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INTRODUCTION

In his landmark 1970 study. Interpreting Detrital Modes o f Graywacke and 

Arkose, William R. Dickinson established the modem methods of classifying the 

composition of sandstones. Dickinson (1970) classified volcanic rock fragments into four 

categories: felsitic, microlitic, lathwork, and vitric (Figure 1). These categories are based 

upon common volcanic rock textures, and each category was assigned to a general 

composition of derivation: felsitic texture to silicic volcanic rocks, microlitic texture to 

intermediate compositions, and lathwork texture to basaltic compositions. Vitric texture 

corresponds to glass-rich volcanics, which are most common in high silica rhyolites.

Since Dickinson’s (1970) paper, sandstone petrology has advanced greatly. 

Despite this, relationships between the composition of the source volcanic rock and the 

texture of the volcanic rock fragments (now referred to as volcanic lithic fragments) type 

have not been demonstrated. My goal in this study is to establish the true statistical 

relationship between volcanic lithic fragments and specific parent volcanic rock 

composition, so that the technique can be tested and, if needed, refined. This work could 

have important applications in all provenance studies in which volcanic lithic fragments 

are used to infer information regarding volcanic rocks in source areas.

One aspect of volcanic lithic fragments that has never been clearly defined is the 

placement of boundaries between the different categories. Even Ingersoll and Cavazza 

(1991), which provided a more detailed definition of volcanic lithic fragments, several of 

the boundaries are stated as “gradational,” without further explanation. I contend that by 

examining crystal textures closely, volcanic lithic fragment categories become more 

straightforward and definable. Below I propose a revised set of lithic categories with



Figure 1. Photomicrographs of the classic volcanic lithic fragments of Dickinson 
(1970).
(A) Vitric grain showing flow patterns, plane-polarized light. (B) Felsitic 
(granular) grain showing chert-like appearence, crossed-polarized light. (C) 
Felsitic (seriate) grains, with an irregular mosaic of crystals, crossed-polarized 
light. (D) Microlitic grain, with dominant plagioclase feldspar microlites, crossed- 
polarized light. (E) Lathwork grain, with large plagioclase feldspar laths, crossed- 
polarized light. Picture width is 0.5 mm in (A), (B), and (D), scale bar is 0.2 mm 
in (C) and (E). (A), (B), and (D) from Ingersoll and Cavazza (1991), (C) and (E) 
from Critelli and Ingersoll (1995).



particular attention paid to defining the boundaries between categories (Table 1).

An intrinsic but not explicit part of Dickinson’s (1970) classification is the 

relative percentage of microlites (biréfringent, microscopic volcanic minerals) and glass in 

the matrix (non-phenocryst phase) of each lithic type. Vitric lithic fragments have nearly 

no microlites and all glass, felsitic lithic fragments have all microlites and almost no glass, 

microlitic lithic fragments have approximately equal amounts of microlites and glass, and 

lathwork lithic fragments have high glass, low microlites, and large phenocrysts. My 

classification system takes this relationship between microlites and glass into account as a 

determining factor between the lithic fragment types.

This project primarily deals with zero order samples (Ingersoll, 1990), which are 

unaltered, unweathered, volcanic rocks in their original state. I chose volcanic rocks in 

which the whole-rock geochemistry is known. In order to have a better understanding of 

the effects of transport on volcanic lithic fragments in real world settings, I examined 

downslope trends of first order samples (Ingersoll, 1990) with an emphasis on 

degradation factors, mainly, the amount of glass in the volcanic lithic fragment population.

Previous Work

Many papers have used the definitions of volcanic lithic fragments presented in 

Dickinson (1970) and Ingersoll and Cavazza (1991). Most applications focus on the 

relationship of sandstone composition, provenance, and tectonic setting (Dickinson and 

Suczek, 1979). Graham et al. (1976) used volcanic lithic fragments to link collision 

sequences. Ingersoll and Cavazza (1991) and Large and Ingersoll (1995) used detailed 

descriptions of the volcanic lithic fragments to better understand volcanic dispersal 

patterns and tectonics in New Mexico. Horton et al. (2002) and Carroll et al. (1995)



Table 1

Volcanic Lithic Définitions, past and present

Lv type Dickinson (1970) Ingersoll & Cavazza (1991) This study

Vitric ... glass or altered glass, 
which may be 

phylosilicates, zeolites, 
feldspars, silica minerals, 
or combinations of these 

in microcrystalline 
aggregates.

... glass or altered glass, which may 
be phylosilicates, zeolites, 

feldspars, silica minerals, or 
combinations of these in 

microcrystalline aggregates.

95-100% glass, 0-5% 
anhedral, subhedral, and 

euhedral microlites in the 
matrix.

Felsitic ... anhedral, 
microcrystalline mosaic, 
either granular or seriate, 

composed mainly of 
quartz and feldspar...

Granular:... anhedral 
microcrystalline mosaics, with 
uniform very fine grain size, 

composed mainly of quartz and 
feldspar... devitrified-vitric grains 

are gradational with granular ... 
Seriate: ... anisometric mosaics, 

with wide ranges of grain sizes and 
shapes, composed mainly of quartz 

and feldspar...

Granular: 5-100% anhedral 
microlites, 0-95% glass, 0- 
5% subhedral and euhedral 
microlites in the matrix.
Seriate: 0-5% glass, 5- 

100% subhedral microlites, 
0-95% anhedral microlites, 
0-50% euhedral microlites 

in the matrix.

Microlitic ... subhedral to euhedral 
feldspar plates and prisms 

in pilotaxitic, felted, 
trachytic, or hyalopilitic 
patterns of microlites ...

... subhedral to euhedral feldspar 
plates and prisms (less than 0.0625 

mm in maximum dimension) in 
pilotaxitic, felted, trachytic, or 

hyalopilitic patterns of microlites ...

25-50% glass, 50-75% 
subhedral to euhedral 

microlites in the matrix.

Lathwork ... plagioclase laths in 
intergranular and 

intersertal textures ...

... plagioclase laths in intergranular 
and intersertal textures... this 
category is gradational with 

microlitic.

50-95% glass, 5-50% 
subhedral to euhedral 

microlites in the matrix.



reported similar studies in the Andes and in northern China, respectively. Lundberg 

(1991), Marsaglia (1992), and Marsaglia and Ingersoll (1992) used volcanic lithic type to 

differentiate sands from different tectonic settings. Marsaglia (1993) used the volcanic 

lithic fragment textures and glass color to characterize the sediment composition of the 

Hawaiian Islands. For a discussion on paleovolcanic vs. neovolcanic (noncoeval vs. 

coeval) lithic fragments, see Critelli and Ingersoll (1995).

METHODS

Matrix Crvstalline Textural Types

The following four primary matrix crystalline textural types characterize most, if 

not all, volcanic rocks when viewed with a pétrographie microscope. Most volcanic rocks 

contain large crystal phenocrysts and glassy and/or microlites (biréfringent, microscopic, 

volcanic minerals) in the matrix. These crystalline textural types are based upon the 

types of microlites and their relative proportion to glass within the matrix. These criteria 

are similar to descriptions of volcanic materials in Williams et al. (1954).

Phenocryst crystals are not used in this study for many reasons. Firstly, the 

abundance or presence of phenocrysts does not depend on to composition. Secondly, 

volcanic lithic fragments can only have a volcanic source, whereas common volcanic 

minerals can occur in a wide variety of rocks other than volcanics. Thirdly, phenocrysts 

can yield information regarding the volcanic history independent of the matrix, and have 

been extensively studied by previous authors (e.g., Nesse, 1991). However, matrix in 

volcanic rocks has not been studied in detail with regard to composition. Most 

importantly, aphanitic lavas (lavas without phenocrysts) would disrupt a system based 

upon, or even partially based upon, phenocrysts.



The primary goal of these matrix crystalline textural types is to have a 

classification scheme based solely on the descriptive attributes of crystal form and style 

applicable to volcanic lithic fragments, rather than specific igneous textures or minerology, 

so the assignment of lithic fragment type is more inclusive.

