot Experimental Forest suggest that 

seasonal high water temperatures occur sometime in mid August. Water 

temperature data from past fisheries and hydrologic assessments completed during 

the past four years by the Forest Service were also factored into the range of 

temperatures. A chart o f temperature ranges by site is given in figure 12.

Figure 12 —  Stream temperature ranges

Water Temperature at Sampling Sites (Celsius)

Zehntner's -i

Oeadman's -f

ttoove Dam - j

2 50 5.00 7 50 10.00 12 50 15 00

temp
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Based on available stream temperature data and measurements taken in summer 

1999, the highest stream temperature recorded is 14 degrees Celsius, far below the 

WCT lethal maximum temperature of 22 degrees Celsius, and below the 16 degree 

C standard for Washington. The temperature data recorded and collected, as well 

as the lack of change in riparian canopy cover suggest that increased water 

temperature due to lack of riparian canopy cover is not a current threat to the 

resident WCT population. Future monitoring should continue to include stream 

temperature assessments, although with no change in canopy cover in riparian 

areas, the change in canopy cover methodology is unnecessary.

Canopy Cover Removal Impact Assessment

Stream channels in a pristine state exist in a state o f dynamic equilibrium, 

continually being formed, reformed and maintained by hydrologic and fluvial 

geomorphologic processes (Leopold et al. 1964). Impacts of forest canopy 

removal include decreased interception and transpiration and increased snowmelt 

rates, which can all combine to significantly alter the timing and intensity of 

streamflow (IDL 1994). The alteration of aquatic biota habitat via alteration of the 

hydrologic regime was demonstrated in Bisson et al. (1987). The degree of 

alteration is ultimately determined by the size o f the increase in peak flows 

combined with the susceptibility of the stream channel to the alteration in 

streamflow. Harvesting timber, grazing and other human-caused impacts that

70



compact soil, remove vegetation or cause an increase in watershed drainage 

density can increase peak discharges and decrease the recurrence interval of 

bankfiill discharges (the increment of discharge that moves the largest proportion 

o f annual sediment load over a period of water years) (Olsen et al. 1997). Any 

investigation of hydrologic impacts from land use activities must take into account 

the fact that hydrologic responses to timber removal and the resulting 

geomorphologic responses to changes in hydrology vary substantially between 

basins (Grant and Swanson 1991).

While methods to estimate stream channel stability exist, as well as methods to 

estimate effects of increased discharge on channel stability, there currently is no 

widely accepted and applied method for predicting the amount of increased 

discharge due to forest canopy removal (Olsen et al. 1997; Grant and Swanson 

1991; Beschta 1998). This fact is due to the complexity and variability in climatic 

patterns, parent materials and vegetation distribution between watersheds (IDL 

1994). Beschta (1998) outlined necessary research needs related to the effects of 

forest practices in the Northwest that would aid tremendously in furthering our 

knowledge of hydrologic relationships and cumulative effects.

As previously mentioned, generalizing the relationship between canopy cover 

removal and hydrologic/geomorphologic impacts across watersheds is problematic 

due to the complexity and variability in climatic patterns, parent materials and
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vegetation distribution between watersheds. The fact that the various methods of 

timber harvest and inherent regeneration variability differ in resulting levels o f soil 

and vegetation alterations with accompanying changes in runoff patterns adds to 

the problem o f adequately typifying the relationship. While this study focuses on 

possible cumulative impacts to the aquatic resources of the South Fork, future 

research into the cumulative impacts of grazing, canopy cover removal, road 

building, and recreation on the abundant wildlife o f the Lower Tenderfoot region 

should be taken into account in future land management decisions.

Given the difficulty in predicting hydrologic effects due to canopy removal, it is 

not surprising that the results obtained in this study to characterize hydro logic 

effects are inconclusive. A summary of total acreage, canopy cover acreage pre 

and post, along with the formulation of the canopy removal index is provided in 

Figure 13.

Figure 13._Canopy Cover Pre and Post Logging - Canopy Removal Index 

South Fork Total Area -  7250 acres

Canopy Cover Pre -  3787 acres Canopy Cover Post -  3408 acres

CRI = (Acres of Forest Canopy Removal/Percentage Natural Canopy Closure!
Total Watershed Area (acres)

CRI = (379)(58.5%)/7250 

CRI -  .09
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With the hydrologic risk rating scale (figure 14) used in the Idaho Cumulative 

Impact Assessment Procedure, a canopy removal index of .09 corresponds to a 

low hydrologic risk rating regardless of the Pfankuch channel stability index.

Figure 14. Hydrologic Risk Rating
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Several mitigating factors suggest that the low risk rating warrants further 

investigation. First, the literature on cumulative impacts suggests that the full scale 

of the combined effects of various land use activities may not be apparent for

many decades after the original impacts (Reid 1998; Kauffman et al. 1997). At this
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point, the canopy removal difference is based on impacts to three sections in 

checkerboard ownership patterns with the USFS not planning any timber removal 

on its properties in the watershed. The area affected amounts to 1920 acres or 

26.5% of the watershed. Looking specifically at hydrologic impacts on sub

watersheds of the South Fork suggests the possibility of increased risk of 

geomorphic impacts from current and possible future canopy removal. Future 

timber harvest plans should take into account the already severely degraded 

channel system in the Mongar Creek sub-watershed. Harvest levels similar to that 

in section 31 in the surrounding sections, with an already highly taxed stream 

system from grazing impacts could increase the probability o f cumulative effects, 

in this case continued simplification of the sub-watershed stream system.

