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INTRODUCTION

Throughout the entire discussion, the underlyling space being con-
sidered is R,, the Buclidean plane. Any point p in this space may be
represented by an ordered pair of real numbers (a2,b). As in common prac-
tice, points will be located with reference to two coordinate, perpendic-
ular axes, the x (horizontal) and y (vertical) axes.

Some of the notations and conventions encountered will be as follows.
A set will be a collection of objects called points. A collection of sets
will be called a class. Lower case English letters will denote points;
upper case English letters will denote sets; and script capital English
letters will denote classes, The following symbols with definitions in-

dicated will be extensively used.

Symbol Definition
€ "is a member of" or "belongs to"
ﬁé "is not a member of" or "does not belong to"
< "is contained in" or "is a subset of"
SZf "is not contained in" or "is not a subset of"
- "'contains"
;25 "does not contain"
. "therefore"
d(pl, p2) "the distance from p; to p,"
N(p,€) "the neighborhood of p of radius "

The distance between points will be defined in the ordinary sense.

That is, if p; = (%3, ¥;) and po = (x5, ¥p), then d(pl,pz)ﬂ(xl-xz)2+(y1—y2)2.
A neighborhood of a point p of radius € is the set of all points g such

that d(p,q) <€ . Thus, it will consist of the interior of a circle having

p as center and radius € .
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If E and F are two sets, then E #F will denote the set of all pcints

v
p such that either p €E or p&F. If E,, Ey,——, E, are sets, then g £;
A -

will denote the set of points p such that p€ E:.L for some i = 1,2,~—=,n.
if E
1° S

such that fsz%}_ for some i = 1,2,=—. Ifﬁ is any class of sets;

E2, --- are sets, then Ed: will denote the set of points p

then ZE will denote the set of points p such that FéE for some
EFed
set E € «

If E and F are two sets, then E * F will denote the set of all points
-
p such that p is in both E and F. If El, E2,——-, E are sets, then 7; -
n asy ™
will denote the set of points p such that p & E; for i = 1,2,~—-,n. If
[+2-)
El, E2, -—— are sets, then 'ﬂ’f:: denotes the set of points p such that
-/
r & Ei for each i = 1,2,-~—. Ii‘# is any class of sets, thené_ﬂf
&
denotes the set of points p such that p € E for each set E €.

The empty set or set consisting of no points will be denoted by ¢ .

@ (E), the complement of E will denote the set of all points p such
that p¢ E.

E - F will denote the set of points p such that p& E and p 4 F.
i.e. E-F=E*@F.

Sometimes a set of points in the plane will be explicitly denoted.
For example Ex,y [a £ x <b; c £ y<£ cﬂ will denote the set of points p
whose x and y coordinates fulfill the restrictions indicated inside the
brackets.

An open set is a set G such that if p & G, then there exists an €20
such that N(p, € ) & G.

A point p is a limit point of a set E if for every &€ >, there

exists q # p such that ¢ € E and q € N(p, € ).
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A closed set is a set F such that if p is a limit point of F, then

r€ F.
If E is any set, then E will denote the closure of E and will be de-

fined as the set of all points p such that either p € E or p is a limit
point of E.
If E is any set, then E° will denote the interior of E and will be
defined as the set of points p such that N(p,€ ) &€ E for some &€ >0 .
If {an? is a sequence of real numbers, then we say the limit of {anz
as n approaches infinity is &, if for any @ 0 there exists an integer M

such that if n>M, then Ian --LI <€ . We write lim a_ =4 .
7= o0

The limit inferior of a sequence of real numbers { anz is abbreviated

lim, inf. an and is defined as follows. 1lim. inf. a, = ¢ means that ¢ is

1?7 360 ” =) be

the smallest number for which there exists a subsequence { anl of [ anz such
k

that 1im a = c.
n
=0

The limit superior of a sequence of real numbers {anz is abbreviated

lim. sup. a, and is defined as follows. 1lim. sup. a = d nmeans that d is
n
7 > 0o 17—y oo

the largest number for which there exists a subsequence {anx of {anl such
k
that 1lim a, = d.
k
ke
If E is any set of real numbers, then the least upper bound, abbre-
viated l.u.b., of E is defined as follows. M is the least upper bound of
E if both these conditions are satisfied.
1. If p €E, then p & M.
2. If &is such that p £ /4 for each p& E, then

<M.

If E is any set of rezl numbers, then the greatest lower bound,
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—ly
abbreviated g.l.b., of E is defined as follows. m is the greatest lower
bound of E if both these conditions are satisfied.

1. If p€ L, then p & m.
2. If 1 is such that p & 1 for each p @ E, then
1&m.
If E is a set of real numbers, then we say that E is a bounded set
if E has both a least upper bound and a greatest lower bound.
Ir [fn(p)} is a sequence of functions defined on a set E and if
f(p) is a function defined on E, then we say {fn(p)} converges to f(p)
on E, if for any € 20 , there exists an integer/“f depending upon both
€ and p, such that if n > M, then Ifn(p) - f(p)' £E€ . We write
lim f (p) = £f(p) on E or £ (p) =* £(p) on E.
oo
If ffn(p)] is a sequence of functions defined on a set E and if
f(p) is a function defined on E, then we say [fn(p)} converges to f(p)
uniformly on E, if for any € D€ , there exists an integer M, depend-
ing only upon € and independent of the point p € E, such that if n> M,

then lfn(p) - f(p), £ée . We write lim fn(p) = f(p) uniformly on E
oo

or £,(p) : f{p) on E.
CHAPTER I
TWO-DIMENSIONAL LEBESGUE MEASURE

Let P be the collection of all oriented half-open rectangles of the
fOMRa,b;c,dz x,yEafxéb; cgyLad . .
1.1 @ (the empty set) €Psince @ = Ry asc,c.
1.2 If R€7%nd if S€Pthen R » S €.  This is a conclusion which

may be easily verified.
1.3 If E @K FEP, then F -~ E = Rj# Ryt Ry+R,, where each R‘:Gf and

Ri . Rj = @ if i # j. Note: one or more of the R;'s may be empty.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



-5
1.4 Definition. If R€Mnd if R=E, [ agx<b; c&y<d], then
A(R) = (b-a) (d-c) (area of R).

1.5 A(g) = (a=a) (c-c) =0

1.6 1If R€%, then A(R)Z 0.

l.,7 If R= Ra,b;c,d and if Ry, Rp,...,R, are such that Rj = Raj,bj§cj:dj
for each j, R = Rj, and Ry ® Ry = @, if j ¥ k, then A(Rj) = A(R).
jei =/

Proof: By induction. Conclusion true if n = 1. A(R) = A(R)

-

Suppose n = Z. . We may without loss of generality assume that (a,c) 6&3.
Then a; = a, ¢y = c. There are two cases.
(1) Suppose by = ay. Then b, = by, ¢, T c3 =c, and d, = dy =d.
A(Rl)-i‘- A(Ry) = (b = 27) (47 = c1) ¥ (b2 - ap) (dg - c3) = (a5, - a) (d - ¢c) +
(b ~ay) (d=-¢)=(b-a)(d~-c)=A(R).
(2) Suppose d] = cs. Then a = a] = ap, b = by, = bz and d = ds.
A(Rp) ¥ A(Ry) = (by - a3) (dy = cq)¥ (b2 - ap) (dy - ¢,) = (b = a) (cp - )

(b-a) (d-co) =(b-2a)(d-c)=A(R).

o L] -

In the general case we may assume without loss of generality that (a,c)ﬁg

Then aq - a, €1 = c. Rl = Ra.,bl;c,d]_'
1 =
Let R' = Rbl,b;c,d]_, R" = Ra,b;dl,d.

A(R) = (b-a) (d-c) = (bj~a) (dy-c) # (b-by) (d3-c) + (b-a) (d-qd;) =
A(Ry) v A(R') #=A(R").

Suppose conclusion is true for all k £ n.

74
RRCR-R, , 2 R.ZR-BR
=
R =R"§R' = fR"R
j=2‘J d=2 J °
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Similarly, R" = é R" R
s = 53

By inductive assumption,

n
A(R') = f AR' - Ry, A(RMD = Z AR" -+ Ry
332 I=2

2. A(R) = A(R)) + ,ZZLA(R' * Ry) F AR - RJ)J.
J=

We must show A(R' ~* Rj)+ AR . Rj) = A(Rj) for j = 2, eee, N,

Case 1: Either ch R! or ch R". Ry, R', R", are disjoint.

Hence A(R' - Rj)-rA(R" . Rj)=A(Rj)

R'f¢ande « R" ¥ 4.

Case 2. Suppose RJ.C R'$+R", R
Then RJ = Rj d R.+ Rj b R“o
% A(Rj) = A(Rj - R")+ A(Rj « R"), by the inductive assumption.
Thus, ﬁ [aw' - Ry) # A(R" - Rj)] = f A(Rj). A(R) =

=22 ' =
2 AGRy) %2
I=7/
1.8 IfREP and if REP , 1 =1, 2,00:5m, and if Ry + R = @, if
j#k, and if 3 R; @ R, then Z A(R,) £ AR).
“~ =/

Proof: By 1nduct1.on .

R_Rl -+ z SthereS eP for each j, Rl-Sj=¢, and S; * S5, =

3=/ YT
g ifi# 3.
From the preceding conclusion, A(R) = A(R;) o+ z A(Sj),
P EY,
r
R & R - R S z R -R
4---22 B Z 1
( 2’ J(z SJ) ZB—Zfﬁl'Sﬁ
43 Zj-l
fﬁﬂ * S35 55 Z R &85 ,
J.-.-/ X <=2
.+ 5. &5, .
<22 = J J

Assume conclusion is true for all k<€ n. It is true for n = 1.
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o" ‘f A(Ri . Sj) ,-_-f A(Sj)

<2

If 1 = 2,3,...,0, f R, * S5=FR; - | S = R; (R-Ry) = Ry

#

.o A(Ry) = f A(Ry - S3) by /.7.
='/
A(R) 2 A(Ry) +Z i A(Ry + 85) = A(Rp) +Zf A(Ry * S4) =

J'-/ T2 .‘,-z‘Jg,
A(Ry) #* é A(Ry) = Z A(Ry).
M -/
.9 If J R&R, where ReP, R,€P for i = 1,...,n,..., B; * Rj=
=g, if 1; ‘, then z A(R;) £ A(R).
<=
Proof: From the above, Z A(Rl) A(R) for each n.

A(Ri) 50 for each i. Thus the sequence of partial sums of ZA(P)
<>/
is an increasing sequence bounded above by A(R) and therefore converges to a

limit less thgg or equal to A(R).
ie. 2 AR & AR),

L=/
1.10 Suppose R C;-, Ry, where R = Ry 10,4 ; FE,\: Raj, bi; ci, di 3
REP , Ri‘Pfor each i.
Then A(R) £ A(Ry).
2=y

Proof: Induction on the number of Ri .
1. Whenn =1, R< Ry, ... A(R) £ A(Ry).
2. Assume that the conclusion is true when k € n.

3. Llet p = (a,c). Without loss of generality we may assume

pe Rla
Let R' = a,by.c,dy =R . Ry, R" = Rbl’b;c,d; Rt = a,by;dy,d. R" &
Rt ‘f Ri = . R1 . Ri; Ru? [y Rt . .f Ri = ) Rt . Ri R
T2 “=2 =2 +T2

R= R!'<« R" < R"'; R', R", R"' are all disjoint. A(R) = A(R')< A(R") +
A(R“').
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By inductive assumpticn,

»3
AEm) £ 2 AR" - Ry); AGRM) £ Z A(R™ - Ri); A(R') £
<2 =2

A(Ry) - .
AGR) € ARY) * X [AR" - Ry)# AGR" - Ry)] R - R+
R"' «+ By & R,. w2
A(R" -« R) & A(R" « B;) £ A(Ry) by /.§.
AR) = A(R') £ A(RM) & A(R"') £ A(Ry) + f A(Ry) = Z’f A(R;) .

go b0
1.11 Suppose R & 2. Ri, R&P, R € for each i. Then A(R) £ Y ARy,

<=/ Xy
Proof: Give € »O . Suppose R = Ry p;c,d, Ry = Raj by;cy dy-
Let S&R, S =Ry g;c,§ so that AR)> A(S)> A(R) - §.
Let R:.LC Sy 84 Pll, 1,% d so that

AR;) € A(5;)< A(Riwz“, ,

Let S be the closure of 3, Let S © be the interior of Si'
0 .
SCRrR C ZR < fs Rlcsi for each i.
<=/

By the Heine-Borel Covering theorem,

oy S, %; s & ﬁ-
i

S
—f:=l " 4:/
AR) - & A(s) < A(Sy) < A(R; ) + =
2 AR .+ S .
<, -/ 60
S AR)-€ < Z A(Ry) .
< =/

Since € was ar;aoitrary,
a(r) £ ’Z A(R;) |
<=/
1.12 1;0 REMP, if ReFfor each i, if R, * Rj = g for 1 # j, and if
R = Z‘ R;, then A(R) = Z A(Ry).
<=/ 4-
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b0 o0
Proof: 1. 2. R &@ R .. 2 A(R)L A®).

‘.-[ ic [ gree 1
- o =)
2. R € 3 B, .7 AR) £ 2 A(R;). Thus,
.«'.-'-'/a'° -
AR) = 2 A(Ry).
=/

[
1,13 If E is any set and if for every countable siguence of sets fﬁ}

T
such that Riﬁpfor each i and such that E & z R; we have
80 Py
Z A(R ) =+060, then we deflne/<. (E) =+060,
‘ﬁ-=/

1.1 Definition.
If E is any subset of R,, the Euclidean plane, then /L“(.E) , the ex-

o0
terior Lebesgue measure of E, is defined thus: A (E) g.1l.b. z A(Ri)
<=/

where g.l.b. is taken with respect to all possible countable coverings of E
A

by means of sets Riep. i.e. where E & Z R..
Y

This means that :Lf/u. (E) is finite, then if E @ z R. s where R ép

-&-I

for each i, then/u.((E) = : Z A(Ri). Also if € »O, then there ex-

ists a collection of sets {@' , such that infor each i, and such that

4-

PhicR TS ZA(R ).
</

ﬁ/l. (Rg) -+ oo
Proof: Deny. Suppose/u. (Rz) < +D3 | Then by 1.1, there exists a

countable sequence of sets ffj such that Riﬁpfor each i and such that

<’

R, & Z Ry and Z A(R )= a <““°and/u. (Rg) é a. But there

-, 1;
exists R = R ‘?"\,‘53 ' J-“ J_ef’ R<R,," A(R) g/,*mz). But A(R) =2a.
z

This is a contradlctlon. We conclude that AL (R2) = 08
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1.16 If E is any set, /,(_ *(E) z o
l.lfz/u, *(g) =0
1.18 If E is a countable set, theryp‘*(E) =
Proof: Let E = ;pl,pg,.,.,pn,...z . Give €20,

Suppose p; = (aj,ci) for each i.

let Ry = R R, =R
1 s a+y6& C+i€e
A’,’a'+'f§$c,)ﬂ,+'/§ R TL e CI Ay 3
= E &
A(Rn) —F—p e EL_.. =€
R - s+E -/-3, +
-
an ¥(®) = ; ARn) = €

Since € was arbitrary and since L& #(E) 2 0, we conclude that/-&*(E) &= 0
119 Let REFD Then 4 *(R) = A(R) = (b-a) (d-¢), if R = Ra,bjc,d.
Proof:
1. R« R ! #(R) ‘=‘A(R)
o
2. Suppose R & z R;, where RiGPfor each i. A(R) "ZA(‘?)

<=/

for all such coverings of R. Buiy‘.*(ﬂ) = g.l.b. Z A(Ri) for all
=/

such sums. ,°, A(R) ‘5/“,*(1:{).
We conclude that/‘ #(R) = A(R).
1,20 Suppose ELF, then/( #*(E) :/4. *(F).
Proof:
1. Supposeo/L*(F) =+ &0 ., Then conclusion is true.

2. Suppose/u.*(F) is finite, Give &> O Then by 1l.14 there is

&0
a covering Ry, R,,..., such that F CZR and Z A(R;) /“*(F)J"é .
s _=y

o>
E C X R, _w*(B)S 45 ARy). x *(E) & u #(F) + &,

<=/

&
Since & is arbitrary, we conclude that/(_ #(E) = M *(F) .
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1.21 Let G=E [ a<x<y, c<y<dJ , i.e. an oriented open rectangle.
Then/a,*(G) = (b-a) (d-c) .
Proof:
1. Let R=E, , La%x<b, c §y<d] .
/*(R) = AR) = (b-a) (d-c). G& R .
", by 1.20 e #(G) 5/“ #(R) = (b-a) (d-c),
2. Give €>0. Let 0« & € (d—c)y (b-a) Let S = Rpwg b3cobd -
e #(3) = A(S) = (b-a-§) (d-c-§) = (b-a) (d—c) - § ((d-c) +(b-a) )+§2 =
(b-a) (d=c) - § ((d-c)+(b-a) -S};s <G, by 1.20/“ #(8S) £ /a*(c),
(b-a) (4c) ~€ & (b-a) (a=c) = § ((a-0) (b-a) -§) £u(G).
Since € is arbitrarily small, though positive, we conclude
(b-a) (d=0) = ee*(G), -"- st %(G) = (b-a) (d-c).
1.22 Let F=B y, [a$xTb, c %y s cﬂ ) Then/u.*(F) = (b-a) (d-c).
Proof:
1. Let R = Ry p;c,d. R& F

o by .20 *(R) T KH(E);_se ¥(R) = (b-a) (d-o), (b-a) (d-c) §/u.*(F).

2. Give€> 0. Take 0<§<1, such that § ¢ € . Let

_ (d=c)4=(b-a) #1
S = Ra,b-f-& ; c,d+ B - F& s. /a_*(s) =
A(S) = (b+P -a) (d#+§ -c) = (b-a+§ ) (d~c*§ ). = (b-a) (d-c): 9

§( (- +h-a))* §2= (h-aNee) 4§ (th=)+(d-)+E) .
By 1.20 e *(F) ‘=‘/,¢*(s) = A(8) = (b-a) (d-c) + S((b-a)-l-(d-c)-f-‘o") <
(bra)(d-&) + €.

