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INTRODUCTION

Throughout the entire discussion, the underlying space being con
sidered is R2, the Euclidean plane. Any point p in this space may be 
represented by an ordered pair of real numbers (a,b). As in common prac
tice, points will be located with reference to two coordinate, perpendic
ular axes, the x (horizontal) and y (vertical) axes.

Some of the notations and conventions encountered will be as follows,
A set will be a collection of objects called points. A collection of sets 
will be called a class. Lower case English letters will denote points; 
upper case English letters will denote sets; and script capital English 
letters will denote classes. The following symbols with definitions in
dicated will be extensively used.

Symbol Definition
^  "is a member of" or "belongs to"

"is not a member of" or "does not belong to"
"is contained in" or "is a subset of"
"is not contained in" or "is not a subset of"

 P "contains"
"does not contain"

* # "therefore"
d(p^, pg) "the distance from p-ĵ to pg"
N(p,6) "the neighborhood of p of radius
The distance between points will be defined in the ordinary sense.

That is, if p^ = (x̂ ,̂ y^) and P2 = (xg, then d(p^,p2) ^y^^-y^)^,
A neighborhood of a point p of radius €  is the set of all points q such 

that d(p,q) < €  . Thus, it will consist of the interior of a circle having 
p as center and radius €  •
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-2-
If E and F are two sets, then E +F will denote the set of all points 

p such that either p f E or pCF. If E, , Eg,---, E^ are sets, then
H, —/

will denote the set of points p such that p# E. for some i = 1,2,---,n.
f -

tlf will denote the set of points p1'
such that for some i = 1,2,---. If is any class of sets,
then ^  will denote the set of points p such that for some
set E .

If E and F are two sets, then E * F will denote the set of all points
p such that p is in both E and F. If Ek, Eg,-, E are sets, then TTldf,
will denote the set of points p such that p<# E. for i “ 1,2,-,n. If
E-,, E g ,  are sets, then Jlcjf denotes the set of points p such that

-c-/
p # E. for each i » 1,2,-- . If ̂  is any class of sets, then / / ^

denotes the set of points p such that p €  E for each set E .
The empty set or set consisting of no points will be denoted by ^  ►

^  (E), the complement of E will denote the set of all points p such 
that p ̂  E.

E - F will denote the set of points p such that p ̂  E and p ^  F.
i.e. E — F — E F «

Sometimes a set of points in the plane will be explicitly denoted. 
For example E^ yC®- is x <b; c i y < < < ^  will denote the set of points p
whose X and y coordinates fulfill the restrictions indicated inside the 
brackets,

An open set is a set G such that if pi# G, then there exists an
such that N(p,6  ) CT G.

A point p is a limit point of a set E if for every €  > 0  , there
exists q ^  p such that q €  E and q €  N(p, C  ).
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A closed set is a set F such that if p is a limit point of F, then 

p e F.
If E is any set, then E will denote the closure of E and will be de

fined as the set of all points p such that either p t  E or p is a limit 
point of E,

If E is any set, then E° will denote the interior of E and will be 
defined as the set of points p such that N(p,C ) CT E for some C  .

If is a sequence of real numbers, then we say the limit of
as n approaches infinity is if for any there exists an integer M
such that if n>M, then ^  6  . W e  write lim a^ .

The limit inferior of a sequence of real numbers ^a^| is abbreviated
lim. inf. a^ and is defined as follows, lim. inf. a^ = c means that c is 

t7 -^6^ /y ^
the smallest number for which there exists a subsequence ^a^ ̂  of ̂ a ^  such
that lim a_ = c.

*r
The limit superior of a sequence of real numbers â̂ "j is abbreviated 

lim, sup. a^ and is defined as follows, lim. sup. a - d means that d is

the largest number for which there exists a subsequence  ̂a^'^ of ^a^^ such
that lim a^ = d.

If E is any set of real numbers, then the least upper bound, abbre
viated l.u.b., of E is defined as follows. M is the least upper bound of 
E if both these conditions are satisfied.

1. If p € E, then p ̂  M.
2. If A  is such that p 2. for each pjg E, then

^  è M .

If E is any set of real numbers, then the greatest lower bound.
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abbreviated g.l.b., of E is defined as follows, m is the greatest lower 
bound of E if both these conditions are satisfied.

1. If p*E E, then p ̂  m.
2. If 1 is such that p &  1 for each pi# E, then

If E is a set of real numbers, then we say that E is a bounded set
if E has both a least upper bound and a greatest lower bound.

If ^fn(p)^ is a sequence of functions defined on a set E and if
f(p) is a function defined on E, then we say ̂ f^Cp)^ converges to f (p)
on E, if for any €  , there exists 0Ln integer Af depending upon both
6  and p, such that if n >  M, then jf^^p) - f(p)j • We write
lim f (p) = f(p) on E or f (p) — * f(p) on E.

If ^ sequence of functions defined on a set E and if
f(p) is a function defined on E, then we say ̂ f^(p)j converges to f(p)
uniformly on E, if for any €  , there exists an integer M, depend
ing only upon C and independent of the point p # E, such that if n >  M, 
then jf^(p) - f(p)| ^ 6  We write lim f^(p) = f(p) uniformly on E

or fn(p) 3 ^  f(p) on E.
CHAPTER I 

TWO-DIMENSIONAL LEBESGUE MEASURE 
Let y  be the collection of all oriented half-open rectangles of the

\,b;c,d “ c g y < d  .
1.1 0 (the empty set) since 0 - ^^a,a;c,c.
1.2 If R ET^nd if S#7®then R » S € This is a conclusion which

may be easily verified.
1.3 If E then F - E = R^^ Rg^R^ +  R^, where each and

R^ . Rj = 0 if i ^ j. Note: one or more of the R^'s may be empty.
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1.4 Definition. If R t / ^ n d  if R * ^ , y  [  ̂  b; c 6  y <  dJ , then
A(R) = (b-a) (d-c) (area of R),
1.5 A(0) = (a-a) (c-c) = 0

1.6 If R then A(R)% 0.

IzZ If B = Ra,b:c,d ^^d if R^, Kg,''',3* such that R. = R̂  ̂ bi;ci,di 
’ J  J 'J

for each j, R = jg_ Rj, and R^ • R^ = 0, if j ^ k, then i  A(R^) = A(R).
5«/ j®/

Proof: By induction. Conclusion true if n = 1. A(R) = A(R)
Suppose n = 2- . We may without loss of generality assume that (a,c) ^ ,

Then a^ = a, c^ ® c. There are two cases.
(1) Suppose b^ ® a2« Then bg = b^, ^ 2  ~ ®1 " and dg = d^ = d.

A(R^) ̂  A(Rg) » (b^ — a^) (d^ — c^) (bp — ap) (dp — Cp) = ^^2 ~ a ) (d — c)
(b — ag) (d — c) — (b — a) (d — c) — A(R).

(2) Suppose d]̂  * cp. Then a - ai ® ap, b = b^, = bp and d « dp.
A(Ri)lf A(Rp) = (b^ - aj) ( d% - c^)i4 (bp - ap) (dp - Cp) = (b - a) (cp - c)i4

(b — a) (d — Cp) — (b — a) (d — c) — A(R).

In the general case we may assume without loss of generality that (a,c)^j^

Then a^ - a, c^ - c. R^ = Ra,bl;c,di*
Let R' = Rbi,b;c,di, " Ra,b;di^d.

A(R) ® (b—a) (d—c) — (b^—a) (d^—c) ^  (b—b^) (d^—c) (b—a) (d—d^)
A(R^) ̂  A(R')-f-A(R").

Suppose conclusion is true for all k 4 n.
R* C R - R. , i  R . = R - R-,

J1. ^

S' = S ' " f  R  « j r / % ' ,
J®2 JjtZ J
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Similarly, R" = ^  R" # %

By inductive assumption, ^
A(R') = ^  A(R* - R.), A(R") = Z  A(R" • R ji*2

/. A(R) = A(Rn) V- Z  [A(R' * R j  A(R" ' R j J  .
J = 2  J 0

We must show A(R' '• Rj)l^ A(R" • Rj) = A(Rj) for j = 2, n.
Case 1: Either R.CTR' or R . C R " ,  R-,, R', R", are disjoint,

J J  ^

Hence A(R' • Rj )-#*A(R« • Rj) = A(Rj)
Case 2. Suppose R . ̂  R'<^R”, R. • R ’ / 0 and R. • R” 0 0.

J O  J

Then Rj = Rj • R'T^ Rj • R".
. # A(Rj) = A(Rj * R ’)-^ A(Rj * R*), by the inductive assumption.
Thus, ^  fA(R> . R.) -t A(R" . R.)l = ^  A(R.). A(R) =

; ^ A ( R j / "
J«/

1,8 If R €  ̂  and if , i = l,2,,,,,n, and if R. • R  = 0, if
w  ^  O k

j ^ k, and if ^  R^ €Z R, then Z  A(R. ) ^  A(R),

Proof: By induction .

j-/ ^
R = R^ ^  Z  S. where Sj^i^ for each j, R^ * Sj * 0, and Sĵ  • Sj

0 if 1 0 j.
From the preceding conclusion, A(R) = A(R]̂ ) if* Z  A(S.),

2^ R^C: R - R^, 2^ Sj = R - R^

, ^i ' ^j * 2 2  %  C  sj ,
jr/ -l«2

Rĵ  • S. S j
-CS2

Assume conclusion is true for all k <  n. It is true for n = 1.
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* * A(Rĵ  • Sj) ^  A(Sj)

If i = 2,3,...,n, R. • Sj = %  • Sj « R^(R-Ri) = ̂ rA(Ri) = X  A(Ri . Sj) 6 y  /./.

A(R) 6  A(Ri) Z  ^  A(Ri • S.) = A(Ri) ' ^ T , ^  A(Ri ' Sj) =
^  ^  < = 2 j = /

A(Ri) 2 .  A(R^) = ü  A(Ri).
< - 2  -i-/

1.9 If 2 Z  Hi C  R, where R 6 ^ ,  Rj^6f for i = l,...,n,..., Rĵ  • R;
z 0, if i ^ j, then 2 7  A(IL) S  A(R) .

Proof: From the above^ x A(Rĵ ) *  A(R) for each n.
o.

A(Rĵ ) éa O  for each i. Thus the sequence of partial sums of 
is an increasing sequence bounded above by A(R) and therefore converges to a 
limit less than or equal to A(R),

i.e. 2* A(R.) é  A(R) ,
-L.-IO Suppose R C  2  Ri, where R = Ra,bjc,d ; ^  = ^ai, bi- c^^ di )
Rtf 7^ , R ^ C / ^  for each i.tThen A(R) g  2. A(R^).

4=/
Proof: Induction on the number of R^ .

1. When n = 1, R ̂  Rl, . , A(R) ^  ACR^).
2. Assume that the conclusion is true when k < n.
3. Let p = (a,c). Without loss of generality we may assume 
p €  R^.

R* - Ra,bi.c,di ® R • Rq, R" - ^bi,b;c,d; “ ^a,bq.di^d. C T  
R«- ^  R^ = X  R” • % )  R’" C  R"' • ^  \ =  ^  R"' • R^ ,

R = R' R" R"'; R», R", R«’ are all disjoint. A(R) = A(R* ) ¥* A(R“) */“
A(R»« ' ).
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By inductive assumption^
A(R")^ X  A(R" . Ri); A(R"i) ^  H  A(R"' • Ri); A(R') 6  

A(Ri).
»  _

A(R) #  A(R') .Z! C^CR” • Ri)'^ A(R"« • Ri)J R" ' Rĵ  +
R« * ' Rĵ  C  R^ ,

A(R" . R^) f- A(R»< . Ri) 6  A(Ri) A T ,

A(R) = A(R')'^ A(R>')i^ A(R»') é  ACR^) ^  A(Ri) = ^  A(Ri).
^  =  /

1.11 Suppose R Z  Rif Réf f Ri€?®for each i. Then A(R) ^  ^  A(Rĵ ),
4.̂ / -is/

Proof: Give €  > 0  . Suppose R = Ra,b;c,d, %, = Rai^bi-Ci^di»
Let S<TR, S = Ra,^ ;c,g" so that A(R) >  A(S) > A(R) - £  .
Let R ^ C  S^, S^ = bi.^i d. ' that
A(Ri)< A ( s p <  _

Let 8 be the closure of S. Let Sj° be the interior of S^.
0O ^

S C R  <Z y  R. Cl y  S.o, R i C  s.° for each i.

By the Heine-Borel Covering theorem,
S C È  S S C  i  Si

A(R) 1  <  A(S) g  X  A(Si) <  X  C  A(Ri) 

^ Ü T  A(R^) . yL %  -
60

/. A(R)- e  <  4 ^  A(Ri> ,
4 = /

Since iS was arbitrary,
A(R) g  ^  A(Ri) _

U S /
1.12 If R€/^, if R.€/^for each i, if R ' R< = 0 for 1 ?é j, and if 60 '*• #o i
R = Ri, then A(R) = Z * A(Ri),

< - /  - i - /
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Proof: 1. R. CT R ^  A(R. ) ̂  A(R),
0^ -*-/ A.

2. R C  2 T  Ri, A(R) ^  ^  A(R^). Thus,

A(R) = ^  A(R^).

ex- da

1.13 If E is any set and if for every countable sequence of sets )
^

such that R^lfel^for each i and such that E (T ^  Rĵ  we have 
dd ^

A(R. ) = ■V-do J then we define ><. (E) = ̂ 6 0  .

1.14 Definition.
If E is any subset of R2, the Euclidean plane, then^4*^E), the

terior Lebesgue measure of E, is defined thus: a,^(E) = g.l.b, ^  A(R. )

where g.l.b, is taken with respect to all possible countable coverings of E 
by means of sets R. i.e. where E R, .

This means that if (E) is finite, then if E <2 ^  R., where R. €7^
^  -0.5V ^ ^

for each i, theny&^E) ^  ^  A(R^). Also if 9 then there ex-
<

lets a collection of sets J , such that R, for each i, and such that
,  f  ^

(E) 6  >  2 .  a (R. ).
^  - t v

l a i y t t  (Rz) = '*■£>*
Proof: Deny. Suppose^^^^ (Rg) < -^2>0 , Then by 1.14 there exists a

countable sequence of sets such that for each i and such that

R2 ^  ^  Ri and A(R ) = a <*^Aoand y u  (R2) 6  a. But there
<:=v

exists R = ®2 A(B) But A(R) =2a.
■* _

This is a contradiction. We conclude that (Rg) =
Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.
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1.16 If E is any set, *(E) ^  0,
1.17 ̂  *(0) = 0
1.18 If E is a countable set, then̂ ^̂ "̂ ("(E) = 0

Proof: Let E = ^Pi,P2," ',Pn*' • Give 6  > 0.
Suppose p^ = (ai,ci) for each i.

V ^ + f T ' C - . C . A / S ’V  ’ ® ^  ^  «n

2 1  A(Rn) = +  =  e
y

^  *(E) = 2 Z  A(%) = 6  .

Since €  was arbitrary and sincê É̂.4, *(E) = 0, we conclude thaty(4^(E) P 0.
1.19 Let R e / ?  Thery^iKR) = A(R) = (b-a) (d-c), if R = %a,b;c,d.

Proof:
1. R C  R J  ^ ^ M r )'^A(R) ^
2, Suppose R Rj_, where Rj^^^for each i . A(R)

for all such coverings of R, BuJ^*(R) = g.l.b. A(R^) for all

such sums.,*, A(R) ̂  •

We conclude t h a t * ( R )  - A(R).
1.20 Suppose E CT F, then^/4 *(E) *(F) .

Proof :
1, S u p p o s e ■**■(?) = i 4 . Then conclusion is true,
2. Suppose ■»«■(?) is finite. Give 0, Then by 1,14 there is

^  àO AO
a covering R-,, R„,..., such that F < i ^ R .  and J” A(R< ) "*'(F) 'f' f

Ao
® ^  *(E) - ^ A ( R ^ ), *(E)<C J4, "̂ (F) ./■ ,

Since e  is arbitrary, we conclude that •**-(E) = ̂  *(F)
Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.
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1.21 Let G = Ejç.,yC a < x < b ,  c < y < d j  , i.e. an oriented open rectangle, 
Then y^*(G) = (b-a) (d-c) .

Proof:
1. Let R = [ a = x<b, c = y^d] .

"̂ (R) — A(R) — (b—a) (d—c). G CZ R .
by 1 . 2 0 * (G )  y *  * (R )  = (b-a) (d*^),
2. Give O O .  Let 0 <  5 <  (d-c)^ (b-a) Let S - •

*(S) = A(S) = (b-a-S') (d-c-f ) = (b-a) (d-c) - ^d-c) "^(b-a)^"^^^ =
(b-a) (d-c) - G (d-c ) f  (b-a) - S C  G, .% by 1 . 2 0 ^ ^ -ŝ S) y W*(G).
(b-a) (d-c) -€>i< (b-a) (d-c) - ^  ( (d~c) (b-a) .

Since ^  is arbitrarily small, though positive, we conclude 
(b—a) (d—c) — y*t^^(G), . , ^̂ (G) — (b—a) (d—c),

1.22 Let F = E^^y jTa = x ^ b ,  c = y = i^ . ThenyLL'^(F) = (b-a) (d-c).
Proof:

1, Let R-Ra,b;c,d. ^ ^  F
by 1 . 2 0 ^  * (R )  ^ ^ H f);yx.  * (R )  = (b-a) ( d - c ) ,  (b-a) (d -c )  =yJL^F)

2. Give$> 0, Take 0 < S < 1 ,  such that C ̂  ^  . Let
•^'(dIcT-f-'(b-a)f.l

S = Ra,bf& ; c,df S . F er S. ^ ^ ( S )  =
A(S) = (b-#-Ç -a) ( d S '  -c) = (b-a ) (d-c^S ). = (b-a) (d-c) r-'̂

By 1.20 y^^^(F) = ~ A(S) = (b-a) (d-c) -f* J ̂ b-a) 4“(d-c)*^^ ̂

Since € is arbitrarily small but positive we conclude 
y U H F )  *= (b-a) (d-c). , ' y ^ H F )  = (b-a) (d-c).