With riparian health already classified as non-functional and functional/at risk in 

the Mongar Creek sub watershed, the risk of future cumulative impacts from 

continued grazing and timber removal is significant. Future sustainable timber 

management and road construction on Bair Ranch Foundation lands in the upper 

South Fork should be monitored closely to avoid possible cumulative effects, 

given possible implications for further simplification of an already highly 

impacted stream system that supports a species of special concern. Focusing 

timber management in sections that drain into the lower South Fork and Main 

Tenderfoot would lessen the probability of cumulative impacts within the upper
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South Fork and concentrate land management impacts on a larger stream system 

that does not support a WCT population at high risk of possible extinction. Once 

grazing impacts have been minimized and channels given sufficient recovery time 

in the South Fork, future analysis may suggest that sustainable logging in the 

upper South Fork watershed can occur with minimal probability o f cumulative 

effects.

In general, it is difficult to suggest a relationship between current canopy removal 

levels and channel degradation levels in the drainage. First, the impacts from 

canopy removal may not be apparent for decades. Also, with a significant portion 

of the banks in the South Fork disturbed by pugging and hummocking, grazing 

effects clearly are the dominant cause of loss of ecological/riparian function. The 

literature on cumulative effects does not suggest recommended limits to canopy 

cover removal given a specified level of previous geomorphologic disruption. It is 

important to realize that the management decisions made based on possible 

cumulative watershed effects are “as much societal value judgments as technical 

issues” and that “risk is inherent in the forest management enterprise” (Grant and 

Swanson 1991). The current risk in the South Fork watershed is possible further 

degradation of an already highly impacted stream system that supports a species of 

special concern with full protection under the Montana FWP Conservation 

Agreement.
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Road Design and Density

The effects of road densities up to 1.6 mi./sq. mi. on watershed health in most 

forested regions is practically negligible, while densities approaching 8 mi./sq. mi. 

combined with other land use effects significantly increase the potential for 

cumulative effects (Reid and Dunne 1984). Increased road densities introduce 

greater concentrations o f steeper slopes, hardened surfaces that limit infiltration, 

exposed mineral soils more readily eroded and interception of subsurface flow, all 

o f which concentrate water and increase the drainage efficiency o f the watershed. 

With resulting decreased time of concentration and increased discharge, possible 

results include increased erosion potential, channel incision with accompanying 

problems, as well as reducing moisture availability to vegetation (USDA Forest 

Service 1996, Schnackenberg and MacDonald 1998). It has also been 

demonstrated that sediment “pulses” from road systems can move into stream 

networks for decades after road construction and timber removal are completed 

(USDA Forest Service 1996).

Average scores for the sediment delivery and erosion source evaluation for roads, 

skid trails and mass wasting are given in Figure 15 for sections 3,5,  and 31 which 

were impacted by road construction and timber removal during 1996-1998.
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Figure 15. Mean Sediment Delivery Scores for Roads, Skid Trails and Mass 

Wasting

Section

3

5

3
1

Mean Road Score 

26 

28 

34

Mean Skid Trail Score Mean Mass Waste Score Total Score

4 22 52

6 28 62

8 26 68

Low <31

Moderate 31- 
50 

High > 50

Low< 7

Moderate 7- 
10 

High >10

Low < 28 

Moderate 28-45

High > 45

Low <66

Moderate 66- 
105 

High >105

Scores from the sediment delivery assessment suggest that the current road 

network in the South Fork is contributing a relatively “low” level of sediment to 

the stream system. This qualitative assessment can be attributed to the quality of 

initial road building, but also to how recently the roads were built. To avoid the 

potential cumulative effect of increased sediment in streams from roads, regular 

monitoring and maintenance of stream crossing areas and overall road system 

health must be part of future land management plans in the watershed. Vegetation 

levels on cut banks should also be increased to improve binding root mass and 

decrease erosion potential. The road directly adjacent to Deadman’s Creek 

upstream from the main road crossing should be obliterated and restored to pre-
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road conditions. Otherwise, road placement in the watershed is generally 

excellent.

Figure 16 - Road Density by Section

Section 3 -  2.5 mi/sq. mi Section 5 -  2.75 mi/sq. mi Section 31 -  4.2

mi/sq. mi

Sediment delivery scores and road density in sections 3 and 5 are low. Additional 

roading in Section 31, with higher density (4.2 miles/sq. mile) and a moderate 

sediment delivery score should be minimized to reduce the possibility of 

cumulative effects.