Since € 1is arbitrarily small but positive we conclude

e *(F) T (b-a) (d-c). .o 4 *(F) = (b-a) (dc).
1.23 Suppose H%b,'c,d 679. Let R° denote the interior of R and R de-
note the closure of R. If S is such that R® & s & R, then/p(*(S) =

(b-a) (d-¢) .
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Proof': /“*(RO) = (b-a) (d-c).
- < - -
o #(R) = (b-a) (d-c)}, By 1.20 /A*(Ro) =/u. *#(8) = /a #*(R)
S._a(8) = (b-a) (d-c).
1.24 If E and F are any two sets, then/‘ #(E+ F) é/& *(E)‘%*(F).
Proof: Case 1. Suppose either/‘*(E) or/u_*(F) igs¥+00 ., Then

the conclusion is immediate.

Case 2. Suppose both/u #(E) and/¢ #(F) are finite. Give

€ > 0.
Fron:.l.lh there exists {Sig suc.h- that Siéffor each 1 and such that E &
P and 4 #(E) > L Asy) - &
4=/ <3/ 2 be
There exists { isuch that TiEPfor each i and such that F & Z T’.
la[

and gt *(F) > Z ACTy) "—f

8./

E+F & Zs +Z i/(*(E-#-F) ZA(sl)-f- ZA(T)

I HE) FaeH(F) > Zusi)-/- Z ML) - & 2 U K(Emr- €.
1'/
Since €» 0 is arbitrary, we conclude !

PR (E+F) .,
1,25 If A = g‘ Aj, then se x(a) € ;/*(Ai) |
| Proof: C:sgll_. Suppose/A ®(A1) -—:a; for some i. ther‘:t the conclu~
sion is obvious.

Case 2. Suppose/'_*(Ai) is finite for each i. Proof by in-

duction on the number of Ai.
&£
a. The theorem is true 3f n = 1. #(Ay) = #(A7).
| - S (A /* 1
By 1-21»,/4. *(Ay = A5) =/4 #(Aq) 'l)ot.*(Ag)
F b.fuppose conclusion is true for n = k. Then

<
P 2 A)E *(A;). Add g *(A, , 1) to both sides.
iwy 1=/ /“ /"
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Consider é A, as a set and using the case n=®2 , we obtain
LAt ot

PR R u S L pap)
#( Ai) = #( A) = g4 (A 1) = #(A
ke 1 i

=/ 28/ * =y
Since the truth of the conclusion in any case implies its truth in the

next, we conclude

n
) = K S e Z ().
18}
1,26 If B ¢§ Ay, then/u*(B) ﬁ/‘ *(4;)

Proof: By 1. 20/4 #(B) -/( 3#( ;"

But by the preceding theorem/u #( z Al) Z/& *(Ay) .

=,

lal

-'-/a. *(B) Z *(Ai).
<
1.27 IfB & fé:_/ Ay, then/(*(B) = g/‘ #(Ay)

Proof: Case 1. Suppose/( *(Ai) =98 for some i. Then the conclu-
sion is obvious.
Case 2. Suppose/,( #*(Ay) is finite for each i. G:Lve € > O.

By 1.14 there are sets Rl 1; Rl 25 l 3,...€Fsuch that A, < z Ry 33 and

. J‘I
S ok )< ) +E )
j:; Rl’j /‘ 1 2 oo
There are sets Ry 1.Rp 2....57, such that A, c Z; R2 i3 -g A(R2,3)<
/LA *(A2)+§ . There are sets R; l,Ri 25 ...&JP, such that Ay C:fR i3
o0 3=
and Z A(Ry ) </J.*(A )+ 21 -
o O/ o
B & Z Ay < ZZ Rl,j
2=/ :l.-l j:l
- /*(B) z Z A(Ryg ) < Z P‘*(Ai)'h%)
1s, 3= A
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S 5%
*(a,) *+ = Z *(A)+e .
pr) i

.J.l/

/“ *(B) < g/,‘*(p‘i) + & . .'./a*(B) ? 15/- *(Ai)c

1.28 If E is the K -axis, then u #¥(E) =
Proof: Give € > 0. Let E be the non-negative X -axis. Let

S

E_ be the negative X -axis. Let R = 0,1;- & € ; R, = Rl 2. &€ &
r’'s /8 °/é

. £ &

* ot ————
[ ) ﬂ (E+) 2 -

. . < £

Slmllarly, it can be seen that #(E_) = Z- . E= E++ E .
it *(E) -/4*@: ) burxe)S248L - €.
Since O -/u.*(E) “S and since € is arbltrary, we conclude that
/a*(E) =
1,29 If E = y -axis, then/a #(E) =

Proof: Give &»0. Let E - D& the non-negative )y -axis. Let E_

be the negative y -axis. Let R =R_ ?)G X 3 Bp = ,‘)g e 2
cees = R_ 3 eee = ’ 3

zh'l‘?)—' n=)
RnGPfor each n; ”g A(E&) = -eé .o :/4 *(E+ )
< £

Similarly it can be seen tha.t/l*(E ) = 2 -

E=Ey + B . u *(E) A (Ey) + 4*(E) £ €.

Since Oﬁﬂ*(E) < &€ 2nd € is arbitrary, we conclude that/‘ #(E) =

1.30 If L is a line parallel to either the x or y axis, then/‘*(L) zo
Proof: By a translation of axes, L can be transformed into an axis

and can thus be seen to have exterior measure O,

1,31 If L is a line segment, then/( #(L) =
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Proof: Case 1, If L has slope equal to either O or * 60 , then it

is a subset of a line M parallel to an axis. /u. #(M) = O%{, #(L) =
/L*(M). .'./u*(L) = o.

Case 2. The slope of L is positive but finite. Let p = (a,c)
and g = (b,d) be the endpoints of L, where a€ b, ¢ € d. (Note: This will
exclude degenerate line segments consisting of either no points or a single
point. An empty segment of course has exterior measure 0 and a single point
segment may be included in Case 1 above).

Consider Ry = R, p.o q.« L~a SRy, L= (L-q)¥ q. _ *(L) E
ML) Tl (g = Hade Bt Jal L, uRGea) = x(1).
/4*(1.) =M #(1~q). A(R)) = (b-a) (d-c).

Consider R2;=Ra’$l;¢’q-_f_d and R22=R£L.‘,b‘<¢§d .

2 2 ’ 2 °

R21 . R22 = ¢. I-q : R21+ R22.
A(R;1PR,,) = A(Rp ) PA(R,,) = AS:R:J).

Consider Rq; = Ra 3a+b, ¢ 3ced R32 - R:..-pb a+b 3c+d d 5
Yo ?

4 4 'Z° &
"33 = Rawp i B3y T Raezs .
2o @476 cid c+3d 3 a+36 piee3d |
= 23 4 4

L-g € R31+ R32+ 1:_33-0‘ Ry,
Rys. R3j=¢:tfi#j
ARz ¥+ Ryp b Ryt Ry ) = A(Rgy) b ARy) + A(Ry5) FARy,) = A(Ry) /4
Continuing this process indefinitely, we find that we can cover L-gq with a
sequence of oriented half-open rectangles of arbitrarily small total area,
We conclucie, therefore, that/[ #(L-q) = 0 = /{.*(L).

Case 3. The slope of L is negative but finite. Let p = (a,d),
q = (b,c) be the endpoints of L, where ad b, cd. |

Again let Ry = R, 1.0 4, A(Ry) = (b-a) (d-c).
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L-(p* q) < R. pb #(p4q) = 0.
L) —/C*(L-—(p +a)) +/A.*(P+ a) = el *(L-(p¥ a))
L-(p# q) & L. % JA (L~ (p# q)) ‘/*(L)
P # (1) = p¥(L-(p q))
Let Ryy = R‘:‘;‘tbsfi'-‘,d 5 Rop = R‘-::-b’ b,",,cz-"‘-'! .
Roy * Rpp = 4. L-(p¥e @) &€ Roy =+ Roy
A(Rp) + Rop) = A(Rpy) + A(Ryp) = A(Ry) /2

Again, as before, we can by continuing this process cover L-(p+ q)
with a sequence of oriented half-open rectangles of arbitrarily small
total area. We conclude that gt #(L) =

1.32 If L is any line, then #(1,) =
1.32 0@’ /&.

Proof: L = 25'1 » where each 1; is a half-open line segment of
J.al

unit of length and li . ZL‘j =g J&i; i#j.

AH(L) = e $ = ',2/0."“(11) =0

3=y =

1.33 Definition. A set E is sald to be a Legesgue measurable set if, for
every set A we have
AHA) = pax(h - E)+ex #(A-QE).
Henceforth, the word "measurable"™ will be understood to mean "Lebesgue
measurable.”
134 For any two sets A and E, we have
MRS _aann - 1) b 2 - B B

Proof: A=A . E%A-8E
.’ from 1.214/4_*(}!.) §/l-l'“'(ﬁx - E) +/a #(A - @ E).

1,35 E is a measurable set if and only if, for every set A, we have
-
ALEB) = pe x4 - E) -')4 *(4 @ E).
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Proof: 1. If E is a measurabie set, then for every set A,

*(A) = A #(A - E)-f-/u *(A <@ E), hence £« 3#(A) -/a (A * E)

U ),
2. Suppose for every set Aw *(4A) %/u #(A » E) of

A Ha -@ ).
Then from 1.34 4 * (A) —-/M'-(A * E) -};“%(A ‘&8 E).

S M #(4) = g4 - E)H 4 *(4 - B E).

- .
,° . & is a measurable set.

1.36 @ is a measurable set.

Proof: Let A be any set. We must show that

= 3t . 3 .
AR = ex(a ¢)47¢ (A - @ @)
M F) = #(g) = O. PR @ 9) = s *(4).

8 = (e ¢)/u #(A + 8 ¢) = *n).

1,37 If E is such that/(“?(E) = 0, then E is a measurable set.

Proof: Let A be any set. We must show that

A #(4) /u. (4 - E) (4 - &F)
LA " E) 20, since A * E @B, and gt #(A * E) /U*(E)
A@ECA, 4 ‘@ E) ~/¢*(A)
Hence, it follows that
P #(A) 3/44%(;\ . E)-l/-(,g *(A - @E).

1.38 If E is a measurable set, thenc E is a measurable set.

b

>
Proof: Let A be any set. We must show that/ *(A) :/,( #*(A -e E)

/A #(aA @@ E). But E is a measurable set.

So, AeH(A)T 2 *(h -+ E) Hu*(h G E).
e=@8=x, " U *(h) = eq #(s -8 G )b (4 - B ).

1.39 R2 is a measurable set

Proof: @ is measurable. .’ c¢ = R, is measurable.
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1.40 If E and F are measurable sets, then E 4+ F is a measurable set.

Proof: Let A be any set. We shall show that

A E) =/a*(A -(E-A-F))-pa #(A - @ (Eo=F)).
Since E is measurable,/a*(A) =/¢_ #(A * E)y #(A *@E)

Since F is measurable,
/a*(A - E) '—'/‘*(A + E o F)V*(A « E .GF)
Pans - @E) = A -@E - F)V*(A -@E - @F)

[ 4

o “e t ¥(A) S pe#(h + E - F) LR R -SF)-l)a*(A *@E - F)=t=
M Ha -BE -G F).

Since E is measurable,

(A - (E4F)) = et #(A(E #F) - E)V*(A(E-ﬁ F) - @ E)

Since F is measurable,

A #(A + (E+ F) * E) = 4 *(A(E¥F) « E - F) -f-/u*(A(E-ﬁ-F) +E -@F);

AUHAE+F) - @E) = g *(A(E EE"*F) -.L/a*(A(E'f' F)@E -@F);
/,(,*(A(E +F)) =t *(A(E® F) * E - F) '%*(A(E* F) «E-@F)
AL (A(EHF) - @E - F)du*(AM(E*F) -@E - @F).

AM(EMF) *EF=A-E.F
A(E¥F) «E<@ F=4A"E - @F;

AM(EF) +@E-F=A-8E.F
AMEwF) - @E -@F =g

oo prt(A(E#F)) = ol (A - B - Pl by ¥4« E-@ F) b (4 - QF - F)

, /u *(A) = 4 *(A(E+F))+/,_*(A ‘@G E-@F) = A (A(E+ ) +
/M. #(A @ (Est F)).

”

1.41 If El,Eg,...,En are measurable sets, then Z E; is a measurable
set ‘8,
Proof:

By induction on n.

1. The conclusion is trivial of n = 1. By the preceding con-

clusion, it is true for n = 2.
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2. Assume the conclusion is true for n = k. Then if

E,, Ep,...,E. are measurable z E; is measurable,

l’

If Ek 1 is measurable, then the truth of the assertion for n = 2 im-

plies that for Ei+ Ek-.— 1 is measurable, i.e. E; is meas-
Y
urable.,% by induction the conclusion is true for all values of n.
1.42 If E and F are measurable sets, then E * F is a measurable set,
Proof: @ (E* F) = €@ E#®F. &E and@ F are measurable by
1.38. .. @ E+ & F is measurable. .”. (& (E * F) is measurable. This
implies @@ (E * F) = E « F is measurable,

1.43 If E]_,E2,...,En are measurable sets, then jﬁl Ei is a measur-
Y
able set.
Proof: Induction on n.

1. Trivial for n = 1., True for n = 2 by l.42.

2. Assume true for n = k. Then, if El’EZ-'“"Ek are measurable,

‘J
& &
~ 177 E{ is measurable. If Ek+ 1 1s measurable, , E *E o 1 is meas-

urable, i.e. 57 E; is measurable. Thus, the conclusion is true for
1=/

all values of n.

l.44 If E and F are measurable sets, then E-F is a measurable set.
Proof: E-F = E + @F which is measurable.

1.45 If {Enl is a sequence of measurable sets, such that E  * E, = 1)

if m # n, then Z_l E, is a measurable set.

Proof: We must show that if A is a.ny set, then/;_*(A)
*(A - Z 2 Rl C SR Z E), i.e. pe#(A) T p#(a Q) +

s -QQ), where Q = & E.

n={
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If El and E2 are measurable sets, then for every set A,
/(*(A(El+ E5)) =/4£*(A ‘B . Ez)'l’/a_ #(A - By -8 E,) -
/u #(A GEl . E2), an equation was developed as part of the proof
of 1.40. But B, * Ex =§,.% A+ E « Ey =4,
Hence/!*(A(El‘f' E2)) -‘-‘-/“*(A . El)ql?‘ #(A + Ep)
We assert next that
A EA(E - Egd . PE)) = 4 #(A - E1)+/¢ #(A « B
/(*(A . En)
This statement is true for n =1 and n = 2,
Suppose it is true for n = k. Then .
SAFA(BLPEy ¥ 4 )) = _ae#(A + E)dpe #(A » Ex)d.. . T x4 - B)
A AEFE 2 F A BF B ) S *(M(EB1pBat. - PR )IE o #(A 0 Bpn) =
SO )-f/u *(A - E2)+...+/A *(A - Ek)-r/u. #(A » Egqey)
Thus, the assertion is true.

Aex(h) 3/*(A(E1+E2+...+Em))‘*/u *(A +@ (BytEa¥...+Ey)) =

fﬂ *(4 - En)-f/‘ #(Aa + @ (By+ Byt ... +E)) =

h}' 20 " oo

”.I#*(A . En)-f'/t( #(A - @( »Zal E )), since z E, CZEn
” ’o el h=y

S8 2 E)DC( S E)

Pt /*(A F ) }im-»ng:/:h“ o’ o

/*(A) = ’/4. #(A « E)h e ¥(4 * & hz" E,))
*(A - z ) S eer(h + EB) T e #a - B,
e ) A< X /‘" 2

By 1.27 M*(A - Z En) _’/ *(A - En)

-
/*u)?/*u- Z En)-V(A-GZ E,) .

n=y hs)
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1.46 1If {Er3 is a sequence of measurable sets, then Z E 6 is a
h=y

measurable set.

Proof:

o0
hzw E, = BV (Bs -~ B))+ (B = (EF EL))+(E, ~ (Ey+E;+E;y) )+ ...
+(En - (El*Eé.*- ..G*En"’l))*...
Each of the sets in the right-hand member of the above equation is

Furthermore, each of the sets in the sum is disjoint with the

measurable,
other sets,
oo
From the preceding conclusion, we see that z En is a measurable
nzy
sét e
280
1.47 1If {Enz is a sequence of measurable sets, then ”77‘ En is a
=/

measurable set.

Proof: & E, is measurable for each n.

b P9 29
Lo ngn is measurable by l.46. ZGEH = &7 E,

"2 . n=y 7=y
e ecﬁn = ;7 E is measurable.
=y n=¢

1.48 If R€ 70 then R is a measurable set,

Proof: Let E be any set. We must show that/(*(E) =

M *E * R) Laex(E - @R).

Case 1. If/.g #(E) =+ 68 the conclusion is immediate.

Case 2. Suppose/ﬂ' #(E) 1s finite. Give & >»0. There is a

covering 5 J} , such that E CZ 53, SJ‘Pfor each j and

jZA(S ) £ st #(E)+E by 114,
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E°R=ZS- R. Sj-RGPforeachjfroml.?

’

I3/ e
E-8&RrR JZ -G R. From 1.3 s @R =S5 - R = Ty UytVydi,,

where Tj,Uj,vj,wjet‘and T35UysVy,Wy are all disjoint.