1.23 Suppose R ,  ̂ Let R° denote the interior of R and R de- 
note the closure of R. If S is such that R° C  S C  R, then^^^y/.*(S) = 
(b-a) (d-c) .
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Proof: = (b-ta) (d-c).

y t  *(R) = (b-a) (d-c). By 1.20 ̂ ^ ^ ( R ° )  = -*̂ (S) y U

^*,^^*(S) — (b—a) (d—c).
1.24 If E and F are any two sets, then^$4, *(EiA F) = y ^  *(E) ^(F) »

Proof: Case 1. Suppose either^Mf *(E) oi^^,^*(F) is . Then
the conclusion is immediate.

Case 2. Suppose b o t h * ( E )  and^y^ ^(F) are finite. Give
e >  0.
From 1.14 there exists j S > such that Sj^^^for each i and such that E CT

iz  ̂ ^T  Si and ̂ < E )  >  V  4(3^) - i  .
- 2 = /  2  ^

There exists f T.4 such that T^Ç/^for each i and such that F CT 2* 7L
C y./

and ^ * ( F )  >  ^  A(T. ) -jS

E F C :  ^  s T ' /t*(E'^ F) X  A(Si)y- 2 7  A(T.)
-i*/ y  ^

ykL*(E) ^ ^ K F )  >  Z T  A(Si) -A X  A(Tj,) - 6  ^ ^  *(E-/*F)- ̂  .

Since ^  l> 0 is arbitrary, we conclude '
y O L  ̂ K E ) < ^ ^  *(F) ̂  ^y&L**(E 4"F) ^

1*25 If A = , Z "  Ai, then xc*(A) = ^
- c r /  ^

Proof: Case 1. Supposê f̂c«< ■̂ (Ai) for some i. Then the conclu
sion is obvious.

Case 2. Suppose^6C’'̂ (Ai) is finite for each i. Proof by in
duction on the number of A^,

a. The theorem is true if n = 1. =y<&C^^(Ai).
By /.24yU.^(Ai-^A2) = ^ ^ K A i ) ^ ^ X ^ * ( A 2)

k  conclusion is true for n = k. Then
^  *( 2» Ai) = ^(Ai). Add̂ ^̂ -̂55-(Aĵ  ̂  j) to both sides.
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i  Al
*  X  ^

i « /  % * /  /  % = / '

Consider ^  A. as a set and using the case n a %  , we obtain
-13-

le case n a %
Icxi

Since the truth of the conclusion in any case implies its truth in the 
next, we conclude ^

y A  *(A) *( 2 T  ^i) ̂  ^2^/X*(Aj^).

1.26 If B O  Aĵ , t h e n ^  ^ *(A^)

Proof: By 1,20^4 *(B) ^ A ^ )

But by the preceding t h e o r e m *( Aĵ ) = *

1.27 If B O  ^  Ai, then y<*(B) = ^ y t  *(Ai)

Proof; Case 1. Suppose^^{ *(Ai) » for some i. Then the conclu
sion is obvious.

Case 2 Suppose^^< *(Ai) is finite for each i. Gi ^  ^  ̂  0,
By 1.14 there are sets ^.R^ 2*^1 ^ "  ̂ ^ ^ u c h  that A^ Ẑ. R^^ j and

00 * '  '

. %  A (& , * ( A i )  .
^  ^  K )  00

There are sets Rg 1.R2 such that Ag Cl R 4^ A(R ,)<C
» >  * * jsif 2,j; 2,3

^CAg)"^^ . There are sets Ri^ijR^ 2****^^» such that A^ O  ^

■ and A(Ri^ j) < ^  •

• “  I  =  I I  ■*■= ^

 ̂ i*/ ja/ !•/ / Z /
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^  -14-^Z yX.*(Ai) ^ . 2 ^  = . Z ^ * ( A i ) + €  .
i = , /  A . / / ^  ^

1'

1 .2 8  If E is the %  -axis, then^  *(E) = 0
Proof: Give #  0. Let E ^  be the non-negative X -axis. Let

E__ be the negative K -axis. Let ^  Î ^2 ” ^1 2 » - f  6  »
7 ' r  ’ ’/2 ’/z

®3 ■ ®2,3;-f , Ê  > •••> ^  - Sn-l,n;-i* ‘ . &  S •••
3 X ’3 2  ^  - g"*.2

A(IL) ■ ~ ~  ■ for each n; E C  ^  H ; ?  A(H„) = ̂
, t >  2

M  *(E^) = -§•-
<  ^  ,Similarly, it can be seen that^^^-M-(E__) = , E = E^ T* E__,

^ * ( E )  =  ^ ( E _ )  ^  .

Since 0 = - €  and since ^  is arbitrary, we conclude that
y * l * ( E )  =  0 ,

1 .2 9 If E = y  -axis, then^^ *(E) = 0,
Proof: Give Let E j be the non-negative y  -axis. Let E_

be the negative y  -axis. Let R = R ^  ' ^ 2 ~ ® — »

■■■' :  '■* "= . c * " '
for each n; A(R^) = *(E^ ) = ^  .

Similarly it can be seen that ,
E = E ^  +  E__ *(E) = yi4, ^  6  ,
Since 0 = ̂ «*(E) = HF and 4f is arbitrary, we conclude t h a t * ( E )  = 0,
1.30 If L is a line parallel to either the x or y axis, then^4^*(L) = 0 

Proof: By a translation of axes, L can be transformed into an axis
and can thus be seen to have exterior measure 0,

1 .3 1 If L is a line segment, then^y< *(L) = 0.
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Proof: Case 1* If L has slope equal to either 0 or ^  , then it

is a subset of a line M parallel to an axis. yUL *(M) = *(l) =
y66*(M). y ^ i X )  - 0.

Case 2. The slope of L is positive but finite. Let p = (a,c) 
and q = (b,d) be the endpoints of L, where a <  b, c <  d, (Note: This will
exclude degenerate line segments consisting of either no points or a single 
point. An empty segment of course has exterior measure 0 and a single point 
segment may be included in Case 1 above).

Consider ~ ^a,b;c,d.* I<—q ^ R ^ .  L — (L—q ) ^  q, *(L) —
*(4^ ^  mit = y M  *(L).

y/6*(L) - y U  *(L-q). A(R^) = (b-a) (d-c).
Consider Rg; = ̂ a, Igf" ;C, and Rgg = R ^ i j .

Rpl • R22 ~ 0* L—q R21^ R22*
A(R21*^R22) = A(R2i )^A(R22) = A(Ri).

Consider R^i — R

A(Rl).

•4- ■* 4 . 7 ^ '  #  ’

L-q C  « 3 1 +  «32+ « 3 3 +  V  

^i* ^3 j - 0 If 1 0 j
A(R3i-h R32+  R33+  R^^) = A(R3i)4" A(R3g) +  ACR33)-♦•A(R3^) = A(Ri)/^ 
Continuing this process indefinitely, we find that we can cover L-q with a 

sequence of oriented half-open rectangles of arbitrarily small total area* 
We conclude, therefore, t h a t ■**•(L-q) = ^ — ̂ 6&*(L),

Case 3 . The slope of L is negative but finite. Let p - (a,d), 
q = (b,c) be the endpoints of L, where a ̂  b, c ^  d.

Again let R^ = Ra,b;c,d^ A(R^) = (b-a) (d-c).
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L-(p^ q) C  R^. y £ ^ * ( p 4 - q )  = 0.

^y(*(lr.(p "f q)) + ^ - * ( p ' f  q) =^^-*KL-(p4-q))
L-(p-#* q) C: L. % ^  *(L- (p4- q ) ) ^ y W  *(L) 
y t  ̂ (L) :y«<L#(L-(p4" q))

Hji = j  î «22 “ •

^21 * ^22 ” 0* If-(p^ q) ^21"^ ̂ 22 
A(R2 1 -^R22) = A(R2i)'^ 6^832) = A(%i) / 2

Again, as before, we can by continuing this process cover L-(p ̂  q)
with a sequence of oriented half-open rectangles of arbitrarily small 
total area. We conclude t h a t = 0.
1.32 If L is any line, then = 0

Proof: L = jC  li> where each Iĵ  is a half-open line segment of
d a /

unit of length and 1^ ' 1. = 0 if i / j.
^ * ( L )  - JJl K  Z  li) = = 0

1.33 Definition. A set E is said to be a Legesgue measurable set if, for 
every set A we have
y6t*(A) -^ y X ^ ( A  • E ) + ^  *(A.ëE).
Henceforth, the word "measurable" will be understood to mean "Lebesgue 
measurable
1.34 For any two sets A and E , we have
y U  ^ H k  • E) *(A • E).

Proof : A - A » E * i # ^ A » 0 E
from 1.24^4A.*(A) • E ) *(A ' @  E ) .

1.35 E is a measurable set if and only if, for every set A, we have 
yt**(A) = ^ H k  • E) *(A 6  E).
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Proof: 1, If E is a measurable set, then for every set A,

*(A) *(A • E ) i^ ^ - K A  ' 6  E), h e n c e * E) 4 “

• S  E).
2. Suppose for every set A ^ g X  ̂ (̂A) '*''(A • E) ̂

yiA H A  * 0  E).
■ A

Then from 1,34 y U  H A )  - y l A H A  * E) '■^yt^HA E).
• * y U  *(A) = ^ M a  • E ) - 4 ^  *(A ' g  E).

is a measurable set,
1.36 0 is a measurable set.

Proof: Let A be any set. We must show that
y U  H a ) ̂ y U H A  • 0) -îKa " 6  0).

^(A • 0) = ^ H 0 ) = 0, y C X  *(A - g  0) = ^ * ( A ) .
y^-*KA) -yU^iA • 0 ) ^ ^  ^(A ' g  0) =ytC*(A).
1.37 If E is such that^^^^-^^(E) = 0, then E is a measurable set.

Proof: Let A be any set. We must show that
^  H a ) H a • E)iyyi (a • ^ e )
^yiJi^'iA * E) - 0, since A • E C! E, and ^ ^  •*f’(A • E) ^̂ (E) = 0.

A ' g  E C A , / ^ ^ * ( A  '(S E) ? y*#(A).
Hence, it follows that

i^A) i^A • E)4yt4, H a * ^ E ) .
1.38 If E is a measurable set, then<5 E is a measurable set.

Proof: Let A be any set. We must show that yJl ̂ { A ) ^ y ^  A E)
yUL H a «fig E). But E is a measurable set,
5o, ŷ HA)̂ yUHA . E) - ^ ^ ( A  ' g  E).
E = g  6 E . Ha) ŷU H a  • C  6  E ) . ^ ^  *(A • g  e) .
1.39 R2 is a measurable set

Proof: 0 is measurable. ^ 0  - R2 is measurable.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



—18—
l.bO If E and F are measurable sets, then E 4"F is a measurable set.

Proof: Let A be any set. We shall show that
y ^ X A )  -(fe-^F))-T^^ *(A (Ef.F)).

Since E is measurable, *(A * &  E)
Since F is measurable,

*(A • E) = ^ * ( A  • E • F ) - ^ ^ ^ K A  - E *(gF)

*(A • Ô E )  *(A • (2 E • F) Ô  E • @ F )
, *(A) = *(A ' E . F) ^KA ' E - 6  F) *(A • 0  E • F)

ytt *(A . 8  E . ̂  F).
Since E is measurable, 

y U H k  • (E-f-F)) = ^ ^ K A ( E y ‘F) . E ) > ^ ^ * ( A ( E - ^  F) • 8  E)
Since F is measurable, 

y U  *(A • (E-f F) • E) =^*(A(E</-F) • E • F) '^^i^(A(E -^F) • E • 8  F); 
yC{ *(A(E f-F) • 8  E) = ^ ^ * ( A ( E ^  F) (J E • F) ^KA(E f" F) 8  E * Ô  F) ;

^f(A(E -f F)) F) • E • F) - j ^ ^ K A ( E ^  F) * E • 8  F) -f*
y U  *(A(E ̂  F) . & E  * F) j;^-^(A(E F) • 8  E - ^ F ) .
a (e *^ f ) * e • f = a • e • f

A(E'^F) • E - 8  F = A • E - (J Fj A ( E ^  F ) » 8 E - F  = A « 8 e . F
A(E V*F) . 8 e • Ô  F = 0
/#ytU*(A(E -#-F)) - y U H k  . E . *(A . E « 8  F)'/^->KA ' $ E  . F)

/ , y U  ^(A) K A ( E ^ F ) ) - ^ ^ K A  ' 8  E - 8  F) = y c iKA(E f  f)) 4"
*(A ' 8  (E^F)).

1*41 If E,,E2, ...,E are measurable sets, then Ej_ is a measurable
i » /set.

Proof: By induction on n.
1, The conclusion is trivial of n = 1. By the preceding con

clusion, it is true for n = 2,
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2, Assume the conclusion is true for n ~ k. Then if 

E^, E2,...»Ek measurable Eĵ  is measurable.

If E, . T is measurable, then the truth of the assertion for n = 2 im-
k

plies that J2L E. ̂  ^  ̂  i is measurable, i.e. ^  Ê  is meas-W   ̂ K-f-X Ju7
urable./* by induction the conclusion is true for all values of n.
1.42 If E and F are measurable sets, then E * F is a measurable set. 

Proof: ^  (E * F) = €  E^NfF, € e  a n d F are measurable by
1.38. 4^ E ^ 6  F is measurable. ^  (E * F) is measurable. This
implies (E ' F) = E • F is measurable,
1.43 If E^,Eg,.. .,E^ are measurable sets, then E^ is a measur-

i*/able set•
Proof: Induction on n.

1. Trivial for n = 1. True for n = 2 by 1.42.
^ 2, Assume true for n - k. Then, if E^,Eg,...,E^ are measurable,

Ei is measurable. If E. .  ̂ is measurable, • E^ , ^ is meas-

urable, i.e. J g  Eĵ  is measurable. Thus, the conclusion is true for 

all values of n,
1.44 If E and F are measurable sets, then E-F is a measurable set. 

Proof: E-F = E - 6  F which is measurable.
1.45 If i E^l is a sequence of measurable sets, such that • Eĵ  - 0

AO
if m 0 n, then E_ is a measurable set,A'-/ ^  ^

Proof: We must show that if A is any set, then ju.*(A) =
^  ^  a,^  E ^ ) - / ^ * ( A  • 6  ^  \ ) ,  i.e.^i^(A) *(A • Q) -f

* ^ Q ) ,  where Q = E^.
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If and are measurable sets, then for every set A,

^  *(A(E3̂ T(̂  Eg)) = .  E 2 ) - ^ ^ * ( A  • E^ G  Eg) V -
*(A * ^Ej^ • Eg), an equation was developed as part of the proof

of 1.40. But ELĵ * Eg = 0, .1 A • E]L • ®2 - 0*
HenceyAf*(A(E^f^ E^)) = y ^ * ( A  ' E]_).^ytt *(A • Eg)
We assert next that
yg<*(A(Ei^ Egf-...+E^)) *(A • El) *(A • Eg)*^...^-

' \ )

This statement is true for n = 1 and n = 2.
Suppose it is true for n = k. Then
y 6t*(A(EiV'Eg'f-..."#̂ Ê )̂) = y u , H k  • E i ) > j ^ * ( A  • Eg)'6...4"yL4*(A • E^) 
^*(A(Ei^E2T^...-#-B^*^Ej^^i)) Hk(^i^E2i-.-,'^hE^)>hyS^ *(A * E^^i)
y U ^ H k  • E]̂  ) l ^ ^  *(A • Eg)f^...'fy&t *(A • E k ) - J ^  *(A . Ei^^-i)
Thus, the assertion is true,
yU*ik) =^4^(A(Eif Eg'#"... f'%))'fyt4 *(A * Ô  (E^f-Eg^^.. ,-f E„j)) =

^ / c H k  * E^)-/yt *(A - C  (Ei^Eg-^,..^%)) =
^  ip ^

^ ^ y u M A  • En)-iyU H k  • <S( ^  E^)), since %  E^ E^

8 (  \ )  O  8  ( X

But l^Hk • I^) = lim %  >^A** E_)
#»«// ^  "

>  ^  £'' y^*(A) = *(A • E^)-f>4C*(A • C (  Z .  E^))
J C H k  • X  E^) = y ^ X A  . E i ) - r ^ * ( A  . Eg)+.,..

By 1.27 J ^ H k  X  % )  = *(A . En)
HJr/ ^  ^

^  iA V
JI^Hk) = (A • X  E n ) 4 ^  (A • E^)^
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1.46 If J is a sequence of measurable sets, then 22 is a

measurable set.
Proof:
»o
Z  E^ % E^y*(E2 - Ei)f (E3 - (E]f E2))^(E4 - (E^^V-Eg-f-E^))^ ...

■^(E^ - (E^V-E^ ...-#'E^_^))'f-...
Each of the sets in the right-hand member of the above equation is 

measurable. Furthermore, each of the sets in the sum is disjoint with the 
other sets. fro

From the preceding conclusion, we see that is a measurable
set.

1.47 If ^ i s  a sequence of measurable sets, then is a
measurable set.

Proof; 6  E^ is measurable for each n.
^  00 fiC

 ̂22 6 ^  is measurable by 1,46. ^(Sê E^ = E^

/, S  “ // E is measurable.

1.48 If R ̂  7^ then R is a measurable set.

y
Proof: Let E be any set. We must show that^^*(E) =

*(E ‘ R) i:-(E • Ô  R).
Case 1. If i*̂ (E) ^ , the conclusion is immediate.
Case 2. Suppose *(E) is finite. Give 6 > 0 .  There is a

covering ) Sj j , such that E CZ  ̂  Sj, S j ^ ^ f o r  each j and

X a (S.) by 1.14.
J ^
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E * R ^  Sj • R. Sj ' R^^for each j from 1.2.
J-/ AO

E * 5  R C  jlC Sj « S  R. From 1.3 Sj " g  R =:Sj - R = Tjf" Uj"^Vj4-Wj, 

where Tj,Uj,Vj,Wj€^and Tj,Uj,Vj,Wj are all disjoint.
ÔÔ AO ^  ^

E - S  R

Sj = Sj « R-^j - 0  R = Sj . R-fTjf'Uj+VjV'Wj ,
The sets in the sum on the right of the above equation are disjoint, 

by 1.7, A(Sj) = A(Sj • R)'#-A(Tj)-^A(Uj)-^A(Vj)^A(Wj).