Figure 17 BMP Audit Summary -  from 1998 Forestry BMP Audit Report

Practice DNRC Fed. Industry Bair Ranch

BMP Application 96% 92% 95% 98%

BMP Effectiveness 99% 95% 95% 99%

SMZ Application 96% 96% 94% 100%

SMZ Effectiveness 100% 98% 100% 100%

Figure 17 shows a comparison of average Forestry BMP scores between state, 

federal, and industry in 1998 with the two units audited in 1999 on Bair Ranch
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Foundation lands by the eastern Montana BMP team (Fortunate et al. 1998). The 

two Bair cutting units were chosen randomly to provide a depiction of the overall 

level of adherence to the BMP guidelines. The first site was in section 5, adjacent 

to the South Fork and upstream from Deadman’s Gulch. The second site was in 

section 25, near the main road and adjacent to Post Creek. The Bair Ranch 

Foundation scores clearly demonstrate overall excellent adherence to the Montana 

Forestry BMP guidelines. Recommendations made by the BMP team included 

increasing slash filter/armoring levels on culverts and developing a long -term 

road maintenance plan to include regular culvert maintenance.

Management and Restoration Recommendations

Looking back at the original questions asked in the study provides a good starting 

point in approaching possible management and restoration alternatives for the 

South Fork watershed. Again, the goal of any ecologically-based management and 

restoration plan should aim at restoring the natural ecosystem processes which will 

through time allow for the recovery of the structure and function of the ecosystem.

First, what processes are causing habitat loss, or in this case, habitat 

degradation? Impacts to riparian areas throughout the drainage are primarily the 

result of under-regulated or un-regulated grazing. Historical land-use in this
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remote drainage before logging activity began in 1996 centered first on sheep, 

then cattle grazing. Historical recreational impacts (fishing and hunting) and the 

cumulative effects of timber removal impacts during three seasons of logging are 

relatively minor when compared with the effects of riparian grazing. This 

conclusion is based on the results of the various parts of this study. As mentioned 

previously, high levels o f bank trampling severely alters the natural migration of 

stream channels within the floodplain and does not allow the system to maintain a 

more naturally variable state. Bank trampling and compaction also limits the 

ability o f riparian areas to function as a “sponge”, regulating infiltration and 

release of groundwater during dry periods. Specifically, the low physical 

component scores of the riparian ecological condition assessment suggest an 

overall loss of function. Cumulative impacts resulting from the additional impacts 

of logging and recreation may be more readily detected in the future and should be 

monitored periodically.

Secondly, what areas are important fo r  fish, and why? With regards to the WCT 

population in the South Fork, the upper watershed above the barrier falls impacts 

the primary habitat areas in the main stream channel and should be considered 

important in maintaining proper function of the aquatic system. Land use impacts 

should be minimized in riparian areas in the drainage and ideally, a period o f rest 

from grazing would allow the stream channels to begin adjusting to a state of long
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term dynamic equilibrium. The period of rest would be determined by the rate of 

recovery.

A possible alternative to the rest period would be to prescribe a grazing strategy 

that fits the specifics o f the various parts of the stream system. This would require 

a substantial initial input from the landowners in the drainage for fencing as well 

more time required for management and monitoring. It should be noted that the 

South Fork watershed provides an excellent opportunity to demonstrate the effects 

of various recovery strategies, including rest-rotation grazing, landscape-oriented 

riparian pastures and/or season of use based strategies (Adams and Fitch 1998). 

The use o f “before and after” pictures from different techniques can be a powerful 

tool in developing effective grazing management strategies. The landowners in the 

watershed also have an excellent opportunity to demonstrate the positive benefits 

o f working together to develop comprehensive, watershed-wide management 

strategies. Given the ability to develop off-stream watering sites, increase range 

monitoring, and rotate pastures to alter season and intensity of use, total stream 

channel recovery can be achieved (Elmore 1992). Without active grazing 

management, the stream system will continue to degrade.

Regarding roads, perhaps the most pressing management concern regarding roads 

is the cumulative impact of bank and channel trampling immediately upstream of
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culverts, where cattle “ponds” have developed adjacent to approximately 25% of 

stream crossings. Future monitoring and management of the road network must 

deal with partially and fully blocked culverts and solidly reinforce degraded banks 

at all culvert openings. It should also be noted that the South Fork drainage has 

remained relatively free from noxious weed infestation. Canada thistle is present 

in small quantities but could be eradicated manually relatively easily. Recent 

meetings between the landowners in the South Fork have pinpointed noxious weed 

prevention as a high-priority land-management goal. Every possible effort should 

be made by landowners in the South Fork to work together to eradicate current 

noxious weeds and avoid any further infestation.

Next, where has habitat been impaired and what aspects o f  habitat have changed? 

Looking at the overall riparian health score in map 5 the aquatic and riparian 

system in the South Fork has been impaired in all WCT habitat areas with 76 % of 

polygons assessed having a non-functional or functional at risk rating. The 

difference between the mean vegetation health score and the mean physical 

attribute health score suggests that the impacts of trampling and channel alteration 

are the most pressing concern. The alterations to channel dynamics have been 

caused primarily by unregulated grazing strategies.



What is the relative importance o f  the various habitat changes to fish  and what is 

the present trend o f  changes in the system? The general simplification of the 

stream system alters groundwater recharge dynamics, increases fine sediments 

which affect reproductive success rates and generally limits habitat range for 

WCT. Again with no competition and little utilization, decreases in stream 

complexity currently have little apparent negative impacts on the population. 