50 g
E-@R & (Ty#U PV +W,) = f'r-*ZU +Zw.
™ j ‘j j ’= j - -
Sj = Sj ° R""Sj @ R = Sj . R"'Tj"“Uj"‘Vj*Wj -
The sets in the sum on the right of the above equation are disjoint.
J. by 1.7, A(S3) = A(Sy ¢ R)+A(Tj)+A(Uj)+A(Vj)+A(WJ).

oo

<
AL *(E « R) = A(Sy + R) by 1. 1,19 and 1.20.
J=¢ do _
,a.*(E -3 R)‘g .E A(T5) Z A(U ) -f-f A(Vy) -+ Z Jn‘(w
3= bE = IT =i

_H(E - R) /*(E 8nt 2 as, - mF Z A(Ty) +Z AUy )+

o0 J=I J.;

. A(v)+ZA(w = _2‘ (A(sj-n)-f-a(-rj)+A(uj)+A(vj)+A(wj))
J'-‘-I J=/ J=?

= A(S;) S #(E)+ € ,

= "= We conclude that

/4.*(E) g/.( *(E ° R)'f;a #(E & R).

1.49 If R&f3nd if S is such that R°€ SETR, then S is a measurable set
and/(*(Ro) :/< #(R) = Ae *(R) =,¢ #(S).
Proof: R is a closed oriented rectangle.
Let 37 = left side of 'ﬁ,/ #(s1) = 0 by 1.31.
Let s,.-= bottom side of ﬁ,/( *(32) = Q.
Let sy = right side of R, e *(53 = o,
Let s, = top side of R, ge*(s,) = O.

L
R%k s, $+s-, = R..’» R® is measurable
1 2 - * »
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e H(®) S #(2°) 4. (s ) Fok #(s,) S H(R)
RO R, ) T e HE) 0, HE) T e KR,
R = Resyd s,+% R is measurable.
A HE) = e x(R) Foean(s3)  ea*(s,) = pd *(R). RE F
e @ T e w(m),
PIECEPVEL
.'./“*(RC’) = st #(R) -‘-/t*(R)
P&z s@ R
S = R9%B, where 4& *(B) = 0. ,” S is measurable.
e 5(5) F pen(ro) # a0 (5) = pt #(B°)
But SAH(RO) T _M%(5). e *(R%) =_ad%(S) = JA*(R)

1.50 If G is any open set, then there is a countable sequence of open

bn
squares, &n.i s such that G = Z S‘n.

"=

Proof: Let¥Ybe the collection of all open squares having centers
with both coordinates rational and half-side length equal to'-:-'- where n is a
positive integer. Y 1is a countable collection.

We shall show = 38
SV
SCa&
l. Suppcse p & z S. Then p & S, for some set So’ where
se?v/
S &
S, &< G, and S, €2 .

Hence € G, oo G < ZS
> P Sev

Scé
2. Suppose p @ G. There exists 1 >€ >0 such that N(p,€ ) <G,

Let g be a point having rational coordinates such that d (p,q) € f— -

Let n be such that & Lo € .
£ <5<3
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Let S be the square having g as center and ';':" as half-side length.
/ .
Sef: d(p,q) <-;,' .

'G S. Let r€ S, Then d(q,r)‘% £ J—g—-s.

d(pQQ)< s - d(p,r) < g‘ +££é<e‘ r ‘ N(p’ ‘ )

< )

r @ G. T s&a. e <2 s
» S€V
SC &

Hence, G = ZS
Sev
S<&
1.51 In view of the preceding conclusion, we immediately conclude that

every open set 1is measurable,
1l.52 Every closed set is measurable,

1.53 Definition. The class of Borel sets in the plane is the smallest
class of sets containing the open sets and closed under countable sums and

countable products. Let ¥ denote this class.
l.54 If E &8, then E is a measurable set.

To summarize then,

1.55 Definition. Let ¢ denote the collection of all Lebesgue measurable

sets,

1,56 If E @€¥, then §E €X".

1.57 If En('xfor each n, then z E ‘(and ”-En‘r
na/ ney
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1,58 If E is open or if E is closed, then E Q(.

1.59 If/u*(E) Z 0, then E €& Also if/n.*(E) = 0, and F € E,
then Fet

1,60 Definition. If Eex, then we define,u,(E) 3/& #(E) and/¢4(E)

is called the Lebesgue measure of E,
2 <
1,61 If E€X’, then s (E) = 0, and &/(E) = + &
<
1,62 If E€Xand if FEX and if ECF, then A4(E) = ¢ (F).

1.63 1If {E‘.n} is a sequence of disjoint sets, such that Enéz for each n,
O

o0
then/( "% En) =”=’Z/d (En)-
Proof- From the proof of l.45,if A is any set

PIALCY, -"/*(A-En)/‘_*u 6(2‘ En)).
Lt Az 3 B, En° Z E, = E,

ﬂtf

&0
*( *(E_) (4) = *(E,) ,
ZE,,) Z/ En/«.szf é;‘E“

hay 7=/

But, we always have/(_ #( Z E,) = 2}‘*(5&1)- (L.27).

A‘[“

60
™ Z E) = ZA*(E,,) and s T B =2 uE),
"¢

nsy "y h=¢

1.64 Definition. A sequence of sets [ Ani is called an increasing sequence
if, for each n, A, QA 4 1,

1.65 Definition. A sequence of sets ;AQS is called a decreasing sequence

- 1-
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1l.66 If [ A Zis an increasing sequence of measurable sets, then

(Z Ap) = (a)
A TS

n=y
Proof: Let By = Ay; Bp = Ap-Aj; By = Ag-(Ay+ A2);5 ..o
Bn - An"(A.l*A2*.o.+Aa"l);...

Bnc A for each n. B, is a measurable set for each n from 1.41 and l.A44.

Q
Bn-B=¢,ifm?5n. Z' .
mv 2o
P 1632 (B,) (ZB) (ZA), (B) =
rom ““"M /“A-[ /4”‘, n "g/otn
limZM(B).
£,
(8,) St <Z B ).
h'}ﬁ : h‘[k

We shall show that z B, = Ay
n=¢
1. Suppose x, €& B,

AL
£ <
x, €B,, n = k; x, & A, n =k, A CA

e x , € A, and Z‘ Bnc A .
o=y

2. Suppose x, & A - Let n be the smallest integer such that

<
x, € A, n= k.
a. If n=1, then x € A, =By, X, € By, xoéz B, and AkCZ-B
”-, "’
b. If n& 1, then xosA.n, xoﬁam if m<n
X, & B, ; xoean and Ak CZ B_.
k " =l
o ¢ ( 2 Bn) = gt (f). 1lim (Bn) = limae (&),
A nze A . A’-)JJ"/‘ b= de
( Z A,) = 11m ‘g(Ak).
/ Moy

1,67 1If fAn} is a decreasing sequence of measurable sets, and if
ba

_a(hay) <142, t.he/( 777 n) = lim g (A7),
=/ ne=pin
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Proof: Let B, = Al -Q A= A)-Ap for each n.

B, is a measurable set, for each n.
D Apie @ 5CChey B4 @Sy B mr1=5y,,

!Bni is an increasing sequence of measurable sets,

From 1.66’“( 2 B,) = l:l_m,q (B)). &4 =4 -8 An+Al « Ay = BytA, .

»uy

A (A1) = ce(B,) Lua(n) from 1.634 (A1) —a(B) =g (4;),

s L )
M= @IT ajrny 7 A =1y - f@An-ﬂTAn ZAl QAn+77'An-
be ‘:):.-l n=y h=/
% B,,+77’%..'./(A1> =/« (5}3 )/0(._{7'%) from 1.63.

() A2 Z B,) /("ZA ).
Lina(hy) S(A7) = Limp (B,) Zaa(Ap) 7‘(2 B,) S ﬁ.n. ).
nal

n=> s PRGN ne/

1,68 Definition. If {En% is a sequence of sets, we define the limit
inferior (lim 1nf‘) of {Er:s as follows:

Let C, = ﬂ' E,. Then lim inf E, = Z C,.
Hh=> sa Key

It may be noticed that the limit inferior of {Eng is the set of all points

which belong to all but a finite number of the sets E .

1,69 Definition. If {Enz is a sequence of sets, we define the limit
superior (lim sup) of {Enl as follows:

let = « Then 1im su ”-
By ,,5 B ”_’“PEH i By -

It may be noticed that the limit superior of § En}is the set of all points

which belong to E, for infinitely many values of n.
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1.70 1If { E g is a sequence of measurable sets, then/u (1im inf En)

lim inf,“(En) nore
L L a0
Proof: lim inf E_ s , where 7
n>se k= % % * nzk "
lim(C.) =m( C.) = u(lim inf E ) by 1.66.
e S AR
/R(Ek) ",‘4(01{) by 1420, .% Jd.m 1nf/d(Ek) 1im 1nf/a,(C ).

- oo
1im 11:?{4(En) z lim (Ck) /ﬂ(llm inf E ).

> oo

1.71 If {Eni is a sequence of measurable sets such that/l( z En)‘-*bo,
' 3

the /J(Iim sup E, )> lim s (E,).
n = up.ce

>0 n-)o-
Procf: From 1,20 (E_) H (B ), where Z' E .
opr (Brc) = aalBy By = ek
lim supm (B, ) < 1im sup (Bk) =
o> oo X
1im 4¢(B. ) = ( 77 B,.) =4 (lim sup E,) from 1.67.
k—ba/: < A Ay e n=o9

1,72 If E is measurable,/a(E) £+, and if €0, then there exists an

open set G such that G « E and such that/{(G) “(E) +—& .

Proof: A (E) =/u. #*(E). 2o

There exists [Rn's such that R G'Pfor each n, E C:
hal

é
and such that Z (R,) = A(R,) € *(E)+— = M (E) +.. from 1.1k,
nd suc ahe, Ry z /{ /(4

Let [Sn} be a seguence of open rectangle such that Rp [ = S for each n

and such tghat /“‘ (s )%(Bh) m-o Z <
Let G = : EQ G, m(G) = u( Sn) =
e - ®n A A nsy

he/
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CHAPTER II1
THE LEBESGUE INTEGRAL AND LEBESGUE MEASURABLE AND SUMMABLE

FUNCTIONS

Suppose that f(p) is a real-valued function defined on a measurable
set E of finite measure. Suppose further that there exist numbers m and

< <
M such that p € E implies m = f(p) = M.

2,1 Definition. A measurable partition P of E means a finite collection

of disjoint measurable sets El’E2""’En such that E = E1+E2'l" cee +En‘

Such a partition will be denoted by P [El,Eg,...,En] .

2.2 Definition., If P[El,Ez,...,En} is a2 measurable partition of E,

let My = l.u.b. £f(p), Let M, = 1l.u.b. f(p),e-.. M = l.u.:t. £f(p).
1 > 2 2 »
rek,; P &L b mes,

"
Let S(P) = M1/4 (E1)+M2/u(E2)+...+Mn/4(En) = 42/ Mi/u (By).

S(P) is called the upper sum for the partition P.

Let m; = g.l.b. f(p), let mp = g.l.b. f(p),s.., let my = g.l.b. £(p)
1 ]
P& £, " rek, pe&,

Let s(P) = E ml/( (Ei)' s(P) is called the lower sum for the
/

partition P.

n

2.3 If P L ,Ez,...,E] is a measurable partition of E,
if s(p) = (Ey), s(P) = ﬁ m; A (E;), then
=/ Mi/‘ 1) L ¥V % Bils

m/,m)‘é s(P) S s(p) 5 M u (E).

< < <
Proof: m=m; = Mi = M for each i.

M, = l.u.b. £f(p) and my = g.1.b. f(p). For each i, My 2 m,
PE&; pE&;
-29-
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n .
>
- . = (B;).
"i:Z,Ml/“(E) fmi/MEl

But for each i, 3 Mi/x(Ei) % M/u (B;) = M/M(E)

n

and-E' mi/f(El) = é m/L((Ei) = m/‘(E).
- nu®mE s(P) S sp) £ M4 (B).

2.4 Definition. The lower Lebesgue integral of f(p) on E is denoted

by J £(p) % . It is defined as follows.

ff(p)/( = l.u.b.s(P) where l.u.b. is taken with respect to all meas-

ible partitions P of E. m/l((E) = /f(p) § M/Q(E)
E

2:0 Definition. The upper Lebesgue integral of f(p) on E is denoted

by/f(p)}a . It is defined as follows.
&

—

[f(p)g« = g.1.b.S(P) where g.l.b. is taken with respect to all meas-

urable partitions P of E. m/((E) = ﬁ(p)/o( M/(((E).

Jiiw

2.6 Suppose that P [El,EQ,...,ErJ and Q [Fl,FQ,...,Fm] are measurable

partitiens of E. Then Q is a refinement of P if each Fi is a subset of

some Ej.

L
2,7 If Q is a refinement of P, then 5(Q) = S(P) and s(Q) 2 s(P).

Proof: Ej = z F; for each j.

QCE‘
/A(EJ) = $(Fi) for each j.
Fckj
If iy Ey, then M = l.u.b. f(p) = l.u.b.f(p) ,
PEF; P& £;
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g.l.b.f(p) g g.l.b.f(p)
PeF; posj

n
S(P) Jzﬂ Mj/l(Ej), where M; l;;.%sf(p)

g' ﬁ;,/a (Fi), where 1\—'11 ];u‘.lj&-‘.f(p)

Z let(F)- ZM/.‘(FJ_)-MJ !(F)"M;'/(A(E)for each 3.

s(Q)

s(Q) = M/ucF ) = f S W (F = M;/‘“E ) = 5(P)
;5% J'/{§<:£3

m; M(E.), where m, = g.1.b.f{(p)
J/u J J péfj

_— mi/(;: where mj = gp.i.;‘.f(p)
- >
m (F;) = m (F;) = (F;) = m, ##4(E;) for each j.
T T Al , 7
S(Q)zz‘.z (F3) =3 > /.(F)-,f my MA(E;) = <(F)

IV Pk J=/
FC€J

s(P)
o bl

s(Q)

2.8 Suppose P [El’Egs"':En] and Q LFl,Fg,...,FrJ are measurablie par-
titions of E. Then there is a partition R of E such that R is a refine-
ment of P and a refinement of Q.
Proof: Let R be the collection of sets
Ey * Fi,J = 1,2,00a,n, 1 2 1,2,.0.,m. Ej /& Ey, By ° F; & Fy.
Fach set Ej * F4{ is measurable since both Ej and Fy are measurable. From
the disjointness of the sets F; and the sets Ej, we see that (EjoFi)-(Ek'Fl) -

#, unless j = k and i = 1.

" > ” 7 [
Z E;"Fy = Eje 2. Fy = Ej - E = By, E z E;°F3 = Z E; © E
=/ as¢ J57 8= J=’

Thus we see that R is a measurable partition of E and is a refinement

of both P and Q.
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<
2.9 For every measurable partition P of E, j f(p)d/.( = s(P)
£

>
and /f(p)d/¢ = 8(P). The proof of this assertion is immediate from the
£

definitions of the upper and lower lebesgue integrals, respectively.

2,10 If€&>0, there is a measurable partition P; of E such that
-
s(p,) </f(p)y4 +& Also, if @20, there is a measurable partition
&
P, such that s(P2)>ff(p) =&, Both these conclusions follow directly

&

from definition.

‘ -
2.1 _f f(p)ag = /f(p)d .
F - /

Proof: Deny the conclusion. Suppose

4 f(p)}“ 1';/;‘(p)d/“,+6, where € > 0. There is a measurable

. & .
partition P_ such that s(Pl)< f(p)d/u"'—. Also, there is a meas-
1 = 2
&
urable partition P2 such that S(Pz) >/ f(p)}“ -3 . Let R be a common
E

) < >
refinement of P; and Pg. Then S(R) = S(Pl) and s(R) = s(Pg). But we notice

that S(P;) € s(P,). «*. S(R) & s(R).

This, of course, is a contradiction and we conclude that
—

___./_'f(p)}«g /f(p)}a .

& &

2.12 Definition. With the above restrictions on f(p) and E, if

/ f(p)du = / f(p)d then we say that f(p) is Lebesgue integrable
4 / /“ )
3 &
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. A——
on E, and _/f-(p)% denotes the common value of / f(p)d/“ and
& V3

/ f(p)}* and is called the Lebesgue integral of f(p) on E. We
‘e -
note that m/l. (E) = f(p)y = M/u(E).
&

< - - @
2.13 If m = f(p) =M and if E = Ex,y‘;a‘:: x‘== b, c=y= d] s 1l.e,

E is a closed rectangle, and if f(p) is Riemann integrable on E, then

f(p) is Lebesgue integrable on E and (R) / f(p)dA = (L)/ f(p)d/( ,

& &
where (R)/ f(p)dA denotes the Riemann integral of f(p) on E and
E
(L) / f(p)},{« denotes the Lebesgue integral of f(p) on E.

ol Proof: Suppose f(p) is Riemann integrable on E.
Then (R) / £(p)da = (R) / f(p)ar. cive &> o.
E

There is a Riemann partition P. of E (i.e. Pl is a partition of E into

1

closed rectangles two of which may have a side in common) such that

s(P1) » (R) -/ f(p)dA - € . To form the corresponding Lebesgue meas-

urable partition Ql’ we remove from any closed rectangle in P; its upper
and/or right sides, depending upon whether the rectangle is bordered above
or on the right by another rectangle. This will give a disjoint measurable

partition of E. If P, = Py [Bl,Rz,...,Rn] and if Q@ = @ [sl,sz,...,sn] ,
n
then Ri= S; for each i and S(Pl) = E’ miA(Ri),

m, = g.l.b.f(p), s(Q;) = ﬁli/.{ (34), 1; = g.1.b.£(p)
pé& Ri as/ P ési

-
But A(R,) :/“ (Ry) %(si) and my = 13 for each i. (1.19, 1.23)

<
s s(P1) = s(Q) ‘z‘(L) /f(p)d/4 .
E
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(R) f f(p)ia - & <L (L)/ f(p)}q . We condlude that
b

g -
® /" tp)gen = mz[ £(p)dac -
£

As before we can find a Riemann partition P2(T1,T2,...,Tn) of E

such that S(P,) <K /f(p)dA'f'é. There exists a corresponding Lebesgue

measurable partition Q2(U1’U2’°"’Un) of E formed as before. T; U, for

”
hi. S(P,) = M: ACT: ), M, = l.u.b.f .
eac ( 2) 5 4 ( 1) 1 ;‘E(p)
s(Qp) = ;'g' L_e(Vs), Iy = 1.u.b, f(p), ATL) = 4 (T5) = e (U;)

o€ .
and Ly = M for each i, Hence, (L) f i‘(p)/" = S(Qz) = S(Pz)

(L)/ f(p)d/¢ ((R)/ f(p)dA . We conclude that
(L) / t(e)m T () _/ £(p)dA.