^  *(E • R) = ^  A(S. • R) by 1.19 and 1.20 .
_  J=/ ̂   ̂ ^  ^  . =

R) r s .  A(Tj)-^ A(U.) A(Vj) ^  A(wJ .
3=-'  ̂ J=*/ 40 o.

<• R ) T * ^ * ( E  - S r )'^ A(S. • R)f-,27 A(T.) - ^ X a (U.)-^
.. ^  J * '  3 "  J"'

. Z  A(VJ -^ 2 ” A(W,) = ^  (A(S.-R>y-A(T,)+A(U,KA(Vi)y-A(WO) =J j _ /  J J J J J J

j Z  A(Sj) < ^ * ( E ) - ^ € .

-*«We conclude that
-K-(E) î (E • R) M e ‘6  R).

1.49 If R */%nd if S is such that R® C  S €%R, then S is a measurable set 
a n d ^ M R ° )  = ^ M R )  M R )  -/U. Ms).

Proof: R is a closed oriented rectangle.
Let s^ “ left side of R , ^ *  *^®1^ = 0 by 1.31.
Let S2‘= bottom side of R, ” 0*
Let 8^ : right side of R , * ( s ^ )  = o.
Let s^ - top side of R, = 0,
R°^Sj^'^S2 - R. R® is measurable.
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- y M  *(R°)

R O «  R, •*̂ (R®)‘= ^  *(R) , * ^ * ( R ® )  =yti *(R) .
R - R is measurable.
y # t  *(R) *(R) , ^ ^ * ( s ^ )  - y i U H n ) ,

*(R) - ^ * ( R ) .  

y < * ( R )  = y U H n )

\ y U H B P )  = ^ * ( R )  ÿ / € * ( R )
R°<r S C  R
S - R°V“B, v^ereyW, *(B) = 0, # # S is measurable, 
y<^ *(S) ^  ̂ * ( R ° )  = y ^  *(R°)
’=-"yd<*(R°)^ y^*(S). ^ ^ * ( R ° )  = =y(<*(R)

R C  R

But

1.50 If G is any open set, ther^here is a countable sequence of open 
squares, ^ n ^  , such that G =

/»■/
Proof: Let%A)e the collection of all open squares having centers

with both coordinates rational and half-side length equal to ̂  where n is a 
positive integer. V  is a countable collection.

We shall show G = ^ ^
sexr
S<SQ>

1. Suppose p 6  ̂  S. Then p ^  Sq for some set S , where
î î y

Sq CT G, and Sq ^'Z/* .

Hence, p €  G, G ^  S
S^'ZT 
S < Z ^

2, Suppose p #  G. There exists l > ^ y ^ O  such that N ( p , € ) ^ G .
Let q be a point having rational coordinates such that d (p,q) <  ^

^  à G  ^Let n be such that ^  ^  •
7  2
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Let S be the square having q as center and JJ* as half-side length, 
S e t T ,  d(p,q) < 7^  .

m €  S. Let r #  S. Then d(q,r) <  ^  ? ,

d(p,q)'<  ?  . r «  N(p, 4  )
^  ^  2

r C  G. -Z S C  G. G C Z  T  8
X € VG

Hence, G - ^
S e ^

1.51 In view of the preceding conclusion, we immediately conclude that 
every open set is measurable.

1.52 Every closed set is measurable,

1.53 Definition. The class of Borel sets in the plane is the smallest 
class of sets containing the open sets and closed under countable sums and 
countable products. Let denote this class,

1.54 If E ( 5 then E is a measurable set.

To summarize then,
1.55 Definition, Let denote the collection of all Lebesgue measurable 
sets.

1,56 If E then $ E  ,

1.57 If Ejj^^for each n, then ^  ® n ^ ^ a n d  //~E^ ,
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1.58 If E is open or if E is closed, then E

1.59 I f = 0, then E 6 / ^  Also if y«L*(E) = 0, and F O  E, 
then •

1.60 Definition. If E€3C> then we defin^^(E) =^M»*(E) and^^(E) 
is called the Lebesgue measure of E.

1.61 If e CX^, then^(E) ^ 0, a n d ^ ( E )  = f  ̂  .

1.62 If E ^ A f a n d  if and if E C  F, then^(E) (F)

1.63 If ̂ E ^  is a sequence of disjoint sets, such that E^6 %T for each n, 

t h e n ^ (  2T (%)»

Proof: From the proof of 1.45»if A is any set 
>t*(A) = " E n ) V ^ * ( A  ' ^ (  En)).

Let A = S ’ En- E n *  Z  E^ = E^

r i Z  E ^ )  “  * ( E ^ )  ( 0 )  ”  »

But, we always have *( «ZT E^) = Z ^ ^ ( E n )  • (1.27).
<k> ^  ^

Z  E^) = ^ ^ * ( E n )  a n < ^  ( 2  ^n) = Z ^ ( E n )

1.64 Definition. A sequence of sets^Aj^^ is called an increasing sequence 
if, for each n, A ^ C T A ^ ^  2.,

1.65 Definition. A sequence of sets ^ A ^  is called a decreasing sequence

h 1-
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1.66 is an increasing sequence of measurable sets, then

( -5* An) = l i m ^ ( A ^ )

Proof: Let = A^; B2 = A2-A1 ; B^ = A^-CA^"^ A2); .
Bn ~ An—( A^^ • • • ̂ A ^ —% ) j * • •
Bjj C  A^ for each n. B^ is a measurable set for each n from 1.41 and 1.44.

B„ • B„ = 0, if m n. ^  ^  A„ .
*- ^  ^ - /  A.

From 1.63 5 ^ ( B n )  =yW ( Z  B^) = M  C 2  A„); =
'  A « /  '  • » /  *»»/

U m  2{""(Bn).

2 ^ ( B „ )  2  B^).
/>•/ A * /
We shall show that ^  B^ = Az

Y  f ,
%

1. Suppose Xq CT ^  ®n

^  ®n> ^ “ k; An, n = k. A n d  A^
Xg €  Ajj. and ^  A^.

2. Suppose Xq ^  A^. Let n be the smallest integer such that
x^é A^, n = k. ^  ^

a. If n = 1, then x^€ A, = B. , Xq €  B. , Xq ^ ^ *  B^ and A ^ d B ^ .
>••/ ^5/

b. If n >  1, then Xq  ̂  A^, Xq ^  Aĵ  if m ̂  n
Xo 6  Bnî Xq €  Bn and A^ O  ̂  B^.

k  »*=/
( X  Bn) (A^). lim ^ ^ ( B n )  = l i ^  (Â ),

^  ( Z  An) = liin^Aj^).

1.67 If ̂ A^^ is a decreasing sequence of measurable sets, and if 

t h e n ^ C  A^) = liny^ (An)-
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Proof ; Let Bn = A;l * ̂  — A^^-A^ for each n.
Bn is a measurable set, for each n.

1* ^  %  * ®  A n ^  A]_ ' < 2 An^l = 1.
^ Bn^ is an increasing sequence of measurable sets,
From 1 , 6 6 ^  ( 2  Bn) = l i m ^  (B^). A^ = A^ * <§ An"/" A^ • An = Bn"^An .

^ ( A ^ )  ÿ ^ < ( B ^ ) ÿ 6Z(A^) from 1 .6̂ ( A i )  j^(B^) ^  (An) .
AO 6# ^  A# A#

Ai = Ai • €  I T  An-Y-A]̂  • ^  An = A% 2 ^  An ’̂ 77“ An = Z  A^
^  #»3/ **=/ tf*/ A»/^  #» ^  <o
2  B^f'/rAj^.,^(A^) ÿtf (/7"A^) from 1.63.

^ < A i )  B„) =/'(^^A„).
g  ^

>y<(An) y ( A i )  - liyt (B^) yt(A^) y t (  B^) 77 A^).lim

1.68 Definition. If is a sequence of sets, we define the limit
inferior (lim inf) of ̂ a s  follows; ^

Let = y f  FL. Then lim inf En “ ^  C^.

It may be noticed that the limit inferior of ̂ E ^  is the set of all points 
which belong to all but a finite number of the sets E^.

1.69 Definition. If ̂ E^^ is a sequence of sets, we define the limit
superior (lim sup) of ^ E ^  as follows;

V  -n?Let B^ = 2L En* Then lim sup En = ^  Bĵ..
M ffMf

It may be noticed that the limit superior of ^E^is the set of all points 
which belong to En for infinitely many values of n.
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1.70 If is a sequence of measurable sets, theryK (lira inf E^)
lim
if

Proof Î lim inf E„ = ^  C^, where (V = VJC E«

limywCCj.) =><( S  a  ) = ^ ( l i m  inf E_) by 1.66.

= ^ ( C k )  by 1,20. . : lim inf^(E^^) = lim inf^(Cj^).

lim infy^(En) = linyM (0^) inf E^).
*o

1.71 If ̂ Ej^^ is a sequence of measurable sets such that E^) ̂  ̂ ^  #»«/t h e n ^  (lim sup EL) = lim s u p ^  (En).
^  A#

Proof: From 1.20y/k (%;) = y&t(B^), where = <2ET E^.
' AaX"

lim supik (Elf) = lim sup (B. ) =

L ̂ (Bk) =y<( t r  Bk) ~Jji d i m  sup En) from 1.67.
i T  '  whm/

lim 
4r-^*o

1.72 If E is measurable,y^(E) and if é > 0 ,  then there exists an
open set G such that G Z> E and such thaty^(G) ̂ £4(B) .

Proof: (E) *(E). ^
There exists such that R ^ ^ ^ f o r  each n, E C ] ^ R ^

and such that ^  A(Rn) ■**̂ (E)+—  = /X (E) from 1.14#
>!«/ M e /  ^  2

Let / Sjj\ be a sequence of open rectangle such that Rn C* for each n
and such that ^
Let G = 2 "  Sn. E C G,yM(G) = Z/( X S^)'^

^  / ► « /  ^  < Ma/
e
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CHAPTER II
THE LEBESGUE INTEGRAL AND LEBESGUE MEASURABLE AND SÜMMABLE

FUNCTIONS

Suppose that f(p) is a real-valued function defined on a measurable 
set E of finite measure. Suppose further that there exist numbers m and
M such that p ̂  E implies m - f(p) ^  M,

2.1 Definition, A measurable partition P of E means a finite collection 
of disjoint measurable sets E^,E2, ,.,,E^ such that E = E^T^Egi^ .., ̂ E ^ . 
Such a partition will be denoted by P C^l»^2' ' ' •

2.2 Definition, If P £ex,E2, .,, ,EjQ is a measurable partition of E,
let M-» = l.u.b. f(p). Let = l,u,b. f(p),..,, M = l,u,b, f(p).

Let S(P) = = T  «lyW (%).

S(P) is called the upper sum for the partition P.
Let = g.l.b, f(p), let m2 = g,l,b, f(p),..,, let m^ = g,l,b. f(p)

«Let s(P) - m^y{ (Eĵ ). s(P) is called the lower sum for the
partition P.

2.3 If P ^K,E 2,...,E^ is a measurable partition of E, 
if S(P) = ^  Mi^(Ei)> s(P) - m^^(Ej^), then

^  <my^(E) = s(P) = S(P) = KyU(E),

<  <  <Proof: m = m^ = = M for each i.
M. = l.u.b, f(p) and nu = g.l.b, f(p). For each i, Mĵ  - m. ,

-29-
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; . . X  - ( t  (%).

But for each i, ^  ^  M ^  (Ê ) = M^(E)

and ny.yM(%,) = ^  m^(E^) = m^(E).
ĝ/' m ^ ( E ) =  s(P) = S(P) = M^(E).

2.4 Definition, The lower Lebesgue integral of f(p) on E is denoted
by y**f(p) (W . It is defined as follows.

^^f(p)d^ = l.u.b.s(P) vrfaere l.u.b. is taken with respect to all meas-
?  ^  r  <urable partitions P of E. (E) = y  f(p)^i* = M^(E).

S

2.5 Definition, The upper Lebesgue integral of f(p) on E is denoted
by ̂  • It is defined as follows.

meas-^^^f(p)^ - g.l.b.S(P) where g.l.b. is taken with respect to all 
urable partitions P of E. (E) ̂  ^ M^^(E).

2.6 Suppose that P .. .,2,̂  and Q ** measurable
partitions of E. Then Q is a refinement of P if each is a subset of 
some Ej.

2.7 If Q is a refinement of P, then S(Q) = S(P) and s(Q) = s(P), 
Proof: E. = ^  Fj_ for each j.

1<(E.) = for each j.
8 = 9  _

If F^C Ej, then Mj_ = l.u.b.f(p) = l.u.b.f(p) ^
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g.l.b.f(p) ^  g.l.b.f(p)

S(P) = ^  M./4ÇE.), where = l.u.b.f(p)

S(Q) = j/ %><4 (Fi)f where = l.u.b.f(p)

(F-Î ) - X  (Ft ) = Mi ^  (Pi ) = Mi X  (Ei ) for each j .•  Miy|4 (Fĵ ) - Mj M  (Fi) = Mi ^  M  (Fi ) =
9 =̂ C r 2L ̂
S(Q) - (F^) ~

s(p) = S '  m. X(E.), where m. = g.l.b.f(p)J
s(Q) - niĵ V(Fj^), where mi = g.l.b.f(p)

i»/ /  P ^ F i

(Ej) = S(P)

  ÉJ (Fj) = mj^(FjL) = Hii - m. X(E.) for each j,

s(Q) - nij^^(Ej) - s(P)

ij
2.8 Suppose P Qs^^jEg, . .. ,EjJJ and Q F2, . . * are measurable par
titions of E. Then there is a partition R of E such that R is a refine
ment of P and a refinement of Q.

Proof: Let R be the collection of sets
Ej * F^^j — 1,2, ...^n, i — 1,2,...,m. E^ • Fj_^T E^, Ej • F Fĵ .
Each set Ej • Fĵ  is measurable since both Ej and F^ are measurable. Fî
the dis joint ne 83 of the sets F̂  ̂and the sets Ej, we see that (Ej «F^) • (E^*F^)
0, unless j = k and 1 = 1 .

ji. E.-Fi = E-i- ^  Fi = E. . E = E.. >  >  E,*Fi = ^  E. = E
im/  ̂  ̂  ̂  ̂ j "  "

Thus we see that R is a measurable partition of E and is a refinement 
of both P and Q,

"om
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2.9 For every measurable partition P of E, f  f (p)c^ *= S(P)
>  Æ*

and (p)d^ - s(P), The proof of this assertion is immediate from the 

definitions of the upper and lower Lebesgue integrals, respectively.

2.10 lf^!>0, there is a measurable partition P^ of E such that

S(Pjl) ^ ^ ^ f  (p)^#4 ̂ ^  . Also, if €^0, there is a measurable partition 

P2 such that s(Pg) ^ ^ f  ^<5, Both these conclusions follow directly

from definition.

2^11 ^  f ( p ) d ^ ^  , / * f ( p ) ^  .

/
Proof: Deny the conclusion. Suppose

^  , where f  ̂  0. There is a measurable 

partition P such that s(P-i)^ _ ^ ^ ( p ) d y M A l s o ,  there is a meas-
1 ^  2

urable partition Pg such that s ( P g ) ^ f  — —  . Let R be a common

refinement of P^ and Pg, Then S(R) = SCP^) and s(R) = s(Pg). But we notice 
that S(P]^)< s(Pg). y. S(R) <  s(R).
This, of course, is a contradiction and we conclude that

2.12 Definition. With the above restrictions on f(p) and E, if

f(p)d^ = f (p)d^ , then we say that f(p) is Lebesgue integrable

F  f
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on E, and f (p)<̂ d>(̂  denotes the common value of f(p)d^^ and

f(p)^WK- &nd is called the Lebesgue integral of f(p) on E. We

note that (E) = ^  f (p)^#& = My#((E).

2.13 If m - f(p) = M and if E = E ^ ^ ^ [ a ^  x ^ b ,  c = d j , i.e.
E is a closed rectangle, and if f(p) is Riemann integrable on E, then 
f(p) is Lebesgue integrable on E and (R) f(p)dA = (L)^^ f(p)d(ftC »

where ( R ) f ( p ) d A  denotes the Riemann integral of f(p) on E and 
2?"

(L) f(p)^4i denotes the Lebesgue integral of f(p) on E.
^  Proof: Suppose f(p) is Riemann integrable on E.

Then (R) f(p)dA - (R) f(p)dA. Give 5 ^ 0 .
7T e

There is a Riemann partition of E (i.e. Pĵ  is a partition of E into 
closed rectangles two of which may have a side in common) such that

s(P2_) ̂  ( R ) f ( p ) d A  - Ê  • To form the corresponding Lebesgue meas

urable partition Q^, we remove from any closed rectangle in P̂  ̂its upper 
and/or right sides, depending upon vAiether the rectangle is bordered above 
or on the right by another rectangle. This will give a disjoint measurable 

partition of E. If P̂  ̂= P^ ' * *'^nl IT Q̂ _ = [ S^fSg,... ,

then for each i and s(P^) = iriĵ A(R̂ ^̂

m = g.l.b.f(p), s (Qt ) = Ti/< (Si), = g.l.b.f(p)

But A(R^) (R^) (Sĵ ) and inĵ = 1^ for each i. (1,19, 1.23)

.% 8(Pi) = s(Qi) = (L) J  f ( p ) ^  .
? "
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(r) f(p)dA - 6 ^  (L) f(p)dx^ • We condlude that

(R) y "  f ( p ) ^  = f ( p ) ^ .