Difficulty in restoring the population after a population crash would most likely 

result given the current level of ecological functioning. With continued grazing 

impacts and increased levels of other land use activities, the South Fork system 

will continue to decline.

Finally, what changes are reversible, what is the expected effectiveness of 

potential remedies, what are the effects of those remedies on other land uses and 

ecosystem components, and what are the relative costs of the potential remedies 

over the long term?

Alternative grazing management strategies on Bair and USFS lands include the 

possibility of a rest period, as well as the development of specific grazing 

prescriptions. A period of rest (the length determined by monitoring recovery) 

would most rapidly allow the system to reverse the current trend towards 

simplification caused by widespread impacts to stream banks and riparian areas.
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More active forms of restoration such as instream structures designed to increase 

complexity and provide habitat as well as planting shrubs to stabilize banks are not 

necessary at this juncture. With or without a period of rest, active grazing 

management based on specific prescriptions will improve the ecological condition 

of the stream system. Given more active management, future analysis should 

demonstrate that without the impacts of unrestricted grazing in riparian areas, the 

system will move towards a higher level o f complexity and better perform its 

many ecological functions.

Grazing management on the State/Zehntner lands already supports significant 

infrastructure. Some repairs to fencing, additional fencing, off-stream watering 

sites and monitoring of riparian pasture usage would greatly aid in system 

recovery and would not be economically prohibitive. Assistance from state aquatic 

resources protection funds is available for additional fencing and grazing 

management requirements. Specifically, the Future Fisheries Improvement 

Program provides approximately one million dollars from the sale of Montana 

fishing licenses for projects that restore habitat for native fishes.

Possible Impacts of Proposed Land Swap

A map of one alternative of the proposed land exchange between the Bair Ranch 

Foundation and USFS is shown below. Because the exchange is still pending, the
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exact areas involved remain undecided. This alternative is provided as a sketch to 

look at possible effects of the land swap.

M ap7 —  One Alternative for Lower Tenderfoot Land Exchange

Low er Tenderfoot Land Exchange Analysis
Alternative 3
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Whether the land exchange will help in restoring diminished ecological function in 

the South Fork currently depends to a large extent on the land management 

philosophy of those in charge of handling the Bair Ranch Foundation holdings. 

Provided the exchange goes through, the Bair Foundation would own all land 

south of and including the main South Fork. The former Foundation director, 

Darrell Tunnicliff, sought to consolidate land ownership with the goal to “use Bair 

Ranch Foundation facilities and support to further education of students and the 

public in Ecosystem Conservation and Management” (Pfister et al. 1999). Given a 

similar philosophy behind future management strategies, consolidating ownership 

in the South Fork would simplify the development of active grazing management 

to assist in stream system recovery.

Consolidating checkerboard ownership patterns in the region would block off a 

larger area for the proposed Tenderfoot -  Deep Creek wilderness north of the 

Main Tenderfoot. Resolving the checkerboard pattern will make it a better 

candidate for being added to the wilderness system. Future impacts from road 

building by the Bair Ranch Foundation to access their lands north o f Tenderfoot 

Creek would also be avoided if the land exchange were completed. The Bair 

Ranch Foundation would minimize recreation impacts and possible noxious weed 

infestation by limiting off-road vehicle access through the South Fork to the
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adjacent wilderness areas of the Tenderfoot. Finally, the proposed conservation 

easement for the South Fork, to be overseen by the University of Montana, would 

be an additional positive step in protecting the long term viability o f the WCT 

population by eliminating potential development and minimizing impacts to the 

riparian areas of the creek.

Conclusion

Historical precedence strongly suggests that forward thinking land management 

and maintenance o f healthy stream and riparian systems is a valuable investment 

in the long term health of the landscape and human economy (Kauffman et al. 

1997). Based on this watershed analysis, The South Fork stream and riparian 

system is generally sensitive to disturbance and has been significantly impacted 

primarily by unrestricted grazing practices. Increased fine sediment levels and 

simplification of the stream channel morphology present significant potential 

problems for the long-term survival of the isolated WCT population.

The South Fork watershed remains an area of great natural beauty. With a robust 

population of WCT and a stream system that can recover to a point of full 

functioning with cooperative land management improvements, the South Fork
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watershed presents an excellent opportunity for private and public landowners to 

work together to protect a “shared investment.”
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May 15, 1999

a d m in i s t r a t i v e  d a t a

RWRP LOTIC INVENTORY FORM

A1 .

A 2.

A3a. BLM State Office:
A3e. BLM District:____

A3e.
A 3 g :

A3b. BLM Field Office:

A3f.

A3d. BLM Resource Area:

A3h:

A4. USFWS Refuge:

A5. R eserva tion :__
A6. NPS Park/NHS: 
A7. BOR Project:__
A8. USFS National Forest:. L ew is and C lark

A 9. 

A1 2.