Glass

The first of the major matrix types is volcanic glass (Figure 2). Volcanic glass is 

volcanic matrix that is non-crystalline, transparent, and isotropic, and is common in 

pumice, ash, and obsidian. Glass in framework grains is normally altered to clays, oxides, 

and silicates in the sedimentary environment, obscuring its identification. Alteration of 

glass can give it varied amounts of birefringence and a pseudo-crystalline appearance. 

When possible, these alteration effects are ignored and the area in question is noted as 

glass. Vésiculation, flow patterns, and aligned phenocryst phase minerals can aid in the 

identification of glass. Highly altered glass, volcanic chert, and other alteration 

byproducts are not used in this study.

Anhedral

The second matrix crystalline textural type is anhedral (Figure 3). These are 

microlites that show a crystalline habit, especially when examined under crossed polars, 

but the crystal faces are not defined. Most crystal faces in anhedral microlites seem to 

overlap, almost like extinction in a grain of chert. This is due to the fact that anhedral 

crystals are smaller in diameter than the thickness of the slide (30 pm), and thus, microlite 

margins overlap each other over the thickness of the thin section. The crystals have little 

recognizable form, as individual crystals are mainly equant and of a similar relative size.



B

Figure 2. Vitric lithic fragment made of almost 100% glass. Note vertical flow pattern. 
Modem sand from the Owens River Gorge, derived from the .76 Ma Bishop Tuff. 
Sample BT 1 A-c, 50X magnification, plane polarized light, (ppl, A) and cross 
polarized light (xpl, B). Square is 0.20 mm across.
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Figure 3. Anhedral microlites, showing equant microlites and no clear crystal faces 
or forms. Holocene andésite from Martinique, Lesser Antilles. M8228, 125X, xpl. 
Square is 0.20 mm across.
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The mineralogy of these microlites can vary but is commonly made of felsic minerals such 

as quartz and feldspar (Dickinson, 1970; Ingersoll and Cavazza, 1991).

Subhedral

The third category of matrix crystalline texture is subhedral (Figure 4). Subhedral 

grains are microlites that have one or more well defined boundaries, or several moderately 

defined boundaries. With subhedral microlites, the form of the mineral in question is 

commonly recognizable, if not diagnostic of a specific mineral. Each microlite is distinct 

in crossed-polarized light, but the boundaries may be somewhat vague.

Euhedral

The fourth and final matrix crystalline textural type is euhedral (Figure 5). This 

includes microlites that have well defined boundaries and forms.

Application to Existing Volcanic Lithic Fragment Categories

Based upon the above parameters, I propose the following refinement of the 

volcanic lithic fragment categories. Use of these matrix crystalline textural categories 

provides a solid basis for the identification of volcanic lithic fragments. When examining a 

grain, I simply ascertain the relative proportions of the matrix types and use them to 

define volcanic lithic fragment categories. I redefined each lithic fragment category 

(Ingersoll and Cavazza, 1991; Dickinson, 1970), with a specific and clear range of each 

type of matrix category (Figure 6). My main goal in redefining volcanic lithic fragment 

boundaries was to make the system user friendly by using easily manageable percentages 

in the detection system (5%, 25%, 50%).



Figure 4. Subhedral microlites, showing partial and/or poorly developed crystal 
faces. Picture taken of a Holocene basalt from Martinique, Lesser Antilles. 
M8328, 63X, xpl. Square is 0.16 mm across.
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Figure 5. Euhedral microlites, showing complete and/or well developed crystal faces. 
From a Holocene basalt on Redonda, Lesser Antilles. R8204,63X, xpl. Square is 
0.16 mm across.
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Figure 6. Schematic diagram showing volcanic matrix crystalline textural type 
and their relative proportions with respect to the new volcanic lithic fragment 
definitions proposed in this study. Inferred increasing silica content toward left, 
based upon Ingersoll and Cavazza (1991) and Dickinson (1970). Curves and 
areas are strictly schematic. Dashed lines indicate approximate and/or unknown 
behavior of the matrix types. Note the lower glass content for ‘intermediate’ 
composition lithic fragment populations and higher glass content for ‘high’ and 
‘low’ silica composition lithic fragment populations. G=glass, Anh=anhedral, 
subh=subhedral, euh=euhedral, Lw=vitric lithic fragment, Lvg=granular lithic 
fragment, Lvs=seriate lithic fi*agment, Lva=aggregate lithic fragment, 
Lvsm=submicrolitic lithic fragment, Lvm=microlitic lithic fragment, 
Lvl=lathwork lithic fragment.
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Vitric rT vWl

Vitric lithic fragments (Figure 2) consist mainly of glass, but some contain small 

amounts of microlites and phenocrysts. Therefore, vitric lithic fragments can be defined 

as fragments which contain 95 - 100% glass and 0 - 5% anhedral, subhedral, or euhedral 

microlites in the matrix (non-phenocryst) phase of the fragment. Schmincke (1981) 

described the relationships among volcanic glass color, refractive index, and silica content. 

In a general way, the darker the glass, the more mafic the composition of the volcanic 

rock. Marsaglia (1992) showed that L w  is more common with colorless glass in modem 

sands, but can also occur with darker colored glass. The color of the glass is not used in 

the present classification system because of the relative ease in which glass of all colors is 

altered to oxides, clays, and other minerals in the sedimentary environment (Figure 7).

Granular fLvgl

Granular lithic fragments (Figure 8) contain mostly anhedral microlites in the 

matrix, but some contain glass and limited subhedral microlites in the matrix. They are 

defined as consisting of 5 - 100% anhedral microlites, 0 - 95% glass, and 0 - 5% subhedral 

to euhedral microlites in the matrix. Note that it is very uncommon to find volcanic rocks 

or lithic fragments that have subequal amounts of both anhedral microlites and glass. In 

my experience, most samples are rocks rich in glass or anhedral microlites.

Seriate fLvsl

Seriate lithic fragments (Figure 9) are known for the wide range of crystal forms, 

sizes, and types. Seriate lithic fragments contain 0 - 5 % glass, 5 - 100% subhedral 

microlites, 0 - 95% anhedral microlites, and 0 - 50% euhedral microlites in the matrix,

13



Figure 7. An example of the variety of colors of glass produced from the same lava, 
in this case, the Bishop Tuff. The differences in color are most likely due to 
differences in weathering of each grain. All of these grains would be counted as 
Lw . BT IB-f, 50X, ppl. Square is 0.20 mm across.
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Figure 8. Granular lithic fragment, made of approximately 90% anhedral microlites and 
10% glass. From modem sand of the Bishop Tuff. BT lA-c, 12.5X, ppl (A) and xpl 
(B). Square is 0.80 mm across.

15



B

Figure 9. Seriate lithic fragment, made of 100% subhedral and euhedral microlites. 
From modem sand of the Red Hill cinder cone. COS IB-c, lOX, ppl (A) and xpl 
(B). Dark microlites in top are various oxide minerals. Phenocryst in bottom center 
is plagioclase feldspar. Square is 1.0 mm across.
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Ingersoll and Cavazza (1991) included undetermined volcanic lithic fragments in the 

seriate category. In this study, hov^ever, undetermined volcanic lithic fragments would be 

placed in a category called Lvu (see below).

Microlitic (Lvm)

Volcanic lithic types, like microlitic and lathwork, have an important component 

of glass, but the glass in these lithic fragments are commonly dark, unlike glass in most 

vitric lithic fragments. Microlitic lithic fragments (Figure 10) are defined as 25 - 50% 

glass, 50 - 75% subhedral to euhedral microlites in the matrix.

Lathwork (L\D

Lathwork lithic fragments (Figure 11) contain 50 - 95% glass and 5 - 50% 

subhedral to euhedral microlites in the matrix. Identification of glass rich lathwork lithic 

fragments and vitric lithic fragments can be difficult in samples where the glass has been 

altered. Both felsic (clear) and mafic (dark brown/black) lithic fragments with glass 

contents greater than 95% are considered vitric lithic fragments (after Marsaglia, 1993).

Aggregate tLva1 and Submicrolitic (Lvsm)

At this point, I propose the introduction of two lithic fragment category 

subdivisions. The first is the aggregate volcanic lithic fragment (Lva, Figure 12). 