As before we can find a Riemann partition of E

such that S(P«) ̂  /  f(p)dA^^, There exists a corresponding Lebesgue
J F

measurable partition Q2(Û j9U2j, • •.,U^) of E formed as before, for

each i. S(P^) = ^  M,ACT. ), M. = l,u.b.f(p) .
x«/

SCQg) = 'pi Li = l.u.b.f(p), A(Ti) (Ti) ^ ( U _ )

and Li - M. for each i. Hence, (l) ̂  f(p)d^ = S(Q2) = ^(^2^
—  —  ^  ^

( L ) f  (p)^y^ ̂ ( R )j  f(p)dA , We conclude that

(L) y  f(p)d/t = (R) f (p)dA.

Combining the above inequalities (R) y ^  f(p)dA =
—  ^gr —

(4) r  f ( p ) d M  = (L) /  f(p)<^ ^  (R) f(p)dA,

^  ^  T  ^  r  FBut w y  f(p)dA = (R) y  f(p)dA. . c  (X) y  f ( p > ^  = (l) y  f C p ) ^
J F  ^

We conclude that f(p) is Lebesgue integrable on E and

(L) y  = (R) f(p)dA.

2.14 Definition. Let E be a measurable set, and let f(p) be a function 
defined on E, f(p) is said to be a measurable function on E, if for every 
real number %, the set of points p of E for which f(p)>^ is a measurable 
set.
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2.15 Definition. Suppose f(p) is defined on E. If P q €  E, then we say 
that f(p) is continuous at p^ if, for every 0, there is a such
that if d(p,PoXj*, and if p C  E then |f(p) - f(p^) .

2.16 If f(p) is a continuous function on a measurable set E, then f(p) 
is a measurable function on E.

Proof: Let a be a real number. Let Ê  ̂be the set of points p in E
for which f(p)> a. Suppose Po €  Ê .̂ Then p^ ̂  E and f(p̂ )̂ a. Let
f(pQ)-a = 6-^0. There is a ^ > 0  such that if d(p,Po)<^ and p €  E, then 
jf(p)-f(pQ)^<6 *j i.e. f (Pq)-^ f (pXT . But f (p^)- €  = a.

Hence if d C p j P ^ x S  and p E, then f(p)^ a. Let Gp^ = N(pQ,iT ).
Gp^ is an open set and p^ 4S Gpo*

^Po'^^^a* Po ̂  ^  Po C  Gp^.ECE^,

Ea C  X  Gp - E C e^. /- Ea = X  G -E = E- X  G •

But the set on the right is a measurable set, (1,42, 1.51)^ We conclude 
that is measurable. I.e. that f(p) is a measurable function.

2.17 Given f(p) on a measurable set E. Let N be the set of points of E 
where f(p) is discontinuous. Supposey^(N) = 0. Then f(p) is a measurable 
function on E.

Proof: Let Ea be the set of points p #  E for which f(p) ̂  a. Consider
E-N. Let Na - N'E^. Let Ha = E&-Na. . I ^a-H^ = N. Let p^'^ Ha-
Then p^ g  Ea-Na. Hence p^g E, f (pg)> a. p ^ ^  N. . f(p) is continuous
at Pçj. Let f (Po)-a = ^  >0. There is a > 0 such that if dCpjP^) <  S'

and if p ̂  E, then ̂ f (p)-f ( p ^ ) , i.e.
f(p)> a. Let Gp^ = N(po, £: ). p ^ ^ G p ^ - E O E a .
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Let M = ^  G -E. Ha = X  Po =  ^ G ^ - E  = M C E ^ .
b*^a nfi^a K * H a

H a ^  M CEa. Ea-MCEa-Ha " N a C  N.
(N) - 0, ^(N) “ 0 . *(Ea-M) = 0 . Ea-M is measurable.

(1.37, 1.44)» M is measurable. Ea - M Y" (Eĝ -M). , « Ea is measurable,

2.18 Definition.
Let Ep [ p 6  E, f(p) > a

f(p)>  a.
Let Ep ĵ p €  E, f(p) ” a

f(p) = a.
Let Ep ̂ p  €  E, f(p)-^ a

f(p)< a.
Let Ep ̂ p  f  E, f (p) ̂  a

f(p)*= a.

which

which

which

2.19 If f(p) is a measurable function on a measurable set E, then for every 
a, the set Epjĵ p C  E, f(p) ^  a] is a measurable set.

Proof: Let m be a positive integer. We shall show that
^  _ - . . . on the

M'
7 7 ’e^ r p f  E, f(p)> a-1 1  “ Ehf p 6  E, f(p) ^ J  . The setP He J

left is a countable product of measurable sets and hence is measurable. (1.47) 
Suppose Pq€ Ep £p €  E, f(p) ̂  a] , i.e. p^ é  E, f(po) - a.

For every m, f (po) >  a-1 . p^ €  Ep f p ^E, f(p) .> for each

or Pq ^  ^ * E p  Fpfi E, f(p)> a - l l  . Ep£p€E, f (p) ̂  ^ 4 7 ^  [^pf E^f(p)^a-^

Suppose P o ^  if~ E_ F p ë  E, f (p) >  a-ll for each m./way m J  ^  ^  ?
Then p@ 6  E, f(p^)> a - ^  for each m. . f(p^) = a, Po^^p f (p)sa^ .
^ E p  |p £e, f ( p ) > a  - i j ^ E p  [ p € e ,  f(p)^ Q  .
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E, f ( p »  = Ep[^p © E ,  f(p) = a] .

This implies that Ep]^p€ E, f (p) ^  ajl is a measurable set.

2.20 If f(p) is a measurable function on a measurable set E, then for every 
a, the set EpQ^p6* E, f(p) = J  is a measurable set.

Proof: We shall show that
E p £ p € ‘ E, f(p) t  aj = E - Ô  E p £ p €  E, f (p)> a]]
The set on the right is the product of a measurable set and the complement
of a measurable set (2.14) and hence is measurable.

Suppose Po 6  Ep £p 6  E, f(p) ̂  aj , P o S  E, f(p^) = a,
P o /  E p [ p #  E, f(p)> a] . P o t  Ô  Ep fp «  E, f(p)> a^

P. $  E. g  Ep [p ff E, f(p) >  a j  .
B p p p e  E, f(p)^ a J C E -  G  E p f p é  E, f(p)> a!J 

Suppose pQ ̂  E‘ <§ Ep[^p€E, f(p)> J
P o ^  E, Po Ep[p€- E, f(p)> J  . f(Po) = a.

P o^ E p C p ^  f(p) =
E* (S Ep [ p  €  E, f(p)> aj C  E p £ p € E ,  f(p) = a] ,

E* 0  E p [ p S  E, f(p) >  a ]  = Ep £ p €  E, f(p) = a] .
This implies that Ep Jjp ̂  E, f (p) ̂  is a measurable set.

2.21 If f(p) is a measurable function on a measurable set E, then for 
every real number a the set Ep ĵ p ̂  E, f (p) ̂  a ^  is measurable.

Proof: In an argument similar to that used in the preceding conclu

sion we can show that Ep ̂ p  ̂  E, f(p)^a^ = E* ®p Ij^ ̂  f (p) ̂  a^ .
The set on the right is again seen to be measurable. (2.19)
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2.22 If f(p) is a measurable function on a measurable set E, then
Ep C  E, a = f(p)<. b^ is a measurable set.

Proof; We notice that 
Ep\^p E, a t  f (p)< bj = Ep Q, «  E, f (p) = aJ -Ep [̂ p ̂  E, f (p) <  bj .
The set on the right is measurable. (2.19, 2.21)

2.23 If f(p) is a measurable function on a measurable set E , £^(E) ̂-*#*60. 
and if m = f(p)< M, then f(p) is Lebesgue integrable on E.

Proof: We must show that ^^f(p)d^ = y  f(p)d^ . Give €  0,

Choose an integer N such that ‘ may suppose that M and m
fV

are integers.
Let m, Z  = my»^ , S  = m-f*^,...,? - m-fiC

2  = M. Let %  = Epfpfi E, is
hf *- 'J

i = 1,..., (M-m)N. Eĵ  is a measurable set for each i. (2.22).

E-«Ej = 0 if i ^ j. E = ^  Eĵ . Thus, we have a measurable

partition P(E%,... ,E(M_m)N) E. S(P) = (E^),
is/ ^

where = l.u.b. f(p).

s(P) - ™i 1<C (%.)f where mĵ  - g.l.b. f(p).

mi = * i-l A s(P) % Z. 2 i-l^(Ei). PL=Ii
S(p) = %  ,  ! > « ( % ) .  S(P)-s(P) = ^  (*.-? )yW(Bi) =

2 I ^ ^ / » ( E j )̂ = —  ^  ></(%)= j y < € ,  s ( p ) < s ( p ) + $ .
i*/ ' is/ '
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f ( p ) ^  ^  s(p)<

Since ̂  is arbitrary and since we always have

^  , / ^ C p ) d ^  , we conclude ^ f(p)d^= ( p )d^ j

and that f(p) is Lebesgue integrable on E.

2.24 Definition. A condition is said to hold almost everywhere on a set E, 
if the subset F of E on which it does not hold is such tha^^(F) = 0.

2.25 Suppose f(p) is measurable on a measurable set E,
, 0 = f(p) = M. Then ^  f ( p ) d ^  = 0 if and only if f(p) = 0 

almost everywhere on E.

Proof: 1. Suppose f(p) = 0 almost everywhere on E. Let N be the set

of points of E for which f(p) ^ 0, that is N = E^ E, f(p) ®jf •
=0. N is a measurable set. E-N is also measurable, N ^  (E-N) = E.

N and E—N form a measurable partition P of E. S(P) = M*0 0^^/(E—N) — 0

_ y ^ f ( p ) ^  f  0 ^  ^ ^ f ( p ) c ^  . (2.4,2.11)

2. Define N as above. Suppose

/ « (N) ̂  0, i.e. that it is not true that f(p) - 0 almost everywhere on E,
We shall show that the following identity holds. ^

N - E p [ p ^ E ,  f(p)> oj % Ep [p e E ,  f(p)> “ Â 1 -
Suppose Po 6  E p £ p ^ E ,  f (p) > 0 J  .

Case 1. If f (po)^ 1, then p^6 £p 6^E, f(p) ^  1J  .
Case 2. If 0 ^  f(p) = 1, then there is an integer n such that
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Suppose E p A  4  E, f(p) >  il J  EL f p S  E ^  <  f(p) ^  .

Case 1. Suppose p^ #  Ep £p4* E, f(p)^ ij . Then
P o ^ E p £ p ^ E ,  f(p)> 0 J  ,

Case 2. Suppose p^ C  E^ fp ̂  E,“  ^  f(p) =-11 for some n.
Then Pq ^  E^ ^p 4  E, f (p) ̂  0 . This verifies the above identity,

Ao
Epf^p4 E, f (p) >  ll • 2 ^  ^  f ( p ) ^ ^ l =  0.

Let Fç, = E p [ p  €  E, f(p)> ij , Fn = E^ £p ̂ E , ^ ^  ̂  f(p) = i ]  for each

n. Then N = ^  F,

. . There exists an integer j such tha-y^ (Fj)^ 0.
Fj is a measurable set. E-Fj is also a measurable set.
Fj and S-Fj form a measurable partition P of E, 
a(P) = (g,l,b. f(p))^(F.)-^(g.l,b. f(p))>#(E-F.)

s(P) M  (Fj)4»0-0 =

• • f(p)^i, 1^0 and ^  f(p)dyu ̂  0
Æ" ét ^

» * We conclude that if ^^f(.p)^^ - 0, then^K (N) - 0,
ésr

2.26 Suppose we have ^f,^(p)^ defined on a measurable set E and f^(p)
is measurable for each n. Suppose lim f^(p) = f(p) on E, Then f(p)

é f ^ ##
is measurable on E,

Proof Î Let a be any real number. We must show that Ep[2,P ̂  E, f (p) 
is a measurable set. If we can establish the following identity the proof
will be complete, since the set on the right is measurable, (2,14, 1.46, 1,47)

Ao 60 eo
E p £ p e  E, f(p)> a] = Z  Z  7 /  E f pé^E, fn(p^>

M = /  /-*/
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Suppose Pq£ ^  ̂  J^  ^  ^  E, fjj(p)> â J.1, Then there is an m

such that p €  X* T T [p 6  E, f (p) > a-/»;-').

There is an m and a k such that p ^ J T “ EL /p 6  E, f„Cp) >  ,o -PL n ATfJ

.*. If n = k, then p^ € € E, f^(p) ^  a If n z k,

^n(Po)^ fn(Po) = f(Po)
h-^AO

. : f(p^) = a-f^ >  a and p^6 Ep [p ̂  E, f(p) >  a] .

Z  Z 7 7 " E p ^ p f  E, fn(p)> a ^ f C E p T p ^  E, f(p)> a j .

Suppose Pq €  ^P ^  f(p)> aJJ . f (p^) ̂  a. There is an integer
m such that f (p̂ )̂ X a . lim fnCp©) - f(p^). There is an integer k such
that if n = kj then fj^Cp^)^ a +»—  . There is an integer m and an integer

>  ^k such that if n = k, then Pq<? Ep ̂ p €  E, f^(p) >  a 1.

.'■ Po 6 Z z T T E p f p ^ E ,  f(p)> .
^  p,

® n f p «  E, f(p)> aTc; ^  ̂ / 7 ~ \ L p AS, f(p)>

6 / y & -.. Ep[_pf E, f(p)> a j =  %  Z  7/ Ep p E, f(p) a

2.27 If f(p) is a measurable function on a measurable set E, and if
g(p) = -f(p), then g(p) is a measurable function on E.

Î roof: Let a be any real number. We must show that EpP P 45- E, g(p)> ^

is a measurable set. We shall verify the following identity.
Epl^ p ^  E, g(p) >  = Ep |Tp ̂  E, f (p) <  -aj . The set on the right is
measurable (2.21); therefore, this will establish the conclusion.

Suppose e  Ep ĵ p ̂  E, g(p) >  a j .
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E;g(p^)>> a; - f (p^) >  a; f(p^)< -a.

P q €  ^p [ p ^  E, fCp)< -a] .
Suppose P q ^  Ep ^  E, f(p)< ~aj .

pp6iT ; f(p)< ”a, -f(po)> a, g(po)> Ep ̂ p <  E, g(p)> a J  .
Thus, the conclusion is established,

2.28 If f(p) and g(p) are measurable functions on a measurable set E 

and if h(p) = f(p)-^ g(p), then h(p) is a measurable function on E,
Proof: Let be a sequence containing all of the rational numbers.

Let a be any real number. We must show that Ep[p 6  E, h(p) ̂  is a 
measurable set. We shall establish the following identity,

Ep £p  ̂  E, h(p) >  aJ = ^  Ep £p €  E, f(p) >  r ^  -Ep £p  ̂  E, g(p) >  a-rn] .
/»»/

The set on the right is obviously measurable and this will establish the 
conclusion,

Suppose Pq ̂  Ep [p 6 E ,  f(p)> r ^  -Ep Tp g  E, g(p) >  a-r^H ,
h = /There is an integer n such that

p €  E p Q p Ç E ,  f(p)> r j  -Epf^p^E, g(p) >  a-r^ , p^g E, f(po)>r^j
g(Po)> a-rn, h(pg) = f (Pq ) ̂ g ( Po) >  ̂ n’̂ ^"^n = Po^Ep^pgrE, h(p)>a^ 
Ep [p g  E, f(p)> ?Ep £ p e  E, g(p)> a - r ^ C  Ep £p g  E, h(p) >  a] ,

Suppose Pq ̂  Ep £p g  E, h(p) >  ajj ,
PoC E, h(po)> a, f (po)-f'g(Po) >  a, fCp^) >  a-g(p^),
fCpo)^g(po) = a4*C 0, f(Po)W(^"g, There is an integer n such that

f(Po) >  r„> f(p^) -g,g-f(po)> g(Po) = a + 6  -f(Po) >  a-r^,
g(Po)> a-rn, p^g E p [ p g  E, f(p)> , Po g  Ep £p #  E, g(p)> a-r^ .

.% P o €  Ep £p €  E, f(p)> -Ep [ p e  E, g(p)> a-r^,
E p [ p €  E, h(p)> a] C  Ep[_p€ E, f(p) >  r^-Ep [p g  E, g(p) >  a - r ^  ,

This establishes the identity.
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2.29 If f(p) and g(p) are measurable functions on a measurable set and 
if k(p) = f(p) - g(p), then k(p) is a measurable function on E.

Proof: k(p) = f(p)«^ C-g(p)), -g(p) is measurable by an earlier con
clusion (2,27) and the sum of two measurable functions is a measurable 
function (2,28),

2.30 If f(p) is a measurable function on a measurable set E, and if c is a

constant, and if 0(p) = Cf(p), then 0(p) is measurable on E.
Proof: 1, Suppose c = 0, Then 0(p) = 0 on E, 0(p) is measurable on E,

2, Suppose c >■ 0. Let a be any real number. Consider the follow
ing identity, vdiich we shall establish: E^j^p t  Ej, 0(p)^aj =
E p [ p 6  E, f(p)>^].

Suppose P q 6  E p Q p €  E, 0(p)> ^  ^
VqB E, 0(p^)>a, 0(po) = cf (po) >  a, f(Po)> ,

Po •  E, f ( p ) > ^ .  Thus Ep [p #  E, 0(p)> a] C  Ep [p €  E, f(p)>|J
The opposite relationship may be shown by reversing the steps above. Since 
the set on the right is measurable, the conclusion is established,

3 . Suppose c <  0. Then 0(p) - - /c/ f(p).
But g(p) = |c| f(p) is a measurable function by Case 2, and 
-g(p) = - IcI f(p) = 0(p) is measurable by 2,27.