A10. Date field data collected:. A11. O bservers:

LOCATION DATA

B1. S tate /P rov ince: MT B2. County/Municipal District: M p ag h p r

B3. Allotment/Range U nit:________________________________

134. Area nam e: S o u th  F o r k  T e n H e r f n n f  Ore.pV

B6. Location: T: i ?N______  R-' 4W_____________
1/4 Sec: A/NW 5/NF. 1/4 1/4 Sec: 4/SW

B 8.

B5. Polygon No.

Sec:

5/NE
-4-5-

B7. Elev. (ft): 53QQ ; (m):

B9a. UTM coordinates of polygon UPPER END: Easting: 0491874

B9b. UTM coordinates of polygon LOWER END: Easting: 0490405

B9c. UTM coordinates of any other point of interest in the polygon: E a s t:_______

B9d. GPS Unit ____________  WPt Upper: ^__________  WPt Lower:

B9e. C om m ents:_____

Northing:

Northing:

5196216

5196756

; North:.

; Z one:. 

; Z o n e :.

12

12

B10. Q uad m ap(s):.

WPt Other:

.; Zone:

Data Current as of May 20,1999 RWRP Lotic Inventory Form 1 
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SELECTED SUMMARY DATA________________________________

C1. W etland ty p e :_______      C 2 .
C3a. Is the entire polygon an upland? (Yes; No): Mn If No. C3b. Does the polygon consist entirely of functional wetland

types? (Yes: No): No C3c. C3d. Percent of total polygon: ______

C4. Does the polygon contain a defined stream bank or channel? (Yes; No): Ye s

C 5. C 6 .

C7a. W as the Pfankuch rating used? (Yes; No): Y es_______

C 8.

V EG ETATIO N  DATA

D1a. Wetland prevalence index: -----

D1b. Vegetation structural diversity:.

T r e e s

D2a. Are trees present? (Yes; No): ^ e s
D2b. Tree species by canopy cover class and percent age group

SPECIES 
P i c e a  X

PSEMEN
POPTRE

COV
4

SDLG DEC SPLG/DEC
2

POLE/DEC
2

D5. Seedling/Sapling 
MAT/DEC DEAD Utilization
4 , 2  P None

None
None

Data Current as of May 20,1999 RWRP Lotic Inventory Form 2 Check RWRP Web Site for Most Up-to-Date Data Set and Form



S h r u b s
D6a. Are shrubs present? (Yes; No): ^ e s
D6b. Shrub species canopy cover, age/size groups, and utilization

SPECIES COV
SYMALB P

ALNINC__________ 2.
SALBEB 2

r.CRSTn 1
SALLUT 1

pnpynn P
RIBLAC P
JUNHOR P

LINBOR T
SPIBET T

SDLG-SPLG/UTIL
4 L

2 L
2 N

3 T.
1 L

3 N
2 N
1 N

1 N
T / N

MATURE/UTIL 
6 / L

7 N
8 N

fi M
9 L

7 N
8 N
9 N

9 N
F / L

DEC-DEAD/UTIL
0 / o

1 / L
0 / o

1 / 1.
0 / o

n / n
0 / 0
0 / 0
0 / 0

D6c. Shrub Growth 
Form (N.F.U)

N

JL
N

Ji
N

JL
JL
N

N

Data Current as of May 20,1999 RWRP Lotic Inventory Form 3 Check RWRP Web Site for Most Up-to-Date Data Set and Form
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D7. G ra m in o id s  D8. F o rb s
Graminoids present? Forbs present?
(Yes; No): Yes (Yes; No): Yes

SPECIES COV SPECIES £OV
POAPRA / P______ THAOCC________ / T

PHLPRA / P _ ____M I S ________/ 1 _
CARROS / P______ TAROFF________/ T

______________ / _____  STRAMP________ / I  ...
______________ / _____  EQUARV________ / P

_______________ / ______  ARNCOR_________ / T

D9. Plant Group bv Canopy Cover
Laver Trees Shrubs Graminoids Forbs

3 (>6.0 ft): _ J l  __ 1___  - J ? ______  0

2 (>1.5 - 6.0 f t) :___]___  ___2___   P___ T

1 (0 -1 .5  ft): _ E   1 — I   P

D10. Total canopy cover by lifeform:
Trees: 5 Shrubs:____^___

Graminoids: 2 Forbs:  I-----

D11. Total canopy cover by woody species: ^

D12. Total canopy cover by all plant lifeforms: 9

W eed D ata
D13a. Are invasive w eeds present ? (Yes; No; NC): Yes

If Y es. D13b. The portion of the polygon in fe s te d  by 
each of the following invasive weed species:

Canada Thistle:

Common Hound’s-tongue:. 

Common Tansy:

Dalmatian Toadflax:

Diffuse Knapweed:

Spotted Knapweed: 

Russian Knapweed: 

Whitetop:

O th e rs :________________

O th e rs :------------------------

O th e rs :------------------ ------

Leafy Spurge:

Purple Loosestrife: 

Sulphur Cinquefoil: 

Russian Olive: 

Saltcedar (Tamarisk): 

Scotch Thistle:

Dyer’s Woad:

St. John 's Wort:

D13c. What percent of the polygon is 
in fested  by all invasive w eeds?