Because the seriate lithic category in Ingersoll and Cavazza’s (1991) study is so broad, it 

seems appropriate to divide it. I propose that aggregate lithic fragments contain 5 - 50% 

subhedral microlites, 0% glass, and 50 - 100% euhedral microlites in the matrix, with 

seriate lithic fragments being 50 - 100% subhedral microlites, 0 - 5% glass, and 0 - 50%

77
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Figure 10. Vesiculated microlitic lithic fragment, made of approximately 40% glass 
and 60% subhedral and euhedral microlites. From modem sand of Red Hill cinder 
Cone Quaternary basalt, Coso Volcanic field, California. COS 1 A-m, 40X, ppl (A) 
and xpl (B). Square is 0.25 mm across.
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Figure 11. Vesiculated £ind oxidized lathwork lithic fragment (center), made of 
approximately 15% euhedral and subhedral microlites and 85% glass. This grain 
also contains two plagioclase feldspar phenocrysts on left and lower center. From 
modem sand of Red Hill cinder Cone Quatemaiy basalt, Coso Volcanic field, 
California. COS 1 A-m, 40X, ppl (A) and xpl (B). Square is 0.25 mm across.
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Figure 12. Aggregate lithic material (possible future lithic fragment), made of a 
cluster of mafic minerals. From a Holocene basalt from Martinique, Lesser Antilles. 
M8328, 40X, xpl. Square is 0.25 mm across.

20



euhedral microlites in the matrix. Aggregate lithic fragments are generally formed from 

cumulates or other crystal clusters, common to intergranular or intersertal igneous textures 

(Williams et al., 1954). In practice, these are rare in actual sands but can be common in 

volcanic rocks. The second newly proposed subdivision is the submicrolitic volcanic 

lithic fragment (Lvsm, Figure 13). These are similar to microlitic lithic fragments with 

glass compositions between 5 and 25%. Definition of this new submicrolitic category 

helps narrow the definition of the broad microlitic volcanic lithic category. Submicrolitic 

lithic fragments are defined to have 5 - 25% glass, 75 - 95% subhedral to euhedral 

microlites in the matrix, with microlitic lithic fragments being 25 - 50% glass and 50 - 75% 

subhedral to euhedral microlites in the matrix.

Advantages to the New Svstem

Classifying volcanic lithic fragments as I am proposing herein has several 

advantages. First of all, it covers almost all possible volcanic lithic fragments. If new 

boundaries, new lithic categories, and/or new matrix crystalline textural types are needed, 

they could be defined easily without disrupting the entire system, because they would 

require only slight, specific modifications to existing guidelines. Also, because this 

system amounts to a more specific version of the past volcanic lithic fragment system 

established by Ingersoll and Cavazza (1991), only a small percentage of common volcanic 

lithic fragments would be reclassified from the old system to another category in this new 

system. Thirdly, the new system eliminates the need for seriate lithic fragments to be a 

‘garbage’ lithic category that includes volcanic lithic fragments that could not be 

previously placed into a category. Finally, each lithic fragment category has a real, 

defined boundary, which makes lithic fragment determination less subjective.

21
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Figure 13. Submicrolitic lithic fragment, made of approximately 85% euhedral and 
subhedral microlites and 15% glass. From modem sand, Bishop Tuff. BT ID-m, 
12.5X, ppl (A) and xpl (B). Square is 0.80 mm across.
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I propose the use of unidentified volcanic lithic fragments (Lvu) as a point 

counting categoiy for lithic fragments that do not fall into one of the previously 

mentioned lithic fragment categories. The use of this category is likely to be very limited, 

however, because most volcanic lithic fragments are now easily included in one of the 

formally defined categories. Any new lithic fragment categories that may be needed could 

be added to the current system in future work.

The best aspect of this classification scheme is the fact that it does not require any 

mineralogical information; it depends only on general crystal form and style. As a 

sedimentary geologist, it is often more pertinent to know about the physical properties of 

the volcanics that contributed volcanic lithic fragments to the system. In the previous 

system (Dickinson, 1970; Ingersoll and Cavazza, 1991), cooling history, exotic lava 

types, and various other factors could have a significant impact on the type of lithic 

fragments produced, and could render lithic fragments undefinable or mislabeled in a 

system that only looked at common textures. At a minimum, a system that relates 

volcanic lithic fragments to the volcanic source rocks would at least have a system which 

gives an idea of how glassy the volcanic system was, which this system succeeds.

Point Counting Technique

Point counting of zero order samples (Ingersoll, 1990) in this project utilized a 

modified Gazzi-Dickinson method (Gazzi, 1966; Dickinson, 1970; refined by Ingersoll et 

al., 1984; Zuffa, 1985; Ingersoll et al., 1993, Table 2). The basic principle is the use of 

the sand/silt size cutoff as a boundary in the discrimination of monocrystalline and 

poly(micro)crystalline components of a detrital rock. For example, an individual quartz 

crystal that is larger than 62.5 pm (0.0625 mm) would be considered monocrystalline
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Table 2

Point Count Categories, after Dickinson (1970) and Critelli and Ingersoll (1995).

Qm - crystalline quartz, greater in maximum diameter than .0625 mm.

Qp - polycrystalline (microcrystalline) quartz, with individual crystals smaller than .0625 
mm.

K - crystalline feldspar, with an alkali component (non plagioclase), greater in maximum 

diameter than .0625 mm.

P - crystalline feldspar without an alkali component (plagioclase), greater in maximum 
diameter than .0625 mm.

M - crystalline mica (including muscovite, hiotite, and chlorite), greater in maximum 

diameter than .0625 mm.

Dpao - crystalline pyroxene, amphibole, and olivine, greater in maximum diameter than 

.0625 mm.

Dox - crystalline oxides (including magnetite and ilmenite), greater in maximum diameter 
than .0625 mm.

Ls - microcrystalline (<.0625 mm) rock fragment of sedimentary origin.

Lm - microcrystalline (<.0625 mm) rock fragment of metamorphic origin.

L w  - volcanic microcrystalline (<.0625 mm) rock fragment with a vitric texture.

Lvg - volcanic microcrystalline (<.0625 mm) rock fragment with a granular texture.

Lvs - volcanic microcrystalline (<.0625 mm) rock fragment with a seriate texture.

Lva - volcanic microcrystalline (<.0625 mm) rock fragment with an aggregate texture. 

Lvsm - volcanic microcrystalline (<.0625 mm) rock fragment with a submicrolitic texture. 

Lvm - volcanic microcrystalline (<.0625 mm) rock fragment with a microlitic texture.

LvI - volcanic microcrystalline (<.0625 mm) rock fragment with a lathwork texture.

Lvu - volcanic microcrystalline (<.0625 mm) rock fragment with a texture not described or 

not within the boundaries of the other volcanic lithic categories.

O - ‘other’ grain or crystal, not important to overall count. Can include Lm, Ls, Lvu, 

plant fragments, other minerals (secondary calcite, alkalic minerals), etc.

U - unidentified grain or crystal. By rule, this does not exceed 5% of the count.
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(Qm), while a quartz crystal that is smaller than 62.5 jam would be considered part of a 

larger sand-sized grain (e.g. polycrystalline quartz, chert, various lithic fragments). This 

is the only system that could produce statistically valid results.

The Gazzi-Dickinson technique had to be modified for this project, because I dealt 

with volcanic rocks (zero order samples) as opposed to volcanic lithic arenites (first or 

higher order samples). Upon examining a volcanic rock, I first determined whether the 

cross-hairs landed on a phenocryst phase (greater than silt-sized) or matrix. If the cross 

hairs landed on a crystal larger than silt-size, I tabulated it as a monocrystalline grain. If 

the cross-hairs landed on matrix or a crystal smaller than sand-sized, I determined the 

proportions of matrix types of the non-phenocryst phase. The modem sand samples I 

used in this project (see below) were counted using the normal Gazzi-Dickinson method 

(Gazzi, 1966; Dickinson, 1970; refined by Ingersoll et al., 1984; Zuffa, 1985; Ingersoll et 

al., 1993). I point counted thin sections between July 2003 and May 2004.