4
Combining the above inequalities (R) / f(p)da =

z— —
@) / el = () / g = = @ f £(p)da.
But (R)f f(p)da = (R)/f(p)dA. -~ (L) /f(p/ (L) /f(p)d/a

We conclude that f(p) is Lebesgue integrable on E and

w [ tou =@ S (o

£

2.14 Definition. Let E be a measurable set, and let f(p) be a function

defined on E., f(p) is said to be a measurable function on E, if for every
real number @, the set of points p of E for which f(p)>»@ is a measurable

set.
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2,15 Definition. Suppose f(p) is defined on E. If p,& E, then we say
that f(p) is continucus at p, if, for every € > O, there is a & DO sucn

that if d(p,po)<6., and if p€ E then ,f(p) - i‘(po)’<€ .

2.16 If f(p) is a continuous function on a measurable set E, then f(p)

is a measurable function on E.

Proof: Let a be a real number. Let E, be the set of points p in E
for which f(p)> a. Suppose p, € E .. Then p, € E and f(py) > a. Let
f(py)-a = €>0, There is a S) O such that if d(p,po)<g and p € E, then
|ee)-tt) J2E, t.e. £(p)-€ <1(p)< £(PHFE . But 1(p,)-€ = a

Hence if d(p,po)<s and p € E, then f(p)>» a. Let Gpo = N(po,: ).

Gpo is an open set and pg € Gpg «

Gp,E & Eg* poeepo-ECE E pOCE G, ‘ECE,,
,6F4 as“"

EaCZGp°°ECEa. S. By = 56‘% = E- ozelé':%

But the set on the right is a measurable set. (1.14.2, 1.51), We conclude

that E, is measurable, l.e. that f(p) is a measurable function.

2.17 Given f(p) on a measurable set E. Let N be the set of points of E
where f(p) is discontinuous. Suppose/«(N) = 0. Then f(p) is a measurable
function on E.

Proof: Let E, be the set of points p @€ E for which f(p) > a. Consider
E-N. Let N, = NE,. Let H, = Eg~Np. % E;-H, = Ny&N. Let p, @& Hy.
Then p, & Ea-N,. Hence po& E, f(p,)> 2. p°£ N. .% f(p) is continuous
at p,. Let f(pgl-a = € >0. There is a § » O such that if d(p,p,) < S'

and if p @€ E, then If(p)-—f(po)l<é , i.e.

£(p)> a. Let Gp = N(p,, § ). p.€ Gp, °E CE,.
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Let M= 2> G E chCZ B = MC E,.

R€# 12&H Py
Hy& M QE,. E,-M&E,-H, = N, & N,

(W) =0, P *(N) = o, /‘**(Ea—-M) = 0. E,-M is measurable.

(1.37, 1.44). M is measurable. E; = M~ (Ea-M). .= E; is measurable.

2.18 Definition.

Let Ep Ep@ E, f(p) » a] denote the set of points p in E for which
f(p) > ae

>

Let By [pe E, £f(p) = a] denote the set of points p in E for which

>
f(p) = a.

Let Ep[p €E, f(p)< a] denote the set of points p in E for which

<
Let Ep[pf E, f(p) = a] denote the set of points p in E for which

£(p) T a.

2,19 If f(p) is a measurable function on a measurable set E, then for every

>
a, the set Ep[pe E, f(p) = a] is a measurable set.

Proof: Let m be a positive integer. We shall show that
/'; E [PGE, f(p) > a-'-ﬂ-] 3Ep[péE, f(p)éa;]. The set on the
p =

left is a countable product of measurable sets and hence is measurable. (1.47)

> »
Suppose p, & Ep [p &€ E, f(p) = a] s i.e. po € E, f(py) = a.

- 1
For every m, f(pg)> a—-;é.. . P, € Ep[p &E, f(p))a--—]for each mj

or p, & 7 [pe E, f(p) > a——] Ep[_ €E, f(p) = ]CW-Ep[ €E, f(p))a—-ﬂ .

me=¢
Suppose poé [pé E, f(p)>» a--’.] for each m,
=y

Then po € E, £(py) > a-— ! for each m. . . f(po) S a.a ,popr E)GE, f(p):’ZaJ.

= [» €= f(p)>a- cr[p€s 0] .
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iEp [pé E, f(p)> a-é] = Ep[p €E, f(p)vg a] .

m=/
This implies that Ep[pé E, f(p) = a] is a measurable set,

2,20 If f(p) is a measurable function on a measurable set E, then for every

a, the set EpEpe- E, £(p) < a.J is a measurable set.
Proef: We shall show that
B, [p€E r(p2a] =68 g [paE £ (M>a) .
The set on the right is the product of a measurable set and the complement
of a measurable set (2.14) and hence is measurable.
Suppose p, € E [p GE, f(p) = a] » o€ E, £(p_) E a,
po¢ Epfpé E, £(p) > a] . 7,€ @5, [peE, f(p)’&j .
, P& EG -Ep [p,G E, £f(p) > aj .
mlre s t)Ta] e € gfpes, 10> a] .
Suppose p, € E‘@ E [pE€E, (> a] .
P €E, po £ L€ E, t(0)>a] . £(py) T a.
po€ E,[p€ E, £(p) = 2.
i+ @ B [p €5, £(p)> a] © Ep[peE, £(p) € o] -
S, Ev @ Ep[pérE, £f(p) 2 a] = Epl_-pe E, £(p) ga] .

&
This implies that Ep [pé E, £(p) =a] is a measurable set.

2,21 If f(p) is a measurable function on a measurable set E, then for

every real number a the set Ej [p €E r(p) L a] is measurable,

Proof: In an argument similar to that used in the preceding conclu-

sion we can show that Ep[pé E, f(p)(a:J = E. C Ep[p € E, f(p)% a] .

The set on the right is again seen to be measurable. (2.19)
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2,22 .If f(p) is a measurable function on a measurable set E, then

. £
Ep[p €E, a=f(p< b] is a measurable set.

Proof: We notice that

EpreE, a‘:"f(p)< b] = Ep[pe E, f(p) f-.'aJ *Ey, [pé‘ E, f(p) ¢ b].

The set on the right is measurable. (2.19, 2.21)

2.23 If f(p) is a measurable function on a measurable set E,/a(E) <£+b0,

< .
and if m = f(p){ M, then f(p) is Lebesgue 1ntegrable on E.

Proof: We must show that /f(p)c}{( /f(p) U Give € > 0,

Choose an integer N such that /‘(@ . We may suppose that M and m

are integers.

Letzof- m, E' y = m-‘-F"., 222 m-f-&%;,z-’: m+’_3_,...,? = m+§,...,

Y 4
. = me =l ; < ,
Z(M-M\N m 4= ~ M. Let Ej Ep[pe E, :i_’ f(p)‘?z],
i=1l,e.., (M-m)N. E; is a measurable set for each i. (2.22).
M-mIN

Ej_'Ej =gifi #j. E= ,z- E;j. Thus, we have a measurable
1=4 (M-w)N

partition P(E],««.,E(M.q)N) of E. S(P) = Z Mi/a (E;),

iz
whe = l.u.b. f(p).
re M; Py P
(M=m
s(P) = _Z my (E;), where my = g.l.b. £f(p).
5 =t / {M=mIN peEy
m = ® 3 LY s(p) Z ,Z = 1—1/4(131). M, = TE:
(M—m)N .=/ P (M-m)N
LT TS uE), sm-®T 2 apy ) M) -
(r1-rN 35/ f rt-m)N € a=/
pRYTARES ,Z/NEi) === 2¢€, s(PILs(P+E.
ia) 1=
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/f(P)d/“ s(p) € s(P)+é f(p)d/(-l-e'.

Sincee is arbitrary and since we always have

(f(p)}a H /f(p)}us we conclude /f(p)d/l!: /f(p)}u,
F = &

&

and that .”. f(p) is Lebesgue integrable on E.

2,24 Definition. A condition is said to hold almost everywhere on a set E,

if the subset F of E on which it does not hold is such that/(F) =

2.25 Suppose f(p) is measurable on a measurable set E,
< <
H(E<+0, 05 c)Tu. mhen  /r(p)d
&

almost everywhere on E.

]
o

0 if and only if f(p)

Proof: 1. Suppose f(p) = O almost everywhere on E. Let N be the set

of points of E for which f(p) # O, that is N = E, [psE, f(p) & 07.

ﬂ(N) = 0. N is a measurable set. BE-N is also measurable. N+« (E-N) = E,

O

£
N and E~-N form a measurable partition P of E. S(P) = M+0 O%](E—N) =

_/f(p)d =0 :‘- { f(p)d"‘ R /f(p) = 0. (2.4, 2.11)
&

&

2. Define N as above. Suppose
/'(N) » O, 1.e. that it is not true that f(p) = O almost everywhere on E.
We shall show that the following identity holds.
vze[rés 1> ] =5 [pex, fcp)nj*ZE R O P
Suppose p, & E [péE £(p) » O]
Case 1. If f(p)?1, then p,€ E, [p &E, f(p) » ]
Case 2. If 0 £ £(p) = i1, then there is an integer n such that
o <€ 1(p) g'”-l .
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Suppose po‘ Ep[ € E, f(p))‘ll] thp[GE"‘<f(p) §;".]_

Case 1. Suppose p, & E, [p‘r E, f(p)>» l] « Then
r, € E, [PEE, £(r)> 0].
Case 2. Suppose Po € Ep [p E:;. < £(p) g‘-'i] for some n.

Then poe E [pe E, f(p) P OJ. This verifies the above identity.

g, (& &, () > 1] - Z Ep[pé- 54 < f<p)€‘;;'-]= g.

Let F, p[p €E, f(p)> 1_] = Ep [p €E ( £(p) =-] for each

n. Then N = ZF Os‘q(N) z (Fp).

n=o n=g¢”
.". There exists an integer j such that,a (Fj)> 0.

Fj is a measurable set. E—F:l is also a measurable set,

Fj and E-F'j form a measurable partition P of E.

s(P) = (g.1.b. £(p)) g4 (F.)#(g.1.b. £(p)) L (E-F.)
pef-‘, s P& E~F; A

s — = /‘(P >
® Z =5 P (F5)¥0-0 = J-HJ' 0.

. £(p)dg 2 O and £f(p)dm & O
é-./ M ‘,«./ 7

o', We conclude that if /f(p)d/4 = 0, thezy,( (N) =
&

2.26 Suppose we have !fn(p)J defined on a measurable set E and i‘n(p)

is measurable for each n. Suppose lim fn(p) = f(p) on E. Then f(p)

"=y ow
is measurable on E.

Proof: Let a be any real number. We must show that Ep[_pé E, £f(p)}> a]
is a measurable set. If we can establish the following identity the proof

will be complete, since the set on the right is measurable. (2.1h, l.46, 1.47).
o o O

i [rex, t0)> 2] = 23 T] E[rer, 00> att]

=/ K=y ”_k
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Suppose p €& ZZ 77 EpEp € E, f,(p)> a+-.’] Then there is an m

e Ak
such that p € Z”E Epe E, f (p)> a+;,—:J.
&=l h=k
There is an m and a k such that pg '3 77_ Ep[pé E, fn(p) > a'*"—;].
n=k

o
.« If n = k, then p, € Ep[pEE, fn(p)7a+;5]. If n% k,

£ (py) > a+é. . lim £,(p,) = £(p,)
’—> 6O

.. f(p,) = a-*‘-’-)a and p_ & Ep[pe E, f(p) 2> a] .

" ST s [re v taer> avdlen]re s 11> 2].

in—: = hsg
Suppose p, € Ep Ep € E, f(p)> aJ . f(py)> a. There is an integer
m such that f(p,) 2 a+;$ « 1lim f,(p,) = f(p,). There is an integer k such

h—
that if n k then f,(py) > a-l-..- . There is an integer m and an integer

k such that if n = k, then p & [pe E, £ (p)? a+_’]
Ve po € ZZﬂ- [péE f(p)> a+—]
Izt &) h= /:
£ [re E 2(p)>a ]c: Z”-EpcpéE £e)> as ).
n=kp.
EPEPGE f(p) > ] ZZﬂ-Ep p E, f(p) a .
msyKz/h=ik

EY

2,27 If £(p) is a measurable function on a measurable set E, and if

g(p) = -f(p), then g(p) is a measurable function on E.
Proof: Let a be any real number. We must show that Epr € E, g(p)> q]

is a measurable set. We shall verify the following identity.

Ep[Pé E, g(p)> a] = E, [p €E, f(p)< --] . The set on the right is

measurable (2.21); therefore, this will establish the conclusion.

Suppose p, € Ej [p € E, g(p) > a] .
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B € Ealp,)> a; - f(p)> a; £f(p )L -a.
.. p, € E, [pé E, f(p)< —J .
Suppose p, € Ej [p € E, £f(p)< -a] .
P €L 3 1(0)< -2, -2(po)> 2, &(p,) > 2.7 p€ B, [p€ E e(»)> 2] .

Thus, the conclusion is established.

2.28 If f(p) and g(p) are measurable functions on a measurable set E
and if h(p) = f(p)« g(p), then h(p) is a measurable function on E.
Proof: Let [}nl be a sequence containing all of the rational numbers.

let a be any real number, We must show that Ep[P & E, h(p) > aJ is a

measurable set, We shall establish the following identity.

)
Ep[pe E, h(p) > a]= Z E, [pé E, f(p)>rn] ‘Ep [ p€ E, g(p) > a-r] .
h=/

The set on the right is obviously measurakle and this will establish the
conclusion. oo |
Suppose p, & hZ, Ep[p &E, f(p)> rn] B, [pé E, g(p) ® a-rn] .
There is an integer n such that
r& Ej [pGE, £f(p) > rnj "B, [p &E, glp)> a—rrJ » Po® E, f(po)dry;
2(Po) > a-rq, 1(po) = £(py) H=g(po) > rpha-ry = a. P €E, [p &E, n(m>a].
E, r_p € E, £(p)> r, | 'E, Epe E, g(p) > a—r,:IC Ep [p € E, h(p) > a'] .
Suppose p, € E, [pe E, h(p)> a].
P, @ E, (py) D> a, f(po)dglp,) > a, £(p,) @ a-glp, ),
f(po) +g(po) = a & ,&> 0, f(po)w"\-‘. There is an integer n such that
£(po) > ry> flp,) -€ ,€-£(po) > -1y, &(p,) = a+ & ~-f(pg) > a-1,
g(po)> a-rn, P& E, [P € E, £(p)> r5] » Po & Fp [0 € E, a(p)> a-rq] -
J. P& Ep Lpé E, £f(p)> r,:l By [pé E, g(p)> a-r.},
ELr€E n(p)> s]c E [r€E £(p) > rn]-Ep [p € E,.g(p) > a-rn] .
This establishes the identity.
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2,29 If f(p) and g(p) are measurabie functions on a measurable set E, and
if k¥(p) = f(p) - g(p), then k(p) is a measurable function on E.
Proof: k(p) = f(p)¢ (-g(p)). -g(p) is measurable by an earlier con-
clusion (2.27) and the sum of two measurable functiocns is a measurable

function (2.28).

2.30 If f(p) is a measurable function on a measurable set E, and if ¢ is a
constant, and if @(p) = € £(p), then @F(p) is measurable on E.
Proof: 1. Suppose ¢ = O. Then @(p) = O on E. @(p) is measurable on E.
2. Suppose ¢ » 0. Let a be any real number. Consider the follow-
ing identity, which we shall establish:Ep [p € E, d(p)> a]=
E[p €E, f(p)>§].
Suppose p, 6 Ep[pe E, g(p)> a] R
P& E, #(p,) > 2, #lpo) = cf(po) D a, £(po)> S,
o Po & Ep [136 E, f(p)>%]o Thus Ej [_p €E, ¢(p)> a] CE, [p €E, f(p)>%
The opposite relationship may be shown by reversing the steps above. Since
the set on the right is measurable, the conclusion is established.
3. Suppose c € 0. Then @(p) = - lcl £(p).
But g(p) = Jc| £(p) is a measurable function by Case 2. and

-g(p) = - Jc] £(p) = #(p) is measurable by 2.27.

2,31 If f(p) is a measurable function on a measurable set E and if

glp) = (f(p))z, then g(p) is a measurable function,

Proof: Let a be a real number,

1. Suppose a < O. Ep[pé E, g(p)> ég = E, since

>
g(p) = (f(p))2 = 0 on E. E is a measurable set,

>
2. Suppose a = 0,
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Epfp € E,g(p)> a]= Ey, [pe E, {p) >ﬁ]4‘Ep [pé E, f(p)<"‘r:'],
Since suppose poéEp[pG E, g(p)> a] ; p, & E, g(p,)> a, (£(p,))°>a,
then either £(p ) >Y & or £(p,)¢ ~ya. Thus

B, p E, glp) a E, p E, £f(p) a E, p B f(p) -~ a .
A reversal of steps givegthe opposite relationship. Since the set on the
right is the sum of two measurable sets (2.14, 2.21), it is measurable

and the conclusicn is established.

2,32 If f(p) and g{p) are measurable functions on a measurable set E,
and if ©(p) = f(p)g(p), then ©(p) is measurable on E.

Proof: ©(p) = £(plglp) = (£ (p)eeg(p))? - %(f(P)'*g(p))z-

The function on the right is measurable from preceding conclusions

(2.27-2.31); therefore, the conclusion is established.