2.31 If f(p) is a measurable function on a measurable set E and if 
g(p) = (f(p))^, then g(p) is a measurable function.

Proof: Let a be a real number,
1. Suppose a ̂  0. E ^ ^ p ^  E, g(p)> ^  = E, since

g(p) = (f(p))^ = 0 on E, E is a measurable set,
2, Suppose a ̂  0.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



■ '4 4 —

E p f p « E , g ( p ) >  a ] =  Ep [ p g  E, f : p ) > f r ] + - E  [ p g  E, f ( p X - W T j  ,
Since suppose Po €  [ p ̂  E, g(p)> aJ | pjfÈ E, g(p<^)> a, (f(p^))2>a,
then either f(p^)>Y a or fCp^)*^ “V ^  Thus
Ep P E, g(p) a Ep p E, f(p) a Ep p E, f(p) - a .
A reversal of steps givejthe opposite relationship. Since the set on the
right is the sum of two measurable sets (2.14, 2.21), it is measurable
and the conclusion is established,

2.32 If f(p) and g(p) are measurable functions on a measurable set E, 
and if ©(p) = f(p)g(p), then ©(p) is measurable on E.

Proofs 0(p) = f(p)g(p) = ^(f(p)"^g(p))^ “ ^(f(p)-g(p))^.
The function on the right is measurable from preceding conclusions
(2,27-2.31)1 therefore, the conclusion is established.

2.33 If f(p) is a measurable function on a measurable set E, then |f(p)| 
is a measurable function.

ProofÎ Case 1, If a <  0, then Ep jTff(p)/ ^ a^ = E.
Case 2. If a = 0, then E^ Qf(p) / > ^  = Ep£f(p)> aJ 

Ep £f(p)< -aJ .
This identity is readily established, and since the sets on the right are 
measurable, the conclusion follows,

2.34 If f(p) and g(p) are measurable functions on a measurable set E,
and if m ̂  f (p) = M, 1 = g(p) ̂  N, then

(f(p)y-g(p))d^ “ f(p)d^T^ >/^g(p)dx. -
Proof: G i v e € >  0. There is a measurable partition P% of E such that

s^(P^)^ ^^^T(p)^&$ ^  , where s^(Pq̂ ) denotes the lower sum of the parti
tion P]̂  with respect to the function f(p). (2.4, 2.12. ) There is a
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measurable partition of E, such that S^(P2) K  ^ f ( p ) d ^ ^ ^  ,
^  /

where S^CPg) denotes the upper sum of the partition P2 with respect to the 
function f(p). (2.5j 2,12.) Let P be a measurable partition of E which
is a refinement of both P]̂  and P2. Then, in similar notation

s^(P)> ̂ /^f ( p ) ^  - #  , S^(P) ̂  • (2,7) There is a
partition of E such that s®(Q^) ̂  where again s® (Qi)
denotes the lower sum of the partition with respect to the function g(p).
There is a partition Q2 of E such that S^(Q2) <  • S®(Q2) is
the upper sum of the partition Q2 with respect to the function g(p)« Let Q 
be a measurable partition of E which is a refinement of and Q2*

Then s^(Q)> „/^g(p)d^ -# and S^(Q)

Let R be a partition which is a refinement of both P and Q. Then the 
following relationships hold, (2,7)

s^(R) >  - <5, S^(R) < ,

s ^ ( R ) > ^ / ^ ( p ) ^  - 6  ) S®(R)< .

Let R — R ĵ Ê ,̂ E2, , • •, •

S^(R) ’ = l,u,b, f(p),
W  ' r ^ à

SS(R) = ^ M i ® ^ ( E .  )> Mî® - l.u.b, g(p).

S^^S(R) = ^  g ̂ ( E .  ), " l.u,b, fCp)-fg(p).

S^(R)f.Sg(R) = %  (M^V
h»!

Give There is a p̂ dÉÊ ^̂  such that
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s(Pĵ ) ~ Since $  is arbitrary we conclude
for each i, .'. S^*^g(R) ̂  S^(R)4Sg(R).

s^(R) - ^  m.^^(E. )> = g.l.b. f(p),

s®(R) = ^  m.ê jU(E.)J nuS = g.l.b. g(p).

sf'^g(R) z gi.h. -f^p^+j^p).
2.

m.

(R)-fs®(R) = ( n u ^  mj^^)yy(E. ).
i»/

Give X  0. There is a Ê  ̂ such that r f (pj|̂) «^gCp^)^!!!^^*^
Since |f̂ is arbitrary, we conclude that ~ for each i.
r. s^'^S(R) ^  s^(R)-^®(R).

y^(f(p)f-g(p))^ ^  S^+S(R) = S^(R)'#-S6(R)< y ^ f ( p ) ^  g(p)^"^2e.

^  (f Cp>^ g ( p ) ) ^  = s^^ ®(R) - s^(R)-f-3®(R)> ̂ ^ f  (p)^-^ g ( p ) ^  — »

^  f ( p ) ^  ^ ^ g ( p ) * ^  - 2 €  <  ^^/^(f(p)+g(p))^*A <  ̂ ^ ( p ) ^ * f  _^/^g(p)^t&^^

(p)^g(p))i^^ ~ y / ' f ( p ) ^ ^  ̂ ^g(p)dA^ •

2.35 If m = f(p) = M and if 1 = g(p) = M are functions defined on a 
measurable set E of finite measure, and if f(p) and g(p) are Lebesgue
integrable on E, and if f(p) ^  g(p) for all p in E, then ^'f(p)d^ -

/  g(p)(U( .
^  r *1Proof: Let P . ..,E^J be any measurable partition of E.
s^(P) = miyu(Ej^), mi = g.l.b. f(p); sS(p) = ^  1^%* (E^),

ll “ g.l.b. g(p), mi = li for each i. ,* s^(P) “ sg(P). Give € > 0 ,
There is a measurable partition Q of E such that
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<s^(Q) > - 6 .  (2.4). sf(Q) - sg(Q).

g ( p ) ^  “ sg(Q)> ^ / ^ f ( p ) ^  - € .

Since 6  is arbitraryj, ^/g(p)dyU ^  •

2.36 Let c be any real number. If f(p) is a bounded measurable function 
on a measurable set E of finite measure, then cf(p) is Lebesgue integrable
on E and ^ of(p)d^ - c^ f(p^d^ .

Proof: Case 1, Suppose c = 0; then the conclusion is obvious.
Case 2. Suppose c >  0. f(p) is integrable on E, (2,23).

c y  f(p)d^ ~ cg.l.b.S(P), ~ g.l.b.cS(P), where g.l.b. is taken with

respect to all measurable partitions P of E. Let PÇE^^jEg,... ,Eĵ ) be any 
measurable partition of E.

*
S(P) = %  M. //(E. ), K. = l.u.b. f(p).

cS(P) = c «1/^  (%) = Z  cMi^(Ei), cRj_ - l.u.b.cf(p)
f  X*/ '

If g(p) = cf(p), then cS(P) = S8(P), since cM^ = l.u.b. g(p), where S&(P)
denotes the upper sum of the partition P with respect to g(p). 

c y^î{p)yiA g(p)^= ^ / c f ( p ) ^  .

Similarly, c y  f(p)^_^_ = y ‘ë(p)^i»L =^g/^cf(p}d^6 .

Case 3, Suppose c <  0. Leg g(p) - cf(p). Let P £E]_,E2, ... ,eJ 
be any measurable partition of E. If E^ is any set in P, and if and m̂  ̂

denote, respectively, the l.u.b, f(p) on E^ and g.l.b, f(p) on Eĵ , then cM^ 
and cm^ are re^ectively, the g.l.b. g(p) on Eĵ  and l.u^b. g(p) on E^«

S(P) = (E^); cS(P) = c (E^) ~ (E^) - sS(p).
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and

s(P) cs(P) = c c n y ^  (Ej_) = SS(P).

Since P is arbitrary, we conclude that 

c ̂  fip)(^ - ̂ g ( p ) ^  =^/^cf(p)d^

=^/**cf(p)d^ .
But _/^f(p)d/6 =^^f(p)d/t = y ^ f ( p ) ^  .

/ ,y^cf(p)dyu. = */cf(p)dy4 ,

We conclude that f(p) is integrable and 

c ̂ f ( p ) d ^  = ^/cf(p)d^ .

2.37 If m = f(p) - M and 1 = g(p) = N are functions defined on a meas
urable set E , ( E )  , then f(p) - g(p) is Lebesgue integrable on E 
and _/"(f(p) - g(p))^fC( =^^*^f(p)d^ - ^gip)^fA, •

Proof: From 2.36 we see by letting c = -1 that

- ̂ _/g(p)d^ = ̂ / ^ g ( p ) d ^  ,

- g(p))dy% = ̂ /7f(p) ■ K ““g ( p ) ) ) ^  ~ ^ ^ ‘-g{p)àJA. 
j F  s  ^

^ f ( p ) ^  - y g(p)<y< . (2.34)

2.38 If f(p) is a measurable function on a measurable set E of finite 
measure and if f(p) = g(p) almost everywhere on E, then g(p) is measurable 
on E.

Proof: Let a be any real number. We must show that Ep£p É E,g(p)J^ ̂
is a measurable set. The following identity will be established.
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(!)• ® p £ p  ̂  g(p) ̂  E, f(p) ^ gCp), g(p)> aj-f-
Ep£ p €  E, f (p) = gCpfJ *EpJf P C  E, f (p) >  a] . Ep £*p é  E, f (p) >  a j is
a measurable set. E p £ p ^ E ,  f(p) g(p)^ Is by hypothesis a measurable
set of measure 0,
Ep£^p€ E, f(p) ^ g(p)s gCp)> a]| C  E p £ p C E ,  f(p) ^ g(p)]| . The
set on the left is measurable. (I.I6, 1.20, 1,37) ,
Ep j£p f  E, f(p) = g ( p ^  = E - Ep Q) €  E, f(p) ^ g(p]Q . .% the set on the 
left of this relationship is measurable (1.37, 1.44). These statements 
imply that the set on the right of the identity (l) is measurable. (I.40, 1.42) 

Suppose Pq^ Ep ̂ p iL E, g(p)^ aj , There are two cases here.

Case 1. fCp^) / s (Pq ), Po ^ ^ p  [ p ^  E, f(p) ^ g(p), gCp) >  ^  .
Case 2. fCp^) = gCp^), P^EEp [p C  E, f(p) - g(p)] ,

^(Po^^ " p Q ^ E p £ p ^ E ,  f(p)> a^ . This shows that
Ep£p 6  E, g(p)> a J ^ E p £ p ^ E ,  f(p) / g(p), g(p)> a] 4 .
E p [ p €  E, f(p) = g(p)] - E p £ p £ E ,  f(p) = g(p)] 'Ep [p $  E, f(p)> a] . 
Suppose Pof Ep £p f  E, f(p) / g(p), gCp) >  a] 4  

E p [ p 6  E, f(p) = g(p)3 ' E p [ p ^  E, f(p)> a ]  .
There are two cases here also.

Case 1. P o # E p £ p €  E, f(p) ^ g(p), g(p)> a]

Pq€e, tCpq) ^ g(Po), g(Po) ̂  /. Po^ %  Cp ̂  ë(p)^ a ] .
Case 2. Po^Ep £p €  E, f(p) = g(p)J "Ep £p ̂  E, f(p)> a] .

Po €  E, f(Po) = g(Po), f(Po)> a. .C g(Po)> a, Po^ ^  [p G  E, g(p) > a] .
E p [ p (  E, g(p)> a]:^Ep [ p f  E, f(p) ^ g(p), g(p) >  a] 4
E p £ p «  E, f(p) = g(p)] 'Ep [ p €  E, f(p)> a] .
This establishes the identity, and we conclude that Ep £ p E, g(p)^ aJ 
is a measurable set, and hence that g(p) is a measurable function.

2.39 If f(p) is a bounded function on a measurable set E of finite 
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measure, and if f(p) is Lebesgue integrable on E, then f(p) is measurable 
on E,

Proof: There is a measurable partition P^ ̂ Ej^,E^, ... ,E^^ of E such
that s(P^)^ ^  f(p)d^ -1, and such that S(P^) f(p)^^*^ 1.
(2.4, 2.5). If p €  E», let f (p) = g.l.b. f(p) = mJ;
gnCp) = l.u.b. f(p) = MA. *

s^(p^) = ^  ^ (P^) - f]^(p) is a measurable

function, since if a is any real number, E^ [̂ p €  E, f^(p) >  E^,
summation extended over those integers k for which m' ^  a and each set E ' is

<  k k
measurable. f^(p) = f(p) for each p from the definition of f^(p).

. (2.35).

(Pi)

( E p  4- ...+ (%j^) =

km I k/* Tî 1
• * f^(p^d^ = s^CP^) ^  f(p)^^ -I*

There is a measurable partition Qg of E such that

s ^(Q2)^ _ / ^ f  (p)(i^ ^  w / ^ ( p ) 4 ^  •

Let ?2 ^E^2^E2^,...,E^J be a measurable partition of E which is a re

finement of both P^ and Q2 .

s^CPg) >  y ^ f ( p ) ^  , s ^Cp ^ ) ^  ^ ^ ( p ) d - / - Z  .
If p ^  E. let f2<p) = g.l.b. f(p). By the same reasoning as for
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f_(p), we see that f„(p) is a measurable function on E, and further
<f2(p) = f (p), f]̂ (p) - ' As before we observe that s^^(Pg) = s^(Pg).

and S^2 (P2 ) = s^(Pg)

^  <s^(P2) f2(p)<^ ^ ^ f ( p ) ^  .
Construct in a similar manner a measurable function f^(p) such that 
fg(p) - f^(p) - f(p). and such that

f(p)^M = _ / ^ C p ) d ^  .
Continuing this process we obtain a sequence of functions ̂ fnCp)^ iidiere 
fjj(p) is a measurable function for each n, and such that
f^Cp) - fg(p) = f^(p) . .= fjj(p)^ ^n+ l(p) ' where f^Cp) - f (p)
for each n,

f (p)d^ - ^ < ^ y ^ C p ) ^  = , / * f ( p ) ^  .

^fjj(p)^converges, since if p^ E, we have > where
^l^pQ^ “ ^2^Pq  ̂ =...= fj^(pQ) =...= f(pg)
Let gCpo) = lim fn(Po)- Let g(p) = lim f^(p). g(p) is a measurable 

function since it is the limit of a sequence of measurable functions. (2.26)

S ’
for each n.

^nCp) - g(p) ^  f(p) for each n. _ / f n C p ) ^  . (2.35)

^ f ( v ) y  = ^ s ( p ) y k  . ^/*gCp)^ - •

By similar reasoning we can construct a decreasing sequence of measurable 
functions^gyjCp^ , i.e.
glCp) ^  @2(P) '=•••'= gn(p) f(p)> such that

<  j  f(p)dx^^—  • Hiis sequence will converge
^  g  ^  m
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to some function h(p), where f(p) - h(p) = g^Cp) and h(p) is measurable.

( p ) ^  ^  ^  f(p)^*^-/ .
^  ^  ^  ^  ^  ^  ^  ^
, / " h ( p ) d ^  =^_^/lr(p)d^ . #Z ̂ _^/li(p)^ =^ y ^ ( p ) d ^  ,»

Since g(p) and h(p) are measurable functions and g(p) '= h(p), then

= 0.

g(p) = f(p) = h(p).

^ ^ ( h ( p )  - g(p))d^ = ^/h(p)^^ -^ ^ " g C p ) ^

We know h(p) - g Cp ) ^ 0, . \ h(p) - g(p) = O almost everywhere on E, 
or h(p) = g(p) almost everywhere on E, , **. f(p) = g(p) almost everywhere 
on E and since g(p) is measurable on E, we conclude, by 2.3Ô, that f(p) 
is measurable on E.

2.40 Definition. If f(p) is a non-negative measurable function on a
measurable set E, let f^(p) = ff(p) if O = f(p)^ N

I N if f(p) 5 N,
where N is a positive integer.

2.41 Definition. If f(p) is a negative measurable function on a measurable
set E, let f »(p) = rf(p) if 0 > f(p)> -N

■" I -N if fCp) S  -N,
where N is a positive integer.

2.42 If f(p) is a non-negative, measurable function on a measurable 
set E, then for each N, f^(p) is a bounded, non-negative function on E,
The proof of this assertion is immediate from the definition of fj^(p).

2.43 If f(p) is a negative, measurable function on a measurable set E,
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then for each N, f_^(p) is a bounded negative function on E.

Again, the truth of this assertion follows directly from the 
definition of f_jj(p).

2.44 If f(p) is a non-negative, measurable function on a measurable 
set E, then for each N, f^(p) = f(p).

Proof: The proof follows from the definition of f^(p).

2.45 If f(p) is a negative, measurable function on a measurable set E,
then for each N, f_^(p) - f(p).

Proof: The proof follows immediately from the definition of f_^(p).

2.46 If f(p) is a non-negative, measurable function on a measurable set E,
then for each W, fjj(p) is a non-negative measurable function on E.

Proof: From a previous conclusion (2,42), we see that fjj(p) is non
negative and bounded. Let a be any real number. We must show that for each 
N, Ep£^p<S E, fjj(p) >  aJ is a measurable set. Let N be any positive integer

Case 1. If a = N, then let E ^ [ p €  E, fjj(p)>* a]= 0, which is a
measurable set.

Case 2. If a <  N, then E^ £p €  E, fjj(p)> a ]  =
E p C p ^ E ,  f(p)> a J .
We must establish this identity.

1. Suppose P q ^  {^p6" E,fj^(p)> a J  , p^ 6  E, fN(Pc,) >  

l(Po)> a. p ^ ^  E p [ p ^  E, f(p) >  a ]  .
2. Suppose Pg^6 E p ^ p  €- E, f ( p ) >  ajf , Pq €  E, f(p^j)> a,

a. If f(po) = N, then f^(po) = N >  a, P o ^ E ^  [ p «  E, fjj(p)> a] •
b. If f C p ^ X  N, then f^(p^) = l(Po)> a,

^n (p )> a J .
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Thus, the identity is established, and since f(p) is a measurable 
function, it follows that Ep E, f(p)> ajis a measurable set,
(2,14)» Hence, Ep J^p ̂  E, fjj(p);> a ^ i s  a measurable set and fjj(p) is 
a measurable function on E,

2.47 If f(p) is a negative, measurable function on a measurable set E, 
then for each N, f_jj(p) is a negative, bounded, measurable function on E.