If the cross-hairs landed on area of matrix in a volcanic rock, I took several steps 

to determine its grain type (after Ingersoll and Cavazza, 1991). In many cases, volcanic 

rocks have a very homogeneous texture (Figure 14). In such a situation, I examined a ~1 

mm wide area to determine the matrix crystalline type proportions (glass, anhedral, 

subhedral, euhedral) and the corresponding lithic type that would apply if a sand grain 

were formed from this area of the volcanic rock. I used 1 mm cutoff because this is the 

standard point count size used to minimize grain size effects on composition in 

sandstones (Ingersoll et al., 1984). If recognizably different textures occur within the 

same 1 mm area, than the classification is based upon the textural area that the cross hair 

lands on, as long as it is within the sand size fraction (Figure 15). If the texture occurs in 

an area smaller than sand-sized, then it would considered an inclusion in a larger volcanic
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Figure 14. Homogeneous matrix (Lvl). Holocene high silica (65.98) andésite from St. 
Lucia island. Lesser Antilles. SL8312, 16X, ppl (A) and xpl (B). Square is 1.0 mm 
across.
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Figure 15. Heterogeneous matrix in a volcanic lithic fragment, with both Lvl (left) 
and Lvsm (far right) material within the same grain. Modem sand from the Bishop 
Tuff. BT lA-m, lOX, ppl (A) and xpl (B). Square is 1.0 mm across.
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lithic area. In order to have an understanding of the reproducibility and accuracy of this 

point counting technique, I point counted a sample of modem sand from the Red Hill 

basalt in the Coso Volcanic field (Table 3, Figure 16). Overall, the variation was 

manageable relative to the proposed variation in this Binomial system (Van Der Plas and 

Tobi, 1965), even though the replications failed a chi-squared test. This shows the large 

amount of natural variation and difficulty in each point count. Despite the fact that 

standard point counting procedures were used, the variation was higher than expected, 

meaning reproducibility is in question, along with the application of the binomial 

distribution towards point counting in general. Another possibility for the failure of the 

chi-squared test is the failure of the homogeneous assumption in the sample chosen.

Localities and Sampling

For this study, I borrowed zero order samples (volcanic rocks) from various 

sources (Table 4), including Jon Davidson, Todd Feeley, John Hora, Bob Christiansen, 

and the University of Montana thesis collections. Samples were taken from various 

geographic localities from across the globe, including Montana, Wyoming, New Zealand, 

islands of the Lesser Antilles, and Yellowstone National Park. The only criteria for 

selection of a useable sample was that it was a fine grained igneous rock (extrusive or 

hypabyssal) with known whole rock geochemistry.

First order samples (as defined by Ingersoll, 1990; Ingersoll et al., 1993) were 

taken from two localities, the Owens River Gorge near Bishop, CA (Figure 17) and Red 

Hill near Little Lake, CA (Figure 16). The Owens River Gorge cuts through the .76 Ma 

Bishop Tuff which has a whole rock weight %Si02 of 75.5 to 77.6 (Hildreth, 1977; 

Anderson et al., 2000). The Owens River samples (BTla through BTld) were collected
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Table 3

Point Count Replication Data and Statistics

Since point counting theoretically represents a binomial distribution (Van der Plas 
and Tobi, 1965), the goodness of fit to a binomial distribution with population 
parameters estimated from the data is used in order to test the reproducibility of the 
counts used in this thesis (after Zar, 1999). Sample COS 1 A-m was used because of it’s 
small grain size (to reduce multiple counts on the same grain), diverse volcanic lithic 
fragment population, and ease of counting (equal thickness across slide, lack of felsic 
minerals other than plagioclase feldspar, etc.). I performed chi-squared tests on all six 
frequently occurring parameters (> 3 grains per sample) in COS lA-m. Table 3.1 shows 
the data for these 5 counts (1 for data collection and 4 replications).

Table 3.1
Replication # Date P Lw Lvsm Lvm Lvl Dpao Total points

initial* 2-21 91 27 25 68 137 49 400

1 3-25 95 33 37 86 163 86 500

2 4-6 116 22 46 70 179 60 500

3 4-7 122 15 30 68 172 87 500

4 4-8 91 17 42 91 173 83 500

*Note: the initial count was only 400 points, while the replications were 500 points each. 
The initial count was used in some calculations (p-hat) but not the chi-squared test.

First I estimated p-hat, the estimate from the data of the population parameter p, 
the theoretical percentage of each parameter in the population. This is calculated from the 
total sum of each element divided by the total points counted (2,400). I also calculated q- 
hat (1 - p-hat), x-exp (the average number of grains found in each 500 point sample based 
on p-hat, rounded to the nearest grain), s (the standard deviation of the 4 replication 
counts for each parameter), and sigma (theoretical standard deviation of each parameter 
based on binomial distribution, ^npq  ). Table 3.2 (below) shows this information.

Table 3 (cont.)
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Table 3.2
P Lw Lvsm Lvm Lvl Dpao

p-hat 0.215 0.0475 0.0750 0.160 0.343 0.152

q-hat 0.785 0.9525 0.925 0.840 0.657 0.848

x-exp 108 24 38 80 172 76

s 13.2 6.98 5.97 9.93 5.72 11.1

sigma 9.19 4.76 5.89 8.20 10.6 8.03

Taking the parameter with the highest standard deviation in the data, P, and using 
the fact that sigma = 9.19, we see that the sample standard deviation is much less than 2- 
sigma, which would lead to the conclusion that the data fits within the normal variation 
about the chi-squared distribution. In cases like Lvl, the sample standard deviation is 1/2 
sigma. Also, the glass factors (see discussion on pg. 44) of the four replications are 
0.5898, 0.5764, 0.5902, and 0.5593, which also supports the replication potential of this 
technique (the original count also gave a close 0.6528 for the glass factor).

In order to confirm the qualitative analysis of the previous paragraph, I performed 
a quantitative statistical analysis known as a chi-squared test. This is done by examining 
the chi-squared distribution and by calculating a chi-squared statistic based upon the 
equation:

2
y y

/=1 7=1

where Oij is the observed value in each cell (of table 3.1), Eij is the the expected 
(theoretical) value (x-exp from Table 12.2) for each cell, and the cells are identified by 
their row number i (1 to R) and column number j (1 to C). 1 calculated this number to be 
34.258. The degrees of freedom for this calculation is equal to (R-1)*(C-1) which is 15. 
So, a chi-squared distribution with 15 degrees of freedom and a value of 34.258 gives a 
probability of being equal or more extreme of .0031342 or less. The 5% cutoff for this 
distribution is 24.996. This leads to the conclusion that while the point counting in this 
thesis seems reliable based on estimates of sigma, it is not statistically reproducible. The 
difficulty in point counting, the inherent subjective nature of point counting, and the 
number of assumptions built into a point count (homogeneously distributed grains) may 
have added to this result. This result questions the use of the binomial distribution in 
point counting in general.
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Novak and Bacon (1986).
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Table 4 - Sample Database

Sample
No.