2.33 If f(p) is a measurable function on a measurable set E, then af(p)'
is a measurable function.

Proof: Case 1. If a € 0, then Ep[lf(p)l > a] = E.
Case 2, If a%_"o, then Ep [’f(p)' >:—g = Ep[f(p)) a]+
E, [f(p)< -] .

This identity is readily established, and since the sets on the right are

measurable, the conclusion follows.

2.34 If f(p) and g(p) are measurable functions on a measurable set E,

/LQ(E) <+6¢ and if m T £(p) € M, 1 < g(p) < N, then

Z c@rsogu = f gt [ s

Proof: Give®€> 0. There is a measurable partition P of E such that
Sf(P1)> !ﬁ'(p)}“—s, where sf(Pl) denotes the lower sum of the parti-

tion Py with respect to the function f(p). (2.4, 2.12.) There is a
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measurable partition P, of E, such that Sf(P2) L 4 /f(p)d/‘.f.e ,
&

where ST (P2) denotes the upper sum of the partition P, with respect to the
function f(p). (2.5, 2.12.) Let P be a measurable partition of E which

is a refinement of both P, and P,. Then, in similar notation

st(p)> /f(P)}“ -6, sf(p) ¢ f(p/ M€ . (2.7) There is a
partn.tion Q, of E such that sg(Ql) > ./’g(p) /4 - &, where again s& (Q1)
denotes the lower sum of the partltlon Ql with respect to the function g(p).
There is a partition Q, of E such that 58(Q,) < E/g(p)jg-f-e . 58(Qy) is
the upper sum of the partition Q5 with respect to the function glp). Let Q

be a measurable partition of E which is a refinement of Ql and Q2.

Then s8(Q)> / g(p)dy -€ and s5(Q) € [ e(p)am+€&.
P s

Let R be a partition which is a refinement of both P and Q. Then the

following relationships hold. (2.7)

S@> _ST(p)au - €, sT(R) </f(p)d +E€,
e #

Letv R - R I‘E\j_’E2,...’EnI L4

n
sf(r) = Z Miju (), Mf =1.u.p. £(p).
A=/ PEE;
S&(R) = f /u(E ), M8 = 1.u.b. g(p).
at% PE&E;
ST%E(R) = T8 ,,(E), MITE = 1.u.b. £(p)+elp).
i.[ Mlv ﬂ t i p‘ Ei

sf E(R) = e M,8) g (B).
(R) SE(R) 5(1«1“«1  pae (5

Give § » 0. There is a piGEi such that
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fg < ( ) S f+ o . S . .
M -—S f(py +g(pi) = M;"+M;%. Since § is arbitrary we conclude

Mif"'g S M T4 M; & for each i..% Sf+g(R) st(R)+ s8(R).

g.l.b. £(p).

s (R) = ﬁ mif/uu:i), m, *

-‘;{3 PEE;
s8(R) = m & HY(E;), m& = g.1.b. g(p).
/“ & gp eE-g g

SPER) T Zn THE (), m)] mf*9 = 7LD {tp)ﬂ(@
st (R)+ s8(R) = 2 (my o mg /(E)

a=/

<
Give { » O. There is a pie E; such that mif.[. m& = f(pg) +g(pi)(mif"“ g4n.
e
Since r( is arbitrary, we conclude that mif+mig = mif+g for each i.
>
2 THE(R) T ST (R)4+=sB(R).

< <
S (cp)reeNdu = sTHER) T sTR)+ERIC [ 1(p)am + /[ e(p)am+2€.
Z / Lo sy
L G egu = o Em F SR oS> S o)t [ a()iu-26 -
/f(p}«+/g(p)d/¢ "2‘(/(f(P)‘*g(P))?A</f'(p)%+/g(p)d/‘+2¢9
.- /(f(p)-l-g(p))d/t /f(p)/c'f' /g(p)d/—&

2.35 If mé £(p) B M and if 1 < g(p) < M are functions defined on a
measurable set E of finite mea.sure, and if f(p) and g{p) are Lebesgue
integrable on E, and if f(p) = g(p) for all p in E, then /f(p)/‘(
S g(pldg .

& Proof: Let P [El’EQ""’En] be any measurable partition of E.

st (P) =‘£ mi/ (E;), my = g.1.b. £(p); s&(p) = z lj/a (E5),

asy pPEL; =)
<
1; = g.l.b. g(p)e my £ 1; for each i. .% sf(P) = s8(P). Give €> 0.
rekE;

There is a measurable partition Q of E such that
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+£(Q) >/f(p)/a —e. (2.0). 5@ T sea).

ep)ou = 8(@)> S t(p)um -€.

AT PELZ

Since € is arbitrary, /g(p)d g/f(p)ci
FUU £

2.36 Let ¢ be any real number. If f(p) is a bounded measurable function

on a measurable set E of finite measure, then c¢f(p) is Lebesgue integrable

E and f(p)d = f(p)d 24 «
on an £ ¢ p>’/44 c‘gff p:’/‘(

Proof: Case 1. Suppose ¢ = 0; then the conclusion is obvious.

Case 2. Suppose ¢ ® 0. f(p) is integrable on E., (2.23).
c /f(p)}‘ = cg.1.b.S(P), = g.1.b.cS(P), where g.l.b. is taken with

respect to all measurable partitions P of E. Let P(E|,Ey,...,E,) be any

measurable partition of E,

”
s(P) =ZMi/a(E.), M, = l.u.b. £(p).

2= pELs
oS(P) = Z Mi/u (E1) = 5 cMy p¢(B1), ey = 1-:¢b£cf(p)

If g(p) = cf(p), then c¢S(P) = S&(P), since cM; = l.u.bé?g(p), where SE(P)
pPEE,
denotes the upper sum o of the partition P with respect to g(p).

f t(p)ap / eIy /:f(pﬁ}u.
Similarly, c f(p)d Z.J/'g(p)d = ef(p)d .
5[ el e e

Case 3. Suppose c€ 0. Leg g(p) = cf(p). Let P[El’Ez"“’EJ
be any measurable partition of E. If E; is any set in P, and if M; and my
denote, respectively, the l.u.b. f(p) on E, and g.l.b. f(p) on E;, then cly
and cmy are r?npectlvely, the g.l.b. g(p) on E; and l.u.b. g(p) on By

5(p) = /4(E1>, oS(P) = o Z‘ > 1 (5) - fcmyu (5,) = sE(P).
a=y
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s(P) -‘25',y,gE ); es(P) = c H%/UL(Ei) = mgyfa(ﬁﬁ) S&(p).
Since P is arbitrary, we conclude that

c/f(p)d ={g(p)}u }_/cf(p)}a and

———

£(p) g(p)d = cf(pldeq «
{ e / E/ P
But _/f(p)d/(_ /f(p) /f(p)

- _,/’Zf(p>d ,/’Lr(p)
= 7~ 2

We conclude that f(p) is integrable and
c/f(p)}“ = ﬁf(p)}“
= £

< < <
2,37 Ifm= f(p) = Mand 1 = g(p) < N are functions defined on a meas-—

urable set E,/u (E) €+0®, then f(p) - g(p) is Lebesgue integrable on E
and /(£(p) - g(p))dex = St(p)ap - Sa(pliy .

- 7 ‘;ﬁ,' A ;;(, 74

Proof: From 2.36 we see by letting ¢ = -1 that
- ,/’E(p)g;4 =|‘/’:g(p)§;n

(£(p) - g(p)) (£(p) #{~g(p)Ndpe = S £(pliga+ S -glpldpn =
/ / G 5/ pm T Eem
‘/’}<p{/,4 J/'g(p>d . (2.34)

2,38 If f(p) is a measurable function on a measurable set E of finite

measure and if f{p) = g{(p) almost everywhere on E, then g(p) is measurable

on E.

Proof: Let a be any real number. We must show that EJpéE,g(p))a]

is a measurable set. The following identity will be established.
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(1). EPLpeE, g(p) & a] = Ep[pé E, £f(p) # g(p), g(p)> aJ+
E [r€E, £(p) = &(p)] ‘E,[P€E, £(0)> a). 5, [p€E, £(»)> a]ss
a measurable set. E,[p & E, £(p) # g(p)] is by hypothesis a measurable
set of measure O.
Epfpe E, £(p) # &(p), g(p)> a] & Ep[p€ E, £(p) # g(p)] ... The
set on the left is measurable. (1.16, 1.20, 1.37),
E, Lp &€E, £(p) = g(p)_] = E - Ep [pe E, f(p) # g(p)] . .”, the set on the
left of this relationship is measurable (1.37, 1.44). These statements
imply that the set on the right of the identity (1) is measurable. (1.40, 1.42)

Suppose po€ E, [reE )5 a]. There are two cases here.

Case 1. £(p,) # &(p,), po€E, [ @ B, £(p) # &(p), al(p) > &} .
Case 2. f(p,) = g(p ), «" P, €E, [r €E, £(p) = e»] ,

£(p)> a, .5 perp[p €z, £(p)d> a] . This shows that
Ep[p €E, glp)> aJCEp [r€E, £(p) # alp), a(p)> a] +
EJr€ E, £(p) = g()] 'EpEp€ E, £(p) = g(p)] B, [pf E, £(p)> a] .
Suppose p,€ E, [p € E, £(p) 7 &(p), &(p) > a]<
Ep[pe E, f(p) = g(p)] ‘Ep[pé E, £f(p) > aJ .
There are two cases here also.

Case 1. p,&E, [p@ E, £(p) # &(p), (p)> 3]
P.€E, £(p,) # &(po), &(po) > a. .. p & Ej [p € E, g(p)> a].

Case 2. p,€E, [p €, £(p) = &(®)] E, [p €5 £(p)> 2].
po € E, £(py) = &(py), £(po) > a..% &lpo)> 2, P& E,[p€ E, a(p)> 2] .
E,Lp€ E, alp)> a]:Ep[pé E, £(p) # &(p), &lp) > a] +
E,[p€E, £(p) = g»)] B, [p€E t(m> a].
This establishes the identity, and we conclude that Ep[pe E, g(p)> aJ

is a measurable set, and hence that g(p) is a measurable function.

2,39 If f(p) is a bounded function on a measurable set E of finite
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measure, and if f(p) is Lebesgue integrable on E, then f(p) is measurable

on E.

Proof: There is a measurable partition PlLEl El,ee.,E l] of E such
that S(pl)> ,‘/f(p)d/( -1, and such that S(P ) € ff(p)y'l‘ 1.
(2.4, 2.5). If p&€ E!, let f.(p) = g.1l.b. f(p) = my;

&, °
g1(p) = l.u.b. £(p) = M., reEu
£ 3
sI(p.) = (8'"), Sf(P ) = z ! (E'). f.(p) is a measurable
1 ka( ﬂ F‘K ‘, Mk/ Ek 1

function, since if a is any real number, Ep [pe E, fl(p)> a-] = z EI::’
summation extended over those integers k for which mlé P a and each set El«': is

< = - -
measurable. f;(p) = £(p) for each p from the definition of £, (p).
‘ <
/fl(p)y( —E[f(p)}u . (2.35).

sf1(p)) = /u(E')-f- m'/{(E')"‘ cort m /u<E ') =
s m A (BL) = o7 (Py)

=/

f

SIP,) = mr (END)+m (EV)=+ ...+ m 'y (B) =
1 m]/u 1 2/4 5 nl/" 1

1 1 = £
‘g‘ m! (B = s (Pp).

-:{fl(p)/du = Sf(Pl)>e/ f(P)y‘

There is a measurable partition Qo of E such that

A 4

7]
f(Qg)) _/f(p)d/' - st (Qp) < /f(p)/.. "‘2—
Let P2 tEl ,E22,...,En2] be a measurable partition of E which is a re-
finement of both Pl and Q2.

t f /
sf(p2)> /f(p)d/‘. -Z > S (P2)< 2 f(p)d-l-z. .

If p€ Ek2 let £5(p) = g.l.b. f(p). By the same reasoning as for
p(-F
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£ (p), we see that £,(p) is a measurable function on E, and further
< <
£2(p) = £f(p), £1(p) = £,(p). As before we observe that sfz(Pz) = Sf(Pz)-

f
and S 2(P,) = sT(P,)

/f(p)d/a-—i <sf(p,) =/f2(p)c1/u g{f(P)}M

Construct in a simllar manner a measurable function f (p) such that

fz(p) = f3(p) = f(p). and such that

!fcm --<ﬁ (P)om /(p)

Continuing this process we obtain a sequence of functions /fn(p)} where
fn(p) is a measurable function for each n, and such that

< < < < < < <
fl(p) = f2(p) = f3(p) =...= £,(p) = SN 1(p) =... where £ ,(p) = £(p)

for each n.

S tria ~d< [ £ S o) .
& /« Ab E B / y 3 /

[i‘n(p)zconverges, since if p, € E, we have [fn(po)} s where
< < £ < <
£1(pg) = £,(p,) =...= £ (pg) =...= £(p,)

Let g(p,) = lim fp(po). Let g(p) = lim fn(p). g(p) is a measurable
»—» o 21— PO

function since it is the limit of a sequence of measurable functions.
< <
f.(p) = g(p) = £(p) for each n..% n(p)d/l‘ (P)}h f(P) . (2.35)

/f(P)/( —-( /n(p) for each n.
./ £p)ge S fgcp)}« / eoigu =/ L@

By similar reasoning we can construct a decreasing sequence of measurable

(2.26)

functions gn(p)J , i.e.
> 7 > an
g1(p) = gg(p) s ee.= gn(p) =. f(p), such that

</f(p)/¢ < . This sequence will converge
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to some function h(p), where f(p) h(p) = gn(p) and h(p) is measurable.
£(p)am = < < £ .

/ P)gm ﬁ(p)d/a ,/gn(p)d/u f(p)}a*-h

/h<p> A% ..o./h(p}u _/f<p)

g(p) f(p) h(p).

Since g(p) and h(p) are measurable functions and g(p) h(p), then

Ej(h(p) - g = éﬁﬂp)cy _A-/g(p)}“

-
We know h(p) - g(p) = 0,,'. h(p) - g(p) = O almost everywhere on E,
or h{p) = g(p) almost everywhere on E, ,”. f(p) = g(p) almost everywhere
on E and since g(p) is measurable on E, we conclude, by 2.38, that f(p)

is measurable on E.

2.40 Definition. If f(p) is a non—negative measurable function on a

measurable set E, let fy(p) = Jf(p) if 0 £(p)‘ N
N if £(p)

where N is a positive integer.

2.41 Definition. If f(p) is a negative measurable function on a measurable

set E, let f_yn(p) = f(p) if O > fép)’ -N
-N if £(p) N,

where N is a positive integer.

2.42 If £ (p) is a non~negative, measurable function on a measurable
set E, then for each N, fN(p) is a bounded, non-negative function on E.

The proof of this assertion is immediate from the definition of fN(p).

2,43 If f(p) is a negative, measurable function on a measurable set E,
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then for each N, f_N(p) is a bounded negative function on E.

Again, the truth of this assertion follows directly from the
definition of f_y(p).

2.44 If f(p) is a non-negative, measurable function on a measurable

£
set E, then for each N, fy(p) = £(p).

Proof: The proof follows from the definition of fN(p).

2.45 1If f(p) is a negative, measurable function on a measurable set E,

then for each N, f_y(p) z £f(p).

Proof: The proof follows immediately from the definition of f_y(p).

2.46 If f(p) is a non-negative, measurable function on a measurable set E,
then for each N, fN(p) is a non-negative measurable function on E.

Proof: From a previous conclusion (2.42), we see that fy(p) is non-
negative and bounded. Let a be any real number. We must show that for each
N, Ep[:pti E, fN(p)>' é] is a measurable set. Let N be any positive integer

Case 1. If a 2 , then let Ep[pe E, fy(p)> a]= @, which is a |
measurable set,

Case 2. If a< N, then E,[p € E, fy(p)> al=
E,[p€ =5 (> a].
We must establish this identity.
1. Suppose p € E_ [pé E, fy(p)> a] , P, & E, f(p,)> s,
£(py)> 2. %, P, & E,[P€ E, £(p) > a].
2. Suppose p € Eptpé E, f(p)> aJ » Po€ E, £(p,)> a.
a. If f(pq)>= N, then fyy(po) = N> a, po€E, [p € E, fy(p)> 2] .

b. If f(p,) < N, then fy(p ) = £(p,) > a,

€k [p€ &, f(m)> 2]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



5l
Thus, the identity is established, and since f(p) is a measurable
function, it follows that Ep[pé E, £f(p)p a]is a measurable set.

(2.14). Hence, Ep[pe E, fyy{p)> a]is a measurable set and fi(p) is

a measurable functlion cn E.

2.47 1f f(p) is a negative, measurable function on a measurable set E,

then for each N, f yx(p) is a negative, bounded, measurable function on E.

Proof: The procf to this conclusion is similar to that of 2.46.

2,48 If f(p) is a non-negative, measurable function on a measurable set

£ )
E, and if N& M, then fy(p) = fM(p).

Proof: If f(p)< N, then fi(p) = fi(p) = £(p). (2.40),
If £(p) = N, then £y(p) = N and either fi(p) = £(p) T fy(p) or

fM(p) = M> N = fy(p). In each of these situations fyn(p) < fyip).

2,49 If f(p) is a negative, measurable function on a measurable set E,
; <
and if -M<€ -N, then f_p(p) = f_g(p).

Proof: The proof of this theorem is similar to that of 2.48.

2.50 Definition. Let f(p) be a non-negative, measurable function on
a measurable set E,/!(E) €+P0, TFor each positive integer N, consider
fn(p). fy(p) is a non-negative, bounded, measurable function on E.

Therefore, fN(p) is Lebesgue integrable on E, for each N, If N <M,

then fN(p)§ fy(p) and hence /fN(p)d/q s £ fm(P)y .