Proof! The proof to this conclusion is similar to that of 2,46,

2.48 If f(p) is a non-negative, measurable function on a measurable set 
E, and if N <  M, then f^Cp) -

Proof: If f(p)< N, then f^(p) = f^(p) = f(p). (2,40),
If f(p) ^  N, then fjj(p) = N and either fj^(p) “ f(p) ^  f^Cp) or 
f^(p) = M >  N = ffjCp), In each of these situations fwCp) ^  f]^(p).

2,49 If f(p) is a negative, measurable function on a measurable set E,
<

and if - M <  -N, then f.^Cp) "
Proof: The proof of this theorem is similar to that of 2,48.

2,50 Definition. Let f(p) be a non-negative, measurable function on 
a measurable set E,^^(E) For each positive integer N, consider
f^(p). f^(p) is a non—negative, bounded, measurable function on E,
Therefore, fjjCp) is Lebesgue integrable on E, for each N. If N <  M,

then fjj(p) = f)̂ (p) and hence ^ ^ f w ( p ) ^ ^  ^  •

Consider t * This sequence is an increasing sequence
of real numbers. If ^ ^  is an unbounded sequence, we say
that f(p) is not a summable function on E.
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If ^  ̂ i s  a bounded sequence, then suppose

Consider

lim - a. Then we say that f(p) is Lebesgue summable on E,

and we write ^*f(p) d ^  = a = lim d ^  .

2.51 Definition. Let f(p) be a negative, measurable function on a
measurable set E of finite measure. For each positive integer N, consider 
f_jj(p), f_jj(p) is a negative, bounded, measurable function on E, There
fore, f jj(p) is Lebesgue integrable on E, for each N. If -M <  -N, then

f «(p) - and hence ^ r»(p) ^  •

# y  f f|(p) • This sequence is a decreasing

sequence of real numbers. If ^j/^f_jj(p) is an unbounded sequence,

then we say that f(p) is not a summable function on E,

If f_w(p) is a bounded sequence, then suppose that
lim f (p) = -a. Then we say that f(p) is Lebesgue summable on

E, and we write ./f(p) ^  = -a = lim •

2.52 Definition. Let f(p) be a measurable function on a measurable
set E of finite measure. Let P =
Ep[_p6 E, f(p)*= oj| and let N = Ep £ p  €  E, f(p) <  o j  ,
Then clearly E = P-f- N and P»N = 0, If f (p) is a Lebesgue summable
function on both P and N, and if ^̂ ,/̂ f (p) dg{ = a and^^/f (p)

R ^  N
then we say that f(p) is Lebesgue summable on E and we write

) d ^  4 - ^  f(p) = a - b.
V
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2.53 If f(p) and g(p) are non-negative, measurable functions on a 
measurable set E of finite measure, and if f(p) and g(p) are summable, 
and if h(p) = f ( p ) ^  g(p), then h(p) is summable on E, and

h(p) d// = ^  U p )  d ^  d K  .

Proof: h(p) is non-negative and measurable.
^ .6J h(p) if 0 = h(p)< N

" ( » if h(p) %  N.

/f(p) if o"= f(p)<
fjj(p) - / >” ( N if f(p) = N.

N

/g(p) if 0 ^  g ( p)< N 
g»(p) - } »  Since f(p) and g(p)
N I N  if g(p) = N.

are summable, l i m = ^ ^ ( p )  d ^  and

lim ̂ /gN<p) - _ y ^ ( p )  ^  •

We shall show that for each N, h^(p) = fj^(p) 4 “ gjjCp).
Let N be any positive integer; suppose Pq ^  E.

Case 1, Suppose O = h(pQ) <  N, Then 

hjj(Po) - h(Po)» Then O ̂  f C p g X  N. Then Tn Cp q ) “ f(Po).
Then 0 = gCpg) <  N. Then gjj(Po) * gCPq)'
# # hjjCPo^ = fN(Po)f- %(Po)"

Case 2, Suppose HCp q ) = N and
a, suppose f (p q ) N. Then hjj(pQ) = N,

%(Po) = N and gwCpg) ̂  0-
h„(po) = f^(po)>«* gN<Po)- A similar argument gives the

same result if gCpg) = N.
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b. Suppose TCp q X  N and g ( p o X  N,

Then hjjCp^) = h(p^), f^Cp^) = fCpg), g^Cp^) = e Cp q ).
We have hjj(po) = N = h(p^) = f(po)-^ gCpg) = % ( P q )

Thus, in any possible case we see that hu(p) = f^(p) 4" gjj(p). This 
implies that for each N,

y^hjj(p) ^  ^gN( p ) )  = y^N^P)
WP  ^  ^  ^  /

g^Cp) T(p) dyK ^f^g(p) (2.34, 2,35). Therefore,

h(p) is summable on E, since S / hjj(p) is an increasing sequence

bounded above by ^^f(p) ^^g(p) and furthermore

y^h(p) d ^  = lim /h^Cp) (p) d >C"^ /g(p) ^
^  /  2? ^  g  ^

Hence this limit exists.
We shall next show that for each N, hg^Cp) = fjj(p)^ glj(p)* Suppose 

N is any positive integer and Pq €  E.
Case 1. Suppose O = f (p̂ )̂ ̂  N and 0 ̂  g(p^) <  N,

Then 0 ^  h(po) ̂  a^^f^CPo) = T(Po) and g^(pg) = g(pQ). 
Hence, hg^Cp^) = hCpg) and hgjjC^) = Sn ^Pq *̂

Q) ̂  N and g(pg! 

q ) +  g(Po>
T^^Po^ “ ^ %(Po^ ”
^2N(Po) =
Suppose f(pq) = N and gCpg)K N and
a. suppose HCpq) ̂  2N. TnCpq) = N, 

gN(po) = g(Po)^ N, hg^Cp^) =

2N > T n ^P0^'+* Sn Cp q )-
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b. suppose hCp^) <  2N. % ( P q ) = N ?

Sjj(Pq) êCpQ^J' ~
h(po). % ( P q )”̂  Sn CPq )"^ f(Po) 
s(Po^ “ b(pQ) — ^g^CPg)"

In this case similar results follow if we assume initially that
^CPq ) ^  N and g(pg) ^  N. In each case we see that h^^(p) = f^Cp) 4" g^(p).

^hgijCp) ^  ^  , / c % ( p )  %(p)) “
£  ^  E

y % ( p ) y ^ g j j C p ) ^  - y ^ c p ) ^  ^  •

"= _ /h(p) d w  . 

lim /f^(p) d/Q = (p) ; lim /gfjCp) dyU. =
^  S '  ^  M i D *  ^  ^

V^g(p) dyi*. - ii™ C  w/^N^P) y g N ( p )  )  =

f(p) d/< -/- y s ( . p )  ^K*- - _/h(p) .
£ *  ^  ^  ^
Therefore, since the reverse relationship has already been established, 
we conclude that

2.54 Suppose f(p) is a bounded, integrable function on a measurable set E 
of finite measure. Suppose that G is a measurable subset of E. Then f(p) 
is integrable on G,

Proof: f(p) is measurable on E. We shall first show that f(p) is
measurable on G.
To do this we shall establish the following identity.
Let a be any real number,

Ep £ p  T(p)> a J  = ^ ‘® p f p ^  E, f(p) >  a J  . The set on right is
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mea sur able since f(p) is a measurable function on the set E and since G 
is measurable by hypothesis.

Suppose p ^ €  Ep£"p€ G, f ( p ) >  a ^ .  Then p^ ̂  G, 
f(p^ > a ,  E, ,% G-Ep|Tp^E, f(p)> a J .

Suppose p^f ^ * E p [ p é  E, f ( p ) > ‘a j ,  p^( G, p ^ 6  E, 
f(Po)> a, Po Ep ^p ̂  G, f(p)> aJ ,
Thus the identity is established. We conclude that Epj^p^ G, f (p) > ^  is 
a measurable set and hence that f(p) is a measurable function on the set G, 
Since f(p) is bounded on E, it follows that it is bounded on the subset G, 
Therefore, fCp) is Lebesgue integrable on G. (2.23)

2.55 If f(p) is a bounded, measurable function on a measurable set E of
finite measure and if E - E^^Hh Eg, E^'Eg = 0 and E]_ and Eg are measurable 
sets, then f(p) is Lebesgue integrable on E^ and on Eg, and

f(p) ^  +  ./ f(p) -
S ’ A

Proof: The fact that f(p) is Lebesgue integrable on E^ and on Eg
is immediate from the preceding conclusion.

Give 5 ^ 0 .  There is a measurable partition P ^ ^ F g , o f  E^

such that s(P]_) >  ,/^fCp) d/t . (2.4) There is a measurable partition

P2[’Qĵ ,G2 ,. ..,0 Eg such that s(Pg) >  _/ f(p) djt - S  . Then

P I s  a measurable partition of E.

s(Pl) = ^  < X . ( E w ) j  m' = g.l.b. f(p);

sCPg) = = g.l.b. r(p);
*»/ /  p e

s(p) = s(P]^) 4* s(Pg);
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= s (p )  > _ / ^ r ( p ) d ^ < .  -&• f ( p ) d ^  -  €  .  ( 2 . 9 )

^  .  ySince « i s  arbitrary, f(p)<^ ^  / f (p)cUn = /  f(p)i^ .

There is a measurable partition of E, such that

S(Q]^)^ • (2,5) There is a measurable partition

such that S C Q g X ^ ^

Q j • • • >Hj. j *J]_,«Jgj • • » j Jg^ is a measurable partition of E«

S(Q, ) = %  MJ ^  (H, ), = l.u.b. f(p)
k ^ /  /

S(Qg) = ^  Mg = l.u.^. f(p), S(Q) = S(Q^)+ 8(Qg);

y  r ( p ) ^  = S (Q )<  y  f ( p ) d ^  f ( p ) d /K + - 6  .  ( 2 . 9 )

^  •  y
Since €  is arbitrary, y  _/ f ( p ) y ^  *= f ( p ) ^ ^  .

The opposite relationship having already been established, vre conclude that

V^(p)dy&L = „ / f  (p )4̂ A4 .
^  4 ,  Æ T  ^

2.56 If m = f(p) = M  -oh E if E i s a  measurable set lof finite measure, and if 
f(p) is measurable on E, then m^^É^ (E) = .

Proof: Consider the measurable partition P of E consisting of the set
E alone.

J f ( p ) ( ^  = S(P) = (l.u.b. f(p))*Z<(E) = M - > < ( E ) .  (2.9)
i F  ^  /  /

/ f ( p ) < y « .  -  s (P ) = ( g . l . b .  f ( p ) ) - X . ( B )  -  m- ^ ( E ) .  ( 2 . 9 )

ReprocJucecJ with permission o f the copyright owner. Further reproctuction prohibitect w ithout permission.



—6l—
2^57 If f(p) is a non-negative, measurable and summable function on a 
measurable set E of finite measure, and if E = E^f-Eg, E^'Eg = 0 and Ê  ̂

and Eg are measurable sets, then f(p) is summable on E^ and Eg,

^ ^ f ( p ) d ^  = f ( p ) ^ ^  and

J  f ( p ) ^  = J f (p)dy^ and ^ f ( p ) d ^  = y  f ( p ) d ^  ,

Proof; Let fjj(p) be defined as before.

We know that ~ ~ _/^(p)d/< , since
e ,  ^  ^  ^

y ^ % ( p ) d ^  = /  fw(p)d/< fîî(p)^^ and lim ^ f w C p ) * ^  -,y^f(p)d/4 .

, \ ^  y  la a bounded, increasing sequence and hence f(p) is

summable on Eĵ  •

f(p)dyt = lim ^yf}j(p)d^ 

y  f(p)d^ = y  f(p)d^6 . From symmetry in the definitions of E^ and Eg

 ̂ r - /we see that f(p) is summable on Eg and^  f (p)dykA = f(p)<^t< • We know

that y /  fw(p)«^ = /  fN(p)d/A /  %(p)^4t each N. Taking limits as ̂ ^ ^  ̂   ̂rN becomes infinite we obtain /  f (p)d^ ~~ y  f(p)^4. ’ ^(p)^K. •

2,58 If f(p) is a negative, measurable and summable function on a measurable 
set E of finite measure and if E = E-j^E^, where Ej^*E2 ” 0 and E^ and Eg are 
measurable sets, then f(p) is summable on E^ and Eg,

^/*f(p)c^ = ^ f(p)d/«4 , and
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The proof of this theorem is similar to that of 2.57.

2.59 If f(p) is a measurable and summable function on a measurable set E
of finite measure, if E = % +  Eg, E^'E^ = 0, and if E]̂  and E2 are meas
urable sets, then^  ^ CCp)d^ •

Proof: Let N = Ep [jp é  E, f(p) <  0 J .
Let P — Ep j^p C  E, f(p) = • E = Ni^P. Since f(p) is a measurable
function, N and P are measurable sets. (2.19, 2.21)
N C  E = Ei+Eg. N = N-Ei^N*E2J (NEi )-(N-E2) = 0.
Similarly P — P*E]^*#^*E2; (P'E^)'(P'E2) — 0.

_ y ^ f ( p ) d ^  = ^ f(p)d/t (2.58) and

y ^ f ( p ) ^  = y ^ f ( p ) ^ " V -  y ^ f ( p ) ^  (2.57)

E^ = E^-P-^E^'N, Eg = Eg'P-^Eg'N.

y " f(p)d/c = / f ( p ) ^  ^  r  f(p)dA. =

^ f ( p ) ( U L - f -  y  f(p)<^-^ J  f ( p ) d > C - ^ ^  K p ) ^  =

4" y  • (2.55)

2.60 If f(p) is a bounded, measurable function on a measurable set E of
finite measure and if 0, then there is a 0^ such that if G is a
measurable subset of E and if̂ ^̂  (G) ̂  ^  , then

I yf(p)d/c j < €: .
Proof; Since f(p) is bounded, we can find a positive real number M

such that -M ̂  f(p) ^  M on E. If G is any subset of E, then certainly
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—M = f (p) = M on G. Let S • Then O, Suppose that G is a meas
urable subset of E and that ̂ (̂G) < S' • Then
- ^  <  - M j ^ ( G )  = ̂ / f  ( p ) ^  ^ M ^ ( G ) - t f î ^  = Ê

or in other words | ^  f(p)d̂  ^ -
^  - (2.4).
M

2.61 If f(p) is a non-negative, measurable and summable function on a 
measurable set E of finite measure, and if ̂ >0, then there is 0 such 
that if G is a measurable subset of E and i^^^(G)<S t then

Proof: y f(p)dy. = lim /f«(p)<i«. .

For each N, ̂ /fjj(p)d̂  ̂ ^/"f(p)^ . (2.35),
/, T(p)dyUt - . / ^ % C p ) d ^  = 0.

Choose an integer N such that 0 — ̂ ^̂ f (p)̂ *< “^̂ T̂fj(p)̂ l4 ̂  ̂  •
fjj(p) is a bounded, non-negative, measurable function on E. There is a 
^^0 such that if G is any measurable subset of E and î îc(G) < ̂  , then
I ^^(2.60). Let G be a measurable subset
6  Gof E such that̂ H(G)'̂  q .

J f ( p ) ^ (2.57) and
ŷ fjj(p)<̂  = _ŷ f (p)d/t y for each N (2.55)*
^  ^  ^  ^  S ' S  ^

y ' t k p ) y u o  - ̂ / f j ^ ( p ) ^  = ^

y^f(p)^ - ŷ ;̂ (p)d̂  .
G
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(p)d^ = lim ^Tjj(p)d^ , By similar reasoning to that used above,

o ' = „ / f C p ) ^  (2.57).
e  Gr ^  ^  ^  y  ^

/ t { v ' ) y j u <  y ^ ^ ( p ) d ^ = e  
G- ^
2.62 If f(p) is a negative, measurable and summable function on a meas
urable set E of finite measure, and if ^ ^ 0 ,  then there is a S ^ O  such 
that if G is a measurable subset of E and , then

^ ^ f  (p)d^6^ ̂  - 6  •
G

The proof of this theorem is similar to that of 2.61*

2.63 If f(p) is a measurable and summable function on a measurable set E 
of finite measure, and if 6*>0, then there is a ^ > 0  such that if G is a 
measurable subset of E and i f ( G ) <  ̂  , then | ̂ y^f (p)^^| •

Proof: Let N — Ep j^pG E, f (p) 0^ • Let P = EpJ^p^ E, f(p) = -

y ^ f ( p ) d ^ . = ̂ / f ( p ) ^ ^  ~h .
There is a S^> 0 such that G C  P, G mea sur able (G)<S implies

, (2.61),
There is a ^ ^ 0  such that G C  N, G raeasurabl^(^ (G) ̂  implies

I x p ) ^ / < ^ . (2,62),

Let d = min. ^  ^  . Then if G <C E, G is measurable,

y £ / ( G ) < ^  , it follows that
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-t- y ^ ( p ) d / t  ; (2.57) and

e  ^  6  / ^  ^  g./v ^
I  y ^ c p ) ^ /  - i / f c p H M / • ^ / y r ( p ) > « < .  ( < f + - Ê  = 6 .<5- <S-P 6 =.y ^ * *
2.64 If f(p) is a measurable, summable function on a measurable set E of 
finite measure, and if B is any measurable subset of E, then f(p) is 
measurable and summable on B,

Proof: The fact that f(p) is measurable on B is obvious.
Let P = E p f  p 6  E, f(p) ^  cQ ,
By 2.57 and 2.58

^ (p)dy&* for each N. and

- V^_N(p)4/4' 9ach N.

J / fjj(p)d^ i is an increasing sequence bounded above, and hence 

lim / f^(p)dyM = y  f(p)d^ exists,
^  S * P

\ j f  ^ ( p ) d ^ r  is a decreasing sequence bounded below and hence
f / / # ’ /
lim y f _^(p)d^ - J  f ( p ) d ^  exists.

Therefore, f(p) is summable on B.