Location Supplier Reference wt. % 
Si02

COS lA N 35°59.232’, W 117°54.75r Matt Affolter Bacon and Metz (1984) 51.7-54.0

COS IB N 35°59.317’, W 117°54.375’ M. Affolter Bacon and Metz (1984) 51.7-54.0

COS 1C N 35°59.378% W 117°54.252’ M. Affolter Bacon and Metz (1984) 51.7-54.0

BT lA N 37°30.105’, W 118°34.068’ M. Affolter Hildreth (1977) 75.5-77.6

BT IB N 37°30.462\ W 118°34.117’ M. Affolter Hildreth (1977) 75.5-77.6

BT 1C N 37°30.981’, W 118°34.292’ M. Affolter Hildreth (1977) 75.5-77.6

BT ID N 37°30.082’, W 118°34.350’ M. Affolter Hildreth (1977) 75.5-77.6

M8214 Pelee, Martinique, Lesser Antilles Jon Davidson Davidson and Harmon (1989) 61.10

M8217 Pelee, Martinique, Lesser Antilles J. Davidson Davidson and Harmon (1989) 58.94

M8222 Pelee, Martinique, Lesser Antilles J. Davidson Davidson and Harmon (1989) 59.14

M8225 Pelee, Martinique, Lesser Antilles J. Davidson Davidson and Harmon (1989) 60.26

M8228 Pelee, Martinique, Lesser Antilles J. Davidson Davidson and Harmon (1989) 62.10

M8268 Carbet, Martinique, L. Antilles J. Davidson Davidson and Harmon (1989) 62.86

M8277 Pelee, Martinique, Lesser Antilles J. Davidson Davidson and Harmon (1989) 60.47

M8310 submarine. Mart., L. Antilles J. Davidson Davidson and Harmon (1989) 50.03

M8328 Diamant, Martinique, L. Antilles J. Davidson Davidson and Harmon (1989) 55.00

SL8308 St. Lucia, Lesser Antilles J. Davidson Davidson and Harmon (1989) 66.23

SL8312 St. Lucia, Lesser Antilles J. Davidson Davidson and Harmon (1989) 65.98

SL8316 St. Lucia, Lesser Antilles J. Davidson Davidson and Harmon (1989) 63.76

SL8324 St. Lucia, Lesser Antilles J. Davidson Davidson and Harmon (1989) 65.49

SL8326 St. Lucia, Lesser Antilles J. Davidson Davidson and Harmon (1989) 53.47

SM9701 4981870N, 12518530E Todd Feeley Lindsay and Feeley (2003) 62.78

SM9702 4981600N, 12518360E T. Feeley Lindsay and Feeley (2003) 63.56

SM9703 4981480N, 12518260E T. Feeley Lindsay and Feeley (2003) 63.71

SM9704 4980520N, 12518340E T. Feeley Lindsay and Feeley (2003) 62.85

SM9705 4980740N, 12518380E T. Feeley Lindsay and Feeley (2003) 62.09

SM9706 4985240N, 12519910E T. Feeley Lindsay and Feeley (2003) 69.35

SM9709 49839 ION, 12518450E T. Feeley Lindsay and Feeley (2003) 58.01

SM9712 49834 ION, 12518280E T. Feeley Lindsay and Feeley (2003) 56.27
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Table 4 (cont.)

Sample
No.

Location Supplier Reference wt. % 
Si02

SM9713 4977480N, 12518020E T. Feeley Lindsay and Feeley (2003) 62.16

SM9715 4978460N, 12517720E T. Feeley Lindsay and Feeley (2003) 61.05

SM9716 4978560N, 12517550E T. Feeley Lindsay and Feeley (2003) 58.80

SM9717 49786 ION, 12517490E T. Feeley Lindsay and Feeley (2003) 59.51

SM9718 49823 80N, 12518780E T. Feeley Lindsay and Feeley (2003) 58.60

SM9719 4981160N, 12518580E T. Feeley Lindsay and Feeley (2003) 62.60

SM9720 4981960N, 12518820E T. Feeley Lindsay and Feeley (2003) 58.42

SM9721 4982070N, 12518460E T. Feeley Lindsay and Feeley (2003) 58.38

SM9722 49821 ION, 12518400E T. Feeley Lindsay and Feeley (2003) 60.36

SM9724 4982440N, 12518050E T. Feeley Lindsay and Feeley (2003) 68.43

SM9725 4982600N, 12517980E T. Feeley Lindsay and Feeley (2003) 61.34

SM9726 4982730N, 12517980E T. Feeley Lindsay and Feeley (2003) 58.50

SM9727 49828 ION, 12517990E T. Feeley Lindsay and Feeley (2003) 59.02

SM9730 4986620N, 12517280E T. Feeley Lindsay and Feeley (2003) 66.57

SM9731 4986340N, 12516800E T. Feeley Lindsay and Feeley (2003) 64.29

SM9732 4986N, 12516E T. Feeley Lindsay and Feeley (2003) 65.70

SM9733 4986120N, 12517990E T. Feeley Lindsay and Feeley (2003) 65.42

SM9734 4985990N, 12517680E T. Feeley Lindsay and Feeley (2003) 67.07

SM9735 4985770N, 12517350E T. Feeley Lindsay and Feeley (2003) 68.95

SM9736 4985700N, 12517270E T. Feeley Lindsay and Feeley (2003) 59.07

SM9737 4985560N, 12517050E T. Feeley Lindsay and Feeley (2003) 57.40

SM9738 4985560N, 12516990E T. Feeley Lindsay and Feeley (2003) 62.54

SM9740 49855 ION, 12516950E T. Feeley Lindsay and Feeley (2003) 63.84

SM9810 4983070N, 12516900E T. Feeley Lindsay and Feeley (2003) 64.43

SM9826 49829 ION, 1251820E T. Feeley Lindsay and Feeley (2003) 58.75

SM9827 4982940N, 12518200E T. Feeley Lindsay and Feeley (2003) 57.79

SM9828 4983340N, 12518200E T. Feeley Lindsay and Feeley (2003) 55.81

TLC9701 4986630N, 12517410E T. Feeley Lindsay and Feeley (2003) 63.83

Tr 191 N 44°15’, W 115°15’ UM collection Luthy (1981) 76.93
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Table 4 (cont.)

Sample
No.

Location Supplier Reference wt. % 
Si02

39C N 48°23’, W 108°50’ UM Collection Leppert (1985) 49.6

32L N 48°23’, W 108°50’ UM Leppert (1985) 51.68
260A N 46°45’, W 114°30’ W UM Holloway (1980) 69.20

70A N 46°45’, W 114°30’ W UM Holloway (1980) 74.80

54A N 46°45’, W 114°30’ W UM Holloway (1980) 73.22

66A ttf N 46°45’, W 114°30’ W UM Holloway (1980) 71.00

P39850 Ngaunihoe Volcano, Taupo, NZ John Hora Hobden (1997) 55.71

P39864 Ngauruhoe Volcano, Taupo, NZ J. Hora Hobden (1997) 55.82

TGOOl Ngaunihoe Volcano, Taupo, NZ J. Hora Hobden (1997) 55.44

TG004 Ngaunihoe Volcano, Taupo, NZ J. Hora Hobden (1997) 55.06

TGOlO Ngaunihoe Volcano, Taupo, NZ J. Hora Hobden (1997) 56.93

TG019 Ngaunihoe Volcano, Taupo, NZ J. Hora Hobden (1997) 56.51

TG041 Ngaunihoe Volcano, Taupo, NZ J. Hora Hobden (1997) 55.19

TG043 Ngaunihoe Volcano, Taupo, NZ J. Hora Hobden (1997) 56.23

TG540 Ngaunihoe Volcano, Taupo, NZ J. Hora Hobden (1997) 56.71

TG575 Ngaunihoe Volcano, Taupo, NZ J. Hora Hobden (1997) 55.06
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along the Owens River at approximately N 37° 30’ W 118° 34’ and sieved into coarse 

(>2.0 mm), medium (2.0 - 0.25 mm), and fine (0.25 - 0.0625 mm) fractions.

The Red Hill Cinder Cone (51.7 to 54.0 wt. %Si02, Bacon and Metz, 1984) is 

part of the Pliocene to Quaternary Coso Volcanic field which separates the Owens Valley 

to the north and the Indian Wells Valley to the south (Novak and Bacon, 1986). Samples 

(COS la  - Ic) were taken from the slopes of the Red Hill Cinder Cone near N 35° 59’ W 

117° 54’ (See Table 4 for exact sample locations).

RESULTS

The data for the 96 point counted thin sections performed in this study are 

tabulated in Appendix I. In order to reduce the influence of phenocrysts (and their 

relative abundance) on the overall counts, I normalized each specific volcanic lithic 

fragment category to the total number of volcanic lithic fragment counted. This 

percentage I call the lithic ratio and is shown on the y axis in Figures 18-21 . In those 

figures, I plotted all of the lithic ratio data verses weight % Si02 (on the x axis) in the 

volcanic rock, because wt. % Si02 is the standard chemical classification system used for 

igneous rocks (Williams et al., 1954).