Data Current as of May 20,1999 RWRP Lotic Inventory Form 4 Check RWRP Web Site for Most Up-to-Date Data Set and Form
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D14. H abita t T ypes  an d  C om m unity  T y p es  P ercen t nf

C lassification Tvne Name Phase  Polvoon Successional S tage or Comments

 PTf.EA/CORSTO---------------------------------------------------------------- E---------------------------------------------------------

D15a. Are undesirable herbaceous species present? (Yes; No; NC):_______
If Y es. D15b. Record the combined canopy cover of all undesirable herbaceous species observed:  T

D16. Polygon trend: Improving, Degrading, Static, or Status Unknown? S t a t u s  U nknow n___________

D17. Explain trend description and give other vegetation comments:

Data Current as of May 20,1999 RWRP Lotic Inventory Form 5 Check RWRP Web Site for Most Up-to-Date Data Set and Form
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WATER QUALITY DATA (TMPL DATA) 

E1.

PHYSICAL SITE DATA

F1. Does the polygon contain a stream  bank or channel bottom? (Yes; No; NC): 

F2a. Is the channel bottom visible? (Yes; No; NC): ^ e s
If Y es . F2b. Give the percent of each size (must approx. 100%):

P 1>20 inches (Medium Boulders +) ________

1 10 - 20 inches (Small Boulders)

2 5 - 1 0  inches (Large Cobbles)

2 2.5 - 5 inches (Small Cobbles)

F3a. Are bank materials present? (Yes; No; NC): Y es
If Y es. F3b. Give the percent of each size (must approx. 100%):

T >20 inches (Medium Boulders +)  L
1 0 -2 0  inches (Small Boulders) 

5 - 1 0  inches (Large Cobbles) 

2.5 - 5 inches (Small Cobbles)

Yes  If No. go to item F17a.

0.6 - 2.5 inches (Coarse Gravel)

0.08 inches - 0.6 inches (Fine Gravel) 

0.062 mm - 2 mm (Sand)

<0.062 mm (Silt and Clay)

0.6 - 2.5 inches (Coarse Gravel)

0.08 inches - 0.6 inches (Fine Gravel) 

0.062 mm - 2 mm (Sand)

<0.062 mm (Silt and Clay)

F4a. Is there active lateral cutting of stream ? (Yes; No; N C ):________
If Y es. F4b. How much of the stream  length displays active lateral cutting: 2

F5. Percent of the total bank length unstable (0-5%; 6-25% ; 26-45% ; over 45%; NC): F - ? 5 7 _________

F6a. Is the stream bank altered by on-site human activities? (Yes; No; NC): Y es

If Y es. F6b. Percent of the bank length that has hum an-caused alterations? 3
F6c. Of this, how much resulted from: (must approx. 100%)
Grazing: F Logging:_______ Railroads:_______  Vegetation Rem oval:_______

R oads:______  Mining:_______ R ecreation:_______ O th e r:_______
Explain “other'’: _____________________________________________________________________ ______________ __

F7. Percent of the stream banks with deep, binding root m ass (0-35%; 36-65%; 66-85% ; over 85%; NC): o v e r  85%
F8. Percent of polygon with sufficient fine material to hold water and act a s  a rooting medium (0-35%; 36-65% ; 66-85% ;

over 85%; NC): o v e r  85%
F9. Rosgen stream  types recorded and the percent of the stream  length accounted for by each:

Rosgen 1: / 20% Rosgen 2: C3 / 20% Rosgen 3: C3B / 60% Rosgen 4 : ______/ _____

Data Current as of May 20,1999 RWRP Lotic Inventory Form 6 Check RWRP Web Site for Most Up-to-Date Data F
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NoF10a. Does the 7.5 min. topo map accurately represent the sinuosity of the stream ? (Yes; No; NA; NC):.
If No. F10b. Determine sinuosity in the field; If Y es , determine sinuccity in the office from topo map: 1 . 9

F11. Average non-vegetated stream  channel width: (ft 6 : (m ):________
F12. Stream gradient (percent): 4

F13a. Active downcutting of the stream ? (Yes; No; NC): Y es  If Y e s . F13b. Percent of stream  actively downcutting: _

F14a. Headcuts present? (Yes; No; N C ) :_ n ©_ If Y e s . F14b. No. of headcu ts :______ F14c. Average headcut height (ft):

F14d. Location of headcu t(s):___________________________________________________________________________________
Y esF15a. Is the stream  channel braided (has multiple active channels during normal flows)? (Yes; No; NC):_______

If Y es . F15b. Percent of the stream  channel that is braided: T___

F16. Indicate the best description of channel incisement (A; B; C; D):
_______ Uppermost 1 /5  o f  p o ly g o n  i s  t y p e  B_________________________________________________________

Remainder i s  ty p e  A

F17a. Is there exposed soil surface (bare ground)? (Yes; No; NC): V If No or NC. go to item F19.