E
Consider { ./fN(p)d/‘} . This sequence is an increasing sequence
&

of real numbers. If !/fN(p)d is an unbounded sequence, we say
& /

that f(p) is not a summable function on E.
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If [/fN(p)d/A} is a bounded sequence, then suppose

1lim /f (p)}“ = a. Then we say that f(p) is Lebesgue summable on E,
Nmoo &

d we writ f(p) d = = 1i fulp) d -
and w e‘[ p/“ a 1m/Np/

2,51 Definition. Let f(p) be a negative, measurable function on a

measurable set E of finite measure. For each positive integer N, consider

f n(p). f_y(p) is 2 negative, bounded, measurable function on E. There-

fore, f_N(p) is Lebesgue integrable on E, for each N. If -M<€ -N, then

£_ (p) = f_y(p) and hence /f M(p) /« /f N(p)/..
Consider }/f n(p) /(} . This sequence is a decreasing

=M=

sequence of real numbers. If l/f N(p) /4} is an unbounded sequence,

then we say that f(p) is not a summable function on E.

If {ff N(p) /‘} is a bounded sequence, then suppose that

1lim /f_N(p)/ = —a. Then we say that f(p) is Lebesgue summable on

E, and w it £(p) dau = -a = 1i (p)
nd we wr eE/p/u a im Np/"

-N-p=De &

2,52 Definition. Let f(p) be a measurable function on a measurable

set E of finite measure. let P =

Ep[_pe E, £(p) 2 o] and let N = Ep[pe E, f(p)<o_].
Then clearly E = P+ N and PN = §, If f(p) is a Lebesgue summable

function on both P and N, and if /f(p)}“ = a and/f(p) 9“ = -b,
P N

then we say that f(p) is Lebesgue summable on E and we write

)}‘(+A‘I/f(p)}u. = a - b.
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2.53 If f(p) and g(p) are non-negative, measurable functions on a
measurable set E of finite measure, and if f(p) and g(p) are summable,

and if h(p) = f(p)+ g(p), then h(p) is summable on E, and
/ h(p) d = /f(p) d o *+ / glp) g,
& /( & / &

Proof: h(p) is non-negative and measurable.

<
h(p) if 0 = h(p)< N

Let by(R) =9 0 it h(p) 2 N.

f(p) if o§ f(p) N

f =
n(P) N if £(p) Z .
g(p) if 05 g(p)< N
gy(p) = N ir o) TN Since f(p) and g(p)
if g(p) = N.

are summable, lim fN(p)}“ =£[f(p)/d“ and

N m

i (p) = (p) .
1in _/fay(p) du E/gpya

L adel -3 <
We shall show that for each N, hy(p) = fy(p) + gy(p).

Let N be any positive integer; suppose poé E.
<
Case 1. Suppose O = h(py) € N. Then
- £
hy(py) = hipy). Then O = £(py) &€ N. Then fy(py) = £(py).
Then 0 = g(p0)< N. Then gN(po) = g(po)-
=
Case 2. Suppose h(py) = N and

ny

a. suppose £f(pg) = N. Then hy(py) = N,
>
fn(py) = N and gy(p,) = O.
< .
2 hy(py) = fN(po)-I- gN(po). A similar argument gives the

>
same result if g(py) = N.
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b. Suppose f(py) < N and g(pg) < N.
_ %
Then hN(pO) = N = l’ipo), fN(pO) = f(po)’ gN(pO) = g(po).
We have hy(pg) = N = h(po) = f(p0)+ g{pg) = fN(PO) 'l'-gN(PO)-
Thus, in any possible case we see that hy(p) s fiy(p) + gN(p). This

implies that for each N,

/hN(P) ./(fN(p)-l-gN(p)) d e ﬁN(p)d/.t -t

/ / e
gn(p) £(p) e + g(p)}« (2.34, 2.35). Therefore,
L5

h(p) is summable on E, since ;!hn(p) d/gg is an increasing sequence
bounded above by ﬁ‘(p)/,h +/g(p) d/‘. and furthermore

&
/h(p)d/t = lim hN(p) /f(p) d/4.+ /g(p)}q .

Hence this limit exists.

We shall next show that for each N, h,y(p) -3 fn(p) gy(p). Suppose
N is any positive integer and poe E.
Case 1. Suppose O 3 f(po)< N and O < g(po) < N,
Then 0§ h(pg) * ZN’ fN(po) = f(po) and gN(PO) = g(PO)-
Hence, hpy(py) = h(pg) and hoy(pg) = £,(p, )+ ey(py).
Case 2. Suppose f(pO) ZxN and g(pO)’;N.
Then h(p,) = £(py)+ &(py) Z o
fy(Py) = N and gy(p,) = N, hon(pg) = 2N.
hon(pg) = £4(py) + gylpy)-
Case 3. Suppose f(pg) z N and g(po) & N and
a. suppose h(po) = 2N. fN(pO) = N,
en(po) = g(pg) € N, hoy(py) =

2N > £(py) + gxlpp)-
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b. suppose h(py) € 2N. fy(p,) = NS
£(py)s en(pg) = &lpg)s hoylpy) =
h(pg). fy(py)+ enlpy) S (py) +
g(pg) = h(pg) = hy(py).

In this case similar results follow if we assume initially that

f(po)< N and g(py) 2 N. In each case we see that hZN(p) 2 fn(p) + gN(p).
. fhmcm S (o) # ey(0)) s =

£
/fN(p) d e + /g /u. /h(p)/a ./hzm(p) /« .

V3

. /f(p)/"f'/N(p)/u ﬁcm/u.
W”me/u /<p>/.¢ Lo /gmcp)/u

/ g(p) d /.4, Lon ( ffmcp) NOEVDE
/f<p> g<p> gon = ﬂ(p) .
E

Therefore, since the reverse relatlonshlp has already been established,

uy

we conclude that

/h(p) _/(p) g(p)‘d/(_, .
£

2.54 Suppose f(p) is a bounded, integrable function on a measurable set E
of finite measure. Suppose that G is a measurable subset of E. Then £(p)
is integrable on G,

Proof: f£(p) is measurable on E. We shall first show that f(p) is

measurable on G,

To do this we shall establish the following identity.

Let a be any real number,

Ep [p €G, r(p)> aj = G'Ep Epé E, £f(p) > a]. The set on right is
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measurable since f(p) is a measurable function on the set E and since G

is measurable by hypothesis.

Suppose poe Ep[:pe G, f(p)>» a]. Then p, &€ G,
£(p) >a, D, & E,,", p,€ GE, [p€E, t(pX> a].

Suppose p, € G-E,[r€ B, £(p)>2], 0, € G, p.€ E,
1(p)> 2,.% p, E [p€6, r(p>a]. |
Thus the identity is established. We conclude that Ep[pé G, £f(p)> aj is
a measurable set and hence that f(p) is a measurable function on the set G.
Since f(p) is bounded on E, it follows that it is bounded on the subset G.

Therefore, £(p) is Lebesgue integrable on G. (2.23)

2,55 If f(p) is a bounded, measurable function on a measurable set E of

finite measure and if E = E1+ Eo, E1°E2 = # and E; and E, are measurable

sets, then f(p) is Lebesgue integrable on E, and on E,, and

gf(p)d/,c =&;/f(p)q,u+£{f(p)%.

Proof: The fact that f(p) is Lebesgue integrable on El and on E2

is immediate from the preceding conclusion.

Give € > 0. There is a measurable partition P1[F2,...,Fn] of B

such that s(Py) > /f(p) d/l. —Eé- . (2.4) There is a measurable partition
£

4

P2[G1,G2,...,Gm] of E, such that s(P,) >E'_/f(p)}u. -25'. « Then
2

_ P LF]_,FQ: see ’Fn’ Gl’ Goyeee ,Gm] is a measurable partition of E.

n
s(P,) = kZ' m, pe(F)3 m, = &Lb. £(p);
= J 3
s(P,) = 2 (G ); m2 = g.l.b. £(p);
2 k=jmk/ Gk k Pe Gk

s(p) = s(Py) + s(Py);
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/f(p)/u = s(P)>/f(p)d/a. '*‘_/f(p)d/u € . (2.9
Since € is arbitrary, /f(p)d -+~ ff(p) < _/f(p)?t.

£ £

There 1s a measurable partition Q1 [Hl, 2,...,Hr] of E, such that

(=
s(Q1)< f(p)y"“z' o (2.5) There is a measurable partition
£

,
Qz[Jl,Jz, .oo’JS] such that S(Qz) <!f(p)d/+ % -
3

Q[Hl,Hz,...,Hr,Jl,Jz,...,Js] is a measurable partition of E.

r
S(Ql) = Z Mﬂ:/ (Hk)’ M‘L = l;—‘-ébﬁ f(p)

K
s(Qy) = 5_’ /(Jk), M2 = laub. £(p), S(Q) = s(e)+ S(,);

K= / PeJk
L s T s@< /f<p> +/ ot € e

Since € is arbitrary, /f(p)y_t -+ /f(p)/‘ ﬁ'(p)/l-

The opposite relationship having already been establlshed, we conclude that
fi‘(p)d?u + ff(p)}«. =./f(p)d,u .
£, £,

<
2,56 Ifm < f(p) =M on ¥ if E3jisa measurable set «of finite measure, and if

f(p) is measurable on E then m/,l_(E) = /(p) %(E).

Proof: Consider the measurable partition P of E consisting of the set

E alone.

ft

<
ff(p)d/g = s(P) (l.u.bé._f(p))-/‘{ (E) gM‘/t (B). (2.9)
E pe
/f(p)d/. ZT®) = (g.1.b. f(p))/.(,(E) me 4f(E).  (2.9)

& pe&

Hy
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2.57 If f(p) is a non-negative, measurable and summable function on a
measurable set E of finite measure, and if E = Ej$E,, Ej+Ey = ¢ and E;

and E2 are measurable sets, then f(p) is summable on El and E,,

/f(p)/4 _/f(p)/u -+ /f(p) , and
/f(p) /f(p)/u and ﬁ(p)/a. /f(p)d/u.

o

Proof: Let fy(p) be deflned as before,

We know that /EN(p) :/N(p)ﬂ f(p)d/u. » Since
fylpld fn(p)d +[f (p)d 4¢ and lim ﬂ' (p) = f(p)des »
/N e = / N /l n(pIoM é‘f P)d

N>o=E
{ﬁ‘N(p) j is a bounded, increasing sequence and hence f(p) is

sumable on El'

/f(P)/‘t = lim /fN{P)/.
/f(p)/a /f(p) . From symmetry in the definitions of E; and E,

we see that f(p) is summable on E, and/f(p)d/a ‘/f(p)/‘( We know
that /fN(p) ﬁN(p)’,‘ -+ /fN(p)d for each N. Taking limits as

£,

N becomes infinite we obtaln/f(p)}u /f(p)/.q. "'/ f(p) .

2,58 If f(p) is a negative, measurable and summable function on a measurable
set E of finite measure and if E = Ey=#E,, where Ej*Ep = §# and E, and Ej are

measurable sets, then f(p) is summable on E, and Eo,

E/f(p)d/g E'/f(P) ""/f(p)d/,(_, and
~ -t r 74 and /f(p)d/( ﬁ(p)}‘, .
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The proof of this theorem is similar to that of 2.57.

2.59 1If f(p) is a measurable and summable function on a measurable set E
of finite measure, if E = Ey¥ E,, E1°E, = @, and if Ey and E5 are meas-

urable sets, then/ f(p)/a /f(p)/u -+ /f(p)d/“

z
Proof: Let N = E| I:p € E, f(p)< oj

Llet P = E [pﬁ E, f(p) ] = N+P. Since f(p) is a measurable

function, N and P are measurable sets, (2.19, 2.21)
N@ E = B+ Es. ++ N = N-EjN-Ey; (NE;)-(N*E,) = d.

Similarly P = P+Ej¥=P*E,; (P*Eq)+(P-E5) = 4.

% ff(p)}a /f(p)/a +'/f(p)y (2.58) and
/f(p/«, A/r(p)/«-r /f(p (2.57)

E, = E -PPE N, E, = E2-P+E2 N.

/ fo)gpe = /fcp)g,u* 2(pIgm

/f(p>/¢+—/r<p)3u.+ /f<p> +/f<p>d
/(p)d/‘_-" /i‘(p . (2.55)

2,60 If f(p) is a bounded, measurable function on a measurable set E of
finite measure and if & > O, then there is a S) O, such that if G is a

measurable subset of E and if/a,(G)‘( S s then

IG_/f(p)‘&u.,l <€ .

Proof: Since f(p) is bounded, we can find a positive real number M

such that -M f(p) M on E. If G is any subset of E, then certainly
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< < €
-M = f(p) = Mon G. Let & ‘-'-”;'— « Then S) O. Suppose that G is a meas-

urable subset of E and that/((G)‘ g « Then

-€ = -M*-“ < —M/c.o(G) —/f(p)/u. M/((G)< Mé (2.4).
or in other words | /f(p)d/,\ '< € .

&
2,61 If f(p) is a non-negative, measurable and summable function on a

measurable set E of finite measure, and if &> O, then there is S) 0O such

that if G is a measurable subset of E and if//_ (G)(S s then

/f(p)d/u, <& .

[~
cof': (pl)d (p)
Proof /fp/ N.;”ﬁNp}“‘
For each N, /fN(p)/t- /f(p}‘t (2.35),

/f<p>d / RO To.
< 6
Ch teger N such that O = f(p)d ﬂN(P) .
cose an inte / /l. = / 2

fN(p) is a bounded, non-negative, measurable function on E. There is a

S)O such that if G is any measurable subset of E and if/.((G)( 8 , then

, / £4(p)g /u.l G/fN(p)d/“ <2-5(2.6o). Let G be a measurable subset
of E such that /.(G)<5
/f(p)d/.. = /f(p)/w* /f(p)/x_ (2.57) and
ffncp)/e /f ((Plas + /;'N(p)/u. for each N (2.55).
/ 2(p)d e - ﬁ y(P)ape = / £(p)aut / fy (Pee
/ [ - ﬁN(p) -
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/f(p)d/‘ = 1im fN(p)/a' By similar reasoning to that used above,

E-G N‘)ME..
2 A T

osﬁ(p)/u ﬁm(p)/a, ‘/f(p) fN(p)/u. <SE (2.57).
&
/f<p>/,¢< /f WP e +.—<é+€' -€ .

2

2.62 If f(p) is a negative, measurable and summable function on a meas-—
urable set E of finite measure, and if &€ >0, then there is a 8 > 0 such

that if G is a measurable subset of E and if/u (G)(S , then

S tp)ape> -€
g 7

The proof of this theorem is similar to that of 2.61,

2,63 If f(p) is a measurable and summable function on a measurable set E

of finite measure, and if & /2> 0, then there is as > 0O such that if G is a

measurable subset of E and if/u (G)(S , then l ff(p)%' e .
Proof: Let N = Ep[pe E, f(p)< cﬂ « Let P Ep[pe E, f(p) ]

/f(p)/u /f<p)/+ £(p)dge -

There is a S > 0 such that G& P, G measurable /((G)(S implies
I,/f(p)d I<~2—- s (2.61),

There is a 8)0 such that G&N, G measurable/ (G)(g implies

I/f(p)/u}<‘—- . (2.62),
Let S = min. S 8

2 [ 3
/LI(G)<8 s it follows that

Then if G< E, G is measurable,
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_/f(p)/‘ /‘-'(p)/“ + ./f(p/”- (2.57) and
/ /f(p)/"/ Iﬁ‘(w I"‘I ﬁ‘(rﬂ/o ,<-+§- €.

2.6l If £f(p) is a measurable, summable function on a measurable set E of

finite measure, and if B is any measurable subset of E, then f(p) is

measurable and summable on B,

Proof: The fact that f(p) is measurable on B is obvious.

Let P = E,[p€ B, £(») T 0],
By 2.57 and 2,58

/f (p)d/a ££fN(P)u. _/f(p) for each N. and
_/f N(p)/( ﬂ_N(P)d/f ;{f_N(P)d/&( for each N.

E P

[ / fN(p)/“} is an increasing sequence bounded above, and hence

ﬁ (p)/u /f(p)d/4 exists,

”"’OOBP

f/ N(p)/aj is a decre351ng sequence bounded below and hence

1im ﬁ' (p)d = /f(p) exists,
No-soBell T BM “

Therefore, f(p) is summable on B.

2.65 Let f(p) be a measurable, summable function on a measurable set E

of finite measure. If A, and A  are disjoint, measurable subsets of E,

2

then /f(p = Sraut S ) .
A +Ay A, -~ Az <

Proof: Let B = A1+ Ao; B&E; B is a measurable set

-:/“(B) &-+09 . f(p) is a measurable, summable function on b. (2.64)

( + (2.59)
gt g =/
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2,66 If f(p) is a measurable, summable function on a measurable set E

of finite measure, and if AysA5,000,8n are disjoint, measurable subsets

of E, then £(p)d =.f / f(p)d/d. .
£ = A

Proof:a‘B'y induction on the number of sets A_. The assertion is
true if n = 1 orn = 2, (2.65)

Assume it is true when n = k. Suppose Al’Az"“’Ak-o-l are disjoint
measurable subsets of E,

e /fcp) {f(p)g,u

? A +‘ 5= k"‘
7(p)d + Z /f(p)% - /f(p)/(. « The first equality
Axes = A

holds since the assertion is true when n = 2, Thus, the truth of the
assertion for n = k implies it for n = k<+1; hence it is true for all

positive integral values of n.