Another valid and more complete way of presenting this data is with a term I call 

the Glass Factor (%Gf). The %Gf is a proxy for the amount of glass in a particular 

volcanic rock or suite of volcanic lithic fragments, based upon the proportions of the 

different volcanic lithic fragments present (Figures 22 - 26). This number is calculated by 

taking each lithic ratio and multiplying by the theoretical weighted median glass content of 

the lithic in question (97.5% for Lw, 15% for Lvsm, etc.). The results of this calculation 

are plotted in Figure 22 for the zero order samples and in Figures 23 and 24 for the first
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order samples. These %Gf numbers are plotted verses Si02, and Figures 25 through 26 

shows the %Gf data plotted vs. A1203, K20/(K20 + CaO + Na20), and Ca0/(K20 + 

CaO + Na20) for the zero order data. The horizontal trends are artificial manifestations 

of the process, and correspond to the average values of each of the lithic fragment types. 

Any deviation from these average values of glass used for each lithic fragment is a result 

of true mixing between lithic fragment types/textures in the host lava.

DISCUSSION 

Zero Order Data

Initial inspection of the plotted data suggest that only general characterizations of 

‘rhyolite’, ‘andésite’, and ‘basalt’ source can be used in this system, and even these 

should be used with minerologic or other supporting evidence. As shown in the data, 

volcanic rock textures are too unconstrained to be used by this type of system. Two 

illustrations of this can be seen on any of the Figures 18 - 21. Not only do specific 

compositions of Si02 content have a wide variety of lithic ratios, but a wide variety of 

compositions can be found at a specific lithic ratio. If the system were more ideal, then 

all of the graphs in Figures 18-21 would show well defined relationships that could be 

used to predict lithic ratios from a specific composition. It is true that there are distinct 

clusters of high values at their predicted places. For example, most of the extreme data 

for high Lvm/LvT ratios (Figure 20b) are found in the window of 56 - 65 wt. % Si02. 

However, there is also a cluster of data without high Lvm/LvT ratios in that window, and 

even some samples in that window without any Lvm component. This leads to the 

conclusion that the data are far too erratic to use in a manner that could determine the 

composition from a suite of volcanic lithic fragments. One possible exception is in the
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case of a rock rich in microlitic material (possible future lithic fragment) which can, with 

some qualitative confidence, be assigned to a composition of 56 - 65 wt. % Si02. Such an 

assumption has no valid statistical or quantitative basis. Plots of other normalized lithic 

types vs. Si02 are even more unpredictable (e.g. lathwork (54 - 66 wt. % Si02, Figure 

21), seriate (51 - 67 wt. % Si02, Figure 19a), and submicrolitic (55 - 64 wt. % Si02, 

Figure 20a)). This lack of statistically valid correlation on all levels can only lead to the 

deduction that volcanic lithic type can not be relied upon to accurately determine the 

parent volcanic rock composition, and can be used only in a general sense.

I hypothesize that more intermediate composition volcanic rocks would have a 

much lower glass content, with the extreme composition rocks, both mafic and felsic, 

having much higher glass content, on average. This is far from the case, with the 

intermediate compositions (55 - 70 wt. %Si02) having a wide range of %Gf (Figure 22). 

With limited data, it does appear that the most felsic rocks (>70 wt. % Si02) produced 

high %Gf (greater than 65%) and very mafic rocks (<55 wt. % Si02) produced medium to 

high %Gf (25 - 60 %). It is possible, however, that these results relate partially from a 

sample bias toward intermediate volcanic rocks in this study (Figure 27),

Obviously, oversimplifications have produced the erratic behavior in the data from 

the use of these simple volcanic lithic fragments. There are too many confounding 

variables that produce too wide of a range of volcanic textures to relate back to specific 

compositions. These variables may include, but are not limited to: eruptive setting (e.g. 

subaqueous vs. subarial eruptions), volatile contents, alkalinity, and eruption style 

(pyroclastic vs. flow). All of these factors are very important for magma dynamics, but 

are nearly impossible to identify in a sand-sized particle, mainly due to the high alteration 

and degradation potential of detrital volcanic grains.
QFLnil»!
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Figure 27. Histogram of sample suite, based upon wt. % Si02 on x-axis. 
Note the concentration of intermediate samples.
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If this system did not work, one might ask what was the purpose of changing the 

methods of selecting point count categories? In the old system, there would be no chance 

of the system working, for two important reasons. First, too many potential lithic 

fragments would be labeled as unidentified or ‘seriate’ because they would not fit into the 

predetermined categories. Secondly, since the boundaries are gradational in the old 

system, counts likely would not be statistically quantifiable.

Volcanic lithic fragments can still be used in provenance studies (e.g., Ingersoll and 

Cavazza, 1991), especially when some information is known about the source rocks. 

Ternary diagrams of volcanic lithic fragment types used to differentiate tectonic settings 

(e.g. Marsaglia and Ingersoll (1992); Marsaglia (1993); Marsaglia (2004)), could still be 

utilized with confidence. Plots of Lvf-Lvm-Lvl (where Lvf = Lvg + Lvs) have been 

demonstrated to distinguish not only different tectonic systems, but domains and 

elements within tectonic systems (e.g. forarc and backarc basins, Marsaglia (1992)). 

Volcanic lithic fragments are still some of the most diagnostic sedimentary particles and 

should still be used for tectonic inference and presence of volcanism.

First Order Data

The established theory for volcanic lithic degradation is that volcanic glass is one 

of the most unstable sedimentary particles. Therefore, downstream trends should show a 

selective degradation of the more glass rich lithic fragments, relative to the more crystal 

rich lithic fragments. As is clear from Figures 23 and 24, neither the Owens River Gorge 

(Bishop Tuff) sands nor the Red Hill (Coso Volcanics) sands collected in this project 

showed a qualitative or statistically valid trend of declining percent glass downstream 

(Table 5). This lack of a trend could have two possible explanations. First, these sites
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Table 5

Analysis of first order data (Bishop Tuff sands)

In order to show if there is an effect of downstream transport in the Bishop Tuff 

area (Figure 23), I performed a two factor analysis of variance (ANOVA), as shown in 

Zar (1999, Section 12.3, pg. 249-250). Since there are no replications, a special ANOVA 

must be performed, in which the total sums of squares (SStotal) is equal to the cell sums 

of squares (SScell). By definition, the error sums of squares (SS error) is assumed to 

represent error without interaction. The first factor, A, would be the three (a=3) size 
fractions of the sediment. The second factor, B, would be the four (b=4) sampling 

localities. An underlying assumption that interaction between A and B is not important. 

Below is the two-way ANOVA table used in this analysis. The initial hypotheses used 

in this analysis were:

Hoi : There is no effect of grain size on %Gf.

Ho2: There is no effect of transport on %Gf.

Source of 
Variation

Sums of 
squares (SS)

Degrees of 
Freedom

Mean
Square

F-test Significance

Factor A 
(distance)

.04942 3 .013 3.766 .00000

Factor B 
(grain size)

.01722 2 6.586 1.968 .22025

Intercept* 6.58601 1 .009 1505.373 .07845

Error .02625 6 .016 - -

Total 6.67890 12 .004 - -

♦The intercept factor (scaling factor) is for the true total mean of the data, and 
it’s low significance indicates an F-test for Ho: p=0.
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Table 5 (cont.)

The result of .07845 for the significance of downstream distance as a factor is not 
a statistically significant result. Transformed data (percentage data is often transformed 

by a square root/arcsine transformation for small and large percentages to maintain 

normality) showed a similar result of .09047. The proximity to the .05 professionally 
accepted cutoff is a signal that with further stream transport, a statistically significant 

trend in the degradation of the glass in the lithic population is likely. Therefore, Hoi is 

cautiously accepted, and Ho2 is easily accepted.
A similar analysis was performed for the Coso data (Figure 24) with no significant 

or near significant results.
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were chosen because of access and because they would best approximate a single source. 

However, the length of transport in both systems (~1 mile at Red Hill and ~4 miles at the 

Owens River Gorge) was most likely not enough transport to significantly change the 

lithic character. The second possibility is that there is no relative degradation between the 

volcanic lithic fragments, and the amount of glass in each lithic has no effect on the rate at 

which that lithic category degrades. To verify this, a much longer transport distance must 

be used.