F17b. Percent of the polygon which is exposed soil surface (bare ground): _ 1 ______
1 9F17c. Of this, how much is due to Natural P rocesses: Human-caused d istu rbance:_______ (must approx. 100%)

F17d. Within each  category (natural & hum an-caused), how much resulted from the  listed p rocesses?
NATURAL PROCESSES (mustapprox. 100%)__________  HUM A N -CA U SEP PRO C ESSES (mustapprox. 100%)

7 Erosional _______  Type Dependent  Grazing   Construction
_3___  Depositional _______  Saline/Alkaline _______ Logging _____  Mine tailings
  Wildlife Use _______  Within Veg. Channel Bottoms _______ Recreation _________  Other
  Other Explain “Other":______________________________________________________________________________

F18. Non-vegetated ground cover. (Note: Bare ground and vascular plant cover recorded above.)
Rocks (>2.5 in.): P Moss: P Litter & duff: T Wood: 1

V p c
F19. Are channel point bars revegetating? (Yes; No; NA; NC):

F20a. Are side drainages and hillslopes contributing to degradation of the system? (Yes; No; NA; NC): _No_ 

If Y es. F20b. H um an-caused? (Yes; No; NA; NC):_______  C au se s :____________________________

F20c. Natural cause? (Yes; No; NA; NC):______  Major soil parent m aterial:.

F21. Is there a nearby source on the s y s te m  for large woody debris to enter the  stream ? (Yes; No; NA; NC): Ypk

F22a. Average riparian zone width (ft): 12 ; (m): ______
O Qfl

F22b. Riparian zone width range (ft): J  . to ; (m ):________ t o ______

F23. Is the average riparian zone widening? (Yes; No; NA; NC): No

F24. Sinuosity, width/depth ratio, and gradient are in balance with the landscape setting? (Yes; No; NA; NC): Yes
F25a. Livestock-caused pugging and/or hummocks present (Yes; No; NC): Y es

■3
If Y es . F25b. Percent of polygon affected: J

F25c. Distribution of hummocks/pugging: Within stream banks: _ _ 2 _  Remainder of polygon: 7 (m ustapprox. 100%)

F26a. Are seeps  or springs present? (Yes; No; NC): Y es

If Y es . F26b. Number of seep s  and springs: 3
F26c. How many springs and seeps  had hummocks and/or pugging in 25% or more of the wetted area?

F26d. Location of the springs and seeps: __ __________________________________________________________________________

F27a. Is wetland type a pooled channel of an intermittent stream  (item C1)? (Yes; No; NC): No

If Yes. F27b. Percent of the channel length with pooled water:________

F27c. Is this pooled water expected to remain at the surface through the remainder of the growing season? (Yes; No): 

F27d. Location of the pools:_________________________________________________________________________________

Data Current as of May 20,1999 RWRP Lotic Inventory Form 7 Check RWRP Web Site for Most Up-to-Date Data Set and Form
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F28a. Is there evidence of beaver in the polygon? (Yes; No; NC) No

If Y e s . F28b. (Active; Inactive):____________  F28c. Describe the type and am ounts of beaver activity observed:

F28d. Number of beaver dam s and lodges o b served :________

F28e. Level of beaver activity (number of chewed stems). (1-25; 26-100; over 100; N C ):______________

F28f. How many beavers were o b se rv ed ?  __

Where?  ___________________________________________________________________    —_______________

F29. Comments (Summarize unique characteristics or problems not evident from the data collected. Include topics related to 
any of the optional data. Consider current and historic attributes resulting from hum an-caused and natural processes.):

As n o te d  e a r l i e r ,  s e v e r a l  s t r e a m  t y p e s  o c c u r .  The upper 1 /5  h a s  a s m a l l e r

______ giihgrrafp. and lo w e r  g r a d i e n t  tha n  t h e  a d j a c e n t  1 /5  downstream  t h a t  i s  f o r c e d __________
______ i n t o  a narrow , c a n y o n - l i k e  a r e a  w i t h  l a r g e  b o u l d e r s  and s i g n i f i c a n t  l a r g e  woody______

d e b r i s .  T h is  s e c t i o n  p r e v e n t s  c a t t l e  a c c e s s .  The lo w e r  3 / 5  d e m o n s t r a te s  e f f e c t s  o f

_______ g r a a r p r  a r r p s g  ~ie . c h a n n e l  t r a m p l i n g .  A lso  s m a l l e r  s u b s t r a t e  and more bank i n s t a b i l i t y .

F30. Detailed description of upper and lower ends of the polygon:
Upper end b e g i n s  200 y a r d s  b e lo w  th e  main road  (marker v i s i b l e  from- road)  
Upper l i m i t  i s  marked w i t h  a c o n f l u e n c e  w i t h  a s m a l l t r i b u t a r y .