2,67 Let f(p) be a measurable summable function on a measurable set E

of finite measure. If { z is a sequence of disjoint measurable subsets

of E, then g/f(p)% = _/f(P)

.1_/ A
Proof: Let A= Z A Let R g Ay for each n.
J:/ -‘3/71"/
A= '5- st R, /f(p)ju Z /f(P)d/d. + /f(P)yl. . (2.59)
1=/ =/ A3 ﬁn
Z / f(p)d/c lim ﬁ'(p)d , provided that this limit existse

n-)doa-l Ai

‘ /f(p)ga fl /f(p)/“l ]/fcp)/l a) -g e,

l‘

Give € 2 0. There is a S> O such that if G is any measurable subset of E,

and if 4(G)< § , then /f(p)d L€ . (2.63)
M PE
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There is an integer M such that if n)>» M, then

(4;)< 8§ (83) = ge(R). If n> M, ge(R )<
and therefore, if n > M, ' /f(p% ‘(é If n>» M,

n
‘ /f(p)}44 z /i‘(p)d/u,<é . Since € is arbitrary,

3=/ A

E ff(p)}a = 1im Z/f(p)d/a /f(p)/(( /f(p)}u_

as/ H N300/ A

2.68 If g(p) is a bounded, Lebesgue integrable functlon on a measurable

set E of finite measure, then ' fg(p)%, <=/' g(p)‘ }u, -
E =

Proof: g(p) is a measurable function. Let Ey = Ep[p &€ B, g(p) = 0] .
let E, = Ep[ p€E, g(p) <L 0] . E, and E, are measurable sets.

E*E, = @, By+ Eg = E.

.- /g(p)gu °—'/g(p)d/u* fg(p)d/u, (2.55) g(p) = Ig(p)l
£ £,

- 3
if p € Eq; g(p)—== ,g(p)' if p€ E,_.

{g(p)% = S 1ew] su / - Jee)] dpe =

/g(p)/u :/lg(p>l/a (2.36). /lgcp)ly. /| 5| gm
/ seh /lg(p)ld / e(p)gen 2 / ek -
_/g<p)« /g(p)l g - /lg(p)l ap

/g<p>d/ < /g(pn G . /g(p)c}u --jlgml o
/'8(p)' [y /g(p)/. /|g<p>

IE[g(p)%' E/lg(p)I sp -
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2+89 If E is a measurable set of finite measure, if {fn(p)}
sequence of bounded, measurable functions on E, and if {fn(p)] converges
uriformly to f(p) on E, and if f(p) . is bounded on E, then f(p) is

integrable on E and 1lim fn(p/u /f(p) .
N>oo &

Proof: f(p) is measurable and bounded on E. (2.26) _.°. f(p) is

Lebesgue integrable on E. Give € > O.

, f(f (p) - £(p)) du ' /f (p)/u. /f(p)/u, 5 (2.37)
(f (p) - £(p)) ‘=’- /’fn(p) - (e ] 4 (2.69)
A M

There exists an integer M such that if n2>» M, then

& .
Ifn(P) pl/(i a points p 1n

S, - 1) u<fE sy =l

E £ 1) (&)

2,70 If E is a measurable set of finite measure, if f _(p) is a bounded,
measurable function on E for each positive integer n, if f(p) is a bounded,
measurable function on E, if 1lim f,(p) = f(p) on E, and if € >0, then
there exists a measurable set '%‘:g.:h that FC E/L(F) <& , and such that

1im £f,(p) = f(p) uniformly on E - F.
h-)be

Proof: Let E = E [pe E, lf (p) - f(p)|<"!“']

Let G ﬂ' E_ for fixed m. Let B = Zémk— 277-%

n=k kay N=k
Then E = lim inf E = E since fn(p) converges to f(p) at every point of
N—=> b

E. (1.68)/x, (E) = lim inf y(E). (1 70), 5 mkz is an increasing
n =poo

sequence of sets for fixed m. E = Z Gk - (Gmk) (E). (1.66),
b ke S
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Choose an integer k, such that (G )> (E) - =
/‘ micy,” < A om "’

60
Let F = E -G, . Then F = E. £ =
et F_ ke, en Foob Gy M (FHD<:2,,1 . Let F m% Fpye

Then /{(F)(é « F is a measurable set., F& E. Give S) O.

1))

We must find

an integer L such that if n> L, then | £ (p) - £(p)[€ § ir p€ E - F.

)
Choose m so that e= &£ «. Then E - F&E - F G . = .
o ~ g n m& G, . Let L=k
>
Ifn=Land if p@ E - F, then p€ G
mky, |
!
G =TT Bons PEBmc | 2,() - f(p)'<2—m<8.

h:':km

2,71 If E is a measurable set of finite measure, if fn(p) is a bounded,
measurable function on E for each n, if f (p) is a bounded measurable function

<
on E, if 1lim fn(p) = f(p), if O =1 (p) K on E for each N, then
Nn->80

lim E_/fn(p)d/u. =E_/f(p)d/4 .

nN->;:o

Proof: Give €2> 0, We must find an integer L such that if n> L;’

then ,/fn(p)d/d »E/.f(p)d/.,<é. ng(p)gl{on E. Choose 8> O

such that S<26K Choose F such that F is a measurable set, F&E,

/u(F) < 8 , and lim f (p) f(p) uniformly on E - F. (2.70)

' /f (p) k /f(p/,.l = I/(fn(p) - f(p))d/,"
/,f(p)-—f(p), /A /If(p)—f(p)l /A"" /f(p)-f(p)|/4

E-F
(2037, 2.68), Choose L such that if n>» L and if p€ E - F, then

|.fn(p) - f(p)‘(:;%\. If n» L, then \/fn(p)y - f(p)/a‘</— .
E

F)+K/a(F)<£+ KS<_+§: "E . (2. 55, 2. 68 2.3
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/2 If E is a measurable set of finite measure, if f(p) is measurable

on E, if fn(p) is non-negative, bounded and measurable on E for each n,

if 1im £ .(p) = £(p) on E, and if 25/} (P,/A( Q for each n, then f(p)
N->oo <
is summable on E and J/’f(p)d = Q.
£ s

£(p) if £(p) SN

N if f(p)> N

Proof: Let fN(p) =

-
falp) if £.(p) = N
Let tN(p) = . We must show that
n N if £,(p)> N

ﬁN(p)/ exists. f(p) = O on E. Consider fN(p) and ; N(p)?
N-»og

he)
. N - N .
fixed N, 1lim f (p) = £ (p). Then lim

f (p)}n. /f-‘ (p)d/u. by 2.71,
N-son <
but _/’} (p)d = Q for each n.,®, ‘/’f (pl/ﬁa Q and J/’fN(p)

Q.
< o
: 1im fN(?;g“ = Q and hence f(p) is summable on E and qu}(P{//A =
No>w E
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CHAPTER III

RECTANGLE FUNCTIONS AND DERIVATIVES

3.1 Definition: A rectangle function is a real-valued function whose

domain of definition is? > the class of all oriented half-open rectangles,
3,2 Definition: A rectangle function @ will be said to be finitely

additive if Ry,R,,...,R belonging to # and Ri*Ry = @ 4f 1 # j imply that

L <l n
& (_Z Ri) - E & (Ri), provided of course that 'Z RiE'P .
=4 i=s 2=/
3,3 Definition: A rectangle function @ will be said to be countably

additive if Ry,R ... belenging toP and R;*Rjy = @ if i # j imply that

oo o] =
5 (.Z Ry) = QS: @ (Ry), provided that éRiéP.
=/

a=

5.4 Definition: A rectangle function # is said to be of Type A if § is

non-negative and if

r
2 RiC R, By °R;

A=/

= @) s m.
i=/

g if i = j imply that

3,5 If @ is a finitely additive and non-negative rectangle function, then
n

§ is of Type A. That is, if 2 R,C R, R *R; = @, if 1 # j, then
a=y
L <
Z g (Ry) = g (R).
3=

N n
Proof: If E Ri = R, then .ng (Ry) = @ (R) and we are finishede.
i:[ =7 .

K
Suppose B FR R=m+ 2 5y where Sjep’ R, "8y = 4, 5;°S; = ¢,
=/ : :
3=

Lo s IO
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ifiZsj. gR)=¢g (Rl)+ 2;3 (sj), since @ is finitely additive.
n x i
gﬁc-:a_R ‘Z‘S‘Rmﬁl. .

(ﬁ Rl) (‘ZS)—;-Z.QR iagﬂis zjga'.;aRis‘j

54° s‘g;alc 555 =Za 1°8;< 8,

The conclusion will be proved by induction. It is trivial in case n = 1.

We shall assume its truth for all integers less than n.

”
Then Z¢(R15) g (35).
asg
§=7 Ry*S; = R S S3 = Ry (R-Ry) = Ry, since R,&C R-R;.

. by finite additivity ¢ (Ry) = £¢ (R;*S3) for each i,
g (R) _¢ (Rl)-i-iz @ (Ry- sj) =g (Rl>+-i7‘2 g (Ry=53) =

-'l=2
g <R1>+.Z # (R;) -f‘;z (R;)-

.‘l-/
3.6 Definition. Suppose @ is a rectangle function. Let S é'P, where 3

13 a square. Then lim .?—/S—)
Po€S°® A(S)

inite. @° (po) tﬂ{called the two-dimensional derivative of @ at P, - This

= g' (p,), provided this limit exists and is

definition implies that given any € > O, there exists a S) 0 such that if

A(s)< & and if p,€ S°, then ‘ ?7’:3 - 8 (p,) E .

3.7 Definition: Let 5(¢,po) be the largest number 1 such that there exists

o
a sequence S, of oriented half-open squares, such that p, & Sn for each

rn, lim A(S ) T 0 and 1lim ¢($’D- 1
’ »n—>aoo n-»s0 A(S,)

may be £OQ ,

. For the purpose of this discussion

D(¢,Po) is called the upper derivative of @ at pge
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3.8 Definition: Let D(ﬁ‘,po) be the smallest number 1 such that there exists

a sequence [ ng of oriented half-open squares, such that po€ Sp © for each

n, lim A(Sn) 0 and 1lim ﬂ(S,D 1.

Againd may bek 0O D(@,p,) is
n— 0 nsoaAlS,

called the lower derivative of @ at p,.

3.9 Y= D(%,p,) E D(d,p,) +00

Proof: The proof follows immediately from the preceding definitions,

PN
3,610 If § is of Type A, then O = D
>
Proof: 525(5)' = 0 for all Séf> . A(S)

962
A1S)

2
- O for all S. Thus, it follows that Q?‘- O.

3,11 ¢ has a derivative @'(p,) at po if and only if, for every sequence
581,:% of squares such that poé Sno for each n, and lim A(S,) = O, then

N—-o0
1im ¢(S“§ = @' (po).

hae A (5n) .
Proof: 1. Suppose @ has a derivative @'(p,) at p_ - Suppose {Sni

is a sequence of squares such that poé S © for each n, and lim A(S ) =
r=20

¢ >" #'(p,). Give € > 0. There exists & > O such that if

P€°4()

A(S)-)
A(S)°<8 poésa then ;:;-;SS-)) - Qf'(po)I(e . There exists an

)
integer m such that if n> m then A(S, )< S, P, € s, . Then

¢(s,, H(pe)

£ € . This implies that lim _ﬁsﬁ) exists and equals $'(p_).
h-»oA/Sn

2. Suppose for every sequence %Sn\() of squares such that
O

poe S, for each n and 1lim A(S ) = O, then lim d(fr.)
s n e AlSH)

Suppose @'(p,) 7
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There exists éa > O such that no &> O works. In particular

A does not
‘h
work for each n.
) >
There exists S, such that A(Sl) <1, p, € 510 and ‘¢(S.)_ [_, = 6° .
A
There exists S5 such that A(Sz)<-:-;- R poé S;and ¢62)_L’ g ea
JA(s;

Continue this process.

: : !
There exists S such that A(Sm)<-’:;' » Po€ S ° and

‘(Sm\_l_’ 2 e

———— a‘
A(Sm)
Continue indefinitely. We obtain a sequence {Sm} such that poe SmO for

each mylim A(S_ ) = O, but lim ¢/S-h))?‘ L. This contradicts the hypothesis
=5 o0 m=ds0 AL,

and hence we conclude that ¢'(po) =1I.

3.12 @'(p,) exists if and only if 5(¢,po) and D(@,p,) are finite and equal.
Proof: 1. Suppose ¢'(po) exists., Then for every sequence of squares
{ sn} such that p, € S,° for each n and 1im A(S_ ) = O, lim Q_{_Sz) =
N-»s0 n—=so AlS))
#1(p,) <} 0] . Then by definition D(#,p,) = D(F,p,) = #'(p,) and is finite.

2. Suppose ﬁ(ﬁ,po) and D(#,p,) are finite and equal. Let {Sni

be such that poé Sno for each n and lim A(Sn) = 0, Suppose lim @_(_S-’.’)

h—>oo n—sdo A(S)
€
does not exist. Let = =é—ﬂ) for each n. There exists a subsequence
AlS.)
{qh g of{q_h‘ such that lim q., =r . Since lim q, does not exist
K K—>00 n—> o

there exists & # 0 such that infinitely many terms of {qng do not belong
to N(V’,S ). These terms form a subsequence {qui of {qng « There exist:

a subsequence {quE of {q such that lim qp exists but is different
1 e 1 te LS|
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from ¥ . 1lim =Y . limgq_ = t. t ZY . Since D(#,p.) and D(Z,p,)
k-saan 100 KL e e

are finite and equal to say Q, we know that¥~= t = Q. This is a contra-

diction and we conclude that l:l.m -?.(I’)does exist.
n-se0” 5

3.13 Suppose @ and ) are two rectangle functions. let K = #+ A , and
suppose @'(p,) and A '(p,) exist, then K'(p,) = g (p,) + X '(p,)-

Proof: Give € » 0. lim ﬂsj exists and equals @#*(p, ). There exists
RESE ACS)

A(S) O
By > O such that if A(S) < §4 and p € S°, then \#{%_th(po) <% . 1im A/S')

=2 563°A/S)
exists and equals )\ '(py,). There exists S > 0 such that if A(S) < SA nd

Po € s°, then

A..@_x(p )/4!_ . Let § = min. S¢ and S)\ . If A(3)<E& s
2
then\ @ CLERTIE [T BCHERESD WICRI <

AT AR
WS) ( )’ MY -y e |ce e =€
57+ 3 ) 2YZ

3,1 Suppose @ is a rectangle function. Let & = aff where a is any real
number, and suppose @'(p,) exists. 'I‘hen/g '(p,) = aB'(p,).
Proof: Give € > O. There exists §>> 0 such that if A(S)K § ,

po € S°, then \f_@ - @ (po)l<—“i \".‘.i_@ ag'(py)

¢ A(S)
(s) - \ .

- g'(p.) ./, since (s) = ag(s), (po) exists and
a'\ i) 77 /°

equals a@'(p.).

3.15 If @'(p,) exists, then 1imso¢(,S) = 0,
€

A0

Proof: Give &> 0. Suppose G

H

1. There exists S.>o such that
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if A(S)< §, and p_€ S°, the I (s) _ 4
, . n %) 3'(po) [ « |

leee A(S) (B'(po) - 1) < #(s) < A(S) (@) +D)

Let M = max. ' Fripy) - 1 I s l¢'(po) + 1 ’ . Let § =
min. S; ,—f? s 8>0. Suppose A(S)< § , Po & S°. M{S)'L
max. AS) | B+ 1] L M) |pr(po) - 1f =

A(S) max. lfd'(po) + 1 ] N R | = a(s)em <I-S-M= & .

»

.. lim @g(s) = o.
R€ S
AlSH=O
3.16 If @'(py) and ) '(p,) exist and if K = @:\ , then K'(p,) exists and

K'(po) = O.

Proof: K(S) = ¢____(S)A6‘)= ¢(S)-_>_‘_('9

Als)  AlS Als)
The existence of @'(p,) implies lim @(S) = O.
fe5 o
A
1in K& =1m PO 15000 1 A =0 X o) = o.
peseA (5) pese Als)  peso rpese AlS) '
ALY>o A(S)»o Als)—»0 Als)=o

3.17 Let Wdenote the class of Borel sets in the plane. Let z denote
the class of lLebesgue measurable sets in the plane. Then Z?“:t(.

Proof: By definition B is the smallest class of sets in the plane
which contains the open sets and which is closed under the formation of count-
able unions (sums) and countable intersections (products). Since JZ contains
the open sets and is also closed under the formation of countable unions and
intersections, (1.46, 1.47, 1.51)) it follows that ﬂ‘:z.

3.18 Definition. A function # defined on a set E will be said to be Borel
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b

measurable on E if for every real number a the set of points Ep[pe E, g(p)>a
is a Borel set.

3.19 The upper and lower derivatives are Borel measurable functions.

Proof:

The proof will be given for the upper derivative. A similar

proof will give the conclusion for the lower derivative.

Let a be any real number., Let S be a generic notation for an oriented

square. For every pair of positive integers m and n, let Eypu, be defined

as follows,

Eopn = zsa » where the summation is extended over those squares S for

which A(S)<;:- , and .fé{; S a-/-,—)’; )
AlS

Let E, denote the set of points p such hat E(da P>>a-

We shall verify the following identity.

Ao Do
Ea. = E 7; Eamn' Eamn is an open set, since it is a sum of open sets.
m=s =/

Thus E; is a Borel set and the conclusion will follow.
Suppose p& E_. D(#,p)> a. There exists a sequence of oriented

half-open squares I(Siz such that for each i, p € 5;°, ]f‘n;ot(si) =0

and 1lim f@ > a. Choose an integer m so that a +-F.'.: < D(g,p). Let
i-»d0 A (53)

n be any positive integer. Then there exists an integer k such that if

i > k, then ¢(5-i) > a +._/ and such that A(Si) < U Therefore we see

-'—1- -

A(53) g
that p€ B, for a fixed m and any n.

do SO
'/‘ Ea f ey Z ;; = -

b’)"/ '3=/ amn
oo

Suppose P € > ] E .. There exists an integer m such that

n=| h=
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p € 77 - P€ E,;, implies that there exists S, such that A(S,)< |
45, s) < 5o : :
A/S' M s and p S « Continue this process_
e
P mi implies that there exists S; such that A(s; )< z >
S;
¢( )) 4-’;[- , and p & Sio.

Continue this process indefinitely.