Another interesting observation from Figures 23 and 24 is the lack of consistency 

between the size fractions. Since volcanic glass is chemically unstable, it would be easy 

to assume that surface area to volume ratio was the governing factor on the weathering 

potential of volcanic lithic fragments. For example, it might be assumed that the fine 

fractions have a higher surface area/volume ratio and therefore should have the lowest 

%Gf. However, Figures 23 and 24 show no trends across size fractions. Again, there are 

two possibilities for this result. First, the relative %Gf fluctuations from site to site 

could be due to natural randomness involved with sampling a larger somewhat 

heterogeneous population that one might expect in a river system. Second, the lack of 

trend could be a factor of the limitations in transport distance, which could obscure the 

true interdependence. It seems that the transport distance would not be a factor in the 

presence of a correlation between grain size and percent glass. Factors such as climate or 

acidity would appear more important to the relationship.
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CONCLUSIONS

Volcanic lithic fragments have long been used for inferring tectonic history and 

provenance. However, the system by which volcanic lithic fragments are identified is 

fundamentally flawed, and would be better suited if the lithic fragments were defined 

based upon the proportions of glass, anhedral, subhedral, and euhedral microlites in the 

matrix.

Even with a more rigorous and scientific definition of microtextures, volcanic lithic 

fragments still can not be used to accurately identify the composition of the parent 

volcanic rock. I have shown this to be true not only for each type of lithic fragment, but 

also by the approximate glass content of the total lithic fragments produced by a system. 

While the data set was limited, it was sufficient to show the variation in volcanic rock 

texture that could result. The data also showed that a wide range of lithic fragment types 

can result from a specific composition, and a correspondingly wide range of compositions 

that can lead to a specific lithic fragment type. The relationships shown in the data are 

very complex, and require future study.

The relative degradation of the lithic types is unknown, but is assumed to depend 

on the amount of glass in each lithic type. Data attempting to confirm or deny this idea 

using first order stream samples was inconclusive. There was also shown to be no valid 

trend between different size fractions and their relative glass contents.
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Appendix I - Complete Point Count Data Set
Date, Sample # %Si02 Reference Qm P K M Dpao Dox 0 U

7-16, Tr 191 76.93 Luthy 81 18 10 7 5 1 2

7-17, 39C 49.6 Leppert 85 30 49 5

?, 32L 51.68 Leppert 85 1 27

7-21, 260A 69.2 Holloway 80 37 37 73 5 1 1

?, 70A 74.8 Holloway 80 6 2 3 3

?, 54A 73.22 Holloway 80 39 43 47 8

7-24?, 66A ttf 71.0 Holloway 80 4 1

7-27, EFR 334 54.0 LaPoint 77 89 5 53 4 1

?, EFR 233 63.2 LaPoint 77 127 2 19 2 1

9-10, SM9701 62,78 Lindsay 03 105 24 4

9-11, SM9702 63.56 Lindsay 03 92 17 2

9-12, SM9713 62.16 Lindsay 03 113 24 2

?, SM9733 65.42 Lindsay 03 146 4 19 1

9-26, SM9726 58.50 Lindsay 03 44 2 34 1

9-13, SM9828 55.81 Lindsay 03 42 34

9-13, SM9703 63.71 Lindsay 03 115 7 4 3

9-13, SM9738 62.54 Lindsay 03 48 34 1

9-13, SM9730 66.57 Lindsay 03 104 8 26

?, SM9704 62.58 Lindsay 03 24 42

?, SM9712 56.27 Lindsay 03 52 31

?, SM9734 67.07 Lindsay 03 1 144 8 30 2

9-17, SM9737 57.40 Lindsay 03 17 30

9-21, SM9827 57.79 Lindsay 03 66 41

9-18, SM9719 62.60 Lindsay 03 100 13 1

9-21, SM9732 65.70 Lindsay 03 117 11 6

9-21, SM9705 62.09 Lindsay 03 45 27 5 1
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Appendix I - Complete Point Count Data Set (continued)
Date, Sample # LvT Lw Lvg Lvs Lva Lvsm Lvm Lvl %Gf Total

Points

7-16, Tr 191 457 313 37 104 3 .675 500
7-17, 39C 416 1 2 3 8 172 230 .559 500

?, 32L 472 239 4 101 128 .290 500

7-21, 260A 346 17 329 .453 500

?, 70A 486 486 .975 500

?, 54A 363 359 3 1 .964 500

7-24?, 66A ttf 495 413 80 2 .894 500

7-27, EPR 334 345 1 5 35 304 .677 500

?, EPR 233 341 6 335 .033 492

9-10, SM9701 367 4 13 350 ,705 500

9-11, SM9702 389 9 9 371 .501 500

9-12, SM9713 361 2 359 .723 500

?, SM9733 330 326 4 .029 500

9-26, SM9726 419 1 2 21 395 .702 500

9-13, SM9828 424 25 2 385 12 .148 500

9-13, SM9703 371 225 8 118 19 1 .084 500

9-13, SM9738 417 417 .725 500

9-13, SM9730 362 358 4 .025 500

?, SM9704 434 2 6 426 .147 500

?, SM9712 417 2 9 92 312 2 .317 500

?, SM9734 315 315 .025 500

9-17, SM9737 453 453 .375 500

9-21, SM9827 393 1 11 381 .364 500

9-18, SM9719 386 5 7 374 .146 500

9-21, SM9732 366 30 336 .346 500

9-21, SM9705 422 4 3 415 .148 500
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Appendix I - Complete Point Count Data Set (continued)
Date, Sample # %Si02 Reference Qm P K M Dpao Dox 0 U

9-22, SM9727 59.02 Lindsay 03 30 27 1

9-22, SM9724 68.43 Lindsay 03 100 17

9-24, SM9810 64.43 Lindsay 03 35 27

9-23, SM9721 58.38 Lindsay 03 67 43 2
9-25, SM9723 59.05 Lindsay 03 57 30

2-24, SM9716 58.80 Lindsay 03 56 55

9-26, SM9720 58.42 Lindsay 03 62 41 1

9-25, SM9731 64.29 Lindsay 03 117

9-26, SM9725 61.34 Lindsay 03 108

9-27, SM9740 63.84 Lindsay 03 130

9-27, SM9715 61.05 Lindsay 03 75

9-28, SM9718 58.6 Lindsay 03 92

9-27, SM9706 69.35 Lindsay 03 144

10-4, SM9736 59.07 Lindsay 03 5

10-1, SM9709 58.01 Lindsay 03 83

10-4, SM9735 68.95 Lindsay 03 130 4 11 2

10-4, TLC9701 63.83 Lindsay 03 54 6 37 2

10-7, SM9722 60.36 Lindsay 03 124

10-7, SM9826 58.75 Lindsay 03 64 40

10-8, SM9717 59.51 Lindsay 03 89 1

12-15, TGOOl 55.44 Hobden 97 128 51 4

12-16, TG004 55.06 Hobden 97 141 49 1

12-17, TGOlO 56.93 Hobden 97 97 39 2 2

12-17, TG575 55.06 Hobden 97 113 68

12-18, TG041 55.19 Hobden 97 128 48

12-17, TG019 56.51 Hobden 97 108 35
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Appendix I - Complete Point Count Data Set (continued)
Date, Sample # LvT Lw Lvg Lvs Lva Lvsm Lvm Lvl %Gf Total