_________ T.nwpr l in r i t  o f  p o ly g o n  i s  marked bv th e  i n t e r s e c t i o n  o f  th e  road  and c r e e k
________ a t  th e  main b r i d g e . _______________________________________________________________________

Data Current as of May 20,1999 RWRP Lotic Inventory Form 8 Check RWRP Web Site for Most Up-to-Date Data Set and Form
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PHOTOGRAPH DATA
G1a. Identification of photos (taken at the upstream  end of polygon): Roll # _  

Photo numbers: (upstream ):_______22______  (downstream ):------- 23_

G1b. Location o f ________________________________________________________
“other" photos:_______________________________________________________ _

G1c. D escription____________________________________________________ __
of views (up):_____________________________________________________ __

_  Photographer: 

(o the rs):______

SK

(down):

(others):

G2a. Is there an adjacent polygon upstream of this polygon? (Yes; No): —
G2b. Is there an adjacent polygon downstream of this polygon? (Yes; No): Yp s

G3a. Identification of photos (taken at dow n stream  end of polygon): Roll # _̂_______  Photographer:

Photo numbers: (upstream): OU  (downstream):____ 25________  (o th e rs ) :_____________
G3b. Location of____________________________________________________________________________________

“other” photos:____________________________________________________________________________________
G3c. D escription___________________________________________________________________________________

of views (up):___________________________________________________________________________________

(down):

(others):

G4. Film and Cam era Specifications
Film brand: _________________ Film speed (ASA):  Lens diameter (m m ):_______ Lens focal length (mm):______

OPTIONAL DATA___________________________________
H1. A spect: NW H2. Veg. use by animals (0-25%; 26-50% ; 51-75% ; 76-100% ):_____ 0-25%________________
H3. Adjacent uplands (Agriculture; Grassland; Shrubland; Forest; or Other): ^ o r e s t ___________ ___________________
H4a. W ere Category 2 (T & E) plant species observed? (Yes; No): No if Yes. H 4b. S p e c ie s :________________________
H4c. Location(s):_______________________________________________________________________________________

H5a. Do subsurface water supplies, independent of flowing surface water in the area, appear to influence area  vegetation? 
(An example of this is a  hardwood draw with riparian vegetation, but rarely flowing surface water.) (Yes; No): No 

If Yes. H5b. Describe the situation:

H6 Bankful! width/depth ratio:__ 1 k H7. Entrenchment ratio (floodprone width/bankfull width) (<1.4; 1.4-2.2; >?.?)• 1 . 4 - 2 . 2

H8. Distribution of exposed soil surface (item F17b) (must approx. 100%):
Inside/outside the bank/channel area: Inside: ^ Outside: _ _ L _  H9. Percent of stream bank accessib le  to livestock: _ ^ ! _

Data Current as of May 20,1999 RWRP Lotic Inventory Form 9 Check RWRP Web Site for Most Up-to-Date Data Set and Form
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H10a. Has the bank configuration or channel profile been modified by construction? (Yes; No; NC):J5£1
If Y es. H10b. How much of the bank or channel length is m odified?-------------

H10c. What part resulted from the various sources; (must approx. 100%)
Dikes _______ Road Construction   Railroads

Berms ______  Water Diversion S tructu res_______ Mining

Dams _______ Vegetation Removal______________  Bridges

R ip-rap_______ Channelization___________ _______  Logging

Other _______ Explain__________________________________________________________________
“Other”: ________________________________________________________

H10d. L oca tion (s);_____________________________________________________________________

H10e. If hum an-caused channel modifications are present, are they stable? (Stable; Unstable): 
H10f. What is the effect of the modifications on the immediate and downstream channel?

W aterfow l D ata
NoH11a. Were waterfowl nests or broods observed? (Yes; N o ):__________

If Y e s . H11b. D escribe :___________________________________________________________________________

F ish e ry  D ata Y
H12a. Does the polygon contain a fishery? (Yes; No; Unknown):____________

If Y es . H12b. Is it a  sport fishery, non-sport fishery, or unknown:___ unknown_________

H12c. Fish types present, if known (use common nam es or descriptions): W e s t s l o p e  c u t t h r o a t  t r o u t

H12d. How many fish were observed? (0; 1-10; 11-50; > 50):__ 1 1 -5 0
H12e. If the polygon does not contain a fishery, is there potential for one? (Yes; No; Unknown):______________

Explain: __ _________ ______________________________________________________________________________

A m phib ian  a n d  R eptiie  Data
H13a. Were amphibians observed? (Yes; No): No

If Y e s . H13b. Number observed: Frogs: _______  T o a d s :_________  Salam anders:
H14a. W ere reptiles observed? (Yes; No):______

If Y e s . H14b. Number observed: S n a k e s :_______  T urtles:  Lizards: _

H15. List amphibian or reptile species and the quantity of each identified in the polygon.
Spp. # 1 _______________________________  No.:______  Loc.:

Spp. # 2 -----------------------------------------------  No.:---------  Loc.:

Spp. # 3 _______________________________  No.:______  Loc.:

Spp. # 4 _______________________________  No.:______  Loc.:

T h rea te n e d  a n d  E n d a n g e re d  S p e c ie s  Data 
H16a. Were T & E animal species observed? (Yes; No): No

If Y es, H16b. W hat sp ec ies?  Peregrine Falcon:______  Bald E agle:______  Bull Trout:_______
Peregrine Falcon N est:______  Bald Eagle N est:______

H16c. Other species observed: Species Number S pecies Number

H16d. Location in polygon where T & E animals or nests were sighted:

Data Current as of May 20,1999 RWRP Lotic Inventory Form 10 Check RWRP Web Site for Most Up-to-Date Data Set and Form
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Appendix B Intensity -Duration Frequency Curve for Helena, MT

107



RAINFALL INTENSITY- DURATION-FREQUENCY CURVES
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