2.65 Let f(p) be a measurable, summable function on a measurable set E 
of finite measure. If Â _ and are disjoint, measurable subsets of E,
then ,/^f(p)d^ = ^/f(p)d^-/- ^_/^f(p)d^ •

^  /»&
Proof: Let B = Â f̂" A2; B CTE; B is a measurable set

, . f(p) is a measurable, summable function on b. (2.64)

[p)d^ f(p)d^ - • C2.59)
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f (p) is a measurable, summable function on a measurable set E 
of finite measure, and if A2, o » o, Aĵ  are disjoint, measurable subsets 
of E, then _ / f ( p ) c ^  = Z '  f<p)d>« .

S  ^  Ai ^
Proof: By induction on the number of sets A^. The assertion is

true if n = 1 or n = 2. (2.65)
Assume it is true when n = k. Suppose A^,A^, .,. are disjoint

measurable subsets of E.

f ( p ^  = , y ^ f ( p ) ^  =

* jff (p)dy«4 ~ Z  y  i^(p)d%C • The first equality
A/rey A i .

holds since the assertion is true when n = 2, Thus, the truth of the 
assertion for n = k implies it for n = k^l; hence it is true for all 
positive integral values of n*

2.67 Let f(p) be a measurable summable function on a measurable set E
of finite measure. If 4 kti is a sequence of disjoint measurable subsetsf ) 60
of E

Proof: ^ e t  A = ^  A. . Let R_ « Â  for each n.
j./ -i^-/

A =  ^ k i + U -  . / 7 ( p ) ^  = %  y ' f ( p ) ' ^  +  y ' ^ f ( p ) ^  • (2-59)

%  y  f(p)dy^ = lira ^  Jf(.v)<yjL , provided that this limit exists.

| y f ( p ) ^  - j f  j j ^ f ( p ) ^ |  = I X f ( p ) ^ | ;

Give^ > 0 .  There is a S >  0 such that if G is any measurable subset of E, 

and ifyg^(G)< ^  , then j ^^^f (p)dy^ * (2*63)
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There is an integer M such that if n ̂  M, then 

yiX-(A i ) < S  X y ^ ( A i )  =y^t(Rn). If n >  ( B ^ X  S  ,

and therefore, if n >  M, I ^y^f(p)c^ . If n > M,

I f ,/ * Since é  is arbitrary,
'a  /  .  y-

2  y  fcp)*^ ” iim f(p)^ = y  f(p)<w = y  K p ) ^  .
i«/ ;ii ^  A ^  ?A- ^

i#, ^
2.6s If g(p) is a bounded, Lebesgue integrable function on a measurable 
set E of finite measure, then | / g ( p ) d ^  I ^  J  | g(p)j •

E  er
Proof: g(p) is a measurable function. Let E]_ = E^ [ p 6  E, g(p) ̂  ÔJ

Let Eg = Epj^ p €  E, g(p) <  o'J . E^ and E^ are measurable sets.
E^'Eg = 0, E ^  Eg ■- E.

. /"g(p)d^ = y ^ g ( p ) d ^ " ^  y^g(p)d/< , (2.55) g(p) = I g(p)[
if p 6  % ;  g(p) = “ I g(p)| if p4E Eg.

^ ^ g ( p ) ^  = g(p)f ^  - I g(p)/ =

y  gCp)d^ - y ^ / g ( p ) /  ^  (2.36). y ^ | g ( p ) ^  = y ^ l  g(p)| y *

yig(p)kxL • y  |g(p)fyt = 0- ' y  g(p)d^ - y/g(p)i^ •

- g ( p j ^  = y 7 g C p ) /  ^  |g(p)i •

-y^g(p)dy&* ^  y ^ g ( p ) I  ^  g (p)d^ = - ^ \  s(p)f •

jg(p)I d/^ ^ ^ / * g ( p ) d ^  ^  ^^^|g(p) i .
I y ^ g ( p ) d ^ |  = y  |g(p)|
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If e is a measurable set of finite measure, if ^ fnCp)J is a 

sequence of bounded, measurable functions on E, and if ^  fn(P^ converges 
uniformly to f(p) on E, and if f(p) . is bounded on E, then f(p) is 
integrable on E and lim / ^ n ( p ) d ^  = ^ f ( p ) d ^  .

Proof : f(p) is measurable and bounded on E. (2.26) f(p) is
Lebesgue integrable on E, Give €  >  0.

j ^ ( ^ n ^ p )  - f(p)) = j ̂ f ^ ( p ) ^ ^  - y ^ ( p ) ^ |  ; (2.37)

I y ? f ^ ( p )  - f ( p ) ) ^ |  ^  V ^ k n ( p )  - f(p)f y A  . (2.69)

There exists an integer M such that if n >  M, then 

/ f^^Cp) - i(p)/^ for all points p in E,

y i v p )  - f(p)|

2.70 If E is a measurable set of finite measure, if f^(p) is a bounded,
measurable function on E for each positive integer n, if f(p) is a bounded,
measurable function on E, if lim f^^(p) = f (p) on E, and if ^  then
there exists a measurable set F such that YCZ. E^^^^(F) ̂ 6  , and such that 
lim fjj(p) = f(p) uniformly on E - F.

Proof! Let E ^  = E p [ p 6  E, | f^(p) - f ( p ) l < ^ J  •

Let - 77* fixed m. Let = 2 L  <̂ nik ” ^  7/

Then E_ = lim inf E = E since f„(p) converges to f(p) at every point of m mn

E. (1.68) = lim inf j(îi„). (1 .70). ( is an increasing
'  »e

sequence of sets for fixed m. E = . l i m ^ ( G ^ )  =xt(E). (1.66).
k ^ t  ie-^4o '
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Choose an integer such > . (E) - ,

= = - °mk^- = E. ^  • Let F - X  F^.
' />r«/

Then y|<(F)< ̂  - F is a measurable set, F<t E. Give S >  0. We must find 

an integer L such that if n >  L, then / f^(p) - f (p) j< f  if p ̂  E - F.

Choose m so that ̂  ^  . Then E - F CÏE - F_(2 G , Let L = k .M  m

If n ̂  L and if p #  E - F, then p ̂  G ,
O o  , , ,

r̂ak “ //" I ̂ n(P) -

2.71 If E is a measurable set of finite measure, if f^(p) is a bounded, 
measurable function on E for each n, if f(p) is a bounded measurable function
on E, if lim f^(p) = f(p)> if 0 = f^(p) = K on E for each N, then

lim = ̂ f i p ) d i 4 ,  .

Proof: Give € > ■ 0 ,  We must find an integer ,L such that if n >  L>

then I “ ^^^f(p)<̂ K j ̂ ^  . 0 “ f(p) — K on E# Choose 0
J£'

such that • Choose F such that F is a measurable set, F Cm F,
Z^(F) <  S  > and lim f^(p) = f(p) uniformly on E - F. (2.70)

l ? - # ^  I ^

- f(p)| ^  = y ^ /  " f(p)/ -/l ^n^P^ “ ^^P^l
^  ^  F  ^
(2,37, 2,68). Choose L such that if n>- L and if p €  E - F, then 

|f^(p) - If n >  L, then \ / “f ^ C p ) ^  -
0  ^  e -f '^

F ) + K ^ ( F ) < 4 4  K g  = G  ' (2.55, 2.68, 2.3!
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2.72 If E is a measurable set of finite measure, if f(p) is measurable 
on E, if f^(p) is non-negative, bounded and measurable on E for each n, 
if lim fj,(p) = f(p) on E, and if ~ Q for each n, then f(p)
is summable on E and /  f (p)dy^ = Q,

/ f(p) if f(p) ̂
N if f ( p)> N

M . -'r,    N
Proofs Let f (p) =

^(p) if f^(p) ^  N 
Let f"(p) = ) We must show that

if fn(p)> N

1-iTTi ^ X ^ ( p ) d ^  exists. f(p) “ 0 on E. Consider f^(p) and T f o r  

fixed N, lim f^(p) = f^(p). Then lim yf^(p)d,o. = yf^(p)d/jL by 2.71, 

fn<p)<yL< = Q for each n. /, J  f^(p)^/U = Q and J  f'^(p)^^ = Q.

• ^f^(p)^&t = Q and hence f(p) is summable on E and ^^^f(p)<^4 ^ Q-• , lim
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CHAPTER III 
RECTANGLE FUNCTIONS AND DERIVATIVES

3.1 Definition: A rectangle function is a real-valued function whose 

domain of definition i s * ^  , the class of all oriented half—open rectangles,

2&Z Definition: A rectangle function 0 will be said to be finitely

additive if belonging to ̂  and R^*Rj = 0 if i 0 j imply that
ff n

0 ( ^  R . ) - 5 ^  0 (R. ), provided of course that R. .
i-/ itr ^

2‘t X  Definition: A rectangle function 0 will be said to be count ably

additive if R^,R^, .. . belonging t o T ^  and Rj^'Rj = 0 if i 0 j imply that

0 ^  R. ) = ,27 0 (R^), provided that ^  R ^ ^  7 ^  .
is/ is/

3.4 Definition: A rectangle function 0 is said to be of Type A if 0 is 

non-negative and if
n

2 *  R i d  R, R i ’Rj = 0 if i = j imply that 
i=/

0 (R.) = 0 (R). 
i*/

3.3 If 0 is a finitely additive and non-negative rectangle function, then
M

0 is of Type A, That is, if R ^ O  R, Rj^'Rj = 0, if 1 / j* then

%  0 ( % )  - 0 (R).

Proof: If ^  H. = R, then 0 = 0 (R) and we are finished.J i=/ i=/
t K

 ̂R̂  ̂ R. R  = R., +  S . where S . 6 ^  , R] . = 0, Sj^'S. = 0,
/ p 7  J ^

—Ol _
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^ ^ ^ ^ CR^) ̂  0 (S.)j since ^ is finitely additive,n
j :  B^e= R-R^,- X  Sj = R_R^.

‘ ^  “'’„ Æ  “* = i S 5  •*"■ = j ? &  " A
Sj" %  « i C S j ,  ^  « i ' S j C s  

% = &
The conclusion will be proved by induction. It is trivial in case n = 1.
We shall assume its truth for all integers less than n.

2. <.
Then 2 .  0 (Ri'S,) = 0 (SO.

f  f
R. *S^ - ^L. Si ™ (R— ) — Ri j since R.^I R-R-i .

i*/ L

\ by finite additivity 0 (Rĵ ) = 0 (R^‘Sj) for each i^

0 (R) %  0 ( R i ) - * - . ^ ^ ! ^  0 (Ri'Sj) = 0 (R^) 0 (Ri-Sj) =

0 (R-, ) 0  (Ri> = , ^  0 (Ri).
* = a  ■»=/

3.6 Definition. Suppose 0 is a rectangle function. Let S 6 ^ ,  where S 

is a square. Then lim = 0' (p_), provided this limit exists and is
A/'s)

finite. 0 ’ (Pq) tis called the two-dimensional derivative of 0 at p^. This 
definition implies that given any é" ̂  0, there exists a S  ̂  0 such that if 
A(S)< S and if P q ^  S°, then | (Po,) | ^  ^  •

3.7 Definition: Let D(0,p^) be the largest number 1 such that there exists 
a sequence of oriented half—open squares, such that p^ ^  for each

lim A(S^) — 0 and lim , For the purpose of this discussionn.
n~>£o A

may be dr • ®(0>Pq ) is called the upper derivative of 0 at Po<
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Definition: Let D(0,p^) be the smallest number 1  such that there exists

a sequence ^  oriented half-open squares, such that Pq ̂  for each

n, lim A(S^) = 0 and lim ^  . A g a i n !  may bezkdPO . D(0,p^) is

called the lower derivative of 0 at Pq .

I s l  = D(0,p^) = D(0,p^) = -f" DO

Proof: The proof follows immediately from the preceding definitions.

3 .10 If 0 is of Type A, then 0 ^  D “ D .
Proof: 0(S) = 0 for all S é f *  . A(S) %  0.

^  - 0 for all S. Thus, it follows that D - O.

3.11 0 has a derivative 0 ’(Po) at p^ if and only if, for every sequence

/ ^n \ squares such that p ^ €  for each n, and lim k ( S ^ )  = 0, then

lim = 0'(Po).
”  OVi I / ^
Proof: 1. Suppose 0 has a derivative 0'(Pq) at p^. Suppose j S^4

is a sequence of squares such that p ^  S_° for each n, and lim A(Sj^) — 0.

- 0t(p^). Give €  >  O. There exists S >  0 such that if

I (£ /vN IA ( S ) < S ^  then | Z _ y  - 0 ' ( P o ) | < €  . There exists an. R > e S =  then

integer m  such that if n >  m then A(S^) <  Ç  > Pq ^  ̂ n°* Then

0'(Po) Z  6  . This implies that lim exists and equals 0 ’(Pq ).
A/s;;)

2. Suppose for every sequence squares such that

P , *  3„° for each n and Urn A(S ) = 0, then lim = L. Suppose 0 ’(Po) f
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There exists ̂  ̂  0 such that no 0 works. In particular t'jL does not 
work for each n.

There exists such that A(S^) < 1 ,  ^  Sj^ and L I -  o
I ̂ 4/^) I

There exists Sg such that , p ^ 6  Sg^and -

Continue this process.
There exists such that A(Sm5-<y^ , Po ̂  and | _ l_ I -

Continue indefinitely. We obtain a sequence ^ s u c h  that p^ £  for

each lim A(S^) — 0, but lim L. This contradicts the hypothes

and hence we conclude that 0 '(Pq ) = L.

IS

3.12 0 ’(Po) exists if and only if D(0,p^) and D(0,Po) are finite and equal.
Proof: 1. Suppose 0 '(p q ) exists. Then for every sequence of squares

f Sy.% such that p ^  S for each n and lim A(S ) - O, lim =
^  /?—̂ 60 A(S^^

0'(Po)^/^/ • Then by definition D(0,Pq ) = D(0,Pq ) = 0*(p q ) and is finite, 

2. Suppose D(0,Pq ) and D(0,p^) are finite and equal. Let ^ 

be such that p ^  S ° for each n and lim A(S ) = 0 ,  Suppose lim

^  of such that lim = K  . Since lim q^ does not exist

there exists such that infinitely many terms of do not belong

to N(|^,S )• These terms form a subsequence of ^ * There exist:

subsequence < iq ^  such that lim q^ exists but is different^1) C n^'>

does not exist. Let a - for each n. There exists a subsequence
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from r* , lim a = , lim q = t .  t . Since D(0,p ) and D(0,Pq )

are finite and equal to say Q, we know that ir= t = Q. This is a contra
diction and we conclude that l i m  jSlÉ^does exist,

3.13 Suppose 0 and \  are two rectangle functions, Let K = 0 +* A , and 
suppose 0'(Pq) and A  '(Pq^ exist, then K'(pq) = 0*(p^) 4- A  ’CPq)-

Proof : Give 6 >  0. lim exists and equals 0*(p„), There exists
fi6S" ArS) °

^ >  0 such that if A(S) <  .̂nd p ^  S°, then 1 ) 1 ^ —  . lim
^  ^  ̂ ° I &  f^6S^A/S)

AiS>*o
exists and equals \ '(Pq)* There exists ^  > 0 such that if A(S)< and

S°, then . Let %  - min. SA and . If A(S) <  S  ,

then I -K'(po)/ = 1 ^ ^  - (0'(Po) 'CPo))l ^
1 AÉ) I lA /sy '

3,14 Suppose 0 is a rectangle function. Let ygp = a0 where a is any real 
number, and suppose 0 ’(Pq) exists. Then ̂  ’(Pq^ ” ^0*(p^),

Proof: Give €  ̂  0, There exists ^ > 0  such that if A(S)-< S  ,

Poé S°, then 1 | ^  - ' a0'(Po)| =

_ 0i(p ) ^  é ’ A Sincey^ (S) = a0(S), ’(Pq ) exists and
À / S )  ^ / fA(s)

equals a0’(pQ).

3.15 If 0*(Po) exists, then lim 0(S) = 0,

Proof: Give 6^^0. S u p p ^ e ^ ^  . = 1 ,  There exists ^  ̂  0 such that

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



- 7 6 -

if A(S)< and £  S°, then j _ 0'(p^) |“^  y

i.e. A(S) (0'(po) - 1) <  0(8) <  A(S)f#

I^t M = max. I 0'(Po) - 1 | , |0'(p„) +  1 ) . Let S  =

î S > d .  Suppose A(S)< S' , Po 3  so.

max. A(S) | 0»(Po'^4“ ij , A(S) |0*(Po) - ij =

A(S) max. j 0»(p^) 1 | , | 0 ’(Pq ) - 1 j = A(s)-M < . ?  .M = ^  .
M

*, lim 0(S) = 0.
Pb«?*

3-16 If 0'(Po) and ^ '(Pq ) exist and if K = 0;^ , then K'(pg) exists and
K'(po) = O.

Proof: JKjSjl = = 0 ( S ) - A - S
A  /J) h (S'i A is)

The existence of 0 '(Pq ) implies lim^0(s) = 0.

l i m i ^  = lim iiJ*0(i) lim h i Û  = O J^^(Po) = 0.

AfS)’^0 /\{s)~tù A(^)~^0

3.17 Let 2 ^  denote the class of Borel sets in the plane. Let denote
the class of Lebesgue measurable sets in the plane. Then .

Proof: By definition is the smallest class of sets in the plane
which contains the open sets and which is closed under the formation of count
able unions (sums) and countable intersections (products). Since contains 
the open sets and is also closed under the formation of countable unions and 
intersections, (I.46, 1.47, 1.5l)^ it follows that *

2_il8 Definition, A function 0 defined on a set E will be said to be Borel
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measurable on E if for every real number a the set of points Ep £ p €  E, 0(p)>a 
is a Borel set*

The upper and lower derivatives are Borel measurable functions.
Proof: The proof will be given for the upper derivative. A similar

proof will give the conclusion for the lower derivative.
Let a be any real number. Let S be a generic notation for an oriented 

square. For every pair of positive integers m and n, let be defined
as follows•
Eanjn ~ * where the summation is extended over those squares S for

which A(S)'<'^ , and ^  a - ^ - ^
^  A { S )  ^

Let Eĝ  denote the set of points p such p ^ > a _
We shall verify the following identity. 

b o
E = / / EL ELmn is an open set, since it is a sum of open sets,a ^  / / amn aran

/w-/ /?“/
Thus Eĝ  is a Borel set and the conclusion will follow.