Points

9-22, SM9727 442 2 10 429 1 .147 500
9-22, SM9724 383 1 382 .374 500

9-24, SM9810 438 26 412 .354 500

9-23, SM9721 388 12 318 58 .416 500

9-25, SM9723 413 1 8 6 364 4 .367 500

2-24, SM9716 389 3 1 184 201 .265 500

9-26, SM9720 396 4 7 11 374 .695 500

9-25, SM9731 370 13 73 284 .318 500

9-26, SM9725 380 1 2 114 263 .615 500

9-27, SM9740 343 1 310 32 .407 500

9-27, SM9715 386 1 3 12 368 2 .366 497

9-28, SM9718 351 1 18 6 254 72 .423 499

9-27, SM9706 325 232 89 3 1 .362 499

10-4, SM9736 477 2 56 418 1 .348 500

10-1, SM9709 393 29 10 306 48 48 .164 500

10-4, SM9735 353 303 50 .433 500

10-4, TLC9701 401 328 73 .191 500

10-7, SM9722 348 7 14 250 76 1 .192 500

10-7, SM9826 396 1 8 383 4 .370 500

10-8, SM9717 409 9 390 10 .379 500

12-15, TGOOl 316 2 2 64 248 .646 500

12-16, TG004 307 1 .619 500

12-17, TGOlO 360 10 8 1 5 329 7 .373 500

12-17, TG575 319 1 8 67 243 .638 500

12-18, TG041 324 1 10 313 .712 500

12-17, TG019 357 3 1 353 .721 500
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Appendix I - Complete Point Count Data Set (continued)
Date, Sample # %Si02 Reference Qm P K M Dpao Dox 0 U

12-19, TG043 56.51 Hobden 97 112 38 2

12-18, TG540 56.71 Hobden 97 81 18

12-20, P39864 55.82 Hobden 97 77 30 1

12-20, P39850 55.71 Hobden 97 128 37

1-10, SL8321 65.98 Davidson 89 41 86 53 15 24

1-11,M8217 58.94 Davidson 89 138 10 5 1

1-13, M8225 60.26 Davidson 89 133 25 9

1-12, SL8326 53.47 Davidson 89 180 60 1

1-14, SL8308 66.23 Davidson 89 35 152 30 1 23 1

1-13, SL8324 65.49 Davidson 89 12 156 50 1 21 10

1-14, M8328 55.00 Davidson 89 66 92 3 2

1-14, M8277 60.47 Davidson 89 63 4 14 5

1-15, M8222 59.14 Davidson 89 197 1 48 8

1-15, M8228 62.10 Davidson 89 47 119 73 2 31 1

1-19, SL8316 63.76 Davidson 89 30 50 120 1 26 5

1-20, M8268 62.86 Davidson 89 16 86 86 43 8

1-19, M8214 61.10 Davidson 89 106 56 28 13

1-20, M8310 50.03 Davidson 89 149 1 38 2

1-20, M8270 59.39 Davidson 89 140 26 1
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Appendix I - Complete Point Count Data Set (continued)
Date, Sample # LvT L w Lvg Lvs Lva Lvsm Lvm Lvl %Gf Total

Points
12-19, TG043 348 1 337 9 1 .157 500

12-18, TG540 401 10 25 6 11 349 .697 500

12-20, P39864 392 2 2 1 1 386 .721 500

12-20, P39850 335 1 3 1 1 7 322 .708 500

1-10, SL8321 281 7 1 1 1 271 .724 500

1-11, M8217 346 1 309 36 .039 500

1-13, M8225 333 1 1 331 .722 500

1-12, SL8326 259 15 244 .362 500

1-14, SL8308 258 1 3 254 .722 500

1-13, SL8324 250 186 63 1 .378 500

1-14, M8328 337 2 6 324 3 2 .152 500

1-14, M8277 414 71 343 .768 500

1-15, M8222 246 3 4 14 225 .699 500

1-15, M8228 227 194 33 .431 500

1-19, SL8316 265 1 8 256 .367 497

1-20, M8268 261 1 260 .149 500

1-19, M8214 297 18 278 1 .363 500

1-20, M8310 310 1 3 5 262 39 .411 500

1-20, M8270 333 189 143 1 .080 500

63



Appendix I - Complete Point Count Data Set (cont., First Order Data)
Date, Sample # %Si02 Reference Qm P K M Dpao Dox 0 U

10-23, COSlA-c 51.7-54.0 Bacon Metz 84 41 10

2-21,COSlA-m 51.7-54.0 Bacon Metz 84 91 1 49 1 1

2-16, COSlA-f 51.7-54.0 Bacon Metz 84 40 1 19 2

11-12, COSlB-c 51.7-54.0 Bacon Metz 84 15 4

2-23, COSlB-m 51.7-54.0 Bacon Metz 84 47 3 32 3 7 12

10-23, COSlB-f 51.7-54.0 Bacon Metz 84 1 42 1 1 10 2

11-14, COSlC-c 51.7-54.0 Bacon Metz 84 71 54 147 8 1 29

2-21,COSlC-m 51.7-54.0 Bacon Metz 84 85 82 166 1 6 1 15 8

2-15, COSlC-f 51.7-54.0 Bacon Metz 84 97 144 68 8 17 1 9 9

10-2, BTlA-c 75.5-77.6 Hildreth 77 24 4 24 20

2-14, BTlA-m 75.5-77.6 Hildreth 77 59 41 99 1 2 3 23 3

2-18, BTlA-f 75.5-77.6 Hildreth 77 117 42 65 14 3 6 2

2-21,BTlB-c 75.5-77.6 Hildreth 77 19 5 24 4 1 6 9

2-24, BTlB-m 75.5-77.6 Hildreth 77 91 27 48 3 1 1 8

2-23, BTlB-f 75.5-77.6 Hildreth 77 78 33 66 6 4 5 5

11-14, BTlC-c 75.5-77.6 Hildreth 77 2 2 4 3 1 1

2-14, BTlC-m 75.5-77.6 Hildreth 77 15 6 17 1 2 4 1

11-13, BTlC-f 75.5-77.6 Hildreth 77 87 10 47 2 3 1 1 1

2-20, BTlD-c 75.5-77.6 Hildreth 77 11 4 30 2 1

10-25, BTlD-m 75.5-77.6 Hildreth 77 135 46 70 10 2

2-26, BTlD-f 75.5-77.6 Hildreth 77 66 31 43 3 5 2 5

3-25, COSlA-m(l) 51.7-54.0 Bacon Metz 84 95 86

3-25, COSl A-m(2) 51.7-54.0 Bacon Metz 84 2 116 60 2

3-25, COSlA-m(3) 51.7-54.0 Bacon Metz 84 2 122 1 87 1

3-25, COSl A-m(4) 51.7-54.0 Bacon Metz 84 3 91 83 1 1
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Appendix I - Complete Point Count Data Set (cont., First Order Data)
Date, Sample # LvT Lw Lvg Lvs Lva Lvsm Lvm Lvl %Gf Total

Points

10-23, COSlA-c 349 113 73 163 .466 400

2-21, COS lA-m 257 27 25 68 137 .639 400

2-16, COSlA-f 338 91 1 1 2 22 221 .762 400

11-12, COSlB-c 381 6 21 102 152 100 .397 400

2-23, COSlB-m 296 64 5 38 67 122 .614 400

10-23, COSlB-f 346 18 1 132 43 152 .474 403

11-14, COSlC-c 90 23 2 5 13 47 .691 400

2-21,COSlC-m 36 10 1 4 9 12 .637 400

2-15, COSlC-f 47 11 1 3 7 3 22 .626 400

10-2, BTlA-c 328 244 57 9 1 1 16 .849 400

2-14, BTlA-m 169 59 1 8 27 16 58 .653 400

2-18, BTlA-f 151 77 15 6 5 8 40 .765 400

2-21,BTlB-c 332 96 79 1 9 21 126 .704 400

2-24, BTlB-m 221 116 29 9 2 15 50 .769 400

2-23, BTlB-f 203 87 14 11 9 15 66 .724 400

11-14, BTlC-c 387 333 7 6 41 .931 400

2-14, BTlC-m 354 160 35 9 1 20 24 105 .740 400

11-13, BTlC-f 248 194 1 24 7 2 11 .845 400

2-20, BTlD-c 352 80 88 4 13 38 129 .659 400

10-25, BTlD-m 137 77 9 36 11 4 .610 400

2-26, BTlD-f 245 97 14 23 13 21 77 .685 400

3-25,COSlA-m(l) 319 33 37 86 163 .590 500

3-25, COSlA-m(2) 320 22 3 46 70 179 .576 500

3-25,COSlA-m(3) 287 15 2 30 68 172 .590 500

3-25, COSlA-m(4) 321 14 1 42 91 173 .560 500

MiH "R om ey" Atrolta- M iy 10. M 04.1JO PM  MST
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