We obtain a sequence {83 such that p € S for each i, lim A(S ) =0

1=500
and )}, at+d for each i. There exists a subsequence {S. z of [Sg
1 i
sn o .
such that 1lim ¢($3l:)' avvd > a, p@& Sik’ and 1im A(Sj_k) = O.
K=d6ec A-/S:k\ 0 Bo K=»o0 PO
.. D(@,p)> a and p€ Ej. > 77 Eamin< E; and hence E; = Z ;; Bamn
m=/ h=y m=t h=y

3.20 Let Ro be a fixed, oriented half-open rectangle.
E, Epe RS, D(g,p) = Q(ﬁ,p)] is a Borel set.

Proof: The following identity is easily verified.

OO
£, [p €83, B(g,p) = D(B,p)] = 7‘I‘Ep 1 & RS, D(8,p) = BA,p) - ]

If we can show that Ej [p E R° D(¢,p) D(¢,p)’ ] is a Borel set it will
follow that 7} Ep):pe Rg D(d,p) = D(Qf,p)— ] is a Borel set.

n=1
[» €5, 08,00 Z52,0) ~L ] =5, [pe 3, B8,0)— D(#p) £
Ep p o0? =\F>P 2P/ Ep O ? ’ =\¥,>PJ o =
Let { rk‘.g denote the sequence of rational numbers. Let a be any real
number, If Ep[-ﬁ(¢,p) - D(g,p) > a] is a Borel set, it is easy to show
that G Ep[ﬁ(¢,p) - 2(¢,p)>d]is also a Borel set.

We shall verify that E_ [pe RS, B(d,p) - D(B,p)> al

5 Ep [_p € 38, B(¢3P) > I‘k] 'Ep [2(¢:p) < Ty ~ a] *

k=,

From the preceding theorem we know that for each k. Ep [Pé Rg’ -ﬁ(¢,p)> rk]
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and Ep[pe R2, D(4,p)< r, - a.] are Borel sets and hence that
bo

l?:_:' Ep[p <R3, ﬁ(ﬂ:) > rk] By Epé RS, D(g,p) £ r. - J is a Borel set.
Suppose p, €& Z_/Ep [Pé R3, D(g,p) > I‘k] .

E, [pers, D ] =
o LP € R3, D(g,p) € ry =& | « Then for some k, P, € Ep[pe RO, D(Z,p) > rkj

and p, € Ep [Pé Rg, D(8,p) < oW —aJ’ s -Q(Qi,po) » a-r,, B(¢’po) >r..
D(8,po) - D(Bpo) > a3 po € E, [p € RS, B(F,p) - D(F,p)> a].

oo . _
2 mlrem Tn>n] 5 [pem pom <n ] <

=/
Ep [p e Rg: B(¢:P) - E(¢,p) > a-Jo»

Suppose poéEpl:ﬁ(fﬂ,P) - b(d,p) 7 % 3(¢,Po)> 2(¢:Po)+ a

There exists a rational number T such that
D(g,p,) > 1, > a+D(F,p,). D(F,p,) > 1, D(B,p )<L 1y -a.
p, € E, [pé RO, D(#,p)> rkj ‘B, L‘pe RS, D(F,p,) < r -aj for some k.
. E,[pe RS, D(F,p) - D(F,P)> a] <

[
kZ B[ p & R, B(dp) > 1| B, [ p€ B, DB,P) < 7y -a]

=/

Thus the identity is established.

3.21 If R, is a fixed, oriented half-open rectangle, and if E is the set
of points p of Rg for which the derivative @'(p) is defined, then E is a
Borel set.,

Proof: The set E is by definition the set of points p of Rg for which
the following three conditions hold simultaneously.

1. =60 < B(g,p) <+ 0o

2. T/ < D(g,p) £+ Bo

3. D(4,p) = D(F,p)
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Each of these three sets is a Borel set, hencq E is the intersection of

three Borel sets and is itself a Borel set. ‘The set E may of course be

empty, but @ is a Borel set (an open set),

3.22 Definition. A familyg' of closed oriented squares is said to be a

Vitali covering of a set E, if E < z G, and if p&€ E, there exists a

ce4

sequence [ Sr&Of squares of P such that p €& S, for each n and lim A(Sy,)
N=»00

n
O

3.23 If E is a bounded measurable set and if g'is a Vitali covering of E,

then there exists a countable sequence { Sn} of disjoint squares of 7

=
such that (E- " Sp) = O.
2

Proof: Let U be a bounded open set containing E. Discard from 4 all
sets not contained in U . Define e(8) = -2'— side of S for each set S inq .
The sequence {Sn‘g will be defined inductively. Choose S; arbitrarily.

After having chosen the sets Sl,...,Sp, it is possible that Sn contains
’n=/

all of E. In this case the proof is complete.

P
Otherwise, there will exist a point x, of E not in Z 5, which is a
n=4/

' P
closed set, being a finite sum of closed sets. x0 €8¢ 2 S,) which is
h=t
)

open. .. There exists &> 0 such that N(x,,8&8 ) <@ ;-,Z Sn). There
PY)

exists { sn_'} where Sp'€ FF for each i such that ’1,1_1_1; igsn') = 0 and

- . s f tho
x, € S,' for each n. .. all but a finite number of the squares o is

sequence are contained in N(xo, $ ). Thus there exist infinitely many

squares Sn' such that S’

20
. Z s, = #. Let ép+ 1 be l.u.b. e(S,') for 5!
r=/
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fulfilling this condition. Choose Sp +1 to be a set of 4 having no points

p
in common with Z Sn and such that e(S +1) > é:-r-l This inductively
N P z

exhibits a countable sequence of sets {Sng We must show that this is

the sequence which satisfies the conditions of the theorem.
&

E Sy, &= U . S5 -S = @ if i # j, from the method of selection of the

sets of {Sn} . We must show that/(& (E - 2 Sp) =
b n=/

Deny this. Suppose/a(E - z S, )2 0. Let x, be the center point
h=
of the square S, for each n. Consider the square S, hav1ng center x

n
and such that e(Sn*) = Se(Sn). /L(sn*) = B/L(sn)'
oo
The series Z/c (S5,) converges, since {Sn} is a sequence of disjoint
7=/

closed sets all contained in a set Uof finite measure,

o0
Z /[(S )also converges. Since (4 (E- Z Sn)) 0,

n=/

o
there exists an integer N such that -M*,/{(S *) /M (E- »-,Z;, Sy )

P = Nt Z'/u(s )< (e = 5. Q6.

n:/VH n=¢
.. E- Z Sn ¢ Sn. (1.20). There exists x, such that
”n= h=N+
xéE— ZS andxo¢ Z S x{an,xer
=/ 7 2N+
As previously there exists §> 0 such that N(xg, s )'ng S, = #.

h that
Again we choose a set 3 6# , such that xoé S and suc

N
o 3 5,0

h=y
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This leaves two cases; either the set S has a point in common with

some 5,, n>» N, or it has not.

Case 1. Suppose the set S has no point in common with any S5,. For

P
each integer p, Se Z Sp = P. Let (3 p+1 be the l.u.b. of e(S') for all

n=
/ o o
3'64 and such that Ste Z S, = &. =3 p+ 1l - e(S). By the law of
7=y
formation of {Sn¥ s e(Sp+l)> -_35(_5').

e(Sp_:l) = 5e(Sp+1) 7 5_:62_@)_ . - the side of Sp{f]_ is greater than 5e(S).

/.l( p4_1)>(56(8))2 (5e(8))? is a positive number independent of p.

This is a contradiction since the series /u(s *) converges.
n=

. (B Z Sy) = O.
Case 2. Suppose there is an n such that S, has a point in common
with S.
Let p+1 be the least integer such that Sp+l and S have a point in
common, let x € S'Sp+1’ From the above p~+ 1 cannot be any integer

2

1,2,...,N, i.e. p= N,

>
Since Sé% and Se f Sp = &> € Pl = e(s).

=/
p‘n e(Sp+l) > 96) . X and X, both belong to S.
2.
Let x = (a,b) and x, = (agsb,). Then 'ao -a ' = 2 e(S)
and 'b -b l Z2e(s). x éSp+1. If Y is the center of Sp*_l and

<

<
b = e(S,41) and |b—bp4_l‘ = e(sp+1)’

Xpal - (Bpe1, p+1)’ | "ap-o—l,

lao -ap+l| = ao -a ‘+'a'—ap+1l ‘?-2 e(s) 4+ e(Sp+ 1)< 5e(Sp+_l)
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‘bo-bp+l’ H 'bo-'fa',+ "E-b +1I = e(8) + e(s,,9)< 5e(s__ )

p+1l
The last two inequalities imply that x & Sp_+ 1> but p*+t1l> N and
this contradicts a previous condition on Koo+ agaln/(,((E- Z Sp) =
h=1i
3.24 If Ro is an oriented half-open rectangle, and if @ is of type A in

Ry, then its derivative @'(p) exists almost everywhere in R, and is

summable in Ro'

Furthermore, for every oriented rectangle R < R, we have

-
the inequality B1(pld = g(Rr).
e

Proof: The proof will be based on several preliminary statements.

(a) Let ¢ be a positive number, and let E, be the subset of RJ
where D(@,p) >€< . Then D(/J. (ED( )é #(R,).

Proof: let 4be the family of those oriented closed squares S

(s,
that satisfy the following conditions: S & RJ, j th'))

that the squares of 4form a Vitali covering for Ep . (3.22) Hence

> . It is clear

there are a countable number of squares of g 3 Ssnz such that Sj_'Sj =g

if 1 & and/u (E z S,) = 0. (3. 23) Since @ is of type A, it follows
that for every pos:LtJ.ve 1nteger k the inequality #(R,) = ¢(Sl)+ g(s5)+

e F ¢(Sk)> < (81)4 pe(S)t ... Fea (S)) holds. (3.4) .

Since Z S, and ED( are measurable sets, it follows that
rn=7

/(EK)‘-’/M(ED(-ZS)-!-/M,(E 625)-
oo
/((E“ : 2 Sn)+/a(E - _/s) /A(E Zs) (1.33).

. *Sn)
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o
2‘/4.(5) Z/a (Ep *Sp) = (E,

COBR) = (5.) T o 4 (x
"=I/°‘ /( X ), which is obtained from the

above by letting k tend to infinity.

(b) Since @ is of type A in every oriented rectangle, R €R, also,

(d) implies the inequality D</H (EK ~R) @(R) for all such rectangles R.
3

(c) Let E be the subset of RS where D(F,p) =+ o0 . Then/u (E) =

That is D(@,p)<++ e almost everywhere in Ro.

Proof: E'e= EO( for all o&¢ > //- (E ? ¢(p‘)from (a).

Give &2 0. C?]OOSG & so that “’fé&h‘ /u 1r) /t (E )“ L

]

. -
- /4 (E") = o.
(d) The subset E; of R3 where D(#,p)< D(#,p) is of measure zero.
Proof: Deny. Suppose/u. (Ex) > O. Then there exist rational
numbers <& x < y such that the subset Exy of R_ where D(@,p)< x<y<D(F,p)
ls of positive measure. Give&>»0O. There exists an open set G such that
ExychRg and/—l(G) </u. (Exy)"'é . (1.72). Let? denote the family of
oriented closed squares S in G such that F(S)/A(S)< x. Clearly, the
squares constitute a Vitali covering of Exy' (3.22) Hence gcontains
a2
a countable seqguence {Sn% of disjoint squares such that/A(Exy - an) =

=y
(3.23). We obtain the following inequalities.

Z #(s )< x Z—/M (s,) _x/,f(c;)< x (/1(%)+e ).

2=/ pe >
From (b) we have =2 #(s,) = ¥ Z}((E -s,) =
hr=y n=/

( *S,) = E . We notice that while each square S_ was
y =I/MJ Exy *Sn Y/L( xy) o q n

originally taken to be closed we may replace it by its corresponding half-
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©pen square in the above inequalities, since this merely entails deleting

in each case a set of measure O. Since € was arbitrary it follows that

>
X/“(E;qy) - Y/IJ (Exy)' Sino}ét (Exy) was assumed to be positive, we have
= . .
= ¥y which is a contradiction. Therefore, we conclude that/t (Exy) =0,
and hence that/ (Ex) = 0.

(¢) and (d) together imply that @'(p) exists almost everywhere in Rg,
and this proves the first part of the theorem.

Let us denote, for each positive integer n and each point
5 = {u,v) in R o? by% the collecticn of all squares S< R, of the form

-’1)/0 =u = i/n, (3~1) /n = v‘= j/n where i,j are integers (positive,
segative, or zero). For given n, the collection X is finite, since R
is bounded. Let us replace each sguare S5, E?(n by a somewhat smaller
cvienthad square S_n having the same center, such that E{(Sn—s_n)<;’!—.
Ss

Let Gn denote the set of interior points of all the squares S_, for

given ne Gn is an open set and ';Lim/g{(Ro-Gn) = 0. We have a subsequence
-2 s

oo Do
[(G g of {G z such that Z/u(R -G )<+oo. Let F = 77 Gy o
m, n e o K .
=/ k= m

Then lim/‘,(Ro-—Fm) =~ 0. Let us define for each positive integer k, a
m > Ho

function gi(p) in R_ as follows. If p is an interior point of some square
o

- i = 0. 1 since
S.p, > then g (p) = ¢(S_nk)A(S_nk)_ Otherwise gy (p) = 0. Clearly,

<
010 of tyve A, SalPlau = B,
Pﬂ

Let m be a positive integer and let p be a point of Fm such that
> .
g1(p) exists. Then p€ Gnk for k = m and hence gk(p) is equal to a
quotient of the form ¢(5%(5) where S is one of the squares S‘_nk and

p is an interior point of S. Hence lim g (p) = g1(p). Since #'(p)
k=> o
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!
=
~
Kol
S

€xists almost everywhere in R., it follows that 1lim g (p) =

ko
almost everywhere on Fm, m=1,2,,.. Since

]inyl (Ro=F) = 0, it
M=o

follows that lim.gk(p) = Jr(&) almost everywhere in R,. Since gk(p)
G P

is a non-negative measurable function in Rb, from 2.72 we conclude that

<
B1(P)aud = #(R,).
o . .
Since ¢ is of type A in every oriented half-open rectangle]RCZRb,

W= ran replacs Rc by any cuch rectangle R and the proof is complete.

The theory presented in this chapter doves not depend upon the
dimensionality involved. Whereas it has been presegted in the two-
dimensional case, it generalizes immediately to the one-dimensional case.

In this case we should consider interval functions, i.e. functions
whose domain of definition is the class of half-open intervals of the
form EX[_a E x < b])indicated [a,6) .

We would define the cne-dimensional derivative as fcllows. If I
i3 a half-open interval, then @'(x)} = lim 2152 provided that this limit

x&I® 1(1)
2(I)>0o
exists, where @ is an interval function and 1(I) denotes the length of I.

If £f(x) is an increasing functisn of a real variable, and if I = [a,b)
then we can define a function @(I) = f(b)-f(a). It is easily seen that an
interval function thus defined is of type A. We may apply 3.24 to conclude
that if I, is a fixed half-oupen interval, then @'(x) exists at almost
cwvery point x of I .

@#1(x) thus defined has a direct applicaticn to the ordinary derivative

«f differential calculus. @'(x,) is called the straddling derivative of
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£(x) at X,+ We shall explicitly define the straddling derivative and

then prove two theorems which will show its relationship.to the ordinary

derivative of calculus.,

3.25 Definition. fé(xo), the straddling derivative of f(x) at x, is

£6)-€4) -

defined as lim s provided that this limit exists. f(x) is not

x) = x, X2 X
Xy~ X,
Xon > X,
x1< x

o

here assumed increasing. It is easily seen that this definition is

equivalent to that given above.

3,26 If f£(x) has a derivative at x_, then f(x) has a straddling derivative

at x,, and the two derivatives are equal.
Proof: Give € > O. Let f'(x,) denote the derivative of f{x) at X e

The derivative is independent of the manner in which x approaches X .

PO 0D | xtm %o FhD- ), xemXi L EGI-FED

—————————
Xa—x, Xa— X % Xa2—X, X, =%,
Choose $ > O so that 0 < |x-—xo|£.$ implies \‘F(’ﬂ"‘&\ -1 (x )'4__ -
X=Xqo

Then, if X, & Xo < Xo 5_ » and if x - &L xl< X, we have

, ARIA NS AR ISR
lF()Q-HH IE 'x )f(D(S:D_,‘) “ f(%’f’—'s)

X~ Xo X~ %o

\-F'ﬂt.\-'(‘fa -f'(xb)“x-x |+ $0x)- ‘f(nh ~£1(x ) | XX,
o™Xy X=X, Xg=% )
Note that x‘z xo+ g =1, K= % < 1, and Ko“)‘(l <1,
X=X, "xt X% X, =X
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3:27 If £f(x) has a straddling derivative at X, and is continuous at x_,
then ivati i
(x) has a derivative at X, and the derivatives are equal.
Proof: Give €> 0. There exists 8 > o such that if

Xo € x, < xo+8 andxo—g<xl< x, then
FEOF0) ey e
Xaq—X
0 £ 6,)- ‘F(x)

Let x = x7. Then fé(xo) -& <

(x,) +€

X=X
o) ~€Sum  TLX L)=$8) 21654
XTI >( —-X s
< x<x° <
rile,) ~€3  £0n\= £ (x,) = £ x )+
Yo = X,
Similarly, let x = Xoe
1 x,) - € £ f4&)-f&) fil(x,)4+e
S K— x,
<
filx) -& = “?&D"‘f&:) éfé(xo)"'é
XG"'X

.. if g # x_ and if lq—xo'<8 then 'fj__f_"o) ~£1(x )l<5
91— %,

and we see that this implies that

1im -F(X)'{&o) = £'(x,) exists and is equal to £&(xy).

X=»x, X~Xg
If we restrict f£(x) to be an inecreasing function and define

g as vefore, we can obtain a final conclusion. It is known that if

f(x) is defined on [a,bj , then f(x} is continuous at all but perhaps a

zountable set of points.l Since the straddling derivative exists almost

syerywhere on Ea,b) and since the set of discontinuities is a set of

measure 0, it follows that f(x) is differentiable at almost every point

1. Kamke, E. Theory of Sets. (Dover; New York, 1950) p. 4.
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