Suppose 'pé E^. D(0,p)> a. There exists a sequence of oriented
half-open squares ^ s u c h  that for each i, p 6  - 0

and lim ^  a. Choose an integer m so that a -Ki ^  D(0,p). Let
yt ( S Ù

n be any positive integer. Then there exists an integer k. such that if

i >  k, then ^  a and such that A(S^) < - L  . Therefore we see
A  ^

that p é  ^amn for a fixed m and any n. 
bo bo

3̂, ]T,
Oo ^

Suppose p €  ! I E _ . There exists an integer m such that™ ’ oLicn
h=rt
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P ^  ^amn* P ̂  ®am/ that there exists S, such that A(S^ ) ̂  / ,

/?— /
>  a , and p ^  S Continue this process

A^s,\ ^  '
% m i  implies that there exists such that A ( S ^ ) ,

^  ^  a -f- “  , and p é  S,°.
ITTST) ^  ^
Continue this process indefinitely.

We obtain a sequence ^  such that p ^  for each i, lim A(S- ) = 0

and a + ^  for each i. There exists a subsequence f s .  ^  of ^
A/s^) ^  S ( 1 5

such that lim a-^-i >  a, p <  S? , and lim A(S^, ) *» O.

. . D ( 0 , p ) >  a and p g  E^. ^  // Eamn<--Ba ^.nd hence Ê  ̂=  ^  / /  E,
/9î f h ^f

3,20 Let R q be a fixed, oriented half-open rectangle.

Ep ^p €■ Rg, D(0,p) = D(0,p)J is a Borel set.

Proof: The following identity is easily verified.
to

E-fp é R g .  DW.p) = S W . p O  = 7T Ep Jj, 6 R°, d(0,p)^ D(0.p)-;f3 .
/?-/

If we can show that Ep £p é  R°, D(0,p) ^  D(0,p)-^^ 3  is a Borel set it will 

follow that Ep T p e  Rg, D(0,p) ^  D ( 0 , p ) - J l  is a Borel set.
J9=/ ^  ^

E p ^ p  6  RO, D(0,p) ^  D(0,p) - ^ 3  = ^ [ P  ^  ^o' D(0,p)—  D(0,p) ]

Let ^ denote the sequence of rational numbers. Let a be any real

number. If Epf D (0 , p )  - D(0,p) >  a ]  is a Borel set, it is easy to show 

that C  Ep^D(0,p) - D ( 0 , p ) > ^ ^ i s  also a Borel set.

We shall verify that j ^ €  Rg, D(0,p) - D(0,p) >  &j[ "

^  B p £ p  *  ®0> D(P,p) >  r j  *Ep £d(0,p) <  Pfc - a }  .

From the preceding theorem we know that for each k, Rg, D ( 0 , p ) ^  ^ k 3
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and r o  ̂ D(0,p)^ - aj^ are Borel sets and hence that
Ao

W. I T)0 n/'o( r" ^  1 is a Borel set^  E p [ p  e- Rg, D(0,p) >  r ^ ]  -Ep [ p é  Rg, D(0,p) ̂  - e.]
£>0

Suppose Po f  X  Ep [ p «  Rg, D(0,p) >  J .

Ep jfp «  Rg, 2(0,p) <  r,; -a ]  . Then for some k, p^ ë  R?. D(0,p) >  r ^7

and P p €  E p [ p ë  Rg, D(0,p) ^  r^ -aj, /. -2(0.Po) »  a-r^' D(0,Pp) >  r^.
D(0.Po) - 2 ( 0 . P o ) >  a; P o é ’ Ep £ p  g-Rg, D(0,p) - D(0,p) >  a J .
^  -2 .  Ep [ p  € Rg, D(0,p) >  "Ep [p €  Rg, D(0,p) <"ri^ - a ]  O

Ep Qp ^  Eg, D(0,p) - D(0,p) >  a J *

Suppose P o ^  Ep [p(0,p) - D ( 0 , p ) >  ^  D(0,p^) >  D(0,p^)4H a

There exists a rational number such that

D(0,Pq ) >  a-f-D(0,p^). D(0,p^) >  r̂ ,̂ D ( 0 , p ^ ) <  -a.

P q ^  Ep [ p 6  Rg, D ( 0 , p ) >  "Ep £ p  é  Rg, D(0,p^) <  r^ - a j  for some k.

/. E p [ p g  Rg, D(0,p) - D ( 0 , p ) >  a ]  C

2 !  E p [ p g  Rg. D(0,p) >  l\] " E p ^  p g  R°, 2(0.p) <  Pk -aj

Thus the identity is established.

3.21 If R^ is a fixed, oriented half-open rectangle, and if E is the set

of points p of Rg for which the derivative 0*(p) is defined, then E is a

Borel set.

Proof: The set E is by definition the set of points p of Rg for which
the following three conditions hold simultaneously.

1. - O o <  D(0,p) < 4 - ^
2. D(0,p) ^
3. D(0,p) = D(0,p)
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Each of these three sets is a Borel set. hence à Is the Intersection of 
three Borel sets and is Itself a Borel set. 'The set E may of course be 
empty, but 0 is a Borel set (an open set).

2s22 Definition. A family ̂  of closed oriented squares is said to be a 

Vitali covering of a set E, if E ^  ^  G, and if p 6  E, there exists a 

sequence /s^^of squares of ̂  such that P for each n and lim ACS^) = O.

3.23 If E is a bounded measurable set and if ̂ i s  a Vitali covering of E, 
then there exists a countable sequence ^ o f  disjoint squares of ^  

such that (E- S^) = 0.

Proof: Let (V be a bounded open set containing E. Discard from ^  all
sets not contained I n  U  . Define e(S) = ̂  side of S for each set S in ̂  .

The sequence ^  will be defined inductively. Choose S]̂  arbitrarily.
After having chosen the sets , it is possible that ^  contains

/7-b /

all of E, In this case the proof is complete.
4-Otherwise, there will exist a point Xq of E not in which is a

/

closed set, being a finite sum of closed sets. Xq €(S( ®n^ which is
h^tp

open. There exists & >  0 such that N(xo,& ) C T 0 (  Z  S^). There
hs^*

exists where each i such that l ^ ^ S n ' )  = 0 and

6  S_' for each n. all but a finite number of the squares of this'n

ontalned in ). Thus there exist infinitely manysequence are c
fiO

squares S„- such that S „ "  %  Sn = ^  P-I-1-
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fulfilling this condition. Choose to be a set of ̂  having no points
P

in common with ^  and such that ) >  Ê f U  . This inductively
A7-/ ^ ^

countable sequence of sets ^ ̂ n^ • must show that this is
the sequence which satisfies the conditions of the theorem.

60
^ n ^  = 0 if i ^ j, from the method of selection of the

^sets of i^Tx\ • must show thatyOc(E - S^) = 0.
^ /  /?=/

Deny this. Suppose (E - S^) >  0. Let be the center point
Asst

of the square for each n. Consider the square having center
and such that e(S^^) = 5e(S^). = $yy_(S^).

(S^) converges, since is a sequence of disjoint

closed sets all contained in a set U  of finite measure.

// (S *) also converges. Since y6^(E— ^  0,
/?-/ / " && 4*

there exists an integer N such that ^E—  ̂ ^n^
^  ^  ^  <v»

U i  ^  S * ) =  ^  (Sn*) ̂  <®- : E  Sn). (1 .26).

/ , E- ^  Sn <ft ^  (1.20). There exists such that

^  E- Z  Sn - d  ^  . -o Sn. ^  6  E.

The series
/7=V

As previously there exists S> 0 such that NCx^. S  ®n “

Again we choose a set S , such that x o ^  S and such that
H

S- ^  Sn = 0.
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This leaves two cases; either the set S has a point in common with 
some Sjj, n >  N, or it has not.

Case 1, Suppose the set S has no point in common with any 8^. For
P

each integer p, S- 2 T  ~ 0' Let ̂  py-i be the l.u.b. of e(S') for all

S' and such that S'* ^  S^ = 0. €  1 ” e(S). By the law of
/7=’/

formation of f Ŝ  ̂, g-f .
e(Sp^-j^) - 5e (S p ^ 3_) ̂  , T the side of Spg*^ Ls greater than 5e(S)

^ ^ ( S p  (5e(S))^. (5e(S))^ is a positive number independent of p.

This is a contradiction since the series ^  converges.
&oX

P 9 y /  (E- ^  Sp) = 0.
Case 2. Suppose there is an n such that Sĵ  has a point in common

with S.
Let p4-l be the least integer such that and S have a point in

common, let x ^  S'S^^^* From the above p4-1 cannot be any integer
>1,2,...,N, i.e. p - N.

Since S é  ̂  and S« S^ = 0, ^  p , % = e(S).

^  e(s . X  and x^ both belong to S.
2-

Let X = (a,b) and = (a^.b^). Then I a,, -a | = 2  e(S)

and Ibg -b I "=2e(S). : If is the center of and

U - P . . 1 I = e(Spe-l) Ib-bp4.ll = b < V l ^  

I a^ -Sp+il ” ĵ o -a |'1̂I®'~̂P-mI “ ̂  e(S)*̂  ®(̂p4- 1̂  ̂ 1̂
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The last two inequalities imply that S^, -, , but p-+-1 >  N and
this contradicts a previous condition on x^. again y/(E- ^  S^) = 0.

^  /?=/

3.24 IT Rq is an oriented half-open rectangle, and if 0 is of type A in 
Rq , then its derivative 0'(p) exists almost everywhere in and is 
summable in
Furthermore, for every oriented rectangle R d  R^ we have

the inequality _y^0’(p)d/< = 0(R) .

Proof; The proof will be based on several preliminary statements,
(a) Let of be a positive number, and let E be the subset of R° 

where D(0,p) !>(X. , Then Oi^uL (E^ ) = 0(Rq),
Proof: Let ^  he the family of those oriented closed squares 3

that satisfy the following conditions: S d  R°, ^ ^  Is clear

that the squares of ^  form a Vitali covering for E ^  . (3.22) Hence

there are a countable number of squares of ̂  such that — 0
X

if i ^ j and 2/ (E JE Ŝ )̂ = 0. (3.23) Since 0 is of type A, it follows
that for every positive integer k the inequality 0(R^) = 0(S-|^)^ 0(32)*^
... f  0(S^)J> (X y^(S^^)-^-y/.(S2)-/-...-^;x^(S^)) holds. (3.4) 

£>o
Since ^  S and E are measurable sets, it follows that 

^  ^  • e  S„) = ^

^ ( E ^  ■ ^  Sp)-fy6t(E - ^  Sp) = / / ( E ^  • ^  S„) (]' ■ ^ n-/ ' /?=/
•Sri)
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^  ~ ^  )> which is obtained from the

above by letting k tend to infinity.

(b) Since 0 is of type A in every oriented rectangle, R C R q also, 
(a) implies the inequality D<// (E^ *R) = 0(R) for all such rectangles R.

(c) Let E be the subset of R§ where D(0,p) = +  >o , Ther^^ (E*) = O, 
That is D(0,p)<r-#-^ almost everywhere in R^.

Proof: e""<=:e^ for all DC >  0. ijL (E ) ^  i ^ ^ ^ f r o m  (a).

Give 6  O. Choose V  so that (e’*̂) = ^  (J£ '

(e"") = 0.

(d) The subset Eî̂j. of R® where D ( 0 , p ) ^  D(0,p) is of measure zero.

Proof: Deny. S u p p o s e ( E * ) >  0. Then there exist rational

numbers x  ̂  y  such that the subset of R^ where D(0,p)< x < y < ’D(0,p)

is of positive measure, Give O. There exists an open set G such that 

E ^ 0 G ^ R °  and^yLZ(G) (E^)-^g . (1.72), Let^  denote the family of
oriented closed squares S in G such that 0(S)/A(S)<. x. Clearly, the 

squares constitute a Vitali covering of E . (3«22) Hence ^  contains 
a countable sequence f  S C of disjoint squares such that >4^(E^ — S^) = 0,

(3.23). We obtain the following inequalities.
ÙO A*

h
S T  0(S^)-f X  yK, (s^) = X  /^(G) C  x  ( ̂  (%cy)'/-6 )*

From (b) we have 0(S^) = y  (E ̂  "S^) ->
A»aay K»

y ^  (Exy 'S^) - y a<.(E ). We notice that while each square was

originally taken to be closed we may replace it by its corresponding half-
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open square in the above inequalities, since this merely entails deleting 
in each case a set of measure O. Since ^  was arbitrary it follows that

' Since,^ (E^) was assumed to be positive, we have
X = y which is a contradiction. Therefore, we conclude t h a t ^  (E^) = 0,
and hence thaty/f(E^) - 0.

(c) and (d) together imply that 0'(p) exists almost everywhere in R°,
and this proves the first part of the theorem.

Let us denote, for each positive integer n and each point
p “ (u,v) in R^, the collection of all squares S R^ of the form

n “ u - i/n, ( j-l) yT n = v = j/n where i, j are integers (positive, 
negative, or aero). For given n, the collection is finite, since R^
is bounded. Let us replace each square by a somewhat smaller
srientei square S_^ having the same center, such that '

Let denote the set of interior points of all the squares 3_^ for 
given n. G is an open set and lim^^(Ro-G^) = 0 .  We have a subsequence

42
f  of that ^ ^ , Let F.m -  TT •

Then lim^^(RQ-F^) = 0. Let us define for each positive integer k, a

function g^Cp) In \  as follows. If p is an interior point of some square 
S ^ , then g_(p) = 0(3 „ ) X f s  1 Otherwise g^(p) = 0. Clearly, since

0 is of type - 0(Ro)«

Let m be a positive integer and let p be a point of F^ such that
01 (p) exists. Then p 6 G^ for k = m and hence g^(p) Is equal to a 
q u o t i e n t  of the form 0(S)y^^g^ where S is one of the squares and
p ij an interior point of S. Hence lim gj^(p) =  0*(p)« Since 0'(p)
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exists almost everywhere in R^, it follows that lim g^^(p) = 0 ’(p)
iC-̂  ÛO

almost everywhere on Fm' ^ 1^2^,,, Since liry^ (RQ—F^) — O, itLxm^

foxlows that lim g^(p) = 0'(p) almost everywhere in R q . Since g,,(p) 

is a non-negative measurable function in R^^ from 2.72 we conclude that

0(Ro).
0 typG A in every oriented half—open rectangle R ̂  R^^

w-3 can replace R^ by any cuch r-ctangle R and the proof is complete.

The theory presented in this chapter does not depend upon the 

dimensionality involved. Whereas it has been presented in the two- 

dimensional case, it generalizes immediately to the one—dimensional case.
In this case we should consider interval functions, i.e. functions 

whose domain of definition is the class of half—open intervals of the 

form a = x i n d i c a t e d  fa,b) .
We would define the cne-dimensional derivative as follows. If I 

l 3 a half-open interval, then 0»(x) = lim Éfï) provided that this limit
xé-T^

exists, where 0 is an interval function and l(l) denotes the length of I.

If f(x) is an increasing function of a real variable, and if I = [a,b) 

then we can define a function 0(l) ~ f(b)—f(a). It is easily seen that an 

interval function thus defined is of type A. We may apply 3*24 to conclude 
that if Iq Is a fixed half-open Interval, then 0' (x) exists at almost 

every point x  of Iq .
0' (x) thus defined has a direct application to the ordinary derivative 

cf differential calculus, 0 '(x q ) is called the straddling derivative of
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f(x) at We shall explicitly define the straddling derivative and
then prove two theorems which will show its relationship.to the ordinary 
derivative of calculus.

Definition, f^Cx^), the straddling derivative of fCx) at Xq is 

defined as lim , provided that this limit exists, f(x) is not
Xi -» *;

’̂ 2 > * o  
X <  Xo

here assumed increasing. It is easily seen that this definition is 
equivalent to that given above.

3 .26 If f(x) has a derivative at x^, then f(x) has a straddling derivative 
at Xq, and the two derivatives are equal.

Proof Î Give £  >  O. Let f ’Cx^) denote the derivative of f(x) at x^. 
The derivative is independent of the manner in which x approaches x^.

f f  (K,') _ X» 4(30, XQ- x ,  f   — . • « I   — -f- - - • _

Choose S > 0  so that O xT |x-Xoj^S implies I •
I X-Xe ' ^

Then, if x ^ ^  ^2"^ XQ-f* ü  ^o" ^1^  ^o^ have

I 11 ' X,— . I I I
, Xq-X, =1. I Xx-X. b 1' \ 4-Kl I Z.1, '

<■,-<. X^-X, I X ,-X , I y _x, I
Note that

X"^X| ■ % # '̂-2.
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IsZL If f(x) has a straddling derivative at and is continuous at x^, 
then f(x) has a derivative at x^ and the derivatives are equal.

Proof: Give ^ > 0 .  There exists S  >  o such that if 
xo <  xg <  X g + S  and Ç  <  x^ then

f'CxJ

Let X = x^. Then f^(x^)
X , - X .  ^  ^

-  f ’< V + «g  '= Urn

":K.> r x O  “i-f.(xj-/^

Similarly, let x - Xg.

fUx^) - e  <  i ^ ± f ^  <  f ' U , ) + e
< -  X,

s O'

. T if q ^ Xg, and if ) q-x^ |< S' , then 1 ^ 4 ) " " ^ ^  -f^(x^)l<^^
* I

rand we see that this implies that

lim ^ ^ I (X|̂ ) exists and is equal to f^(xg).

If we restrict f(x) to be an increasing function and define 
0 as before, we can obtain a final conclusion. It Is known that If 
f (x) is defined on fa,b'] , then f(x) is continuous at all but perhaps a 
countable set of points.^ Since the straddling derivative exists almost 
everywhere on [^a,b^ and since the set of discontinuities Is a set of 
measure O, it follows that f(x) Is differentiable at almost every point 
cf [ a,b] .
1. Kamke, E. Theory of Sets. (Dover; New York, 1950) p. 4.
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